1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for Objective C declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Lookup.h"
16 #include "clang/Sema/ExternalSemaSource.h"
17 #include "clang/Sema/Scope.h"
18 #include "clang/Sema/ScopeInfo.h"
19 #include "clang/AST/ASTConsumer.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "llvm/ADT/DenseSet.h"
27
28 using namespace clang;
29
30 /// Check whether the given method, which must be in the 'init'
31 /// family, is a valid member of that family.
32 ///
33 /// \param receiverTypeIfCall - if null, check this as if declaring it;
34 /// if non-null, check this as if making a call to it with the given
35 /// receiver type
36 ///
37 /// \return true to indicate that there was an error and appropriate
38 /// actions were taken
checkInitMethod(ObjCMethodDecl * method,QualType receiverTypeIfCall)39 bool Sema::checkInitMethod(ObjCMethodDecl *method,
40 QualType receiverTypeIfCall) {
41 if (method->isInvalidDecl()) return true;
42
43 // This castAs is safe: methods that don't return an object
44 // pointer won't be inferred as inits and will reject an explicit
45 // objc_method_family(init).
46
47 // We ignore protocols here. Should we? What about Class?
48
49 const ObjCObjectType *result = method->getResultType()
50 ->castAs<ObjCObjectPointerType>()->getObjectType();
51
52 if (result->isObjCId()) {
53 return false;
54 } else if (result->isObjCClass()) {
55 // fall through: always an error
56 } else {
57 ObjCInterfaceDecl *resultClass = result->getInterface();
58 assert(resultClass && "unexpected object type!");
59
60 // It's okay for the result type to still be a forward declaration
61 // if we're checking an interface declaration.
62 if (resultClass->isForwardDecl()) {
63 if (receiverTypeIfCall.isNull() &&
64 !isa<ObjCImplementationDecl>(method->getDeclContext()))
65 return false;
66
67 // Otherwise, we try to compare class types.
68 } else {
69 // If this method was declared in a protocol, we can't check
70 // anything unless we have a receiver type that's an interface.
71 const ObjCInterfaceDecl *receiverClass = 0;
72 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
73 if (receiverTypeIfCall.isNull())
74 return false;
75
76 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
77 ->getInterfaceDecl();
78
79 // This can be null for calls to e.g. id<Foo>.
80 if (!receiverClass) return false;
81 } else {
82 receiverClass = method->getClassInterface();
83 assert(receiverClass && "method not associated with a class!");
84 }
85
86 // If either class is a subclass of the other, it's fine.
87 if (receiverClass->isSuperClassOf(resultClass) ||
88 resultClass->isSuperClassOf(receiverClass))
89 return false;
90 }
91 }
92
93 SourceLocation loc = method->getLocation();
94
95 // If we're in a system header, and this is not a call, just make
96 // the method unusable.
97 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
98 method->addAttr(new (Context) UnavailableAttr(loc, Context,
99 "init method returns a type unrelated to its receiver type"));
100 return true;
101 }
102
103 // Otherwise, it's an error.
104 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
105 method->setInvalidDecl();
106 return true;
107 }
108
CheckObjCMethodOverride(ObjCMethodDecl * NewMethod,const ObjCMethodDecl * Overridden,bool IsImplementation)109 bool Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
110 const ObjCMethodDecl *Overridden,
111 bool IsImplementation) {
112 if (Overridden->hasRelatedResultType() &&
113 !NewMethod->hasRelatedResultType()) {
114 // This can only happen when the method follows a naming convention that
115 // implies a related result type, and the original (overridden) method has
116 // a suitable return type, but the new (overriding) method does not have
117 // a suitable return type.
118 QualType ResultType = NewMethod->getResultType();
119 SourceRange ResultTypeRange;
120 if (const TypeSourceInfo *ResultTypeInfo
121 = NewMethod->getResultTypeSourceInfo())
122 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
123
124 // Figure out which class this method is part of, if any.
125 ObjCInterfaceDecl *CurrentClass
126 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
127 if (!CurrentClass) {
128 DeclContext *DC = NewMethod->getDeclContext();
129 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
130 CurrentClass = Cat->getClassInterface();
131 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
132 CurrentClass = Impl->getClassInterface();
133 else if (ObjCCategoryImplDecl *CatImpl
134 = dyn_cast<ObjCCategoryImplDecl>(DC))
135 CurrentClass = CatImpl->getClassInterface();
136 }
137
138 if (CurrentClass) {
139 Diag(NewMethod->getLocation(),
140 diag::warn_related_result_type_compatibility_class)
141 << Context.getObjCInterfaceType(CurrentClass)
142 << ResultType
143 << ResultTypeRange;
144 } else {
145 Diag(NewMethod->getLocation(),
146 diag::warn_related_result_type_compatibility_protocol)
147 << ResultType
148 << ResultTypeRange;
149 }
150
151 Diag(Overridden->getLocation(), diag::note_related_result_type_overridden)
152 << Overridden->getMethodFamily();
153 }
154
155 return false;
156 }
157
158 /// \brief Check for consistency between a given method declaration and the
159 /// methods it overrides within the class hierarchy.
160 ///
161 /// This method walks the inheritance hierarchy starting at the given
162 /// declaration context (\p DC), invoking Sema::CheckObjCMethodOverride() with
163 /// the given new method (\p NewMethod) and any method it directly overrides
164 /// in the hierarchy. Sema::CheckObjCMethodOverride() is responsible for
165 /// checking consistency, e.g., among return types for methods that return a
166 /// related result type.
CheckObjCMethodOverrides(Sema & S,ObjCMethodDecl * NewMethod,DeclContext * DC,bool SkipCurrent=true)167 static bool CheckObjCMethodOverrides(Sema &S, ObjCMethodDecl *NewMethod,
168 DeclContext *DC,
169 bool SkipCurrent = true) {
170 if (!DC)
171 return false;
172
173 if (!SkipCurrent) {
174 // Look for this method. If we find it, we're done.
175 Selector Sel = NewMethod->getSelector();
176 bool IsInstance = NewMethod->isInstanceMethod();
177 DeclContext::lookup_const_iterator Meth, MethEnd;
178 for (llvm::tie(Meth, MethEnd) = DC->lookup(Sel); Meth != MethEnd; ++Meth) {
179 ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(*Meth);
180 if (MD && MD->isInstanceMethod() == IsInstance)
181 return S.CheckObjCMethodOverride(NewMethod, MD, false);
182 }
183 }
184
185 if (ObjCInterfaceDecl *Class = llvm::dyn_cast<ObjCInterfaceDecl>(DC)) {
186 // Look through categories.
187 for (ObjCCategoryDecl *Category = Class->getCategoryList();
188 Category; Category = Category->getNextClassCategory()) {
189 if (CheckObjCMethodOverrides(S, NewMethod, Category, false))
190 return true;
191 }
192
193 // Look through protocols.
194 for (ObjCList<ObjCProtocolDecl>::iterator I = Class->protocol_begin(),
195 IEnd = Class->protocol_end();
196 I != IEnd; ++I)
197 if (CheckObjCMethodOverrides(S, NewMethod, *I, false))
198 return true;
199
200 // Look in our superclass.
201 return CheckObjCMethodOverrides(S, NewMethod, Class->getSuperClass(),
202 false);
203 }
204
205 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(DC)) {
206 // Look through protocols.
207 for (ObjCList<ObjCProtocolDecl>::iterator I = Category->protocol_begin(),
208 IEnd = Category->protocol_end();
209 I != IEnd; ++I)
210 if (CheckObjCMethodOverrides(S, NewMethod, *I, false))
211 return true;
212
213 return false;
214 }
215
216 if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(DC)) {
217 // Look through protocols.
218 for (ObjCList<ObjCProtocolDecl>::iterator I = Protocol->protocol_begin(),
219 IEnd = Protocol->protocol_end();
220 I != IEnd; ++I)
221 if (CheckObjCMethodOverrides(S, NewMethod, *I, false))
222 return true;
223
224 return false;
225 }
226
227 return false;
228 }
229
CheckObjCMethodOverrides(ObjCMethodDecl * NewMethod,DeclContext * DC)230 bool Sema::CheckObjCMethodOverrides(ObjCMethodDecl *NewMethod,
231 DeclContext *DC) {
232 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(DC))
233 return ::CheckObjCMethodOverrides(*this, NewMethod, Class);
234
235 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(DC))
236 return ::CheckObjCMethodOverrides(*this, NewMethod, Category);
237
238 if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(DC))
239 return ::CheckObjCMethodOverrides(*this, NewMethod, Protocol);
240
241 if (ObjCImplementationDecl *Impl = dyn_cast<ObjCImplementationDecl>(DC))
242 return ::CheckObjCMethodOverrides(*this, NewMethod,
243 Impl->getClassInterface());
244
245 if (ObjCCategoryImplDecl *CatImpl = dyn_cast<ObjCCategoryImplDecl>(DC))
246 return ::CheckObjCMethodOverrides(*this, NewMethod,
247 CatImpl->getClassInterface());
248
249 return ::CheckObjCMethodOverrides(*this, NewMethod, CurContext);
250 }
251
252 /// \brief Check a method declaration for compatibility with the Objective-C
253 /// ARC conventions.
CheckARCMethodDecl(Sema & S,ObjCMethodDecl * method)254 static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) {
255 ObjCMethodFamily family = method->getMethodFamily();
256 switch (family) {
257 case OMF_None:
258 case OMF_dealloc:
259 case OMF_retain:
260 case OMF_release:
261 case OMF_autorelease:
262 case OMF_retainCount:
263 case OMF_self:
264 return false;
265
266 case OMF_init:
267 // If the method doesn't obey the init rules, don't bother annotating it.
268 if (S.checkInitMethod(method, QualType()))
269 return true;
270
271 method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(),
272 S.Context));
273
274 // Don't add a second copy of this attribute, but otherwise don't
275 // let it be suppressed.
276 if (method->hasAttr<NSReturnsRetainedAttr>())
277 return false;
278 break;
279
280 case OMF_alloc:
281 case OMF_copy:
282 case OMF_mutableCopy:
283 case OMF_new:
284 if (method->hasAttr<NSReturnsRetainedAttr>() ||
285 method->hasAttr<NSReturnsNotRetainedAttr>() ||
286 method->hasAttr<NSReturnsAutoreleasedAttr>())
287 return false;
288 break;
289
290 case OMF_performSelector:
291 // we don't annotate performSelector's
292 return true;
293
294 }
295
296 method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(),
297 S.Context));
298 return false;
299 }
300
DiagnoseObjCImplementedDeprecations(Sema & S,NamedDecl * ND,SourceLocation ImplLoc,int select)301 static void DiagnoseObjCImplementedDeprecations(Sema &S,
302 NamedDecl *ND,
303 SourceLocation ImplLoc,
304 int select) {
305 if (ND && ND->isDeprecated()) {
306 S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
307 if (select == 0)
308 S.Diag(ND->getLocation(), diag::note_method_declared_at);
309 else
310 S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
311 }
312 }
313
314 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
315 /// and user declared, in the method definition's AST.
ActOnStartOfObjCMethodDef(Scope * FnBodyScope,Decl * D)316 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
317 assert(getCurMethodDecl() == 0 && "Method parsing confused");
318 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
319
320 // If we don't have a valid method decl, simply return.
321 if (!MDecl)
322 return;
323
324 // Allow the rest of sema to find private method decl implementations.
325 if (MDecl->isInstanceMethod())
326 AddInstanceMethodToGlobalPool(MDecl, true);
327 else
328 AddFactoryMethodToGlobalPool(MDecl, true);
329
330 // Allow all of Sema to see that we are entering a method definition.
331 PushDeclContext(FnBodyScope, MDecl);
332 PushFunctionScope();
333
334 // Create Decl objects for each parameter, entrring them in the scope for
335 // binding to their use.
336
337 // Insert the invisible arguments, self and _cmd!
338 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
339
340 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
341 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
342
343 // Introduce all of the other parameters into this scope.
