• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License"); you may not
5  * use this file except in compliance with the License. You may obtain a copy of
6  * the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
12  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
13  * License for the specific language governing permissions and limitations under
14  * the License.
15  */
16 
17 package com.android.inputmethod.latin;
18 
19 import com.android.inputmethod.latin.FusionDictionary.CharGroup;
20 import com.android.inputmethod.latin.FusionDictionary.Node;
21 import com.android.inputmethod.latin.FusionDictionary.WeightedString;
22 
23 import java.io.FileNotFoundException;
24 import java.io.IOException;
25 import java.io.OutputStream;
26 import java.io.RandomAccessFile;
27 import java.util.ArrayList;
28 import java.util.Arrays;
29 import java.util.Map;
30 import java.util.TreeMap;
31 
32 /**
33  * Reads and writes XML files for a FusionDictionary.
34  *
35  * All the methods in this class are static.
36  */
37 public class BinaryDictInputOutput {
38 
39     /* Node layout is as follows:
40      *   | addressType                         xx     : mask with MASK_GROUP_ADDRESS_TYPE
41      *                                 2 bits, 00 = no children : FLAG_GROUP_ADDRESS_TYPE_NOADDRESS
42      * f |                                     01 = 1 byte      : FLAG_GROUP_ADDRESS_TYPE_ONEBYTE
43      * l |                                     10 = 2 bytes     : FLAG_GROUP_ADDRESS_TYPE_TWOBYTES
44      * a |                                     11 = 3 bytes     : FLAG_GROUP_ADDRESS_TYPE_THREEBYTES
45      * g | has several chars ?         1 bit, 1 = yes, 0 = no   : FLAG_HAS_MULTIPLE_CHARS
46      * s | has a terminal ?            1 bit, 1 = yes, 0 = no   : FLAG_IS_TERMINAL
47      *   | reserved                    1 bit, 1 = yes, 0 = no
48      *   | has bigrams ?               1 bit, 1 = yes, 0 = no   : FLAG_HAS_BIGRAMS
49      *
50      * c | IF FLAG_HAS_MULTIPLE_CHARS
51      * h |   char, char, char, char    n * (1 or 3 bytes) : use CharGroupInfo for i/o helpers
52      * a |   end                       1 byte, = 0
53      * r | ELSE
54      * s |   char                      1 or 3 bytes
55      *   | END
56      *
57      * f |
58      * r | IF FLAG_IS_TERMINAL
59      * e |   frequency                 1 byte
60      * q |
61      *
62      * c | IF 00 = FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = addressType
63      * h |   // nothing
64      * i | ELSIF 01 = FLAG_GROUP_ADDRESS_TYPE_ONEBYTE == addressType
65      * l |   children address, 1 byte
66      * d | ELSIF 10 = FLAG_GROUP_ADDRESS_TYPE_TWOBYTES == addressType
67      * r |   children address, 2 bytes
68      * e | ELSE // 11 = FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = addressType
69      * n |   children address, 3 bytes
70      * A | END
71      * d
72      * dress
73      *
74      *   | IF FLAG_IS_TERMINAL && FLAG_HAS_BIGRAMS
75      *   | bigrams address list
76      *
77      * Char format is:
78      * 1 byte = bbbbbbbb match
79      * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
80      * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
81      *       unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
82      *       00011111 would be outside unicode.
83      * else: iso-latin-1 code
84      * This allows for the whole unicode range to be encoded, including chars outside of
85      * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
86      * characters which should never happen anyway (and still work, but take 3 bytes).
87      *
88      * bigram and shortcut address list is:
89      * <flags> = | hasNext = 1 bit, 1 = yes, 0 = no     : FLAG_ATTRIBUTE_HAS_NEXT
90      *           | addressSign = 1 bit,                 : FLAG_ATTRIBUTE_OFFSET_NEGATIVE
91      *           |                      1 = must take -address, 0 = must take +address
92      *           |                         xx : mask with MASK_ATTRIBUTE_ADDRESS_TYPE
93      *           | addressFormat = 2 bits, 00 = unused  : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE
94      *           |                         01 = 1 byte  : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE
95      *           |                         10 = 2 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES
96      *           |                         11 = 3 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES
97      *           | 4 bits : frequency         : mask with FLAG_ATTRIBUTE_FREQUENCY
98      * <address> | IF (01 == FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE == addressFormat)
99      *           |   read 1 byte, add top 4 bits
100      *           | ELSIF (10 == FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES == addressFormat)
101      *           |   read 2 bytes, add top 4 bits
102      *           | ELSE // 11 == FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES == addressFormat
103      *           |   read 3 bytes, add top 4 bits
104      *           | END
105      *           | if (FLAG_ATTRIBUTE_OFFSET_NEGATIVE) then address = -address
106      * if (FLAG_ATTRIBUTE_HAS_NET) goto bigram_and_shortcut_address_list_is
107      *
108      */
109 
110     private static final int MAGIC_NUMBER = 0x78B1;
111     private static final int VERSION = 1;
112     private static final int MAXIMUM_SUPPORTED_VERSION = VERSION;
113     // No options yet, reserved for future use.
114     private static final int OPTIONS = 0;
115 
116     // TODO: Make this value adaptative to content data, store it in the header, and
117     // use it in the reading code.
