1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for C++ expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/DeclSpec.h"
16 #include "clang/Sema/Initialization.h"
17 #include "clang/Sema/Lookup.h"
18 #include "clang/Sema/ParsedTemplate.h"
19 #include "clang/Sema/ScopeInfo.h"
20 #include "clang/Sema/Scope.h"
21 #include "clang/Sema/TemplateDeduction.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CXXInheritance.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/ErrorHandling.h"
33 using namespace clang;
34 using namespace sema;
35
getDestructorName(SourceLocation TildeLoc,IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,ParsedType ObjectTypePtr,bool EnteringContext)36 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
37 IdentifierInfo &II,
38 SourceLocation NameLoc,
39 Scope *S, CXXScopeSpec &SS,
40 ParsedType ObjectTypePtr,
41 bool EnteringContext) {
42 // Determine where to perform name lookup.
43
44 // FIXME: This area of the standard is very messy, and the current
45 // wording is rather unclear about which scopes we search for the
46 // destructor name; see core issues 399 and 555. Issue 399 in
47 // particular shows where the current description of destructor name
48 // lookup is completely out of line with existing practice, e.g.,
49 // this appears to be ill-formed:
50 //
51 // namespace N {
52 // template <typename T> struct S {
53 // ~S();
54 // };
55 // }
56 //
57 // void f(N::S<int>* s) {
58 // s->N::S<int>::~S();
59 // }
60 //
61 // See also PR6358 and PR6359.
62 // For this reason, we're currently only doing the C++03 version of this
63 // code; the C++0x version has to wait until we get a proper spec.
64 QualType SearchType;
65 DeclContext *LookupCtx = 0;
66 bool isDependent = false;
67 bool LookInScope = false;
68
69 // If we have an object type, it's because we are in a
70 // pseudo-destructor-expression or a member access expression, and
71 // we know what type we're looking for.
72 if (ObjectTypePtr)
73 SearchType = GetTypeFromParser(ObjectTypePtr);
74
75 if (SS.isSet()) {
76 NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
77
78 bool AlreadySearched = false;
79 bool LookAtPrefix = true;
80 // C++ [basic.lookup.qual]p6:
81 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
82 // the type-names are looked up as types in the scope designated by the
83 // nested-name-specifier. In a qualified-id of the form:
84 //
85 // ::[opt] nested-name-specifier ~ class-name
86 //
87 // where the nested-name-specifier designates a namespace scope, and in
88 // a qualified-id of the form:
89 //
90 // ::opt nested-name-specifier class-name :: ~ class-name
91 //
92 // the class-names are looked up as types in the scope designated by
93 // the nested-name-specifier.
94 //
95 // Here, we check the first case (completely) and determine whether the
96 // code below is permitted to look at the prefix of the
97 // nested-name-specifier.
98 DeclContext *DC = computeDeclContext(SS, EnteringContext);
99 if (DC && DC->isFileContext()) {
100 AlreadySearched = true;
101 LookupCtx = DC;
102 isDependent = false;
103 } else if (DC && isa<CXXRecordDecl>(DC))
104 LookAtPrefix = false;
105
106 // The second case from the C++03 rules quoted further above.
107 NestedNameSpecifier *Prefix = 0;
108 if (AlreadySearched) {
109 // Nothing left to do.
110 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
111 CXXScopeSpec PrefixSS;
112 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
113 LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
114 isDependent = isDependentScopeSpecifier(PrefixSS);
115 } else if (ObjectTypePtr) {
116 LookupCtx = computeDeclContext(SearchType);
117 isDependent = SearchType->isDependentType();
118 } else {
119 LookupCtx = computeDeclContext(SS, EnteringContext);
120 isDependent = LookupCtx && LookupCtx->isDependentContext();
121 }
122
123 LookInScope = false;
124 } else if (ObjectTypePtr) {
125 // C++ [basic.lookup.classref]p3:
126 // If the unqualified-id is ~type-name, the type-name is looked up
127 // in the context of the entire postfix-expression. If the type T
128 // of the object expression is of a class type C, the type-name is
129 // also looked up in the scope of class C. At least one of the
130 // lookups shall find a name that refers to (possibly
131 // cv-qualified) T.
132 LookupCtx = computeDeclContext(SearchType);
133 isDependent = SearchType->isDependentType();
134 assert((isDependent || !SearchType->isIncompleteType()) &&
135 "Caller should have completed object type");
136
137 LookInScope = true;
138 } else {
139 // Perform lookup into the current scope (only).
140 LookInScope = true;
141 }
142
143 TypeDecl *NonMatchingTypeDecl = 0;
144 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
145 for (unsigned Step = 0; Step != 2; ++Step) {
146 // Look for the name first in the computed lookup context (if we
147 // have one) and, if that fails to find a match, in the scope (if
148 // we're allowed to look there).
149 Found.clear();
150 if (Step == 0 && LookupCtx)
151 LookupQualifiedName(Found, LookupCtx);
152 else if (Step == 1 && LookInScope && S)
153 LookupName(Found, S);
154 else
155 continue;
156
157 // FIXME: Should we be suppressing ambiguities here?
158 if (Found.isAmbiguous())
159 return ParsedType();
160
161 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
162 QualType T = Context.getTypeDeclType(Type);
163
164 if (SearchType.isNull() || SearchType->isDependentType() ||
165 Context.hasSameUnqualifiedType(T, SearchType)) {
166 // We found our type!
167
168 return ParsedType::make(T);
169 }
170
171 if (!SearchType.isNull())
172 NonMatchingTypeDecl = Type;
173 }
174
175 // If the name that we found is a class template name, and it is
176 // the same name as the template name in the last part of the
177 // nested-name-specifier (if present) or the object type, then
178 // this is the destructor for that class.
179 // FIXME: This is a workaround until we get real drafting for core
180 // issue 399, for which there isn't even an obvious direction.
181 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
182 QualType MemberOfType;
183 if (SS.isSet()) {
184 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
185 // Figure out the type of the context, if it has one.
186 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
187 MemberOfType = Context.getTypeDeclType(Record);
188 }
189 }
190 if (MemberOfType.isNull())
191 MemberOfType = SearchType;
192
193 if (MemberOfType.isNull())
194 continue;
195
196 // We're referring into a class template specialization. If the
197 // class template we found is the same as the template being
198 // specialized, we found what we are looking for.
199 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
200 if (ClassTemplateSpecializationDecl *Spec
201 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
202 if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
203 Template->getCanonicalDecl())
204 return ParsedType::make(MemberOfType);
205 }
206
207 continue;
208 }
209
210 // We're referring to an unresolved class template
211 // specialization. Determine whether we class template we found
212 // is the same as the template being specialized or, if we don't
213 // know which template is being specialized, that it at least
214 // has the same name.
215 if (const TemplateSpecializationType *SpecType
216 = MemberOfType->getAs<TemplateSpecializationType>()) {
217 TemplateName SpecName = SpecType->getTemplateName();
218
219 // The class template we found is the same template being
220 // specialized.
221 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
222 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
223 return ParsedType::make(MemberOfType);
224
225 continue;
226 }
227
228 // The class template we found has the same name as the
229 // (dependent) template name being specialized.
230 if (DependentTemplateName *DepTemplate
231 = SpecName.getAsDependentTemplateName()) {
232 if (DepTemplate->isIdentifier() &&
233 DepTemplate->getIdentifier() == Template->getIdentifier())
234 return ParsedType::make(MemberOfType);
235
236 continue;
237 }
238 }
239 }
240 }
241
242 if (isDependent) {
243 // We didn't find our type, but that's okay: it's dependent
244 // anyway.
245
246 // FIXME: What if we have no nested-name-specifier?
247 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
248 SS.getWithLocInContext(Context),
249 II, NameLoc);
250 return ParsedType::make(T);
251 }
252
253 if (NonMatchingTypeDecl) {
254 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
255 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
256 << T << SearchType;
257 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
258 << T;
259 } else if (ObjectTypePtr)
260 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
261 << &II;
262 else
263 Diag(NameLoc, diag::err_destructor_class_name);
264
265 return ParsedType();
266 }
267
268 /// \brief Build a C++ typeid expression with a type operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)269 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
270 SourceLocation TypeidLoc,
271 TypeSourceInfo *Operand,
272 SourceLocation RParenLoc) {
273 // C++ [expr.typeid]p4:
274 // The top-level cv-qualifiers of the lvalue expression or the type-id
275 // that is the operand of typeid are always ignored.
276 // If the type of the type-id is a class type or a reference to a class
277 // type, the class shall be completely-defined.
278 Qualifiers Quals;
279 QualType T
280 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
281 Quals);
282 if (T->getAs<RecordType>() &&
283 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
284 return ExprError();
285
286 return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
287 Operand,
288 SourceRange(TypeidLoc, RParenLoc)));
289 }
290
291 /// \brief Build a C++ typeid expression with an expression operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)292 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
293 SourceLocation TypeidLoc,
294 Expr *E,
295 SourceLocation RParenLoc) {
296 bool isUnevaluatedOperand = true;
297 if (E && !E->isTypeDependent()) {
298 QualType T = E->getType();
299 if (const RecordType *RecordT = T->getAs<RecordType>()) {
300 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
301 // C++ [expr.typeid]p3:
302 // [...] If the type of the expression is a class type, the class
303 // shall be completely-defined.
304 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
305 return ExprError();
306
307 // C++ [expr.typeid]p3:
308 // When typeid is applied to an expression other than an glvalue of a
309 // polymorphic class type [...] [the] expression is an unevaluated
310 // operand. [...]
311 if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
312 isUnevaluatedOperand = false;
313
314 // We require a vtable to query the type at run time.
315 MarkVTableUsed(TypeidLoc, RecordD);
316 }
317 }
318
319 // C++ [expr.typeid]p4:
320 // [...] If the type of the type-id is a reference to a possibly
321 // cv-qualified type, the result of the typeid expression refers to a
322 // std::type_info object representing the cv-unqualified referenced
323 // type.
324 Qualifiers Quals;
325 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
326 if (!Context.hasSameType(T, UnqualT)) {
327 T = UnqualT;
328 E = ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E)).take();
329 }
330 }
331
332 // If this is an unevaluated operand, clear out the set of
333 // declaration references we have been computing and eliminate any
334 // temporaries introduced in its computation.
335 if (isUnevaluatedOperand)
336 ExprEvalContexts.back().Context = Unevaluated;
337
338 return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
339 E,
340 SourceRange(TypeidLoc, RParenLoc)));
341 }
342
343 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
344 ExprResult
ActOnCXXTypeid(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)345 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
346 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
347 // Find the std::type_info type.
348 if (!getStdNamespace())
349 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
350
351 if (!CXXTypeInfoDecl) {
352 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
353 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
354 LookupQualifiedName(R, getStdNamespace());
355 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
356 if (!CXXTypeInfoDecl)
357 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
358 }
359
360 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
361
362 if (isType) {
363 // The operand is a type; handle it as such.
364 TypeSourceInfo *TInfo = 0;
365 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
366 &TInfo);
367 if (T.isNull())
368 return ExprError();
369
370 if (!TInfo)
371 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
372
373 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
374 }
375
376 // The operand is an expression.
377 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
378 }
379
380 /// Retrieve the UuidAttr associated with QT.
GetUuidAttrOfType(QualType QT)381 static UuidAttr *GetUuidAttrOfType(QualType QT) {
382 // Optionally remove one level of pointer, reference or array indirection.
383 const Type *Ty = QT.getTypePtr();;
384 if (QT->isPointerType() || QT->isReferenceType())
385 Ty = QT->getPointeeType().getTypePtr();
386 else if (QT->isArrayType())
387 Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
388
389 // Loop all record redeclaration looking for an uuid attribute.
390 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
391 for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
392 E = RD->redecls_end(); I != E; ++I) {
393 if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
394 return Uuid;
395 }
396
397 return 0;
398 }
399
400 /// \brief Build a Microsoft __uuidof expression with a type operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)401 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
402 SourceLocation TypeidLoc,
403 TypeSourceInfo *Operand,
404 SourceLocation RParenLoc) {
405 if (!Operand->getType()->isDependentType()) {
406 if (!GetUuidAttrOfType(Operand->getType()))
407 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
408 }
409
410 // FIXME: add __uuidof semantic analysis for type operand.
411 return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
412 Operand,
413 SourceRange(TypeidLoc, RParenLoc)));
414 }
415
416 /// \brief Build a Microsoft __uuidof expression with an expression operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)417 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
418 SourceLocation TypeidLoc,
419 Expr *E,
420 SourceLocation RParenLoc) {
421 if (!E->getType()->isDependentType()) {
422 if (!GetUuidAttrOfType(E->getType()) &&
423 !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
424 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
425 }
426 // FIXME: add __uuidof semantic analysis for type operand.
427 return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
428 E,
429 SourceRange(TypeidLoc, RParenLoc)));
430 }
431
432 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
433 ExprResult
ActOnCXXUuidof(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)434 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
435 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
436 // If MSVCGuidDecl has not been cached, do the lookup.
437 if (!MSVCGuidDecl) {
438 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
439 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
440 LookupQualifiedName(R, Context.getTranslationUnitDecl());
441 MSVCGuidDecl = R.getAsSingle<RecordDecl>();
442 if (!MSVCGuidDecl)
443 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
444 }
445
446 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
447
448 if (isType) {
449 // The operand is a type; handle it as such.
450 TypeSourceInfo *TInfo = 0;
451 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
452 &TInfo);
453 if (T.isNull())
454 return ExprError();
455
456 if (!TInfo)
457 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
458
459 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
460 }
461
462 // The operand is an expression.
463 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
464 }
465
466 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
467 ExprResult
ActOnCXXBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)468 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
469 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
470 "Unknown C++ Boolean value!");
471 return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
472 Context.BoolTy, OpLoc));
473 }
474
475 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
476 ExprResult
ActOnCXXNullPtrLiteral(SourceLocation Loc)477 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
478 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
479 }
480
481 /// ActOnCXXThrow - Parse throw expressions.
482 ExprResult
ActOnCXXThrow(Scope * S,SourceLocation OpLoc,Expr * Ex)483 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
484 bool IsThrownVarInScope = false;
485 if (Ex) {
486 // C++0x [class.copymove]p31:
487 // When certain criteria are met, an implementation is allowed to omit the
488 // copy/move construction of a class object [...]
489 //
490 // - in a throw-expression, when the operand is the name of a
491 // non-volatile automatic object (other than a function or catch-
492 // clause parameter) whose scope does not extend beyond the end of the
493 // innermost enclosing try-block (if there is one), the copy/move
494 // operation from the operand to the exception object (15.1) can be
495 // omitted by constructing the automatic object directly into the
496 // exception object
497 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
498 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
499 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
500 for( ; S; S = S->getParent()) {
501 if (S->isDeclScope(Var)) {
502 IsThrownVarInScope = true;
503 break;
504 }
505
506 if (S->getFlags() &
507 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
508 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
509 Scope::TryScope))
510 break;
511 }
512 }
513 }
514 }
515
516 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
517 }
518
BuildCXXThrow(SourceLocation OpLoc,Expr * Ex,bool IsThrownVarInScope)519 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
520 bool IsThrownVarInScope) {
521 // Don't report an error if 'throw' is used in system headers.
522 if (!getLangOptions().CXXExceptions &&
523 !getSourceManager().isInSystemHeader(OpLoc))
524 Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
525
526 if (Ex && !Ex->isTypeDependent()) {
527 ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
528 if (ExRes.isInvalid())
529 return ExprError();
530 Ex = ExRes.take();
531 }
532
533 return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
534 IsThrownVarInScope));
535 }
536
537 /// CheckCXXThrowOperand - Validate the operand of a throw.
CheckCXXThrowOperand(SourceLocation ThrowLoc,Expr * E,bool IsThrownVarInScope)538 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
539 bool IsThrownVarInScope) {
540 // C++ [except.throw]p3:
541 // A throw-expression initializes a temporary object, called the exception
542 // object, the type of which is determined by removing any top-level
543 // cv-qualifiers from the static type of the operand of throw and adjusting
544 // the type from "array of T" or "function returning T" to "pointer to T"
545 // or "pointer to function returning T", [...]