344 for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
345 E = MDecl->param_end(); PI != E; ++PI) {
346 ParmVarDecl *Param = (*PI);
347 if (!Param->isInvalidDecl() &&
348 RequireCompleteType(Param->getLocation(), Param->getType(),
349 diag::err_typecheck_decl_incomplete_type))
350 Param->setInvalidDecl();
351 if ((*PI)->getIdentifier())
352 PushOnScopeChains(*PI, FnBodyScope);
353 }
354
355 // In ARC, disallow definition of retain/release/autorelease/retainCount
356 if (getLangOptions().ObjCAutoRefCount) {
357 switch (MDecl->getMethodFamily()) {
358 case OMF_retain:
359 case OMF_retainCount:
360 case OMF_release:
361 case OMF_autorelease:
362 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
363 << MDecl->getSelector();
364 break;
365
366 case OMF_None:
367 case OMF_dealloc:
368 case OMF_alloc:
369 case OMF_init:
370 case OMF_mutableCopy:
371 case OMF_copy:
372 case OMF_new:
373 case OMF_self:
374 case OMF_performSelector:
375 break;
376 }
377 }
378
379 // Warn on implementating deprecated methods under
380 // -Wdeprecated-implementations flag.
381 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface())
382 if (ObjCMethodDecl *IMD =
383 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()))
384 DiagnoseObjCImplementedDeprecations(*this,
385 dyn_cast<NamedDecl>(IMD),
386 MDecl->getLocation(), 0);
387 }
388
389 Decl *Sema::
ActOnStartClassInterface(SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperName,SourceLocation SuperLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,AttributeList * AttrList)390 ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
391 IdentifierInfo *ClassName, SourceLocation ClassLoc,
392 IdentifierInfo *SuperName, SourceLocation SuperLoc,
393 Decl * const *ProtoRefs, unsigned NumProtoRefs,
394 const SourceLocation *ProtoLocs,
395 SourceLocation EndProtoLoc, AttributeList *AttrList) {
396 assert(ClassName && "Missing class identifier");
397
398 // Check for another declaration kind with the same name.
399 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
400 LookupOrdinaryName, ForRedeclaration);
401
402 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
403 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
404 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
405 }
406
407 ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
408 if (IDecl) {
409 // Class already seen. Is it a forward declaration?
410 if (!IDecl->isForwardDecl()) {
411 IDecl->setInvalidDecl();
412 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName();
413 Diag(IDecl->getLocation(), diag::note_previous_definition);
414
415 // Return the previous class interface.
416 // FIXME: don't leak the objects passed in!
417 return IDecl;
418 } else {
419 IDecl->setLocation(AtInterfaceLoc);
420 IDecl->setForwardDecl(false);
421 IDecl->setClassLoc(ClassLoc);
422 // If the forward decl was in a PCH, we need to write it again in a
423 // dependent AST file.
424 IDecl->setChangedSinceDeserialization(true);
425
426 // Since this ObjCInterfaceDecl was created by a forward declaration,
427 // we now add it to the DeclContext since it wasn't added before
428 // (see ActOnForwardClassDeclaration).
429 IDecl->setLexicalDeclContext(CurContext);
430 CurContext->addDecl(IDecl);
431
432 if (AttrList)
433 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
434 }
435 } else {
436 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc,
437 ClassName, ClassLoc);
438 if (AttrList)
439 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
440
441 PushOnScopeChains(IDecl, TUScope);
442 }
443
444 if (SuperName) {
445 // Check if a different kind of symbol declared in this scope.
446 PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
447 LookupOrdinaryName);
448
449 if (!PrevDecl) {
450 // Try to correct for a typo in the superclass name.
451 TypoCorrection Corrected = CorrectTypo(
452 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
453 NULL, NULL, false, CTC_NoKeywords);
454 if ((PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
455 Diag(SuperLoc, diag::err_undef_superclass_suggest)
456 << SuperName << ClassName << PrevDecl->getDeclName();
457 Diag(PrevDecl->getLocation(), diag::note_previous_decl)
458 << PrevDecl->getDeclName();
459 }
460 }
461
462 if (PrevDecl == IDecl) {
463 Diag(SuperLoc, diag::err_recursive_superclass)
464 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
465 IDecl->setLocEnd(ClassLoc);
466 } else {
467 ObjCInterfaceDecl *SuperClassDecl =
468 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
469
470 // Diagnose classes that inherit from deprecated classes.
471 if (SuperClassDecl)
472 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
473
474 if (PrevDecl && SuperClassDecl == 0) {
475 // The previous declaration was not a class decl. Check if we have a
476 // typedef. If we do, get the underlying class type.
477 if (const TypedefNameDecl *TDecl =
478 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
479 QualType T = TDecl->getUnderlyingType();
480 if (T->isObjCObjectType()) {
481 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
482 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
483 }
484 }
485
486 // This handles the following case:
487 //
488 // typedef int SuperClass;
489 // @interface MyClass : SuperClass {} @end
490 //
491 if (!SuperClassDecl) {
492 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
493 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
494 }
495 }
496
497 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
498 if (!SuperClassDecl)
499 Diag(SuperLoc, diag::err_undef_superclass)
500 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
501 else if (SuperClassDecl->isForwardDecl()) {
502 Diag(SuperLoc, diag::err_forward_superclass)
503 << SuperClassDecl->getDeclName() << ClassName
504 << SourceRange(AtInterfaceLoc, ClassLoc);
505 Diag(SuperClassDecl->getLocation(), diag::note_forward_class);
506 SuperClassDecl = 0;
507 }
508 }
509 IDecl->setSuperClass(SuperClassDecl);
510 IDecl->setSuperClassLoc(SuperLoc);
511 IDecl->setLocEnd(SuperLoc);
512 }
513 } else { // we have a root class.
514 IDecl->setLocEnd(ClassLoc);
515 }
516
517 // Check then save referenced protocols.
518 if (NumProtoRefs) {
519 IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
520 ProtoLocs, Context);
521 IDecl->setLocEnd(EndProtoLoc);
522 }
523
524 CheckObjCDeclScope(IDecl);
525 return IDecl;
526 }
527
528 /// ActOnCompatiblityAlias - this action is called after complete parsing of
529 /// @compatibility_alias declaration. It sets up the alias relationships.
ActOnCompatiblityAlias(SourceLocation AtLoc,IdentifierInfo * AliasName,SourceLocation AliasLocation,IdentifierInfo * ClassName,SourceLocation ClassLocation)530 Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
531 IdentifierInfo *AliasName,
532 SourceLocation AliasLocation,
533 IdentifierInfo *ClassName,
534 SourceLocation ClassLocation) {
535 // Look for previous declaration of alias name
536 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
537 LookupOrdinaryName, ForRedeclaration);
538 if (ADecl) {
539 if (isa<ObjCCompatibleAliasDecl>(ADecl))
540 Diag(AliasLocation, diag::warn_previous_alias_decl);
541 else
542 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
543 Diag(ADecl->getLocation(), diag::note_previous_declaration);
544 return 0;
545 }
546 // Check for class declaration
547 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
548 LookupOrdinaryName, ForRedeclaration);
549 if (const TypedefNameDecl *TDecl =
550 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
551 QualType T = TDecl->getUnderlyingType();
552 if (T->isObjCObjectType()) {
553 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
554 ClassName = IDecl->getIdentifier();
555 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
556 LookupOrdinaryName, ForRedeclaration);
557 }
558 }
559 }
560 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
561 if (CDecl == 0) {
562 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
563 if (CDeclU)
564 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
565 return 0;
566 }
567
568 // Everything checked out, instantiate a new alias declaration AST.
569 ObjCCompatibleAliasDecl *AliasDecl =
570 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
571
572 if (!CheckObjCDeclScope(AliasDecl))
573 PushOnScopeChains(AliasDecl, TUScope);
574
575 return AliasDecl;
576 }
577
CheckForwardProtocolDeclarationForCircularDependency(IdentifierInfo * PName,SourceLocation & Ploc,SourceLocation PrevLoc,const ObjCList<ObjCProtocolDecl> & PList)578 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
579 IdentifierInfo *PName,
580 SourceLocation &Ploc, SourceLocation PrevLoc,
581 const ObjCList<ObjCProtocolDecl> &PList) {
582
583 bool res = false;
584 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
585 E = PList.end(); I != E; ++I) {
586 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
587 Ploc)) {
588 if (PDecl->getIdentifier() == PName) {
589 Diag(Ploc, diag::err_protocol_has_circular_dependency);
590 Diag(PrevLoc, diag::note_previous_definition);
591 res = true;
592 }
593 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
594 PDecl->getLocation(), PDecl->getReferencedProtocols()))
595 res = true;
596 }
597 }
598 return res;
599 }
600
601 Decl *
ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,IdentifierInfo * ProtocolName,SourceLocation ProtocolLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,AttributeList * AttrList)602 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
603 IdentifierInfo *ProtocolName,
604 SourceLocation ProtocolLoc,
605 Decl * const *ProtoRefs,
606 unsigned NumProtoRefs,
607 const SourceLocation *ProtoLocs,
608 SourceLocation EndProtoLoc,
609 AttributeList *AttrList) {
610 bool err = false;
611 // FIXME: Deal with AttrList.
612 assert(ProtocolName && "Missing protocol identifier");
613 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc);
614 if (PDecl) {
615 // Protocol already seen. Better be a forward protocol declaration
616 if (!PDecl->isForwardDecl()) {
617 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
618 Diag(PDecl->getLocation(), diag::note_previous_definition);
619 // Just return the protocol we already had.
620 // FIXME: don't leak the objects passed in!
621 return PDecl;
622 }
623 ObjCList<ObjCProtocolDecl> PList;
624 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
625 err = CheckForwardProtocolDeclarationForCircularDependency(
626 ProtocolName, ProtocolLoc, PDecl->getLocation(), PList);
627
628 // Make sure the cached decl gets a valid start location.
629 PDecl->setLocation(AtProtoInterfaceLoc);
630 PDecl->setForwardDecl(false);
631 CurContext->addDecl(PDecl);
632 // Repeat in dependent AST files.
633 PDecl->setChangedSinceDeserialization(true);
634 } else {
635 PDecl = ObjCProtocolDecl::Create(Context, CurContext,
636 AtProtoInterfaceLoc,ProtocolName);
637 PushOnScopeChains(PDecl, TUScope);
638 PDecl->setForwardDecl(false);
639 }
640 if (AttrList)
641 ProcessDeclAttributeList(TUScope, PDecl, AttrList);
642 if (!err && NumProtoRefs ) {
643 /// Check then save referenced protocols.
644 PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
645 ProtoLocs, Context);
646 PDecl->setLocEnd(EndProtoLoc);
647 }
648
649 CheckObjCDeclScope(PDecl);
650 return PDecl;
651 }
652
653 /// FindProtocolDeclaration - This routine looks up protocols and
654 /// issues an error if they are not declared. It returns list of
655 /// protocol declarations in its 'Protocols' argument.
656 void
FindProtocolDeclaration(bool WarnOnDeclarations,const IdentifierLocPair * ProtocolId,unsigned NumProtocols,llvm::SmallVectorImpl<Decl * > & Protocols)657 Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
658 const IdentifierLocPair *ProtocolId,
659 unsigned NumProtocols,
660 llvm::SmallVectorImpl<Decl *> &Protocols) {
661 for (unsigned i = 0; i != NumProtocols; ++i) {
662 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
663 ProtocolId[i].second);
664 if (!PDecl) {
665 TypoCorrection Corrected = CorrectTypo(
666 DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
667 LookupObjCProtocolName, TUScope, NULL, NULL, false, CTC_NoKeywords);
668 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
669 Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
670 << ProtocolId[i].first << Corrected.getCorrection();
671 Diag(PDecl->getLocation(), diag::note_previous_decl)
672 << PDecl->getDeclName();
673 }
674 }
675
676 if (!PDecl) {
677 Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
678 << ProtocolId[i].first;
679 continue;
680 }
681
682 (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
683
684 // If this is a forward declaration and we are supposed to warn in this
685 // case, do it.
686 if (WarnOnDeclarations && PDecl->isForwardDecl())
687 Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
688 << ProtocolId[i].first;
689 Protocols.push_back(PDecl);
690 }
691 }
692
693 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
694 /// a class method in its extension.