118     private static final int MAX_WORD_LENGTH = 48;
119 
120     private static final int MASK_GROUP_ADDRESS_TYPE = 0xC0;
121     private static final int FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = 0x00;
122     private static final int FLAG_GROUP_ADDRESS_TYPE_ONEBYTE = 0x40;
123     private static final int FLAG_GROUP_ADDRESS_TYPE_TWOBYTES = 0x80;
124     private static final int FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = 0xC0;
125 
126     private static final int FLAG_HAS_MULTIPLE_CHARS = 0x20;
127 
128     private static final int FLAG_IS_TERMINAL = 0x10;
129     private static final int FLAG_HAS_BIGRAMS = 0x04;
130 
131     private static final int FLAG_ATTRIBUTE_HAS_NEXT = 0x80;
132     private static final int FLAG_ATTRIBUTE_OFFSET_NEGATIVE = 0x40;
133     private static final int MASK_ATTRIBUTE_ADDRESS_TYPE = 0x30;
134     private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE = 0x10;
135     private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES = 0x20;
136     private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES = 0x30;
137     private static final int FLAG_ATTRIBUTE_FREQUENCY = 0x0F;
138 
139     private static final int GROUP_CHARACTERS_TERMINATOR = 0x1F;
140 
141     private static final int GROUP_COUNT_SIZE = 1;
142     private static final int GROUP_TERMINATOR_SIZE = 1;
143     private static final int GROUP_FLAGS_SIZE = 1;
144     private static final int GROUP_FREQUENCY_SIZE = 1;
145     private static final int GROUP_MAX_ADDRESS_SIZE = 3;
146     private static final int GROUP_ATTRIBUTE_FLAGS_SIZE = 1;
147     private static final int GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE = 3;
148 
149     private static final int NO_CHILDREN_ADDRESS = Integer.MIN_VALUE;
150     private static final int INVALID_CHARACTER = -1;
151 
152     // Limiting to 127 for upward compatibility
153     // TODO: implement a scheme to be able to shoot 256 chargroups in a node
154     private static final int MAX_CHARGROUPS_IN_A_NODE = 127;
155 
156     private static final int MAX_TERMINAL_FREQUENCY = 255;
157 
158     /**
159      * A class grouping utility function for our specific character encoding.
160      */
161     private static class CharEncoding {
162 
163         private static final int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20;
164         private static final int MAXIMAL_ONE_BYTE_CHARACTER_VALUE = 0xFF;
165 
166         /**
167          * Helper method to find out whether this code fits on one byte
168          */
fitsOnOneByte(int character)169         private static boolean fitsOnOneByte(int character) {
170             return character >= MINIMAL_ONE_BYTE_CHARACTER_VALUE
171                     && character <= MAXIMAL_ONE_BYTE_CHARACTER_VALUE;
172         }
173 
174         /**
175          * Compute the size of a character given its character code.
176          *
177          * Char format is:
178          * 1 byte = bbbbbbbb match
179          * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
180          * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
181          *       unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
182          *       00011111 would be outside unicode.
183          * else: iso-latin-1 code
184          * This allows for the whole unicode range to be encoded, including chars outside of
185          * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
186          * characters which should never happen anyway (and still work, but take 3 bytes).
187          *
188          * @param character the character code.
189          * @return the size in binary encoded-form, either 1 or 3 bytes.
190          */
getCharSize(int character)191         private static int getCharSize(int character) {
192             // See char encoding in FusionDictionary.java
193             if (fitsOnOneByte(character)) return 1;
194             if (INVALID_CHARACTER == character) return 1;
195             return 3;
196         }
197 
198         /**
199          * Compute the byte size of a character array.
200          */
getCharArraySize(final int[] chars)201         private static int getCharArraySize(final int[] chars) {
202             int size = 0;
203             for (int character : chars) size += getCharSize(character);
204             return size;
205         }
206 
207         /**
208          * Writes a char array to a byte buffer.
209          *
210          * @param characters the character array to write.
211          * @param buffer the byte buffer to write to.
212          * @param index the index in buffer to write the character array to.
213          * @return the index after the last character.
214          */
writeCharArray(int[] characters, byte[] buffer, int index)215         private static int writeCharArray(int[] characters, byte[] buffer, int index) {
216             for (int character : characters) {
217                 if (1 == getCharSize(character)) {
218                     buffer[index++] = (byte)character;
219                 } else {
220                     buffer[index++] = (byte)(0xFF & (character >> 16));
221                     buffer[index++] = (byte)(0xFF & (character >> 8));
222                     buffer[index++] = (byte)(0xFF & character);
223                 }
224             }
225             return index;
226         }
227 
228         /**
229          * Reads a character from the file.
230          *
231          * This follows the character format documented earlier in this source file.
232          *
233          * @param source the file, positioned over an encoded character.
234          * @return the character code.
235          */
readChar(RandomAccessFile source)236         private static int readChar(RandomAccessFile source) throws IOException {
237             int character = source.readUnsignedByte();
238             if (!fitsOnOneByte(character)) {
239                 if (GROUP_CHARACTERS_TERMINATOR == character)
240                     return INVALID_CHARACTER;
241                 character <<= 16;
242                 character += source.readUnsignedShort();
243             }
244             return character;
245         }
246     }
247 
248     /**
249      * Compute the binary size of the character array in a group
250      *
251      * If only one character, this is the size of this character. If many, it's the sum of their
252      * sizes + 1 byte for the terminator.
