• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #include "accessors.h"
31 #include "api.h"
32 #include "bootstrapper.h"
33 #include "codegen.h"
34 #include "compilation-cache.h"
35 #include "debug.h"
36 #include "heap-profiler.h"
37 #include "global-handles.h"
38 #include "liveobjectlist-inl.h"
39 #include "mark-compact.h"
40 #include "natives.h"
41 #include "objects-visiting.h"
42 #include "runtime-profiler.h"
43 #include "scanner-base.h"
44 #include "scopeinfo.h"
45 #include "snapshot.h"
46 #include "v8threads.h"
47 #include "vm-state-inl.h"
48 #if V8_TARGET_ARCH_ARM && !V8_INTERPRETED_REGEXP
49 #include "regexp-macro-assembler.h"
50 #include "arm/regexp-macro-assembler-arm.h"
51 #endif
52 #if V8_TARGET_ARCH_MIPS && !V8_INTERPRETED_REGEXP
53 #include "regexp-macro-assembler.h"
54 #include "mips/regexp-macro-assembler-mips.h"
55 #endif
56 
57 namespace v8 {
58 namespace internal {
59 
60 
61 static const intptr_t kMinimumPromotionLimit = 2 * MB;
62 static const intptr_t kMinimumAllocationLimit = 8 * MB;
63 
64 
65 static Mutex* gc_initializer_mutex = OS::CreateMutex();
66 
67 
Heap()68 Heap::Heap()
69     : isolate_(NULL),
70 // semispace_size_ should be a power of 2 and old_generation_size_ should be
71 // a multiple of Page::kPageSize.
72 #if defined(ANDROID)
73       reserved_semispace_size_(2*MB),
74       max_semispace_size_(2*MB),
75       initial_semispace_size_(128*KB),
76       max_old_generation_size_(192*MB),
77       max_executable_size_(max_old_generation_size_),
78       code_range_size_(0),
79 #elif defined(V8_TARGET_ARCH_X64)
80       reserved_semispace_size_(16*MB),
81       max_semispace_size_(16*MB),
82       initial_semispace_size_(1*MB),
83       max_old_generation_size_(1*GB),
84       max_executable_size_(256*MB),
85       code_range_size_(512*MB),
86 #else
87       reserved_semispace_size_(8*MB),
88       max_semispace_size_(8*MB),
89       initial_semispace_size_(512*KB),
90       max_old_generation_size_(512*MB),
91       max_executable_size_(128*MB),
92       code_range_size_(0),
93 #endif
94 // Variables set based on semispace_size_ and old_generation_size_ in
95 // ConfigureHeap (survived_since_last_expansion_, external_allocation_limit_)
96 // Will be 4 * reserved_semispace_size_ to ensure that young
97 // generation can be aligned to its size.
98       survived_since_last_expansion_(0),
99       always_allocate_scope_depth_(0),
100       linear_allocation_scope_depth_(0),
101       contexts_disposed_(0),
102       new_space_(this),
103       old_pointer_space_(NULL),
104       old_data_space_(NULL),
105       code_space_(NULL),
106       map_space_(NULL),
107       cell_space_(NULL),
108       lo_space_(NULL),
109       gc_state_(NOT_IN_GC),
110       mc_count_(0),
111       ms_count_(0),
112       gc_count_(0),
113       unflattened_strings_length_(0),
114 #ifdef DEBUG
115       allocation_allowed_(true),
116       allocation_timeout_(0),
117       disallow_allocation_failure_(false),
118       debug_utils_(NULL),
119 #endif  // DEBUG
120       old_gen_promotion_limit_(kMinimumPromotionLimit),
121       old_gen_allocation_limit_(kMinimumAllocationLimit),
122       external_allocation_limit_(0),
123       amount_of_external_allocated_memory_(0),
124       amount_of_external_allocated_memory_at_last_global_gc_(0),
125       old_gen_exhausted_(false),
126       hidden_symbol_(NULL),
127       global_gc_prologue_callback_(NULL),
128       global_gc_epilogue_callback_(NULL),
129       gc_safe_size_of_old_object_(NULL),
130       total_regexp_code_generated_(0),
131       tracer_(NULL),
132       young_survivors_after_last_gc_(0),
133       high_survival_rate_period_length_(0),
134       survival_rate_(0),
135       previous_survival_rate_trend_(Heap::STABLE),
136       survival_rate_trend_(Heap::STABLE),
137       max_gc_pause_(0),
138       max_alive_after_gc_(0),
139       min_in_mutator_(kMaxInt),
140       alive_after_last_gc_(0),
141       last_gc_end_timestamp_(0.0),
142       page_watermark_invalidated_mark_(1 << Page::WATERMARK_INVALIDATED),
143       number_idle_notifications_(0),
144       last_idle_notification_gc_count_(0),
145       last_idle_notification_gc_count_init_(false),
146       configured_(false),
147       is_safe_to_read_maps_(true) {
148   // Allow build-time customization of the max semispace size. Building
149   // V8 with snapshots and a non-default max semispace size is much
150   // easier if you can define it as part of the build environment.
151 #if defined(V8_MAX_SEMISPACE_SIZE)
152   max_semispace_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE;
153 #endif
154 
155   memset(roots_, 0, sizeof(roots_[0]) * kRootListLength);
156   global_contexts_list_ = NULL;
157   mark_compact_collector_.heap_ = this;
158   external_string_table_.heap_ = this;
159 }
160 
161 
Capacity()162 intptr_t Heap::Capacity() {
163   if (!HasBeenSetup()) return 0;
164 
165   return new_space_.Capacity() +
166       old_pointer_space_->Capacity() +
167       old_data_space_->Capacity() +
168       code_space_->Capacity() +
169       map_space_->Capacity() +
170       cell_space_->Capacity();
171 }
172 
173 
CommittedMemory()174 intptr_t Heap::CommittedMemory() {
175   if (!HasBeenSetup()) return 0;
176 
177   return new_space_.CommittedMemory() +
178       old_pointer_space_->CommittedMemory() +
179       old_data_space_->CommittedMemory() +
180       code_space_->CommittedMemory() +
181       map_space_->CommittedMemory() +
182       cell_space_->CommittedMemory() +
183       lo_space_->Size();
184 }
185 
CommittedMemoryExecutable()186 intptr_t Heap::CommittedMemoryExecutable() {
187   if (!HasBeenSetup()) return 0;
188 
189   return isolate()->memory_allocator()->SizeExecutable();
190 }
191 
192 
Available()193 intptr_t Heap::Available() {
194   if (!HasBeenSetup()) return 0;
195 
196   return new_space_.Available() +
197       old_pointer_space_->Available() +
198       old_data_space_->Available() +
199       code_space_->Available() +
200       map_space_->Available() +
201       cell_space_->Available();
202 }
203 
204 
HasBeenSetup()205 bool Heap::HasBeenSetup() {
206   return old_pointer_space_ != NULL &&
207          old_data_space_ != NULL &&
208          code_space_ != NULL &&
209          map_space_ != NULL &&
210          cell_space_ != NULL &&
211          lo_space_ != NULL;
212 }
213 
214 
GcSafeSizeOfOldObject(HeapObject * object)215 int Heap::GcSafeSizeOfOldObject(HeapObject* object) {
216   ASSERT(!HEAP->InNewSpace(object));  // Code only works for old objects.
217   ASSERT(!HEAP->mark_compact_collector()->are_map_pointers_encoded());
218   MapWord map_word = object->map_word();
219   map_word.ClearMark();
220   map_word.ClearOverflow();
221   return object->SizeFromMap(map_word.ToMap());
222 }
223 
224 
GcSafeSizeOfOldObjectWithEncodedMap(HeapObject * object)225 int Heap::GcSafeSizeOfOldObjectWithEncodedMap(HeapObject* object) {
226   ASSERT(!HEAP->InNewSpace(object));  // Code only works for old objects.
227   ASSERT(HEAP->mark_compact_collector()->are_map_pointers_encoded());
228   uint32_t marker = Memory::uint32_at(object->address());
229   if (marker == MarkCompactCollector::kSingleFreeEncoding) {
230     return kIntSize;
231   } else if (marker == MarkCompactCollector::kMultiFreeEncoding) {
232     return Memory::int_at(object->address() + kIntSize);
233   } else {
234     MapWord map_word = object->map_word();
235     Address map_address = map_word.DecodeMapAddress(HEAP->map_space());
236     Map* map = reinterpret_cast<Map*>(HeapObject::FromAddress(map_address));
237     return object->SizeFromMap(map);
238   }
239 }
240 
241 
SelectGarbageCollector(AllocationSpace space)242 GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space) {
243   // Is global GC requested?
244   if (space != NEW_SPACE || FLAG_gc_global) {
245     isolate_->counters()->gc_compactor_caused_by_request()->Increment();
246     return MARK_COMPACTOR;
247   }
248 
249   // Is enough data promoted to justify a global GC?
250   if (OldGenerationPromotionLimitReached()) {
251     isolate_->counters()->gc_compactor_caused_by_promoted_data()->Increment();
252     return MARK_COMPACTOR;
253   }
254 
255   // Have allocation in OLD and LO failed?
256   if (old_gen_exhausted_) {
257     isolate_->counters()->
258         gc_compactor_caused_by_oldspace_exhaustion()->Increment();
259     return MARK_COMPACTOR;
260   }
261 
262   // Is there enough space left in OLD to guarantee that a scavenge can
263   // succeed?
264   //
265   // Note that MemoryAllocator->MaxAvailable() undercounts the memory available
266   // for object promotion. It counts only the bytes that the memory
267   // allocator has not yet allocated from the OS and assigned to any space,
268   // and does not count available bytes already in the old space or code
269   // space.  Undercounting is safe---we may get an unrequested full GC when
270   // a scavenge would have succeeded.
271   if (isolate_->memory_allocator()->MaxAvailable() <= new_space_.Size()) {
272     isolate_->counters()->
273         gc_compactor_caused_by_oldspace_exhaustion()->Increment();
274     return MARK_COMPACTOR;
275   }
276 
277   // Default
278   return SCAVENGER;
279 }
280 
281 
282 // TODO(1238405): Combine the infrastructure for --heap-stats and
283 // --log-gc to avoid the complicated preprocessor and flag testing.
284 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
ReportStatisticsBeforeGC()285 void Heap::ReportStatisticsBeforeGC() {
286   // Heap::ReportHeapStatistics will also log NewSpace statistics when
287   // compiled with ENABLE_LOGGING_AND_PROFILING and --log-gc is set.  The
288   // following logic is used to avoid double logging.
289 #if defined(DEBUG) && defined(ENABLE_LOGGING_AND_PROFILING)
290   if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics();
291   if (FLAG_heap_stats) {
292     ReportHeapStatistics("Before GC");
293   } else if (FLAG_log_gc) {
294     new_space_.ReportStatistics();
295   }
296   if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms();
297 #elif defined(DEBUG)
298   if (FLAG_heap_stats) {
299     new_space_.CollectStatistics();
300     ReportHeapStatistics("Before GC");
301     new_space_.ClearHistograms();
302   }
303 #elif defined(ENABLE_LOGGING_AND_PROFILING)
304   if (FLAG_log_gc) {
305     new_space_.CollectStatistics();
306     new_space_.ReportStatistics();
307     new_space_.ClearHistograms();
308   }
309 #endif
310 }
311 
312 
313 #if defined(ENABLE_LOGGING_AND_PROFILING)
PrintShortHeapStatistics()314 void Heap::PrintShortHeapStatistics() {
315   if (!FLAG_trace_gc_verbose) return;
316   PrintF("Memory allocator,   used: %8" V8_PTR_PREFIX "d"
317              ", available: %8" V8_PTR_PREFIX "d\n",
318          isolate_->memory_allocator()->Size(),
319          isolate_->memory_allocator()->Available());
320   PrintF("New space,          used: %8" V8_PTR_PREFIX "d"
321              ", available: %8" V8_PTR_PREFIX "d\n",
322          Heap::new_space_.Size(),
323          new_space_.Available());
324   PrintF("Old pointers,       used: %8" V8_PTR_PREFIX "d"
325              ", available: %8" V8_PTR_PREFIX "d"
326              ", waste: %8" V8_PTR_PREFIX "d\n",
327          old_pointer_space_->Size(),
328          old_pointer_space_->Available(),
329          old_pointer_space_->Waste());
330   PrintF("Old data space,     used: %8" V8_PTR_PREFIX "d"
331              ", available: %8" V8_PTR_PREFIX "d"
332              ", waste: %8" V8_PTR_PREFIX "d\n",
333          old_data_space_->Size(),
334          old_data_space_->Available(),
335          old_data_space_->Waste());
336   PrintF("Code space,         used: %8" V8_PTR_PREFIX "d"
337              ", available: %8" V8_PTR_PREFIX "d"
338              ", waste: %8" V8_PTR_PREFIX "d\n",
339          code_space_->Size(),
340          code_space_->Available(),
341          code_space_->Waste());
342   PrintF("Map space,          used: %8" V8_PTR_PREFIX "d"
343              ", available: %8" V8_PTR_PREFIX "d"
344              ", waste: %8" V8_PTR_PREFIX "d\n",
345          map_space_->Size(),
346          map_space_->Available(),
347          map_space_->Waste());
348   PrintF("Cell space,         used: %8" V8_PTR_PREFIX "d"
349              ", available: %8" V8_PTR_PREFIX "d"
350              ", waste: %8" V8_PTR_PREFIX "d\n",
351          cell_space_->Size(),
352          cell_space_->Available(),
353          cell_space_->Waste());
354   PrintF("Large object space, used: %8" V8_PTR_PREFIX "d"
355              ", available: %8" V8_PTR_PREFIX "d\n",
356          lo_space_->Size(),
357          lo_space_->Available());
358 }
359 #endif
360 
361 
362 // TODO(1238405): Combine the infrastructure for --heap-stats and
363 // --log-gc to avoid the complicated preprocessor and flag testing.
ReportStatisticsAfterGC()364 void Heap::ReportStatisticsAfterGC() {
365   // Similar to the before GC, we use some complicated logic to ensure that
366   // NewSpace statistics are logged exactly once when --log-gc is turned on.
367 #if defined(DEBUG) && defined(ENABLE_LOGGING_AND_PROFILING)
368   if (FLAG_heap_stats) {
369     new_space_.CollectStatistics();
370     ReportHeapStatistics("After GC");
371   } else if (FLAG_log_gc) {
372     new_space_.ReportStatistics();
373   }
374 #elif defined(DEBUG)
375   if (FLAG_heap_stats) ReportHeapStatistics("After GC");
376 #elif defined(ENABLE_LOGGING_AND_PROFILING)
377   if (FLAG_log_gc) new_space_.ReportStatistics();
378 #endif
379 }
380 #endif  // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
381 
382 
GarbageCollectionPrologue()383 void Heap::GarbageCollectionPrologue() {
384   isolate_->transcendental_cache()->Clear();
385   ClearJSFunctionResultCaches();
386   gc_count_++;
387   unflattened_strings_length_ = 0;
388 #ifdef DEBUG
389   ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
390   allow_allocation(false);
391 
392   if (FLAG_verify_heap) {
393     Verify();
394   }
395 
396   if (FLAG_gc_verbose) Print();
397 #endif
398 
399 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
400   ReportStatisticsBeforeGC();
401 #endif
402 
403   LiveObjectList::GCPrologue();
404 }
405 
SizeOfObjects()406 intptr_t Heap::SizeOfObjects() {
407   intptr_t total = 0;
408   AllSpaces spaces;
409   for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
410     total += space->SizeOfObjects();
411   }
412   return total;
413 }
414 
GarbageCollectionEpilogue()415 void Heap::GarbageCollectionEpilogue() {
416   LiveObjectList::GCEpilogue();
417 #ifdef DEBUG
418   allow_allocation(true);
419   ZapFromSpace();
420 
421   if (FLAG_verify_heap) {
422     Verify();
423   }
424 
425   if (FLAG_print_global_handles) isolate_->global_handles()->Print();
426   if (FLAG_print_handles) PrintHandles();
427   if (FLAG_gc_verbose) Print();
428   if (FLAG_code_stats) ReportCodeStatistics("After GC");
429 #endif
430 
431   isolate_->counters()->alive_after_last_gc()->Set(
432       static_cast<int>(SizeOfObjects()));
433 
434   isolate_->counters()->symbol_table_capacity()->Set(
435       symbol_table()->Capacity());
436   isolate_->counters()->number_of_symbols()->Set(
437       symbol_table()->NumberOfElements());
438 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
439   ReportStatisticsAfterGC();
440 #endif
441 #ifdef ENABLE_DEBUGGER_SUPPORT
442   isolate_->debug()->AfterGarbageCollection();
443 #endif
444 }
445 
446 
CollectAllGarbage(bool force_compaction)447 void Heap::CollectAllGarbage(bool force_compaction) {
448   // Since we are ignoring the return value, the exact choice of space does
449   // not matter, so long as we do not specify NEW_SPACE, which would not
450   // cause a full GC.
451   mark_compact_collector_.SetForceCompaction(force_compaction);
452   CollectGarbage(OLD_POINTER_SPACE);
453   mark_compact_collector_.SetForceCompaction(false);
454 }
455 
456 
CollectAllAvailableGarbage()457 void Heap::CollectAllAvailableGarbage() {
458   // Since we are ignoring the return value, the exact choice of space does
459   // not matter, so long as we do not specify NEW_SPACE, which would not
460   // cause a full GC.
461   mark_compact_collector()->SetForceCompaction(true);
462 
463   // Major GC would invoke weak handle callbacks on weakly reachable
464   // handles, but won't collect weakly reachable objects until next
465   // major GC.  Therefore if we collect aggressively and weak handle callback
466   // has been invoked, we rerun major GC to release objects which become
467   // garbage.
468   // Note: as weak callbacks can execute arbitrary code, we cannot
469   // hope that eventually there will be no weak callbacks invocations.
470   // Therefore stop recollecting after several attempts.
471   const int kMaxNumberOfAttempts = 7;
472   for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) {
473     if (!CollectGarbage(OLD_POINTER_SPACE, MARK_COMPACTOR)) {
474       break;
475     }
476   }
477   mark_compact_collector()->SetForceCompaction(false);
478 }
479 
480 
CollectGarbage(AllocationSpace space,GarbageCollector collector)481 bool Heap::CollectGarbage(AllocationSpace space, GarbageCollector collector) {
482   // The VM is in the GC state until exiting this function.
483   VMState state(isolate_, GC);
484 
485 #ifdef DEBUG
486   // Reset the allocation timeout to the GC interval, but make sure to
487   // allow at least a few allocations after a collection. The reason
488   // for this is that we have a lot of allocation sequences and we
489   // assume that a garbage collection will allow the subsequent
490   // allocation attempts to go through.
491   allocation_timeout_ = Max(6, FLAG_gc_interval);
492 #endif
493 
494   bool next_gc_likely_to_collect_more = false;
495 
496   { GCTracer tracer(this);
497     GarbageCollectionPrologue();
498     // The GC count was incremented in the prologue.  Tell the tracer about
499     // it.
500     tracer.set_gc_count(gc_count_);
501 
502     // Tell the tracer which collector we've selected.
503     tracer.set_collector(collector);
504 
505     HistogramTimer* rate = (collector == SCAVENGER)
506         ? isolate_->counters()->gc_scavenger()
507         : isolate_->counters()->gc_compactor();
508     rate->Start();
509     next_gc_likely_to_collect_more =
510         PerformGarbageCollection(collector, &tracer);
511     rate->Stop();
512 
513     GarbageCollectionEpilogue();
514   }
515 
516 
517 #ifdef ENABLE_LOGGING_AND_PROFILING
518   if (FLAG_log_gc) HeapProfiler::WriteSample();
519 #endif
520 
521   return next_gc_likely_to_collect_more;
522 }
523 
524 
PerformScavenge()525 void Heap::PerformScavenge() {
526   GCTracer tracer(this);
527   PerformGarbageCollection(SCAVENGER, &tracer);
528 }
529 
530 
531 #ifdef DEBUG
532 // Helper class for verifying the symbol table.
533 class SymbolTableVerifier : public ObjectVisitor {
534  public:
VisitPointers(Object ** start,Object ** end)535   void VisitPointers(Object** start, Object** end) {
536     // Visit all HeapObject pointers in [start, end).
537     for (Object** p = start; p < end; p++) {
538       if ((*p)->IsHeapObject()) {
539         // Check that the symbol is actually a symbol.
540         ASSERT((*p)->IsNull() || (*p)->IsUndefined() || (*p)->IsSymbol());
541       }
542     }
543   }
544 };
545 #endif  // DEBUG
546 
547 
VerifySymbolTable()548 static void VerifySymbolTable() {
549 #ifdef DEBUG
550   SymbolTableVerifier verifier;
551   HEAP->symbol_table()->IterateElements(&verifier);
552 #endif  // DEBUG
553 }
554 
555 
ReserveSpace(int new_space_size,int pointer_space_size,int data_space_size,int code_space_size,int map_space_size,int cell_space_size,int large_object_size)556 void Heap::ReserveSpace(
557     int new_space_size,
558     int pointer_space_size,
559     int data_space_size,
560     int code_space_size,
561     int map_space_size,
562     int cell_space_size,
563     int large_object_size) {
564   NewSpace* new_space = Heap::new_space();
565   PagedSpace* old_pointer_space = Heap::old_pointer_space();
566   PagedSpace* old_data_space = Heap::old_data_space();
567   PagedSpace* code_space = Heap::code_space();
568   PagedSpace* map_space = Heap::map_space();
569   PagedSpace* cell_space = Heap::cell_space();
570   LargeObjectSpace* lo_space = Heap::lo_space();
571   bool gc_performed = true;
572   while (gc_performed) {
573     gc_performed = false;
574     if (!new_space->ReserveSpace(new_space_size)) {
575       Heap::CollectGarbage(NEW_SPACE);
576       gc_performed = true;
577     }
578     if (!old_pointer_space->ReserveSpace(pointer_space_size)) {
579       Heap::CollectGarbage(OLD_POINTER_SPACE);
580       gc_performed = true;
581     }
582     if (!(old_data_space->ReserveSpace(data_space_size))) {
583       Heap::CollectGarbage(OLD_DATA_SPACE);
584       gc_performed = true;
585     }
586     if (!(code_space->ReserveSpace(code_space_size))) {
587       Heap::CollectGarbage(CODE_SPACE);
588       gc_performed = true;
589     }
590     if (!(map_space->ReserveSpace(map_space_size))) {
591       Heap::CollectGarbage(MAP_SPACE);
592       gc_performed = true;
593     }
594     if (!(cell_space->ReserveSpace(cell_space_size))) {
595       Heap::CollectGarbage(CELL_SPACE);
596       gc_performed = true;
597     }
598     // We add a slack-factor of 2 in order to have space for a series of
599     // large-object allocations that are only just larger than the page size.
600     large_object_size *= 2;
601     // The ReserveSpace method on the large object space checks how much
602     // we can expand the old generation.  This includes expansion caused by
603     // allocation in the other spaces.
604     large_object_size += cell_space_size + map_space_size + code_space_size +
605         data_space_size + pointer_space_size;
606     if (!(lo_space->ReserveSpace(large_object_size))) {
607       Heap::CollectGarbage(LO_SPACE);
608       gc_performed = true;
609     }
610   }
611 }
612 
613 
EnsureFromSpaceIsCommitted()614 void Heap::EnsureFromSpaceIsCommitted() {
615   if (new_space_.CommitFromSpaceIfNeeded()) return;
616 
617   // Committing memory to from space failed.
618   // Try shrinking and try again.
619   PagedSpaces spaces;
620   for (PagedSpace* space = spaces.next();
621        space != NULL;
622        space = spaces.next()) {
623     space->RelinkPageListInChunkOrder(true);
624   }
625 
626   Shrink();
627   if (new_space_.CommitFromSpaceIfNeeded()) return;
628 
629   // Committing memory to from space failed again.
630   // Memory is exhausted and we will die.
631   V8::FatalProcessOutOfMemory("Committing semi space failed.");
632 }
633 
634 
ClearJSFunctionResultCaches()635 void Heap::ClearJSFunctionResultCaches() {
636   if (isolate_->bootstrapper()->IsActive()) return;
637 
638   Object* context = global_contexts_list_;
639   while (!context->IsUndefined()) {
640     // Get the caches for this context:
641     FixedArray* caches =
642       Context::cast(context)->jsfunction_result_caches();
643     // Clear the caches:
644     int length = caches->length();
645     for (int i = 0; i < length; i++) {
646       JSFunctionResultCache::cast(caches->get(i))->Clear();
647     }
648     // Get the next context:
649     context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
650   }
651 }
652 
653 
654 
ClearNormalizedMapCaches()655 void Heap::ClearNormalizedMapCaches() {
656   if (isolate_->bootstrapper()->IsActive()) return;
657 
658   Object* context = global_contexts_list_;
659   while (!context->IsUndefined()) {
660     Context::cast(context)->normalized_map_cache()->Clear();
661     context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
662   }
663 }
664 
665 
666 #ifdef DEBUG
667 
668 enum PageWatermarkValidity {
669   ALL_VALID,
670   ALL_INVALID
671 };
672 
VerifyPageWatermarkValidity(PagedSpace * space,PageWatermarkValidity validity)673 static void VerifyPageWatermarkValidity(PagedSpace* space,
674                                         PageWatermarkValidity validity) {
675   PageIterator it(space, PageIterator::PAGES_IN_USE);
676   bool expected_value = (validity == ALL_VALID);
677   while (it.has_next()) {
678     Page* page = it.next();
679     ASSERT(page->IsWatermarkValid() == expected_value);
680   }
681 }
682 #endif
683 
UpdateSurvivalRateTrend(int start_new_space_size)684 void Heap::UpdateSurvivalRateTrend(int start_new_space_size) {
685   double survival_rate =
686       (static_cast<double>(young_survivors_after_last_gc_) * 100) /
687       start_new_space_size;
688 
689   if (survival_rate > kYoungSurvivalRateThreshold) {
690     high_survival_rate_period_length_++;
691   } else {
692     high_survival_rate_period_length_ = 0;
693   }
694 
695   double survival_rate_diff = survival_rate_ - survival_rate;
696 
697   if (survival_rate_diff > kYoungSurvivalRateAllowedDeviation) {
698     set_survival_rate_trend(DECREASING);
699   } else if (survival_rate_diff < -kYoungSurvivalRateAllowedDeviation) {
700     set_survival_rate_trend(INCREASING);
701   } else {
702     set_survival_rate_trend(STABLE);
703   }
704 
705   survival_rate_ = survival_rate;
706 }
707 
PerformGarbageCollection(GarbageCollector collector,GCTracer * tracer)708 bool Heap::PerformGarbageCollection(GarbageCollector collector,
709                                     GCTracer* tracer) {
710   bool next_gc_likely_to_collect_more = false;
711 
712   if (collector != SCAVENGER) {
713     PROFILE(isolate_, CodeMovingGCEvent());
714   }
715 
716   VerifySymbolTable();
717   if (collector == MARK_COMPACTOR && global_gc_prologue_callback_) {
718     ASSERT(!allocation_allowed_);
719     GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
720     global_gc_prologue_callback_();
721   }
722 
723   GCType gc_type =
724       collector == MARK_COMPACTOR ? kGCTypeMarkSweepCompact : kGCTypeScavenge;
725 
726   for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
727     if (gc_type & gc_prologue_callbacks_[i].gc_type) {
728       gc_prologue_callbacks_[i].callback(gc_type, kNoGCCallbackFlags);
729     }
730   }
731 
732   EnsureFromSpaceIsCommitted();
733 
734   int start_new_space_size = Heap::new_space()->SizeAsInt();
735 
736   if (collector == MARK_COMPACTOR) {
737     // Perform mark-sweep with optional compaction.
738     MarkCompact(tracer);
739 
740     bool high_survival_rate_during_scavenges = IsHighSurvivalRate() &&
741         IsStableOrIncreasingSurvivalTrend();
742 
743     UpdateSurvivalRateTrend(start_new_space_size);
744 
745     intptr_t old_gen_size = PromotedSpaceSize();
746     old_gen_promotion_limit_ =
747         old_gen_size + Max(kMinimumPromotionLimit, old_gen_size / 3);
748     old_gen_allocation_limit_ =
749         old_gen_size + Max(kMinimumAllocationLimit, old_gen_size / 2);
750 
751     if (high_survival_rate_during_scavenges &&
752         IsStableOrIncreasingSurvivalTrend()) {
753       // Stable high survival rates of young objects both during partial and
754       // full collection indicate that mutator is either building or modifying
755       // a structure with a long lifetime.
756       // In this case we aggressively raise old generation memory limits to
757       // postpone subsequent mark-sweep collection and thus trade memory
758       // space for the mutation speed.
759       old_gen_promotion_limit_ *= 2;
760       old_gen_allocation_limit_ *= 2;
761     }
762 
763     old_gen_exhausted_ = false;
764   } else {
765     tracer_ = tracer;
766     Scavenge();
767     tracer_ = NULL;
768 
769     UpdateSurvivalRateTrend(start_new_space_size);
770   }
771 
772   isolate_->counters()->objs_since_last_young()->Set(0);
773 
774   if (collector == MARK_COMPACTOR) {
775     DisableAssertNoAllocation allow_allocation;
776     GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
777     next_gc_likely_to_collect_more =
778         isolate_->global_handles()->PostGarbageCollectionProcessing();
779   }
780 
781   // Update relocatables.
782   Relocatable::PostGarbageCollectionProcessing();
783 
784   if (collector == MARK_COMPACTOR) {
785     // Register the amount of external allocated memory.