546 if (E->getType().hasQualifiers())
547 E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
548 CastCategory(E)).take();
549
550 ExprResult Res = DefaultFunctionArrayConversion(E);
551 if (Res.isInvalid())
552 return ExprError();
553 E = Res.take();
554
555 // If the type of the exception would be an incomplete type or a pointer
556 // to an incomplete type other than (cv) void the program is ill-formed.
557 QualType Ty = E->getType();
558 bool isPointer = false;
559 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
560 Ty = Ptr->getPointeeType();
561 isPointer = true;
562 }
563 if (!isPointer || !Ty->isVoidType()) {
564 if (RequireCompleteType(ThrowLoc, Ty,
565 PDiag(isPointer ? diag::err_throw_incomplete_ptr
566 : diag::err_throw_incomplete)
567 << E->getSourceRange()))
568 return ExprError();
569
570 if (RequireNonAbstractType(ThrowLoc, E->getType(),
571 PDiag(diag::err_throw_abstract_type)
572 << E->getSourceRange()))
573 return ExprError();
574 }
575
576 // Initialize the exception result. This implicitly weeds out
577 // abstract types or types with inaccessible copy constructors.
578
579 // C++0x [class.copymove]p31:
580 // When certain criteria are met, an implementation is allowed to omit the
581 // copy/move construction of a class object [...]
582 //
583 // - in a throw-expression, when the operand is the name of a
584 // non-volatile automatic object (other than a function or catch-clause
585 // parameter) whose scope does not extend beyond the end of the
586 // innermost enclosing try-block (if there is one), the copy/move
587 // operation from the operand to the exception object (15.1) can be
588 // omitted by constructing the automatic object directly into the
589 // exception object
590 const VarDecl *NRVOVariable = 0;
591 if (IsThrownVarInScope)
592 NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
593
594 InitializedEntity Entity =
595 InitializedEntity::InitializeException(ThrowLoc, E->getType(),
596 /*NRVO=*/NRVOVariable != 0);
597 Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
598 QualType(), E,
599 IsThrownVarInScope);
600 if (Res.isInvalid())
601 return ExprError();
602 E = Res.take();
603
604 // If the exception has class type, we need additional handling.
605 const RecordType *RecordTy = Ty->getAs<RecordType>();
606 if (!RecordTy)
607 return Owned(E);
608 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
609
610 // If we are throwing a polymorphic class type or pointer thereof,
611 // exception handling will make use of the vtable.
612 MarkVTableUsed(ThrowLoc, RD);
613
614 // If a pointer is thrown, the referenced object will not be destroyed.
615 if (isPointer)
616 return Owned(E);
617
618 // If the class has a non-trivial destructor, we must be able to call it.
619 if (RD->hasTrivialDestructor())
620 return Owned(E);
621
622 CXXDestructorDecl *Destructor
623 = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
624 if (!Destructor)
625 return Owned(E);
626
627 MarkDeclarationReferenced(E->getExprLoc(), Destructor);
628 CheckDestructorAccess(E->getExprLoc(), Destructor,
629 PDiag(diag::err_access_dtor_exception) << Ty);
630 return Owned(E);
631 }
632
getAndCaptureCurrentThisType()633 QualType Sema::getAndCaptureCurrentThisType() {
634 // Ignore block scopes: we can capture through them.
635 // Ignore nested enum scopes: we'll diagnose non-constant expressions
636 // where they're invalid, and other uses are legitimate.
637 // Don't ignore nested class scopes: you can't use 'this' in a local class.
638 DeclContext *DC = CurContext;
639 unsigned NumBlocks = 0;
640 while (true) {
641 if (isa<BlockDecl>(DC)) {
642 DC = cast<BlockDecl>(DC)->getDeclContext();
643 ++NumBlocks;
644 } else if (isa<EnumDecl>(DC))
645 DC = cast<EnumDecl>(DC)->getDeclContext();
646 else break;
647 }
648
649 QualType ThisTy;
650 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
651 if (method && method->isInstance())
652 ThisTy = method->getThisType(Context);
653 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
654 // C++0x [expr.prim]p4:
655 // Otherwise, if a member-declarator declares a non-static data member
656 // of a class X, the expression this is a prvalue of type "pointer to X"
657 // within the optional brace-or-equal-initializer.
658 Scope *S = getScopeForContext(DC);
659 if (!S || S->getFlags() & Scope::ThisScope)
660 ThisTy = Context.getPointerType(Context.getRecordType(RD));
661 }
662
663 // Mark that we're closing on 'this' in all the block scopes we ignored.
664 if (!ThisTy.isNull())
665 for (unsigned idx = FunctionScopes.size() - 1;
666 NumBlocks; --idx, --NumBlocks)
667 cast<BlockScopeInfo>(FunctionScopes[idx])->CapturesCXXThis = true;
668
669 return ThisTy;
670 }
671
ActOnCXXThis(SourceLocation Loc)672 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
673 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
674 /// is a non-lvalue expression whose value is the address of the object for
675 /// which the function is called.
676
677 QualType ThisTy = getAndCaptureCurrentThisType();
678 if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
679
680 return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
681 }
682
683 ExprResult
ActOnCXXTypeConstructExpr(ParsedType TypeRep,SourceLocation LParenLoc,MultiExprArg exprs,SourceLocation RParenLoc)684 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
685 SourceLocation LParenLoc,
686 MultiExprArg exprs,
687 SourceLocation RParenLoc) {
688 if (!TypeRep)
689 return ExprError();
690
691 TypeSourceInfo *TInfo;
692 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
693 if (!TInfo)
694 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
695
696 return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
697 }
698
699 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
700 /// Can be interpreted either as function-style casting ("int(x)")
701 /// or class type construction ("ClassType(x,y,z)")
702 /// or creation of a value-initialized type ("int()").
703 ExprResult
BuildCXXTypeConstructExpr(TypeSourceInfo * TInfo,SourceLocation LParenLoc,MultiExprArg exprs,SourceLocation RParenLoc)704 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
705 SourceLocation LParenLoc,
706 MultiExprArg exprs,
707 SourceLocation RParenLoc) {
708 QualType Ty = TInfo->getType();
709 unsigned NumExprs = exprs.size();
710 Expr **Exprs = (Expr**)exprs.get();
711 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
712 SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
713
714 if (Ty->isDependentType() ||
715 CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
716 exprs.release();
717
718 return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
719 LParenLoc,
720 Exprs, NumExprs,
721 RParenLoc));
722 }
723
724 if (Ty->isArrayType())
725 return ExprError(Diag(TyBeginLoc,
726 diag::err_value_init_for_array_type) << FullRange);
727 if (!Ty->isVoidType() &&
728 RequireCompleteType(TyBeginLoc, Ty,
729 PDiag(diag::err_invalid_incomplete_type_use)
730 << FullRange))
731 return ExprError();
732
733 if (RequireNonAbstractType(TyBeginLoc, Ty,
734 diag::err_allocation_of_abstract_type))
735 return ExprError();
736
737
738 // C++ [expr.type.conv]p1:
739 // If the expression list is a single expression, the type conversion
740 // expression is equivalent (in definedness, and if defined in meaning) to the
741 // corresponding cast expression.
742 //
743 if (NumExprs == 1) {
744 CastKind Kind = CK_Invalid;
745 ExprValueKind VK = VK_RValue;
746 CXXCastPath BasePath;
747 ExprResult CastExpr =
748 CheckCastTypes(TInfo->getTypeLoc().getBeginLoc(),
749 TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
750 Kind, VK, BasePath,
751 /*FunctionalStyle=*/true);
752 if (CastExpr.isInvalid())
753 return ExprError();
754 Exprs[0] = CastExpr.take();
755
756 exprs.release();
757
758 return Owned(CXXFunctionalCastExpr::Create(Context,
759 Ty.getNonLValueExprType(Context),
760 VK, TInfo, TyBeginLoc, Kind,
761 Exprs[0], &BasePath,
762 RParenLoc));
763 }
764
765 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
766 InitializationKind Kind
767 = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
768 LParenLoc, RParenLoc)
769 : InitializationKind::CreateValue(TyBeginLoc,
770 LParenLoc, RParenLoc);
771 InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
772 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
773
774 // FIXME: Improve AST representation?
775 return move(Result);
776 }
777
778 /// doesUsualArrayDeleteWantSize - Answers whether the usual
779 /// operator delete[] for the given type has a size_t parameter.
doesUsualArrayDeleteWantSize(Sema & S,SourceLocation loc,QualType allocType)780 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
781 QualType allocType) {
782 const RecordType *record =
783 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
784 if (!record) return false;
785
786 // Try to find an operator delete[] in class scope.
787
788 DeclarationName deleteName =
789 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
790 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
791 S.LookupQualifiedName(ops, record->getDecl());
792
793 // We're just doing this for information.
794 ops.suppressDiagnostics();
795
796 // Very likely: there's no operator delete[].
797 if (ops.empty()) return false;
798
799 // If it's ambiguous, it should be illegal to call operator delete[]
800 // on this thing, so it doesn't matter if we allocate extra space or not.
801 if (ops.isAmbiguous()) return false;
802
803 LookupResult::Filter filter = ops.makeFilter();
804 while (filter.hasNext()) {
805 NamedDecl *del = filter.next()->getUnderlyingDecl();
806
807 // C++0x [basic.stc.dynamic.deallocation]p2:
808 // A template instance is never a usual deallocation function,
809 // regardless of its signature.
810 if (isa<FunctionTemplateDecl>(del)) {
811 filter.erase();
812 continue;
813 }
814
815 // C++0x [basic.stc.dynamic.deallocation]p2:
816 // If class T does not declare [an operator delete[] with one
817 // parameter] but does declare a member deallocation function
818 // named operator delete[] with exactly two parameters, the
819 // second of which has type std::size_t, then this function
820 // is a usual deallocation function.
821 if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
822 filter.erase();
823 continue;
824 }
825 }
826 filter.done();
827
828 if (!ops.isSingleResult()) return false;
829
830 const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
831 return (del->getNumParams() == 2);
832 }
833
834 /// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
835 /// @code new (memory) int[size][4] @endcode
836 /// or
837 /// @code ::new Foo(23, "hello") @endcode
838 /// For the interpretation of this heap of arguments, consult the base version.
839 ExprResult
ActOnCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,Declarator & D,SourceLocation ConstructorLParen,MultiExprArg ConstructorArgs,SourceLocation ConstructorRParen)840 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
841 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
842 SourceLocation PlacementRParen, SourceRange TypeIdParens,
843 Declarator &D, SourceLocation ConstructorLParen,
844 MultiExprArg ConstructorArgs,
845 SourceLocation ConstructorRParen) {
846 bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
847
848 Expr *ArraySize = 0;
849 // If the specified type is an array, unwrap it and save the expression.
850 if (D.getNumTypeObjects() > 0 &&
851 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
852 DeclaratorChunk &Chunk = D.getTypeObject(0);
853 if (TypeContainsAuto)
854 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
855 << D.getSourceRange());
856 if (Chunk.Arr.hasStatic)
857 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
858 << D.getSourceRange());
859 if (!Chunk.Arr.NumElts)
860 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
861 << D.getSourceRange());
862
863 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
864 D.DropFirstTypeObject();
865 }
866
867 // Every dimension shall be of constant size.
868 if (ArraySize) {
869 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
870 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
871 break;
872
873 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
874 if (Expr *NumElts = (Expr *)Array.NumElts) {
875 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
876 !NumElts->isIntegerConstantExpr(Context)) {
877 Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
878 << NumElts->getSourceRange();
879 return ExprError();
880 }
881 }
882 }
883 }
884
885 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
886 QualType AllocType = TInfo->getType();
887 if (D.isInvalidType())
888 return ExprError();
889
890 return BuildCXXNew(StartLoc, UseGlobal,
891 PlacementLParen,
892 move(PlacementArgs),
893 PlacementRParen,
894 TypeIdParens,
895 AllocType,
896 TInfo,
897 ArraySize,
898 ConstructorLParen,
899 move(ConstructorArgs),
900 ConstructorRParen,
901 TypeContainsAuto);
902 }
903
904 ExprResult
BuildCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocType,TypeSourceInfo * AllocTypeInfo,Expr * ArraySize,SourceLocation ConstructorLParen,MultiExprArg ConstructorArgs,SourceLocation ConstructorRParen,bool TypeMayContainAuto)905 Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
906 SourceLocation PlacementLParen,
907 MultiExprArg PlacementArgs,
908 SourceLocation PlacementRParen,
909 SourceRange TypeIdParens,
910 QualType AllocType,
911 TypeSourceInfo *AllocTypeInfo,
912 Expr *ArraySize,
913 SourceLocation ConstructorLParen,
914 MultiExprArg ConstructorArgs,
915 SourceLocation ConstructorRParen,
916 bool TypeMayContainAuto) {
917 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
918
919 // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
920 if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
921 if (ConstructorArgs.size() == 0)
922 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
923 << AllocType << TypeRange);
924 if (ConstructorArgs.size() != 1) {
925 Expr *FirstBad = ConstructorArgs.get()[1];
926 return ExprError(Diag(FirstBad->getSourceRange().getBegin(),
927 diag::err_auto_new_ctor_multiple_expressions)
928 << AllocType << TypeRange);
929 }
930 TypeSourceInfo *DeducedType = 0;
931 if (!DeduceAutoType(AllocTypeInfo, ConstructorArgs.get()[0], DeducedType))
932 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
933 << AllocType
934 << ConstructorArgs.get()[0]->getType()
935 << TypeRange
936 << ConstructorArgs.get()[0]->getSourceRange());
937 if (!DeducedType)
938 return ExprError();
939
940 AllocTypeInfo = DeducedType;
941 AllocType = AllocTypeInfo->getType();
942 }
943
944 // Per C++0x [expr.new]p5, the type being constructed may be a
945 // typedef of an array type.
946 if (!ArraySize) {
947 if (const ConstantArrayType *Array
948 = Context.getAsConstantArrayType(AllocType)) {
949 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
950 Context.getSizeType(),
951 TypeRange.getEnd());
952 AllocType = Array->getElementType();
953 }
954 }
955
956 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
957 return ExprError();
958
959 // In ARC, infer 'retaining' for the allocated
960 if (getLangOptions().ObjCAutoRefCount &&
961 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
962 AllocType->isObjCLifetimeType()) {
963 AllocType = Context.getLifetimeQualifiedType(AllocType,
964 AllocType->getObjCARCImplicitLifetime());
965 }
966
967 QualType ResultType = Context.getPointerType(AllocType);
968
969 // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
970 // or enumeration type with a non-negative value."
971 if (ArraySize && !ArraySize->isTypeDependent()) {
972
973 QualType SizeType = ArraySize->getType();
974
975 ExprResult ConvertedSize
976 = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
977 PDiag(diag::err_array_size_not_integral),
978 PDiag(diag::err_array_size_incomplete_type)
979 << ArraySize->getSourceRange(),
980 PDiag(diag::err_array_size_explicit_conversion),
981 PDiag(diag::note_array_size_conversion),
982 PDiag(diag::err_array_size_ambiguous_conversion),
983 PDiag(diag::note_array_size_conversion),
984 PDiag(getLangOptions().CPlusPlus0x? 0
985 : diag::ext_array_size_conversion));
986 if (ConvertedSize.isInvalid())
987 return ExprError();
988
989 ArraySize = ConvertedSize.take();
990 SizeType = ArraySize->getType();
991 if (!SizeType->isIntegralOrUnscopedEnumerationType())
992 return ExprError();
993
994 // Let's see if this is a constant < 0. If so, we reject it out of hand.
995 // We don't care about special rules, so we tell the machinery it's not
996 // evaluated - it gives us a result in more cases.