253      *
254      * @param group the group
255      * @return the size of the char array, including the terminator if any
256      */
getGroupCharactersSize(CharGroup group)257     private static int getGroupCharactersSize(CharGroup group) {
258         int size = CharEncoding.getCharArraySize(group.mChars);
259         if (group.hasSeveralChars()) size += GROUP_TERMINATOR_SIZE;
260         return size;
261     }
262 
263     /**
264      * Compute the maximum size of a CharGroup, assuming 3-byte addresses for everything.
265      *
266      * @param group the CharGroup to compute the size of.
267      * @return the maximum size of the group.
268      */
getCharGroupMaximumSize(CharGroup group)269     private static int getCharGroupMaximumSize(CharGroup group) {
270         int size = getGroupCharactersSize(group) + GROUP_FLAGS_SIZE;
271         // If terminal, one byte for the frequency
272         if (group.isTerminal()) size += GROUP_FREQUENCY_SIZE;
273         size += GROUP_MAX_ADDRESS_SIZE; // For children address
274         if (null != group.mBigrams) {
275             for (WeightedString bigram : group.mBigrams) {
276                 size += GROUP_ATTRIBUTE_FLAGS_SIZE + GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE;
277             }
278         }
279         return size;
280     }
281 
282     /**
283      * Compute the maximum size of a node, assuming 3-byte addresses for everything, and caches
284      * it in the 'actualSize' member of the node.
285      *
286      * @param node the node to compute the maximum size of.
287      */
setNodeMaximumSize(Node node)288     private static void setNodeMaximumSize(Node node) {
289         int size = GROUP_COUNT_SIZE;
290         for (CharGroup g : node.mData) {
291             final int groupSize = getCharGroupMaximumSize(g);
292             g.mCachedSize = groupSize;
293             size += groupSize;
294         }
295         node.mCachedSize = size;
296     }
297 
298     /**
299      * Helper method to hide the actual value of the no children address.
300      */
hasChildrenAddress(int address)301     private static boolean hasChildrenAddress(int address) {
302         return NO_CHILDREN_ADDRESS != address;
303     }
304 
305     /**
306      * Compute the size, in bytes, that an address will occupy.
307      *
308      * This can be used either for children addresses (which are always positive) or for
309      * attribute, which may be positive or negative but
310      * store their sign bit separately.
311      *
312      * @param address the address
313      * @return the byte size.
314      */
getByteSize(int address)315     private static int getByteSize(int address) {
316         assert(address < 0x1000000);
317         if (!hasChildrenAddress(address)) {
318             return 0;
319         } else if (Math.abs(address) < 0x100) {
320             return 1;
321         } else if (Math.abs(address) < 0x10000) {
322             return 2;
323         } else {
324             return 3;
325         }
326     }
327     // End utility methods.
328 
329     // This method is responsible for finding a nice ordering of the nodes that favors run-time
330     // cache performance and dictionary size.
331     /* package for tests */ static ArrayList<Node> flattenTree(Node root) {
332         final int treeSize = FusionDictionary.countCharGroups(root);
333         MakedictLog.i("Counted nodes : " + treeSize);
334         final ArrayList<Node> flatTree = new ArrayList<Node>(treeSize);
335         return flattenTreeInner(flatTree, root);
336     }
337 
338     private static ArrayList<Node> flattenTreeInner(ArrayList<Node> list, Node node) {
339         // Removing the node is necessary if the tails are merged, because we would then
340         // add the same node several times when we only want it once. A number of places in
341         // the code also depends on any node being only once in the list.
342         // Merging tails can only be done if there are no attributes. Searching for attributes
343         // in LatinIME code depends on a total breadth-first ordering, which merging tails
344         // breaks. If there are no attributes, it should be fine (and reduce the file size)
345         // to merge tails, and the following step would be necessary.
346         // If eventually the code runs on Android, searching through the whole array each time
347         // may be a performance concern.
348         list.remove(node);
349         list.add(node);
350         final ArrayList<CharGroup> branches = node.mData;
351         final int nodeSize = branches.size();
352         for (CharGroup group : branches) {
353             if (null != group.mChildren) flattenTreeInner(list, group.mChildren);
354         }
355         return list;
356     }
357 
358     /**
359      * Finds the absolute address of a word in the dictionary.
360      *
361      * @param dict the dictionary in which to search.
362      * @param word the word we are searching for.
363      * @return the word address. If it is not found, an exception is thrown.
364      */
365     private static int findAddressOfWord(final FusionDictionary dict, final String word) {
366         return FusionDictionary.findWordInTree(dict.mRoot, word).mCachedAddress;
367     }
368 
369     /**
370      * Computes the actual node size, based on the cached addresses of the children nodes.
371      *
372      * Each node stores its tentative address. During dictionary address computing, these
373      * are not final, but they can be used to compute the node size (the node size depends
374      * on the address of the children because the number of bytes necessary to store an
375      * address depends on its numeric value.
376      *
377      * @param node the node to compute the size of.
378      * @param dict the dictionary in which the word/attributes are to be found.