786     amount_of_external_allocated_memory_at_last_global_gc_ =
787         amount_of_external_allocated_memory_;
788   }
789 
790   GCCallbackFlags callback_flags = tracer->is_compacting()
791       ? kGCCallbackFlagCompacted
792       : kNoGCCallbackFlags;
793   for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
794     if (gc_type & gc_epilogue_callbacks_[i].gc_type) {
795       gc_epilogue_callbacks_[i].callback(gc_type, callback_flags);
796     }
797   }
798 
799   if (collector == MARK_COMPACTOR && global_gc_epilogue_callback_) {
800     ASSERT(!allocation_allowed_);
801     GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
802     global_gc_epilogue_callback_();
803   }
804   VerifySymbolTable();
805 
806   return next_gc_likely_to_collect_more;
807 }
808 
809 
MarkCompact(GCTracer * tracer)810 void Heap::MarkCompact(GCTracer* tracer) {
811   gc_state_ = MARK_COMPACT;
812   LOG(isolate_, ResourceEvent("markcompact", "begin"));
813 
814   mark_compact_collector_.Prepare(tracer);
815 
816   bool is_compacting = mark_compact_collector_.IsCompacting();
817 
818   if (is_compacting) {
819     mc_count_++;
820   } else {
821     ms_count_++;
822   }
823   tracer->set_full_gc_count(mc_count_ + ms_count_);
824 
825   MarkCompactPrologue(is_compacting);
826 
827   is_safe_to_read_maps_ = false;
828   mark_compact_collector_.CollectGarbage();
829   is_safe_to_read_maps_ = true;
830 
831   LOG(isolate_, ResourceEvent("markcompact", "end"));
832 
833   gc_state_ = NOT_IN_GC;
834 
835   Shrink();
836 
837   isolate_->counters()->objs_since_last_full()->Set(0);
838 
839   contexts_disposed_ = 0;
840 }
841 
842 
MarkCompactPrologue(bool is_compacting)843 void Heap::MarkCompactPrologue(bool is_compacting) {
844   // At any old GC clear the keyed lookup cache to enable collection of unused
845   // maps.
846   isolate_->keyed_lookup_cache()->Clear();
847   isolate_->context_slot_cache()->Clear();
848   isolate_->descriptor_lookup_cache()->Clear();
849 
850   isolate_->compilation_cache()->MarkCompactPrologue();
851 
852   CompletelyClearInstanceofCache();
853 
854   if (is_compacting) FlushNumberStringCache();
855 
856   ClearNormalizedMapCaches();
857 }
858 
859 
FindCodeObject(Address a)860 Object* Heap::FindCodeObject(Address a) {
861   Object* obj = NULL;  // Initialization to please compiler.
862   { MaybeObject* maybe_obj = code_space_->FindObject(a);
863     if (!maybe_obj->ToObject(&obj)) {
864       obj = lo_space_->FindObject(a)->ToObjectUnchecked();
865     }
866   }
867   return obj;
868 }
869 
870 
871 // Helper class for copying HeapObjects
872 class ScavengeVisitor: public ObjectVisitor {
873  public:
ScavengeVisitor(Heap * heap)874   explicit ScavengeVisitor(Heap* heap) : heap_(heap) {}
875 
VisitPointer(Object ** p)876   void VisitPointer(Object** p) { ScavengePointer(p); }
877 
VisitPointers(Object ** start,Object ** end)878   void VisitPointers(Object** start, Object** end) {
879     // Copy all HeapObject pointers in [start, end)
880     for (Object** p = start; p < end; p++) ScavengePointer(p);
881   }
882 
883  private:
ScavengePointer(Object ** p)884   void ScavengePointer(Object** p) {
885     Object* object = *p;
886     if (!heap_->InNewSpace(object)) return;
887     Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
888                          reinterpret_cast<HeapObject*>(object));
889   }
890 
891   Heap* heap_;
892 };
893 
894 
895 #ifdef DEBUG
896 // Visitor class to verify pointers in code or data space do not point into
897 // new space.
898 class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor {
899  public:
VisitPointers(Object ** start,Object ** end)900   void VisitPointers(Object** start, Object**end) {
901     for (Object** current = start; current < end; current++) {
902       if ((*current)->IsHeapObject()) {
903         ASSERT(!HEAP->InNewSpace(HeapObject::cast(*current)));
904       }
905     }
906   }
907 };
908 
909 
VerifyNonPointerSpacePointers()910 static void VerifyNonPointerSpacePointers() {
911   // Verify that there are no pointers to new space in spaces where we
912   // do not expect them.
913   VerifyNonPointerSpacePointersVisitor v;
914   HeapObjectIterator code_it(HEAP->code_space());
915   for (HeapObject* object = code_it.next();
916        object != NULL; object = code_it.next())
917     object->Iterate(&v);
918 
919   HeapObjectIterator data_it(HEAP->old_data_space());
920   for (HeapObject* object = data_it.next();
921        object != NULL; object = data_it.next())
922     object->Iterate(&v);
923 }
924 #endif
925 
926 
CheckNewSpaceExpansionCriteria()927 void Heap::CheckNewSpaceExpansionCriteria() {
928   if (new_space_.Capacity() < new_space_.MaximumCapacity() &&
929       survived_since_last_expansion_ > new_space_.Capacity()) {
930     // Grow the size of new space if there is room to grow and enough
931     // data has survived scavenge since the last expansion.
932     new_space_.Grow();
933     survived_since_last_expansion_ = 0;
934   }
935 }
936 
937 
Scavenge()938 void Heap::Scavenge() {
939 #ifdef DEBUG
940   if (FLAG_enable_slow_asserts) VerifyNonPointerSpacePointers();
941 #endif
942 
943   gc_state_ = SCAVENGE;
944 
945   SwitchScavengingVisitorsTableIfProfilingWasEnabled();
946 
947   Page::FlipMeaningOfInvalidatedWatermarkFlag(this);
948 #ifdef DEBUG
949   VerifyPageWatermarkValidity(old_pointer_space_, ALL_VALID);
950   VerifyPageWatermarkValidity(map_space_, ALL_VALID);
951 #endif
952 
953   // We do not update an allocation watermark of the top page during linear
954   // allocation to avoid overhead. So to maintain the watermark invariant
955   // we have to manually cache the watermark and mark the top page as having an
956   // invalid watermark. This guarantees that dirty regions iteration will use a
957   // correct watermark even if a linear allocation happens.
958   old_pointer_space_->FlushTopPageWatermark();
959   map_space_->FlushTopPageWatermark();
960 
961   // Implements Cheney's copying algorithm
962   LOG(isolate_, ResourceEvent("scavenge", "begin"));
963 
964   // Clear descriptor cache.
965   isolate_->descriptor_lookup_cache()->Clear();
966 
967   // Used for updating survived_since_last_expansion_ at function end.
968   intptr_t survived_watermark = PromotedSpaceSize();
969 
970   CheckNewSpaceExpansionCriteria();
971 
972   // Flip the semispaces.  After flipping, to space is empty, from space has
973   // live objects.
974   new_space_.Flip();
975   new_space_.ResetAllocationInfo();
976 
977   // We need to sweep newly copied objects which can be either in the
978   // to space or promoted to the old generation.  For to-space
979   // objects, we treat the bottom of the to space as a queue.  Newly
980   // copied and unswept objects lie between a 'front' mark and the
981   // allocation pointer.
982   //
983   // Promoted objects can go into various old-generation spaces, and
984   // can be allocated internally in the spaces (from the free list).
985   // We treat the top of the to space as a queue of addresses of
986   // promoted objects.  The addresses of newly promoted and unswept
987   // objects lie between a 'front' mark and a 'rear' mark that is
988   // updated as a side effect of promoting an object.
989   //
990   // There is guaranteed to be enough room at the top of the to space
991   // for the addresses of promoted objects: every object promoted
992   // frees up its size in bytes from the top of the new space, and
993   // objects are at least one pointer in size.
994   Address new_space_front = new_space_.ToSpaceLow();
995   promotion_queue_.Initialize(new_space_.ToSpaceHigh());
996 
997   is_safe_to_read_maps_ = false;
998   ScavengeVisitor scavenge_visitor(this);
999   // Copy roots.
1000   IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE);
1001 
1002   // Copy objects reachable from the old generation.  By definition,
1003   // there are no intergenerational pointers in code or data spaces.
1004   IterateDirtyRegions(old_pointer_space_,
1005                       &Heap::IteratePointersInDirtyRegion,
1006                       &ScavengePointer,
1007                       WATERMARK_CAN_BE_INVALID);
1008 
1009   IterateDirtyRegions(map_space_,
1010                       &IteratePointersInDirtyMapsRegion,
1011                       &ScavengePointer,
1012                       WATERMARK_CAN_BE_INVALID);
1013 
1014   lo_space_->IterateDirtyRegions(&ScavengePointer);
1015 
1016   // Copy objects reachable from cells by scavenging cell values directly.
1017   HeapObjectIterator cell_iterator(cell_space_);
1018   for (HeapObject* cell = cell_iterator.next();
1019        cell != NULL; cell = cell_iterator.next()) {
1020     if (cell->IsJSGlobalPropertyCell()) {
1021       Address value_address =
1022           reinterpret_cast<Address>(cell) +
1023           (JSGlobalPropertyCell::kValueOffset - kHeapObjectTag);
1024       scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address));
1025     }
1026   }
1027 
1028   // Scavenge object reachable from the global contexts list directly.
1029   scavenge_visitor.VisitPointer(BitCast<Object**>(&global_contexts_list_));
1030 
1031   new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
1032 
1033   UpdateNewSpaceReferencesInExternalStringTable(
1034       &UpdateNewSpaceReferenceInExternalStringTableEntry);
1035 
1036   LiveObjectList::UpdateReferencesForScavengeGC();
1037   isolate()->runtime_profiler()->UpdateSamplesAfterScavenge();
1038 
1039   ASSERT(new_space_front == new_space_.top());
1040 
1041   is_safe_to_read_maps_ = true;
1042 
1043   // Set age mark.
1044   new_space_.set_age_mark(new_space_.top());
1045 
1046   // Update how much has survived scavenge.
1047   IncrementYoungSurvivorsCounter(static_cast<int>(
1048       (PromotedSpaceSize() - survived_watermark) + new_space_.Size()));
1049 
1050   LOG(isolate_, ResourceEvent("scavenge", "end"));
1051 
1052   gc_state_ = NOT_IN_GC;
1053 }
1054 
1055 
UpdateNewSpaceReferenceInExternalStringTableEntry(Heap * heap,Object ** p)1056 String* Heap::UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap,
1057                                                                 Object** p) {
1058   MapWord first_word = HeapObject::cast(*p)->map_word();
1059 
1060   if (!first_word.IsForwardingAddress()) {
1061     // Unreachable external string can be finalized.
1062     heap->FinalizeExternalString(String::cast(*p));
1063     return NULL;
1064   }
1065 
1066   // String is still reachable.
1067   return String::cast(first_word.ToForwardingAddress());
1068 }
1069 
1070 
UpdateNewSpaceReferencesInExternalStringTable(ExternalStringTableUpdaterCallback updater_func)1071 void Heap::UpdateNewSpaceReferencesInExternalStringTable(
1072     ExternalStringTableUpdaterCallback updater_func) {
1073   external_string_table_.Verify();
1074 
1075   if (external_string_table_.new_space_strings_.is_empty()) return;
1076 
1077   Object** start = &external_string_table_.new_space_strings_[0];
1078   Object** end = start + external_string_table_.new_space_strings_.length();
1079   Object** last = start;
1080 
1081   for (Object** p = start; p < end; ++p) {
1082     ASSERT(InFromSpace(*p));
1083     String* target = updater_func(this, p);
1084 
1085     if (target == NULL) continue;
1086 
1087     ASSERT(target->IsExternalString());
1088 
1089     if (InNewSpace(target)) {
1090       // String is still in new space.  Update the table entry.
1091       *last = target;
1092       ++last;
1093     } else {
1094       // String got promoted.  Move it to the old string list.
1095       external_string_table_.AddOldString(target);
1096     }
1097   }
1098 
1099   ASSERT(last <= end);
1100   external_string_table_.ShrinkNewStrings(static_cast<int>(last - start));
1101 }
1102 
1103 
ProcessFunctionWeakReferences(Heap * heap,Object * function,WeakObjectRetainer * retainer)1104 static Object* ProcessFunctionWeakReferences(Heap* heap,
1105                                              Object* function,
1106                                              WeakObjectRetainer* retainer) {
1107   Object* head = heap->undefined_value();
1108   JSFunction* tail = NULL;
1109   Object* candidate = function;
1110   while (candidate != heap->undefined_value()) {
1111     // Check whether to keep the candidate in the list.
1112     JSFunction* candidate_function = reinterpret_cast<JSFunction*>(candidate);
1113     Object* retain = retainer->RetainAs(candidate);
1114     if (retain != NULL) {
1115       if (head == heap->undefined_value()) {
1116         // First element in the list.
1117         head = candidate_function;
1118       } else {
1119         // Subsequent elements in the list.
1120         ASSERT(tail != NULL);
1121         tail->set_next_function_link(candidate_function);
1122       }
1123       // Retained function is new tail.
1124       tail = candidate_function;
1125     }
1126     // Move to next element in the list.
1127     candidate = candidate_function->next_function_link();
1128   }
1129 
1130   // Terminate the list if there is one or more elements.
1131   if (tail != NULL) {
1132     tail->set_next_function_link(heap->undefined_value());
1133   }
1134 
1135   return head;
1136 }
1137 
1138 
ProcessWeakReferences(WeakObjectRetainer * retainer)1139 void Heap::ProcessWeakReferences(WeakObjectRetainer* retainer) {
1140   Object* head = undefined_value();
1141   Context* tail = NULL;
1142   Object* candidate = global_contexts_list_;
1143   while (candidate != undefined_value()) {
1144     // Check whether to keep the candidate in the list.
1145     Context* candidate_context = reinterpret_cast<Context*>(candidate);
1146     Object* retain = retainer->RetainAs(candidate);
1147     if (retain != NULL) {
1148       if (head == undefined_value()) {
1149         // First element in the list.
1150         head = candidate_context;
1151       } else {
1152         // Subsequent elements in the list.
1153         ASSERT(tail != NULL);
1154         tail->set_unchecked(this,
1155                             Context::NEXT_CONTEXT_LINK,
1156                             candidate_context,
1157                             UPDATE_WRITE_BARRIER);
1158       }
1159       // Retained context is new tail.
1160       tail = candidate_context;
1161 
1162       // Process the weak list of optimized functions for the context.
1163       Object* function_list_head =
1164           ProcessFunctionWeakReferences(
1165               this,
1166               candidate_context->get(Context::OPTIMIZED_FUNCTIONS_LIST),
1167               retainer);
1168       candidate_context->set_unchecked(this,
1169                                        Context::OPTIMIZED_FUNCTIONS_LIST,
1170                                        function_list_head,
1171                                        UPDATE_WRITE_BARRIER);
1172     }
1173     // Move to next element in the list.
1174     candidate = candidate_context->get(Context::NEXT_CONTEXT_LINK);
1175   }
1176 
1177   // Terminate the list if there is one or more elements.
1178   if (tail != NULL) {
1179     tail->set_unchecked(this,
1180                         Context::NEXT_CONTEXT_LINK,
1181                         Heap::undefined_value(),
1182                         UPDATE_WRITE_BARRIER);
1183   }
1184 
1185   // Update the head of the list of contexts.
1186   global_contexts_list_ = head;
1187 }
1188 
1189 
1190 class NewSpaceScavenger : public StaticNewSpaceVisitor<NewSpaceScavenger> {
1191  public:
VisitPointer(Heap * heap,Object ** p)1192   static inline void VisitPointer(Heap* heap, Object** p) {
1193     Object* object = *p;
1194     if (!heap->InNewSpace(object)) return;
1195     Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
1196                          reinterpret_cast<HeapObject*>(object));
1197   }
1198 };
1199 
1200 
DoScavenge(ObjectVisitor * scavenge_visitor,Address new_space_front)1201 Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor,
1202                          Address new_space_front) {
1203   do {
1204     ASSERT(new_space_front <= new_space_.top());
1205 
1206     // The addresses new_space_front and new_space_.top() define a
1207     // queue of unprocessed copied objects.  Process them until the
1208     // queue is empty.
1209     while (new_space_front < new_space_.top()) {
1210       HeapObject* object = HeapObject::FromAddress(new_space_front);
1211       new_space_front += NewSpaceScavenger::IterateBody(object->map(), object);
1212     }
1213 
1214     // Promote and process all the to-be-promoted objects.
1215     while (!promotion_queue_.is_empty()) {
1216       HeapObject* target;
1217       int size;
1218       promotion_queue_.remove(&target, &size);
1219 
1220       // Promoted object might be already partially visited
1221       // during dirty regions iteration. Thus we search specificly
1222       // for pointers to from semispace instead of looking for pointers
1223       // to new space.
1224       ASSERT(!target->IsMap());
1225       IterateAndMarkPointersToFromSpace(target->address(),
1226                                         target->address() + size,
1227                                         &ScavengePointer);
1228     }
1229 
1230     // Take another spin if there are now unswept objects in new space
1231     // (there are currently no more unswept promoted objects).
1232   } while (new_space_front < new_space_.top());
1233 
1234   return new_space_front;
1235 }
1236 
1237 
1238 enum LoggingAndProfiling {
1239   LOGGING_AND_PROFILING_ENABLED,
1240   LOGGING_AND_PROFILING_DISABLED
1241 };
1242 
1243 
1244 typedef void (*ScavengingCallback)(Map* map,
1245                                    HeapObject** slot,
1246                                    HeapObject* object);
1247 
1248 
1249 static Atomic32 scavenging_visitors_table_mode_;
1250 static VisitorDispatchTable<ScavengingCallback> scavenging_visitors_table_;
1251 
1252 
1253 INLINE(static void DoScavengeObject(Map* map,
1254                                     HeapObject** slot,
1255                                     HeapObject* obj));
1256 
1257 
DoScavengeObject(Map * map,HeapObject ** slot,HeapObject * obj)1258 void DoScavengeObject(Map* map, HeapObject** slot, HeapObject* obj) {
1259   scavenging_visitors_table_.GetVisitor(map)(map, slot, obj);
1260 }
1261 
1262 
1263 template<LoggingAndProfiling logging_and_profiling_mode>
1264 class ScavengingVisitor : public StaticVisitorBase {
1265  public:
Initialize()1266   static void Initialize() {
1267     table_.Register(kVisitSeqAsciiString, &EvacuateSeqAsciiString);
1268     table_.Register(kVisitSeqTwoByteString, &EvacuateSeqTwoByteString);
1269     table_.Register(kVisitShortcutCandidate, &EvacuateShortcutCandidate);
1270     table_.Register(kVisitByteArray, &EvacuateByteArray);
1271     table_.Register(kVisitFixedArray, &EvacuateFixedArray);
1272 
1273     table_.Register(kVisitGlobalContext,
1274                     &ObjectEvacuationStrategy<POINTER_OBJECT>::
1275                         template VisitSpecialized<Context::kSize>);
1276 
1277     table_.Register(kVisitConsString,
1278                     &ObjectEvacuationStrategy<POINTER_OBJECT>::
1279                         template VisitSpecialized<ConsString::kSize>);
1280 
1281     table_.Register(kVisitSharedFunctionInfo,
1282                     &ObjectEvacuationStrategy<POINTER_OBJECT>::
1283                         template VisitSpecialized<SharedFunctionInfo::kSize>);
1284 
1285     table_.Register(kVisitJSFunction,
1286                     &ObjectEvacuationStrategy<POINTER_OBJECT>::
1287                         template VisitSpecialized<JSFunction::kSize>);
1288 
1289     table_.RegisterSpecializations<ObjectEvacuationStrategy<DATA_OBJECT>,
1290                                    kVisitDataObject,
1291                                    kVisitDataObjectGeneric>();
1292 
1293     table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
1294                                    kVisitJSObject,
1295                                    kVisitJSObjectGeneric>();
1296 
1297     table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
1298                                    kVisitStruct,
1299                                    kVisitStructGeneric>();
1300   }
1301 
GetTable()1302   static VisitorDispatchTable<ScavengingCallback>* GetTable() {
1303     return &table_;
1304   }
1305 
1306  private:
1307   enum ObjectContents  { DATA_OBJECT, POINTER_OBJECT };
1308   enum SizeRestriction { SMALL, UNKNOWN_SIZE };
1309 
1310 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
RecordCopiedObject(Heap * heap,HeapObject * obj)1311   static void RecordCopiedObject(Heap* heap, HeapObject* obj) {
1312     bool should_record = false;
1313 #ifdef DEBUG
1314     should_record = FLAG_heap_stats;
1315 #endif
1316 #ifdef ENABLE_LOGGING_AND_PROFILING
1317     should_record = should_record || FLAG_log_gc;
1318 #endif
1319     if (should_record) {
1320       if (heap->new_space()->Contains(obj)) {
1321         heap->new_space()->RecordAllocation(obj);
1322       } else {
1323         heap->new_space()->RecordPromotion(obj);
1324       }
1325     }
1326   }
1327 #endif  // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1328 
1329   // Helper function used by CopyObject to copy a source object to an
1330   // allocated target object and update the forwarding pointer in the source
1331   // object.  Returns the target object.
INLINE(static HeapObject * MigrateObject (Heap * heap,HeapObject * source,HeapObject * target,int size))1332   INLINE(static HeapObject* MigrateObject(Heap* heap,
1333                                           HeapObject* source,
1334                                           HeapObject* target,
1335                                           int size)) {
1336     // Copy the content of source to target.
1337     heap->CopyBlock(target->address(), source->address(), size);
1338 
1339     // Set the forwarding address.
1340     source->set_map_word(MapWord::FromForwardingAddress(target));
1341 
1342     if (logging_and_profiling_mode == LOGGING_AND_PROFILING_ENABLED) {
1343 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1344       // Update NewSpace stats if necessary.
1345       RecordCopiedObject(heap, target);
1346 #endif
1347       HEAP_PROFILE(heap, ObjectMoveEvent(source->address(), target->address()));
1348 #if defined(ENABLE_LOGGING_AND_PROFILING)
1349       Isolate* isolate = heap->isolate();
1350       if (isolate->logger()->is_logging() ||
1351           isolate->cpu_profiler()->is_profiling()) {
1352         if (target->IsSharedFunctionInfo()) {
1353           PROFILE(isolate, SharedFunctionInfoMoveEvent(
1354               source->address(), target->address()));
1355         }
1356       }
1357 #endif
1358     }
1359 
1360     return target;
1361   }
1362 
1363 
1364   template<ObjectContents object_contents, SizeRestriction size_restriction>
EvacuateObject(Map * map,HeapObject ** slot,HeapObject * object,int object_size)1365   static inline void EvacuateObject(Map* map,
1366                                     HeapObject** slot,
1367                                     HeapObject* object,
1368                                     int object_size) {
1369     ASSERT((size_restriction != SMALL) ||
1370            (object_size <= Page::kMaxHeapObjectSize));
1371     ASSERT(object->Size() == object_size);
1372 
1373     Heap* heap = map->heap();
1374     if (heap->ShouldBePromoted(object->address(), object_size)) {
1375       MaybeObject* maybe_result;
1376 
1377       if ((size_restriction != SMALL) &&
1378           (object_size > Page::kMaxHeapObjectSize)) {
1379         maybe_result = heap->lo_space()->AllocateRawFixedArray(object_size);
1380       } else {
1381         if (object_contents == DATA_OBJECT) {
1382           maybe_result = heap->old_data_space()->AllocateRaw(object_size);
1383         } else {
1384           maybe_result = heap->old_pointer_space()->AllocateRaw(object_size);
1385         }
1386       }
1387 
1388       Object* result = NULL;  // Initialization to please compiler.
1389       if (maybe_result->ToObject(&result)) {
1390         HeapObject* target = HeapObject::cast(result);
1391         *slot = MigrateObject(heap, object , target, object_size);
1392 
1393         if (object_contents == POINTER_OBJECT) {
1394           heap->promotion_queue()->insert(target, object_size);
1395         }
1396 
1397         heap->tracer()->increment_promoted_objects_size(object_size);
1398         return;
1399       }
1400     }
1401     Object* result =
1402         heap->new_space()->AllocateRaw(object_size)->ToObjectUnchecked();
1403     *slot = MigrateObject(heap, object, HeapObject::cast(result), object_size);
1404     return;
1405   }
1406 
1407 
EvacuateFixedArray(Map * map,HeapObject ** slot,HeapObject * object)1408   static inline void EvacuateFixedArray(Map* map,
1409                                         HeapObject** slot,
1410                                         HeapObject* object) {
1411     int object_size = FixedArray::BodyDescriptor::SizeOf(map, object);
1412     EvacuateObject<POINTER_OBJECT, UNKNOWN_SIZE>(map,
1413                                                  slot,
1414                                                  object,
1415                                                  object_size);
1416   }
1417 
1418 
EvacuateByteArray(Map * map,HeapObject ** slot,HeapObject * object)1419   static inline void EvacuateByteArray(Map* map,
1420                                        HeapObject** slot,
1421                                        HeapObject* object) {
1422     int object_size = reinterpret_cast<ByteArray*>(object)->ByteArraySize();
1423     EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map, slot, object, object_size);
1424   }
1425 
1426 
EvacuateSeqAsciiString(Map * map,HeapObject ** slot,HeapObject * object)1427   static inline void EvacuateSeqAsciiString(Map* map,
1428                                             HeapObject** slot,
1429                                             HeapObject* object) {
1430     int object_size = SeqAsciiString::cast(object)->
1431         SeqAsciiStringSize(map->instance_type());
1432     EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map, slot, object, object_size);
1433   }
1434 
1435 
EvacuateSeqTwoByteString(Map * map,HeapObject ** slot,HeapObject * object)1436   static inline void EvacuateSeqTwoByteString(Map* map,
1437                                               HeapObject** slot,
1438                                               HeapObject* object) {
1439     int object_size = SeqTwoByteString::cast(object)->
1440         SeqTwoByteStringSize(map->instance_type());
1441     EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map, slot, object, object_size);
1442   }
1443 
1444 
IsShortcutCandidate(int type)1445   static inline bool IsShortcutCandidate(int type) {
1446     return ((type & kShortcutTypeMask) == kShortcutTypeTag);
1447   }
1448 
EvacuateShortcutCandidate(Map * map,HeapObject ** slot,HeapObject * object)1449   static inline void EvacuateShortcutCandidate(Map* map,
1450                                                HeapObject** slot,
1451                                                HeapObject* object) {
1452     ASSERT(IsShortcutCandidate(map->instance_type()));
1453 
1454     if (ConsString::cast(object)->unchecked_second() ==
1455         map->heap()->empty_string()) {
1456       HeapObject* first =
1457           HeapObject::cast(ConsString::cast(object)->unchecked_first());
1458 
1459       *slot = first;
1460 
1461       if (!map->heap()->InNewSpace(first)) {
1462         object->set_map_word(MapWord::FromForwardingAddress(first));
1463         return;
1464       }
1465 
1466       MapWord first_word = first->map_word();
1467       if (first_word.IsForwardingAddress()) {
1468         HeapObject* target = first_word.ToForwardingAddress();
1469 
1470         *slot = target;
1471         object->set_map_word(MapWord::FromForwardingAddress(target));
1472         return;
1473       }
1474 
1475       DoScavengeObject(first->map(), slot, first);
1476       object->set_map_word(MapWord::FromForwardingAddress(*slot));
1477       return;
1478     }
1479 
1480     int object_size = ConsString::kSize;
1481     EvacuateObject<POINTER_OBJECT, SMALL>(map, slot, object, object_size);
1482   }
1483 
1484   template<ObjectContents object_contents>
1485   class ObjectEvacuationStrategy {
1486    public:
1487     template<int object_size>
VisitSpecialized(Map * map,HeapObject ** slot,HeapObject * object)1488     static inline void VisitSpecialized(Map* map,
1489                                         HeapObject** slot,
1490                                         HeapObject* object) {
1491       EvacuateObject<object_contents, SMALL>(map, slot, object, object_size);
1492     }
1493 
Visit(Map * map,HeapObject ** slot,HeapObject * object)1494     static inline void Visit(Map* map,
1495                              HeapObject** slot,
1496                              HeapObject* object) {
1497       int object_size = map->instance_size();
1498       EvacuateObject<object_contents, SMALL>(map, slot, object, object_size);
1499     }
1500   };
1501 
1502   static VisitorDispatchTable<ScavengingCallback> table_;
1503 };
1504 
1505 
1506 template<LoggingAndProfiling logging_and_profiling_mode>
1507 VisitorDispatchTable<ScavengingCallback>
1508     ScavengingVisitor<logging_and_profiling_mode>::table_;
1509 
1510 
InitializeScavengingVisitorsTables()1511 static void InitializeScavengingVisitorsTables() {
1512   ScavengingVisitor<LOGGING_AND_PROFILING_DISABLED>::Initialize();
1513   ScavengingVisitor<LOGGING_AND_PROFILING_ENABLED>::Initialize();
1514   scavenging_visitors_table_.CopyFrom(
1515       ScavengingVisitor<LOGGING_AND_PROFILING_DISABLED>::GetTable());
1516   scavenging_visitors_table_mode_ = LOGGING_AND_PROFILING_DISABLED;
1517 }
1518 
1519 
SwitchScavengingVisitorsTableIfProfilingWasEnabled()1520 void Heap::SwitchScavengingVisitorsTableIfProfilingWasEnabled() {
1521   if (scavenging_visitors_table_mode_ == LOGGING_AND_PROFILING_ENABLED) {
1522     // Table was already updated by some isolate.
1523     return;
1524   }
1525 
1526   if (isolate()->logger()->is_logging() ||
1527       isolate()->cpu_profiler()->is_profiling() ||
1528       (isolate()->heap_profiler() != NULL &&
1529        isolate()->heap_profiler()->is_profiling())) {
1530     // If one of the isolates is doing scavenge at this moment of time
1531     // it might see this table in an inconsitent state when
1532     // some of the callbacks point to
1533     // ScavengingVisitor<LOGGING_AND_PROFILING_ENABLED> and others
1534     // to ScavengingVisitor<LOGGING_AND_PROFILING_DISABLED>.