997 if (!ArraySize->isValueDependent()) {
998 llvm::APSInt Value;
999 if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
1000 if (Value < llvm::APSInt(
1001 llvm::APInt::getNullValue(Value.getBitWidth()),
1002 Value.isUnsigned()))
1003 return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
1004 diag::err_typecheck_negative_array_size)
1005 << ArraySize->getSourceRange());
1006
1007 if (!AllocType->isDependentType()) {
1008 unsigned ActiveSizeBits
1009 = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1010 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1011 Diag(ArraySize->getSourceRange().getBegin(),
1012 diag::err_array_too_large)
1013 << Value.toString(10)
1014 << ArraySize->getSourceRange();
1015 return ExprError();
1016 }
1017 }
1018 } else if (TypeIdParens.isValid()) {
1019 // Can't have dynamic array size when the type-id is in parentheses.
1020 Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1021 << ArraySize->getSourceRange()
1022 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1023 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1024
1025 TypeIdParens = SourceRange();
1026 }
1027 }
1028
1029 // ARC: warn about ABI issues.
1030 if (getLangOptions().ObjCAutoRefCount) {
1031 QualType BaseAllocType = Context.getBaseElementType(AllocType);
1032 if (BaseAllocType.hasStrongOrWeakObjCLifetime())
1033 Diag(StartLoc, diag::warn_err_new_delete_object_array)
1034 << 0 << BaseAllocType;
1035 }
1036
1037 // Note that we do *not* convert the argument in any way. It can
1038 // be signed, larger than size_t, whatever.
1039 }
1040
1041 FunctionDecl *OperatorNew = 0;
1042 FunctionDecl *OperatorDelete = 0;
1043 Expr **PlaceArgs = (Expr**)PlacementArgs.get();
1044 unsigned NumPlaceArgs = PlacementArgs.size();
1045
1046 if (!AllocType->isDependentType() &&
1047 !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
1048 FindAllocationFunctions(StartLoc,
1049 SourceRange(PlacementLParen, PlacementRParen),
1050 UseGlobal, AllocType, ArraySize, PlaceArgs,
1051 NumPlaceArgs, OperatorNew, OperatorDelete))
1052 return ExprError();
1053
1054 // If this is an array allocation, compute whether the usual array
1055 // deallocation function for the type has a size_t parameter.
1056 bool UsualArrayDeleteWantsSize = false;
1057 if (ArraySize && !AllocType->isDependentType())
1058 UsualArrayDeleteWantsSize
1059 = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1060
1061 llvm::SmallVector<Expr *, 8> AllPlaceArgs;
1062 if (OperatorNew) {
1063 // Add default arguments, if any.
1064 const FunctionProtoType *Proto =
1065 OperatorNew->getType()->getAs<FunctionProtoType>();
1066 VariadicCallType CallType =
1067 Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1068
1069 if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1070 Proto, 1, PlaceArgs, NumPlaceArgs,
1071 AllPlaceArgs, CallType))
1072 return ExprError();
1073
1074 NumPlaceArgs = AllPlaceArgs.size();
1075 if (NumPlaceArgs > 0)
1076 PlaceArgs = &AllPlaceArgs[0];
1077 }
1078
1079 bool Init = ConstructorLParen.isValid();
1080 // --- Choosing a constructor ---
1081 CXXConstructorDecl *Constructor = 0;
1082 Expr **ConsArgs = (Expr**)ConstructorArgs.get();
1083 unsigned NumConsArgs = ConstructorArgs.size();
1084 ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
1085
1086 // Array 'new' can't have any initializers.
1087 if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
1088 SourceRange InitRange(ConsArgs[0]->getLocStart(),
1089 ConsArgs[NumConsArgs - 1]->getLocEnd());
1090
1091 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1092 return ExprError();
1093 }
1094
1095 if (!AllocType->isDependentType() &&
1096 !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
1097 // C++0x [expr.new]p15:
1098 // A new-expression that creates an object of type T initializes that
1099 // object as follows:
1100 InitializationKind Kind
1101 // - If the new-initializer is omitted, the object is default-
1102 // initialized (8.5); if no initialization is performed,
1103 // the object has indeterminate value
1104 = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
1105 // - Otherwise, the new-initializer is interpreted according to the
1106 // initialization rules of 8.5 for direct-initialization.
1107 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1108 ConstructorLParen,
1109 ConstructorRParen);
1110
1111 InitializedEntity Entity
1112 = InitializedEntity::InitializeNew(StartLoc, AllocType);
1113 InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
1114 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1115 move(ConstructorArgs));
1116 if (FullInit.isInvalid())
1117 return ExprError();
1118
1119 // FullInit is our initializer; walk through it to determine if it's a
1120 // constructor call, which CXXNewExpr handles directly.
1121 if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
1122 if (CXXBindTemporaryExpr *Binder
1123 = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
1124 FullInitExpr = Binder->getSubExpr();
1125 if (CXXConstructExpr *Construct
1126 = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
1127 Constructor = Construct->getConstructor();
1128 for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
1129 AEnd = Construct->arg_end();
1130 A != AEnd; ++A)
1131 ConvertedConstructorArgs.push_back(*A);
1132 } else {
1133 // Take the converted initializer.
1134 ConvertedConstructorArgs.push_back(FullInit.release());
1135 }
1136 } else {
1137 // No initialization required.
1138 }
1139
1140 // Take the converted arguments and use them for the new expression.
1141 NumConsArgs = ConvertedConstructorArgs.size();
1142 ConsArgs = (Expr **)ConvertedConstructorArgs.take();
1143 }
1144
1145 // Mark the new and delete operators as referenced.
1146 if (OperatorNew)
1147 MarkDeclarationReferenced(StartLoc, OperatorNew);
1148 if (OperatorDelete)
1149 MarkDeclarationReferenced(StartLoc, OperatorDelete);
1150
1151 // C++0x [expr.new]p17:
1152 // If the new expression creates an array of objects of class type,
1153 // access and ambiguity control are done for the destructor.
1154 if (ArraySize && Constructor) {
1155 if (CXXDestructorDecl *dtor = LookupDestructor(Constructor->getParent())) {
1156 MarkDeclarationReferenced(StartLoc, dtor);
1157 CheckDestructorAccess(StartLoc, dtor,
1158 PDiag(diag::err_access_dtor)
1159 << Context.getBaseElementType(AllocType));
1160 }
1161 }
1162
1163 PlacementArgs.release();
1164 ConstructorArgs.release();
1165
1166 return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1167 PlaceArgs, NumPlaceArgs, TypeIdParens,
1168 ArraySize, Constructor, Init,
1169 ConsArgs, NumConsArgs, OperatorDelete,
1170 UsualArrayDeleteWantsSize,
1171 ResultType, AllocTypeInfo,
1172 StartLoc,
1173 Init ? ConstructorRParen :
1174 TypeRange.getEnd(),
1175 ConstructorLParen, ConstructorRParen));
1176 }
1177
1178 /// CheckAllocatedType - Checks that a type is suitable as the allocated type
1179 /// in a new-expression.
1180 /// dimension off and stores the size expression in ArraySize.
CheckAllocatedType(QualType AllocType,SourceLocation Loc,SourceRange R)1181 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1182 SourceRange R) {
1183 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1184 // abstract class type or array thereof.
1185 if (AllocType->isFunctionType())
1186 return Diag(Loc, diag::err_bad_new_type)
1187 << AllocType << 0 << R;
1188 else if (AllocType->isReferenceType())
1189 return Diag(Loc, diag::err_bad_new_type)
1190 << AllocType << 1 << R;
1191 else if (!AllocType->isDependentType() &&
1192 RequireCompleteType(Loc, AllocType,
1193 PDiag(diag::err_new_incomplete_type)
1194 << R))
1195 return true;
1196 else if (RequireNonAbstractType(Loc, AllocType,
1197 diag::err_allocation_of_abstract_type))
1198 return true;
1199 else if (AllocType->isVariablyModifiedType())
1200 return Diag(Loc, diag::err_variably_modified_new_type)
1201 << AllocType;
1202 else if (unsigned AddressSpace = AllocType.getAddressSpace())
1203 return Diag(Loc, diag::err_address_space_qualified_new)
1204 << AllocType.getUnqualifiedType() << AddressSpace;
1205 else if (getLangOptions().ObjCAutoRefCount) {
1206 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1207 QualType BaseAllocType = Context.getBaseElementType(AT);
1208 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1209 BaseAllocType->isObjCLifetimeType())
1210 return Diag(Loc, diag::err_arc_new_array_without_ownership)
1211 << BaseAllocType;
1212 }
1213 }
1214
1215 return false;
1216 }
1217
1218 /// \brief Determine whether the given function is a non-placement
1219 /// deallocation function.
isNonPlacementDeallocationFunction(FunctionDecl * FD)1220 static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1221 if (FD->isInvalidDecl())
1222 return false;
1223
1224 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1225 return Method->isUsualDeallocationFunction();
1226
1227 return ((FD->getOverloadedOperator() == OO_Delete ||
1228 FD->getOverloadedOperator() == OO_Array_Delete) &&
1229 FD->getNumParams() == 1);
1230 }
1231
1232 /// FindAllocationFunctions - Finds the overloads of operator new and delete
1233 /// that are appropriate for the allocation.
FindAllocationFunctions(SourceLocation StartLoc,SourceRange Range,bool UseGlobal,QualType AllocType,bool IsArray,Expr ** PlaceArgs,unsigned NumPlaceArgs,FunctionDecl * & OperatorNew,FunctionDecl * & OperatorDelete)1234 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1235 bool UseGlobal, QualType AllocType,
1236 bool IsArray, Expr **PlaceArgs,
1237 unsigned NumPlaceArgs,
1238 FunctionDecl *&OperatorNew,
1239 FunctionDecl *&OperatorDelete) {
1240 // --- Choosing an allocation function ---
1241 // C++ 5.3.4p8 - 14 & 18
1242 // 1) If UseGlobal is true, only look in the global scope. Else, also look
1243 // in the scope of the allocated class.
1244 // 2) If an array size is given, look for operator new[], else look for
1245 // operator new.
1246 // 3) The first argument is always size_t. Append the arguments from the
1247 // placement form.
1248
1249 llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1250 // We don't care about the actual value of this argument.
1251 // FIXME: Should the Sema create the expression and embed it in the syntax
1252 // tree? Or should the consumer just recalculate the value?
1253 IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1254 Context.Target.getPointerWidth(0)),
1255 Context.getSizeType(),
1256 SourceLocation());
1257 AllocArgs[0] = &Size;
1258 std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1259
1260 // C++ [expr.new]p8:
1261 // If the allocated type is a non-array type, the allocation
1262 // function's name is operator new and the deallocation function's
1263 // name is operator delete. If the allocated type is an array
1264 // type, the allocation function's name is operator new[] and the
1265 // deallocation function's name is operator delete[].
1266 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1267 IsArray ? OO_Array_New : OO_New);
1268 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1269 IsArray ? OO_Array_Delete : OO_Delete);
1270
1271 QualType AllocElemType = Context.getBaseElementType(AllocType);
1272
1273 if (AllocElemType->isRecordType() && !UseGlobal) {
1274 CXXRecordDecl *Record
1275 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1276 if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1277 AllocArgs.size(), Record, /*AllowMissing=*/true,
1278 OperatorNew))
1279 return true;
1280 }
1281 if (!OperatorNew) {
1282 // Didn't find a member overload. Look for a global one.
1283 DeclareGlobalNewDelete();
1284 DeclContext *TUDecl = Context.getTranslationUnitDecl();
1285 if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1286 AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1287 OperatorNew))
1288 return true;
1289 }
1290
1291 // We don't need an operator delete if we're running under
1292 // -fno-exceptions.
1293 if (!getLangOptions().Exceptions) {
1294 OperatorDelete = 0;
1295 return false;
1296 }
1297
1298 // FindAllocationOverload can change the passed in arguments, so we need to
1299 // copy them back.
1300 if (NumPlaceArgs > 0)
1301 std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1302
1303 // C++ [expr.new]p19:
1304 //
1305 // If the new-expression begins with a unary :: operator, the
1306 // deallocation function's name is looked up in the global
1307 // scope. Otherwise, if the allocated type is a class type T or an
1308 // array thereof, the deallocation function's name is looked up in
1309 // the scope of T. If this lookup fails to find the name, or if
1310 // the allocated type is not a class type or array thereof, the
1311 // deallocation function's name is looked up in the global scope.
1312 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1313 if (AllocElemType->isRecordType() && !UseGlobal) {
1314 CXXRecordDecl *RD
1315 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1316 LookupQualifiedName(FoundDelete, RD);
1317 }
1318 if (FoundDelete.isAmbiguous())
1319 return true; // FIXME: clean up expressions?
1320
1321 if (FoundDelete.empty()) {
1322 DeclareGlobalNewDelete();
1323 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1324 }
1325
1326 FoundDelete.suppressDiagnostics();
1327
1328 llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1329
1330 // Whether we're looking for a placement operator delete is dictated
1331 // by whether we selected a placement operator new, not by whether
1332 // we had explicit placement arguments. This matters for things like
1333 // struct A { void *operator new(size_t, int = 0); ... };
1334 // A *a = new A()
1335 bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1336
1337 if (isPlacementNew) {
1338 // C++ [expr.new]p20:
1339 // A declaration of a placement deallocation function matches the
1340 // declaration of a placement allocation function if it has the
1341 // same number of parameters and, after parameter transformations
1342 // (8.3.5), all parameter types except the first are
1343 // identical. [...]
1344 //
1345 // To perform this comparison, we compute the function type that
1346 // the deallocation function should have, and use that type both
1347 // for template argument deduction and for comparison purposes.
1348 //
1349 // FIXME: this comparison should ignore CC and the like.
1350 QualType ExpectedFunctionType;
1351 {
1352 const FunctionProtoType *Proto
1353 = OperatorNew->getType()->getAs<FunctionProtoType>();
1354
1355 llvm::SmallVector<QualType, 4> ArgTypes;
1356 ArgTypes.push_back(Context.VoidPtrTy);
1357 for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1358 ArgTypes.push_back(Proto->getArgType(I));
1359
1360 FunctionProtoType::ExtProtoInfo EPI;
1361 EPI.Variadic = Proto->isVariadic();
1362
1363 ExpectedFunctionType
1364 = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1365 ArgTypes.size(), EPI);
1366 }
1367
1368 for (LookupResult::iterator D = FoundDelete.begin(),
1369 DEnd = FoundDelete.end();
1370 D != DEnd; ++D) {
1371 FunctionDecl *Fn = 0;
1372 if (FunctionTemplateDecl *FnTmpl
1373 = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1374 // Perform template argument deduction to try to match the
1375 // expected function type.
1376 TemplateDeductionInfo Info(Context, StartLoc);
1377 if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1378 continue;
1379 } else
1380 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1381
1382 if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1383 Matches.push_back(std::make_pair(D.getPair(), Fn));
1384 }
1385 } else {
1386 // C++ [expr.new]p20:
1387 // [...] Any non-placement deallocation function matches a
1388 // non-placement allocation function. [...]
1389 for (LookupResult::iterator D = FoundDelete.begin(),
1390 DEnd = FoundDelete.end();
1391 D != DEnd; ++D) {
1392 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1393 if (isNonPlacementDeallocationFunction(Fn))
1394 Matches.push_back(std::make_pair(D.getPair(), Fn));
1395 }
1396 }
1397
1398 // C++ [expr.new]p20:
1399 // [...] If the lookup finds a single matching deallocation
1400 // function, that function will be called; otherwise, no
1401 // deallocation function will be called.
1402 if (Matches.size() == 1) {
1403 OperatorDelete = Matches[0].second;
1404
1405 // C++0x [expr.new]p20:
1406 // If the lookup finds the two-parameter form of a usual
1407 // deallocation function (3.7.4.2) and that function, considered
1408 // as a placement deallocation function, would have been
1409 // selected as a match for the allocation function, the program
1410 // is ill-formed.
1411 if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
1412 isNonPlacementDeallocationFunction(OperatorDelete)) {
1413 Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1414 << SourceRange(PlaceArgs[0]->getLocStart(),
1415 PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1416 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1417 << DeleteName;
1418 } else {
1419 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1420 Matches[0].first);
1421 }
1422 }
1423
1424 return false;
1425 }
1426
1427 /// FindAllocationOverload - Find an fitting overload for the allocation
1428 /// function in the specified scope.