379      */
380     private static void computeActualNodeSize(Node node, FusionDictionary dict) {
381         int size = GROUP_COUNT_SIZE;
382         for (CharGroup group : node.mData) {
383             int groupSize = GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
384             if (group.isTerminal()) groupSize += GROUP_FREQUENCY_SIZE;
385             if (null != group.mChildren) {
386                 final int offsetBasePoint= groupSize + node.mCachedAddress + size;
387                 final int offset = group.mChildren.mCachedAddress - offsetBasePoint;
388                 groupSize += getByteSize(offset);
389             }
390             if (null != group.mBigrams) {
391                 for (WeightedString bigram : group.mBigrams) {
392                     final int offsetBasePoint = groupSize + node.mCachedAddress + size
393                             + GROUP_FLAGS_SIZE;
394                     final int addressOfBigram = findAddressOfWord(dict, bigram.mWord);
395                     final int offset = addressOfBigram - offsetBasePoint;
396                     groupSize += getByteSize(offset) + GROUP_FLAGS_SIZE;
397                 }
398             }
399             group.mCachedSize = groupSize;
400             size += groupSize;
401         }
402         node.mCachedSize = size;
403     }
404 
405     /**
406      * Computes the byte size of a list of nodes and updates each node cached position.
407      *
408      * @param flatNodes the array of nodes.
409      * @return the byte size of the entire stack.
410      */
411     private static int stackNodes(ArrayList<Node> flatNodes) {
412         int nodeOffset = 0;
413         for (Node n : flatNodes) {
414             n.mCachedAddress = nodeOffset;
415             int groupOffset = 0;
416             for (CharGroup g : n.mData) {
417                 g.mCachedAddress = GROUP_COUNT_SIZE + nodeOffset + groupOffset;
418                 groupOffset += g.mCachedSize;
419             }
420             if (groupOffset + GROUP_COUNT_SIZE != n.mCachedSize) {
421                 throw new RuntimeException("Bug : Stored and computed node size differ");
422             }
423             nodeOffset += n.mCachedSize;
424         }
425         return nodeOffset;
426     }
427 
428     /**
429      * Compute the addresses and sizes of an ordered node array.
430      *
431      * This method takes a node array and will update its cached address and size values
432      * so that they can be written into a file. It determines the smallest size each of the
433      * nodes can be given the addresses of its children and attributes, and store that into
434      * each node.
435      * The order of the node is given by the order of the array. This method makes no effort
436      * to find a good order; it only mechanically computes the size this order results in.
437      *
438      * @param dict the dictionary
439      * @param flatNodes the ordered array of nodes
440      * @return the same array it was passed. The nodes have been updated for address and size.
441      */
442     private static ArrayList<Node> computeAddresses(FusionDictionary dict,
443             ArrayList<Node> flatNodes) {
444         // First get the worst sizes and offsets
445         for (Node n : flatNodes) setNodeMaximumSize(n);
446         final int offset = stackNodes(flatNodes);
447 
448         MakedictLog.i("Compressing the array addresses. Original size : " + offset);
449         MakedictLog.i("(Recursively seen size : " + offset + ")");
450 
451         int passes = 0;
452         boolean changesDone = false;
453         do {
454             changesDone = false;
455             for (Node n : flatNodes) {
456                 final int oldNodeSize = n.mCachedSize;
457                 computeActualNodeSize(n, dict);
458                 final int newNodeSize = n.mCachedSize;
459                 if (oldNodeSize < newNodeSize) throw new RuntimeException("Increased size ?!");
460                 if (oldNodeSize != newNodeSize) changesDone = true;
461             }
462             stackNodes(flatNodes);
463             ++passes;
464         } while (changesDone);
465 
466         final Node lastNode = flatNodes.get(flatNodes.size() - 1);
467         MakedictLog.i("Compression complete in " + passes + " passes.");
468         MakedictLog.i("After address compression : "
469                 + (lastNode.mCachedAddress + lastNode.mCachedSize));
470 
471         return flatNodes;
472     }
473 
474     /**
475      * Sanity-checking method.
476      *
477      * This method checks an array of node for juxtaposition, that is, it will do
478      * nothing if each node's cached address is actually the previous node's address
479      * plus the previous node's size.
480      * If this is not the case, it will throw an exception.
481      *
482      * @param array the array node to check
483      */
484     private static void checkFlatNodeArray(ArrayList<Node> array) {
485         int offset = 0;
486         int index = 0;
487         for (Node n : array) {
488             if (n.mCachedAddress != offset) {
489                 throw new RuntimeException("Wrong address for node " + index
490                         + " : expected " + offset + ", got " + n.mCachedAddress);
491             }
492             ++index;
493             offset += n.mCachedSize;
494         }
495     }
496 
497     /**
498      * Helper method to write a variable-size address to a file.
499      *
500      * @param buffer the buffer to write to.
501      * @param index the index in the buffer to write the address to.
502      * @param address the address to write.
503      * @return the size in bytes the address actually took.