1535     // However this does not lead to any bugs as such isolate does not have
1536     // profiling enabled and any isolate with enabled profiling is guaranteed
1537     // to see the table in the consistent state.
1538     scavenging_visitors_table_.CopyFrom(
1539         ScavengingVisitor<LOGGING_AND_PROFILING_ENABLED>::GetTable());
1540 
1541     // We use Release_Store to prevent reordering of this write before writes
1542     // to the table.
1543     Release_Store(&scavenging_visitors_table_mode_,
1544                   LOGGING_AND_PROFILING_ENABLED);
1545   }
1546 }
1547 
1548 
ScavengeObjectSlow(HeapObject ** p,HeapObject * object)1549 void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) {
1550   ASSERT(HEAP->InFromSpace(object));
1551   MapWord first_word = object->map_word();
1552   ASSERT(!first_word.IsForwardingAddress());
1553   Map* map = first_word.ToMap();
1554   DoScavengeObject(map, p, object);
1555 }
1556 
1557 
AllocatePartialMap(InstanceType instance_type,int instance_size)1558 MaybeObject* Heap::AllocatePartialMap(InstanceType instance_type,
1559                                       int instance_size) {
1560   Object* result;
1561   { MaybeObject* maybe_result = AllocateRawMap();
1562     if (!maybe_result->ToObject(&result)) return maybe_result;
1563   }
1564 
1565   // Map::cast cannot be used due to uninitialized map field.
1566   reinterpret_cast<Map*>(result)->set_map(raw_unchecked_meta_map());
1567   reinterpret_cast<Map*>(result)->set_instance_type(instance_type);
1568   reinterpret_cast<Map*>(result)->set_instance_size(instance_size);
1569   reinterpret_cast<Map*>(result)->set_visitor_id(
1570         StaticVisitorBase::GetVisitorId(instance_type, instance_size));
1571   reinterpret_cast<Map*>(result)->set_inobject_properties(0);
1572   reinterpret_cast<Map*>(result)->set_pre_allocated_property_fields(0);
1573   reinterpret_cast<Map*>(result)->set_unused_property_fields(0);
1574   reinterpret_cast<Map*>(result)->set_bit_field(0);
1575   reinterpret_cast<Map*>(result)->set_bit_field2(0);
1576   return result;
1577 }
1578 
1579 
AllocateMap(InstanceType instance_type,int instance_size)1580 MaybeObject* Heap::AllocateMap(InstanceType instance_type, int instance_size) {
1581   Object* result;
1582   { MaybeObject* maybe_result = AllocateRawMap();
1583     if (!maybe_result->ToObject(&result)) return maybe_result;
1584   }
1585 
1586   Map* map = reinterpret_cast<Map*>(result);
1587   map->set_map(meta_map());
1588   map->set_instance_type(instance_type);
1589   map->set_visitor_id(
1590       StaticVisitorBase::GetVisitorId(instance_type, instance_size));
1591   map->set_prototype(null_value());
1592   map->set_constructor(null_value());
1593   map->set_instance_size(instance_size);
1594   map->set_inobject_properties(0);
1595   map->set_pre_allocated_property_fields(0);
1596   map->set_instance_descriptors(empty_descriptor_array());
1597   map->set_code_cache(empty_fixed_array());
1598   map->set_prototype_transitions(empty_fixed_array());
1599   map->set_unused_property_fields(0);
1600   map->set_bit_field(0);
1601   map->set_bit_field2((1 << Map::kIsExtensible) | (1 << Map::kHasFastElements));
1602 
1603   // If the map object is aligned fill the padding area with Smi 0 objects.
1604   if (Map::kPadStart < Map::kSize) {
1605     memset(reinterpret_cast<byte*>(map) + Map::kPadStart - kHeapObjectTag,
1606            0,
1607            Map::kSize - Map::kPadStart);
1608   }
1609   return map;
1610 }
1611 
1612 
AllocateCodeCache()1613 MaybeObject* Heap::AllocateCodeCache() {
1614   Object* result;
1615   { MaybeObject* maybe_result = AllocateStruct(CODE_CACHE_TYPE);
1616     if (!maybe_result->ToObject(&result)) return maybe_result;
1617   }
1618   CodeCache* code_cache = CodeCache::cast(result);
1619   code_cache->set_default_cache(empty_fixed_array());
1620   code_cache->set_normal_type_cache(undefined_value());
1621   return code_cache;
1622 }
1623 
1624 
1625 const Heap::StringTypeTable Heap::string_type_table[] = {
1626 #define STRING_TYPE_ELEMENT(type, size, name, camel_name)                      \
1627   {type, size, k##camel_name##MapRootIndex},
1628   STRING_TYPE_LIST(STRING_TYPE_ELEMENT)
1629 #undef STRING_TYPE_ELEMENT
1630 };
1631 
1632 
1633 const Heap::ConstantSymbolTable Heap::constant_symbol_table[] = {
1634 #define CONSTANT_SYMBOL_ELEMENT(name, contents)                                \
1635   {contents, k##name##RootIndex},
1636   SYMBOL_LIST(CONSTANT_SYMBOL_ELEMENT)
1637 #undef CONSTANT_SYMBOL_ELEMENT
1638 };
1639 
1640 
1641 const Heap::StructTable Heap::struct_table[] = {
1642 #define STRUCT_TABLE_ELEMENT(NAME, Name, name)                                 \
1643   { NAME##_TYPE, Name::kSize, k##Name##MapRootIndex },
1644   STRUCT_LIST(STRUCT_TABLE_ELEMENT)
1645 #undef STRUCT_TABLE_ELEMENT
1646 };
1647 
1648 
CreateInitialMaps()1649 bool Heap::CreateInitialMaps() {
1650   Object* obj;
1651   { MaybeObject* maybe_obj = AllocatePartialMap(MAP_TYPE, Map::kSize);
1652     if (!maybe_obj->ToObject(&obj)) return false;
1653   }
1654   // Map::cast cannot be used due to uninitialized map field.
1655   Map* new_meta_map = reinterpret_cast<Map*>(obj);
1656   set_meta_map(new_meta_map);
1657   new_meta_map->set_map(new_meta_map);
1658 
1659   { MaybeObject* maybe_obj =
1660         AllocatePartialMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
1661     if (!maybe_obj->ToObject(&obj)) return false;
1662   }
1663   set_fixed_array_map(Map::cast(obj));
1664 
1665   { MaybeObject* maybe_obj = AllocatePartialMap(ODDBALL_TYPE, Oddball::kSize);
1666     if (!maybe_obj->ToObject(&obj)) return false;
1667   }
1668   set_oddball_map(Map::cast(obj));
1669 
1670   // Allocate the empty array.
1671   { MaybeObject* maybe_obj = AllocateEmptyFixedArray();
1672     if (!maybe_obj->ToObject(&obj)) return false;
1673   }
1674   set_empty_fixed_array(FixedArray::cast(obj));
1675 
1676   { MaybeObject* maybe_obj = Allocate(oddball_map(), OLD_DATA_SPACE);
1677     if (!maybe_obj->ToObject(&obj)) return false;
1678   }
1679   set_null_value(obj);
1680   Oddball::cast(obj)->set_kind(Oddball::kNull);
1681 
1682   // Allocate the empty descriptor array.
1683   { MaybeObject* maybe_obj = AllocateEmptyFixedArray();
1684     if (!maybe_obj->ToObject(&obj)) return false;
1685   }
1686   set_empty_descriptor_array(DescriptorArray::cast(obj));
1687 
1688   // Fix the instance_descriptors for the existing maps.
1689   meta_map()->set_instance_descriptors(empty_descriptor_array());
1690   meta_map()->set_code_cache(empty_fixed_array());
1691   meta_map()->set_prototype_transitions(empty_fixed_array());
1692 
1693   fixed_array_map()->set_instance_descriptors(empty_descriptor_array());
1694   fixed_array_map()->set_code_cache(empty_fixed_array());
1695   fixed_array_map()->set_prototype_transitions(empty_fixed_array());
1696 
1697   oddball_map()->set_instance_descriptors(empty_descriptor_array());
1698   oddball_map()->set_code_cache(empty_fixed_array());
1699   oddball_map()->set_prototype_transitions(empty_fixed_array());
1700 
1701   // Fix prototype object for existing maps.
1702   meta_map()->set_prototype(null_value());
1703   meta_map()->set_constructor(null_value());
1704 
1705   fixed_array_map()->set_prototype(null_value());
1706   fixed_array_map()->set_constructor(null_value());
1707 
1708   oddball_map()->set_prototype(null_value());
1709   oddball_map()->set_constructor(null_value());
1710 
1711   { MaybeObject* maybe_obj =
1712         AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
1713     if (!maybe_obj->ToObject(&obj)) return false;
1714   }
1715   set_fixed_cow_array_map(Map::cast(obj));
1716   ASSERT(fixed_array_map() != fixed_cow_array_map());
1717 
1718   { MaybeObject* maybe_obj = AllocateMap(HEAP_NUMBER_TYPE, HeapNumber::kSize);
1719     if (!maybe_obj->ToObject(&obj)) return false;
1720   }
1721   set_heap_number_map(Map::cast(obj));
1722 
1723   { MaybeObject* maybe_obj = AllocateMap(PROXY_TYPE, Proxy::kSize);
1724     if (!maybe_obj->ToObject(&obj)) return false;
1725   }
1726   set_proxy_map(Map::cast(obj));
1727 
1728   for (unsigned i = 0; i < ARRAY_SIZE(string_type_table); i++) {
1729     const StringTypeTable& entry = string_type_table[i];
1730     { MaybeObject* maybe_obj = AllocateMap(entry.type, entry.size);
1731       if (!maybe_obj->ToObject(&obj)) return false;
1732     }
1733     roots_[entry.index] = Map::cast(obj);
1734   }
1735 
1736   { MaybeObject* maybe_obj = AllocateMap(STRING_TYPE, kVariableSizeSentinel);
1737     if (!maybe_obj->ToObject(&obj)) return false;
1738   }
1739   set_undetectable_string_map(Map::cast(obj));
1740   Map::cast(obj)->set_is_undetectable();
1741 
1742   { MaybeObject* maybe_obj =
1743         AllocateMap(ASCII_STRING_TYPE, kVariableSizeSentinel);
1744     if (!maybe_obj->ToObject(&obj)) return false;
1745   }
1746   set_undetectable_ascii_string_map(Map::cast(obj));
1747   Map::cast(obj)->set_is_undetectable();
1748 
1749   { MaybeObject* maybe_obj =
1750         AllocateMap(BYTE_ARRAY_TYPE, kVariableSizeSentinel);
1751     if (!maybe_obj->ToObject(&obj)) return false;
1752   }
1753   set_byte_array_map(Map::cast(obj));
1754 
1755   { MaybeObject* maybe_obj = AllocateByteArray(0, TENURED);
1756     if (!maybe_obj->ToObject(&obj)) return false;
1757   }
1758   set_empty_byte_array(ByteArray::cast(obj));
1759 
1760   { MaybeObject* maybe_obj =
1761         AllocateMap(EXTERNAL_PIXEL_ARRAY_TYPE, ExternalArray::kAlignedSize);
1762     if (!maybe_obj->ToObject(&obj)) return false;
1763   }
1764   set_external_pixel_array_map(Map::cast(obj));
1765 
1766   { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_BYTE_ARRAY_TYPE,
1767                                          ExternalArray::kAlignedSize);
1768     if (!maybe_obj->ToObject(&obj)) return false;
1769   }
1770   set_external_byte_array_map(Map::cast(obj));
1771 
1772   { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
1773                                          ExternalArray::kAlignedSize);
1774     if (!maybe_obj->ToObject(&obj)) return false;
1775   }
1776   set_external_unsigned_byte_array_map(Map::cast(obj));
1777 
1778   { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_SHORT_ARRAY_TYPE,
1779                                          ExternalArray::kAlignedSize);
1780     if (!maybe_obj->ToObject(&obj)) return false;
1781   }
1782   set_external_short_array_map(Map::cast(obj));
1783 
1784   { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
1785                                          ExternalArray::kAlignedSize);
1786     if (!maybe_obj->ToObject(&obj)) return false;
1787   }
1788   set_external_unsigned_short_array_map(Map::cast(obj));
1789 
1790   { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_INT_ARRAY_TYPE,
1791                                          ExternalArray::kAlignedSize);
1792     if (!maybe_obj->ToObject(&obj)) return false;
1793   }
1794   set_external_int_array_map(Map::cast(obj));
1795 
1796   { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
1797                                          ExternalArray::kAlignedSize);
1798     if (!maybe_obj->ToObject(&obj)) return false;
1799   }
1800   set_external_unsigned_int_array_map(Map::cast(obj));
1801 
1802   { MaybeObject* maybe_obj = AllocateMap(EXTERNAL_FLOAT_ARRAY_TYPE,
1803                                          ExternalArray::kAlignedSize);
1804     if (!maybe_obj->ToObject(&obj)) return false;
1805   }
1806   set_external_float_array_map(Map::cast(obj));
1807 
1808   { MaybeObject* maybe_obj = AllocateMap(CODE_TYPE, kVariableSizeSentinel);
1809     if (!maybe_obj->ToObject(&obj)) return false;
1810   }
1811   set_code_map(Map::cast(obj));
1812 
1813   { MaybeObject* maybe_obj = AllocateMap(JS_GLOBAL_PROPERTY_CELL_TYPE,
1814                                          JSGlobalPropertyCell::kSize);
1815     if (!maybe_obj->ToObject(&obj)) return false;
1816   }
1817   set_global_property_cell_map(Map::cast(obj));
1818 
1819   { MaybeObject* maybe_obj = AllocateMap(FILLER_TYPE, kPointerSize);
1820     if (!maybe_obj->ToObject(&obj)) return false;
1821   }
1822   set_one_pointer_filler_map(Map::cast(obj));
1823 
1824   { MaybeObject* maybe_obj = AllocateMap(FILLER_TYPE, 2 * kPointerSize);
1825     if (!maybe_obj->ToObject(&obj)) return false;
1826   }
1827   set_two_pointer_filler_map(Map::cast(obj));
1828 
1829   for (unsigned i = 0; i < ARRAY_SIZE(struct_table); i++) {
1830     const StructTable& entry = struct_table[i];
1831     { MaybeObject* maybe_obj = AllocateMap(entry.type, entry.size);
1832       if (!maybe_obj->ToObject(&obj)) return false;
1833     }
1834     roots_[entry.index] = Map::cast(obj);
1835   }
1836 
1837   { MaybeObject* maybe_obj =
1838         AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
1839     if (!maybe_obj->ToObject(&obj)) return false;
1840   }
1841   set_hash_table_map(Map::cast(obj));
1842 
1843   { MaybeObject* maybe_obj =
1844         AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
1845     if (!maybe_obj->ToObject(&obj)) return false;
1846   }
1847   set_context_map(Map::cast(obj));
1848 
1849   { MaybeObject* maybe_obj =
1850         AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
1851     if (!maybe_obj->ToObject(&obj)) return false;
1852   }
1853   set_catch_context_map(Map::cast(obj));
1854 
1855   { MaybeObject* maybe_obj =
1856         AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
1857     if (!maybe_obj->ToObject(&obj)) return false;
1858   }
1859   Map* global_context_map = Map::cast(obj);
1860   global_context_map->set_visitor_id(StaticVisitorBase::kVisitGlobalContext);
1861   set_global_context_map(global_context_map);
1862 
1863   { MaybeObject* maybe_obj = AllocateMap(SHARED_FUNCTION_INFO_TYPE,
1864                                          SharedFunctionInfo::kAlignedSize);
1865     if (!maybe_obj->ToObject(&obj)) return false;
1866   }
1867   set_shared_function_info_map(Map::cast(obj));
1868 
1869   { MaybeObject* maybe_obj = AllocateMap(JS_MESSAGE_OBJECT_TYPE,
1870                                          JSMessageObject::kSize);
1871     if (!maybe_obj->ToObject(&obj)) return false;
1872   }
1873   set_message_object_map(Map::cast(obj));
1874 
1875   ASSERT(!InNewSpace(empty_fixed_array()));
1876   return true;
1877 }
1878 
1879 
AllocateHeapNumber(double value,PretenureFlag pretenure)1880 MaybeObject* Heap::AllocateHeapNumber(double value, PretenureFlag pretenure) {
1881   // Statically ensure that it is safe to allocate heap numbers in paged
1882   // spaces.
1883   STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxHeapObjectSize);
1884   AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
1885 
1886   Object* result;
1887   { MaybeObject* maybe_result =
1888         AllocateRaw(HeapNumber::kSize, space, OLD_DATA_SPACE);
1889     if (!maybe_result->ToObject(&result)) return maybe_result;
1890   }
1891 
1892   HeapObject::cast(result)->set_map(heap_number_map());
1893   HeapNumber::cast(result)->set_value(value);
1894   return result;
1895 }
1896 
1897 
AllocateHeapNumber(double value)1898 MaybeObject* Heap::AllocateHeapNumber(double value) {
1899   // Use general version, if we're forced to always allocate.
1900   if (always_allocate()) return AllocateHeapNumber(value, TENURED);
1901 
1902   // This version of AllocateHeapNumber is optimized for
1903   // allocation in new space.
1904   STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxHeapObjectSize);
1905   ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
1906   Object* result;
1907   { MaybeObject* maybe_result = new_space_.AllocateRaw(HeapNumber::kSize);
1908     if (!maybe_result->ToObject(&result)) return maybe_result;
1909   }
1910   HeapObject::cast(result)->set_map(heap_number_map());
1911   HeapNumber::cast(result)->set_value(value);
1912   return result;
1913 }
1914 
1915 
AllocateJSGlobalPropertyCell(Object * value)1916 MaybeObject* Heap::AllocateJSGlobalPropertyCell(Object* value) {
1917   Object* result;
1918   { MaybeObject* maybe_result = AllocateRawCell();
1919     if (!maybe_result->ToObject(&result)) return maybe_result;
1920   }
1921   HeapObject::cast(result)->set_map(global_property_cell_map());
1922   JSGlobalPropertyCell::cast(result)->set_value(value);
1923   return result;
1924 }
1925 
1926 
CreateOddball(const char * to_string,Object * to_number,byte kind)1927 MaybeObject* Heap::CreateOddball(const char* to_string,
1928                                  Object* to_number,
1929                                  byte kind) {
1930   Object* result;
1931   { MaybeObject* maybe_result = Allocate(oddball_map(), OLD_DATA_SPACE);
1932     if (!maybe_result->ToObject(&result)) return maybe_result;
1933   }
1934   return Oddball::cast(result)->Initialize(to_string, to_number, kind);
1935 }
1936 
1937 
CreateApiObjects()1938 bool Heap::CreateApiObjects() {
1939   Object* obj;
1940 
1941   { MaybeObject* maybe_obj = AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
1942     if (!maybe_obj->ToObject(&obj)) return false;
1943   }
1944   set_neander_map(Map::cast(obj));
1945 
1946   { MaybeObject* maybe_obj = AllocateJSObjectFromMap(neander_map());
1947     if (!maybe_obj->ToObject(&obj)) return false;
1948   }
1949   Object* elements;
1950   { MaybeObject* maybe_elements = AllocateFixedArray(2);
1951     if (!maybe_elements->ToObject(&elements)) return false;
1952   }
1953   FixedArray::cast(elements)->set(0, Smi::FromInt(0));
1954   JSObject::cast(obj)->set_elements(FixedArray::cast(elements));
1955   set_message_listeners(JSObject::cast(obj));
1956 
1957   return true;
1958 }
1959 
1960 
CreateJSEntryStub()1961 void Heap::CreateJSEntryStub() {
1962   JSEntryStub stub;
1963   set_js_entry_code(*stub.GetCode());
1964 }
1965 
1966 
CreateJSConstructEntryStub()1967 void Heap::CreateJSConstructEntryStub() {
1968   JSConstructEntryStub stub;
1969   set_js_construct_entry_code(*stub.GetCode());
1970 }
1971 
1972 
CreateFixedStubs()1973 void Heap::CreateFixedStubs() {
1974   // Here we create roots for fixed stubs. They are needed at GC
1975   // for cooking and uncooking (check out frames.cc).
1976   // The eliminates the need for doing dictionary lookup in the
1977   // stub cache for these stubs.
1978   HandleScope scope;
1979   // gcc-4.4 has problem generating correct code of following snippet:
1980   // {  JSEntryStub stub;
1981   //    js_entry_code_ = *stub.GetCode();
1982   // }
1983   // {  JSConstructEntryStub stub;
1984   //    js_construct_entry_code_ = *stub.GetCode();
1985   // }
1986   // To workaround the problem, make separate functions without inlining.
1987   Heap::CreateJSEntryStub();
1988   Heap::CreateJSConstructEntryStub();
1989 }
1990 
1991 
CreateInitialObjects()1992 bool Heap::CreateInitialObjects() {
1993   Object* obj;
1994 
1995   // The -0 value must be set before NumberFromDouble works.
1996   { MaybeObject* maybe_obj = AllocateHeapNumber(-0.0, TENURED);
1997     if (!maybe_obj->ToObject(&obj)) return false;
1998   }
1999   set_minus_zero_value(obj);
2000   ASSERT(signbit(minus_zero_value()->Number()) != 0);
2001 
2002   { MaybeObject* maybe_obj = AllocateHeapNumber(OS::nan_value(), TENURED);
2003     if (!maybe_obj->ToObject(&obj)) return false;
2004   }
2005   set_nan_value(obj);
2006 
2007   { MaybeObject* maybe_obj = Allocate(oddball_map(), OLD_DATA_SPACE);
2008     if (!maybe_obj->ToObject(&obj)) return false;
2009   }
2010   set_undefined_value(obj);
2011   Oddball::cast(obj)->set_kind(Oddball::kUndefined);
2012   ASSERT(!InNewSpace(undefined_value()));
2013 
2014   // Allocate initial symbol table.
2015   { MaybeObject* maybe_obj = SymbolTable::Allocate(kInitialSymbolTableSize);
2016     if (!maybe_obj->ToObject(&obj)) return false;
2017   }
2018   // Don't use set_symbol_table() due to asserts.
2019   roots_[kSymbolTableRootIndex] = obj;
2020 
2021   // Assign the print strings for oddballs after creating symboltable.
2022   Object* symbol;
2023   { MaybeObject* maybe_symbol = LookupAsciiSymbol("undefined");
2024     if (!maybe_symbol->ToObject(&symbol)) return false;
2025   }
2026   Oddball::cast(undefined_value())->set_to_string(String::cast(symbol));
2027   Oddball::cast(undefined_value())->set_to_number(nan_value());
2028 
2029   // Allocate the null_value
2030   { MaybeObject* maybe_obj =
2031         Oddball::cast(null_value())->Initialize("null",
2032                                                 Smi::FromInt(0),
2033                                                 Oddball::kNull);
2034     if (!maybe_obj->ToObject(&obj)) return false;
2035   }
2036 
2037   { MaybeObject* maybe_obj = CreateOddball("true",
2038                                            Smi::FromInt(1),
2039                                            Oddball::kTrue);
2040     if (!maybe_obj->ToObject(&obj)) return false;
2041   }
2042   set_true_value(obj);
2043 
2044   { MaybeObject* maybe_obj = CreateOddball("false",
2045                                            Smi::FromInt(0),
2046                                            Oddball::kFalse);
2047     if (!maybe_obj->ToObject(&obj)) return false;
2048   }
2049   set_false_value(obj);
2050 
2051   { MaybeObject* maybe_obj = CreateOddball("hole",
2052                                            Smi::FromInt(-1),
2053                                            Oddball::kTheHole);
2054     if (!maybe_obj->ToObject(&obj)) return false;
2055   }
2056   set_the_hole_value(obj);
2057 
2058   { MaybeObject* maybe_obj = CreateOddball("arguments_marker",
2059                                            Smi::FromInt(-4),
2060                                            Oddball::kArgumentMarker);
2061     if (!maybe_obj->ToObject(&obj)) return false;
2062   }
2063   set_arguments_marker(obj);
2064 
2065   { MaybeObject* maybe_obj = CreateOddball("no_interceptor_result_sentinel",
2066                                            Smi::FromInt(-2),
2067                                            Oddball::kOther);
2068     if (!maybe_obj->ToObject(&obj)) return false;
2069   }
2070   set_no_interceptor_result_sentinel(obj);
2071 
2072   { MaybeObject* maybe_obj = CreateOddball("termination_exception",
2073                                            Smi::FromInt(-3),
2074                                            Oddball::kOther);
2075     if (!maybe_obj->ToObject(&obj)) return false;
2076   }
2077   set_termination_exception(obj);
2078 
2079   // Allocate the empty string.
2080   { MaybeObject* maybe_obj = AllocateRawAsciiString(0, TENURED);
2081     if (!maybe_obj->ToObject(&obj)) return false;
2082   }
2083   set_empty_string(String::cast(obj));
2084 
2085   for (unsigned i = 0; i < ARRAY_SIZE(constant_symbol_table); i++) {
2086     { MaybeObject* maybe_obj =
2087           LookupAsciiSymbol(constant_symbol_table[i].contents);
2088       if (!maybe_obj->ToObject(&obj)) return false;
2089     }
2090     roots_[constant_symbol_table[i].index] = String::cast(obj);
2091   }
2092 
2093   // Allocate the hidden symbol which is used to identify the hidden properties
2094   // in JSObjects. The hash code has a special value so that it will not match
2095   // the empty string when searching for the property. It cannot be part of the
2096   // loop above because it needs to be allocated manually with the special
2097   // hash code in place. The hash code for the hidden_symbol is zero to ensure
2098   // that it will always be at the first entry in property descriptors.
2099   { MaybeObject* maybe_obj =
2100         AllocateSymbol(CStrVector(""), 0, String::kZeroHash);
2101     if (!maybe_obj->ToObject(&obj)) return false;
2102   }
2103   hidden_symbol_ = String::cast(obj);
2104 
2105   // Allocate the proxy for __proto__.
2106   { MaybeObject* maybe_obj =
2107         AllocateProxy((Address) &Accessors::ObjectPrototype);
2108     if (!maybe_obj->ToObject(&obj)) return false;
2109   }
2110   set_prototype_accessors(Proxy::cast(obj));
2111 
2112   // Allocate the code_stubs dictionary. The initial size is set to avoid
2113   // expanding the dictionary during bootstrapping.
2114   { MaybeObject* maybe_obj = NumberDictionary::Allocate(128);
2115     if (!maybe_obj->ToObject(&obj)) return false;
2116   }
2117   set_code_stubs(NumberDictionary::cast(obj));
2118 
2119   // Allocate the non_monomorphic_cache used in stub-cache.cc. The initial size
2120   // is set to avoid expanding the dictionary during bootstrapping.
2121   { MaybeObject* maybe_obj = NumberDictionary::Allocate(64);
2122     if (!maybe_obj->ToObject(&obj)) return false;
2123   }
2124   set_non_monomorphic_cache(NumberDictionary::cast(obj));
2125 
2126   set_instanceof_cache_function(Smi::FromInt(0));
2127   set_instanceof_cache_map(Smi::FromInt(0));
2128   set_instanceof_cache_answer(Smi::FromInt(0));
2129 
2130   CreateFixedStubs();
2131 
2132   // Allocate the dictionary of intrinsic function names.
2133   { MaybeObject* maybe_obj = StringDictionary::Allocate(Runtime::kNumFunctions);
2134     if (!maybe_obj->ToObject(&obj)) return false;
2135   }
2136   { MaybeObject* maybe_obj = Runtime::InitializeIntrinsicFunctionNames(this,
2137                                                                        obj);
2138     if (!maybe_obj->ToObject(&obj)) return false;
2139   }
2140   set_intrinsic_function_names(StringDictionary::cast(obj));
2141 
2142   if (InitializeNumberStringCache()->IsFailure()) return false;
2143 
2144   // Allocate cache for single character ASCII strings.
2145   { MaybeObject* maybe_obj =
2146         AllocateFixedArray(String::kMaxAsciiCharCode + 1, TENURED);
2147     if (!maybe_obj->ToObject(&obj)) return false;
2148   }
2149   set_single_character_string_cache(FixedArray::cast(obj));
2150 
2151   // Allocate cache for external strings pointing to native source code.
2152   { MaybeObject* maybe_obj = AllocateFixedArray(Natives::GetBuiltinsCount());
2153     if (!maybe_obj->ToObject(&obj)) return false;
2154   }
2155   set_natives_source_cache(FixedArray::cast(obj));
2156 
2157   // Handling of script id generation is in FACTORY->NewScript.
2158   set_last_script_id(undefined_value());
2159 
2160   // Initialize keyed lookup cache.
2161   isolate_->keyed_lookup_cache()->Clear();
2162 
2163   // Initialize context slot cache.
2164   isolate_->context_slot_cache()->Clear();
2165 
2166   // Initialize descriptor cache.
2167   isolate_->descriptor_lookup_cache()->Clear();
2168 
2169   // Initialize compilation cache.
2170   isolate_->compilation_cache()->Clear();
2171 
2172   return true;
2173 }
2174 
2175 
InitializeNumberStringCache()2176 MaybeObject* Heap::InitializeNumberStringCache() {
2177   // Compute the size of the number string cache based on the max heap size.
2178   // max_semispace_size_ == 512 KB => number_string_cache_size = 32.
2179   // max_semispace_size_ ==   8 MB => number_string_cache_size = 16KB.
2180   int number_string_cache_size = max_semispace_size_ / 512;
2181   number_string_cache_size = Max(32, Min(16*KB, number_string_cache_size));
2182   Object* obj;
2183   MaybeObject* maybe_obj =
2184       AllocateFixedArray(number_string_cache_size * 2, TENURED);
2185   if (maybe_obj->ToObject(&obj)) set_number_string_cache(FixedArray::cast(obj));
2186   return maybe_obj;
2187 }
2188 
2189 
FlushNumberStringCache()2190 void Heap::FlushNumberStringCache() {
2191   // Flush the number to string cache.