695 ///
DiagnoseClassExtensionDupMethods(ObjCCategoryDecl * CAT,ObjCInterfaceDecl * ID)696 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
697 ObjCInterfaceDecl *ID) {
698 if (!ID)
699 return; // Possibly due to previous error
700
701 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
702 for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
703 e = ID->meth_end(); i != e; ++i) {
704 ObjCMethodDecl *MD = *i;
705 MethodMap[MD->getSelector()] = MD;
706 }
707
708 if (MethodMap.empty())
709 return;
710 for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
711 e = CAT->meth_end(); i != e; ++i) {
712 ObjCMethodDecl *Method = *i;
713 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
714 if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
715 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
716 << Method->getDeclName();
717 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
718 }
719 }
720 }
721
722 /// ActOnForwardProtocolDeclaration - Handle @protocol foo;
723 Decl *
ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,const IdentifierLocPair * IdentList,unsigned NumElts,AttributeList * attrList)724 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
725 const IdentifierLocPair *IdentList,
726 unsigned NumElts,
727 AttributeList *attrList) {
728 llvm::SmallVector<ObjCProtocolDecl*, 32> Protocols;
729 llvm::SmallVector<SourceLocation, 8> ProtoLocs;
730
731 for (unsigned i = 0; i != NumElts; ++i) {
732 IdentifierInfo *Ident = IdentList[i].first;
733 ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second);
734 bool isNew = false;
735 if (PDecl == 0) { // Not already seen?
736 PDecl = ObjCProtocolDecl::Create(Context, CurContext,
737 IdentList[i].second, Ident);
738 PushOnScopeChains(PDecl, TUScope, false);
739 isNew = true;
740 }
741 if (attrList) {
742 ProcessDeclAttributeList(TUScope, PDecl, attrList);
743 if (!isNew)
744 PDecl->setChangedSinceDeserialization(true);
745 }
746 Protocols.push_back(PDecl);
747 ProtoLocs.push_back(IdentList[i].second);
748 }
749
750 ObjCForwardProtocolDecl *PDecl =
751 ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc,
752 Protocols.data(), Protocols.size(),
753 ProtoLocs.data());
754 CurContext->addDecl(PDecl);
755 CheckObjCDeclScope(PDecl);
756 return PDecl;
757 }
758
759 Decl *Sema::
ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * CategoryName,SourceLocation CategoryLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc)760 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
761 IdentifierInfo *ClassName, SourceLocation ClassLoc,
762 IdentifierInfo *CategoryName,
763 SourceLocation CategoryLoc,
764 Decl * const *ProtoRefs,
765 unsigned NumProtoRefs,
766 const SourceLocation *ProtoLocs,
767 SourceLocation EndProtoLoc) {
768 ObjCCategoryDecl *CDecl;
769 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
770
771 /// Check that class of this category is already completely declared.
772 if (!IDecl || IDecl->isForwardDecl()) {
773 // Create an invalid ObjCCategoryDecl to serve as context for
774 // the enclosing method declarations. We mark the decl invalid
775 // to make it clear that this isn't a valid AST.
776 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
777 ClassLoc, CategoryLoc, CategoryName);
778 CDecl->setInvalidDecl();
779 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
780 return CDecl;
781 }
782
783 if (!CategoryName && IDecl->getImplementation()) {
784 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
785 Diag(IDecl->getImplementation()->getLocation(),
786 diag::note_implementation_declared);
787 }
788
789 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
790 ClassLoc, CategoryLoc, CategoryName);
791 // FIXME: PushOnScopeChains?
792 CurContext->addDecl(CDecl);
793
794 CDecl->setClassInterface(IDecl);
795 // Insert class extension to the list of class's categories.
796 if (!CategoryName)
797 CDecl->insertNextClassCategory();
798
799 // If the interface is deprecated, warn about it.
800 (void)DiagnoseUseOfDecl(IDecl, ClassLoc);
801
802 if (CategoryName) {
803 /// Check for duplicate interface declaration for this category
804 ObjCCategoryDecl *CDeclChain;
805 for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
806 CDeclChain = CDeclChain->getNextClassCategory()) {
807 if (CDeclChain->getIdentifier() == CategoryName) {
808 // Class extensions can be declared multiple times.
809 Diag(CategoryLoc, diag::warn_dup_category_def)
810 << ClassName << CategoryName;
811 Diag(CDeclChain->getLocation(), diag::note_previous_definition);
812 break;
813 }
814 }
815 if (!CDeclChain)
816 CDecl->insertNextClassCategory();
817 }
818
819 if (NumProtoRefs) {
820 CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
821 ProtoLocs, Context);
822 // Protocols in the class extension belong to the class.
823 if (CDecl->IsClassExtension())
824 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
825 NumProtoRefs, Context);
826 }
827
828 CheckObjCDeclScope(CDecl);
829 return CDecl;
830 }
831
832 /// ActOnStartCategoryImplementation - Perform semantic checks on the
833 /// category implementation declaration and build an ObjCCategoryImplDecl
834 /// object.
ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * CatName,SourceLocation CatLoc)835 Decl *Sema::ActOnStartCategoryImplementation(
836 SourceLocation AtCatImplLoc,
837 IdentifierInfo *ClassName, SourceLocation ClassLoc,
838 IdentifierInfo *CatName, SourceLocation CatLoc) {
839 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
840 ObjCCategoryDecl *CatIDecl = 0;
841 if (IDecl) {
842 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
843 if (!CatIDecl) {
844 // Category @implementation with no corresponding @interface.
845 // Create and install one.
846 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(),
847 SourceLocation(), SourceLocation(),
848 CatName);
849 CatIDecl->setClassInterface(IDecl);
850 CatIDecl->insertNextClassCategory();
851 }
852 }
853
854 ObjCCategoryImplDecl *CDecl =
855 ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName,
856 IDecl);
857 /// Check that class of this category is already completely declared.
858 if (!IDecl || IDecl->isForwardDecl())
859 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
860
861 // FIXME: PushOnScopeChains?
862 CurContext->addDecl(CDecl);
863
864 /// Check that CatName, category name, is not used in another implementation.
865 if (CatIDecl) {
866 if (CatIDecl->getImplementation()) {
867 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
868 << CatName;
869 Diag(CatIDecl->getImplementation()->getLocation(),
870 diag::note_previous_definition);
871 } else {
872 CatIDecl->setImplementation(CDecl);
873 // Warn on implementating category of deprecated class under
874 // -Wdeprecated-implementations flag.
875 DiagnoseObjCImplementedDeprecations(*this,
876 dyn_cast<NamedDecl>(IDecl),
877 CDecl->getLocation(), 2);
878 }
879 }
880
881 CheckObjCDeclScope(CDecl);
882 return CDecl;
883 }
884
ActOnStartClassImplementation(SourceLocation AtClassImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperClassname,SourceLocation SuperClassLoc)885 Decl *Sema::ActOnStartClassImplementation(
886 SourceLocation AtClassImplLoc,
887 IdentifierInfo *ClassName, SourceLocation ClassLoc,
888 IdentifierInfo *SuperClassname,
889 SourceLocation SuperClassLoc) {
890 ObjCInterfaceDecl* IDecl = 0;
891 // Check for another declaration kind with the same name.
892 NamedDecl *PrevDecl
893 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
894 ForRedeclaration);
895 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
896 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
897 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
898 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
899 // If this is a forward declaration of an interface, warn.
900 if (IDecl->isForwardDecl()) {
901 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
902 IDecl = 0;
903 }
904 } else {
905 // We did not find anything with the name ClassName; try to correct for
906 // typos in the class name.
907 TypoCorrection Corrected = CorrectTypo(
908 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
909 NULL, NULL, false, CTC_NoKeywords);
910 if ((IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
911 // Suggest the (potentially) correct interface name. However, put the
912 // fix-it hint itself in a separate note, since changing the name in
913 // the warning would make the fix-it change semantics.However, don't
914 // provide a code-modification hint or use the typo name for recovery,
915 // because this is just a warning. The program may actually be correct.
916 DeclarationName CorrectedName = Corrected.getCorrection();
917 Diag(ClassLoc, diag::warn_undef_interface_suggest)
918 << ClassName << CorrectedName;
919 Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
920 << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
921 IDecl = 0;
922 } else {
923 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
924 }
925 }
926
927 // Check that super class name is valid class name
928 ObjCInterfaceDecl* SDecl = 0;
929 if (SuperClassname) {
930 // Check if a different kind of symbol declared in this scope.
931 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
932 LookupOrdinaryName);
933 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
934 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
935 << SuperClassname;
936 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
937 } else {
938 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
939 if (!SDecl)
940 Diag(SuperClassLoc, diag::err_undef_superclass)
941 << SuperClassname << ClassName;
942 else if (IDecl && IDecl->getSuperClass() != SDecl) {
943 // This implementation and its interface do not have the same
944 // super class.
945 Diag(SuperClassLoc, diag::err_conflicting_super_class)
946 << SDecl->getDeclName();
947 Diag(SDecl->getLocation(), diag::note_previous_definition);
948 }
949 }
950 }
951
952 if (!IDecl) {
953 // Legacy case of @implementation with no corresponding @interface.
954 // Build, chain & install the interface decl into the identifier.
955
956 // FIXME: Do we support attributes on the @implementation? If so we should
957 // copy them over.
958 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
959 ClassName, ClassLoc, false, true);
960 IDecl->setSuperClass(SDecl);
961 IDecl->setLocEnd(ClassLoc);
962
963 PushOnScopeChains(IDecl, TUScope);
964 } else {
965 // Mark the interface as being completed, even if it was just as
966 // @class ....;
967 // declaration; the user cannot reopen it.
968 IDecl->setForwardDecl(false);
969 }
970
971 ObjCImplementationDecl* IMPDecl =
972 ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc,
973 IDecl, SDecl);
974
975 if (CheckObjCDeclScope(IMPDecl))
976 return IMPDecl;
977
978 // Check that there is no duplicate implementation of this class.
979 if (IDecl->getImplementation()) {
980 // FIXME: Don't leak everything!
981 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
982 Diag(IDecl->getImplementation()->getLocation(),
983 diag::note_previous_definition);
984 } else { // add it to the list.
985 IDecl->setImplementation(IMPDecl);
986 PushOnScopeChains(IMPDecl, TUScope);
987 // Warn on implementating deprecated class under
988 // -Wdeprecated-implementations flag.
989 DiagnoseObjCImplementedDeprecations(*this,
990 dyn_cast<NamedDecl>(IDecl),
991 IMPDecl->getLocation(), 1);
992 }
993 return IMPDecl;
994 }
995
CheckImplementationIvars(ObjCImplementationDecl * ImpDecl,ObjCIvarDecl ** ivars,unsigned numIvars,SourceLocation RBrace)996 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
997 ObjCIvarDecl **ivars, unsigned numIvars,
998 SourceLocation RBrace) {
999 assert(ImpDecl && "missing implementation decl");
1000 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1001 if (!IDecl)
1002 return;
1003 /// Check case of non-existing @interface decl.
1004 /// (legacy objective-c @implementation decl without an @interface decl).
1005 /// Add implementations's ivar to the synthesize class's ivar list.
1006 if (IDecl->isImplicitInterfaceDecl()) {
1007 IDecl->setLocEnd(RBrace);
1008 // Add ivar's to class's DeclContext.
1009 for (unsigned i = 0, e = numIvars; i != e; ++i) {
1010 ivars[i]->setLexicalDeclContext(ImpDecl);
1011 IDecl->makeDeclVisibleInContext(ivars[i], false);
1012 ImpDecl->addDecl(ivars[i]);
1013 }
1014
1015 return;
1016 }
1017 // If implementation has empty ivar list, just return.
1018 if (numIvars == 0)
1019 return;
1020
1021 assert(ivars && "missing @implementation ivars");
1022 if (LangOpts.ObjCNonFragileABI2) {
1023 if (ImpDecl->getSuperClass())
1024 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1025 for (unsigned i = 0; i < numIvars; i++) {
1026 ObjCIvarDecl* ImplIvar = ivars[i];
1027 if (const ObjCIvarDecl *ClsIvar =
1028 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1029 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1030 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1031 continue;
1032 }
1033 // Instance ivar to Implementation's DeclContext.
1034 ImplIvar->setLexicalDeclContext(ImpDecl);
1035 IDecl->makeDeclVisibleInContext(ImplIvar, false);
1036 ImpDecl->addDecl(ImplIvar);
1037 }
1038 return;
1039 }
1040 // Check interface's Ivar list against those in the implementation.
1041 // names and types must match.
1042 //
1043 unsigned j = 0;
1044 ObjCInterfaceDecl::ivar_iterator
1045 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1046 for (; numIvars > 0 && IVI != IVE; ++IVI) {
1047 ObjCIvarDecl* ImplIvar = ivars[j++];
1048 ObjCIvarDecl* ClsIvar = *IVI;
1049 assert (ImplIvar && "missing implementation ivar");
1050 assert (ClsIvar && "missing class ivar");
1051
1052 // First, make sure the types match.