504      */
505     private static int writeVariableAddress(byte[] buffer, int index, int address) {
506         switch (getByteSize(address)) {
507         case 1:
508             buffer[index++] = (byte)address;
509             return 1;
510         case 2:
511             buffer[index++] = (byte)(0xFF & (address >> 8));
512             buffer[index++] = (byte)(0xFF & address);
513             return 2;
514         case 3:
515             buffer[index++] = (byte)(0xFF & (address >> 16));
516             buffer[index++] = (byte)(0xFF & (address >> 8));
517             buffer[index++] = (byte)(0xFF & address);
518             return 3;
519         case 0:
520             return 0;
521         default:
522             throw new RuntimeException("Address " + address + " has a strange size");
523         }
524     }
525 
makeCharGroupFlags(final CharGroup group, final int groupAddress, final int childrenOffset)526     private static byte makeCharGroupFlags(final CharGroup group, final int groupAddress,
527             final int childrenOffset) {
528         byte flags = 0;
529         if (group.mChars.length > 1) flags |= FLAG_HAS_MULTIPLE_CHARS;
530         if (group.mFrequency >= 0) {
531             flags |= FLAG_IS_TERMINAL;
532         }
533         if (null != group.mChildren) {
534             switch (getByteSize(childrenOffset)) {
535              case 1:
536                  flags |= FLAG_GROUP_ADDRESS_TYPE_ONEBYTE;
537                  break;
538              case 2:
539                  flags |= FLAG_GROUP_ADDRESS_TYPE_TWOBYTES;
540                  break;
541              case 3:
542                  flags |= FLAG_GROUP_ADDRESS_TYPE_THREEBYTES;
543                  break;
544              default:
545                  throw new RuntimeException("Node with a strange address");
546              }
547         }
548         if (null != group.mBigrams) flags |= FLAG_HAS_BIGRAMS;
549         return flags;
550     }
551 
552     /**
553      * Makes the flag value for an attribute.
554      *
555      * @param more whether there are more attributes after this one.
556      * @param offset the offset of the attribute.
557      * @param frequency the frequency of the attribute, 0..15
558      * @return the flags
559      */
makeAttributeFlags(final boolean more, final int offset, final int frequency)560     private static final int makeAttributeFlags(final boolean more, final int offset,
561             final int frequency) {
562         int bigramFlags = (more ? FLAG_ATTRIBUTE_HAS_NEXT : 0)
563                 + (offset < 0 ? FLAG_ATTRIBUTE_OFFSET_NEGATIVE : 0);
564         switch (getByteSize(offset)) {
565         case 1:
566             bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE;
567             break;
568         case 2:
569             bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES;
570             break;
571         case 3:
572             bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES;
573             break;
574         default:
575             throw new RuntimeException("Strange offset size");
576         }
577         bigramFlags += frequency & FLAG_ATTRIBUTE_FREQUENCY;
578         return bigramFlags;
579     }
580 
581     /**
582      * Write a node to memory. The node is expected to have its final position cached.
583      *
584      * This can be an empty map, but the more is inside the faster the lookups will be. It can
585      * be carried on as long as nodes do not move.
586      *
587      * @param dict the dictionary the node is a part of (for relative offsets).
588      * @param buffer the memory buffer to write to.
589      * @param node the node to write.
590      * @return the address of the END of the node.
591      */
writePlacedNode(FusionDictionary dict, byte[] buffer, Node node)592     private static int writePlacedNode(FusionDictionary dict, byte[] buffer, Node node) {
593         int index = node.mCachedAddress;
594 
595         final int size = node.mData.size();
596         if (size > MAX_CHARGROUPS_IN_A_NODE)
597             throw new RuntimeException("A node has a group count over 127 (" + size + ").");
598 
599         buffer[index++] = (byte)size;
600         int groupAddress = index;
601         for (int i = 0; i < size; ++i) {
602             CharGroup group = node.mData.get(i);
603             if (index != group.mCachedAddress) throw new RuntimeException("Bug: write index is not "
604                     + "the same as the cached address of the group");
605             groupAddress += GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
606             // Sanity checks.
607             if (group.mFrequency > MAX_TERMINAL_FREQUENCY) {
608                 throw new RuntimeException("A node has a frequency > " + MAX_TERMINAL_FREQUENCY
609                         + " : " + group.mFrequency);
610             }
611             if (group.mFrequency >= 0) groupAddress += GROUP_FREQUENCY_SIZE;
612             final int childrenOffset = null == group.mChildren
613                     ? NO_CHILDREN_ADDRESS : group.mChildren.mCachedAddress - groupAddress;
614             byte flags = makeCharGroupFlags(group, groupAddress, childrenOffset);
615             buffer[index++] = flags;
616             index = CharEncoding.writeCharArray(group.mChars, buffer, index);
617             if (group.hasSeveralChars()) {
618                 buffer[index++] = GROUP_CHARACTERS_TERMINATOR;
619             }
620             if (group.mFrequency >= 0) {
621                 buffer[index++] = (byte) group.mFrequency;
622             }
623             final int shift = writeVariableAddress(buffer, index, childrenOffset);
624             index += shift;
625             groupAddress += shift;
626 
627             // Write bigrams
628             if (null != group.mBigrams) {
629                 int remainingBigrams = group.mBigrams.size();
630                 for (WeightedString bigram : group.mBigrams) {
631                     boolean more = remainingBigrams > 1;
632                     final int addressOfBigram = findAddressOfWord(dict, bigram.mWord);
633                     ++groupAddress;
634                     final int offset = addressOfBigram - groupAddress;
635                     int bigramFlags = makeAttributeFlags(more, offset, bigram.mFrequency);
636                     buffer[index++] = (byte)bigramFlags;
637                     final int bigramShift = writeVariableAddress(buffer, index, Math.abs(offset));
638                     index += bigramShift;
639                     groupAddress += bigramShift;
640                     --remainingBigrams;
641                 }
642             }
643 
644         }
645         if (index != node.mCachedAddress + node.mCachedSize) throw new RuntimeException(
646                 "Not the same size : written "
647                 + (index - node.mCachedAddress) + " bytes out of a node that should have "
648                 + node.mCachedSize + " bytes");
649         return index;
650     }
651 
652     /**
653      * Dumps a collection of useful statistics about a node array.