2192   int len = number_string_cache()->length();
2193   for (int i = 0; i < len; i++) {
2194     number_string_cache()->set_undefined(this, i);
2195   }
2196 }
2197 
2198 
double_get_hash(double d)2199 static inline int double_get_hash(double d) {
2200   DoubleRepresentation rep(d);
2201   return static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32);
2202 }
2203 
2204 
smi_get_hash(Smi * smi)2205 static inline int smi_get_hash(Smi* smi) {
2206   return smi->value();
2207 }
2208 
2209 
GetNumberStringCache(Object * number)2210 Object* Heap::GetNumberStringCache(Object* number) {
2211   int hash;
2212   int mask = (number_string_cache()->length() >> 1) - 1;
2213   if (number->IsSmi()) {
2214     hash = smi_get_hash(Smi::cast(number)) & mask;
2215   } else {
2216     hash = double_get_hash(number->Number()) & mask;
2217   }
2218   Object* key = number_string_cache()->get(hash * 2);
2219   if (key == number) {
2220     return String::cast(number_string_cache()->get(hash * 2 + 1));
2221   } else if (key->IsHeapNumber() &&
2222              number->IsHeapNumber() &&
2223              key->Number() == number->Number()) {
2224     return String::cast(number_string_cache()->get(hash * 2 + 1));
2225   }
2226   return undefined_value();
2227 }
2228 
2229 
SetNumberStringCache(Object * number,String * string)2230 void Heap::SetNumberStringCache(Object* number, String* string) {
2231   int hash;
2232   int mask = (number_string_cache()->length() >> 1) - 1;
2233   if (number->IsSmi()) {
2234     hash = smi_get_hash(Smi::cast(number)) & mask;
2235     number_string_cache()->set(hash * 2, Smi::cast(number));
2236   } else {
2237     hash = double_get_hash(number->Number()) & mask;
2238     number_string_cache()->set(hash * 2, number);
2239   }
2240   number_string_cache()->set(hash * 2 + 1, string);
2241 }
2242 
2243 
NumberToString(Object * number,bool check_number_string_cache)2244 MaybeObject* Heap::NumberToString(Object* number,
2245                                   bool check_number_string_cache) {
2246   isolate_->counters()->number_to_string_runtime()->Increment();
2247   if (check_number_string_cache) {
2248     Object* cached = GetNumberStringCache(number);
2249     if (cached != undefined_value()) {
2250       return cached;
2251     }
2252   }
2253 
2254   char arr[100];
2255   Vector<char> buffer(arr, ARRAY_SIZE(arr));
2256   const char* str;
2257   if (number->IsSmi()) {
2258     int num = Smi::cast(number)->value();
2259     str = IntToCString(num, buffer);
2260   } else {
2261     double num = HeapNumber::cast(number)->value();
2262     str = DoubleToCString(num, buffer);
2263   }
2264 
2265   Object* js_string;
2266   MaybeObject* maybe_js_string = AllocateStringFromAscii(CStrVector(str));
2267   if (maybe_js_string->ToObject(&js_string)) {
2268     SetNumberStringCache(number, String::cast(js_string));
2269   }
2270   return maybe_js_string;
2271 }
2272 
2273 
MapForExternalArrayType(ExternalArrayType array_type)2274 Map* Heap::MapForExternalArrayType(ExternalArrayType array_type) {
2275   return Map::cast(roots_[RootIndexForExternalArrayType(array_type)]);
2276 }
2277 
2278 
RootIndexForExternalArrayType(ExternalArrayType array_type)2279 Heap::RootListIndex Heap::RootIndexForExternalArrayType(
2280     ExternalArrayType array_type) {
2281   switch (array_type) {
2282     case kExternalByteArray:
2283       return kExternalByteArrayMapRootIndex;
2284     case kExternalUnsignedByteArray:
2285       return kExternalUnsignedByteArrayMapRootIndex;
2286     case kExternalShortArray:
2287       return kExternalShortArrayMapRootIndex;
2288     case kExternalUnsignedShortArray:
2289       return kExternalUnsignedShortArrayMapRootIndex;
2290     case kExternalIntArray:
2291       return kExternalIntArrayMapRootIndex;
2292     case kExternalUnsignedIntArray:
2293       return kExternalUnsignedIntArrayMapRootIndex;
2294     case kExternalFloatArray:
2295       return kExternalFloatArrayMapRootIndex;
2296     case kExternalPixelArray:
2297       return kExternalPixelArrayMapRootIndex;
2298     default:
2299       UNREACHABLE();
2300       return kUndefinedValueRootIndex;
2301   }
2302 }
2303 
2304 
NumberFromDouble(double value,PretenureFlag pretenure)2305 MaybeObject* Heap::NumberFromDouble(double value, PretenureFlag pretenure) {
2306   // We need to distinguish the minus zero value and this cannot be
2307   // done after conversion to int. Doing this by comparing bit
2308   // patterns is faster than using fpclassify() et al.
2309   static const DoubleRepresentation minus_zero(-0.0);
2310 
2311   DoubleRepresentation rep(value);
2312   if (rep.bits == minus_zero.bits) {
2313     return AllocateHeapNumber(-0.0, pretenure);
2314   }
2315 
2316   int int_value = FastD2I(value);
2317   if (value == int_value && Smi::IsValid(int_value)) {
2318     return Smi::FromInt(int_value);
2319   }
2320 
2321   // Materialize the value in the heap.
2322   return AllocateHeapNumber(value, pretenure);
2323 }
2324 
2325 
AllocateProxy(Address proxy,PretenureFlag pretenure)2326 MaybeObject* Heap::AllocateProxy(Address proxy, PretenureFlag pretenure) {
2327   // Statically ensure that it is safe to allocate proxies in paged spaces.
2328   STATIC_ASSERT(Proxy::kSize <= Page::kMaxHeapObjectSize);
2329   AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
2330   Object* result;
2331   { MaybeObject* maybe_result = Allocate(proxy_map(), space);
2332     if (!maybe_result->ToObject(&result)) return maybe_result;
2333   }
2334 
2335   Proxy::cast(result)->set_proxy(proxy);
2336   return result;
2337 }
2338 
2339 
AllocateSharedFunctionInfo(Object * name)2340 MaybeObject* Heap::AllocateSharedFunctionInfo(Object* name) {
2341   Object* result;
2342   { MaybeObject* maybe_result =
2343         Allocate(shared_function_info_map(), OLD_POINTER_SPACE);
2344     if (!maybe_result->ToObject(&result)) return maybe_result;
2345   }
2346 
2347   SharedFunctionInfo* share = SharedFunctionInfo::cast(result);
2348   share->set_name(name);
2349   Code* illegal = isolate_->builtins()->builtin(Builtins::kIllegal);
2350   share->set_code(illegal);
2351   share->set_scope_info(SerializedScopeInfo::Empty());
2352   Code* construct_stub = isolate_->builtins()->builtin(
2353       Builtins::kJSConstructStubGeneric);
2354   share->set_construct_stub(construct_stub);
2355   share->set_expected_nof_properties(0);
2356   share->set_length(0);
2357   share->set_formal_parameter_count(0);
2358   share->set_instance_class_name(Object_symbol());
2359   share->set_function_data(undefined_value());
2360   share->set_script(undefined_value());
2361   share->set_start_position_and_type(0);
2362   share->set_debug_info(undefined_value());
2363   share->set_inferred_name(empty_string());
2364   share->set_compiler_hints(0);
2365   share->set_deopt_counter(Smi::FromInt(FLAG_deopt_every_n_times));
2366   share->set_initial_map(undefined_value());
2367   share->set_this_property_assignments_count(0);
2368   share->set_this_property_assignments(undefined_value());
2369   share->set_opt_count(0);
2370   share->set_num_literals(0);
2371   share->set_end_position(0);
2372   share->set_function_token_position(0);
2373   return result;
2374 }
2375 
2376 
AllocateJSMessageObject(String * type,JSArray * arguments,int start_position,int end_position,Object * script,Object * stack_trace,Object * stack_frames)2377 MaybeObject* Heap::AllocateJSMessageObject(String* type,
2378                                            JSArray* arguments,
2379                                            int start_position,
2380                                            int end_position,
2381                                            Object* script,
2382                                            Object* stack_trace,
2383                                            Object* stack_frames) {
2384   Object* result;
2385   { MaybeObject* maybe_result = Allocate(message_object_map(), NEW_SPACE);
2386     if (!maybe_result->ToObject(&result)) return maybe_result;
2387   }
2388   JSMessageObject* message = JSMessageObject::cast(result);
2389   message->set_properties(Heap::empty_fixed_array());
2390   message->set_elements(Heap::empty_fixed_array());
2391   message->set_type(type);
2392   message->set_arguments(arguments);
2393   message->set_start_position(start_position);
2394   message->set_end_position(end_position);
2395   message->set_script(script);
2396   message->set_stack_trace(stack_trace);
2397   message->set_stack_frames(stack_frames);
2398   return result;
2399 }
2400 
2401 
2402 
2403 // Returns true for a character in a range.  Both limits are inclusive.
Between(uint32_t character,uint32_t from,uint32_t to)2404 static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
2405   // This makes uses of the the unsigned wraparound.
2406   return character - from <= to - from;
2407 }
2408 
2409 
MakeOrFindTwoCharacterString(Heap * heap,uint32_t c1,uint32_t c2)2410 MUST_USE_RESULT static inline MaybeObject* MakeOrFindTwoCharacterString(
2411     Heap* heap,
2412     uint32_t c1,
2413     uint32_t c2) {
2414   String* symbol;
2415   // Numeric strings have a different hash algorithm not known by
2416   // LookupTwoCharsSymbolIfExists, so we skip this step for such strings.
2417   if ((!Between(c1, '0', '9') || !Between(c2, '0', '9')) &&
2418       heap->symbol_table()->LookupTwoCharsSymbolIfExists(c1, c2, &symbol)) {
2419     return symbol;
2420   // Now we know the length is 2, we might as well make use of that fact
2421   // when building the new string.
2422   } else if ((c1 | c2) <= String::kMaxAsciiCharCodeU) {  // We can do this
2423     ASSERT(IsPowerOf2(String::kMaxAsciiCharCodeU + 1));  // because of this.
2424     Object* result;
2425     { MaybeObject* maybe_result = heap->AllocateRawAsciiString(2);
2426       if (!maybe_result->ToObject(&result)) return maybe_result;
2427     }
2428     char* dest = SeqAsciiString::cast(result)->GetChars();
2429     dest[0] = c1;
2430     dest[1] = c2;
2431     return result;
2432   } else {
2433     Object* result;
2434     { MaybeObject* maybe_result = heap->AllocateRawTwoByteString(2);
2435       if (!maybe_result->ToObject(&result)) return maybe_result;
2436     }
2437     uc16* dest = SeqTwoByteString::cast(result)->GetChars();
2438     dest[0] = c1;
2439     dest[1] = c2;
2440     return result;
2441   }
2442 }
2443 
2444 
AllocateConsString(String * first,String * second)2445 MaybeObject* Heap::AllocateConsString(String* first, String* second) {
2446   int first_length = first->length();
2447   if (first_length == 0) {
2448     return second;
2449   }
2450 
2451   int second_length = second->length();
2452   if (second_length == 0) {
2453     return first;
2454   }
2455 
2456   int length = first_length + second_length;
2457 
2458   // Optimization for 2-byte strings often used as keys in a decompression
2459   // dictionary.  Check whether we already have the string in the symbol
2460   // table to prevent creation of many unneccesary strings.
2461   if (length == 2) {
2462     unsigned c1 = first->Get(0);
2463     unsigned c2 = second->Get(0);
2464     return MakeOrFindTwoCharacterString(this, c1, c2);
2465   }
2466 
2467   bool first_is_ascii = first->IsAsciiRepresentation();
2468   bool second_is_ascii = second->IsAsciiRepresentation();
2469   bool is_ascii = first_is_ascii && second_is_ascii;
2470 
2471   // Make sure that an out of memory exception is thrown if the length
2472   // of the new cons string is too large.
2473   if (length > String::kMaxLength || length < 0) {
2474     isolate()->context()->mark_out_of_memory();
2475     return Failure::OutOfMemoryException();
2476   }
2477 
2478   bool is_ascii_data_in_two_byte_string = false;
2479   if (!is_ascii) {
2480     // At least one of the strings uses two-byte representation so we
2481     // can't use the fast case code for short ascii strings below, but
2482     // we can try to save memory if all chars actually fit in ascii.
2483     is_ascii_data_in_two_byte_string =
2484         first->HasOnlyAsciiChars() && second->HasOnlyAsciiChars();
2485     if (is_ascii_data_in_two_byte_string) {
2486       isolate_->counters()->string_add_runtime_ext_to_ascii()->Increment();
2487     }
2488   }
2489 
2490   // If the resulting string is small make a flat string.
2491   if (length < String::kMinNonFlatLength) {
2492     ASSERT(first->IsFlat());
2493     ASSERT(second->IsFlat());
2494     if (is_ascii) {
2495       Object* result;
2496       { MaybeObject* maybe_result = AllocateRawAsciiString(length);
2497         if (!maybe_result->ToObject(&result)) return maybe_result;
2498       }
2499       // Copy the characters into the new object.
2500       char* dest = SeqAsciiString::cast(result)->GetChars();
2501       // Copy first part.
2502       const char* src;
2503       if (first->IsExternalString()) {
2504         src = ExternalAsciiString::cast(first)->resource()->data();
2505       } else {
2506         src = SeqAsciiString::cast(first)->GetChars();
2507       }
2508       for (int i = 0; i < first_length; i++) *dest++ = src[i];
2509       // Copy second part.
2510       if (second->IsExternalString()) {
2511         src = ExternalAsciiString::cast(second)->resource()->data();
2512       } else {
2513         src = SeqAsciiString::cast(second)->GetChars();
2514       }
2515       for (int i = 0; i < second_length; i++) *dest++ = src[i];
2516       return result;
2517     } else {
2518       if (is_ascii_data_in_two_byte_string) {
2519         Object* result;
2520         { MaybeObject* maybe_result = AllocateRawAsciiString(length);
2521           if (!maybe_result->ToObject(&result)) return maybe_result;
2522         }
2523         // Copy the characters into the new object.
2524         char* dest = SeqAsciiString::cast(result)->GetChars();
2525         String::WriteToFlat(first, dest, 0, first_length);
2526         String::WriteToFlat(second, dest + first_length, 0, second_length);
2527         isolate_->counters()->string_add_runtime_ext_to_ascii()->Increment();
2528         return result;
2529       }
2530 
2531       Object* result;
2532       { MaybeObject* maybe_result = AllocateRawTwoByteString(length);
2533         if (!maybe_result->ToObject(&result)) return maybe_result;
2534       }
2535       // Copy the characters into the new object.
2536       uc16* dest = SeqTwoByteString::cast(result)->GetChars();
2537       String::WriteToFlat(first, dest, 0, first_length);
2538       String::WriteToFlat(second, dest + first_length, 0, second_length);
2539       return result;
2540     }
2541   }
2542 
2543   Map* map = (is_ascii || is_ascii_data_in_two_byte_string) ?
2544       cons_ascii_string_map() : cons_string_map();
2545 
2546   Object* result;
2547   { MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
2548     if (!maybe_result->ToObject(&result)) return maybe_result;
2549   }
2550 
2551   AssertNoAllocation no_gc;
2552   ConsString* cons_string = ConsString::cast(result);
2553   WriteBarrierMode mode = cons_string->GetWriteBarrierMode(no_gc);
2554   cons_string->set_length(length);
2555   cons_string->set_hash_field(String::kEmptyHashField);
2556   cons_string->set_first(first, mode);
2557   cons_string->set_second(second, mode);
2558   return result;
2559 }
2560 
2561 
AllocateSubString(String * buffer,int start,int end,PretenureFlag pretenure)2562 MaybeObject* Heap::AllocateSubString(String* buffer,
2563                                 int start,
2564                                 int end,
2565                                 PretenureFlag pretenure) {
2566   int length = end - start;
2567 
2568   if (length == 1) {
2569     return LookupSingleCharacterStringFromCode(buffer->Get(start));
2570   } else if (length == 2) {
2571     // Optimization for 2-byte strings often used as keys in a decompression
2572     // dictionary.  Check whether we already have the string in the symbol
2573     // table to prevent creation of many unneccesary strings.
2574     unsigned c1 = buffer->Get(start);
2575     unsigned c2 = buffer->Get(start + 1);
2576     return MakeOrFindTwoCharacterString(this, c1, c2);
2577   }
2578 
2579   // Make an attempt to flatten the buffer to reduce access time.
2580   buffer = buffer->TryFlattenGetString();
2581 
2582   Object* result;
2583   { MaybeObject* maybe_result = buffer->IsAsciiRepresentation()
2584                    ? AllocateRawAsciiString(length, pretenure )
2585                    : AllocateRawTwoByteString(length, pretenure);
2586     if (!maybe_result->ToObject(&result)) return maybe_result;
2587   }
2588   String* string_result = String::cast(result);
2589   // Copy the characters into the new object.
2590   if (buffer->IsAsciiRepresentation()) {
2591     ASSERT(string_result->IsAsciiRepresentation());
2592     char* dest = SeqAsciiString::cast(string_result)->GetChars();
2593     String::WriteToFlat(buffer, dest, start, end);
2594   } else {
2595     ASSERT(string_result->IsTwoByteRepresentation());
2596     uc16* dest = SeqTwoByteString::cast(string_result)->GetChars();
2597     String::WriteToFlat(buffer, dest, start, end);
2598   }
2599 
2600   return result;
2601 }
2602 
2603 
AllocateExternalStringFromAscii(ExternalAsciiString::Resource * resource)2604 MaybeObject* Heap::AllocateExternalStringFromAscii(
2605     ExternalAsciiString::Resource* resource) {
2606   size_t length = resource->length();
2607   if (length > static_cast<size_t>(String::kMaxLength)) {
2608     isolate()->context()->mark_out_of_memory();
2609     return Failure::OutOfMemoryException();
2610   }
2611 
2612   Map* map = external_ascii_string_map();
2613   Object* result;
2614   { MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
2615     if (!maybe_result->ToObject(&result)) return maybe_result;
2616   }
2617 
2618   ExternalAsciiString* external_string = ExternalAsciiString::cast(result);
2619   external_string->set_length(static_cast<int>(length));
2620   external_string->set_hash_field(String::kEmptyHashField);
2621   external_string->set_resource(resource);
2622 
2623   return result;
2624 }
2625 
2626 
AllocateExternalStringFromTwoByte(ExternalTwoByteString::Resource * resource)2627 MaybeObject* Heap::AllocateExternalStringFromTwoByte(
2628     ExternalTwoByteString::Resource* resource) {
2629   size_t length = resource->length();
2630   if (length > static_cast<size_t>(String::kMaxLength)) {
2631     isolate()->context()->mark_out_of_memory();
2632     return Failure::OutOfMemoryException();
2633   }
2634 
2635   // For small strings we check whether the resource contains only
2636   // ASCII characters.  If yes, we use a different string map.
2637   static const size_t kAsciiCheckLengthLimit = 32;
2638   bool is_ascii = length <= kAsciiCheckLengthLimit &&
2639       String::IsAscii(resource->data(), static_cast<int>(length));
2640   Map* map = is_ascii ?
2641       external_string_with_ascii_data_map() : external_string_map();
2642   Object* result;
2643   { MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
2644     if (!maybe_result->ToObject(&result)) return maybe_result;
2645   }
2646 
2647   ExternalTwoByteString* external_string = ExternalTwoByteString::cast(result);
2648   external_string->set_length(static_cast<int>(length));
2649   external_string->set_hash_field(String::kEmptyHashField);
2650   external_string->set_resource(resource);
2651 
2652   return result;
2653 }
2654 
2655 
LookupSingleCharacterStringFromCode(uint16_t code)2656 MaybeObject* Heap::LookupSingleCharacterStringFromCode(uint16_t code) {
2657   if (code <= String::kMaxAsciiCharCode) {
2658     Object* value = single_character_string_cache()->get(code);
2659     if (value != undefined_value()) return value;
2660 
2661     char buffer[1];
2662     buffer[0] = static_cast<char>(code);
2663     Object* result;
2664     MaybeObject* maybe_result = LookupSymbol(Vector<const char>(buffer, 1));
2665 
2666     if (!maybe_result->ToObject(&result)) return maybe_result;
2667     single_character_string_cache()->set(code, result);
2668     return result;
2669   }
2670 
2671   Object* result;
2672   { MaybeObject* maybe_result = AllocateRawTwoByteString(1);
2673     if (!maybe_result->ToObject(&result)) return maybe_result;
2674   }
2675   String* answer = String::cast(result);
2676   answer->Set(0, code);
2677   return answer;
2678 }
2679 
2680 
AllocateByteArray(int length,PretenureFlag pretenure)2681 MaybeObject* Heap::AllocateByteArray(int length, PretenureFlag pretenure) {
2682   if (length < 0 || length > ByteArray::kMaxLength) {
2683     return Failure::OutOfMemoryException();
2684   }
2685   if (pretenure == NOT_TENURED) {
2686     return AllocateByteArray(length);
2687   }
2688   int size = ByteArray::SizeFor(length);
2689   Object* result;
2690   { MaybeObject* maybe_result = (size <= MaxObjectSizeInPagedSpace())
2691                    ? old_data_space_->AllocateRaw(size)
2692                    : lo_space_->AllocateRaw(size);
2693     if (!maybe_result->ToObject(&result)) return maybe_result;
2694   }
2695 
2696   reinterpret_cast<ByteArray*>(result)->set_map(byte_array_map());
2697   reinterpret_cast<ByteArray*>(result)->set_length(length);
2698   return result;
2699 }
2700 
2701 
AllocateByteArray(int length)2702 MaybeObject* Heap::AllocateByteArray(int length) {
2703   if (length < 0 || length > ByteArray::kMaxLength) {
2704     return Failure::OutOfMemoryException();
2705   }
2706   int size = ByteArray::SizeFor(length);
2707   AllocationSpace space =
2708       (size > MaxObjectSizeInPagedSpace()) ? LO_SPACE : NEW_SPACE;
2709   Object* result;
2710   { MaybeObject* maybe_result = AllocateRaw(size, space, OLD_DATA_SPACE);
2711     if (!maybe_result->ToObject(&result)) return maybe_result;
2712   }
2713 
2714   reinterpret_cast<ByteArray*>(result)->set_map(byte_array_map());
2715   reinterpret_cast<ByteArray*>(result)->set_length(length);
2716   return result;
2717 }
2718 
2719 
CreateFillerObjectAt(Address addr,int size)2720 void Heap::CreateFillerObjectAt(Address addr, int size) {
2721   if (size == 0) return;
2722   HeapObject* filler = HeapObject::FromAddress(addr);
2723   if (size == kPointerSize) {
2724     filler->set_map(one_pointer_filler_map());
2725   } else if (size == 2 * kPointerSize) {
2726     filler->set_map(two_pointer_filler_map());
2727   } else {
2728     filler->set_map(byte_array_map());
2729     ByteArray::cast(filler)->set_length(ByteArray::LengthFor(size));
2730   }
2731 }
2732 
2733 
AllocateExternalArray(int length,ExternalArrayType array_type,void * external_pointer,PretenureFlag pretenure)2734 MaybeObject* Heap::AllocateExternalArray(int length,
2735                                          ExternalArrayType array_type,
2736                                          void* external_pointer,
2737                                          PretenureFlag pretenure) {
2738   AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
2739   Object* result;
2740   { MaybeObject* maybe_result = AllocateRaw(ExternalArray::kAlignedSize,
2741                                             space,
2742                                             OLD_DATA_SPACE);
2743     if (!maybe_result->ToObject(&result)) return maybe_result;
2744   }
2745 
2746   reinterpret_cast<ExternalArray*>(result)->set_map(
2747       MapForExternalArrayType(array_type));
2748   reinterpret_cast<ExternalArray*>(result)->set_length(length);
2749   reinterpret_cast<ExternalArray*>(result)->set_external_pointer(
2750       external_pointer);
2751 
2752   return result;
2753 }
2754 
2755 
CreateCode(const CodeDesc & desc,Code::Flags flags,Handle<Object> self_reference,bool immovable)2756 MaybeObject* Heap::CreateCode(const CodeDesc& desc,
2757                               Code::Flags flags,
2758                               Handle<Object> self_reference,
2759                               bool immovable) {
2760   // Allocate ByteArray before the Code object, so that we do not risk
2761   // leaving uninitialized Code object (and breaking the heap).
2762   Object* reloc_info;
2763   { MaybeObject* maybe_reloc_info = AllocateByteArray(desc.reloc_size, TENURED);
2764     if (!maybe_reloc_info->ToObject(&reloc_info)) return maybe_reloc_info;
2765   }
2766 
2767   // Compute size.
2768   int body_size = RoundUp(desc.instr_size, kObjectAlignment);
2769   int obj_size = Code::SizeFor(body_size);
2770   ASSERT(IsAligned(static_cast<intptr_t>(obj_size), kCodeAlignment));
2771   MaybeObject* maybe_result;
2772   // Large code objects and code objects which should stay at a fixed address
2773   // are allocated in large object space.
2774   if (obj_size > MaxObjectSizeInPagedSpace() || immovable) {
2775     maybe_result = lo_space_->AllocateRawCode(obj_size);
2776   } else {
2777     maybe_result = code_space_->AllocateRaw(obj_size);
2778   }
2779 
2780   Object* result;
2781   if (!maybe_result->ToObject(&result)) return maybe_result;
2782 
2783   // Initialize the object
2784   HeapObject::cast(result)->set_map(code_map());
2785   Code* code = Code::cast(result);
2786   ASSERT(!isolate_->code_range()->exists() ||
2787       isolate_->code_range()->contains(code->address()));
2788   code->set_instruction_size(desc.instr_size);
2789   code->set_relocation_info(ByteArray::cast(reloc_info));
2790   code->set_flags(flags);
2791   if (code->is_call_stub() || code->is_keyed_call_stub()) {
2792     code->set_check_type(RECEIVER_MAP_CHECK);
2793   }
2794   code->set_deoptimization_data(empty_fixed_array());
2795   // Allow self references to created code object by patching the handle to
2796   // point to the newly allocated Code object.
2797   if (!self_reference.is_null()) {
2798     *(self_reference.location()) = code;
2799   }
2800   // Migrate generated code.
2801   // The generated code can contain Object** values (typically from handles)
2802   // that are dereferenced during the copy to point directly to the actual heap
2803   // objects. These pointers can include references to the code object itself,
2804   // through the self_reference parameter.
2805   code->CopyFrom(desc);
2806 
2807 #ifdef DEBUG
2808   code->Verify();
2809 #endif
2810   return code;
2811 }
2812 
2813 
CopyCode(Code * code)2814 MaybeObject* Heap::CopyCode(Code* code) {
2815   // Allocate an object the same size as the code object.
2816   int obj_size = code->Size();
2817   MaybeObject* maybe_result;
2818   if (obj_size > MaxObjectSizeInPagedSpace()) {
2819     maybe_result = lo_space_->AllocateRawCode(obj_size);
2820   } else {
2821     maybe_result = code_space_->AllocateRaw(obj_size);
2822   }
2823 
2824   Object* result;
2825   if (!maybe_result->ToObject(&result)) return maybe_result;
2826 
2827   // Copy code object.
2828   Address old_addr = code->address();
2829   Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
2830   CopyBlock(new_addr, old_addr, obj_size);
2831   // Relocate the copy.
2832   Code* new_code = Code::cast(result);
2833   ASSERT(!isolate_->code_range()->exists() ||
2834       isolate_->code_range()->contains(code->address()));
2835   new_code->Relocate(new_addr - old_addr);
2836   return new_code;
2837 }
2838 
2839 
CopyCode(Code * code,Vector<byte> reloc_info)2840 MaybeObject* Heap::CopyCode(Code* code, Vector<byte> reloc_info) {
2841   // Allocate ByteArray before the Code object, so that we do not risk
2842   // leaving uninitialized Code object (and breaking the heap).
2843   Object* reloc_info_array;
2844   { MaybeObject* maybe_reloc_info_array =
2845         AllocateByteArray(reloc_info.length(), TENURED);
2846     if (!maybe_reloc_info_array->ToObject(&reloc_info_array)) {
2847       return maybe_reloc_info_array;
2848     }
2849   }
2850 
2851   int new_body_size = RoundUp(code->instruction_size(), kObjectAlignment);
2852 
2853   int new_obj_size = Code::SizeFor(new_body_size);
2854 
2855   Address old_addr = code->address();
2856 
2857   size_t relocation_offset =
2858       static_cast<size_t>(code->instruction_end() - old_addr);
2859 
2860   MaybeObject* maybe_result;
2861   if (new_obj_size > MaxObjectSizeInPagedSpace()) {
2862     maybe_result = lo_space_->AllocateRawCode(new_obj_size);
2863   } else {
2864     maybe_result = code_space_->AllocateRaw(new_obj_size);
2865   }
2866 
2867   Object* result;
2868   if (!maybe_result->ToObject(&result)) return maybe_result;
2869 
2870   // Copy code object.
2871   Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
2872 
2873   // Copy header and instructions.
2874   memcpy(new_addr, old_addr, relocation_offset);
2875 
2876   Code* new_code = Code::cast(result);
2877   new_code->set_relocation_info(ByteArray::cast(reloc_info_array));
2878 
2879   // Copy patched rinfo.
2880   memcpy(new_code->relocation_start(), reloc_info.start(), reloc_info.length());
2881 
2882   // Relocate the copy.
2883   ASSERT(!isolate_->code_range()->exists() ||
2884       isolate_->code_range()->contains(code->address()));
2885   new_code->Relocate(new_addr - old_addr);
2886 
2887 #ifdef DEBUG
2888   code->Verify();
2889 #endif
2890   return new_code;
2891 }
2892 
2893 
Allocate(Map * map,AllocationSpace space)2894 MaybeObject* Heap::Allocate(Map* map, AllocationSpace space) {
2895   ASSERT(gc_state_ == NOT_IN_GC);
2896   ASSERT(map->instance_type() != MAP_TYPE);
2897   // If allocation failures are disallowed, we may allocate in a different
2898   // space when new space is full and the object is not a large object.