FindAllocationOverload(SourceLocation StartLoc,SourceRange Range,DeclarationName Name,Expr ** Args,unsigned NumArgs,DeclContext * Ctx,bool AllowMissing,FunctionDecl * & Operator,bool Diagnose)1429 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1430 DeclarationName Name, Expr** Args,
1431 unsigned NumArgs, DeclContext *Ctx,
1432 bool AllowMissing, FunctionDecl *&Operator,
1433 bool Diagnose) {
1434 LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1435 LookupQualifiedName(R, Ctx);
1436 if (R.empty()) {
1437 if (AllowMissing || !Diagnose)
1438 return false;
1439 return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1440 << Name << Range;
1441 }
1442
1443 if (R.isAmbiguous())
1444 return true;
1445
1446 R.suppressDiagnostics();
1447
1448 OverloadCandidateSet Candidates(StartLoc);
1449 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1450 Alloc != AllocEnd; ++Alloc) {
1451 // Even member operator new/delete are implicitly treated as
1452 // static, so don't use AddMemberCandidate.
1453 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1454
1455 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1456 AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1457 /*ExplicitTemplateArgs=*/0, Args, NumArgs,
1458 Candidates,
1459 /*SuppressUserConversions=*/false);
1460 continue;
1461 }
1462
1463 FunctionDecl *Fn = cast<FunctionDecl>(D);
1464 AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
1465 /*SuppressUserConversions=*/false);
1466 }
1467
1468 // Do the resolution.
1469 OverloadCandidateSet::iterator Best;
1470 switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1471 case OR_Success: {
1472 // Got one!
1473 FunctionDecl *FnDecl = Best->Function;
1474 MarkDeclarationReferenced(StartLoc, FnDecl);
1475 // The first argument is size_t, and the first parameter must be size_t,
1476 // too. This is checked on declaration and can be assumed. (It can't be
1477 // asserted on, though, since invalid decls are left in there.)
1478 // Watch out for variadic allocator function.
1479 unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1480 for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1481 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1482 FnDecl->getParamDecl(i));
1483
1484 if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1485 return true;
1486
1487 ExprResult Result
1488 = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1489 if (Result.isInvalid())
1490 return true;
1491
1492 Args[i] = Result.takeAs<Expr>();
1493 }
1494 Operator = FnDecl;
1495 CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl,
1496 Diagnose);
1497 return false;
1498 }
1499
1500 case OR_No_Viable_Function:
1501 if (Diagnose) {
1502 Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1503 << Name << Range;
1504 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1505 }
1506 return true;
1507
1508 case OR_Ambiguous:
1509 if (Diagnose) {
1510 Diag(StartLoc, diag::err_ovl_ambiguous_call)
1511 << Name << Range;
1512 Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
1513 }
1514 return true;
1515
1516 case OR_Deleted: {
1517 if (Diagnose) {
1518 Diag(StartLoc, diag::err_ovl_deleted_call)
1519 << Best->Function->isDeleted()
1520 << Name
1521 << getDeletedOrUnavailableSuffix(Best->Function)
1522 << Range;
1523 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1524 }
1525 return true;
1526 }
1527 }
1528 assert(false && "Unreachable, bad result from BestViableFunction");
1529 return true;
1530 }
1531
1532
1533 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
1534 /// delete. These are:
1535 /// @code
1536 /// // C++03:
1537 /// void* operator new(std::size_t) throw(std::bad_alloc);
1538 /// void* operator new[](std::size_t) throw(std::bad_alloc);
1539 /// void operator delete(void *) throw();
1540 /// void operator delete[](void *) throw();
1541 /// // C++0x:
1542 /// void* operator new(std::size_t);
1543 /// void* operator new[](std::size_t);
1544 /// void operator delete(void *);
1545 /// void operator delete[](void *);
1546 /// @endcode
1547 /// C++0x operator delete is implicitly noexcept.
1548 /// Note that the placement and nothrow forms of new are *not* implicitly
1549 /// declared. Their use requires including \<new\>.
DeclareGlobalNewDelete()1550 void Sema::DeclareGlobalNewDelete() {
1551 if (GlobalNewDeleteDeclared)
1552 return;
1553
1554 // C++ [basic.std.dynamic]p2:
1555 // [...] The following allocation and deallocation functions (18.4) are
1556 // implicitly declared in global scope in each translation unit of a
1557 // program
1558 //
1559 // C++03:
1560 // void* operator new(std::size_t) throw(std::bad_alloc);
1561 // void* operator new[](std::size_t) throw(std::bad_alloc);
1562 // void operator delete(void*) throw();
1563 // void operator delete[](void*) throw();
1564 // C++0x:
1565 // void* operator new(std::size_t);
1566 // void* operator new[](std::size_t);
1567 // void operator delete(void*);
1568 // void operator delete[](void*);
1569 //
1570 // These implicit declarations introduce only the function names operator
1571 // new, operator new[], operator delete, operator delete[].
1572 //
1573 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1574 // "std" or "bad_alloc" as necessary to form the exception specification.
1575 // However, we do not make these implicit declarations visible to name
1576 // lookup.
1577 // Note that the C++0x versions of operator delete are deallocation functions,
1578 // and thus are implicitly noexcept.
1579 if (!StdBadAlloc && !getLangOptions().CPlusPlus0x) {
1580 // The "std::bad_alloc" class has not yet been declared, so build it
1581 // implicitly.
1582 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1583 getOrCreateStdNamespace(),
1584 SourceLocation(), SourceLocation(),
1585 &PP.getIdentifierTable().get("bad_alloc"),
1586 0);
1587 getStdBadAlloc()->setImplicit(true);
1588 }
1589
1590 GlobalNewDeleteDeclared = true;
1591
1592 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1593 QualType SizeT = Context.getSizeType();
1594 bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
1595
1596 DeclareGlobalAllocationFunction(
1597 Context.DeclarationNames.getCXXOperatorName(OO_New),
1598 VoidPtr, SizeT, AssumeSaneOperatorNew);
1599 DeclareGlobalAllocationFunction(
1600 Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1601 VoidPtr, SizeT, AssumeSaneOperatorNew);
1602 DeclareGlobalAllocationFunction(
1603 Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1604 Context.VoidTy, VoidPtr);
1605 DeclareGlobalAllocationFunction(
1606 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1607 Context.VoidTy, VoidPtr);
1608 }
1609
1610 /// DeclareGlobalAllocationFunction - Declares a single implicit global
1611 /// allocation function if it doesn't already exist.
DeclareGlobalAllocationFunction(DeclarationName Name,QualType Return,QualType Argument,bool AddMallocAttr)1612 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1613 QualType Return, QualType Argument,
1614 bool AddMallocAttr) {
1615 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1616
1617 // Check if this function is already declared.
1618 {
1619 DeclContext::lookup_iterator Alloc, AllocEnd;
1620 for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1621 Alloc != AllocEnd; ++Alloc) {
1622 // Only look at non-template functions, as it is the predefined,
1623 // non-templated allocation function we are trying to declare here.
1624 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1625 QualType InitialParamType =
1626 Context.getCanonicalType(
1627 Func->getParamDecl(0)->getType().getUnqualifiedType());
1628 // FIXME: Do we need to check for default arguments here?
1629 if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1630 if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1631 Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1632 return;
1633 }
1634 }
1635 }
1636 }
1637
1638 QualType BadAllocType;
1639 bool HasBadAllocExceptionSpec
1640 = (Name.getCXXOverloadedOperator() == OO_New ||
1641 Name.getCXXOverloadedOperator() == OO_Array_New);
1642 if (HasBadAllocExceptionSpec && !getLangOptions().CPlusPlus0x) {
1643 assert(StdBadAlloc && "Must have std::bad_alloc declared");
1644 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1645 }
1646
1647 FunctionProtoType::ExtProtoInfo EPI;
1648 if (HasBadAllocExceptionSpec) {
1649 if (!getLangOptions().CPlusPlus0x) {
1650 EPI.ExceptionSpecType = EST_Dynamic;
1651 EPI.NumExceptions = 1;
1652 EPI.Exceptions = &BadAllocType;
1653 }
1654 } else {
1655 EPI.ExceptionSpecType = getLangOptions().CPlusPlus0x ?
1656 EST_BasicNoexcept : EST_DynamicNone;
1657 }
1658
1659 QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1660 FunctionDecl *Alloc =
1661 FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1662 SourceLocation(), Name,
1663 FnType, /*TInfo=*/0, SC_None,
1664 SC_None, false, true);
1665 Alloc->setImplicit();
1666
1667 if (AddMallocAttr)
1668 Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1669
1670 ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1671 SourceLocation(), 0,
1672 Argument, /*TInfo=*/0,
1673 SC_None, SC_None, 0);
1674 Alloc->setParams(&Param, 1);
1675
1676 // FIXME: Also add this declaration to the IdentifierResolver, but
1677 // make sure it is at the end of the chain to coincide with the
1678 // global scope.
1679 Context.getTranslationUnitDecl()->addDecl(Alloc);
1680 }
1681
FindDeallocationFunction(SourceLocation StartLoc,CXXRecordDecl * RD,DeclarationName Name,FunctionDecl * & Operator,bool Diagnose)1682 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1683 DeclarationName Name,
1684 FunctionDecl* &Operator, bool Diagnose) {
1685 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1686 // Try to find operator delete/operator delete[] in class scope.
1687 LookupQualifiedName(Found, RD);
1688
1689 if (Found.isAmbiguous())
1690 return true;
1691
1692 Found.suppressDiagnostics();
1693
1694 llvm::SmallVector<DeclAccessPair,4> Matches;
1695 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1696 F != FEnd; ++F) {
1697 NamedDecl *ND = (*F)->getUnderlyingDecl();
1698
1699 // Ignore template operator delete members from the check for a usual
1700 // deallocation function.
1701 if (isa<FunctionTemplateDecl>(ND))
1702 continue;
1703
1704 if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1705 Matches.push_back(F.getPair());
1706 }
1707
1708 // There's exactly one suitable operator; pick it.
1709 if (Matches.size() == 1) {
1710 Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1711
1712 if (Operator->isDeleted()) {
1713 if (Diagnose) {
1714 Diag(StartLoc, diag::err_deleted_function_use);
1715 Diag(Operator->getLocation(), diag::note_unavailable_here) << true;
1716 }
1717 return true;
1718 }
1719
1720 CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1721 Matches[0], Diagnose);
1722 return false;
1723
1724 // We found multiple suitable operators; complain about the ambiguity.
1725 } else if (!Matches.empty()) {
1726 if (Diagnose) {
1727 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1728 << Name << RD;
1729
1730 for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
1731 F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1732 Diag((*F)->getUnderlyingDecl()->getLocation(),
1733 diag::note_member_declared_here) << Name;
1734 }
1735 return true;
1736 }
1737
1738 // We did find operator delete/operator delete[] declarations, but
1739 // none of them were suitable.
1740 if (!Found.empty()) {
1741 if (Diagnose) {
1742 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1743 << Name << RD;
1744
1745 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1746 F != FEnd; ++F)
1747 Diag((*F)->getUnderlyingDecl()->getLocation(),
1748 diag::note_member_declared_here) << Name;
1749 }
1750 return true;
1751 }
1752
1753 // Look for a global declaration.
1754 DeclareGlobalNewDelete();
1755 DeclContext *TUDecl = Context.getTranslationUnitDecl();
1756
1757 CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1758 Expr* DeallocArgs[1];
1759 DeallocArgs[0] = &Null;
1760 if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1761 DeallocArgs, 1, TUDecl, !Diagnose,
1762 Operator, Diagnose))
1763 return true;
1764
1765 assert(Operator && "Did not find a deallocation function!");
1766 return false;
1767 }
1768
1769 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1770 /// @code ::delete ptr; @endcode
1771 /// or
1772 /// @code delete [] ptr; @endcode
1773 ExprResult
ActOnCXXDelete(SourceLocation StartLoc,bool UseGlobal,bool ArrayForm,Expr * ExE)1774 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1775 bool ArrayForm, Expr *ExE) {
1776 // C++ [expr.delete]p1:
1777 // The operand shall have a pointer type, or a class type having a single
1778 // conversion function to a pointer type. The result has type void.
1779 //
1780 // DR599 amends "pointer type" to "pointer to object type" in both cases.
1781
1782 ExprResult Ex = Owned(ExE);
1783 FunctionDecl *OperatorDelete = 0;
1784 bool ArrayFormAsWritten = ArrayForm;
1785 bool UsualArrayDeleteWantsSize = false;
1786
1787 if (!Ex.get()->isTypeDependent()) {
1788 QualType Type = Ex.get()->getType();
1789
1790 if (const RecordType *Record = Type->getAs<RecordType>()) {
1791 if (RequireCompleteType(StartLoc, Type,
1792 PDiag(diag::err_delete_incomplete_class_type)))
1793 return ExprError();
1794
1795 llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1796
1797 CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1798 const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1799 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1800 E = Conversions->end(); I != E; ++I) {
1801 NamedDecl *D = I.getDecl();
1802 if (isa<UsingShadowDecl>(D))
1803 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1804
1805 // Skip over templated conversion functions; they aren't considered.
1806 if (isa<FunctionTemplateDecl>(D))
1807 continue;
1808
1809 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
1810
1811 QualType ConvType = Conv->getConversionType().getNonReferenceType();
1812 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
1813 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
1814 ObjectPtrConversions.push_back(Conv);
1815 }
1816 if (ObjectPtrConversions.size() == 1) {
1817 // We have a single conversion to a pointer-to-object type. Perform
1818 // that conversion.
1819 // TODO: don't redo the conversion calculation.
1820 ExprResult Res =
1821 PerformImplicitConversion(Ex.get(),
1822 ObjectPtrConversions.front()->getConversionType(),
1823 AA_Converting);
1824 if (Res.isUsable()) {
1825 Ex = move(Res);
1826 Type = Ex.get()->getType();
1827 }
1828 }
1829 else if (ObjectPtrConversions.size() > 1) {
1830 Diag(StartLoc, diag::err_ambiguous_delete_operand)
1831 << Type << Ex.get()->getSourceRange();
1832 for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
1833 NoteOverloadCandidate(ObjectPtrConversions[i]);
1834 return ExprError();
1835 }
1836 }
1837
1838 if (!Type->isPointerType())
1839 return ExprError(Diag(StartLoc, diag::err_delete_operand)
1840 << Type << Ex.get()->getSourceRange());
1841
1842 QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
1843 if (Pointee->isVoidType() && !isSFINAEContext()) {
1844 // The C++ standard bans deleting a pointer to a non-object type, which
1845 // effectively bans deletion of "void*". However, most compilers support
1846 // this, so we treat it as a warning unless we're in a SFINAE context.
1847 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
1848 << Type << Ex.get()->getSourceRange();
1849 } else if (Pointee->isFunctionType() || Pointee->isVoidType())
1850 return ExprError(Diag(StartLoc, diag::err_delete_operand)
1851 << Type << Ex.get()->getSourceRange());
1852 else if (!Pointee->isDependentType() &&
1853 RequireCompleteType(StartLoc, Pointee,
1854 PDiag(diag::warn_delete_incomplete)
1855 << Ex.get()->getSourceRange()))
1856 return ExprError();
1857 else if (unsigned AddressSpace = Pointee.getAddressSpace())
1858 return Diag(Ex.get()->getLocStart(),
1859 diag::err_address_space_qualified_delete)
1860 << Pointee.getUnqualifiedType() << AddressSpace;
1861 // C++ [expr.delete]p2:
1862 // [Note: a pointer to a const type can be the operand of a
1863 // delete-expression; it is not necessary to cast away the constness
1864 // (5.2.11) of the pointer expression before it is used as the operand
1865 // of the delete-expression. ]
1866 if (!Context.hasSameType(Ex.get()->getType(), Context.VoidPtrTy))
1867 Ex = Owned(ImplicitCastExpr::Create(Context, Context.VoidPtrTy, CK_NoOp,
1868 Ex.take(), 0, VK_RValue));
1869
1870 if (Pointee->isArrayType() && !ArrayForm) {
1871 Diag(StartLoc, diag::warn_delete_array_type)
1872 << Type << Ex.get()->getSourceRange()
1873 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
1874 ArrayForm = true;
1875 }
1876
1877 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1878 ArrayForm ? OO_Array_Delete : OO_Delete);
1879
1880 QualType PointeeElem = Context.getBaseElementType(Pointee);
1881 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1882 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1883
1884 if (!UseGlobal &&
1885 FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
1886 return ExprError();
1887
1888 // If we're allocating an array of records, check whether the
1889 // usual operator delete[] has a size_t parameter.