654      *
655      * This prints purely informative stuff, like the total estimated file size, the
656      * number of nodes, of character groups, the repartition of each address size, etc
657      *
658      * @param nodes the node array.
659      */
showStatistics(ArrayList<Node> nodes)660     private static void showStatistics(ArrayList<Node> nodes) {
661         int firstTerminalAddress = Integer.MAX_VALUE;
662         int lastTerminalAddress = Integer.MIN_VALUE;
663         int size = 0;
664         int charGroups = 0;
665         int maxGroups = 0;
666         int maxRuns = 0;
667         for (Node n : nodes) {
668             if (maxGroups < n.mData.size()) maxGroups = n.mData.size();
669             for (CharGroup cg : n.mData) {
670                 ++charGroups;
671                 if (cg.mChars.length > maxRuns) maxRuns = cg.mChars.length;
672                 if (cg.mFrequency >= 0) {
673                     if (n.mCachedAddress < firstTerminalAddress)
674                         firstTerminalAddress = n.mCachedAddress;
675                     if (n.mCachedAddress > lastTerminalAddress)
676                         lastTerminalAddress = n.mCachedAddress;
677                 }
678             }
679             if (n.mCachedAddress + n.mCachedSize > size) size = n.mCachedAddress + n.mCachedSize;
680         }
681         final int[] groupCounts = new int[maxGroups + 1];
682         final int[] runCounts = new int[maxRuns + 1];
683         for (Node n : nodes) {
684             ++groupCounts[n.mData.size()];
685             for (CharGroup cg : n.mData) {
686                 ++runCounts[cg.mChars.length];
687             }
688         }
689 
690         MakedictLog.i("Statistics:\n"
691                 + "  total file size " + size + "\n"
692                 + "  " + nodes.size() + " nodes\n"
693                 + "  " + charGroups + " groups (" + ((float)charGroups / nodes.size())
694                         + " groups per node)\n"
695                 + "  first terminal at " + firstTerminalAddress + "\n"
696                 + "  last terminal at " + lastTerminalAddress + "\n"
697                 + "  Group stats : max = " + maxGroups);
698         for (int i = 0; i < groupCounts.length; ++i) {
699             MakedictLog.i("    " + i + " : " + groupCounts[i]);
700         }
701         MakedictLog.i("  Character run stats : max = " + maxRuns);
702         for (int i = 0; i < runCounts.length; ++i) {
703             MakedictLog.i("    " + i + " : " + runCounts[i]);
704         }
705     }
706 
707     /**
708      * Dumps a FusionDictionary to a file.
709      *
710      * This is the public entry point to write a dictionary to a file.
711      *
712      * @param destination the stream to write the binary data to.
713      * @param dict the dictionary to write.
714      */
writeDictionaryBinary(OutputStream destination, FusionDictionary dict)715     public static void writeDictionaryBinary(OutputStream destination, FusionDictionary dict)
716             throws IOException {
717 
718         // Addresses are limited to 3 bytes, so we'll just make a 16MB buffer. Since addresses
719         // can be relative to each node, the structure itself is not limited to 16MB at all, but
720         // I doubt this will ever be shot. If it is, deciding the order of the nodes becomes
721         // a quite complicated problem, because though the dictionary itself does not have a
722         // size limit, each node must still be within 16MB of all its children and parents.
723         // As long as this is ensured, the dictionary file may grow to any size.
724         // Anyway, to make a dictionary bigger than 16MB just increase the size of this buffer.
725         final byte[] buffer = new byte[1 << 24];
726         int index = 0;
727 
728         // Magic number in big-endian order.
729         buffer[index++] = (byte) (0xFF & (MAGIC_NUMBER >> 8));
730         buffer[index++] = (byte) (0xFF & MAGIC_NUMBER);
731         // Dictionary version.
732         buffer[index++] = (byte) (0xFF & VERSION);
733         // Options flags
734         buffer[index++] = (byte) (0xFF & (OPTIONS >> 8));
735         buffer[index++] = (byte) (0xFF & OPTIONS);
736 
737         // Should we include the locale and title of the dictionary ?
738 
739         destination.write(buffer, 0, index);
740         index = 0;
741 
742         // Leave the choice of the optimal node order to the flattenTree function.
743         MakedictLog.i("Flattening the tree...");
744         ArrayList<Node> flatNodes = flattenTree(dict.mRoot);
745 
746         MakedictLog.i("Computing addresses...");
747         computeAddresses(dict, flatNodes);
748         MakedictLog.i("Checking array...");
749         checkFlatNodeArray(flatNodes);
750 
751         MakedictLog.i("Writing file...");
752         int dataEndOffset = 0;
753         for (Node n : flatNodes) {
754             dataEndOffset = writePlacedNode(dict, buffer, n);
755         }
756 
757         showStatistics(flatNodes);
758 
759         destination.write(buffer, 0, dataEndOffset);
760 
761         destination.close();
762         MakedictLog.i("Done");
763     }
764 
765 
766     // Input methods: Read a binary dictionary to memory.
767     // readDictionaryBinary is the public entry point for them.