2899   AllocationSpace retry_space =
2900       (space != NEW_SPACE) ? space : TargetSpaceId(map->instance_type());
2901   Object* result;
2902   { MaybeObject* maybe_result =
2903         AllocateRaw(map->instance_size(), space, retry_space);
2904     if (!maybe_result->ToObject(&result)) return maybe_result;
2905   }
2906   HeapObject::cast(result)->set_map(map);
2907 #ifdef ENABLE_LOGGING_AND_PROFILING
2908   isolate_->producer_heap_profile()->RecordJSObjectAllocation(result);
2909 #endif
2910   return result;
2911 }
2912 
2913 
InitializeFunction(JSFunction * function,SharedFunctionInfo * shared,Object * prototype)2914 MaybeObject* Heap::InitializeFunction(JSFunction* function,
2915                                       SharedFunctionInfo* shared,
2916                                       Object* prototype) {
2917   ASSERT(!prototype->IsMap());
2918   function->initialize_properties();
2919   function->initialize_elements();
2920   function->set_shared(shared);
2921   function->set_code(shared->code());
2922   function->set_prototype_or_initial_map(prototype);
2923   function->set_context(undefined_value());
2924   function->set_literals(empty_fixed_array());
2925   function->set_next_function_link(undefined_value());
2926   return function;
2927 }
2928 
2929 
AllocateFunctionPrototype(JSFunction * function)2930 MaybeObject* Heap::AllocateFunctionPrototype(JSFunction* function) {
2931   // Allocate the prototype.  Make sure to use the object function
2932   // from the function's context, since the function can be from a
2933   // different context.
2934   JSFunction* object_function =
2935       function->context()->global_context()->object_function();
2936   Object* prototype;
2937   { MaybeObject* maybe_prototype = AllocateJSObject(object_function);
2938     if (!maybe_prototype->ToObject(&prototype)) return maybe_prototype;
2939   }
2940   // When creating the prototype for the function we must set its
2941   // constructor to the function.
2942   Object* result;
2943   { MaybeObject* maybe_result =
2944         JSObject::cast(prototype)->SetLocalPropertyIgnoreAttributes(
2945             constructor_symbol(), function, DONT_ENUM);
2946     if (!maybe_result->ToObject(&result)) return maybe_result;
2947   }
2948   return prototype;
2949 }
2950 
2951 
AllocateFunction(Map * function_map,SharedFunctionInfo * shared,Object * prototype,PretenureFlag pretenure)2952 MaybeObject* Heap::AllocateFunction(Map* function_map,
2953                                     SharedFunctionInfo* shared,
2954                                     Object* prototype,
2955                                     PretenureFlag pretenure) {
2956   AllocationSpace space =
2957       (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
2958   Object* result;
2959   { MaybeObject* maybe_result = Allocate(function_map, space);
2960     if (!maybe_result->ToObject(&result)) return maybe_result;
2961   }
2962   return InitializeFunction(JSFunction::cast(result), shared, prototype);
2963 }
2964 
2965 
AllocateArgumentsObject(Object * callee,int length)2966 MaybeObject* Heap::AllocateArgumentsObject(Object* callee, int length) {
2967   // To get fast allocation and map sharing for arguments objects we
2968   // allocate them based on an arguments boilerplate.
2969 
2970   JSObject* boilerplate;
2971   int arguments_object_size;
2972   bool strict_mode_callee = callee->IsJSFunction() &&
2973                             JSFunction::cast(callee)->shared()->strict_mode();
2974   if (strict_mode_callee) {
2975     boilerplate =
2976         isolate()->context()->global_context()->
2977             strict_mode_arguments_boilerplate();
2978     arguments_object_size = kArgumentsObjectSizeStrict;
2979   } else {
2980     boilerplate =
2981         isolate()->context()->global_context()->arguments_boilerplate();
2982     arguments_object_size = kArgumentsObjectSize;
2983   }
2984 
2985   // This calls Copy directly rather than using Heap::AllocateRaw so we
2986   // duplicate the check here.
2987   ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
2988 
2989   // Check that the size of the boilerplate matches our
2990   // expectations. The ArgumentsAccessStub::GenerateNewObject relies
2991   // on the size being a known constant.
2992   ASSERT(arguments_object_size == boilerplate->map()->instance_size());
2993 
2994   // Do the allocation.
2995   Object* result;
2996   { MaybeObject* maybe_result =
2997         AllocateRaw(arguments_object_size, NEW_SPACE, OLD_POINTER_SPACE);
2998     if (!maybe_result->ToObject(&result)) return maybe_result;
2999   }
3000 
3001   // Copy the content. The arguments boilerplate doesn't have any
3002   // fields that point to new space so it's safe to skip the write
3003   // barrier here.
3004   CopyBlock(HeapObject::cast(result)->address(),
3005             boilerplate->address(),
3006             JSObject::kHeaderSize);
3007 
3008   // Set the length property.
3009   JSObject::cast(result)->InObjectPropertyAtPut(kArgumentsLengthIndex,
3010                                                 Smi::FromInt(length),
3011                                                 SKIP_WRITE_BARRIER);
3012   // Set the callee property for non-strict mode arguments object only.
3013   if (!strict_mode_callee) {
3014     JSObject::cast(result)->InObjectPropertyAtPut(kArgumentsCalleeIndex,
3015                                                   callee);
3016   }
3017 
3018   // Check the state of the object
3019   ASSERT(JSObject::cast(result)->HasFastProperties());
3020   ASSERT(JSObject::cast(result)->HasFastElements());
3021 
3022   return result;
3023 }
3024 
3025 
HasDuplicates(DescriptorArray * descriptors)3026 static bool HasDuplicates(DescriptorArray* descriptors) {
3027   int count = descriptors->number_of_descriptors();
3028   if (count > 1) {
3029     String* prev_key = descriptors->GetKey(0);
3030     for (int i = 1; i != count; i++) {
3031       String* current_key = descriptors->GetKey(i);
3032       if (prev_key == current_key) return true;
3033       prev_key = current_key;
3034     }
3035   }
3036   return false;
3037 }
3038 
3039 
AllocateInitialMap(JSFunction * fun)3040 MaybeObject* Heap::AllocateInitialMap(JSFunction* fun) {
3041   ASSERT(!fun->has_initial_map());
3042 
3043   // First create a new map with the size and number of in-object properties
3044   // suggested by the function.
3045   int instance_size = fun->shared()->CalculateInstanceSize();
3046   int in_object_properties = fun->shared()->CalculateInObjectProperties();
3047   Object* map_obj;
3048   { MaybeObject* maybe_map_obj = AllocateMap(JS_OBJECT_TYPE, instance_size);
3049     if (!maybe_map_obj->ToObject(&map_obj)) return maybe_map_obj;
3050   }
3051 
3052   // Fetch or allocate prototype.
3053   Object* prototype;
3054   if (fun->has_instance_prototype()) {
3055     prototype = fun->instance_prototype();
3056   } else {
3057     { MaybeObject* maybe_prototype = AllocateFunctionPrototype(fun);
3058       if (!maybe_prototype->ToObject(&prototype)) return maybe_prototype;
3059     }
3060   }
3061   Map* map = Map::cast(map_obj);
3062   map->set_inobject_properties(in_object_properties);
3063   map->set_unused_property_fields(in_object_properties);
3064   map->set_prototype(prototype);
3065   ASSERT(map->has_fast_elements());
3066 
3067   // If the function has only simple this property assignments add
3068   // field descriptors for these to the initial map as the object
3069   // cannot be constructed without having these properties.  Guard by
3070   // the inline_new flag so we only change the map if we generate a
3071   // specialized construct stub.
3072   ASSERT(in_object_properties <= Map::kMaxPreAllocatedPropertyFields);
3073   if (fun->shared()->CanGenerateInlineConstructor(prototype)) {
3074     int count = fun->shared()->this_property_assignments_count();
3075     if (count > in_object_properties) {
3076       // Inline constructor can only handle inobject properties.
3077       fun->shared()->ForbidInlineConstructor();
3078     } else {
3079       Object* descriptors_obj;
3080       { MaybeObject* maybe_descriptors_obj = DescriptorArray::Allocate(count);
3081         if (!maybe_descriptors_obj->ToObject(&descriptors_obj)) {
3082           return maybe_descriptors_obj;
3083         }
3084       }
3085       DescriptorArray* descriptors = DescriptorArray::cast(descriptors_obj);
3086       for (int i = 0; i < count; i++) {
3087         String* name = fun->shared()->GetThisPropertyAssignmentName(i);
3088         ASSERT(name->IsSymbol());
3089         FieldDescriptor field(name, i, NONE);
3090         field.SetEnumerationIndex(i);
3091         descriptors->Set(i, &field);
3092       }
3093       descriptors->SetNextEnumerationIndex(count);
3094       descriptors->SortUnchecked();
3095 
3096       // The descriptors may contain duplicates because the compiler does not
3097       // guarantee the uniqueness of property names (it would have required
3098       // quadratic time). Once the descriptors are sorted we can check for
3099       // duplicates in linear time.
3100       if (HasDuplicates(descriptors)) {
3101         fun->shared()->ForbidInlineConstructor();
3102       } else {
3103         map->set_instance_descriptors(descriptors);
3104         map->set_pre_allocated_property_fields(count);
3105         map->set_unused_property_fields(in_object_properties - count);
3106       }
3107     }
3108   }
3109 
3110   fun->shared()->StartInobjectSlackTracking(map);
3111 
3112   return map;
3113 }
3114 
3115 
InitializeJSObjectFromMap(JSObject * obj,FixedArray * properties,Map * map)3116 void Heap::InitializeJSObjectFromMap(JSObject* obj,
3117                                      FixedArray* properties,
3118                                      Map* map) {
3119   obj->set_properties(properties);
3120   obj->initialize_elements();
3121   // TODO(1240798): Initialize the object's body using valid initial values
3122   // according to the object's initial map.  For example, if the map's
3123   // instance type is JS_ARRAY_TYPE, the length field should be initialized
3124   // to a number (eg, Smi::FromInt(0)) and the elements initialized to a
3125   // fixed array (eg, Heap::empty_fixed_array()).  Currently, the object
3126   // verification code has to cope with (temporarily) invalid objects.  See
3127   // for example, JSArray::JSArrayVerify).
3128   Object* filler;
3129   // We cannot always fill with one_pointer_filler_map because objects
3130   // created from API functions expect their internal fields to be initialized
3131   // with undefined_value.
3132   if (map->constructor()->IsJSFunction() &&
3133       JSFunction::cast(map->constructor())->shared()->
3134           IsInobjectSlackTrackingInProgress()) {
3135     // We might want to shrink the object later.
3136     ASSERT(obj->GetInternalFieldCount() == 0);
3137     filler = Heap::one_pointer_filler_map();
3138   } else {
3139     filler = Heap::undefined_value();
3140   }
3141   obj->InitializeBody(map->instance_size(), filler);
3142 }
3143 
3144 
AllocateJSObjectFromMap(Map * map,PretenureFlag pretenure)3145 MaybeObject* Heap::AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure) {
3146   // JSFunctions should be allocated using AllocateFunction to be
3147   // properly initialized.
3148   ASSERT(map->instance_type() != JS_FUNCTION_TYPE);
3149 
3150   // Both types of global objects should be allocated using
3151   // AllocateGlobalObject to be properly initialized.
3152   ASSERT(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
3153   ASSERT(map->instance_type() != JS_BUILTINS_OBJECT_TYPE);
3154 
3155   // Allocate the backing storage for the properties.
3156   int prop_size =
3157       map->pre_allocated_property_fields() +
3158       map->unused_property_fields() -
3159       map->inobject_properties();
3160   ASSERT(prop_size >= 0);
3161   Object* properties;
3162   { MaybeObject* maybe_properties = AllocateFixedArray(prop_size, pretenure);
3163     if (!maybe_properties->ToObject(&properties)) return maybe_properties;
3164   }
3165 
3166   // Allocate the JSObject.
3167   AllocationSpace space =
3168       (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
3169   if (map->instance_size() > MaxObjectSizeInPagedSpace()) space = LO_SPACE;
3170   Object* obj;
3171   { MaybeObject* maybe_obj = Allocate(map, space);
3172     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
3173   }
3174 
3175   // Initialize the JSObject.
3176   InitializeJSObjectFromMap(JSObject::cast(obj),
3177                             FixedArray::cast(properties),
3178                             map);
3179   ASSERT(JSObject::cast(obj)->HasFastElements());
3180   return obj;
3181 }
3182 
3183 
AllocateJSObject(JSFunction * constructor,PretenureFlag pretenure)3184 MaybeObject* Heap::AllocateJSObject(JSFunction* constructor,
3185                                     PretenureFlag pretenure) {
3186   // Allocate the initial map if absent.
3187   if (!constructor->has_initial_map()) {
3188     Object* initial_map;
3189     { MaybeObject* maybe_initial_map = AllocateInitialMap(constructor);
3190       if (!maybe_initial_map->ToObject(&initial_map)) return maybe_initial_map;
3191     }
3192     constructor->set_initial_map(Map::cast(initial_map));
3193     Map::cast(initial_map)->set_constructor(constructor);
3194   }
3195   // Allocate the object based on the constructors initial map.
3196   MaybeObject* result =
3197       AllocateJSObjectFromMap(constructor->initial_map(), pretenure);
3198 #ifdef DEBUG
3199   // Make sure result is NOT a global object if valid.
3200   Object* non_failure;
3201   ASSERT(!result->ToObject(&non_failure) || !non_failure->IsGlobalObject());
3202 #endif
3203   return result;
3204 }
3205 
3206 
AllocateGlobalObject(JSFunction * constructor)3207 MaybeObject* Heap::AllocateGlobalObject(JSFunction* constructor) {
3208   ASSERT(constructor->has_initial_map());
3209   Map* map = constructor->initial_map();
3210 
3211   // Make sure no field properties are described in the initial map.
3212   // This guarantees us that normalizing the properties does not
3213   // require us to change property values to JSGlobalPropertyCells.
3214   ASSERT(map->NextFreePropertyIndex() == 0);
3215 
3216   // Make sure we don't have a ton of pre-allocated slots in the
3217   // global objects. They will be unused once we normalize the object.
3218   ASSERT(map->unused_property_fields() == 0);
3219   ASSERT(map->inobject_properties() == 0);
3220 
3221   // Initial size of the backing store to avoid resize of the storage during
3222   // bootstrapping. The size differs between the JS global object ad the
3223   // builtins object.
3224   int initial_size = map->instance_type() == JS_GLOBAL_OBJECT_TYPE ? 64 : 512;
3225 
3226   // Allocate a dictionary object for backing storage.
3227   Object* obj;
3228   { MaybeObject* maybe_obj =
3229         StringDictionary::Allocate(
3230             map->NumberOfDescribedProperties() * 2 + initial_size);
3231     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
3232   }
3233   StringDictionary* dictionary = StringDictionary::cast(obj);
3234 
3235   // The global object might be created from an object template with accessors.
3236   // Fill these accessors into the dictionary.
3237   DescriptorArray* descs = map->instance_descriptors();
3238   for (int i = 0; i < descs->number_of_descriptors(); i++) {
3239     PropertyDetails details(descs->GetDetails(i));
3240     ASSERT(details.type() == CALLBACKS);  // Only accessors are expected.
3241     PropertyDetails d =
3242         PropertyDetails(details.attributes(), CALLBACKS, details.index());
3243     Object* value = descs->GetCallbacksObject(i);
3244     { MaybeObject* maybe_value = AllocateJSGlobalPropertyCell(value);
3245       if (!maybe_value->ToObject(&value)) return maybe_value;
3246     }
3247 
3248     Object* result;
3249     { MaybeObject* maybe_result = dictionary->Add(descs->GetKey(i), value, d);
3250       if (!maybe_result->ToObject(&result)) return maybe_result;
3251     }
3252     dictionary = StringDictionary::cast(result);
3253   }
3254 
3255   // Allocate the global object and initialize it with the backing store.
3256   { MaybeObject* maybe_obj = Allocate(map, OLD_POINTER_SPACE);
3257     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
3258   }
3259   JSObject* global = JSObject::cast(obj);
3260   InitializeJSObjectFromMap(global, dictionary, map);
3261 
3262   // Create a new map for the global object.
3263   { MaybeObject* maybe_obj = map->CopyDropDescriptors();
3264     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
3265   }
3266   Map* new_map = Map::cast(obj);
3267 
3268   // Setup the global object as a normalized object.
3269   global->set_map(new_map);
3270   global->map()->set_instance_descriptors(empty_descriptor_array());
3271   global->set_properties(dictionary);
3272 
3273   // Make sure result is a global object with properties in dictionary.
3274   ASSERT(global->IsGlobalObject());
3275   ASSERT(!global->HasFastProperties());
3276   return global;
3277 }
3278 
3279 
CopyJSObject(JSObject * source)3280 MaybeObject* Heap::CopyJSObject(JSObject* source) {
3281   // Never used to copy functions.  If functions need to be copied we
3282   // have to be careful to clear the literals array.
3283   ASSERT(!source->IsJSFunction());
3284 
3285   // Make the clone.
3286   Map* map = source->map();
3287   int object_size = map->instance_size();
3288   Object* clone;
3289 
3290   // If we're forced to always allocate, we use the general allocation
3291   // functions which may leave us with an object in old space.
3292   if (always_allocate()) {
3293     { MaybeObject* maybe_clone =
3294           AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
3295       if (!maybe_clone->ToObject(&clone)) return maybe_clone;
3296     }
3297     Address clone_address = HeapObject::cast(clone)->address();
3298     CopyBlock(clone_address,
3299               source->address(),
3300               object_size);
3301     // Update write barrier for all fields that lie beyond the header.
3302     RecordWrites(clone_address,
3303                  JSObject::kHeaderSize,
3304                  (object_size - JSObject::kHeaderSize) / kPointerSize);
3305   } else {
3306     { MaybeObject* maybe_clone = new_space_.AllocateRaw(object_size);
3307       if (!maybe_clone->ToObject(&clone)) return maybe_clone;
3308     }
3309     ASSERT(InNewSpace(clone));
3310     // Since we know the clone is allocated in new space, we can copy
3311     // the contents without worrying about updating the write barrier.
3312     CopyBlock(HeapObject::cast(clone)->address(),
3313               source->address(),
3314               object_size);
3315   }
3316 
3317   FixedArray* elements = FixedArray::cast(source->elements());
3318   FixedArray* properties = FixedArray::cast(source->properties());
3319   // Update elements if necessary.
3320   if (elements->length() > 0) {
3321     Object* elem;
3322     { MaybeObject* maybe_elem =
3323           (elements->map() == fixed_cow_array_map()) ?
3324           elements : CopyFixedArray(elements);
3325       if (!maybe_elem->ToObject(&elem)) return maybe_elem;
3326     }
3327     JSObject::cast(clone)->set_elements(FixedArray::cast(elem));
3328   }
3329   // Update properties if necessary.
3330   if (properties->length() > 0) {
3331     Object* prop;
3332     { MaybeObject* maybe_prop = CopyFixedArray(properties);
3333       if (!maybe_prop->ToObject(&prop)) return maybe_prop;
3334     }
3335     JSObject::cast(clone)->set_properties(FixedArray::cast(prop));
3336   }
3337   // Return the new clone.
3338 #ifdef ENABLE_LOGGING_AND_PROFILING
3339   isolate_->producer_heap_profile()->RecordJSObjectAllocation(clone);
3340 #endif
3341   return clone;
3342 }
3343 
3344 
ReinitializeJSGlobalProxy(JSFunction * constructor,JSGlobalProxy * object)3345 MaybeObject* Heap::ReinitializeJSGlobalProxy(JSFunction* constructor,
3346                                              JSGlobalProxy* object) {
3347   ASSERT(constructor->has_initial_map());
3348   Map* map = constructor->initial_map();
3349 
3350   // Check that the already allocated object has the same size and type as
3351   // objects allocated using the constructor.
3352   ASSERT(map->instance_size() == object->map()->instance_size());
3353   ASSERT(map->instance_type() == object->map()->instance_type());
3354 
3355   // Allocate the backing storage for the properties.
3356   int prop_size = map->unused_property_fields() - map->inobject_properties();
3357   Object* properties;
3358   { MaybeObject* maybe_properties = AllocateFixedArray(prop_size, TENURED);
3359     if (!maybe_properties->ToObject(&properties)) return maybe_properties;
3360   }
3361 
3362   // Reset the map for the object.
3363   object->set_map(constructor->initial_map());
3364 
3365   // Reinitialize the object from the constructor map.
3366   InitializeJSObjectFromMap(object, FixedArray::cast(properties), map);
3367   return object;
3368 }
3369 
3370 
AllocateStringFromAscii(Vector<const char> string,PretenureFlag pretenure)3371 MaybeObject* Heap::AllocateStringFromAscii(Vector<const char> string,
3372                                            PretenureFlag pretenure) {
3373   Object* result;
3374   { MaybeObject* maybe_result =
3375         AllocateRawAsciiString(string.length(), pretenure);
3376     if (!maybe_result->ToObject(&result)) return maybe_result;
3377   }
3378 
3379   // Copy the characters into the new object.
3380   SeqAsciiString* string_result = SeqAsciiString::cast(result);
3381   for (int i = 0; i < string.length(); i++) {
3382     string_result->SeqAsciiStringSet(i, string[i]);
3383   }
3384   return result;
3385 }
3386 
3387 
AllocateStringFromUtf8Slow(Vector<const char> string,PretenureFlag pretenure)3388 MaybeObject* Heap::AllocateStringFromUtf8Slow(Vector<const char> string,
3389                                               PretenureFlag pretenure) {
3390   // V8 only supports characters in the Basic Multilingual Plane.
3391   const uc32 kMaxSupportedChar = 0xFFFF;
3392   // Count the number of characters in the UTF-8 string and check if
3393   // it is an ASCII string.
3394   Access<UnicodeCache::Utf8Decoder>
3395       decoder(isolate_->unicode_cache()->utf8_decoder());
3396   decoder->Reset(string.start(), string.length());
3397   int chars = 0;
3398   while (decoder->has_more()) {
3399     decoder->GetNext();
3400     chars++;
3401   }
3402 
3403   Object* result;
3404   { MaybeObject* maybe_result = AllocateRawTwoByteString(chars, pretenure);
3405     if (!maybe_result->ToObject(&result)) return maybe_result;
3406   }
3407 
3408   // Convert and copy the characters into the new object.
3409   String* string_result = String::cast(result);
3410   decoder->Reset(string.start(), string.length());
3411   for (int i = 0; i < chars; i++) {
3412     uc32 r = decoder->GetNext();
3413     if (r > kMaxSupportedChar) { r = unibrow::Utf8::kBadChar; }
3414     string_result->Set(i, r);
3415   }
3416   return result;
3417 }
3418 
3419 
AllocateStringFromTwoByte(Vector<const uc16> string,PretenureFlag pretenure)3420 MaybeObject* Heap::AllocateStringFromTwoByte(Vector<const uc16> string,
3421                                              PretenureFlag pretenure) {
3422   // Check if the string is an ASCII string.
3423   MaybeObject* maybe_result;
3424   if (String::IsAscii(string.start(), string.length())) {
3425     maybe_result = AllocateRawAsciiString(string.length(), pretenure);
3426   } else {  // It's not an ASCII string.
3427     maybe_result = AllocateRawTwoByteString(string.length(), pretenure);
3428   }
3429   Object* result;
3430   if (!maybe_result->ToObject(&result)) return maybe_result;
3431 
3432   // Copy the characters into the new object, which may be either ASCII or
3433   // UTF-16.
3434   String* string_result = String::cast(result);
3435   for (int i = 0; i < string.length(); i++) {
3436     string_result->Set(i, string[i]);
3437   }
3438   return result;
3439 }
3440 
3441 
SymbolMapForString(String * string)3442 Map* Heap::SymbolMapForString(String* string) {
3443   // If the string is in new space it cannot be used as a symbol.
3444   if (InNewSpace(string)) return NULL;
3445 
3446   // Find the corresponding symbol map for strings.
3447   Map* map = string->map();
3448   if (map == ascii_string_map()) {
3449     return ascii_symbol_map();
3450   }
3451   if (map == string_map()) {
3452     return symbol_map();
3453   }
3454   if (map == cons_string_map()) {
3455     return cons_symbol_map();
3456   }
3457   if (map == cons_ascii_string_map()) {
3458     return cons_ascii_symbol_map();
3459   }
3460   if (map == external_string_map()) {
3461     return external_symbol_map();
3462   }
3463   if (map == external_ascii_string_map()) {
3464     return external_ascii_symbol_map();
3465   }
3466   if (map == external_string_with_ascii_data_map()) {
3467     return external_symbol_with_ascii_data_map();
3468   }
3469 
3470   // No match found.
3471   return NULL;
3472 }
3473 
3474 
AllocateInternalSymbol(unibrow::CharacterStream * buffer,int chars,uint32_t hash_field)3475 MaybeObject* Heap::AllocateInternalSymbol(unibrow::CharacterStream* buffer,
3476                                           int chars,
3477                                           uint32_t hash_field) {
3478   ASSERT(chars >= 0);
3479   // Ensure the chars matches the number of characters in the buffer.
3480   ASSERT(static_cast<unsigned>(chars) == buffer->Length());
3481   // Determine whether the string is ascii.
3482   bool is_ascii = true;
3483   while (buffer->has_more()) {
3484     if (buffer->GetNext() > unibrow::Utf8::kMaxOneByteChar) {
3485       is_ascii = false;
3486       break;
3487     }
3488   }
3489   buffer->Rewind();
3490 
3491   // Compute map and object size.
3492   int size;
3493   Map* map;
3494 
3495   if (is_ascii) {
3496     if (chars > SeqAsciiString::kMaxLength) {
3497       return Failure::OutOfMemoryException();
3498     }
3499     map = ascii_symbol_map();
3500     size = SeqAsciiString::SizeFor(chars);
3501   } else {
3502     if (chars > SeqTwoByteString::kMaxLength) {
3503       return Failure::OutOfMemoryException();
3504     }
3505     map = symbol_map();
3506     size = SeqTwoByteString::SizeFor(chars);
3507   }
3508 
3509   // Allocate string.
3510   Object* result;
3511   { MaybeObject* maybe_result = (size > MaxObjectSizeInPagedSpace())
3512                    ? lo_space_->AllocateRaw(size)
3513                    : old_data_space_->AllocateRaw(size);
3514     if (!maybe_result->ToObject(&result)) return maybe_result;
3515   }
3516 
3517   reinterpret_cast<HeapObject*>(result)->set_map(map);
3518   // Set length and hash fields of the allocated string.
3519   String* answer = String::cast(result);
3520   answer->set_length(chars);
3521   answer->set_hash_field(hash_field);
3522 
3523   ASSERT_EQ(size, answer->Size());
3524 
3525   // Fill in the characters.
3526   for (int i = 0; i < chars; i++) {
3527     answer->Set(i, buffer->GetNext());
3528   }
3529   return answer;
3530 }
3531 
3532 
AllocateRawAsciiString(int length,PretenureFlag pretenure)3533 MaybeObject* Heap::AllocateRawAsciiString(int length, PretenureFlag pretenure) {
3534   if (length < 0 || length > SeqAsciiString::kMaxLength) {
3535     return Failure::OutOfMemoryException();
3536   }
3537 
3538   int size = SeqAsciiString::SizeFor(length);
3539   ASSERT(size <= SeqAsciiString::kMaxSize);
3540 
3541   AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
3542   AllocationSpace retry_space = OLD_DATA_SPACE;
3543 
3544   if (space == NEW_SPACE) {
3545     if (size > kMaxObjectSizeInNewSpace) {
3546       // Allocate in large object space, retry space will be ignored.
3547       space = LO_SPACE;
3548     } else if (size > MaxObjectSizeInPagedSpace()) {
3549       // Allocate in new space, retry in large object space.
3550       retry_space = LO_SPACE;
3551     }
3552   } else if (space == OLD_DATA_SPACE && size > MaxObjectSizeInPagedSpace()) {
3553     space = LO_SPACE;
3554   }
3555   Object* result;
3556   { MaybeObject* maybe_result = AllocateRaw(size, space, retry_space);
3557     if (!maybe_result->ToObject(&result)) return maybe_result;
3558   }
3559 
3560   // Partially initialize the object.
3561   HeapObject::cast(result)->set_map(ascii_string_map());
3562   String::cast(result)->set_length(length);
3563   String::cast(result)->set_hash_field(String::kEmptyHashField);
3564   ASSERT_EQ(size, HeapObject::cast(result)->Size());
3565   return result;
3566 }
3567 
3568 
AllocateRawTwoByteString(int length,PretenureFlag pretenure)3569 MaybeObject* Heap::AllocateRawTwoByteString(int length,
3570                                             PretenureFlag pretenure) {
3571   if (length < 0 || length > SeqTwoByteString::kMaxLength) {
3572     return Failure::OutOfMemoryException();
3573   }
3574   int size = SeqTwoByteString::SizeFor(length);
3575   ASSERT(size <= SeqTwoByteString::kMaxSize);
3576   AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
3577   AllocationSpace retry_space = OLD_DATA_SPACE;
3578 
3579   if (space == NEW_SPACE) {
3580     if (size > kMaxObjectSizeInNewSpace) {
3581       // Allocate in large object space, retry space will be ignored.
3582       space = LO_SPACE;
3583     } else if (size > MaxObjectSizeInPagedSpace()) {
3584       // Allocate in new space, retry in large object space.
3585       retry_space = LO_SPACE;
3586     }
3587   } else if (space == OLD_DATA_SPACE && size > MaxObjectSizeInPagedSpace()) {
3588     space = LO_SPACE;
3589   }
3590   Object* result;
3591   { MaybeObject* maybe_result = AllocateRaw(size, space, retry_space);
3592     if (!maybe_result->ToObject(&result)) return maybe_result;
3593   }
3594 
3595   // Partially initialize the object.