1890 if (ArrayForm) {
1891 // If the user specifically asked to use the global allocator,
1892 // we'll need to do the lookup into the class.
1893 if (UseGlobal)
1894 UsualArrayDeleteWantsSize =
1895 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
1896
1897 // Otherwise, the usual operator delete[] should be the
1898 // function we just found.
1899 else if (isa<CXXMethodDecl>(OperatorDelete))
1900 UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
1901 }
1902
1903 if (!RD->hasTrivialDestructor())
1904 if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1905 MarkDeclarationReferenced(StartLoc,
1906 const_cast<CXXDestructorDecl*>(Dtor));
1907 DiagnoseUseOfDecl(Dtor, StartLoc);
1908 }
1909
1910 // C++ [expr.delete]p3:
1911 // In the first alternative (delete object), if the static type of the
1912 // object to be deleted is different from its dynamic type, the static
1913 // type shall be a base class of the dynamic type of the object to be
1914 // deleted and the static type shall have a virtual destructor or the
1915 // behavior is undefined.
1916 //
1917 // Note: a final class cannot be derived from, no issue there
1918 if (!ArrayForm && RD->isPolymorphic() && !RD->hasAttr<FinalAttr>()) {
1919 CXXDestructorDecl *dtor = RD->getDestructor();
1920 if (!dtor || !dtor->isVirtual())
1921 Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
1922 }
1923
1924 } else if (getLangOptions().ObjCAutoRefCount &&
1925 PointeeElem->isObjCLifetimeType() &&
1926 (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
1927 PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
1928 ArrayForm) {
1929 Diag(StartLoc, diag::warn_err_new_delete_object_array)
1930 << 1 << PointeeElem;
1931 }
1932
1933 if (!OperatorDelete) {
1934 // Look for a global declaration.
1935 DeclareGlobalNewDelete();
1936 DeclContext *TUDecl = Context.getTranslationUnitDecl();
1937 Expr *Arg = Ex.get();
1938 if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
1939 &Arg, 1, TUDecl, /*AllowMissing=*/false,
1940 OperatorDelete))
1941 return ExprError();
1942 }
1943
1944 MarkDeclarationReferenced(StartLoc, OperatorDelete);
1945
1946 // Check access and ambiguity of operator delete and destructor.
1947 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1948 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1949 if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1950 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
1951 PDiag(diag::err_access_dtor) << PointeeElem);
1952 }
1953 }
1954
1955 }
1956
1957 return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
1958 ArrayFormAsWritten,
1959 UsualArrayDeleteWantsSize,
1960 OperatorDelete, Ex.take(), StartLoc));
1961 }
1962
1963 /// \brief Check the use of the given variable as a C++ condition in an if,
1964 /// while, do-while, or switch statement.
CheckConditionVariable(VarDecl * ConditionVar,SourceLocation StmtLoc,bool ConvertToBoolean)1965 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
1966 SourceLocation StmtLoc,
1967 bool ConvertToBoolean) {
1968 QualType T = ConditionVar->getType();
1969
1970 // C++ [stmt.select]p2:
1971 // The declarator shall not specify a function or an array.
1972 if (T->isFunctionType())
1973 return ExprError(Diag(ConditionVar->getLocation(),
1974 diag::err_invalid_use_of_function_type)
1975 << ConditionVar->getSourceRange());
1976 else if (T->isArrayType())
1977 return ExprError(Diag(ConditionVar->getLocation(),
1978 diag::err_invalid_use_of_array_type)
1979 << ConditionVar->getSourceRange());
1980
1981 ExprResult Condition =
1982 Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
1983 ConditionVar,
1984 ConditionVar->getLocation(),
1985 ConditionVar->getType().getNonReferenceType(),
1986 VK_LValue));
1987 if (ConvertToBoolean) {
1988 Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
1989 if (Condition.isInvalid())
1990 return ExprError();
1991 }
1992
1993 return move(Condition);
1994 }
1995
1996 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
CheckCXXBooleanCondition(Expr * CondExpr)1997 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
1998 // C++ 6.4p4:
1999 // The value of a condition that is an initialized declaration in a statement
2000 // other than a switch statement is the value of the declared variable
2001 // implicitly converted to type bool. If that conversion is ill-formed, the
2002 // program is ill-formed.
2003 // The value of a condition that is an expression is the value of the
2004 // expression, implicitly converted to bool.
2005 //
2006 return PerformContextuallyConvertToBool(CondExpr);
2007 }
2008
2009 /// Helper function to determine whether this is the (deprecated) C++
2010 /// conversion from a string literal to a pointer to non-const char or
2011 /// non-const wchar_t (for narrow and wide string literals,
2012 /// respectively).
2013 bool
IsStringLiteralToNonConstPointerConversion(Expr * From,QualType ToType)2014 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2015 // Look inside the implicit cast, if it exists.
2016 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2017 From = Cast->getSubExpr();
2018
2019 // A string literal (2.13.4) that is not a wide string literal can
2020 // be converted to an rvalue of type "pointer to char"; a wide
2021 // string literal can be converted to an rvalue of type "pointer
2022 // to wchar_t" (C++ 4.2p2).
2023 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2024 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2025 if (const BuiltinType *ToPointeeType
2026 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2027 // This conversion is considered only when there is an
2028 // explicit appropriate pointer target type (C++ 4.2p2).
2029 if (!ToPtrType->getPointeeType().hasQualifiers() &&
2030 ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
2031 (!StrLit->isWide() &&
2032 (ToPointeeType->getKind() == BuiltinType::Char_U ||
2033 ToPointeeType->getKind() == BuiltinType::Char_S))))
2034 return true;
2035 }
2036
2037 return false;
2038 }
2039
BuildCXXCastArgument(Sema & S,SourceLocation CastLoc,QualType Ty,CastKind Kind,CXXMethodDecl * Method,NamedDecl * FoundDecl,Expr * From)2040 static ExprResult BuildCXXCastArgument(Sema &S,
2041 SourceLocation CastLoc,
2042 QualType Ty,
2043 CastKind Kind,
2044 CXXMethodDecl *Method,
2045 NamedDecl *FoundDecl,
2046 Expr *From) {
2047 switch (Kind) {
2048 default: assert(0 && "Unhandled cast kind!");
2049 case CK_ConstructorConversion: {
2050 ASTOwningVector<Expr*> ConstructorArgs(S);
2051
2052 if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
2053 MultiExprArg(&From, 1),
2054 CastLoc, ConstructorArgs))
2055 return ExprError();
2056
2057 ExprResult Result =
2058 S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2059 move_arg(ConstructorArgs),
2060 /*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
2061 SourceRange());
2062 if (Result.isInvalid())
2063 return ExprError();
2064
2065 return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2066 }
2067
2068 case CK_UserDefinedConversion: {
2069 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2070
2071 // Create an implicit call expr that calls it.
2072 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method);
2073 if (Result.isInvalid())
2074 return ExprError();
2075
2076 return S.MaybeBindToTemporary(Result.get());
2077 }
2078 }
2079 }
2080
2081 /// PerformImplicitConversion - Perform an implicit conversion of the
2082 /// expression From to the type ToType using the pre-computed implicit
2083 /// conversion sequence ICS. Returns the converted
2084 /// expression. Action is the kind of conversion we're performing,
2085 /// used in the error message.
2086 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const ImplicitConversionSequence & ICS,AssignmentAction Action,CheckedConversionKind CCK)2087 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2088 const ImplicitConversionSequence &ICS,
2089 AssignmentAction Action,
2090 CheckedConversionKind CCK) {
2091 switch (ICS.getKind()) {
2092 case ImplicitConversionSequence::StandardConversion: {
2093 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2094 Action, CCK);
2095 if (Res.isInvalid())
2096 return ExprError();
2097 From = Res.take();
2098 break;
2099 }
2100
2101 case ImplicitConversionSequence::UserDefinedConversion: {
2102
2103 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2104 CastKind CastKind;
2105 QualType BeforeToType;
2106 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2107 CastKind = CK_UserDefinedConversion;
2108
2109 // If the user-defined conversion is specified by a conversion function,
2110 // the initial standard conversion sequence converts the source type to
2111 // the implicit object parameter of the conversion function.
2112 BeforeToType = Context.getTagDeclType(Conv->getParent());
2113 } else {
2114 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2115 CastKind = CK_ConstructorConversion;
2116 // Do no conversion if dealing with ... for the first conversion.
2117 if (!ICS.UserDefined.EllipsisConversion) {
2118 // If the user-defined conversion is specified by a constructor, the
2119 // initial standard conversion sequence converts the source type to the
2120 // type required by the argument of the constructor
2121 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2122 }
2123 }
2124 // Watch out for elipsis conversion.
2125 if (!ICS.UserDefined.EllipsisConversion) {
2126 ExprResult Res =
2127 PerformImplicitConversion(From, BeforeToType,
2128 ICS.UserDefined.Before, AA_Converting,
2129 CCK);
2130 if (Res.isInvalid())
2131 return ExprError();
2132 From = Res.take();
2133 }
2134
2135 ExprResult CastArg
2136 = BuildCXXCastArgument(*this,
2137 From->getLocStart(),
2138 ToType.getNonReferenceType(),
2139 CastKind, cast<CXXMethodDecl>(FD),
2140 ICS.UserDefined.FoundConversionFunction,
2141 From);
2142
2143 if (CastArg.isInvalid())
2144 return ExprError();
2145
2146 From = CastArg.take();
2147
2148 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2149 AA_Converting, CCK);
2150 }
2151
2152 case ImplicitConversionSequence::AmbiguousConversion:
2153 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2154 PDiag(diag::err_typecheck_ambiguous_condition)
2155 << From->getSourceRange());
2156 return ExprError();
2157
2158 case ImplicitConversionSequence::EllipsisConversion:
2159 assert(false && "Cannot perform an ellipsis conversion");
2160 return Owned(From);
2161
2162 case ImplicitConversionSequence::BadConversion:
2163 return ExprError();
2164 }
2165
2166 // Everything went well.
2167 return Owned(From);
2168 }
2169
2170 /// PerformImplicitConversion - Perform an implicit conversion of the
2171 /// expression From to the type ToType by following the standard
2172 /// conversion sequence SCS. Returns the converted
2173 /// expression. Flavor is the context in which we're performing this
2174 /// conversion, for use in error messages.
2175 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const StandardConversionSequence & SCS,AssignmentAction Action,CheckedConversionKind CCK)2176 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2177 const StandardConversionSequence& SCS,
2178 AssignmentAction Action,
2179 CheckedConversionKind CCK) {
2180 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2181
2182 // Overall FIXME: we are recomputing too many types here and doing far too
2183 // much extra work. What this means is that we need to keep track of more
2184 // information that is computed when we try the implicit conversion initially,
2185 // so that we don't need to recompute anything here.
2186 QualType FromType = From->getType();
2187
2188 if (SCS.CopyConstructor) {
2189 // FIXME: When can ToType be a reference type?
2190 assert(!ToType->isReferenceType());
2191 if (SCS.Second == ICK_Derived_To_Base) {
2192 ASTOwningVector<Expr*> ConstructorArgs(*this);
2193 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2194 MultiExprArg(*this, &From, 1),
2195 /*FIXME:ConstructLoc*/SourceLocation(),
2196 ConstructorArgs))
2197 return ExprError();
2198 return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2199 ToType, SCS.CopyConstructor,
2200 move_arg(ConstructorArgs),
2201 /*ZeroInit*/ false,
2202 CXXConstructExpr::CK_Complete,
2203 SourceRange());
2204 }
2205 return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2206 ToType, SCS.CopyConstructor,
2207 MultiExprArg(*this, &From, 1),
2208 /*ZeroInit*/ false,
2209 CXXConstructExpr::CK_Complete,
2210 SourceRange());
2211 }
2212
2213 // Resolve overloaded function references.
2214 if (Context.hasSameType(FromType, Context.OverloadTy)) {
2215 DeclAccessPair Found;
2216 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2217 true, Found);
2218 if (!Fn)
2219 return ExprError();
2220
2221 if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
2222 return ExprError();
2223
2224 From = FixOverloadedFunctionReference(From, Found, Fn);
2225 FromType = From->getType();
2226 }
2227
2228 // Perform the first implicit conversion.
2229 switch (SCS.First) {
2230 case ICK_Identity:
2231 // Nothing to do.
2232 break;
2233
2234 case ICK_Lvalue_To_Rvalue:
2235 // Should this get its own ICK?
2236 if (From->getObjectKind() == OK_ObjCProperty) {
2237 ExprResult FromRes = ConvertPropertyForRValue(From);
2238 if (FromRes.isInvalid())
2239 return ExprError();
2240 From = FromRes.take();
2241 if (!From->isGLValue()) break;
2242 }
2243
2244 // Check for trivial buffer overflows.
2245 CheckArrayAccess(From);
2246
2247 FromType = FromType.getUnqualifiedType();
2248 From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
2249 From, 0, VK_RValue);
2250 break;
2251
2252 case ICK_Array_To_Pointer:
2253 FromType = Context.getArrayDecayedType(FromType);
2254 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2255 VK_RValue, /*BasePath=*/0, CCK).take();
2256 break;
2257
2258 case ICK_Function_To_Pointer:
2259 FromType = Context.getPointerType(FromType);
2260 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2261 VK_RValue, /*BasePath=*/0, CCK).take();
2262 break;
2263
2264 default:
2265 assert(false && "Improper first standard conversion");
2266 break;
2267 }
2268
2269 // Perform the second implicit conversion
2270 switch (SCS.Second) {
2271 case ICK_Identity:
2272 // If both sides are functions (or pointers/references to them), there could
2273 // be incompatible exception declarations.
2274 if (CheckExceptionSpecCompatibility(From, ToType))
2275 return ExprError();
2276 // Nothing else to do.
2277 break;
2278
2279 case ICK_NoReturn_Adjustment:
2280 // If both sides are functions (or pointers/references to them), there could
2281 // be incompatible exception declarations.