1053 if (Context.getCanonicalType(ImplIvar->getType()) !=
1054 Context.getCanonicalType(ClsIvar->getType())) {
1055 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1056 << ImplIvar->getIdentifier()
1057 << ImplIvar->getType() << ClsIvar->getType();
1058 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1059 } else if (ImplIvar->isBitField() && ClsIvar->isBitField()) {
1060 Expr *ImplBitWidth = ImplIvar->getBitWidth();
1061 Expr *ClsBitWidth = ClsIvar->getBitWidth();
1062 if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() !=
1063 ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) {
1064 Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth)
1065 << ImplIvar->getIdentifier();
1066 Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition);
1067 }
1068 }
1069 // Make sure the names are identical.
1070 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1071 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1072 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1073 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1074 }
1075 --numIvars;
1076 }
1077
1078 if (numIvars > 0)
1079 Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
1080 else if (IVI != IVE)
1081 Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
1082 }
1083
WarnUndefinedMethod(SourceLocation ImpLoc,ObjCMethodDecl * method,bool & IncompleteImpl,unsigned DiagID)1084 void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
1085 bool &IncompleteImpl, unsigned DiagID) {
1086 // No point warning no definition of method which is 'unavailable'.
1087 if (method->hasAttr<UnavailableAttr>())
1088 return;
1089 if (!IncompleteImpl) {
1090 Diag(ImpLoc, diag::warn_incomplete_impl);
1091 IncompleteImpl = true;
1092 }
1093 if (DiagID == diag::warn_unimplemented_protocol_method)
1094 Diag(ImpLoc, DiagID) << method->getDeclName();
1095 else
1096 Diag(method->getLocation(), DiagID) << method->getDeclName();
1097 }
1098
1099 /// Determines if type B can be substituted for type A. Returns true if we can
1100 /// guarantee that anything that the user will do to an object of type A can
1101 /// also be done to an object of type B. This is trivially true if the two
1102 /// types are the same, or if B is a subclass of A. It becomes more complex
1103 /// in cases where protocols are involved.
1104 ///
1105 /// Object types in Objective-C describe the minimum requirements for an
1106 /// object, rather than providing a complete description of a type. For
1107 /// example, if A is a subclass of B, then B* may refer to an instance of A.
1108 /// The principle of substitutability means that we may use an instance of A
1109 /// anywhere that we may use an instance of B - it will implement all of the
1110 /// ivars of B and all of the methods of B.
1111 ///
1112 /// This substitutability is important when type checking methods, because
1113 /// the implementation may have stricter type definitions than the interface.
1114 /// The interface specifies minimum requirements, but the implementation may
1115 /// have more accurate ones. For example, a method may privately accept
1116 /// instances of B, but only publish that it accepts instances of A. Any
1117 /// object passed to it will be type checked against B, and so will implicitly
1118 /// by a valid A*. Similarly, a method may return a subclass of the class that
1119 /// it is declared as returning.
1120 ///
1121 /// This is most important when considering subclassing. A method in a
1122 /// subclass must accept any object as an argument that its superclass's
1123 /// implementation accepts. It may, however, accept a more general type
1124 /// without breaking substitutability (i.e. you can still use the subclass
1125 /// anywhere that you can use the superclass, but not vice versa). The
1126 /// converse requirement applies to return types: the return type for a
1127 /// subclass method must be a valid object of the kind that the superclass
1128 /// advertises, but it may be specified more accurately. This avoids the need
1129 /// for explicit down-casting by callers.
1130 ///
1131 /// Note: This is a stricter requirement than for assignment.
isObjCTypeSubstitutable(ASTContext & Context,const ObjCObjectPointerType * A,const ObjCObjectPointerType * B,bool rejectId)1132 static bool isObjCTypeSubstitutable(ASTContext &Context,
1133 const ObjCObjectPointerType *A,
1134 const ObjCObjectPointerType *B,
1135 bool rejectId) {
1136 // Reject a protocol-unqualified id.
1137 if (rejectId && B->isObjCIdType()) return false;
1138
1139 // If B is a qualified id, then A must also be a qualified id and it must
1140 // implement all of the protocols in B. It may not be a qualified class.
1141 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1142 // stricter definition so it is not substitutable for id<A>.
1143 if (B->isObjCQualifiedIdType()) {
1144 return A->isObjCQualifiedIdType() &&
1145 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1146 QualType(B,0),
1147 false);
1148 }
1149
1150 /*
1151 // id is a special type that bypasses type checking completely. We want a
1152 // warning when it is used in one place but not another.
1153 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1154
1155
1156 // If B is a qualified id, then A must also be a qualified id (which it isn't
1157 // if we've got this far)
1158 if (B->isObjCQualifiedIdType()) return false;
1159 */
1160
1161 // Now we know that A and B are (potentially-qualified) class types. The
1162 // normal rules for assignment apply.
1163 return Context.canAssignObjCInterfaces(A, B);
1164 }
1165
getTypeRange(TypeSourceInfo * TSI)1166 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1167 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1168 }
1169
CheckMethodOverrideReturn(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)1170 static void CheckMethodOverrideReturn(Sema &S,
1171 ObjCMethodDecl *MethodImpl,
1172 ObjCMethodDecl *MethodDecl,
1173 bool IsProtocolMethodDecl) {
1174 if (IsProtocolMethodDecl &&
1175 (MethodDecl->getObjCDeclQualifier() !=
1176 MethodImpl->getObjCDeclQualifier())) {
1177 S.Diag(MethodImpl->getLocation(),
1178 diag::warn_conflicting_ret_type_modifiers)
1179 << MethodImpl->getDeclName()
1180 << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1181 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1182 << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1183 }
1184
1185 if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
1186 MethodDecl->getResultType()))
1187 return;
1188
1189 unsigned DiagID = diag::warn_conflicting_ret_types;
1190
1191 // Mismatches between ObjC pointers go into a different warning
1192 // category, and sometimes they're even completely whitelisted.
1193 if (const ObjCObjectPointerType *ImplPtrTy =
1194 MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
1195 if (const ObjCObjectPointerType *IfacePtrTy =
1196 MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
1197 // Allow non-matching return types as long as they don't violate
1198 // the principle of substitutability. Specifically, we permit
1199 // return types that are subclasses of the declared return type,
1200 // or that are more-qualified versions of the declared type.
1201 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1202 return;
1203
1204 DiagID = diag::warn_non_covariant_ret_types;
1205 }
1206 }
1207
1208 S.Diag(MethodImpl->getLocation(), DiagID)
1209 << MethodImpl->getDeclName()
1210 << MethodDecl->getResultType()
1211 << MethodImpl->getResultType()
1212 << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1213 S.Diag(MethodDecl->getLocation(), diag::note_previous_definition)
1214 << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1215 }
1216
CheckMethodOverrideParam(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,ParmVarDecl * ImplVar,ParmVarDecl * IfaceVar,bool IsProtocolMethodDecl)1217 static void CheckMethodOverrideParam(Sema &S,
1218 ObjCMethodDecl *MethodImpl,
1219 ObjCMethodDecl *MethodDecl,
1220 ParmVarDecl *ImplVar,
1221 ParmVarDecl *IfaceVar,
1222 bool IsProtocolMethodDecl) {
1223 if (IsProtocolMethodDecl &&
1224 (ImplVar->getObjCDeclQualifier() !=
1225 IfaceVar->getObjCDeclQualifier())) {
1226 S.Diag(ImplVar->getLocation(),
1227 diag::warn_conflicting_param_modifiers)
1228 << getTypeRange(ImplVar->getTypeSourceInfo())
1229 << MethodImpl->getDeclName();
1230 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1231 << getTypeRange(IfaceVar->getTypeSourceInfo());
1232 }
1233
1234 QualType ImplTy = ImplVar->getType();
1235 QualType IfaceTy = IfaceVar->getType();
1236
1237 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1238 return;
1239
1240 unsigned DiagID = diag::warn_conflicting_param_types;
1241
1242 // Mismatches between ObjC pointers go into a different warning
1243 // category, and sometimes they're even completely whitelisted.
1244 if (const ObjCObjectPointerType *ImplPtrTy =
1245 ImplTy->getAs<ObjCObjectPointerType>()) {
1246 if (const ObjCObjectPointerType *IfacePtrTy =
1247 IfaceTy->getAs<ObjCObjectPointerType>()) {
1248 // Allow non-matching argument types as long as they don't
1249 // violate the principle of substitutability. Specifically, the
1250 // implementation must accept any objects that the superclass
1251 // accepts, however it may also accept others.
1252 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1253 return;
1254
1255 DiagID = diag::warn_non_contravariant_param_types;
1256 }
1257 }
1258
1259 S.Diag(ImplVar->getLocation(), DiagID)
1260 << getTypeRange(ImplVar->getTypeSourceInfo())
1261 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1262 S.Diag(IfaceVar->getLocation(), diag::note_previous_definition)
1263 << getTypeRange(IfaceVar->getTypeSourceInfo());
1264 }
1265
1266 /// In ARC, check whether the conventional meanings of the two methods
1267 /// match. If they don't, it's a hard error.
checkMethodFamilyMismatch(Sema & S,ObjCMethodDecl * impl,ObjCMethodDecl * decl)1268 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1269 ObjCMethodDecl *decl) {
1270 ObjCMethodFamily implFamily = impl->getMethodFamily();
1271 ObjCMethodFamily declFamily = decl->getMethodFamily();
1272 if (implFamily == declFamily) return false;
1273
1274 // Since conventions are sorted by selector, the only possibility is
1275 // that the types differ enough to cause one selector or the other
1276 // to fall out of the family.
1277 assert(implFamily == OMF_None || declFamily == OMF_None);
1278
1279 // No further diagnostics required on invalid declarations.
1280 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1281
1282 const ObjCMethodDecl *unmatched = impl;
1283 ObjCMethodFamily family = declFamily;
1284 unsigned errorID = diag::err_arc_lost_method_convention;
1285 unsigned noteID = diag::note_arc_lost_method_convention;
1286 if (declFamily == OMF_None) {
1287 unmatched = decl;
1288 family = implFamily;
1289 errorID = diag::err_arc_gained_method_convention;
1290 noteID = diag::note_arc_gained_method_convention;
1291 }
1292
1293 // Indexes into a %select clause in the diagnostic.
1294 enum FamilySelector {
1295 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1296 };
1297 FamilySelector familySelector = FamilySelector();
1298
1299 switch (family) {
1300 case OMF_None: llvm_unreachable("logic error, no method convention");
1301 case OMF_retain:
1302 case OMF_release:
1303 case OMF_autorelease:
1304 case OMF_dealloc:
1305 case OMF_retainCount:
1306 case OMF_self:
1307 case OMF_performSelector:
1308 // Mismatches for these methods don't change ownership
1309 // conventions, so we don't care.
1310 return false;
1311
1312 case OMF_init: familySelector = F_init; break;
1313 case OMF_alloc: familySelector = F_alloc; break;
1314 case OMF_copy: familySelector = F_copy; break;
1315 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1316 case OMF_new: familySelector = F_new; break;
1317 }
1318
1319 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1320 ReasonSelector reasonSelector;
1321
1322 // The only reason these methods don't fall within their families is
1323 // due to unusual result types.
1324 if (unmatched->getResultType()->isObjCObjectPointerType()) {
1325 reasonSelector = R_UnrelatedReturn;
1326 } else {
1327 reasonSelector = R_NonObjectReturn;
1328 }
1329
1330 S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
1331 S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
1332
1333 return true;
1334 }
1335
WarnConflictingTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)1336 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1337 ObjCMethodDecl *MethodDecl,
1338 bool IsProtocolMethodDecl) {
1339 if (getLangOptions().ObjCAutoRefCount &&
1340 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1341 return;
1342
1343 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1344 IsProtocolMethodDecl);
1345
1346 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1347 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
1348 IM != EM; ++IM, ++IF)
1349 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1350 IsProtocolMethodDecl);
1351
1352 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1353 Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_variadic);
1354 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1355 }
1356 }
1357
1358 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1359 /// improve the efficiency of selector lookups and type checking by associating
1360 /// with each protocol / interface / category the flattened instance tables. If
1361 /// we used an immutable set to keep the table then it wouldn't add significant
1362 /// memory cost and it would be handy for lookups.
1363
1364 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
1365 /// Declared in protocol, and those referenced by it.