3596   HeapObject::cast(result)->set_map(string_map());
3597   String::cast(result)->set_length(length);
3598   String::cast(result)->set_hash_field(String::kEmptyHashField);
3599   ASSERT_EQ(size, HeapObject::cast(result)->Size());
3600   return result;
3601 }
3602 
3603 
AllocateEmptyFixedArray()3604 MaybeObject* Heap::AllocateEmptyFixedArray() {
3605   int size = FixedArray::SizeFor(0);
3606   Object* result;
3607   { MaybeObject* maybe_result =
3608         AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
3609     if (!maybe_result->ToObject(&result)) return maybe_result;
3610   }
3611   // Initialize the object.
3612   reinterpret_cast<FixedArray*>(result)->set_map(fixed_array_map());
3613   reinterpret_cast<FixedArray*>(result)->set_length(0);
3614   return result;
3615 }
3616 
3617 
AllocateRawFixedArray(int length)3618 MaybeObject* Heap::AllocateRawFixedArray(int length) {
3619   if (length < 0 || length > FixedArray::kMaxLength) {
3620     return Failure::OutOfMemoryException();
3621   }
3622   ASSERT(length > 0);
3623   // Use the general function if we're forced to always allocate.
3624   if (always_allocate()) return AllocateFixedArray(length, TENURED);
3625   // Allocate the raw data for a fixed array.
3626   int size = FixedArray::SizeFor(length);
3627   return size <= kMaxObjectSizeInNewSpace
3628       ? new_space_.AllocateRaw(size)
3629       : lo_space_->AllocateRawFixedArray(size);
3630 }
3631 
3632 
CopyFixedArrayWithMap(FixedArray * src,Map * map)3633 MaybeObject* Heap::CopyFixedArrayWithMap(FixedArray* src, Map* map) {
3634   int len = src->length();
3635   Object* obj;
3636   { MaybeObject* maybe_obj = AllocateRawFixedArray(len);
3637     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
3638   }
3639   if (InNewSpace(obj)) {
3640     HeapObject* dst = HeapObject::cast(obj);
3641     dst->set_map(map);
3642     CopyBlock(dst->address() + kPointerSize,
3643               src->address() + kPointerSize,
3644               FixedArray::SizeFor(len) - kPointerSize);
3645     return obj;
3646   }
3647   HeapObject::cast(obj)->set_map(map);
3648   FixedArray* result = FixedArray::cast(obj);
3649   result->set_length(len);
3650 
3651   // Copy the content
3652   AssertNoAllocation no_gc;
3653   WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
3654   for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
3655   return result;
3656 }
3657 
3658 
AllocateFixedArray(int length)3659 MaybeObject* Heap::AllocateFixedArray(int length) {
3660   ASSERT(length >= 0);
3661   if (length == 0) return empty_fixed_array();
3662   Object* result;
3663   { MaybeObject* maybe_result = AllocateRawFixedArray(length);
3664     if (!maybe_result->ToObject(&result)) return maybe_result;
3665   }
3666   // Initialize header.
3667   FixedArray* array = reinterpret_cast<FixedArray*>(result);
3668   array->set_map(fixed_array_map());
3669   array->set_length(length);
3670   // Initialize body.
3671   ASSERT(!InNewSpace(undefined_value()));
3672   MemsetPointer(array->data_start(), undefined_value(), length);
3673   return result;
3674 }
3675 
3676 
AllocateRawFixedArray(int length,PretenureFlag pretenure)3677 MaybeObject* Heap::AllocateRawFixedArray(int length, PretenureFlag pretenure) {
3678   if (length < 0 || length > FixedArray::kMaxLength) {
3679     return Failure::OutOfMemoryException();
3680   }
3681 
3682   AllocationSpace space =
3683       (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
3684   int size = FixedArray::SizeFor(length);
3685   if (space == NEW_SPACE && size > kMaxObjectSizeInNewSpace) {
3686     // Too big for new space.
3687     space = LO_SPACE;
3688   } else if (space == OLD_POINTER_SPACE &&
3689              size > MaxObjectSizeInPagedSpace()) {
3690     // Too big for old pointer space.
3691     space = LO_SPACE;
3692   }
3693 
3694   AllocationSpace retry_space =
3695       (size <= MaxObjectSizeInPagedSpace()) ? OLD_POINTER_SPACE : LO_SPACE;
3696 
3697   return AllocateRaw(size, space, retry_space);
3698 }
3699 
3700 
AllocateFixedArrayWithFiller(Heap * heap,int length,PretenureFlag pretenure,Object * filler)3701 MUST_USE_RESULT static MaybeObject* AllocateFixedArrayWithFiller(
3702     Heap* heap,
3703     int length,
3704     PretenureFlag pretenure,
3705     Object* filler) {
3706   ASSERT(length >= 0);
3707   ASSERT(heap->empty_fixed_array()->IsFixedArray());
3708   if (length == 0) return heap->empty_fixed_array();
3709 
3710   ASSERT(!heap->InNewSpace(filler));
3711   Object* result;
3712   { MaybeObject* maybe_result = heap->AllocateRawFixedArray(length, pretenure);
3713     if (!maybe_result->ToObject(&result)) return maybe_result;
3714   }
3715 
3716   HeapObject::cast(result)->set_map(heap->fixed_array_map());
3717   FixedArray* array = FixedArray::cast(result);
3718   array->set_length(length);
3719   MemsetPointer(array->data_start(), filler, length);
3720   return array;
3721 }
3722 
3723 
AllocateFixedArray(int length,PretenureFlag pretenure)3724 MaybeObject* Heap::AllocateFixedArray(int length, PretenureFlag pretenure) {
3725   return AllocateFixedArrayWithFiller(this,
3726                                       length,
3727                                       pretenure,
3728                                       undefined_value());
3729 }
3730 
3731 
AllocateFixedArrayWithHoles(int length,PretenureFlag pretenure)3732 MaybeObject* Heap::AllocateFixedArrayWithHoles(int length,
3733                                                PretenureFlag pretenure) {
3734   return AllocateFixedArrayWithFiller(this,
3735                                       length,
3736                                       pretenure,
3737                                       the_hole_value());
3738 }
3739 
3740 
AllocateUninitializedFixedArray(int length)3741 MaybeObject* Heap::AllocateUninitializedFixedArray(int length) {
3742   if (length == 0) return empty_fixed_array();
3743 
3744   Object* obj;
3745   { MaybeObject* maybe_obj = AllocateRawFixedArray(length);
3746     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
3747   }
3748 
3749   reinterpret_cast<FixedArray*>(obj)->set_map(fixed_array_map());
3750   FixedArray::cast(obj)->set_length(length);
3751   return obj;
3752 }
3753 
3754 
AllocateHashTable(int length,PretenureFlag pretenure)3755 MaybeObject* Heap::AllocateHashTable(int length, PretenureFlag pretenure) {
3756   Object* result;
3757   { MaybeObject* maybe_result = AllocateFixedArray(length, pretenure);
3758     if (!maybe_result->ToObject(&result)) return maybe_result;
3759   }
3760   reinterpret_cast<HeapObject*>(result)->set_map(hash_table_map());
3761   ASSERT(result->IsHashTable());
3762   return result;
3763 }
3764 
3765 
AllocateGlobalContext()3766 MaybeObject* Heap::AllocateGlobalContext() {
3767   Object* result;
3768   { MaybeObject* maybe_result =
3769         AllocateFixedArray(Context::GLOBAL_CONTEXT_SLOTS);
3770     if (!maybe_result->ToObject(&result)) return maybe_result;
3771   }
3772   Context* context = reinterpret_cast<Context*>(result);
3773   context->set_map(global_context_map());
3774   ASSERT(context->IsGlobalContext());
3775   ASSERT(result->IsContext());
3776   return result;
3777 }
3778 
3779 
AllocateFunctionContext(int length,JSFunction * function)3780 MaybeObject* Heap::AllocateFunctionContext(int length, JSFunction* function) {
3781   ASSERT(length >= Context::MIN_CONTEXT_SLOTS);
3782   Object* result;
3783   { MaybeObject* maybe_result = AllocateFixedArray(length);
3784     if (!maybe_result->ToObject(&result)) return maybe_result;
3785   }
3786   Context* context = reinterpret_cast<Context*>(result);
3787   context->set_map(context_map());
3788   context->set_closure(function);
3789   context->set_fcontext(context);
3790   context->set_previous(NULL);
3791   context->set_extension(NULL);
3792   context->set_global(function->context()->global());
3793   ASSERT(!context->IsGlobalContext());
3794   ASSERT(context->is_function_context());
3795   ASSERT(result->IsContext());
3796   return result;
3797 }
3798 
3799 
AllocateWithContext(Context * previous,JSObject * extension,bool is_catch_context)3800 MaybeObject* Heap::AllocateWithContext(Context* previous,
3801                                        JSObject* extension,
3802                                        bool is_catch_context) {
3803   Object* result;
3804   { MaybeObject* maybe_result = AllocateFixedArray(Context::MIN_CONTEXT_SLOTS);
3805     if (!maybe_result->ToObject(&result)) return maybe_result;
3806   }
3807   Context* context = reinterpret_cast<Context*>(result);
3808   context->set_map(is_catch_context ? catch_context_map() :
3809       context_map());
3810   context->set_closure(previous->closure());
3811   context->set_fcontext(previous->fcontext());
3812   context->set_previous(previous);
3813   context->set_extension(extension);
3814   context->set_global(previous->global());
3815   ASSERT(!context->IsGlobalContext());
3816   ASSERT(!context->is_function_context());
3817   ASSERT(result->IsContext());
3818   return result;
3819 }
3820 
3821 
AllocateStruct(InstanceType type)3822 MaybeObject* Heap::AllocateStruct(InstanceType type) {
3823   Map* map;
3824   switch (type) {
3825 #define MAKE_CASE(NAME, Name, name) \
3826     case NAME##_TYPE: map = name##_map(); break;
3827 STRUCT_LIST(MAKE_CASE)
3828 #undef MAKE_CASE
3829     default:
3830       UNREACHABLE();
3831       return Failure::InternalError();
3832   }
3833   int size = map->instance_size();
3834   AllocationSpace space =
3835       (size > MaxObjectSizeInPagedSpace()) ? LO_SPACE : OLD_POINTER_SPACE;
3836   Object* result;
3837   { MaybeObject* maybe_result = Allocate(map, space);
3838     if (!maybe_result->ToObject(&result)) return maybe_result;
3839   }
3840   Struct::cast(result)->InitializeBody(size);
3841   return result;
3842 }
3843 
3844 
IdleNotification()3845 bool Heap::IdleNotification() {
3846   static const int kIdlesBeforeScavenge = 4;
3847   static const int kIdlesBeforeMarkSweep = 7;
3848   static const int kIdlesBeforeMarkCompact = 8;
3849   static const int kMaxIdleCount = kIdlesBeforeMarkCompact + 1;
3850   static const unsigned int kGCsBetweenCleanup = 4;
3851 
3852   if (!last_idle_notification_gc_count_init_) {
3853     last_idle_notification_gc_count_ = gc_count_;
3854     last_idle_notification_gc_count_init_ = true;
3855   }
3856 
3857   bool uncommit = true;
3858   bool finished = false;
3859 
3860   // Reset the number of idle notifications received when a number of
3861   // GCs have taken place. This allows another round of cleanup based
3862   // on idle notifications if enough work has been carried out to
3863   // provoke a number of garbage collections.
3864   if (gc_count_ - last_idle_notification_gc_count_ < kGCsBetweenCleanup) {
3865     number_idle_notifications_ =
3866         Min(number_idle_notifications_ + 1, kMaxIdleCount);
3867   } else {
3868     number_idle_notifications_ = 0;
3869     last_idle_notification_gc_count_ = gc_count_;
3870   }
3871 
3872   if (number_idle_notifications_ == kIdlesBeforeScavenge) {
3873     if (contexts_disposed_ > 0) {
3874       HistogramTimerScope scope(isolate_->counters()->gc_context());
3875       CollectAllGarbage(false);
3876     } else {
3877       CollectGarbage(NEW_SPACE);
3878     }
3879     new_space_.Shrink();
3880     last_idle_notification_gc_count_ = gc_count_;
3881   } else if (number_idle_notifications_ == kIdlesBeforeMarkSweep) {
3882     // Before doing the mark-sweep collections we clear the
3883     // compilation cache to avoid hanging on to source code and
3884     // generated code for cached functions.
3885     isolate_->compilation_cache()->Clear();
3886 
3887     CollectAllGarbage(false);
3888     new_space_.Shrink();
3889     last_idle_notification_gc_count_ = gc_count_;
3890 
3891   } else if (number_idle_notifications_ == kIdlesBeforeMarkCompact) {
3892     CollectAllGarbage(true);
3893     new_space_.Shrink();
3894     last_idle_notification_gc_count_ = gc_count_;
3895     number_idle_notifications_ = 0;
3896     finished = true;
3897   } else if (contexts_disposed_ > 0) {
3898     if (FLAG_expose_gc) {
3899       contexts_disposed_ = 0;
3900     } else {
3901       HistogramTimerScope scope(isolate_->counters()->gc_context());
3902       CollectAllGarbage(false);
3903       last_idle_notification_gc_count_ = gc_count_;
3904     }
3905     // If this is the first idle notification, we reset the
3906     // notification count to avoid letting idle notifications for
3907     // context disposal garbage collections start a potentially too
3908     // aggressive idle GC cycle.
3909     if (number_idle_notifications_ <= 1) {
3910       number_idle_notifications_ = 0;
3911       uncommit = false;
3912     }
3913   } else if (number_idle_notifications_ > kIdlesBeforeMarkCompact) {
3914     // If we have received more than kIdlesBeforeMarkCompact idle
3915     // notifications we do not perform any cleanup because we don't
3916     // expect to gain much by doing so.
3917     finished = true;
3918   }
3919 
3920   // Make sure that we have no pending context disposals and
3921   // conditionally uncommit from space.
3922   ASSERT(contexts_disposed_ == 0);
3923   if (uncommit) UncommitFromSpace();
3924   return finished;
3925 }
3926 
3927 
3928 #ifdef DEBUG
3929 
Print()3930 void Heap::Print() {
3931   if (!HasBeenSetup()) return;
3932   isolate()->PrintStack();
3933   AllSpaces spaces;
3934   for (Space* space = spaces.next(); space != NULL; space = spaces.next())
3935     space->Print();
3936 }
3937 
3938 
ReportCodeStatistics(const char * title)3939 void Heap::ReportCodeStatistics(const char* title) {
3940   PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title);
3941   PagedSpace::ResetCodeStatistics();
3942   // We do not look for code in new space, map space, or old space.  If code
3943   // somehow ends up in those spaces, we would miss it here.
3944   code_space_->CollectCodeStatistics();
3945   lo_space_->CollectCodeStatistics();
3946   PagedSpace::ReportCodeStatistics();
3947 }
3948 
3949 
3950 // This function expects that NewSpace's allocated objects histogram is
3951 // populated (via a call to CollectStatistics or else as a side effect of a
3952 // just-completed scavenge collection).
ReportHeapStatistics(const char * title)3953 void Heap::ReportHeapStatistics(const char* title) {
3954   USE(title);
3955   PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n",
3956          title, gc_count_);
3957   PrintF("mark-compact GC : %d\n", mc_count_);
3958   PrintF("old_gen_promotion_limit_ %" V8_PTR_PREFIX "d\n",
3959          old_gen_promotion_limit_);
3960   PrintF("old_gen_allocation_limit_ %" V8_PTR_PREFIX "d\n",
3961          old_gen_allocation_limit_);
3962 
3963   PrintF("\n");
3964   PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles());
3965   isolate_->global_handles()->PrintStats();
3966   PrintF("\n");
3967 
3968   PrintF("Heap statistics : ");
3969   isolate_->memory_allocator()->ReportStatistics();
3970   PrintF("To space : ");
3971   new_space_.ReportStatistics();
3972   PrintF("Old pointer space : ");
3973   old_pointer_space_->ReportStatistics();
3974   PrintF("Old data space : ");
3975   old_data_space_->ReportStatistics();
3976   PrintF("Code space : ");
3977   code_space_->ReportStatistics();
3978   PrintF("Map space : ");
3979   map_space_->ReportStatistics();
3980   PrintF("Cell space : ");
3981   cell_space_->ReportStatistics();
3982   PrintF("Large object space : ");
3983   lo_space_->ReportStatistics();
3984   PrintF(">>>>>> ========================================= >>>>>>\n");
3985 }
3986 
3987 #endif  // DEBUG
3988 
Contains(HeapObject * value)3989 bool Heap::Contains(HeapObject* value) {
3990   return Contains(value->address());
3991 }
3992 
3993 
Contains(Address addr)3994 bool Heap::Contains(Address addr) {
3995   if (OS::IsOutsideAllocatedSpace(addr)) return false;
3996   return HasBeenSetup() &&
3997     (new_space_.ToSpaceContains(addr) ||
3998      old_pointer_space_->Contains(addr) ||
3999      old_data_space_->Contains(addr) ||
4000      code_space_->Contains(addr) ||
4001      map_space_->Contains(addr) ||
4002      cell_space_->Contains(addr) ||
4003      lo_space_->SlowContains(addr));
4004 }
4005 
4006 
InSpace(HeapObject * value,AllocationSpace space)4007 bool Heap::InSpace(HeapObject* value, AllocationSpace space) {
4008   return InSpace(value->address(), space);
4009 }
4010 
4011 
InSpace(Address addr,AllocationSpace space)4012 bool Heap::InSpace(Address addr, AllocationSpace space) {
4013   if (OS::IsOutsideAllocatedSpace(addr)) return false;
4014   if (!HasBeenSetup()) return false;
4015 
4016   switch (space) {
4017     case NEW_SPACE:
4018       return new_space_.ToSpaceContains(addr);
4019     case OLD_POINTER_SPACE:
4020       return old_pointer_space_->Contains(addr);
4021     case OLD_DATA_SPACE:
4022       return old_data_space_->Contains(addr);
4023     case CODE_SPACE:
4024       return code_space_->Contains(addr);
4025     case MAP_SPACE:
4026       return map_space_->Contains(addr);
4027     case CELL_SPACE:
4028       return cell_space_->Contains(addr);
4029     case LO_SPACE:
4030       return lo_space_->SlowContains(addr);
4031   }
4032 
4033   return false;
4034 }
4035 
4036 
4037 #ifdef DEBUG
DummyScavengePointer(HeapObject ** p)4038 static void DummyScavengePointer(HeapObject** p) {
4039 }
4040 
4041 
VerifyPointersUnderWatermark(PagedSpace * space,DirtyRegionCallback visit_dirty_region)4042 static void VerifyPointersUnderWatermark(
4043     PagedSpace* space,
4044     DirtyRegionCallback visit_dirty_region) {
4045   PageIterator it(space, PageIterator::PAGES_IN_USE);
4046 
4047   while (it.has_next()) {
4048     Page* page = it.next();
4049     Address start = page->ObjectAreaStart();
4050     Address end = page->AllocationWatermark();
4051 
4052     HEAP->IterateDirtyRegions(Page::kAllRegionsDirtyMarks,
4053                               start,
4054                               end,
4055                               visit_dirty_region,
4056                               &DummyScavengePointer);
4057   }
4058 }
4059 
4060 
VerifyPointersUnderWatermark(LargeObjectSpace * space)4061 static void VerifyPointersUnderWatermark(LargeObjectSpace* space) {
4062   LargeObjectIterator it(space);
4063   for (HeapObject* object = it.next(); object != NULL; object = it.next()) {
4064     if (object->IsFixedArray()) {
4065       Address slot_address = object->address();
4066       Address end = object->address() + object->Size();
4067 
4068       while (slot_address < end) {
4069         HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address);
4070         // When we are not in GC the Heap::InNewSpace() predicate
4071         // checks that pointers which satisfy predicate point into
4072         // the active semispace.
4073         HEAP->InNewSpace(*slot);
4074         slot_address += kPointerSize;
4075       }
4076     }
4077   }
4078 }
4079 
4080 
Verify()4081 void Heap::Verify() {
4082   ASSERT(HasBeenSetup());
4083 
4084   VerifyPointersVisitor visitor;
4085   IterateRoots(&visitor, VISIT_ONLY_STRONG);
4086 
4087   new_space_.Verify();
4088 
4089   VerifyPointersAndDirtyRegionsVisitor dirty_regions_visitor;
4090   old_pointer_space_->Verify(&dirty_regions_visitor);
4091   map_space_->Verify(&dirty_regions_visitor);
4092 
4093   VerifyPointersUnderWatermark(old_pointer_space_,
4094                                &IteratePointersInDirtyRegion);
4095   VerifyPointersUnderWatermark(map_space_,
4096                                &IteratePointersInDirtyMapsRegion);
4097   VerifyPointersUnderWatermark(lo_space_);
4098 
4099   VerifyPageWatermarkValidity(old_pointer_space_, ALL_INVALID);
4100   VerifyPageWatermarkValidity(map_space_, ALL_INVALID);
4101 
4102   VerifyPointersVisitor no_dirty_regions_visitor;
4103   old_data_space_->Verify(&no_dirty_regions_visitor);
4104   code_space_->Verify(&no_dirty_regions_visitor);
4105   cell_space_->Verify(&no_dirty_regions_visitor);
4106 
4107   lo_space_->Verify();
4108 }
4109 #endif  // DEBUG
4110 
4111 
LookupSymbol(Vector<const char> string)4112 MaybeObject* Heap::LookupSymbol(Vector<const char> string) {
4113   Object* symbol = NULL;
4114   Object* new_table;
4115   { MaybeObject* maybe_new_table =
4116         symbol_table()->LookupSymbol(string, &symbol);
4117     if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
4118   }
4119   // Can't use set_symbol_table because SymbolTable::cast knows that
4120   // SymbolTable is a singleton and checks for identity.
4121   roots_[kSymbolTableRootIndex] = new_table;
4122   ASSERT(symbol != NULL);
4123   return symbol;
4124 }
4125 
4126 
LookupAsciiSymbol(Vector<const char> string)4127 MaybeObject* Heap::LookupAsciiSymbol(Vector<const char> string) {
4128   Object* symbol = NULL;
4129   Object* new_table;
4130   { MaybeObject* maybe_new_table =
4131         symbol_table()->LookupAsciiSymbol(string, &symbol);
4132     if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
4133   }
4134   // Can't use set_symbol_table because SymbolTable::cast knows that
4135   // SymbolTable is a singleton and checks for identity.
4136   roots_[kSymbolTableRootIndex] = new_table;
4137   ASSERT(symbol != NULL);
4138   return symbol;
4139 }
4140 
4141 
LookupTwoByteSymbol(Vector<const uc16> string)4142 MaybeObject* Heap::LookupTwoByteSymbol(Vector<const uc16> string) {
4143   Object* symbol = NULL;
4144   Object* new_table;
4145   { MaybeObject* maybe_new_table =
4146         symbol_table()->LookupTwoByteSymbol(string, &symbol);
4147     if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
4148   }
4149   // Can't use set_symbol_table because SymbolTable::cast knows that
4150   // SymbolTable is a singleton and checks for identity.
4151   roots_[kSymbolTableRootIndex] = new_table;
4152   ASSERT(symbol != NULL);
4153   return symbol;
4154 }
4155 
4156 
LookupSymbol(String * string)4157 MaybeObject* Heap::LookupSymbol(String* string) {
4158   if (string->IsSymbol()) return string;
4159   Object* symbol = NULL;
4160   Object* new_table;
4161   { MaybeObject* maybe_new_table =
4162         symbol_table()->LookupString(string, &symbol);
4163     if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
4164   }
4165   // Can't use set_symbol_table because SymbolTable::cast knows that
4166   // SymbolTable is a singleton and checks for identity.
4167   roots_[kSymbolTableRootIndex] = new_table;
4168   ASSERT(symbol != NULL);
4169   return symbol;
4170 }
4171 
4172 
LookupSymbolIfExists(String * string,String ** symbol)4173 bool Heap::LookupSymbolIfExists(String* string, String** symbol) {
4174   if (string->IsSymbol()) {
4175     *symbol = string;
4176     return true;
4177   }
4178   return symbol_table()->LookupSymbolIfExists(string, symbol);
4179 }
4180 
4181 
4182 #ifdef DEBUG
ZapFromSpace()4183 void Heap::ZapFromSpace() {
4184   ASSERT(reinterpret_cast<Object*>(kFromSpaceZapValue)->IsFailure());
4185   for (Address a = new_space_.FromSpaceLow();
4186        a < new_space_.FromSpaceHigh();
4187        a += kPointerSize) {
4188     Memory::Address_at(a) = kFromSpaceZapValue;
4189   }
4190 }
4191 #endif  // DEBUG
4192 
4193 
IteratePointersInDirtyRegion(Heap * heap,Address start,Address end,ObjectSlotCallback copy_object_func)4194 bool Heap::IteratePointersInDirtyRegion(Heap* heap,
4195                                         Address start,
4196                                         Address end,
4197                                         ObjectSlotCallback copy_object_func) {
4198   Address slot_address = start;
4199   bool pointers_to_new_space_found = false;
4200 
4201   while (slot_address < end) {
4202     Object** slot = reinterpret_cast<Object**>(slot_address);
4203     if (heap->InNewSpace(*slot)) {
4204       ASSERT((*slot)->IsHeapObject());
4205       copy_object_func(reinterpret_cast<HeapObject**>(slot));
4206       if (heap->InNewSpace(*slot)) {
4207         ASSERT((*slot)->IsHeapObject());
4208         pointers_to_new_space_found = true;
4209       }
4210     }
4211     slot_address += kPointerSize;
4212   }
4213   return pointers_to_new_space_found;
4214 }
4215 
4216 
4217 // Compute start address of the first map following given addr.
MapStartAlign(Address addr)4218 static inline Address MapStartAlign(Address addr) {
4219   Address page = Page::FromAddress(addr)->ObjectAreaStart();
4220   return page + (((addr - page) + (Map::kSize - 1)) / Map::kSize * Map::kSize);
4221 }
4222 
4223 
4224 // Compute end address of the first map preceding given addr.
MapEndAlign(Address addr)4225 static inline Address MapEndAlign(Address addr) {
4226   Address page = Page::FromAllocationTop(addr)->ObjectAreaStart();
4227   return page + ((addr - page) / Map::kSize * Map::kSize);
4228 }
4229 
4230 
IteratePointersInDirtyMaps(Address start,Address end,ObjectSlotCallback copy_object_func)4231 static bool IteratePointersInDirtyMaps(Address start,
4232                                        Address end,
4233                                        ObjectSlotCallback copy_object_func) {
4234   ASSERT(MapStartAlign(start) == start);
4235   ASSERT(MapEndAlign(end) == end);
4236 
4237   Address map_address = start;
4238   bool pointers_to_new_space_found = false;
4239 
4240   Heap* heap = HEAP;
4241   while (map_address < end) {
4242     ASSERT(!heap->InNewSpace(Memory::Object_at(map_address)));
4243     ASSERT(Memory::Object_at(map_address)->IsMap());
4244 
4245     Address pointer_fields_start = map_address + Map::kPointerFieldsBeginOffset;
4246     Address pointer_fields_end = map_address + Map::kPointerFieldsEndOffset;
4247 
4248     if (Heap::IteratePointersInDirtyRegion(heap,
4249                                            pointer_fields_start,
4250                                            pointer_fields_end,
4251                                            copy_object_func)) {
4252       pointers_to_new_space_found = true;
4253     }
4254 
4255     map_address += Map::kSize;
4256   }
4257 
4258   return pointers_to_new_space_found;
4259 }
4260 
4261 
IteratePointersInDirtyMapsRegion(Heap * heap,Address start,Address end,ObjectSlotCallback copy_object_func)4262 bool Heap::IteratePointersInDirtyMapsRegion(
4263     Heap* heap,
4264     Address start,
4265     Address end,
4266     ObjectSlotCallback copy_object_func) {
4267   Address map_aligned_start = MapStartAlign(start);
4268   Address map_aligned_end   = MapEndAlign(end);
4269 
4270   bool contains_pointers_to_new_space = false;
4271 
4272   if (map_aligned_start != start) {
4273     Address prev_map = map_aligned_start - Map::kSize;
4274     ASSERT(Memory::Object_at(prev_map)->IsMap());
4275 
4276     Address pointer_fields_start =
4277         Max(start, prev_map + Map::kPointerFieldsBeginOffset);
4278 
4279     Address pointer_fields_end =
4280         Min(prev_map + Map::kPointerFieldsEndOffset, end);
4281 
4282     contains_pointers_to_new_space =
4283       IteratePointersInDirtyRegion(heap,
4284                                    pointer_fields_start,
4285                                    pointer_fields_end,
4286                                    copy_object_func)
4287         || contains_pointers_to_new_space;
4288   }
4289 
4290   contains_pointers_to_new_space =
4291     IteratePointersInDirtyMaps(map_aligned_start,
4292                                map_aligned_end,
4293                                copy_object_func)
4294       || contains_pointers_to_new_space;
4295 
4296   if (map_aligned_end != end) {
4297     ASSERT(Memory::Object_at(map_aligned_end)->IsMap());
4298 
4299     Address pointer_fields_start =
4300         map_aligned_end + Map::kPointerFieldsBeginOffset;
4301 
4302     Address pointer_fields_end =
4303         Min(end, map_aligned_end + Map::kPointerFieldsEndOffset);
4304 
4305     contains_pointers_to_new_space =
4306       IteratePointersInDirtyRegion(heap,
4307                                    pointer_fields_start,
4308                                    pointer_fields_end,
4309                                    copy_object_func)
4310         || contains_pointers_to_new_space;
4311   }
4312 
4313   return contains_pointers_to_new_space;
4314 }
4315 
4316 
IterateAndMarkPointersToFromSpace(Address start,Address end,ObjectSlotCallback callback)4317 void Heap::IterateAndMarkPointersToFromSpace(Address start,
4318                                              Address end,
4319                                              ObjectSlotCallback callback) {
4320   Address slot_address = start;
4321   Page* page = Page::FromAddress(start);
4322 
4323   uint32_t marks = page->GetRegionMarks();
4324 
4325   while (slot_address < end) {
4326     Object** slot = reinterpret_cast<Object**>(slot_address);
4327     if (InFromSpace(*slot)) {
4328       ASSERT((*slot)->IsHeapObject());
4329       callback(reinterpret_cast<HeapObject**>(slot));
4330       if (InNewSpace(*slot)) {
4331         ASSERT((*slot)->IsHeapObject());
4332         marks |= page->GetRegionMaskForAddress(slot_address);
4333       }
4334     }
4335     slot_address += kPointerSize;
4336   }
4337 
4338   page->SetRegionMarks(marks);
4339 }
4340 
4341 
IterateDirtyRegions(uint32_t marks,Address area_start,Address area_end,DirtyRegionCallback visit_dirty_region,ObjectSlotCallback copy_object_func)4342 uint32_t Heap::IterateDirtyRegions(
4343     uint32_t marks,
4344     Address area_start,
4345     Address area_end,
4346     DirtyRegionCallback visit_dirty_region,
4347     ObjectSlotCallback copy_object_func) {
4348   uint32_t newmarks = 0;
4349   uint32_t mask = 1;
4350 
4351   if (area_start >= area_end) {
4352     return newmarks;
4353   }
4354 
4355   Address region_start = area_start;
4356 
4357   // area_start does not necessarily coincide with start of the first region.