768 
769     static final int[] characterBuffer = new int[MAX_WORD_LENGTH];
readCharGroup(RandomAccessFile source, final int originalGroupAddress)770     private static CharGroupInfo readCharGroup(RandomAccessFile source,
771             final int originalGroupAddress) throws IOException {
772         int addressPointer = originalGroupAddress;
773         final int flags = source.readUnsignedByte();
774         ++addressPointer;
775         final int characters[];
776         if (0 != (flags & FLAG_HAS_MULTIPLE_CHARS)) {
777             int index = 0;
778             int character = CharEncoding.readChar(source);
779             addressPointer += CharEncoding.getCharSize(character);
780             while (-1 != character) {
781                 characterBuffer[index++] = character;
782                 character = CharEncoding.readChar(source);
783                 addressPointer += CharEncoding.getCharSize(character);
784             }
785             characters = Arrays.copyOfRange(characterBuffer, 0, index);
786         } else {
787             final int character = CharEncoding.readChar(source);
788             addressPointer += CharEncoding.getCharSize(character);
789             characters = new int[] { character };
790         }
791         final int frequency;
792         if (0 != (FLAG_IS_TERMINAL & flags)) {
793             ++addressPointer;
794             frequency = source.readUnsignedByte();
795         } else {
796             frequency = CharGroup.NOT_A_TERMINAL;
797         }
798         int childrenAddress = addressPointer;
799         switch (flags & MASK_GROUP_ADDRESS_TYPE) {
800         case FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
801             childrenAddress += source.readUnsignedByte();
802             addressPointer += 1;
803             break;
804         case FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
805             childrenAddress += source.readUnsignedShort();
806             addressPointer += 2;
807             break;
808         case FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
809             childrenAddress += (source.readUnsignedByte() << 16) + source.readUnsignedShort();
810             addressPointer += 3;
811             break;
812         case FLAG_GROUP_ADDRESS_TYPE_NOADDRESS:
813         default:
814             childrenAddress = NO_CHILDREN_ADDRESS;
815             break;
816         }
817         ArrayList<PendingAttribute> bigrams = null;
818         if (0 != (flags & FLAG_HAS_BIGRAMS)) {
819             bigrams = new ArrayList<PendingAttribute>();
820             boolean more = true;
821             while (more) {
822                 int bigramFlags = source.readUnsignedByte();
823                 ++addressPointer;
824                 more = (0 != (bigramFlags & FLAG_ATTRIBUTE_HAS_NEXT));
825                 final int sign = 0 == (bigramFlags & FLAG_ATTRIBUTE_OFFSET_NEGATIVE) ? 1 : -1;
826                 int bigramAddress = addressPointer;
827                 switch (bigramFlags & MASK_ATTRIBUTE_ADDRESS_TYPE) {
828                 case FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE:
829                     bigramAddress += sign * source.readUnsignedByte();
830                     addressPointer += 1;
831                     break;
832                 case FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES:
833                     bigramAddress += sign * source.readUnsignedShort();
834                     addressPointer += 2;
835                     break;
836                 case FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES:
837                     final int offset = ((source.readUnsignedByte() << 16)
838                             + source.readUnsignedShort());
839                     bigramAddress += sign * offset;
840                     addressPointer += 3;
841                     break;
842                 default:
843                     throw new RuntimeException("Has attribute with no address");
844                 }
845                 bigrams.add(new PendingAttribute(bigramFlags & FLAG_ATTRIBUTE_FREQUENCY,
846                         bigramAddress));
847             }
848         }
849         return new CharGroupInfo(originalGroupAddress, addressPointer, flags, characters, frequency,
850                 childrenAddress, bigrams);
851     }
852 
853     /**
854      * Finds, as a string, the word at the address passed as an argument.
855      *
856      * @param source the file to read from.
857      * @param headerSize the size of the header.
858      * @param address the address to seek.
859      * @return the word, as a string.
860      * @throws IOException if the file can't be read.
861      */
getWordAtAddress(RandomAccessFile source, long headerSize, int address)862     private static String getWordAtAddress(RandomAccessFile source, long headerSize,
863             int address) throws IOException {
864         final long originalPointer = source.getFilePointer();
865         source.seek(headerSize);
866         final int count = source.readUnsignedByte();
867         int groupOffset = 1; // 1 for the group count
868         final StringBuilder builder = new StringBuilder();
869         String result = null;
870 
871         CharGroupInfo last = null;
872         for (int i = count - 1; i >= 0; --i) {
873             CharGroupInfo info = readCharGroup(source, groupOffset);
874             groupOffset = info.mEndAddress;
875             if (info.mOriginalAddress == address) {
876                 builder.append(new String(info.mCharacters, 0, info.mCharacters.length));
877                 result = builder.toString();
878                 break; // and return
879             }
880             if (hasChildrenAddress(info.mChildrenAddress)) {
881                 if (info.mChildrenAddress > address) {
882                     if (null == last) continue;
883                     builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
884                     source.seek(last.mChildrenAddress + headerSize);
885                     groupOffset = last.mChildrenAddress + 1;
886                     i = source.readUnsignedByte();
887                     last = null;
888                     continue;
889                 }
890                 last = info;
891             }
892             if (0 == i && hasChildrenAddress(last.mChildrenAddress)) {
893                 builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
894                 source.seek(last.mChildrenAddress + headerSize);
895                 groupOffset = last.mChildrenAddress + 1;
896                 i = source.readUnsignedByte();
897                 last = null;
898                 continue;
899             }
900         }
901         source.seek(originalPointer);
902         return result;
903     }
904 
905     /**
906      * Reads a single node from a binary file.