CheckProtocolMethodDefs(SourceLocation ImpLoc,ObjCProtocolDecl * PDecl,bool & IncompleteImpl,const llvm::DenseSet<Selector> & InsMap,const llvm::DenseSet<Selector> & ClsMap,ObjCContainerDecl * CDecl)1366 void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
1367 ObjCProtocolDecl *PDecl,
1368 bool& IncompleteImpl,
1369 const llvm::DenseSet<Selector> &InsMap,
1370 const llvm::DenseSet<Selector> &ClsMap,
1371 ObjCContainerDecl *CDecl) {
1372 ObjCInterfaceDecl *IDecl;
1373 if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl))
1374 IDecl = C->getClassInterface();
1375 else
1376 IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
1377 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1378
1379 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1380 ObjCInterfaceDecl *NSIDecl = 0;
1381 if (getLangOptions().NeXTRuntime) {
1382 // check to see if class implements forwardInvocation method and objects
1383 // of this class are derived from 'NSProxy' so that to forward requests
1384 // from one object to another.
1385 // Under such conditions, which means that every method possible is
1386 // implemented in the class, we should not issue "Method definition not
1387 // found" warnings.
1388 // FIXME: Use a general GetUnarySelector method for this.
1389 IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
1390 Selector fISelector = Context.Selectors.getSelector(1, &II);
1391 if (InsMap.count(fISelector))
1392 // Is IDecl derived from 'NSProxy'? If so, no instance methods
1393 // need be implemented in the implementation.
1394 NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
1395 }
1396
1397 // If a method lookup fails locally we still need to look and see if
1398 // the method was implemented by a base class or an inherited
1399 // protocol. This lookup is slow, but occurs rarely in correct code
1400 // and otherwise would terminate in a warning.
1401
1402 // check unimplemented instance methods.
1403 if (!NSIDecl)
1404 for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
1405 E = PDecl->instmeth_end(); I != E; ++I) {
1406 ObjCMethodDecl *method = *I;
1407 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1408 !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
1409 (!Super ||
1410 !Super->lookupInstanceMethod(method->getSelector()))) {
1411 // Ugly, but necessary. Method declared in protcol might have
1412 // have been synthesized due to a property declared in the class which
1413 // uses the protocol.
1414 ObjCMethodDecl *MethodInClass =
1415 IDecl->lookupInstanceMethod(method->getSelector());
1416 if (!MethodInClass || !MethodInClass->isSynthesized()) {
1417 unsigned DIAG = diag::warn_unimplemented_protocol_method;
1418 if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1419 != Diagnostic::Ignored) {
1420 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1421 Diag(method->getLocation(), diag::note_method_declared_at);
1422 Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1423 << PDecl->getDeclName();
1424 }
1425 }
1426 }
1427 }
1428 // check unimplemented class methods
1429 for (ObjCProtocolDecl::classmeth_iterator
1430 I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1431 I != E; ++I) {
1432 ObjCMethodDecl *method = *I;
1433 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1434 !ClsMap.count(method->getSelector()) &&
1435 (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1436 unsigned DIAG = diag::warn_unimplemented_protocol_method;
1437 if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != Diagnostic::Ignored) {
1438 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1439 Diag(method->getLocation(), diag::note_method_declared_at);
1440 Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1441 PDecl->getDeclName();
1442 }
1443 }
1444 }
1445 // Check on this protocols's referenced protocols, recursively.
1446 for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1447 E = PDecl->protocol_end(); PI != E; ++PI)
1448 CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl);
1449 }
1450
1451 /// MatchAllMethodDeclarations - Check methods declared in interface
1452 /// or protocol against those declared in their implementations.
1453 ///
MatchAllMethodDeclarations(const llvm::DenseSet<Selector> & InsMap,const llvm::DenseSet<Selector> & ClsMap,llvm::DenseSet<Selector> & InsMapSeen,llvm::DenseSet<Selector> & ClsMapSeen,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool & IncompleteImpl,bool ImmediateClass)1454 void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
1455 const llvm::DenseSet<Selector> &ClsMap,
1456 llvm::DenseSet<Selector> &InsMapSeen,
1457 llvm::DenseSet<Selector> &ClsMapSeen,
1458 ObjCImplDecl* IMPDecl,
1459 ObjCContainerDecl* CDecl,
1460 bool &IncompleteImpl,
1461 bool ImmediateClass) {
1462 // Check and see if instance methods in class interface have been
1463 // implemented in the implementation class. If so, their types match.
1464 for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1465 E = CDecl->instmeth_end(); I != E; ++I) {
1466 if (InsMapSeen.count((*I)->getSelector()))
1467 continue;
1468 InsMapSeen.insert((*I)->getSelector());
1469 if (!(*I)->isSynthesized() &&
1470 !InsMap.count((*I)->getSelector())) {
1471 if (ImmediateClass)
1472 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1473 diag::note_undef_method_impl);
1474 continue;
1475 } else {
1476 ObjCMethodDecl *ImpMethodDecl =
1477 IMPDecl->getInstanceMethod((*I)->getSelector());
1478 ObjCMethodDecl *MethodDecl =
1479 CDecl->getInstanceMethod((*I)->getSelector());
1480 assert(MethodDecl &&
1481 "MethodDecl is null in ImplMethodsVsClassMethods");
1482 // ImpMethodDecl may be null as in a @dynamic property.
1483 if (ImpMethodDecl)
1484 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1485 isa<ObjCProtocolDecl>(CDecl));
1486 }
1487 }
1488
1489 // Check and see if class methods in class interface have been
1490 // implemented in the implementation class. If so, their types match.
1491 for (ObjCInterfaceDecl::classmeth_iterator
1492 I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1493 if (ClsMapSeen.count((*I)->getSelector()))
1494 continue;
1495 ClsMapSeen.insert((*I)->getSelector());
1496 if (!ClsMap.count((*I)->getSelector())) {
1497 if (ImmediateClass)
1498 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1499 diag::note_undef_method_impl);
1500 } else {
1501 ObjCMethodDecl *ImpMethodDecl =
1502 IMPDecl->getClassMethod((*I)->getSelector());
1503 ObjCMethodDecl *MethodDecl =
1504 CDecl->getClassMethod((*I)->getSelector());
1505 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1506 isa<ObjCProtocolDecl>(CDecl));
1507 }
1508 }
1509
1510 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1511 // Also methods in class extensions need be looked at next.
1512 for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
1513 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
1514 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1515 IMPDecl,
1516 const_cast<ObjCCategoryDecl *>(ClsExtDecl),
1517 IncompleteImpl, false);
1518
1519 // Check for any implementation of a methods declared in protocol.
1520 for (ObjCInterfaceDecl::all_protocol_iterator
1521 PI = I->all_referenced_protocol_begin(),
1522 E = I->all_referenced_protocol_end(); PI != E; ++PI)
1523 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1524 IMPDecl,
1525 (*PI), IncompleteImpl, false);
1526 if (I->getSuperClass())
1527 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1528 IMPDecl,
1529 I->getSuperClass(), IncompleteImpl, false);
1530 }
1531 }
1532
ImplMethodsVsClassMethods(Scope * S,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool IncompleteImpl)1533 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1534 ObjCContainerDecl* CDecl,
1535 bool IncompleteImpl) {
1536 llvm::DenseSet<Selector> InsMap;
1537 // Check and see if instance methods in class interface have been
1538 // implemented in the implementation class.
1539 for (ObjCImplementationDecl::instmeth_iterator
1540 I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1541 InsMap.insert((*I)->getSelector());
1542
1543 // Check and see if properties declared in the interface have either 1)
1544 // an implementation or 2) there is a @synthesize/@dynamic implementation
1545 // of the property in the @implementation.
1546 if (isa<ObjCInterfaceDecl>(CDecl) &&
1547 !(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2))
1548 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1549
1550 llvm::DenseSet<Selector> ClsMap;
1551 for (ObjCImplementationDecl::classmeth_iterator
1552 I = IMPDecl->classmeth_begin(),
1553 E = IMPDecl->classmeth_end(); I != E; ++I)
1554 ClsMap.insert((*I)->getSelector());
1555
1556 // Check for type conflict of methods declared in a class/protocol and
1557 // its implementation; if any.
1558 llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
1559 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1560 IMPDecl, CDecl,
1561 IncompleteImpl, true);
1562
1563 // Check the protocol list for unimplemented methods in the @implementation
1564 // class.
1565 // Check and see if class methods in class interface have been
1566 // implemented in the implementation class.
1567
1568 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1569 for (ObjCInterfaceDecl::all_protocol_iterator
1570 PI = I->all_referenced_protocol_begin(),
1571 E = I->all_referenced_protocol_end(); PI != E; ++PI)
1572 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1573 InsMap, ClsMap, I);
1574 // Check class extensions (unnamed categories)
1575 for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
1576 Categories; Categories = Categories->getNextClassExtension())
1577 ImplMethodsVsClassMethods(S, IMPDecl,
1578 const_cast<ObjCCategoryDecl*>(Categories),
1579 IncompleteImpl);
1580 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1581 // For extended class, unimplemented methods in its protocols will
1582 // be reported in the primary class.
1583 if (!C->IsClassExtension()) {
1584 for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1585 E = C->protocol_end(); PI != E; ++PI)
1586 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1587 InsMap, ClsMap, CDecl);
1588 // Report unimplemented properties in the category as well.
1589 // When reporting on missing setter/getters, do not report when
1590 // setter/getter is implemented in category's primary class
1591 // implementation.
1592 if (ObjCInterfaceDecl *ID = C->getClassInterface())
1593 if (ObjCImplDecl *IMP = ID->getImplementation()) {
1594 for (ObjCImplementationDecl::instmeth_iterator
1595 I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
1596 InsMap.insert((*I)->getSelector());
1597 }
1598 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1599 }
1600 } else
1601 assert(false && "invalid ObjCContainerDecl type.");
1602 }
1603
1604 /// ActOnForwardClassDeclaration -
1605 Decl *
ActOnForwardClassDeclaration(SourceLocation AtClassLoc,IdentifierInfo ** IdentList,SourceLocation * IdentLocs,unsigned NumElts)1606 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1607 IdentifierInfo **IdentList,
1608 SourceLocation *IdentLocs,
1609 unsigned NumElts) {
1610 llvm::SmallVector<ObjCInterfaceDecl*, 32> Interfaces;
1611
1612 for (unsigned i = 0; i != NumElts; ++i) {
1613 // Check for another declaration kind with the same name.
1614 NamedDecl *PrevDecl
1615 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1616 LookupOrdinaryName, ForRedeclaration);
1617 if (PrevDecl && PrevDecl->isTemplateParameter()) {
1618 // Maybe we will complain about the shadowed template parameter.
1619 DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
1620 // Just pretend that we didn't see the previous declaration.
1621 PrevDecl = 0;
1622 }
1623
1624 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1625 // GCC apparently allows the following idiom:
1626 //
1627 // typedef NSObject < XCElementTogglerP > XCElementToggler;
1628 // @class XCElementToggler;
1629 //
1630 // FIXME: Make an extension?
1631 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
1632 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1633 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1634 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1635 } else {
1636 // a forward class declaration matching a typedef name of a class refers
1637 // to the underlying class.
1638 if (const ObjCObjectType *OI =
1639 TDD->getUnderlyingType()->getAs<ObjCObjectType>())
1640 PrevDecl = OI->getInterface();
1641 }
1642 }
1643 ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1644 if (!IDecl) { // Not already seen? Make a forward decl.
1645 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1646 IdentList[i], IdentLocs[i], true);
1647
1648 // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to
1649 // the current DeclContext. This prevents clients that walk DeclContext
1650 // from seeing the imaginary ObjCInterfaceDecl until it is actually
1651 // declared later (if at all). We also take care to explicitly make
1652 // sure this declaration is visible for name lookup.
1653 PushOnScopeChains(IDecl, TUScope, false);
1654 CurContext->makeDeclVisibleInContext(IDecl, true);
1655 }
1656
1657 Interfaces.push_back(IDecl);
1658 }
1659
1660 assert(Interfaces.size() == NumElts);
1661 ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc,
1662 Interfaces.data(), IdentLocs,
1663 Interfaces.size());
1664 CurContext->addDecl(CDecl);
1665 CheckObjCDeclScope(CDecl);
1666 return CDecl;
1667 }
1668
1669 static bool tryMatchRecordTypes(ASTContext &Context,
1670 Sema::MethodMatchStrategy strategy,
1671 const Type *left, const Type *right);
1672
matchTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,QualType leftQT,QualType rightQT)1673 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
1674 QualType leftQT, QualType rightQT) {
1675 const Type *left =
1676 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
1677 const Type *right =
1678 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
1679
1680 if (left == right) return true;
1681
1682 // If we're doing a strict match, the types have to match exactly.