4358   // Thus to calculate the beginning of the next region we have to align
4359   // area_start by Page::kRegionSize.
4360   Address second_region =
4361       reinterpret_cast<Address>(
4362           reinterpret_cast<intptr_t>(area_start + Page::kRegionSize) &
4363           ~Page::kRegionAlignmentMask);
4364 
4365   // Next region might be beyond area_end.
4366   Address region_end = Min(second_region, area_end);
4367 
4368   if (marks & mask) {
4369     if (visit_dirty_region(this, region_start, region_end, copy_object_func)) {
4370       newmarks |= mask;
4371     }
4372   }
4373   mask <<= 1;
4374 
4375   // Iterate subsequent regions which fully lay inside [area_start, area_end[.
4376   region_start = region_end;
4377   region_end = region_start + Page::kRegionSize;
4378 
4379   while (region_end <= area_end) {
4380     if (marks & mask) {
4381       if (visit_dirty_region(this,
4382                              region_start,
4383                              region_end,
4384                              copy_object_func)) {
4385         newmarks |= mask;
4386       }
4387     }
4388 
4389     region_start = region_end;
4390     region_end = region_start + Page::kRegionSize;
4391 
4392     mask <<= 1;
4393   }
4394 
4395   if (region_start != area_end) {
4396     // A small piece of area left uniterated because area_end does not coincide
4397     // with region end. Check whether region covering last part of area is
4398     // dirty.
4399     if (marks & mask) {
4400       if (visit_dirty_region(this, region_start, area_end, copy_object_func)) {
4401         newmarks |= mask;
4402       }
4403     }
4404   }
4405 
4406   return newmarks;
4407 }
4408 
4409 
4410 
IterateDirtyRegions(PagedSpace * space,DirtyRegionCallback visit_dirty_region,ObjectSlotCallback copy_object_func,ExpectedPageWatermarkState expected_page_watermark_state)4411 void Heap::IterateDirtyRegions(
4412     PagedSpace* space,
4413     DirtyRegionCallback visit_dirty_region,
4414     ObjectSlotCallback copy_object_func,
4415     ExpectedPageWatermarkState expected_page_watermark_state) {
4416 
4417   PageIterator it(space, PageIterator::PAGES_IN_USE);
4418 
4419   while (it.has_next()) {
4420     Page* page = it.next();
4421     uint32_t marks = page->GetRegionMarks();
4422 
4423     if (marks != Page::kAllRegionsCleanMarks) {
4424       Address start = page->ObjectAreaStart();
4425 
4426       // Do not try to visit pointers beyond page allocation watermark.
4427       // Page can contain garbage pointers there.
4428       Address end;
4429 
4430       if ((expected_page_watermark_state == WATERMARK_SHOULD_BE_VALID) ||
4431           page->IsWatermarkValid()) {
4432         end = page->AllocationWatermark();
4433       } else {
4434         end = page->CachedAllocationWatermark();
4435       }
4436 
4437       ASSERT(space == old_pointer_space_ ||
4438              (space == map_space_ &&
4439               ((page->ObjectAreaStart() - end) % Map::kSize == 0)));
4440 
4441       page->SetRegionMarks(IterateDirtyRegions(marks,
4442                                                start,
4443                                                end,
4444                                                visit_dirty_region,
4445                                                copy_object_func));
4446     }
4447 
4448     // Mark page watermark as invalid to maintain watermark validity invariant.
4449     // See Page::FlipMeaningOfInvalidatedWatermarkFlag() for details.
4450     page->InvalidateWatermark(true);
4451   }
4452 }
4453 
4454 
IterateRoots(ObjectVisitor * v,VisitMode mode)4455 void Heap::IterateRoots(ObjectVisitor* v, VisitMode mode) {
4456   IterateStrongRoots(v, mode);
4457   IterateWeakRoots(v, mode);
4458 }
4459 
4460 
IterateWeakRoots(ObjectVisitor * v,VisitMode mode)4461 void Heap::IterateWeakRoots(ObjectVisitor* v, VisitMode mode) {
4462   v->VisitPointer(reinterpret_cast<Object**>(&roots_[kSymbolTableRootIndex]));
4463   v->Synchronize("symbol_table");
4464   if (mode != VISIT_ALL_IN_SCAVENGE) {
4465     // Scavenge collections have special processing for this.
4466     external_string_table_.Iterate(v);
4467   }
4468   v->Synchronize("external_string_table");
4469 }
4470 
4471 
IterateStrongRoots(ObjectVisitor * v,VisitMode mode)4472 void Heap::IterateStrongRoots(ObjectVisitor* v, VisitMode mode) {
4473   v->VisitPointers(&roots_[0], &roots_[kStrongRootListLength]);
4474   v->Synchronize("strong_root_list");
4475 
4476   v->VisitPointer(BitCast<Object**>(&hidden_symbol_));
4477   v->Synchronize("symbol");
4478 
4479   isolate_->bootstrapper()->Iterate(v);
4480   v->Synchronize("bootstrapper");
4481   isolate_->Iterate(v);
4482   v->Synchronize("top");
4483   Relocatable::Iterate(v);
4484   v->Synchronize("relocatable");
4485 
4486 #ifdef ENABLE_DEBUGGER_SUPPORT
4487   isolate_->debug()->Iterate(v);
4488 #endif
4489   v->Synchronize("debug");
4490   isolate_->compilation_cache()->Iterate(v);
4491   v->Synchronize("compilationcache");
4492 
4493   // Iterate over local handles in handle scopes.
4494   isolate_->handle_scope_implementer()->Iterate(v);
4495   v->Synchronize("handlescope");
4496 
4497   // Iterate over the builtin code objects and code stubs in the
4498   // heap. Note that it is not necessary to iterate over code objects
4499   // on scavenge collections.
4500   if (mode != VISIT_ALL_IN_SCAVENGE) {
4501     isolate_->builtins()->IterateBuiltins(v);
4502   }
4503   v->Synchronize("builtins");
4504 
4505   // Iterate over global handles.
4506   if (mode == VISIT_ONLY_STRONG) {
4507     isolate_->global_handles()->IterateStrongRoots(v);
4508   } else {
4509     isolate_->global_handles()->IterateAllRoots(v);
4510   }
4511   v->Synchronize("globalhandles");
4512 
4513   // Iterate over pointers being held by inactive threads.
4514   isolate_->thread_manager()->Iterate(v);
4515   v->Synchronize("threadmanager");
4516 
4517   // Iterate over the pointers the Serialization/Deserialization code is
4518   // holding.
4519   // During garbage collection this keeps the partial snapshot cache alive.
4520   // During deserialization of the startup snapshot this creates the partial
4521   // snapshot cache and deserializes the objects it refers to.  During
4522   // serialization this does nothing, since the partial snapshot cache is
4523   // empty.  However the next thing we do is create the partial snapshot,
4524   // filling up the partial snapshot cache with objects it needs as we go.
4525   SerializerDeserializer::Iterate(v);
4526   // We don't do a v->Synchronize call here, because in debug mode that will
4527   // output a flag to the snapshot.  However at this point the serializer and
4528   // deserializer are deliberately a little unsynchronized (see above) so the
4529   // checking of the sync flag in the snapshot would fail.
4530 }
4531 
4532 
4533 // TODO(1236194): Since the heap size is configurable on the command line
4534 // and through the API, we should gracefully handle the case that the heap
4535 // size is not big enough to fit all the initial objects.
ConfigureHeap(int max_semispace_size,int max_old_gen_size,int max_executable_size)4536 bool Heap::ConfigureHeap(int max_semispace_size,
4537                          int max_old_gen_size,
4538                          int max_executable_size) {
4539   if (HasBeenSetup()) return false;
4540 
4541   if (max_semispace_size > 0) max_semispace_size_ = max_semispace_size;
4542 
4543   if (Snapshot::IsEnabled()) {
4544     // If we are using a snapshot we always reserve the default amount
4545     // of memory for each semispace because code in the snapshot has
4546     // write-barrier code that relies on the size and alignment of new
4547     // space.  We therefore cannot use a larger max semispace size
4548     // than the default reserved semispace size.
4549     if (max_semispace_size_ > reserved_semispace_size_) {
4550       max_semispace_size_ = reserved_semispace_size_;
4551     }
4552   } else {
4553     // If we are not using snapshots we reserve space for the actual
4554     // max semispace size.
4555     reserved_semispace_size_ = max_semispace_size_;
4556   }
4557 
4558   if (max_old_gen_size > 0) max_old_generation_size_ = max_old_gen_size;
4559   if (max_executable_size > 0) {
4560     max_executable_size_ = RoundUp(max_executable_size, Page::kPageSize);
4561   }
4562 
4563   // The max executable size must be less than or equal to the max old
4564   // generation size.
4565   if (max_executable_size_ > max_old_generation_size_) {
4566     max_executable_size_ = max_old_generation_size_;
4567   }
4568 
4569   // The new space size must be a power of two to support single-bit testing
4570   // for containment.
4571   max_semispace_size_ = RoundUpToPowerOf2(max_semispace_size_);
4572   reserved_semispace_size_ = RoundUpToPowerOf2(reserved_semispace_size_);
4573   initial_semispace_size_ = Min(initial_semispace_size_, max_semispace_size_);
4574   external_allocation_limit_ = 10 * max_semispace_size_;
4575 
4576   // The old generation is paged.
4577   max_old_generation_size_ = RoundUp(max_old_generation_size_, Page::kPageSize);
4578 
4579   configured_ = true;
4580   return true;
4581 }
4582 
4583 
ConfigureHeapDefault()4584 bool Heap::ConfigureHeapDefault() {
4585   return ConfigureHeap(FLAG_max_new_space_size / 2 * KB,
4586                        FLAG_max_old_space_size * MB,
4587                        FLAG_max_executable_size * MB);
4588 }
4589 
4590 
RecordStats(HeapStats * stats,bool take_snapshot)4591 void Heap::RecordStats(HeapStats* stats, bool take_snapshot) {
4592   *stats->start_marker = HeapStats::kStartMarker;
4593   *stats->end_marker = HeapStats::kEndMarker;
4594   *stats->new_space_size = new_space_.SizeAsInt();
4595   *stats->new_space_capacity = static_cast<int>(new_space_.Capacity());
4596   *stats->old_pointer_space_size = old_pointer_space_->Size();
4597   *stats->old_pointer_space_capacity = old_pointer_space_->Capacity();
4598   *stats->old_data_space_size = old_data_space_->Size();
4599   *stats->old_data_space_capacity = old_data_space_->Capacity();
4600   *stats->code_space_size = code_space_->Size();
4601   *stats->code_space_capacity = code_space_->Capacity();
4602   *stats->map_space_size = map_space_->Size();
4603   *stats->map_space_capacity = map_space_->Capacity();
4604   *stats->cell_space_size = cell_space_->Size();
4605   *stats->cell_space_capacity = cell_space_->Capacity();
4606   *stats->lo_space_size = lo_space_->Size();
4607   isolate_->global_handles()->RecordStats(stats);
4608   *stats->memory_allocator_size = isolate()->memory_allocator()->Size();
4609   *stats->memory_allocator_capacity =
4610       isolate()->memory_allocator()->Size() +
4611       isolate()->memory_allocator()->Available();
4612   *stats->os_error = OS::GetLastError();
4613       isolate()->memory_allocator()->Available();
4614   if (take_snapshot) {
4615     HeapIterator iterator(HeapIterator::kFilterFreeListNodes);
4616     for (HeapObject* obj = iterator.next();
4617          obj != NULL;
4618          obj = iterator.next()) {
4619       InstanceType type = obj->map()->instance_type();
4620       ASSERT(0 <= type && type <= LAST_TYPE);
4621       stats->objects_per_type[type]++;
4622       stats->size_per_type[type] += obj->Size();
4623     }
4624   }
4625 }
4626 
4627 
PromotedSpaceSize()4628 intptr_t Heap::PromotedSpaceSize() {
4629   return old_pointer_space_->Size()
4630       + old_data_space_->Size()
4631       + code_space_->Size()
4632       + map_space_->Size()
4633       + cell_space_->Size()
4634       + lo_space_->Size();
4635 }
4636 
4637 
PromotedExternalMemorySize()4638 int Heap::PromotedExternalMemorySize() {
4639   if (amount_of_external_allocated_memory_
4640       <= amount_of_external_allocated_memory_at_last_global_gc_) return 0;
4641   return amount_of_external_allocated_memory_
4642       - amount_of_external_allocated_memory_at_last_global_gc_;
4643 }
4644 
4645 #ifdef DEBUG
4646 
4647 // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
4648 static const int kMarkTag = 2;
4649 
4650 
4651 class HeapDebugUtils {
4652  public:
HeapDebugUtils(Heap * heap)4653   explicit HeapDebugUtils(Heap* heap)
4654     : search_for_any_global_(false),
4655       search_target_(NULL),
4656       found_target_(false),
4657       object_stack_(20),
4658       heap_(heap) {
4659   }
4660 
4661   class MarkObjectVisitor : public ObjectVisitor {
4662    public:
MarkObjectVisitor(HeapDebugUtils * utils)4663     explicit MarkObjectVisitor(HeapDebugUtils* utils) : utils_(utils) { }
4664 
VisitPointers(Object ** start,Object ** end)4665     void VisitPointers(Object** start, Object** end) {
4666       // Copy all HeapObject pointers in [start, end)
4667       for (Object** p = start; p < end; p++) {
4668         if ((*p)->IsHeapObject())
4669           utils_->MarkObjectRecursively(p);
4670       }
4671     }
4672 
4673     HeapDebugUtils* utils_;
4674   };
4675 
MarkObjectRecursively(Object ** p)4676   void MarkObjectRecursively(Object** p) {
4677     if (!(*p)->IsHeapObject()) return;
4678 
4679     HeapObject* obj = HeapObject::cast(*p);
4680 
4681     Object* map = obj->map();
4682 
4683     if (!map->IsHeapObject()) return;  // visited before
4684 
4685     if (found_target_) return;  // stop if target found
4686     object_stack_.Add(obj);
4687     if ((search_for_any_global_ && obj->IsJSGlobalObject()) ||
4688         (!search_for_any_global_ && (obj == search_target_))) {
4689       found_target_ = true;
4690       return;
4691     }
4692 
4693     // not visited yet
4694     Map* map_p = reinterpret_cast<Map*>(HeapObject::cast(map));
4695 
4696     Address map_addr = map_p->address();
4697 
4698     obj->set_map(reinterpret_cast<Map*>(map_addr + kMarkTag));
4699 
4700     MarkObjectRecursively(&map);
4701 
4702     MarkObjectVisitor mark_visitor(this);
4703 
4704     obj->IterateBody(map_p->instance_type(), obj->SizeFromMap(map_p),
4705                      &mark_visitor);
4706 
4707     if (!found_target_)  // don't pop if found the target
4708       object_stack_.RemoveLast();
4709   }
4710 
4711 
4712   class UnmarkObjectVisitor : public ObjectVisitor {
4713    public:
UnmarkObjectVisitor(HeapDebugUtils * utils)4714     explicit UnmarkObjectVisitor(HeapDebugUtils* utils) : utils_(utils) { }
4715 
VisitPointers(Object ** start,Object ** end)4716     void VisitPointers(Object** start, Object** end) {
4717       // Copy all HeapObject pointers in [start, end)
4718       for (Object** p = start; p < end; p++) {
4719         if ((*p)->IsHeapObject())
4720           utils_->UnmarkObjectRecursively(p);
4721       }
4722     }
4723 
4724     HeapDebugUtils* utils_;
4725   };
4726 
4727 
UnmarkObjectRecursively(Object ** p)4728   void UnmarkObjectRecursively(Object** p) {
4729     if (!(*p)->IsHeapObject()) return;
4730 
4731     HeapObject* obj = HeapObject::cast(*p);
4732 
4733     Object* map = obj->map();
4734 
4735     if (map->IsHeapObject()) return;  // unmarked already
4736 
4737     Address map_addr = reinterpret_cast<Address>(map);
4738 
4739     map_addr -= kMarkTag;
4740 
4741     ASSERT_TAG_ALIGNED(map_addr);
4742 
4743     HeapObject* map_p = HeapObject::FromAddress(map_addr);
4744 
4745     obj->set_map(reinterpret_cast<Map*>(map_p));
4746 
4747     UnmarkObjectRecursively(reinterpret_cast<Object**>(&map_p));
4748 
4749     UnmarkObjectVisitor unmark_visitor(this);
4750 
4751     obj->IterateBody(Map::cast(map_p)->instance_type(),
4752                      obj->SizeFromMap(Map::cast(map_p)),
4753                      &unmark_visitor);
4754   }
4755 
4756 
MarkRootObjectRecursively(Object ** root)4757   void MarkRootObjectRecursively(Object** root) {
4758     if (search_for_any_global_) {
4759       ASSERT(search_target_ == NULL);
4760     } else {
4761       ASSERT(search_target_->IsHeapObject());
4762     }
4763     found_target_ = false;
4764     object_stack_.Clear();
4765 
4766     MarkObjectRecursively(root);
4767     UnmarkObjectRecursively(root);
4768 
4769     if (found_target_) {
4770       PrintF("=====================================\n");
4771       PrintF("====        Path to object       ====\n");
4772       PrintF("=====================================\n\n");
4773 
4774       ASSERT(!object_stack_.is_empty());
4775       for (int i = 0; i < object_stack_.length(); i++) {
4776         if (i > 0) PrintF("\n     |\n     |\n     V\n\n");
4777         Object* obj = object_stack_[i];
4778         obj->Print();
4779       }
4780       PrintF("=====================================\n");
4781     }
4782   }
4783 
4784   // Helper class for visiting HeapObjects recursively.
4785   class MarkRootVisitor: public ObjectVisitor {
4786    public:
MarkRootVisitor(HeapDebugUtils * utils)4787     explicit MarkRootVisitor(HeapDebugUtils* utils) : utils_(utils) { }
4788 
VisitPointers(Object ** start,Object ** end)4789     void VisitPointers(Object** start, Object** end) {
4790       // Visit all HeapObject pointers in [start, end)
4791       for (Object** p = start; p < end; p++) {
4792         if ((*p)->IsHeapObject())
4793           utils_->MarkRootObjectRecursively(p);
4794       }
4795     }
4796 
4797     HeapDebugUtils* utils_;
4798   };
4799 
4800   bool search_for_any_global_;
4801   Object* search_target_;
4802   bool found_target_;
4803   List<Object*> object_stack_;
4804   Heap* heap_;
4805 
4806   friend class Heap;
4807 };
4808 
4809 #endif
4810 
Setup(bool create_heap_objects)4811 bool Heap::Setup(bool create_heap_objects) {
4812 #ifdef DEBUG
4813   debug_utils_ = new HeapDebugUtils(this);
4814 #endif
4815 
4816   // Initialize heap spaces and initial maps and objects. Whenever something
4817   // goes wrong, just return false. The caller should check the results and
4818   // call Heap::TearDown() to release allocated memory.
4819   //
4820   // If the heap is not yet configured (eg, through the API), configure it.
4821   // Configuration is based on the flags new-space-size (really the semispace
4822   // size) and old-space-size if set or the initial values of semispace_size_
4823   // and old_generation_size_ otherwise.
4824   if (!configured_) {
4825     if (!ConfigureHeapDefault()) return false;
4826   }
4827 
4828   gc_initializer_mutex->Lock();
4829   static bool initialized_gc = false;
4830   if (!initialized_gc) {
4831     initialized_gc = true;
4832     InitializeScavengingVisitorsTables();
4833     NewSpaceScavenger::Initialize();
4834     MarkCompactCollector::Initialize();
4835   }
4836   gc_initializer_mutex->Unlock();
4837 
4838   MarkMapPointersAsEncoded(false);
4839 
4840   // Setup memory allocator and reserve a chunk of memory for new
4841   // space.  The chunk is double the size of the requested reserved
4842   // new space size to ensure that we can find a pair of semispaces that
4843   // are contiguous and aligned to their size.
4844   if (!isolate_->memory_allocator()->Setup(MaxReserved(), MaxExecutableSize()))
4845       return false;
4846   void* chunk =
4847       isolate_->memory_allocator()->ReserveInitialChunk(
4848           4 * reserved_semispace_size_);
4849   if (chunk == NULL) return false;
4850 
4851   // Align the pair of semispaces to their size, which must be a power
4852   // of 2.
4853   Address new_space_start =
4854       RoundUp(reinterpret_cast<byte*>(chunk), 2 * reserved_semispace_size_);
4855   if (!new_space_.Setup(new_space_start, 2 * reserved_semispace_size_)) {
4856     return false;
4857   }
4858 
4859   // Initialize old pointer space.
4860   old_pointer_space_ =
4861       new OldSpace(this,
4862                    max_old_generation_size_,
4863                    OLD_POINTER_SPACE,
4864                    NOT_EXECUTABLE);
4865   if (old_pointer_space_ == NULL) return false;
4866   if (!old_pointer_space_->Setup(NULL, 0)) return false;
4867 
4868   // Initialize old data space.
4869   old_data_space_ =
4870       new OldSpace(this,
4871                    max_old_generation_size_,
4872                    OLD_DATA_SPACE,
4873                    NOT_EXECUTABLE);
4874   if (old_data_space_ == NULL) return false;
4875   if (!old_data_space_->Setup(NULL, 0)) return false;
4876 
4877   // Initialize the code space, set its maximum capacity to the old
4878   // generation size. It needs executable memory.
4879   // On 64-bit platform(s), we put all code objects in a 2 GB range of
4880   // virtual address space, so that they can call each other with near calls.
4881   if (code_range_size_ > 0) {
4882     if (!isolate_->code_range()->Setup(code_range_size_)) {
4883       return false;
4884     }
4885   }
4886 
4887   code_space_ =
4888       new OldSpace(this, max_old_generation_size_, CODE_SPACE, EXECUTABLE);
4889   if (code_space_ == NULL) return false;
4890   if (!code_space_->Setup(NULL, 0)) return false;
4891 
4892   // Initialize map space.
4893   map_space_ = new MapSpace(this, FLAG_use_big_map_space
4894       ? max_old_generation_size_
4895       : MapSpace::kMaxMapPageIndex * Page::kPageSize,
4896       FLAG_max_map_space_pages,
4897       MAP_SPACE);
4898   if (map_space_ == NULL) return false;
4899   if (!map_space_->Setup(NULL, 0)) return false;
4900 
4901   // Initialize global property cell space.
4902   cell_space_ = new CellSpace(this, max_old_generation_size_, CELL_SPACE);
4903   if (cell_space_ == NULL) return false;
4904   if (!cell_space_->Setup(NULL, 0)) return false;
4905 
4906   // The large object code space may contain code or data.  We set the memory
4907   // to be non-executable here for safety, but this means we need to enable it
4908   // explicitly when allocating large code objects.
4909   lo_space_ = new LargeObjectSpace(this, LO_SPACE);
4910   if (lo_space_ == NULL) return false;
4911   if (!lo_space_->Setup()) return false;
4912 
4913   if (create_heap_objects) {
4914     // Create initial maps.
4915     if (!CreateInitialMaps()) return false;
4916     if (!CreateApiObjects()) return false;
4917 
4918     // Create initial objects
4919     if (!CreateInitialObjects()) return false;
4920 
4921     global_contexts_list_ = undefined_value();
4922   }
4923 
4924   LOG(isolate_, IntPtrTEvent("heap-capacity", Capacity()));
4925   LOG(isolate_, IntPtrTEvent("heap-available", Available()));
4926 
4927 #ifdef ENABLE_LOGGING_AND_PROFILING
4928   // This should be called only after initial objects have been created.
4929   isolate_->producer_heap_profile()->Setup();
4930 #endif
4931 
4932   return true;
4933 }
4934 
4935 
SetStackLimits()4936 void Heap::SetStackLimits() {
4937   ASSERT(isolate_ != NULL);
4938   ASSERT(isolate_ == isolate());
4939   // On 64 bit machines, pointers are generally out of range of Smis.  We write
4940   // something that looks like an out of range Smi to the GC.
4941 
4942   // Set up the special root array entries containing the stack limits.
4943   // These are actually addresses, but the tag makes the GC ignore it.
4944   roots_[kStackLimitRootIndex] =
4945       reinterpret_cast<Object*>(
4946           (isolate_->stack_guard()->jslimit() & ~kSmiTagMask) | kSmiTag);
4947   roots_[kRealStackLimitRootIndex] =
4948       reinterpret_cast<Object*>(
4949           (isolate_->stack_guard()->real_jslimit() & ~kSmiTagMask) | kSmiTag);
4950 }
4951 
4952 
TearDown()4953 void Heap::TearDown() {
4954   if (FLAG_print_cumulative_gc_stat) {
4955     PrintF("\n\n");
4956     PrintF("gc_count=%d ", gc_count_);
4957     PrintF("mark_sweep_count=%d ", ms_count_);
4958     PrintF("mark_compact_count=%d ", mc_count_);
4959     PrintF("max_gc_pause=%d ", get_max_gc_pause());
4960     PrintF("min_in_mutator=%d ", get_min_in_mutator());
4961     PrintF("max_alive_after_gc=%" V8_PTR_PREFIX "d ",
4962            get_max_alive_after_gc());
4963     PrintF("\n\n");
4964   }
4965 
4966   isolate_->global_handles()->TearDown();
4967 
4968   external_string_table_.TearDown();
4969 
4970   new_space_.TearDown();
4971 
4972   if (old_pointer_space_ != NULL) {
4973     old_pointer_space_->TearDown();
4974     delete old_pointer_space_;
4975     old_pointer_space_ = NULL;
4976   }
4977 
4978   if (old_data_space_ != NULL) {
4979     old_data_space_->TearDown();
4980     delete old_data_space_;
4981     old_data_space_ = NULL;
4982   }
4983 
4984   if (code_space_ != NULL) {
4985     code_space_->TearDown();
4986     delete code_space_;
4987     code_space_ = NULL;
4988   }
4989 
4990   if (map_space_ != NULL) {
4991     map_space_->TearDown();
4992     delete map_space_;
4993     map_space_ = NULL;
4994   }
4995 
4996   if (cell_space_ != NULL) {
4997     cell_space_->TearDown();
4998     delete cell_space_;
4999     cell_space_ = NULL;
5000   }
5001 
5002   if (lo_space_ != NULL) {
5003     lo_space_->TearDown();
5004     delete lo_space_;
5005     lo_space_ = NULL;
5006   }
5007 
5008   isolate_->memory_allocator()->TearDown();
5009 
5010 #ifdef DEBUG
5011   delete debug_utils_;
5012   debug_utils_ = NULL;
5013 #endif
5014 }
5015 
5016 
Shrink()5017 void Heap::Shrink() {
5018   // Try to shrink all paged spaces.