907      *
908      * This methods reads the file at the current position of its file pointer. A node is
909      * fully expected to start at the current position.
910      * This will recursively read other nodes into the structure, populating the reverse
911      * maps on the fly and using them to keep track of already read nodes.
912      *
913      * @param source the data file, correctly positioned at the start of a node.
914      * @param headerSize the size, in bytes, of the file header.
915      * @param reverseNodeMap a mapping from addresses to already read nodes.
916      * @param reverseGroupMap a mapping from addresses to already read character groups.
917      * @return the read node with all his children already read.
918      */
readNode(RandomAccessFile source, long headerSize, Map<Integer, Node> reverseNodeMap, Map<Integer, CharGroup> reverseGroupMap)919     private static Node readNode(RandomAccessFile source, long headerSize,
920             Map<Integer, Node> reverseNodeMap, Map<Integer, CharGroup> reverseGroupMap)
921             throws IOException {
922         final int nodeOrigin = (int)(source.getFilePointer() - headerSize);
923         final int count = source.readUnsignedByte();
924         final ArrayList<CharGroup> nodeContents = new ArrayList<CharGroup>();
925         int groupOffset = nodeOrigin + 1; // 1 byte for the group count
926         for (int i = count; i > 0; --i) {
927             CharGroupInfo info = readCharGroup(source, groupOffset);
928             ArrayList<WeightedString> bigrams = null;
929             if (null != info.mBigrams) {
930                 bigrams = new ArrayList<WeightedString>();
931                 for (PendingAttribute bigram : info.mBigrams) {
932                     final String word = getWordAtAddress(source, headerSize, bigram.mAddress);
933                     bigrams.add(new WeightedString(word, bigram.mFrequency));
934                 }
935             }
936             if (hasChildrenAddress(info.mChildrenAddress)) {
937                 Node children = reverseNodeMap.get(info.mChildrenAddress);
938                 if (null == children) {
939                     final long currentPosition = source.getFilePointer();
940                     source.seek(info.mChildrenAddress + headerSize);
941                     children = readNode(source, headerSize, reverseNodeMap, reverseGroupMap);
942                     source.seek(currentPosition);
943                 }
944                 nodeContents.add(
945                         new CharGroup(info.mCharacters, bigrams, info.mFrequency,
946                         children));
947             } else {
948                 nodeContents.add(
949                         new CharGroup(info.mCharacters, bigrams, info.mFrequency));
950             }
951             groupOffset = info.mEndAddress;
952         }
953         final Node node = new Node(nodeContents);
954         node.mCachedAddress = nodeOrigin;
955         reverseNodeMap.put(node.mCachedAddress, node);
956         return node;
957     }
958 
959     /**
960      * Reads a random access file and returns the memory representation of the dictionary.
961      *
962      * This high-level method takes a binary file and reads its contents, populating a
963      * FusionDictionary structure. The optional dict argument is an existing dictionary to
964      * which words from the file should be added. If it is null, a new dictionary is created.
965      *
966      * @param source the file to read.
967      * @param dict an optional dictionary to add words to, or null.
968      * @return the created (or merged) dictionary.
969      */
readDictionaryBinary(RandomAccessFile source, FusionDictionary dict)970     public static FusionDictionary readDictionaryBinary(RandomAccessFile source,
971             FusionDictionary dict) throws IOException, UnsupportedFormatException {
972         // Check magic number
973         final int magic = source.readUnsignedShort();
974         if (MAGIC_NUMBER != magic) {
975             throw new UnsupportedFormatException("The magic number in this file does not match "
976                     + "the expected value");
977         }
978 
979         // Check file version
980         final int version = source.readUnsignedByte();
981         if (version > MAXIMUM_SUPPORTED_VERSION) {
982             throw new UnsupportedFormatException("This file has version " + version
983                     + ", but this implementation does not support versions above "
984                     + MAXIMUM_SUPPORTED_VERSION);
985         }
986 
987         // Read options
988         source.readUnsignedShort();
989 
990         long headerSize = source.getFilePointer();
991         Map<Integer, Node> reverseNodeMapping = new TreeMap<Integer, Node>();
992         Map<Integer, CharGroup> reverseGroupMapping = new TreeMap<Integer, CharGroup>();
993         final Node root = readNode(source, headerSize, reverseNodeMapping, reverseGroupMapping);
994 
995         FusionDictionary newDict = new FusionDictionary(root,
996                 new FusionDictionary.DictionaryOptions());
997         if (null != dict) {
998             for (Word w : dict) {
999                 newDict.add(w.mWord, w.mFrequency, w.mBigrams);
1000             }
1001         }
1002 
1003         return newDict;
1004     }
1005 
1006     /**
1007      * Basic test to find out whether the file is a binary dictionary or not.
1008      *
1009      * Concretely this only tests the magic number.
1010      *
1011      * @param filename The name of the file to test.
1012      * @return true if it's a binary dictionary, false otherwise
1013      */
isBinaryDictionary(String filename)1014     public static boolean isBinaryDictionary(String filename) {
1015         try {
1016             RandomAccessFile f = new RandomAccessFile(filename, "r");
1017             return MAGIC_NUMBER == f.readUnsignedShort();
1018         } catch (FileNotFoundException e) {
1019             return false;
1020         } catch (IOException e) {
1021             return false;
1022         }
1023     }
1024 }
1025