1683 if (strategy == Sema::MMS_strict) return false;
1684
1685 if (left->isIncompleteType() || right->isIncompleteType()) return false;
1686
1687 // Otherwise, use this absurdly complicated algorithm to try to
1688 // validate the basic, low-level compatibility of the two types.
1689
1690 // As a minimum, require the sizes and alignments to match.
1691 if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
1692 return false;
1693
1694 // Consider all the kinds of non-dependent canonical types:
1695 // - functions and arrays aren't possible as return and parameter types
1696
1697 // - vector types of equal size can be arbitrarily mixed
1698 if (isa<VectorType>(left)) return isa<VectorType>(right);
1699 if (isa<VectorType>(right)) return false;
1700
1701 // - references should only match references of identical type
1702 // - structs, unions, and Objective-C objects must match more-or-less
1703 // exactly
1704 // - everything else should be a scalar
1705 if (!left->isScalarType() || !right->isScalarType())
1706 return tryMatchRecordTypes(Context, strategy, left, right);
1707
1708 // Make scalars agree in kind, except count bools as chars.
1709 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
1710 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
1711 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
1712 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
1713
1714 // Note that data member pointers and function member pointers don't
1715 // intermix because of the size differences.
1716
1717 return (leftSK == rightSK);
1718 }
1719
tryMatchRecordTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,const Type * lt,const Type * rt)1720 static bool tryMatchRecordTypes(ASTContext &Context,
1721 Sema::MethodMatchStrategy strategy,
1722 const Type *lt, const Type *rt) {
1723 assert(lt && rt && lt != rt);
1724
1725 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
1726 RecordDecl *left = cast<RecordType>(lt)->getDecl();
1727 RecordDecl *right = cast<RecordType>(rt)->getDecl();
1728
1729 // Require union-hood to match.
1730 if (left->isUnion() != right->isUnion()) return false;
1731
1732 // Require an exact match if either is non-POD.
1733 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
1734 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
1735 return false;
1736
1737 // Require size and alignment to match.
1738 if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
1739
1740 // Require fields to match.
1741 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
1742 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
1743 for (; li != le && ri != re; ++li, ++ri) {
1744 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
1745 return false;
1746 }
1747 return (li == le && ri == re);
1748 }
1749
1750 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
1751 /// returns true, or false, accordingly.
1752 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
MatchTwoMethodDeclarations(const ObjCMethodDecl * left,const ObjCMethodDecl * right,MethodMatchStrategy strategy)1753 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
1754 const ObjCMethodDecl *right,
1755 MethodMatchStrategy strategy) {
1756 if (!matchTypes(Context, strategy,
1757 left->getResultType(), right->getResultType()))
1758 return false;
1759
1760 if (getLangOptions().ObjCAutoRefCount &&
1761 (left->hasAttr<NSReturnsRetainedAttr>()
1762 != right->hasAttr<NSReturnsRetainedAttr>() ||
1763 left->hasAttr<NSConsumesSelfAttr>()
1764 != right->hasAttr<NSConsumesSelfAttr>()))
1765 return false;
1766
1767 ObjCMethodDecl::param_iterator
1768 li = left->param_begin(), le = left->param_end(), ri = right->param_begin();
1769
1770 for (; li != le; ++li, ++ri) {
1771 assert(ri != right->param_end() && "Param mismatch");
1772 ParmVarDecl *lparm = *li, *rparm = *ri;
1773
1774 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
1775 return false;
1776
1777 if (getLangOptions().ObjCAutoRefCount &&
1778 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
1779 return false;
1780 }
1781 return true;
1782 }
1783
1784 /// \brief Read the contents of the method pool for a given selector from
1785 /// external storage.
1786 ///
1787 /// This routine should only be called once, when the method pool has no entry
1788 /// for this selector.
ReadMethodPool(Selector Sel)1789 Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) {
1790 assert(ExternalSource && "We need an external AST source");
1791 assert(MethodPool.find(Sel) == MethodPool.end() &&
1792 "Selector data already loaded into the method pool");
1793
1794 // Read the method list from the external source.
1795 GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel);
1796
1797 return MethodPool.insert(std::make_pair(Sel, Methods)).first;
1798 }
1799
AddMethodToGlobalPool(ObjCMethodDecl * Method,bool impl,bool instance)1800 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
1801 bool instance) {
1802 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
1803 if (Pos == MethodPool.end()) {
1804 if (ExternalSource)
1805 Pos = ReadMethodPool(Method->getSelector());
1806 else
1807 Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
1808 GlobalMethods())).first;
1809 }
1810 Method->setDefined(impl);
1811 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
1812 if (Entry.Method == 0) {
1813 // Haven't seen a method with this selector name yet - add it.
1814 Entry.Method = Method;
1815 Entry.Next = 0;
1816 return;
1817 }
1818
1819 // We've seen a method with this name, see if we have already seen this type
1820 // signature.
1821 for (ObjCMethodList *List = &Entry; List; List = List->Next) {
1822 bool match = MatchTwoMethodDeclarations(Method, List->Method);
1823
1824 if (match) {
1825 ObjCMethodDecl *PrevObjCMethod = List->Method;
1826 PrevObjCMethod->setDefined(impl);
1827 // If a method is deprecated, push it in the global pool.
1828 // This is used for better diagnostics.
1829 if (Method->isDeprecated()) {
1830 if (!PrevObjCMethod->isDeprecated())
1831 List->Method = Method;
1832 }
1833 // If new method is unavailable, push it into global pool
1834 // unless previous one is deprecated.
1835 if (Method->isUnavailable()) {
1836 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
1837 List->Method = Method;
1838 }
1839 return;
1840 }
1841 }
1842
1843 // We have a new signature for an existing method - add it.
1844 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
1845 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
1846 Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next);
1847 }
1848
1849 /// Determines if this is an "acceptable" loose mismatch in the global
1850 /// method pool. This exists mostly as a hack to get around certain
1851 /// global mismatches which we can't afford to make warnings / errors.
1852 /// Really, what we want is a way to take a method out of the global
1853 /// method pool.
isAcceptableMethodMismatch(ObjCMethodDecl * chosen,ObjCMethodDecl * other)1854 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
1855 ObjCMethodDecl *other) {
1856 if (!chosen->isInstanceMethod())
1857 return false;
1858
1859 Selector sel = chosen->getSelector();
1860 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
1861 return false;
1862
1863 // Don't complain about mismatches for -length if the method we
1864 // chose has an integral result type.
1865 return (chosen->getResultType()->isIntegerType());
1866 }
1867
LookupMethodInGlobalPool(Selector Sel,SourceRange R,bool receiverIdOrClass,bool warn,bool instance)1868 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
1869 bool receiverIdOrClass,
1870 bool warn, bool instance) {
1871 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
1872 if (Pos == MethodPool.end()) {
1873 if (ExternalSource)
1874 Pos = ReadMethodPool(Sel);
1875 else
1876 return 0;
1877 }
1878
1879 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
1880
1881 if (warn && MethList.Method && MethList.Next) {
1882 bool issueDiagnostic = false, issueError = false;
1883
1884 // We support a warning which complains about *any* difference in
1885 // method signature.
1886 bool strictSelectorMatch =
1887 (receiverIdOrClass && warn &&
1888 (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
1889 R.getBegin()) !=
1890 Diagnostic::Ignored));
1891 if (strictSelectorMatch)
1892 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
1893 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
1894 MMS_strict)) {
1895 issueDiagnostic = true;
1896 break;
1897 }
1898 }
1899
1900 // If we didn't see any strict differences, we won't see any loose
1901 // differences. In ARC, however, we also need to check for loose
1902 // mismatches, because most of them are errors.
1903 if (!strictSelectorMatch ||
1904 (issueDiagnostic && getLangOptions().ObjCAutoRefCount))
1905 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
1906 // This checks if the methods differ in type mismatch.
1907 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
1908 MMS_loose) &&
1909 !isAcceptableMethodMismatch(MethList.Method, Next->Method)) {
1910 issueDiagnostic = true;
1911 if (getLangOptions().ObjCAutoRefCount)
1912 issueError = true;
1913 break;
1914 }
1915 }
1916
1917 if (issueDiagnostic) {
1918 if (issueError)
1919 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
1920 else if (strictSelectorMatch)
1921 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
1922 else
1923 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
1924
1925 Diag(MethList.Method->getLocStart(),
1926 issueError ? diag::note_possibility : diag::note_using)
1927 << MethList.Method->getSourceRange();
1928 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
1929 Diag(Next->Method->getLocStart(), diag::note_also_found)
1930 << Next->Method->getSourceRange();
1931 }
1932 }
1933 return MethList.Method;
1934 }
1935
LookupImplementedMethodInGlobalPool(Selector Sel)1936 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
1937 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
1938 if (Pos == MethodPool.end())
1939 return 0;
1940
1941 GlobalMethods &Methods = Pos->second;
1942
1943 if (Methods.first.Method && Methods.first.Method->isDefined())
1944 return Methods.first.Method;
1945 if (Methods.second.Method && Methods.second.Method->isDefined())
1946 return Methods.second.Method;
1947 return 0;
1948 }
1949
1950 /// CompareMethodParamsInBaseAndSuper - This routine compares methods with
1951 /// identical selector names in current and its super classes and issues
1952 /// a warning if any of their argument types are incompatible.
CompareMethodParamsInBaseAndSuper(Decl * ClassDecl,ObjCMethodDecl * Method,bool IsInstance)1953 void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
1954 ObjCMethodDecl *Method,
1955 bool IsInstance) {
1956 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
1957 if (ID == 0) return;
1958
1959 while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
1960 ObjCMethodDecl *SuperMethodDecl =
1961 SD->lookupMethod(Method->getSelector(), IsInstance);
1962 if (SuperMethodDecl == 0) {
1963 ID = SD;
1964 continue;
1965 }
1966 ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
1967 E = Method->param_end();
1968 ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
1969 for (; ParamI != E; ++ParamI, ++PrevI) {
1970 // Number of parameters are the same and is guaranteed by selector match.
1971 assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
1972 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
1973 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
1974 // If type of argument of method in this class does not match its
1975 // respective argument type in the super class method, issue warning;
1976 if (!Context.typesAreCompatible(T1, T2)) {
1977 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
1978 << T1 << T2;
1979 Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
1980 return;
1981 }
1982 }
1983 ID = SD;
1984 }
1985 }
1986
1987 /// DiagnoseDuplicateIvars -
1988 /// Check for duplicate ivars in the entire class at the start of
1989 /// @implementation. This becomes necesssary because class extension can
1990 /// add ivars to a class in random order which will not be known until
1991 /// class's @implementation is seen.
DiagnoseDuplicateIvars(ObjCInterfaceDecl * ID,ObjCInterfaceDecl * SID)1992 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
1993 ObjCInterfaceDecl *SID) {
1994 for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
1995 IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
1996 ObjCIvarDecl* Ivar = (*IVI);
1997 if (Ivar->isInvalidDecl())
1998 continue;
1999 if (IdentifierInfo *II = Ivar->getIdentifier()) {
2000 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2001 if (prevIvar) {
2002 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2003 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2004 Ivar->setInvalidDecl();
2005 }
2006 }
2007 }
2008 }
2009
2010 // Note: For class/category implemenations, allMethods/allProperties is
2011 // always null.
ActOnAtEnd(Scope * S,SourceRange AtEnd,Decl * ClassDecl,Decl ** allMethods,unsigned allNum,Decl ** allProperties,unsigned pNum,DeclGroupPtrTy * allTUVars,unsigned tuvNum)2012 void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
2013 Decl *ClassDecl,
2014 Decl **allMethods, unsigned allNum,
2015 Decl **allProperties, unsigned pNum,
2016 DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
2017 // FIXME: If we don't have a ClassDecl, we have an error. We should consider
2018 // always passing in a decl. If the decl has an error, isInvalidDecl()
2019 // should be true.
2020 if (!ClassDecl)
2021 return;
2022
2023 bool isInterfaceDeclKind =
2024 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2025 || isa<ObjCProtocolDecl>(ClassDecl);
2026 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2027
2028 if (!isInterfaceDeclKind && AtEnd.isInvalid()) {
2029 // FIXME: This is wrong. We shouldn't be pretending that there is
2030 // an '@end' in the declaration.