2282 if (CheckExceptionSpecCompatibility(From, ToType))
2283 return ExprError();
2284
2285 From = ImpCastExprToType(From, ToType, CK_NoOp,
2286 VK_RValue, /*BasePath=*/0, CCK).take();
2287 break;
2288
2289 case ICK_Integral_Promotion:
2290 case ICK_Integral_Conversion:
2291 From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2292 VK_RValue, /*BasePath=*/0, CCK).take();
2293 break;
2294
2295 case ICK_Floating_Promotion:
2296 case ICK_Floating_Conversion:
2297 From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2298 VK_RValue, /*BasePath=*/0, CCK).take();
2299 break;
2300
2301 case ICK_Complex_Promotion:
2302 case ICK_Complex_Conversion: {
2303 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2304 QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2305 CastKind CK;
2306 if (FromEl->isRealFloatingType()) {
2307 if (ToEl->isRealFloatingType())
2308 CK = CK_FloatingComplexCast;
2309 else
2310 CK = CK_FloatingComplexToIntegralComplex;
2311 } else if (ToEl->isRealFloatingType()) {
2312 CK = CK_IntegralComplexToFloatingComplex;
2313 } else {
2314 CK = CK_IntegralComplexCast;
2315 }
2316 From = ImpCastExprToType(From, ToType, CK,
2317 VK_RValue, /*BasePath=*/0, CCK).take();
2318 break;
2319 }
2320
2321 case ICK_Floating_Integral:
2322 if (ToType->isRealFloatingType())
2323 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2324 VK_RValue, /*BasePath=*/0, CCK).take();
2325 else
2326 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2327 VK_RValue, /*BasePath=*/0, CCK).take();
2328 break;
2329
2330 case ICK_Compatible_Conversion:
2331 From = ImpCastExprToType(From, ToType, CK_NoOp,
2332 VK_RValue, /*BasePath=*/0, CCK).take();
2333 break;
2334
2335 case ICK_Writeback_Conversion:
2336 case ICK_Pointer_Conversion: {
2337 if (SCS.IncompatibleObjC && Action != AA_Casting) {
2338 // Diagnose incompatible Objective-C conversions
2339 if (Action == AA_Initializing || Action == AA_Assigning)
2340 Diag(From->getSourceRange().getBegin(),
2341 diag::ext_typecheck_convert_incompatible_pointer)
2342 << ToType << From->getType() << Action
2343 << From->getSourceRange();
2344 else
2345 Diag(From->getSourceRange().getBegin(),
2346 diag::ext_typecheck_convert_incompatible_pointer)
2347 << From->getType() << ToType << Action
2348 << From->getSourceRange();
2349
2350 if (From->getType()->isObjCObjectPointerType() &&
2351 ToType->isObjCObjectPointerType())
2352 EmitRelatedResultTypeNote(From);
2353 }
2354 else if (getLangOptions().ObjCAutoRefCount &&
2355 !CheckObjCARCUnavailableWeakConversion(ToType,
2356 From->getType())) {
2357 if (Action == AA_Initializing)
2358 Diag(From->getSourceRange().getBegin(),
2359 diag::err_arc_weak_unavailable_assign);
2360 else
2361 Diag(From->getSourceRange().getBegin(),
2362 diag::err_arc_convesion_of_weak_unavailable)
2363 << (Action == AA_Casting) << From->getType() << ToType
2364 << From->getSourceRange();
2365 }
2366
2367 CastKind Kind = CK_Invalid;
2368 CXXCastPath BasePath;
2369 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2370 return ExprError();
2371 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2372 .take();
2373 break;
2374 }
2375
2376 case ICK_Pointer_Member: {
2377 CastKind Kind = CK_Invalid;
2378 CXXCastPath BasePath;
2379 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2380 return ExprError();
2381 if (CheckExceptionSpecCompatibility(From, ToType))
2382 return ExprError();
2383 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2384 .take();
2385 break;
2386 }
2387
2388 case ICK_Boolean_Conversion:
2389 From = ImpCastExprToType(From, Context.BoolTy,
2390 ScalarTypeToBooleanCastKind(FromType),
2391 VK_RValue, /*BasePath=*/0, CCK).take();
2392 break;
2393
2394 case ICK_Derived_To_Base: {
2395 CXXCastPath BasePath;
2396 if (CheckDerivedToBaseConversion(From->getType(),
2397 ToType.getNonReferenceType(),
2398 From->getLocStart(),
2399 From->getSourceRange(),
2400 &BasePath,
2401 CStyle))
2402 return ExprError();
2403
2404 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2405 CK_DerivedToBase, CastCategory(From),
2406 &BasePath, CCK).take();
2407 break;
2408 }
2409
2410 case ICK_Vector_Conversion:
2411 From = ImpCastExprToType(From, ToType, CK_BitCast,
2412 VK_RValue, /*BasePath=*/0, CCK).take();
2413 break;
2414
2415 case ICK_Vector_Splat:
2416 From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2417 VK_RValue, /*BasePath=*/0, CCK).take();
2418 break;
2419
2420 case ICK_Complex_Real:
2421 // Case 1. x -> _Complex y
2422 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2423 QualType ElType = ToComplex->getElementType();
2424 bool isFloatingComplex = ElType->isRealFloatingType();
2425
2426 // x -> y
2427 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2428 // do nothing
2429 } else if (From->getType()->isRealFloatingType()) {
2430 From = ImpCastExprToType(From, ElType,
2431 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2432 } else {
2433 assert(From->getType()->isIntegerType());
2434 From = ImpCastExprToType(From, ElType,
2435 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2436 }
2437 // y -> _Complex y
2438 From = ImpCastExprToType(From, ToType,
2439 isFloatingComplex ? CK_FloatingRealToComplex
2440 : CK_IntegralRealToComplex).take();
2441
2442 // Case 2. _Complex x -> y
2443 } else {
2444 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2445 assert(FromComplex);
2446
2447 QualType ElType = FromComplex->getElementType();
2448 bool isFloatingComplex = ElType->isRealFloatingType();
2449
2450 // _Complex x -> x
2451 From = ImpCastExprToType(From, ElType,
2452 isFloatingComplex ? CK_FloatingComplexToReal
2453 : CK_IntegralComplexToReal,
2454 VK_RValue, /*BasePath=*/0, CCK).take();
2455
2456 // x -> y
2457 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2458 // do nothing
2459 } else if (ToType->isRealFloatingType()) {
2460 From = ImpCastExprToType(From, ToType,
2461 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2462 VK_RValue, /*BasePath=*/0, CCK).take();
2463 } else {
2464 assert(ToType->isIntegerType());
2465 From = ImpCastExprToType(From, ToType,
2466 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2467 VK_RValue, /*BasePath=*/0, CCK).take();
2468 }
2469 }
2470 break;
2471
2472 case ICK_Block_Pointer_Conversion: {
2473 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2474 VK_RValue, /*BasePath=*/0, CCK).take();
2475 break;
2476 }
2477
2478 case ICK_TransparentUnionConversion: {
2479 ExprResult FromRes = Owned(From);
2480 Sema::AssignConvertType ConvTy =
2481 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2482 if (FromRes.isInvalid())
2483 return ExprError();
2484 From = FromRes.take();
2485 assert ((ConvTy == Sema::Compatible) &&
2486 "Improper transparent union conversion");
2487 (void)ConvTy;
2488 break;
2489 }
2490
2491 case ICK_Lvalue_To_Rvalue:
2492 case ICK_Array_To_Pointer:
2493 case ICK_Function_To_Pointer:
2494 case ICK_Qualification:
2495 case ICK_Num_Conversion_Kinds:
2496 assert(false && "Improper second standard conversion");
2497 break;
2498 }
2499
2500 switch (SCS.Third) {
2501 case ICK_Identity:
2502 // Nothing to do.
2503 break;
2504
2505 case ICK_Qualification: {
2506 // The qualification keeps the category of the inner expression, unless the
2507 // target type isn't a reference.
2508 ExprValueKind VK = ToType->isReferenceType() ?
2509 CastCategory(From) : VK_RValue;
2510 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2511 CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2512
2513 if (SCS.DeprecatedStringLiteralToCharPtr &&
2514 !getLangOptions().WritableStrings)
2515 Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2516 << ToType.getNonReferenceType();
2517
2518 break;
2519 }
2520
2521 default:
2522 assert(false && "Improper third standard conversion");
2523 break;
2524 }
2525
2526 return Owned(From);
2527 }
2528
ActOnUnaryTypeTrait(UnaryTypeTrait UTT,SourceLocation KWLoc,ParsedType Ty,SourceLocation RParen)2529 ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2530 SourceLocation KWLoc,
2531 ParsedType Ty,
2532 SourceLocation RParen) {
2533 TypeSourceInfo *TSInfo;
2534 QualType T = GetTypeFromParser(Ty, &TSInfo);
2535
2536 if (!TSInfo)
2537 TSInfo = Context.getTrivialTypeSourceInfo(T);
2538 return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2539 }
2540
2541 /// \brief Check the completeness of a type in a unary type trait.
2542 ///
2543 /// If the particular type trait requires a complete type, tries to complete
2544 /// it. If completing the type fails, a diagnostic is emitted and false
2545 /// returned. If completing the type succeeds or no completion was required,
2546 /// returns true.
CheckUnaryTypeTraitTypeCompleteness(Sema & S,UnaryTypeTrait UTT,SourceLocation Loc,QualType ArgTy)2547 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2548 UnaryTypeTrait UTT,
2549 SourceLocation Loc,
2550 QualType ArgTy) {
2551 // C++0x [meta.unary.prop]p3:
2552 // For all of the class templates X declared in this Clause, instantiating
2553 // that template with a template argument that is a class template
2554 // specialization may result in the implicit instantiation of the template
2555 // argument if and only if the semantics of X require that the argument
2556 // must be a complete type.
2557 // We apply this rule to all the type trait expressions used to implement
2558 // these class templates. We also try to follow any GCC documented behavior
2559 // in these expressions to ensure portability of standard libraries.
2560 switch (UTT) {
2561 // is_complete_type somewhat obviously cannot require a complete type.
2562 case UTT_IsCompleteType:
2563 // Fall-through
2564
2565 // These traits are modeled on the type predicates in C++0x
2566 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2567 // requiring a complete type, as whether or not they return true cannot be
2568 // impacted by the completeness of the type.
2569 case UTT_IsVoid:
2570 case UTT_IsIntegral:
2571 case UTT_IsFloatingPoint:
2572 case UTT_IsArray:
2573 case UTT_IsPointer:
2574 case UTT_IsLvalueReference:
2575 case UTT_IsRvalueReference:
2576 case UTT_IsMemberFunctionPointer:
2577 case UTT_IsMemberObjectPointer:
2578 case UTT_IsEnum:
2579 case UTT_IsUnion:
2580 case UTT_IsClass:
2581 case UTT_IsFunction:
2582 case UTT_IsReference:
2583 case UTT_IsArithmetic:
2584 case UTT_IsFundamental:
2585 case UTT_IsObject:
2586 case UTT_IsScalar:
2587 case UTT_IsCompound:
2588 case UTT_IsMemberPointer:
2589 // Fall-through
2590
2591 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2592 // which requires some of its traits to have the complete type. However,
2593 // the completeness of the type cannot impact these traits' semantics, and
2594 // so they don't require it. This matches the comments on these traits in
2595 // Table 49.
2596 case UTT_IsConst:
2597 case UTT_IsVolatile:
2598 case UTT_IsSigned:
2599 case UTT_IsUnsigned:
2600 return true;
2601
2602 // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2603 // applied to a complete type.
2604 case UTT_IsTrivial:
2605 case UTT_IsTriviallyCopyable:
2606 case UTT_IsStandardLayout:
2607 case UTT_IsPOD:
2608 case UTT_IsLiteral:
2609 case UTT_IsEmpty:
2610 case UTT_IsPolymorphic:
2611 case UTT_IsAbstract:
2612 // Fall-through
2613
2614 // These trait expressions are designed to help implement predicates in
2615 // [meta.unary.prop] despite not being named the same. They are specified
2616 // by both GCC and the Embarcadero C++ compiler, and require the complete
2617 // type due to the overarching C++0x type predicates being implemented
2618 // requiring the complete type.
2619 case UTT_HasNothrowAssign:
2620 case UTT_HasNothrowConstructor:
2621 case UTT_HasNothrowCopy:
2622 case UTT_HasTrivialAssign:
2623 case UTT_HasTrivialDefaultConstructor:
2624 case UTT_HasTrivialCopy:
2625 case UTT_HasTrivialDestructor:
2626 case UTT_HasVirtualDestructor:
2627 // Arrays of unknown bound are expressly allowed.
2628 QualType ElTy = ArgTy;
2629 if (ArgTy->isIncompleteArrayType())
2630 ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2631
2632 // The void type is expressly allowed.
2633 if (ElTy->isVoidType())
2634 return true;
2635
2636 return !S.RequireCompleteType(
2637 Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2638 }
2639 llvm_unreachable("Type trait not handled by switch");
2640 }
2641
EvaluateUnaryTypeTrait(Sema & Self,UnaryTypeTrait UTT,SourceLocation KeyLoc,QualType T)2642 static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2643 SourceLocation KeyLoc, QualType T) {
2644 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2645
2646 ASTContext &C = Self.Context;
2647 switch(UTT) {
2648 // Type trait expressions corresponding to the primary type category
2649 // predicates in C++0x [meta.unary.cat].
2650 case UTT_IsVoid:
2651 return T->isVoidType();
2652 case UTT_IsIntegral:
2653 return T->isIntegralType(C);
2654 case UTT_IsFloatingPoint:
2655 return T->isFloatingType();
2656 case UTT_IsArray:
2657 return T->isArrayType();
2658 case UTT_IsPointer:
2659 return T->isPointerType();
2660 case UTT_IsLvalueReference:
2661 return T->isLValueReferenceType();
2662 case UTT_IsRvalueReference:
2663 return T->isRValueReferenceType();
2664 case UTT_IsMemberFunctionPointer:
2665 return T->isMemberFunctionPointerType();
2666 case UTT_IsMemberObjectPointer:
2667 return T->isMemberDataPointerType();
2668 case UTT_IsEnum:
2669 return T->isEnumeralType();
2670 case UTT_IsUnion:
2671 return T->isUnionType();
2672 case UTT_IsClass:
2673 return T->isClassType() || T->isStructureType();
2674 case UTT_IsFunction:
2675 return T->isFunctionType();
2676
2677 // Type trait expressions which correspond to the convenient composition
2678 // predicates in C++0x [meta.unary.comp].
2679 case UTT_IsReference:
2680 return T->isReferenceType();
2681 case UTT_IsArithmetic:
2682 return T->isArithmeticType() && !T->isEnumeralType();
2683 case UTT_IsFundamental:
2684 return T->isFundamentalType();
2685 case UTT_IsObject:
2686 return T->isObjectType();
2687 case UTT_IsScalar:
2688 // Note: semantic analysis depends on Objective-C lifetime types to be
2689 // considered scalar types. However, such types do not actually behave
2690 // like scalar types at run time (since they may require retain/release
2691 // operations), so we report them as non-scalar.
2692 if (T->isObjCLifetimeType()) {
2693 switch (T.getObjCLifetime()) {
2694 case Qualifiers::OCL_None:
2695 case Qualifiers::OCL_ExplicitNone:
2696 return true;
2697
2698 case Qualifiers::OCL_Strong:
2699 case Qualifiers::OCL_Weak:
2700 case Qualifiers::OCL_Autoreleasing:
2701 return false;
2702 }
2703 }
2704
2705 return T->isScalarType();
2706 case UTT_IsCompound:
2707 return T->isCompoundType();
2708 case UTT_IsMemberPointer:
2709 return T->isMemberPointerType();
2710
2711 // Type trait expressions which correspond to the type property predicates
2712 // in C++0x [meta.unary.prop].
2713 case UTT_IsConst:
2714 return T.isConstQualified();
2715 case UTT_IsVolatile:
2716 return T.isVolatileQualified();
2717 case UTT_IsTrivial:
2718 return T.isTrivialType(Self.Context);
2719 case UTT_IsTriviallyCopyable:
2720 return T.isTriviallyCopyableType(Self.Context);
2721 case UTT_IsStandardLayout:
2722 return T->isStandardLayoutType();
2723 case UTT_IsPOD:
2724 return T.isPODType(Self.Context);
2725 case UTT_IsLiteral:
2726 return T->isLiteralType();
2727 case UTT_IsEmpty:
2728 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2729 return !RD->isUnion() && RD->isEmpty();
2730 return false;
2731 case UTT_IsPolymorphic:
2732 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2733 return RD->isPolymorphic();
2734 return false;
2735 case UTT_IsAbstract:
2736 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2737 return RD->isAbstract();
2738 return false;
2739 case UTT_IsSigned:
2740 return T->isSignedIntegerType();
2741 case UTT_IsUnsigned:
2742 return T->isUnsignedIntegerType();
2743
2744 // Type trait expressions which query classes regarding their construction,
2745 // destruction, and copying. Rather than being based directly on the
2746 // related type predicates in the standard, they are specified by both
2747 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
2748 // specifications.
2749 //
2750 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
2751 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
2752 case UTT_HasTrivialDefaultConstructor:
2753 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2754 // If __is_pod (type) is true then the trait is true, else if type is
2755 // a cv class or union type (or array thereof) with a trivial default
2756 // constructor ([class.ctor]) then the trait is true, else it is false.
2757 if (T.isPODType(Self.Context))
2758 return true;
2759 if (const RecordType *RT =
2760 C.getBaseElementType(T)->getAs<RecordType>())
2761 return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
2762 return false;
2763 case UTT_HasTrivialCopy:
2764 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2765 // If __is_pod (type) is true or type is a reference type then
2766 // the trait is true, else if type is a cv class or union type
2767 // with a trivial copy constructor ([class.copy]) then the trait
2768 // is true, else it is false.