5019   PagedSpaces spaces;
5020   for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next())
5021     space->Shrink();
5022 }
5023 
5024 
5025 #ifdef ENABLE_HEAP_PROTECTION
5026 
Protect()5027 void Heap::Protect() {
5028   if (HasBeenSetup()) {
5029     AllSpaces spaces;
5030     for (Space* space = spaces.next(); space != NULL; space = spaces.next())
5031       space->Protect();
5032   }
5033 }
5034 
5035 
Unprotect()5036 void Heap::Unprotect() {
5037   if (HasBeenSetup()) {
5038     AllSpaces spaces;
5039     for (Space* space = spaces.next(); space != NULL; space = spaces.next())
5040       space->Unprotect();
5041   }
5042 }
5043 
5044 #endif
5045 
5046 
AddGCPrologueCallback(GCPrologueCallback callback,GCType gc_type)5047 void Heap::AddGCPrologueCallback(GCPrologueCallback callback, GCType gc_type) {
5048   ASSERT(callback != NULL);
5049   GCPrologueCallbackPair pair(callback, gc_type);
5050   ASSERT(!gc_prologue_callbacks_.Contains(pair));
5051   return gc_prologue_callbacks_.Add(pair);
5052 }
5053 
5054 
RemoveGCPrologueCallback(GCPrologueCallback callback)5055 void Heap::RemoveGCPrologueCallback(GCPrologueCallback callback) {
5056   ASSERT(callback != NULL);
5057   for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
5058     if (gc_prologue_callbacks_[i].callback == callback) {
5059       gc_prologue_callbacks_.Remove(i);
5060       return;
5061     }
5062   }
5063   UNREACHABLE();
5064 }
5065 
5066 
AddGCEpilogueCallback(GCEpilogueCallback callback,GCType gc_type)5067 void Heap::AddGCEpilogueCallback(GCEpilogueCallback callback, GCType gc_type) {
5068   ASSERT(callback != NULL);
5069   GCEpilogueCallbackPair pair(callback, gc_type);
5070   ASSERT(!gc_epilogue_callbacks_.Contains(pair));
5071   return gc_epilogue_callbacks_.Add(pair);
5072 }
5073 
5074 
RemoveGCEpilogueCallback(GCEpilogueCallback callback)5075 void Heap::RemoveGCEpilogueCallback(GCEpilogueCallback callback) {
5076   ASSERT(callback != NULL);
5077   for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
5078     if (gc_epilogue_callbacks_[i].callback == callback) {
5079       gc_epilogue_callbacks_.Remove(i);
5080       return;
5081     }
5082   }
5083   UNREACHABLE();
5084 }
5085 
5086 
5087 #ifdef DEBUG
5088 
5089 class PrintHandleVisitor: public ObjectVisitor {
5090  public:
VisitPointers(Object ** start,Object ** end)5091   void VisitPointers(Object** start, Object** end) {
5092     for (Object** p = start; p < end; p++)
5093       PrintF("  handle %p to %p\n",
5094              reinterpret_cast<void*>(p),
5095              reinterpret_cast<void*>(*p));
5096   }
5097 };
5098 
PrintHandles()5099 void Heap::PrintHandles() {
5100   PrintF("Handles:\n");
5101   PrintHandleVisitor v;
5102   isolate_->handle_scope_implementer()->Iterate(&v);
5103 }
5104 
5105 #endif
5106 
5107 
next()5108 Space* AllSpaces::next() {
5109   switch (counter_++) {
5110     case NEW_SPACE:
5111       return HEAP->new_space();
5112     case OLD_POINTER_SPACE:
5113       return HEAP->old_pointer_space();
5114     case OLD_DATA_SPACE:
5115       return HEAP->old_data_space();
5116     case CODE_SPACE:
5117       return HEAP->code_space();
5118     case MAP_SPACE:
5119       return HEAP->map_space();
5120     case CELL_SPACE:
5121       return HEAP->cell_space();
5122     case LO_SPACE:
5123       return HEAP->lo_space();
5124     default:
5125       return NULL;
5126   }
5127 }
5128 
5129 
next()5130 PagedSpace* PagedSpaces::next() {
5131   switch (counter_++) {
5132     case OLD_POINTER_SPACE:
5133       return HEAP->old_pointer_space();
5134     case OLD_DATA_SPACE:
5135       return HEAP->old_data_space();
5136     case CODE_SPACE:
5137       return HEAP->code_space();
5138     case MAP_SPACE:
5139       return HEAP->map_space();
5140     case CELL_SPACE:
5141       return HEAP->cell_space();
5142     default:
5143       return NULL;
5144   }
5145 }
5146 
5147 
5148 
next()5149 OldSpace* OldSpaces::next() {
5150   switch (counter_++) {
5151     case OLD_POINTER_SPACE:
5152       return HEAP->old_pointer_space();
5153     case OLD_DATA_SPACE:
5154       return HEAP->old_data_space();
5155     case CODE_SPACE:
5156       return HEAP->code_space();
5157     default:
5158       return NULL;
5159   }
5160 }
5161 
5162 
SpaceIterator()5163 SpaceIterator::SpaceIterator()
5164     : current_space_(FIRST_SPACE),
5165       iterator_(NULL),
5166       size_func_(NULL) {
5167 }
5168 
5169 
SpaceIterator(HeapObjectCallback size_func)5170 SpaceIterator::SpaceIterator(HeapObjectCallback size_func)
5171     : current_space_(FIRST_SPACE),
5172       iterator_(NULL),
5173       size_func_(size_func) {
5174 }
5175 
5176 
~SpaceIterator()5177 SpaceIterator::~SpaceIterator() {
5178   // Delete active iterator if any.
5179   delete iterator_;
5180 }
5181 
5182 
has_next()5183 bool SpaceIterator::has_next() {
5184   // Iterate until no more spaces.
5185   return current_space_ != LAST_SPACE;
5186 }
5187 
5188 
next()5189 ObjectIterator* SpaceIterator::next() {
5190   if (iterator_ != NULL) {
5191     delete iterator_;
5192     iterator_ = NULL;
5193     // Move to the next space
5194     current_space_++;
5195     if (current_space_ > LAST_SPACE) {
5196       return NULL;
5197     }
5198   }
5199 
5200   // Return iterator for the new current space.
5201   return CreateIterator();
5202 }
5203 
5204 
5205 // Create an iterator for the space to iterate.
CreateIterator()5206 ObjectIterator* SpaceIterator::CreateIterator() {
5207   ASSERT(iterator_ == NULL);
5208 
5209   switch (current_space_) {
5210     case NEW_SPACE:
5211       iterator_ = new SemiSpaceIterator(HEAP->new_space(), size_func_);
5212       break;
5213     case OLD_POINTER_SPACE:
5214       iterator_ = new HeapObjectIterator(HEAP->old_pointer_space(), size_func_);
5215       break;
5216     case OLD_DATA_SPACE:
5217       iterator_ = new HeapObjectIterator(HEAP->old_data_space(), size_func_);
5218       break;
5219     case CODE_SPACE:
5220       iterator_ = new HeapObjectIterator(HEAP->code_space(), size_func_);
5221       break;
5222     case MAP_SPACE:
5223       iterator_ = new HeapObjectIterator(HEAP->map_space(), size_func_);
5224       break;
5225     case CELL_SPACE:
5226       iterator_ = new HeapObjectIterator(HEAP->cell_space(), size_func_);
5227       break;
5228     case LO_SPACE:
5229       iterator_ = new LargeObjectIterator(HEAP->lo_space(), size_func_);
5230       break;
5231   }
5232 
5233   // Return the newly allocated iterator;
5234   ASSERT(iterator_ != NULL);
5235   return iterator_;
5236 }
5237 
5238 
5239 class HeapObjectsFilter {
5240  public:
~HeapObjectsFilter()5241   virtual ~HeapObjectsFilter() {}
5242   virtual bool SkipObject(HeapObject* object) = 0;
5243 };
5244 
5245 
5246 class FreeListNodesFilter : public HeapObjectsFilter {
5247  public:
FreeListNodesFilter()5248   FreeListNodesFilter() {
5249     MarkFreeListNodes();
5250   }
5251 
SkipObject(HeapObject * object)5252   bool SkipObject(HeapObject* object) {
5253     if (object->IsMarked()) {
5254       object->ClearMark();
5255       return true;
5256     } else {
5257       return false;
5258     }
5259   }
5260 
5261  private:
MarkFreeListNodes()5262   void MarkFreeListNodes() {
5263     Heap* heap = HEAP;
5264     heap->old_pointer_space()->MarkFreeListNodes();
5265     heap->old_data_space()->MarkFreeListNodes();
5266     MarkCodeSpaceFreeListNodes(heap);
5267     heap->map_space()->MarkFreeListNodes();
5268     heap->cell_space()->MarkFreeListNodes();
5269   }
5270 
MarkCodeSpaceFreeListNodes(Heap * heap)5271   void MarkCodeSpaceFreeListNodes(Heap* heap) {
5272     // For code space, using FreeListNode::IsFreeListNode is OK.
5273     HeapObjectIterator iter(heap->code_space());
5274     for (HeapObject* obj = iter.next_object();
5275          obj != NULL;
5276          obj = iter.next_object()) {
5277       if (FreeListNode::IsFreeListNode(obj)) obj->SetMark();
5278     }
5279   }
5280 
5281   AssertNoAllocation no_alloc;
5282 };
5283 
5284 
5285 class UnreachableObjectsFilter : public HeapObjectsFilter {
5286  public:
UnreachableObjectsFilter()5287   UnreachableObjectsFilter() {
5288     MarkUnreachableObjects();
5289   }
5290 
SkipObject(HeapObject * object)5291   bool SkipObject(HeapObject* object) {
5292     if (object->IsMarked()) {
5293       object->ClearMark();
5294       return true;
5295     } else {
5296       return false;
5297     }
5298   }
5299 
5300  private:
5301   class UnmarkingVisitor : public ObjectVisitor {
5302    public:
UnmarkingVisitor()5303     UnmarkingVisitor() : list_(10) {}
5304 
VisitPointers(Object ** start,Object ** end)5305     void VisitPointers(Object** start, Object** end) {
5306       for (Object** p = start; p < end; p++) {
5307         if (!(*p)->IsHeapObject()) continue;
5308         HeapObject* obj = HeapObject::cast(*p);
5309         if (obj->IsMarked()) {
5310           obj->ClearMark();
5311           list_.Add(obj);
5312         }
5313       }
5314     }
5315 
can_process()5316     bool can_process() { return !list_.is_empty(); }
5317 
ProcessNext()5318     void ProcessNext() {
5319       HeapObject* obj = list_.RemoveLast();
5320       obj->Iterate(this);
5321     }
5322 
5323    private:
5324     List<HeapObject*> list_;
5325   };
5326 
MarkUnreachableObjects()5327   void MarkUnreachableObjects() {
5328     HeapIterator iterator;
5329     for (HeapObject* obj = iterator.next();
5330          obj != NULL;
5331          obj = iterator.next()) {
5332       obj->SetMark();
5333     }
5334     UnmarkingVisitor visitor;
5335     HEAP->IterateRoots(&visitor, VISIT_ALL);
5336     while (visitor.can_process())
5337       visitor.ProcessNext();
5338   }
5339 
5340   AssertNoAllocation no_alloc;
5341 };
5342 
5343 
HeapIterator()5344 HeapIterator::HeapIterator()
5345     : filtering_(HeapIterator::kNoFiltering),
5346       filter_(NULL) {
5347   Init();
5348 }
5349 
5350 
HeapIterator(HeapIterator::HeapObjectsFiltering filtering)5351 HeapIterator::HeapIterator(HeapIterator::HeapObjectsFiltering filtering)
5352     : filtering_(filtering),
5353       filter_(NULL) {
5354   Init();
5355 }
5356 
5357 
~HeapIterator()5358 HeapIterator::~HeapIterator() {
5359   Shutdown();
5360 }
5361 
5362 
Init()5363 void HeapIterator::Init() {
5364   // Start the iteration.
5365   space_iterator_ = filtering_ == kNoFiltering ? new SpaceIterator :
5366       new SpaceIterator(MarkCompactCollector::SizeOfMarkedObject);
5367   switch (filtering_) {
5368     case kFilterFreeListNodes:
5369       filter_ = new FreeListNodesFilter;
5370       break;
5371     case kFilterUnreachable:
5372       filter_ = new UnreachableObjectsFilter;
5373       break;
5374     default:
5375       break;
5376   }
5377   object_iterator_ = space_iterator_->next();
5378 }
5379 
5380 
Shutdown()5381 void HeapIterator::Shutdown() {
5382 #ifdef DEBUG
5383   // Assert that in filtering mode we have iterated through all
5384   // objects. Otherwise, heap will be left in an inconsistent state.
5385   if (filtering_ != kNoFiltering) {
5386     ASSERT(object_iterator_ == NULL);
5387   }
5388 #endif
5389   // Make sure the last iterator is deallocated.
5390   delete space_iterator_;
5391   space_iterator_ = NULL;
5392   object_iterator_ = NULL;
5393   delete filter_;
5394   filter_ = NULL;
5395 }
5396 
5397 
next()5398 HeapObject* HeapIterator::next() {
5399   if (filter_ == NULL) return NextObject();
5400 
5401   HeapObject* obj = NextObject();
5402   while (obj != NULL && filter_->SkipObject(obj)) obj = NextObject();
5403   return obj;
5404 }
5405 
5406 
NextObject()5407 HeapObject* HeapIterator::NextObject() {
5408   // No iterator means we are done.
5409   if (object_iterator_ == NULL) return NULL;
5410 
5411   if (HeapObject* obj = object_iterator_->next_object()) {
5412     // If the current iterator has more objects we are fine.
5413     return obj;
5414   } else {
5415     // Go though the spaces looking for one that has objects.
5416     while (space_iterator_->has_next()) {
5417       object_iterator_ = space_iterator_->next();
5418       if (HeapObject* obj = object_iterator_->next_object()) {
5419         return obj;
5420       }
5421     }
5422   }
5423   // Done with the last space.
5424   object_iterator_ = NULL;
5425   return NULL;
5426 }
5427 
5428 
reset()5429 void HeapIterator::reset() {
5430   // Restart the iterator.
5431   Shutdown();
5432   Init();
5433 }
5434 
5435 
5436 #if defined(DEBUG) || defined(LIVE_OBJECT_LIST)
5437 
5438 Object* const PathTracer::kAnyGlobalObject = reinterpret_cast<Object*>(NULL);
5439 
5440 class PathTracer::MarkVisitor: public ObjectVisitor {
5441  public:
MarkVisitor(PathTracer * tracer)5442   explicit MarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
VisitPointers(Object ** start,Object ** end)5443   void VisitPointers(Object** start, Object** end) {
5444     // Scan all HeapObject pointers in [start, end)
5445     for (Object** p = start; !tracer_->found() && (p < end); p++) {
5446       if ((*p)->IsHeapObject())
5447         tracer_->MarkRecursively(p, this);
5448     }
5449   }
5450 
5451  private:
5452   PathTracer* tracer_;
5453 };
5454 
5455 
5456 class PathTracer::UnmarkVisitor: public ObjectVisitor {
5457  public:
UnmarkVisitor(PathTracer * tracer)5458   explicit UnmarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
VisitPointers(Object ** start,Object ** end)5459   void VisitPointers(Object** start, Object** end) {
5460     // Scan all HeapObject pointers in [start, end)
5461     for (Object** p = start; p < end; p++) {
5462       if ((*p)->IsHeapObject())
5463         tracer_->UnmarkRecursively(p, this);
5464     }
5465   }
5466 
5467  private:
5468   PathTracer* tracer_;
5469 };
5470 
5471 
VisitPointers(Object ** start,Object ** end)5472 void PathTracer::VisitPointers(Object** start, Object** end) {
5473   bool done = ((what_to_find_ == FIND_FIRST) && found_target_);
5474   // Visit all HeapObject pointers in [start, end)
5475   for (Object** p = start; !done && (p < end); p++) {
5476     if ((*p)->IsHeapObject()) {
5477       TracePathFrom(p);
5478       done = ((what_to_find_ == FIND_FIRST) && found_target_);
5479     }
5480   }
5481 }
5482 
5483 
Reset()5484 void PathTracer::Reset() {
5485   found_target_ = false;
5486   object_stack_.Clear();
5487 }
5488 
5489 
TracePathFrom(Object ** root)5490 void PathTracer::TracePathFrom(Object** root) {
5491   ASSERT((search_target_ == kAnyGlobalObject) ||
5492          search_target_->IsHeapObject());
5493   found_target_in_trace_ = false;
5494   object_stack_.Clear();
5495 
5496   MarkVisitor mark_visitor(this);
5497   MarkRecursively(root, &mark_visitor);
5498 
5499   UnmarkVisitor unmark_visitor(this);
5500   UnmarkRecursively(root, &unmark_visitor);
5501 
5502   ProcessResults();
5503 }
5504 
5505 
MarkRecursively(Object ** p,MarkVisitor * mark_visitor)5506 void PathTracer::MarkRecursively(Object** p, MarkVisitor* mark_visitor) {
5507   if (!(*p)->IsHeapObject()) return;
5508 
5509   HeapObject* obj = HeapObject::cast(*p);
5510 
5511   Object* map = obj->map();
5512 
5513   if (!map->IsHeapObject()) return;  // visited before
5514 
5515   if (found_target_in_trace_) return;  // stop if target found
5516   object_stack_.Add(obj);
5517   if (((search_target_ == kAnyGlobalObject) && obj->IsJSGlobalObject()) ||
5518       (obj == search_target_)) {
5519     found_target_in_trace_ = true;
5520     found_target_ = true;
5521     return;
5522   }
5523 
5524   bool is_global_context = obj->IsGlobalContext();
5525 
5526   // not visited yet
5527   Map* map_p = reinterpret_cast<Map*>(HeapObject::cast(map));
5528 
5529   Address map_addr = map_p->address();
5530 
5531   obj->set_map(reinterpret_cast<Map*>(map_addr + kMarkTag));
5532 
5533   // Scan the object body.
5534   if (is_global_context && (visit_mode_ == VISIT_ONLY_STRONG)) {
5535     // This is specialized to scan Context's properly.
5536     Object** start = reinterpret_cast<Object**>(obj->address() +
5537                                                 Context::kHeaderSize);
5538     Object** end = reinterpret_cast<Object**>(obj->address() +
5539         Context::kHeaderSize + Context::FIRST_WEAK_SLOT * kPointerSize);
5540     mark_visitor->VisitPointers(start, end);
5541   } else {
5542     obj->IterateBody(map_p->instance_type(),
5543                      obj->SizeFromMap(map_p),
5544                      mark_visitor);
5545   }
5546 
5547   // Scan the map after the body because the body is a lot more interesting
5548   // when doing leak detection.
5549   MarkRecursively(&map, mark_visitor);
5550 
5551   if (!found_target_in_trace_)  // don't pop if found the target
5552     object_stack_.RemoveLast();
5553 }
5554 
5555 
UnmarkRecursively(Object ** p,UnmarkVisitor * unmark_visitor)5556 void PathTracer::UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor) {
5557   if (!(*p)->IsHeapObject()) return;
5558 
5559   HeapObject* obj = HeapObject::cast(*p);
5560 
5561   Object* map = obj->map();
5562 
5563   if (map->IsHeapObject()) return;  // unmarked already
5564 
5565   Address map_addr = reinterpret_cast<Address>(map);
5566 
5567   map_addr -= kMarkTag;
5568 
5569   ASSERT_TAG_ALIGNED(map_addr);
5570 
5571   HeapObject* map_p = HeapObject::FromAddress(map_addr);
5572 
5573   obj->set_map(reinterpret_cast<Map*>(map_p));
5574 
5575   UnmarkRecursively(reinterpret_cast<Object**>(&map_p), unmark_visitor);
5576 
5577   obj->IterateBody(Map::cast(map_p)->instance_type(),
5578                    obj->SizeFromMap(Map::cast(map_p)),
5579                    unmark_visitor);
5580 }
5581 
5582 
ProcessResults()5583 void PathTracer::ProcessResults() {
5584   if (found_target_) {
5585     PrintF("=====================================\n");
5586     PrintF("====        Path to object       ====\n");
5587     PrintF("=====================================\n\n");
5588 
5589     ASSERT(!object_stack_.is_empty());
5590     for (int i = 0; i < object_stack_.length(); i++) {
5591       if (i > 0) PrintF("\n     |\n     |\n     V\n\n");
5592       Object* obj = object_stack_[i];
5593 #ifdef OBJECT_PRINT
5594       obj->Print();
5595 #else
5596       obj->ShortPrint();
5597 #endif
5598     }
5599     PrintF("=====================================\n");
5600   }
5601 }
5602 #endif  // DEBUG || LIVE_OBJECT_LIST
5603 
5604 
5605 #ifdef DEBUG
5606 // Triggers a depth-first traversal of reachable objects from roots
5607 // and finds a path to a specific heap object and prints it.
TracePathToObject(Object * target)5608 void Heap::TracePathToObject(Object* target) {
5609   PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL);
5610   IterateRoots(&tracer, VISIT_ONLY_STRONG);
5611 }
5612 
5613 
5614 // Triggers a depth-first traversal of reachable objects from roots
5615 // and finds a path to any global object and prints it. Useful for
5616 // determining the source for leaks of global objects.
TracePathToGlobal()5617 void Heap::TracePathToGlobal() {
5618   PathTracer tracer(PathTracer::kAnyGlobalObject,
5619                     PathTracer::FIND_ALL,
5620                     VISIT_ALL);
5621   IterateRoots(&tracer, VISIT_ONLY_STRONG);
5622 }
5623 #endif
5624 
5625 
CountTotalHolesSize()5626 static intptr_t CountTotalHolesSize() {
5627   intptr_t holes_size = 0;
5628   OldSpaces spaces;
5629   for (OldSpace* space = spaces.next();
5630        space != NULL;
5631        space = spaces.next()) {
5632     holes_size += space->Waste() + space->AvailableFree();
5633   }
5634   return holes_size;
5635 }
5636 
5637 
GCTracer(Heap * heap)5638 GCTracer::GCTracer(Heap* heap)
5639     : start_time_(0.0),
5640       start_size_(0),
5641       gc_count_(0),
5642       full_gc_count_(0),
5643       is_compacting_(false),
5644       marked_count_(0),
5645       allocated_since_last_gc_(0),
5646       spent_in_mutator_(0),
5647       promoted_objects_size_(0),
5648       heap_(heap) {
5649   // These two fields reflect the state of the previous full collection.
5650   // Set them before they are changed by the collector.
5651   previous_has_compacted_ = heap_->mark_compact_collector_.HasCompacted();
5652   previous_marked_count_ =
5653       heap_->mark_compact_collector_.previous_marked_count();
5654   if (!FLAG_trace_gc && !FLAG_print_cumulative_gc_stat) return;
5655   start_time_ = OS::TimeCurrentMillis();
5656   start_size_ = heap_->SizeOfObjects();
5657 
5658   for (int i = 0; i < Scope::kNumberOfScopes; i++) {
5659     scopes_[i] = 0;
5660   }
5661 
5662   in_free_list_or_wasted_before_gc_ = CountTotalHolesSize();
5663 
5664   allocated_since_last_gc_ =
5665       heap_->SizeOfObjects() - heap_->alive_after_last_gc_;
5666 
5667   if (heap_->last_gc_end_timestamp_ > 0) {
5668     spent_in_mutator_ = Max(start_time_ - heap_->last_gc_end_timestamp_, 0.0);
5669   }
5670 }
5671 
5672 
~GCTracer()5673 GCTracer::~GCTracer() {
5674   // Printf ONE line iff flag is set.
5675   if (!FLAG_trace_gc && !FLAG_print_cumulative_gc_stat) return;
5676 
5677   bool first_gc = (heap_->last_gc_end_timestamp_ == 0);
5678 
5679   heap_->alive_after_last_gc_ = heap_->SizeOfObjects();
5680   heap_->last_gc_end_timestamp_ = OS::TimeCurrentMillis();
5681 
5682   int time = static_cast<int>(heap_->last_gc_end_timestamp_ - start_time_);
5683 
5684   // Update cumulative GC statistics if required.
5685   if (FLAG_print_cumulative_gc_stat) {
5686     heap_->max_gc_pause_ = Max(heap_->max_gc_pause_, time);
5687     heap_->max_alive_after_gc_ = Max(heap_->max_alive_after_gc_,
5688                                      heap_->alive_after_last_gc_);
5689     if (!first_gc) {
5690       heap_->min_in_mutator_ = Min(heap_->min_in_mutator_,
5691                                    static_cast<int>(spent_in_mutator_));
5692     }
5693   }
5694 
5695   if (!FLAG_trace_gc_nvp) {
5696     int external_time = static_cast<int>(scopes_[Scope::EXTERNAL]);
5697 
5698     PrintF("%s %.1f -> %.1f MB, ",
5699            CollectorString(),
5700            static_cast<double>(start_size_) / MB,
5701            SizeOfHeapObjects());
5702 
5703     if (external_time > 0) PrintF("%d / ", external_time);
5704     PrintF("%d ms.\n", time);
5705   } else {
5706     PrintF("pause=%d ", time);
5707     PrintF("mutator=%d ",
5708            static_cast<int>(spent_in_mutator_));
5709 
5710     PrintF("gc=");
5711     switch (collector_) {
5712       case SCAVENGER:
5713         PrintF("s");
5714         break;
5715       case MARK_COMPACTOR:
5716         PrintF("%s",
5717                heap_->mark_compact_collector_.HasCompacted() ? "mc" : "ms");
5718         break;
5719       default:
5720         UNREACHABLE();
5721     }
5722     PrintF(" ");
5723 
5724     PrintF("external=%d ", static_cast<int>(scopes_[Scope::EXTERNAL]));
5725     PrintF("mark=%d ", static_cast<int>(scopes_[Scope::MC_MARK]));
5726     PrintF("sweep=%d ", static_cast<int>(scopes_[Scope::MC_SWEEP]));
5727     PrintF("sweepns=%d ", static_cast<int>(scopes_[Scope::MC_SWEEP_NEWSPACE]));
5728     PrintF("compact=%d ", static_cast<int>(scopes_[Scope::MC_COMPACT]));
5729 
5730     PrintF("total_size_before=%" V8_PTR_PREFIX "d ", start_size_);
5731     PrintF("total_size_after=%" V8_PTR_PREFIX "d ", heap_->SizeOfObjects());
5732     PrintF("holes_size_before=%" V8_PTR_PREFIX "d ",
5733            in_free_list_or_wasted_before_gc_);
5734     PrintF("holes_size_after=%" V8_PTR_PREFIX "d ", CountTotalHolesSize());
5735 
5736     PrintF("allocated=%" V8_PTR_PREFIX "d ", allocated_since_last_gc_);
5737     PrintF("promoted=%" V8_PTR_PREFIX "d ", promoted_objects_size_);
5738 
5739     PrintF("\n");
5740   }
5741 
5742 #if defined(ENABLE_LOGGING_AND_PROFILING)
5743   heap_->PrintShortHeapStatistics();
5744 #endif
5745 }
5746 
5747 
CollectorString()5748 const char* GCTracer::CollectorString() {
5749   switch (collector_) {
5750     case SCAVENGER:
5751       return "Scavenge";
5752     case MARK_COMPACTOR:
5753       return heap_->mark_compact_collector_.HasCompacted() ? "Mark-compact"
5754                                                            : "Mark-sweep";
5755   }
5756   return "Unknown GC";
5757 }
5758 
5759 
Hash(Map * map,String * name)5760 int KeyedLookupCache::Hash(Map* map, String* name) {
5761   // Uses only lower 32 bits if pointers are larger.
5762   uintptr_t addr_hash =
5763       static_cast<uint32_t>(reinterpret_cast<uintptr_t>(map)) >> kMapHashShift;
5764   return static_cast<uint32_t>((addr_hash ^ name->Hash()) & kCapacityMask);
5765 }
5766 
5767 
Lookup(Map * map,String * name)5768 int KeyedLookupCache::Lookup(Map* map, String* name) {
5769   int index = Hash(map, name);
5770   Key& key = keys_[index];
5771   if ((key.map == map) && key.name->Equals(name)) {
5772     return field_offsets_[index];
5773   }
5774   return kNotFound;
5775 }
5776 
5777 
Update(Map * map,String * name,int field_offset)5778 void KeyedLookupCache::Update(Map* map, String* name, int field_offset) {
5779   String* symbol;
5780   if (HEAP->LookupSymbolIfExists(name, &symbol)) {
5781     int index = Hash(map, symbol);
5782     Key& key = keys_[index];
5783     key.map = map;
5784     key.name = symbol;
5785     field_offsets_[index] = field_offset;
5786   }
5787 }
5788 
5789 
Clear()5790 void KeyedLookupCache::Clear() {
5791   for (int index = 0; index < kLength; index++) keys_[index].map = NULL;
5792 }
5793 
5794 
Clear()5795 void DescriptorLookupCache::Clear() {
5796   for (int index = 0; index < kLength; index++) keys_[index].array = NULL;
5797 }
5798 
5799 
5800 #ifdef DEBUG
GarbageCollectionGreedyCheck()5801 void Heap::GarbageCollectionGreedyCheck() {
5802   ASSERT(FLAG_gc_greedy);
5803   if (isolate_->bootstrapper()->IsActive()) return;
5804   if (disallow_allocation_failure()) return;
5805   CollectGarbage(NEW_SPACE);
5806 }
5807 #endif
5808 
5809 
SubCache(Type t)5810 TranscendentalCache::SubCache::SubCache(Type t)
5811   : type_(t),
5812     isolate_(Isolate::Current()) {
5813   uint32_t in0 = 0xffffffffu;  // Bit-pattern for a NaN that isn't
5814   uint32_t in1 = 0xffffffffu;  // generated by the FPU.
5815   for (int i = 0; i < kCacheSize; i++) {
5816     elements_[i].in[0] = in0;
5817     elements_[i].in[1] = in1;
5818     elements_[i].output = NULL;
5819   }
5820 }
5821 
5822 
Clear()5823 void TranscendentalCache::Clear() {
5824   for (int i = 0; i < kNumberOfCaches; i++) {
5825     if (caches_[i] != NULL) {
5826       delete caches_[i];
5827       caches_[i] = NULL;
5828     }
5829   }
5830 }
5831 
5832 
CleanUp()5833 void ExternalStringTable::CleanUp() {
5834   int last = 0;
5835   for (int i = 0; i < new_space_strings_.length(); ++i) {
5836     if (new_space_strings_[i] == heap_->raw_unchecked_null_value()) continue;
5837     if (heap_->InNewSpace(new_space_strings_[i])) {
5838       new_space_strings_[last++] = new_space_strings_[i];
5839     } else {
5840       old_space_strings_.Add(new_space_strings_[i]);
5841     }
5842   }
5843   new_space_strings_.Rewind(last);
5844   last = 0;
5845   for (int i = 0; i < old_space_strings_.length(); ++i) {
5846     if (old_space_strings_[i] == heap_->raw_unchecked_null_value()) continue;
5847     ASSERT(!heap_->InNewSpace(old_space_strings_[i]));
5848     old_space_strings_[last++] = old_space_strings_[i];
5849   }
5850   old_space_strings_.Rewind(last);
5851   Verify();
5852 }
5853 
5854 
TearDown()5855 void ExternalStringTable::TearDown() {
5856   new_space_strings_.Free();
5857   old_space_strings_.Free();
5858 }
5859 
5860 
5861 } }  // namespace v8::internal
5862