2031 SourceLocation L = ClassDecl->getLocation();
2032 AtEnd.setBegin(L);
2033 AtEnd.setEnd(L);
2034 Diag(L, diag::err_missing_atend);
2035 }
2036
2037 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2038 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2039 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2040
2041 for (unsigned i = 0; i < allNum; i++ ) {
2042 ObjCMethodDecl *Method =
2043 cast_or_null<ObjCMethodDecl>(allMethods[i]);
2044
2045 if (!Method) continue; // Already issued a diagnostic.
2046 if (Method->isInstanceMethod()) {
2047 /// Check for instance method of the same name with incompatible types
2048 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2049 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2050 : false;
2051 if ((isInterfaceDeclKind && PrevMethod && !match)
2052 || (checkIdenticalMethods && match)) {
2053 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2054 << Method->getDeclName();
2055 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2056 Method->setInvalidDecl();
2057 } else {
2058 InsMap[Method->getSelector()] = Method;
2059 /// The following allows us to typecheck messages to "id".
2060 AddInstanceMethodToGlobalPool(Method);
2061 // verify that the instance method conforms to the same definition of
2062 // parent methods if it shadows one.
2063 CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
2064 }
2065 } else {
2066 /// Check for class method of the same name with incompatible types
2067 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2068 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2069 : false;
2070 if ((isInterfaceDeclKind && PrevMethod && !match)
2071 || (checkIdenticalMethods && match)) {
2072 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2073 << Method->getDeclName();
2074 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2075 Method->setInvalidDecl();
2076 } else {
2077 ClsMap[Method->getSelector()] = Method;
2078 /// The following allows us to typecheck messages to "Class".
2079 AddFactoryMethodToGlobalPool(Method);
2080 // verify that the class method conforms to the same definition of
2081 // parent methods if it shadows one.
2082 CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
2083 }
2084 }
2085 }
2086 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
2087 // Compares properties declared in this class to those of its
2088 // super class.
2089 ComparePropertiesInBaseAndSuper(I);
2090 CompareProperties(I, I);
2091 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2092 // Categories are used to extend the class by declaring new methods.
2093 // By the same token, they are also used to add new properties. No
2094 // need to compare the added property to those in the class.
2095
2096 // Compare protocol properties with those in category
2097 CompareProperties(C, C);
2098 if (C->IsClassExtension()) {
2099 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2100 DiagnoseClassExtensionDupMethods(C, CCPrimary);
2101 }
2102 }
2103 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2104 if (CDecl->getIdentifier())
2105 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2106 // user-defined setter/getter. It also synthesizes setter/getter methods
2107 // and adds them to the DeclContext and global method pools.
2108 for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
2109 E = CDecl->prop_end();
2110 I != E; ++I)
2111 ProcessPropertyDecl(*I, CDecl);
2112 CDecl->setAtEndRange(AtEnd);
2113 }
2114 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2115 IC->setAtEndRange(AtEnd);
2116 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2117 // Any property declared in a class extension might have user
2118 // declared setter or getter in current class extension or one
2119 // of the other class extensions. Mark them as synthesized as
2120 // property will be synthesized when property with same name is
2121 // seen in the @implementation.
2122 for (const ObjCCategoryDecl *ClsExtDecl =
2123 IDecl->getFirstClassExtension();
2124 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
2125 for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
2126 E = ClsExtDecl->prop_end(); I != E; ++I) {
2127 ObjCPropertyDecl *Property = (*I);
2128 // Skip over properties declared @dynamic
2129 if (const ObjCPropertyImplDecl *PIDecl
2130 = IC->FindPropertyImplDecl(Property->getIdentifier()))
2131 if (PIDecl->getPropertyImplementation()
2132 == ObjCPropertyImplDecl::Dynamic)
2133 continue;
2134
2135 for (const ObjCCategoryDecl *CExtDecl =
2136 IDecl->getFirstClassExtension();
2137 CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
2138 if (ObjCMethodDecl *GetterMethod =
2139 CExtDecl->getInstanceMethod(Property->getGetterName()))
2140 GetterMethod->setSynthesized(true);
2141 if (!Property->isReadOnly())
2142 if (ObjCMethodDecl *SetterMethod =
2143 CExtDecl->getInstanceMethod(Property->getSetterName()))
2144 SetterMethod->setSynthesized(true);
2145 }
2146 }
2147 }
2148
2149 if (LangOpts.ObjCDefaultSynthProperties &&
2150 LangOpts.ObjCNonFragileABI2)
2151 DefaultSynthesizeProperties(S, IC, IDecl);
2152 ImplMethodsVsClassMethods(S, IC, IDecl);
2153 AtomicPropertySetterGetterRules(IC, IDecl);
2154 DiagnoseOwningPropertyGetterSynthesis(IC);
2155
2156 if (LangOpts.ObjCNonFragileABI2)
2157 while (IDecl->getSuperClass()) {
2158 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2159 IDecl = IDecl->getSuperClass();
2160 }
2161 }
2162 SetIvarInitializers(IC);
2163 } else if (ObjCCategoryImplDecl* CatImplClass =
2164 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2165 CatImplClass->setAtEndRange(AtEnd);
2166
2167 // Find category interface decl and then check that all methods declared
2168 // in this interface are implemented in the category @implementation.
2169 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2170 for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
2171 Categories; Categories = Categories->getNextClassCategory()) {
2172 if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
2173 ImplMethodsVsClassMethods(S, CatImplClass, Categories);
2174 break;
2175 }
2176 }
2177 }
2178 }
2179 if (isInterfaceDeclKind) {
2180 // Reject invalid vardecls.
2181 for (unsigned i = 0; i != tuvNum; i++) {
2182 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2183 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2184 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2185 if (!VDecl->hasExternalStorage())
2186 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2187 }
2188 }
2189 }
2190 }
2191
2192
2193 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2194 /// objective-c's type qualifier from the parser version of the same info.
2195 static Decl::ObjCDeclQualifier
CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal)2196 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2197 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2198 }
2199
2200 static inline
containsInvalidMethodImplAttribute(const AttrVec & A)2201 bool containsInvalidMethodImplAttribute(const AttrVec &A) {
2202 // The 'ibaction' attribute is allowed on method definitions because of
2203 // how the IBAction macro is used on both method declarations and definitions.
2204 // If the method definitions contains any other attributes, return true.
2205 for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
2206 if ((*i)->getKind() != attr::IBAction)
2207 return true;
2208 return false;
2209 }
2210
2211 /// \brief Check whether the declared result type of the given Objective-C
2212 /// method declaration is compatible with the method's class.
2213 ///
2214 static bool
CheckRelatedResultTypeCompatibility(Sema & S,ObjCMethodDecl * Method,ObjCInterfaceDecl * CurrentClass)2215 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2216 ObjCInterfaceDecl *CurrentClass) {
2217 QualType ResultType = Method->getResultType();
2218 SourceRange ResultTypeRange;
2219 if (const TypeSourceInfo *ResultTypeInfo = Method->getResultTypeSourceInfo())
2220 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
2221
2222 // If an Objective-C method inherits its related result type, then its
2223 // declared result type must be compatible with its own class type. The
2224 // declared result type is compatible if:
2225 if (const ObjCObjectPointerType *ResultObjectType
2226 = ResultType->getAs<ObjCObjectPointerType>()) {
2227 // - it is id or qualified id, or
2228 if (ResultObjectType->isObjCIdType() ||
2229 ResultObjectType->isObjCQualifiedIdType())
2230 return false;
2231
2232 if (CurrentClass) {
2233 if (ObjCInterfaceDecl *ResultClass
2234 = ResultObjectType->getInterfaceDecl()) {
2235 // - it is the same as the method's class type, or
2236 if (CurrentClass == ResultClass)
2237 return false;
2238
2239 // - it is a superclass of the method's class type
2240 if (ResultClass->isSuperClassOf(CurrentClass))
2241 return false;
2242 }
2243 }
2244 }
2245
2246 return true;
2247 }
2248
2249 /// \brief Determine if any method in the global method pool has an inferred
2250 /// result type.
2251 static bool
anyMethodInfersRelatedResultType(Sema & S,Selector Sel,bool IsInstance)2252 anyMethodInfersRelatedResultType(Sema &S, Selector Sel, bool IsInstance) {
2253 Sema::GlobalMethodPool::iterator Pos = S.MethodPool.find(Sel);
2254 if (Pos == S.MethodPool.end()) {
2255 if (S.ExternalSource)
2256 Pos = S.ReadMethodPool(Sel);
2257 else
2258 return 0;
2259 }
2260
2261 ObjCMethodList &List = IsInstance ? Pos->second.first : Pos->second.second;
2262 for (ObjCMethodList *M = &List; M; M = M->Next) {
2263 if (M->Method && M->Method->hasRelatedResultType())
2264 return true;
2265 }
2266
2267 return false;
2268 }
2269
ActOnMethodDeclaration(Scope * S,SourceLocation MethodLoc,SourceLocation EndLoc,tok::TokenKind MethodType,Decl * ClassDecl,ObjCDeclSpec & ReturnQT,ParsedType ReturnType,SourceLocation SelectorStartLoc,Selector Sel,ObjCArgInfo * ArgInfo,DeclaratorChunk::ParamInfo * CParamInfo,unsigned CNumArgs,AttributeList * AttrList,tok::ObjCKeywordKind MethodDeclKind,bool isVariadic,bool MethodDefinition)2270 Decl *Sema::ActOnMethodDeclaration(
2271 Scope *S,
2272 SourceLocation MethodLoc, SourceLocation EndLoc,
2273 tok::TokenKind MethodType, Decl *ClassDecl,
2274 ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
2275 SourceLocation SelectorStartLoc,
2276 Selector Sel,
2277 // optional arguments. The number of types/arguments is obtained
2278 // from the Sel.getNumArgs().
2279 ObjCArgInfo *ArgInfo,
2280 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
2281 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
2282 bool isVariadic, bool MethodDefinition) {
2283 // Make sure we can establish a context for the method.
2284 if (!ClassDecl) {
2285 Diag(MethodLoc, diag::error_missing_method_context);
2286 return 0;
2287 }
2288 QualType resultDeclType;
2289
2290 TypeSourceInfo *ResultTInfo = 0;
2291 if (ReturnType) {
2292 resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
2293
2294 // Methods cannot return interface types. All ObjC objects are
2295 // passed by reference.
2296 if (resultDeclType->isObjCObjectType()) {
2297 Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
2298 << 0 << resultDeclType;
2299 return 0;
2300 }
2301 } else // get the type for "id".
2302 resultDeclType = Context.getObjCIdType();
2303
2304 ObjCMethodDecl* ObjCMethod =
2305 ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType,
2306 ResultTInfo,
2307 cast<DeclContext>(ClassDecl),
2308 MethodType == tok::minus, isVariadic,
2309 false, false,
2310 MethodDeclKind == tok::objc_optional
2311 ? ObjCMethodDecl::Optional
2312 : ObjCMethodDecl::Required,
2313 false);
2314
2315 llvm::SmallVector<ParmVarDecl*, 16> Params;
2316
2317 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
2318 QualType ArgType;
2319 TypeSourceInfo *DI;
2320
2321 if (ArgInfo[i].Type == 0) {
2322 ArgType = Context.getObjCIdType();
2323 DI = 0;
2324 } else {
2325 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
2326 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2327 ArgType = Context.getAdjustedParameterType(ArgType);
2328 }
2329
2330 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
2331 LookupOrdinaryName, ForRedeclaration);
2332 LookupName(R, S);
2333 if (R.isSingleResult()) {
2334 NamedDecl *PrevDecl = R.getFoundDecl();
2335 if (S->isDeclScope(PrevDecl)) {
2336 Diag(ArgInfo[i].NameLoc,
2337 (MethodDefinition ? diag::warn_method_param_redefinition
2338 : diag::warn_method_param_declaration))
2339 << ArgInfo[i].Name;
2340 Diag(PrevDecl->getLocation(),
2341 diag::note_previous_declaration);
2342 }
2343 }
2344
2345 SourceLocation StartLoc = DI
2346 ? DI->getTypeLoc().getBeginLoc()
2347 : ArgInfo[i].NameLoc;
2348
2349 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
2350 ArgInfo[i].NameLoc, ArgInfo[i].Name,
2351 ArgType, DI, SC_None, SC_None);
2352
2353 Param->setObjCMethodScopeInfo(i);
2354
2355 Param->setObjCDeclQualifier(
2356 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
2357
2358 // Apply the attributes to the parameter.