2769 if (T.isPODType(Self.Context) || T->isReferenceType())
2770 return true;
2771 if (const RecordType *RT = T->getAs<RecordType>())
2772 return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
2773 return false;
2774 case UTT_HasTrivialAssign:
2775 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2776 // If type is const qualified or is a reference type then the
2777 // trait is false. Otherwise if __is_pod (type) is true then the
2778 // trait is true, else if type is a cv class or union type with
2779 // a trivial copy assignment ([class.copy]) then the trait is
2780 // true, else it is false.
2781 // Note: the const and reference restrictions are interesting,
2782 // given that const and reference members don't prevent a class
2783 // from having a trivial copy assignment operator (but do cause
2784 // errors if the copy assignment operator is actually used, q.v.
2785 // [class.copy]p12).
2786
2787 if (C.getBaseElementType(T).isConstQualified())
2788 return false;
2789 if (T.isPODType(Self.Context))
2790 return true;
2791 if (const RecordType *RT = T->getAs<RecordType>())
2792 return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
2793 return false;
2794 case UTT_HasTrivialDestructor:
2795 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2796 // If __is_pod (type) is true or type is a reference type
2797 // then the trait is true, else if type is a cv class or union
2798 // type (or array thereof) with a trivial destructor
2799 // ([class.dtor]) then the trait is true, else it is
2800 // false.
2801 if (T.isPODType(Self.Context) || T->isReferenceType())
2802 return true;
2803
2804 // Objective-C++ ARC: autorelease types don't require destruction.
2805 if (T->isObjCLifetimeType() &&
2806 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
2807 return true;
2808
2809 if (const RecordType *RT =
2810 C.getBaseElementType(T)->getAs<RecordType>())
2811 return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
2812 return false;
2813 // TODO: Propagate nothrowness for implicitly declared special members.
2814 case UTT_HasNothrowAssign:
2815 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2816 // If type is const qualified or is a reference type then the
2817 // trait is false. Otherwise if __has_trivial_assign (type)
2818 // is true then the trait is true, else if type is a cv class
2819 // or union type with copy assignment operators that are known
2820 // not to throw an exception then the trait is true, else it is
2821 // false.
2822 if (C.getBaseElementType(T).isConstQualified())
2823 return false;
2824 if (T->isReferenceType())
2825 return false;
2826 if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
2827 return true;
2828 if (const RecordType *RT = T->getAs<RecordType>()) {
2829 CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
2830 if (RD->hasTrivialCopyAssignment())
2831 return true;
2832
2833 bool FoundAssign = false;
2834 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
2835 LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
2836 Sema::LookupOrdinaryName);
2837 if (Self.LookupQualifiedName(Res, RD)) {
2838 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
2839 Op != OpEnd; ++Op) {
2840 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
2841 if (Operator->isCopyAssignmentOperator()) {
2842 FoundAssign = true;
2843 const FunctionProtoType *CPT
2844 = Operator->getType()->getAs<FunctionProtoType>();
2845 if (CPT->getExceptionSpecType() == EST_Delayed)
2846 return false;
2847 if (!CPT->isNothrow(Self.Context))
2848 return false;
2849 }
2850 }
2851 }
2852
2853 return FoundAssign;
2854 }
2855 return false;
2856 case UTT_HasNothrowCopy:
2857 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2858 // If __has_trivial_copy (type) is true then the trait is true, else
2859 // if type is a cv class or union type with copy constructors that are
2860 // known not to throw an exception then the trait is true, else it is
2861 // false.
2862 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
2863 return true;
2864 if (const RecordType *RT = T->getAs<RecordType>()) {
2865 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2866 if (RD->hasTrivialCopyConstructor())
2867 return true;
2868
2869 bool FoundConstructor = false;
2870 unsigned FoundTQs;
2871 DeclContext::lookup_const_iterator Con, ConEnd;
2872 for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2873 Con != ConEnd; ++Con) {
2874 // A template constructor is never a copy constructor.
2875 // FIXME: However, it may actually be selected at the actual overload
2876 // resolution point.
2877 if (isa<FunctionTemplateDecl>(*Con))
2878 continue;
2879 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2880 if (Constructor->isCopyConstructor(FoundTQs)) {
2881 FoundConstructor = true;
2882 const FunctionProtoType *CPT
2883 = Constructor->getType()->getAs<FunctionProtoType>();
2884 if (CPT->getExceptionSpecType() == EST_Delayed)
2885 return false;
2886 // FIXME: check whether evaluating default arguments can throw.
2887 // For now, we'll be conservative and assume that they can throw.
2888 if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
2889 return false;
2890 }
2891 }
2892
2893 return FoundConstructor;
2894 }
2895 return false;
2896 case UTT_HasNothrowConstructor:
2897 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2898 // If __has_trivial_constructor (type) is true then the trait is
2899 // true, else if type is a cv class or union type (or array
2900 // thereof) with a default constructor that is known not to
2901 // throw an exception then the trait is true, else it is false.
2902 if (T.isPODType(C) || T->isObjCLifetimeType())
2903 return true;
2904 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
2905 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2906 if (RD->hasTrivialDefaultConstructor())
2907 return true;
2908
2909 DeclContext::lookup_const_iterator Con, ConEnd;
2910 for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2911 Con != ConEnd; ++Con) {
2912 // FIXME: In C++0x, a constructor template can be a default constructor.
2913 if (isa<FunctionTemplateDecl>(*Con))
2914 continue;
2915 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2916 if (Constructor->isDefaultConstructor()) {
2917 const FunctionProtoType *CPT
2918 = Constructor->getType()->getAs<FunctionProtoType>();
2919 if (CPT->getExceptionSpecType() == EST_Delayed)
2920 return false;
2921 // TODO: check whether evaluating default arguments can throw.
2922 // For now, we'll be conservative and assume that they can throw.
2923 return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
2924 }
2925 }
2926 }
2927 return false;
2928 case UTT_HasVirtualDestructor:
2929 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2930 // If type is a class type with a virtual destructor ([class.dtor])
2931 // then the trait is true, else it is false.
2932 if (const RecordType *Record = T->getAs<RecordType>()) {
2933 CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2934 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
2935 return Destructor->isVirtual();
2936 }
2937 return false;
2938
2939 // These type trait expressions are modeled on the specifications for the
2940 // Embarcadero C++0x type trait functions:
2941 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
2942 case UTT_IsCompleteType:
2943 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
2944 // Returns True if and only if T is a complete type at the point of the
2945 // function call.
2946 return !T->isIncompleteType();
2947 }
2948 llvm_unreachable("Type trait not covered by switch");
2949 }
2950
BuildUnaryTypeTrait(UnaryTypeTrait UTT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,SourceLocation RParen)2951 ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
2952 SourceLocation KWLoc,
2953 TypeSourceInfo *TSInfo,
2954 SourceLocation RParen) {
2955 QualType T = TSInfo->getType();
2956 if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
2957 return ExprError();
2958
2959 bool Value = false;
2960 if (!T->isDependentType())
2961 Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
2962
2963 return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
2964 RParen, Context.BoolTy));
2965 }
2966
ActOnBinaryTypeTrait(BinaryTypeTrait BTT,SourceLocation KWLoc,ParsedType LhsTy,ParsedType RhsTy,SourceLocation RParen)2967 ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
2968 SourceLocation KWLoc,
2969 ParsedType LhsTy,
2970 ParsedType RhsTy,
2971 SourceLocation RParen) {
2972 TypeSourceInfo *LhsTSInfo;
2973 QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
2974 if (!LhsTSInfo)
2975 LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
2976
2977 TypeSourceInfo *RhsTSInfo;
2978 QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
2979 if (!RhsTSInfo)
2980 RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
2981
2982 return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
2983 }
2984
EvaluateBinaryTypeTrait(Sema & Self,BinaryTypeTrait BTT,QualType LhsT,QualType RhsT,SourceLocation KeyLoc)2985 static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
2986 QualType LhsT, QualType RhsT,
2987 SourceLocation KeyLoc) {
2988 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
2989 "Cannot evaluate traits of dependent types");
2990
2991 switch(BTT) {
2992 case BTT_IsBaseOf: {
2993 // C++0x [meta.rel]p2
2994 // Base is a base class of Derived without regard to cv-qualifiers or
2995 // Base and Derived are not unions and name the same class type without
2996 // regard to cv-qualifiers.
2997
2998 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
2999 if (!lhsRecord) return false;
3000
3001 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3002 if (!rhsRecord) return false;
3003
3004 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3005 == (lhsRecord == rhsRecord));
3006
3007 if (lhsRecord == rhsRecord)
3008 return !lhsRecord->getDecl()->isUnion();
3009
3010 // C++0x [meta.rel]p2:
3011 // If Base and Derived are class types and are different types
3012 // (ignoring possible cv-qualifiers) then Derived shall be a
3013 // complete type.
3014 if (Self.RequireCompleteType(KeyLoc, RhsT,
3015 diag::err_incomplete_type_used_in_type_trait_expr))
3016 return false;
3017
3018 return cast<CXXRecordDecl>(rhsRecord->getDecl())
3019 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3020 }
3021 case BTT_IsSame:
3022 return Self.Context.hasSameType(LhsT, RhsT);
3023 case BTT_TypeCompatible:
3024 return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3025 RhsT.getUnqualifiedType());
3026 case BTT_IsConvertible:
3027 case BTT_IsConvertibleTo: {
3028 // C++0x [meta.rel]p4:
3029 // Given the following function prototype:
3030 //
3031 // template <class T>
3032 // typename add_rvalue_reference<T>::type create();
3033 //
3034 // the predicate condition for a template specialization
3035 // is_convertible<From, To> shall be satisfied if and only if
3036 // the return expression in the following code would be
3037 // well-formed, including any implicit conversions to the return
3038 // type of the function:
3039 //
3040 // To test() {
3041 // return create<From>();
3042 // }
3043 //
3044 // Access checking is performed as if in a context unrelated to To and
3045 // From. Only the validity of the immediate context of the expression
3046 // of the return-statement (including conversions to the return type)
3047 // is considered.
3048 //
3049 // We model the initialization as a copy-initialization of a temporary
3050 // of the appropriate type, which for this expression is identical to the
3051 // return statement (since NRVO doesn't apply).
3052 if (LhsT->isObjectType() || LhsT->isFunctionType())
3053 LhsT = Self.Context.getRValueReferenceType(LhsT);
3054
3055 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3056 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3057 Expr::getValueKindForType(LhsT));
3058 Expr *FromPtr = &From;
3059 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3060 SourceLocation()));
3061
3062 // Perform the initialization within a SFINAE trap at translation unit
3063 // scope.
3064 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3065 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3066 InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
3067 if (Init.Failed())
3068 return false;
3069
3070 ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
3071 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3072 }
3073 }
3074 llvm_unreachable("Unknown type trait or not implemented");
3075 }
3076
BuildBinaryTypeTrait(BinaryTypeTrait BTT,SourceLocation KWLoc,TypeSourceInfo * LhsTSInfo,TypeSourceInfo * RhsTSInfo,SourceLocation RParen)3077 ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3078 SourceLocation KWLoc,
3079 TypeSourceInfo *LhsTSInfo,
3080 TypeSourceInfo *RhsTSInfo,
3081 SourceLocation RParen) {
3082 QualType LhsT = LhsTSInfo->getType();
3083 QualType RhsT = RhsTSInfo->getType();
3084
3085 if (BTT == BTT_TypeCompatible) {
3086 if (getLangOptions().CPlusPlus) {
3087 Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3088 << SourceRange(KWLoc, RParen);
3089 return ExprError();
3090 }
3091 }
3092
3093 bool Value = false;
3094 if (!LhsT->isDependentType() && !RhsT->isDependentType())
3095 Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3096
3097 // Select trait result type.
3098 QualType ResultType;
3099 switch (BTT) {
3100 case BTT_IsBaseOf: ResultType = Context.BoolTy; break;
3101 case BTT_IsConvertible: ResultType = Context.BoolTy; break;
3102 case BTT_IsSame: ResultType = Context.BoolTy; break;
3103 case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3104 case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3105 }
3106
3107 return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3108 RhsTSInfo, Value, RParen,
3109 ResultType));
3110 }
3111
ActOnArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,ParsedType Ty,Expr * DimExpr,SourceLocation RParen)3112 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3113 SourceLocation KWLoc,
3114 ParsedType Ty,
3115 Expr* DimExpr,
3116 SourceLocation RParen) {
3117 TypeSourceInfo *TSInfo;
3118 QualType T = GetTypeFromParser(Ty, &TSInfo);
3119 if (!TSInfo)
3120 TSInfo = Context.getTrivialTypeSourceInfo(T);
3121
3122 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3123 }
3124
EvaluateArrayTypeTrait(Sema & Self,ArrayTypeTrait ATT,QualType T,Expr * DimExpr,SourceLocation KeyLoc)3125 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3126 QualType T, Expr *DimExpr,
3127 SourceLocation KeyLoc) {
3128 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3129
3130 switch(ATT) {
3131 case ATT_ArrayRank:
3132 if (T->isArrayType()) {
3133 unsigned Dim = 0;
3134 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3135 ++Dim;
3136 T = AT->getElementType();
3137 }
3138 return Dim;
3139 }
3140 return 0;
3141
3142 case ATT_ArrayExtent: {
3143 llvm::APSInt Value;
3144 uint64_t Dim;
3145 if (DimExpr->isIntegerConstantExpr(Value, Self.Context, 0, false)) {
3146 if (Value < llvm::APSInt(Value.getBitWidth(), Value.isUnsigned())) {
3147 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) <<
3148 DimExpr->getSourceRange();
3149 return false;
3150 }
3151 Dim = Value.getLimitedValue();
3152 } else {
3153 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) <<
3154 DimExpr->getSourceRange();
3155 return false;
3156 }
3157
3158 if (T->isArrayType()) {
3159 unsigned D = 0;
3160 bool Matched = false;
3161 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3162 if (Dim == D) {
3163 Matched = true;
3164 break;
3165 }
3166 ++D;
3167 T = AT->getElementType();
3168 }
3169
3170 if (Matched && T->isArrayType()) {
3171 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3172 return CAT->getSize().getLimitedValue();
3173 }
3174 }
3175 return 0;
3176 }
3177 }
3178 llvm_unreachable("Unknown type trait or not implemented");
3179 }
3180
BuildArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParen)3181 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3182 SourceLocation KWLoc,
3183 TypeSourceInfo *TSInfo,
3184 Expr* DimExpr,
3185 SourceLocation RParen) {
3186 QualType T = TSInfo->getType();
3187
3188 // FIXME: This should likely be tracked as an APInt to remove any host
3189 // assumptions about the width of size_t on the target.
3190 uint64_t Value = 0;
3191 if (!T->isDependentType())
3192 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3193
3194 // While the specification for these traits from the Embarcadero C++
3195 // compiler's documentation says the return type is 'unsigned int', Clang
3196 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3197 // compiler, there is no difference. On several other platforms this is an
3198 // important distinction.
3199 return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3200 DimExpr, RParen,
3201 Context.getSizeType()));
3202 }
3203
ActOnExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)3204 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3205 SourceLocation KWLoc,
3206 Expr *Queried,
3207 SourceLocation RParen) {
3208 // If error parsing the expression, ignore.
3209 if (!Queried)
3210 return ExprError();
3211
3212 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3213
3214 return move(Result);
3215 }
3216
EvaluateExpressionTrait(ExpressionTrait ET,Expr * E)3217 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3218 switch (ET) {
3219 case ET_IsLValueExpr: return E->isLValue();
3220 case ET_IsRValueExpr: return E->isRValue();
3221 }
3222 llvm_unreachable("Expression trait not covered by switch");
3223 }
3224
BuildExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)3225 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3226 SourceLocation KWLoc,
3227 Expr *Queried,
3228 SourceLocation RParen) {
3229 if (Queried->isTypeDependent()) {
3230 // Delay type-checking for type-dependent expressions.