2359 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
2360
2361 S->AddDecl(Param);
2362 IdResolver.AddDecl(Param);
2363
2364 Params.push_back(Param);
2365 }
2366
2367 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
2368 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
2369 QualType ArgType = Param->getType();
2370 if (ArgType.isNull())
2371 ArgType = Context.getObjCIdType();
2372 else
2373 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2374 ArgType = Context.getAdjustedParameterType(ArgType);
2375 if (ArgType->isObjCObjectType()) {
2376 Diag(Param->getLocation(),
2377 diag::err_object_cannot_be_passed_returned_by_value)
2378 << 1 << ArgType;
2379 Param->setInvalidDecl();
2380 }
2381 Param->setDeclContext(ObjCMethod);
2382
2383 Params.push_back(Param);
2384 }
2385
2386 ObjCMethod->setMethodParams(Context, Params.data(), Params.size(),
2387 Sel.getNumArgs());
2388 ObjCMethod->setObjCDeclQualifier(
2389 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
2390 const ObjCMethodDecl *PrevMethod = 0;
2391
2392 if (AttrList)
2393 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
2394
2395 const ObjCMethodDecl *InterfaceMD = 0;
2396
2397 // Add the method now.
2398 if (ObjCImplementationDecl *ImpDecl =
2399 dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2400 if (MethodType == tok::minus) {
2401 PrevMethod = ImpDecl->getInstanceMethod(Sel);
2402 ImpDecl->addInstanceMethod(ObjCMethod);
2403 } else {
2404 PrevMethod = ImpDecl->getClassMethod(Sel);
2405 ImpDecl->addClassMethod(ObjCMethod);
2406 }
2407 InterfaceMD = ImpDecl->getClassInterface()->getMethod(Sel,
2408 MethodType == tok::minus);
2409
2410 if (ObjCMethod->hasAttrs() &&
2411 containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
2412 Diag(EndLoc, diag::warn_attribute_method_def);
2413 } else if (ObjCCategoryImplDecl *CatImpDecl =
2414 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2415 if (MethodType == tok::minus) {
2416 PrevMethod = CatImpDecl->getInstanceMethod(Sel);
2417 CatImpDecl->addInstanceMethod(ObjCMethod);
2418 } else {
2419 PrevMethod = CatImpDecl->getClassMethod(Sel);
2420 CatImpDecl->addClassMethod(ObjCMethod);
2421 }
2422
2423 if (ObjCCategoryDecl *Cat = CatImpDecl->getCategoryDecl())
2424 InterfaceMD = Cat->getMethod(Sel, MethodType == tok::minus);
2425
2426 if (ObjCMethod->hasAttrs() &&
2427 containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
2428 Diag(EndLoc, diag::warn_attribute_method_def);
2429 } else {
2430 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
2431 }
2432 if (PrevMethod) {
2433 // You can never have two method definitions with the same name.
2434 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
2435 << ObjCMethod->getDeclName();
2436 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2437 }
2438
2439 // If this Objective-C method does not have a related result type, but we
2440 // are allowed to infer related result types, try to do so based on the
2441 // method family.
2442 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
2443 if (!CurrentClass) {
2444 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
2445 CurrentClass = Cat->getClassInterface();
2446 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
2447 CurrentClass = Impl->getClassInterface();
2448 else if (ObjCCategoryImplDecl *CatImpl
2449 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
2450 CurrentClass = CatImpl->getClassInterface();
2451 }
2452
2453 // Merge information down from the interface declaration if we have one.
2454 if (InterfaceMD) {
2455 // Inherit the related result type, if we can.
2456 if (InterfaceMD->hasRelatedResultType() &&
2457 !CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass))
2458 ObjCMethod->SetRelatedResultType();
2459
2460 mergeObjCMethodDecls(ObjCMethod, InterfaceMD);
2461 }
2462
2463 bool ARCError = false;
2464 if (getLangOptions().ObjCAutoRefCount)
2465 ARCError = CheckARCMethodDecl(*this, ObjCMethod);
2466
2467 if (!ObjCMethod->hasRelatedResultType() && !ARCError &&
2468 getLangOptions().ObjCInferRelatedResultType) {
2469 bool InferRelatedResultType = false;
2470 switch (ObjCMethod->getMethodFamily()) {
2471 case OMF_None:
2472 case OMF_copy:
2473 case OMF_dealloc:
2474 case OMF_mutableCopy:
2475 case OMF_release:
2476 case OMF_retainCount:
2477 case OMF_performSelector:
2478 break;
2479
2480 case OMF_alloc:
2481 case OMF_new:
2482 InferRelatedResultType = ObjCMethod->isClassMethod();
2483 break;
2484
2485 case OMF_init:
2486 case OMF_autorelease:
2487 case OMF_retain:
2488 case OMF_self:
2489 InferRelatedResultType = ObjCMethod->isInstanceMethod();
2490 break;
2491 }
2492
2493 if (InferRelatedResultType &&
2494 !CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass))
2495 ObjCMethod->SetRelatedResultType();
2496
2497 if (!InterfaceMD &&
2498 anyMethodInfersRelatedResultType(*this, ObjCMethod->getSelector(),
2499 ObjCMethod->isInstanceMethod()))
2500 CheckObjCMethodOverrides(ObjCMethod, cast<DeclContext>(ClassDecl));
2501 }
2502
2503 return ObjCMethod;
2504 }
2505
CheckObjCDeclScope(Decl * D)2506 bool Sema::CheckObjCDeclScope(Decl *D) {
2507 if (isa<TranslationUnitDecl>(CurContext->getRedeclContext()))
2508 return false;
2509
2510 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
2511 D->setInvalidDecl();
2512
2513 return true;
2514 }
2515
2516 /// Called whenever @defs(ClassName) is encountered in the source. Inserts the
2517 /// instance variables of ClassName into Decls.
ActOnDefs(Scope * S,Decl * TagD,SourceLocation DeclStart,IdentifierInfo * ClassName,llvm::SmallVectorImpl<Decl * > & Decls)2518 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
2519 IdentifierInfo *ClassName,
2520 llvm::SmallVectorImpl<Decl*> &Decls) {
2521 // Check that ClassName is a valid class
2522 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
2523 if (!Class) {
2524 Diag(DeclStart, diag::err_undef_interface) << ClassName;
2525 return;
2526 }
2527 if (LangOpts.ObjCNonFragileABI) {
2528 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
2529 return;
2530 }
2531
2532 // Collect the instance variables
2533 llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
2534 Context.DeepCollectObjCIvars(Class, true, Ivars);
2535 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2536 for (unsigned i = 0; i < Ivars.size(); i++) {
2537 FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
2538 RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
2539 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
2540 /*FIXME: StartL=*/ID->getLocation(),
2541 ID->getLocation(),
2542 ID->getIdentifier(), ID->getType(),
2543 ID->getBitWidth());
2544 Decls.push_back(FD);
2545 }
2546
2547 // Introduce all of these fields into the appropriate scope.
2548 for (llvm::SmallVectorImpl<Decl*>::iterator D = Decls.begin();
2549 D != Decls.end(); ++D) {
2550 FieldDecl *FD = cast<FieldDecl>(*D);
2551 if (getLangOptions().CPlusPlus)
2552 PushOnScopeChains(cast<FieldDecl>(FD), S);
2553 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
2554 Record->addDecl(FD);
2555 }
2556 }
2557
2558 /// \brief Build a type-check a new Objective-C exception variable declaration.
BuildObjCExceptionDecl(TypeSourceInfo * TInfo,QualType T,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,bool Invalid)2559 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
2560 SourceLocation StartLoc,
2561 SourceLocation IdLoc,
2562 IdentifierInfo *Id,
2563 bool Invalid) {
2564 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
2565 // duration shall not be qualified by an address-space qualifier."
2566 // Since all parameters have automatic store duration, they can not have
2567 // an address space.
2568 if (T.getAddressSpace() != 0) {
2569 Diag(IdLoc, diag::err_arg_with_address_space);
2570 Invalid = true;
2571 }
2572
2573 // An @catch parameter must be an unqualified object pointer type;
2574 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
2575 if (Invalid) {
2576 // Don't do any further checking.
2577 } else if (T->isDependentType()) {
2578 // Okay: we don't know what this type will instantiate to.
2579 } else if (!T->isObjCObjectPointerType()) {
2580 Invalid = true;
2581 Diag(IdLoc ,diag::err_catch_param_not_objc_type);
2582 } else if (T->isObjCQualifiedIdType()) {
2583 Invalid = true;
2584 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
2585 }
2586
2587 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
2588 T, TInfo, SC_None, SC_None);
2589 New->setExceptionVariable(true);
2590
2591 if (Invalid)
2592 New->setInvalidDecl();
2593 return New;
2594 }
2595
ActOnObjCExceptionDecl(Scope * S,Declarator & D)2596 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
2597 const DeclSpec &DS = D.getDeclSpec();
2598
2599 // We allow the "register" storage class on exception variables because
2600 // GCC did, but we drop it completely. Any other storage class is an error.
2601 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2602 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
2603 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
2604 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2605 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
2606 << DS.getStorageClassSpec();
2607 }
2608 if (D.getDeclSpec().isThreadSpecified())
2609 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2610 D.getMutableDeclSpec().ClearStorageClassSpecs();
2611
2612 DiagnoseFunctionSpecifiers(D);
2613
2614 // Check that there are no default arguments inside the type of this
2615 // exception object (C++ only).
2616 if (getLangOptions().CPlusPlus)
2617 CheckExtraCXXDefaultArguments(D);
2618
2619 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2620 QualType ExceptionType = TInfo->getType();
2621
2622 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
2623 D.getSourceRange().getBegin(),
2624 D.getIdentifierLoc(),
2625 D.getIdentifier(),
2626 D.isInvalidType());
2627
2628 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2629 if (D.getCXXScopeSpec().isSet()) {
2630 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
2631 << D.getCXXScopeSpec().getRange();
2632 New->setInvalidDecl();
2633 }
2634
2635 // Add the parameter declaration into this scope.
2636 S->AddDecl(New);
2637 if (D.getIdentifier())
2638 IdResolver.AddDecl(New);
2639
2640 ProcessDeclAttributes(S, New, D);
2641
2642 if (New->hasAttr<BlocksAttr>())
2643 Diag(New->getLocation(), diag::err_block_on_nonlocal);
2644 return New;
2645 }
2646
2647 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
2648 /// initialization.
CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl * OI,llvm::SmallVectorImpl<ObjCIvarDecl * > & Ivars)2649 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
2650 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
2651 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
2652 Iv= Iv->getNextIvar()) {
2653 QualType QT = Context.getBaseElementType(Iv->getType());
2654 if (QT->isRecordType())
2655 Ivars.push_back(Iv);
2656 }
2657 }
2658
setIvarInitializers(ASTContext & C,CXXCtorInitializer ** initializers,unsigned numInitializers)2659 void ObjCImplementationDecl::setIvarInitializers(ASTContext &C,
2660 CXXCtorInitializer ** initializers,
2661 unsigned numInitializers) {
2662 if (numInitializers > 0) {
2663 NumIvarInitializers = numInitializers;
2664 CXXCtorInitializer **ivarInitializers =
2665 new (C) CXXCtorInitializer*[NumIvarInitializers];
2666 memcpy(ivarInitializers, initializers,
2667 numInitializers * sizeof(CXXCtorInitializer*));
2668 IvarInitializers = ivarInitializers;
2669 }
2670 }
2671
DiagnoseUseOfUnimplementedSelectors()2672 void Sema::DiagnoseUseOfUnimplementedSelectors() {
2673 // Warning will be issued only when selector table is
2674 // generated (which means there is at lease one implementation
2675 // in the TU). This is to match gcc's behavior.
2676 if (ReferencedSelectors.empty() ||
2677 !Context.AnyObjCImplementation())
2678 return;
2679 for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
2680 ReferencedSelectors.begin(),
2681 E = ReferencedSelectors.end(); S != E; ++S) {
2682 Selector Sel = (*S).first;
2683 if (!LookupImplementedMethodInGlobalPool(Sel))
2684 Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
2685 }
2686 return;
2687 }
2688