3231 } else if (Queried->getType()->isPlaceholderType()) {
3232 ExprResult PE = CheckPlaceholderExpr(Queried);
3233 if (PE.isInvalid()) return ExprError();
3234 return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3235 }
3236
3237 bool Value = EvaluateExpressionTrait(ET, Queried);
3238
3239 return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3240 RParen, Context.BoolTy));
3241 }
3242
CheckPointerToMemberOperands(ExprResult & lex,ExprResult & rex,ExprValueKind & VK,SourceLocation Loc,bool isIndirect)3243 QualType Sema::CheckPointerToMemberOperands(ExprResult &lex, ExprResult &rex,
3244 ExprValueKind &VK,
3245 SourceLocation Loc,
3246 bool isIndirect) {
3247 assert(!lex.get()->getType()->isPlaceholderType() &&
3248 !rex.get()->getType()->isPlaceholderType() &&
3249 "placeholders should have been weeded out by now");
3250
3251 // The LHS undergoes lvalue conversions if this is ->*.
3252 if (isIndirect) {
3253 lex = DefaultLvalueConversion(lex.take());
3254 if (lex.isInvalid()) return QualType();
3255 }
3256
3257 // The RHS always undergoes lvalue conversions.
3258 rex = DefaultLvalueConversion(rex.take());
3259 if (rex.isInvalid()) return QualType();
3260
3261 const char *OpSpelling = isIndirect ? "->*" : ".*";
3262 // C++ 5.5p2
3263 // The binary operator .* [p3: ->*] binds its second operand, which shall
3264 // be of type "pointer to member of T" (where T is a completely-defined
3265 // class type) [...]
3266 QualType RType = rex.get()->getType();
3267 const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
3268 if (!MemPtr) {
3269 Diag(Loc, diag::err_bad_memptr_rhs)
3270 << OpSpelling << RType << rex.get()->getSourceRange();
3271 return QualType();
3272 }
3273
3274 QualType Class(MemPtr->getClass(), 0);
3275
3276 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3277 // member pointer points must be completely-defined. However, there is no
3278 // reason for this semantic distinction, and the rule is not enforced by
3279 // other compilers. Therefore, we do not check this property, as it is
3280 // likely to be considered a defect.
3281
3282 // C++ 5.5p2
3283 // [...] to its first operand, which shall be of class T or of a class of
3284 // which T is an unambiguous and accessible base class. [p3: a pointer to
3285 // such a class]
3286 QualType LType = lex.get()->getType();
3287 if (isIndirect) {
3288 if (const PointerType *Ptr = LType->getAs<PointerType>())
3289 LType = Ptr->getPointeeType();
3290 else {
3291 Diag(Loc, diag::err_bad_memptr_lhs)
3292 << OpSpelling << 1 << LType
3293 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3294 return QualType();
3295 }
3296 }
3297
3298 if (!Context.hasSameUnqualifiedType(Class, LType)) {
3299 // If we want to check the hierarchy, we need a complete type.
3300 if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
3301 << OpSpelling << (int)isIndirect)) {
3302 return QualType();
3303 }
3304 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3305 /*DetectVirtual=*/false);
3306 // FIXME: Would it be useful to print full ambiguity paths, or is that
3307 // overkill?
3308 if (!IsDerivedFrom(LType, Class, Paths) ||
3309 Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3310 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3311 << (int)isIndirect << lex.get()->getType();
3312 return QualType();
3313 }
3314 // Cast LHS to type of use.
3315 QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3316 ExprValueKind VK =
3317 isIndirect ? VK_RValue : CastCategory(lex.get());
3318
3319 CXXCastPath BasePath;
3320 BuildBasePathArray(Paths, BasePath);
3321 lex = ImpCastExprToType(lex.take(), UseType, CK_DerivedToBase, VK, &BasePath);
3322 }
3323
3324 if (isa<CXXScalarValueInitExpr>(rex.get()->IgnoreParens())) {
3325 // Diagnose use of pointer-to-member type which when used as
3326 // the functional cast in a pointer-to-member expression.
3327 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3328 return QualType();
3329 }
3330
3331 // C++ 5.5p2
3332 // The result is an object or a function of the type specified by the
3333 // second operand.
3334 // The cv qualifiers are the union of those in the pointer and the left side,
3335 // in accordance with 5.5p5 and 5.2.5.
3336 QualType Result = MemPtr->getPointeeType();
3337 Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
3338
3339 // C++0x [expr.mptr.oper]p6:
3340 // In a .* expression whose object expression is an rvalue, the program is
3341 // ill-formed if the second operand is a pointer to member function with
3342 // ref-qualifier &. In a ->* expression or in a .* expression whose object
3343 // expression is an lvalue, the program is ill-formed if the second operand
3344 // is a pointer to member function with ref-qualifier &&.
3345 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3346 switch (Proto->getRefQualifier()) {
3347 case RQ_None:
3348 // Do nothing
3349 break;
3350
3351 case RQ_LValue:
3352 if (!isIndirect && !lex.get()->Classify(Context).isLValue())
3353 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3354 << RType << 1 << lex.get()->getSourceRange();
3355 break;
3356
3357 case RQ_RValue:
3358 if (isIndirect || !lex.get()->Classify(Context).isRValue())
3359 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3360 << RType << 0 << lex.get()->getSourceRange();
3361 break;
3362 }
3363 }
3364
3365 // C++ [expr.mptr.oper]p6:
3366 // The result of a .* expression whose second operand is a pointer
3367 // to a data member is of the same value category as its
3368 // first operand. The result of a .* expression whose second
3369 // operand is a pointer to a member function is a prvalue. The
3370 // result of an ->* expression is an lvalue if its second operand
3371 // is a pointer to data member and a prvalue otherwise.
3372 if (Result->isFunctionType()) {
3373 VK = VK_RValue;
3374 return Context.BoundMemberTy;
3375 } else if (isIndirect) {
3376 VK = VK_LValue;
3377 } else {
3378 VK = lex.get()->getValueKind();
3379 }
3380
3381 return Result;
3382 }
3383
3384 /// \brief Try to convert a type to another according to C++0x 5.16p3.
3385 ///
3386 /// This is part of the parameter validation for the ? operator. If either
3387 /// value operand is a class type, the two operands are attempted to be
3388 /// converted to each other. This function does the conversion in one direction.
3389 /// It returns true if the program is ill-formed and has already been diagnosed
3390 /// as such.
TryClassUnification(Sema & Self,Expr * From,Expr * To,SourceLocation QuestionLoc,bool & HaveConversion,QualType & ToType)3391 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3392 SourceLocation QuestionLoc,
3393 bool &HaveConversion,
3394 QualType &ToType) {
3395 HaveConversion = false;
3396 ToType = To->getType();
3397
3398 InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3399 SourceLocation());
3400 // C++0x 5.16p3
3401 // The process for determining whether an operand expression E1 of type T1
3402 // can be converted to match an operand expression E2 of type T2 is defined
3403 // as follows:
3404 // -- If E2 is an lvalue:
3405 bool ToIsLvalue = To->isLValue();
3406 if (ToIsLvalue) {
3407 // E1 can be converted to match E2 if E1 can be implicitly converted to
3408 // type "lvalue reference to T2", subject to the constraint that in the
3409 // conversion the reference must bind directly to E1.
3410 QualType T = Self.Context.getLValueReferenceType(ToType);
3411 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3412
3413 InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3414 if (InitSeq.isDirectReferenceBinding()) {
3415 ToType = T;
3416 HaveConversion = true;
3417 return false;
3418 }
3419
3420 if (InitSeq.isAmbiguous())
3421 return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3422 }
3423
3424 // -- If E2 is an rvalue, or if the conversion above cannot be done:
3425 // -- if E1 and E2 have class type, and the underlying class types are
3426 // the same or one is a base class of the other:
3427 QualType FTy = From->getType();
3428 QualType TTy = To->getType();
3429 const RecordType *FRec = FTy->getAs<RecordType>();
3430 const RecordType *TRec = TTy->getAs<RecordType>();
3431 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3432 Self.IsDerivedFrom(FTy, TTy);
3433 if (FRec && TRec &&
3434 (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3435 // E1 can be converted to match E2 if the class of T2 is the
3436 // same type as, or a base class of, the class of T1, and
3437 // [cv2 > cv1].
3438 if (FRec == TRec || FDerivedFromT) {
3439 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
3440 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3441 InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3442 if (InitSeq) {
3443 HaveConversion = true;
3444 return false;
3445 }
3446
3447 if (InitSeq.isAmbiguous())
3448 return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3449 }
3450 }
3451
3452 return false;
3453 }
3454
3455 // -- Otherwise: E1 can be converted to match E2 if E1 can be
3456 // implicitly converted to the type that expression E2 would have
3457 // if E2 were converted to an rvalue (or the type it has, if E2 is
3458 // an rvalue).
3459 //
3460 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
3461 // to the array-to-pointer or function-to-pointer conversions.
3462 if (!TTy->getAs<TagType>())
3463 TTy = TTy.getUnqualifiedType();
3464
3465 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3466 InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3467 HaveConversion = !InitSeq.Failed();
3468 ToType = TTy;
3469 if (InitSeq.isAmbiguous())
3470 return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3471
3472 return false;
3473 }
3474
3475 /// \brief Try to find a common type for two according to C++0x 5.16p5.
3476 ///
3477 /// This is part of the parameter validation for the ? operator. If either
3478 /// value operand is a class type, overload resolution is used to find a
3479 /// conversion to a common type.
FindConditionalOverload(Sema & Self,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)3480 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
3481 SourceLocation QuestionLoc) {
3482 Expr *Args[2] = { LHS.get(), RHS.get() };
3483 OverloadCandidateSet CandidateSet(QuestionLoc);
3484 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
3485 CandidateSet);
3486
3487 OverloadCandidateSet::iterator Best;
3488 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
3489 case OR_Success: {
3490 // We found a match. Perform the conversions on the arguments and move on.
3491 ExprResult LHSRes =
3492 Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
3493 Best->Conversions[0], Sema::AA_Converting);
3494 if (LHSRes.isInvalid())
3495 break;
3496 LHS = move(LHSRes);
3497
3498 ExprResult RHSRes =
3499 Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
3500 Best->Conversions[1], Sema::AA_Converting);
3501 if (RHSRes.isInvalid())
3502 break;
3503 RHS = move(RHSRes);
3504 if (Best->Function)
3505 Self.MarkDeclarationReferenced(QuestionLoc, Best->Function);
3506 return false;
3507 }
3508
3509 case OR_No_Viable_Function:
3510
3511 // Emit a better diagnostic if one of the expressions is a null pointer
3512 // constant and the other is a pointer type. In this case, the user most
3513 // likely forgot to take the address of the other expression.
3514 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
3515 return true;
3516
3517 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3518 << LHS.get()->getType() << RHS.get()->getType()
3519 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3520 return true;
3521
3522 case OR_Ambiguous:
3523 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
3524 << LHS.get()->getType() << RHS.get()->getType()
3525 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3526 // FIXME: Print the possible common types by printing the return types of
3527 // the viable candidates.
3528 break;
3529
3530 case OR_Deleted:
3531 assert(false && "Conditional operator has only built-in overloads");
3532 break;
3533 }
3534 return true;
3535 }
3536
3537 /// \brief Perform an "extended" implicit conversion as returned by
3538 /// TryClassUnification.
ConvertForConditional(Sema & Self,ExprResult & E,QualType T)3539 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
3540 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3541 InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
3542 SourceLocation());
3543 Expr *Arg = E.take();
3544 InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
3545 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1));
3546 if (Result.isInvalid())
3547 return true;
3548
3549 E = Result;
3550 return false;
3551 }
3552
3553 /// \brief Check the operands of ?: under C++ semantics.
3554 ///
3555 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
3556 /// extension. In this case, LHS == Cond. (But they're not aliases.)
CXXCheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)3557 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
3558 ExprValueKind &VK, ExprObjectKind &OK,
3559 SourceLocation QuestionLoc) {
3560 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
3561 // interface pointers.
3562
3563 // C++0x 5.16p1
3564 // The first expression is contextually converted to bool.
3565 if (!Cond.get()->isTypeDependent()) {
3566 ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
3567 if (CondRes.isInvalid())
3568 return QualType();
3569 Cond = move(CondRes);
3570 }
3571
3572 // Assume r-value.
3573 VK = VK_RValue;
3574 OK = OK_Ordinary;
3575
3576 // Either of the arguments dependent?
3577 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
3578 return Context.DependentTy;
3579
3580 // C++0x 5.16p2
3581 // If either the second or the third operand has type (cv) void, ...
3582 QualType LTy = LHS.get()->getType();
3583 QualType RTy = RHS.get()->getType();
3584 bool LVoid = LTy->isVoidType();
3585 bool RVoid = RTy->isVoidType();
3586 if (LVoid || RVoid) {
3587 // ... then the [l2r] conversions are performed on the second and third
3588 // operands ...
3589 LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
3590 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
3591 if (LHS.isInvalid() || RHS.isInvalid())
3592 return QualType();
3593 LTy = LHS.get()->getType();
3594 RTy = RHS.get()->getType();
3595
3596 // ... and one of the following shall hold:
3597 // -- The second or the third operand (but not both) is a throw-
3598 // expression; the result is of the type of the other and is an rvalue.
3599 bool LThrow = isa<CXXThrowExpr>(LHS.get());
3600 bool RThrow = isa<CXXThrowExpr>(RHS.get());
3601 if (LThrow && !RThrow)
3602 return RTy;
3603 if (RThrow && !LThrow)
3604 return LTy;
3605
3606 // -- Both the second and third operands have type void; the result is of
3607 // type void and is an rvalue.
3608 if (LVoid && RVoid)
3609 return Context.VoidTy;
3610
3611 // Neither holds, error.
3612 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
3613 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
3614 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3615 return QualType();
3616 }
3617
3618 // Neither is void.
3619
3620 // C++0x 5.16p3
3621 // Otherwise, if the second and third operand have different types, and
3622 // either has (cv) class type, and attempt is made to convert each of those
3623 // operands to the other.
3624 if (!Context.hasSameType(LTy, RTy) &&
3625 (LTy->isRecordType() || RTy->isRecordType())) {
3626 ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
3627 // These return true if a single direction is already ambiguous.
3628 QualType L2RType, R2LType;
3629 bool HaveL2R, HaveR2L;
3630 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
3631 return QualType();
3632 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
3633 return QualType();
3634
3635 // If both can be converted, [...] the program is ill-formed.
3636 if (HaveL2R && HaveR2L) {
3637 Diag(QuestionLoc, diag::err_conditional_ambiguous)
3638 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3639 return QualType();
3640 }
3641
3642 // If exactly one conversion is possible, that conversion is applied to
3643 // the chosen operand and the converted operands are used in place of the
3644 // original operands for the remainder of this section.
3645 if (HaveL2R) {
3646 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
3647 return QualType();
3648 LTy = LHS.get()->getType();
3649 } else if (HaveR2L) {
3650 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
3651 return QualType();
3652 RTy = RHS.get()->getType();
3653 }
3654 }
3655
3656 // C++0x 5.16p4
3657 // If the second and third operands are glvalues of the same value
3658 // category and have the same type, the result is of that type and
3659 // value category and it is a bit-field if the second or the third
3660 // operand is a bit-field, or if both are bit-fields.
3661 // We only extend this to bitfields, not to the crazy other kinds of
3662 // l-values.
3663 bool Same = Context.hasSameType(LTy, RTy);
3664 if (Same &&
3665 LHS.get()->isGLValue() &&
3666 LHS.get()->getValueKind() == RHS.get()->getValueKind() &&
3667 LHS.get()->isOrdinaryOrBitFieldObject() &&
3668 RHS.get()->isOrdinaryOrBitFieldObject()) {
3669 VK = LHS.get()->getValueKind();
3670 if (LHS.get()->getObjectKind() == OK_BitField ||
3671 RHS.get()->getObjectKind() == OK_BitField)
3672 OK = OK_BitField;
3673 return LTy;
3674 }
3675
3676 // C++0x 5.16p5
3677 // Otherwise, the result is an rvalue. If the second and third operands
3678 // do not have the same type, and either has (cv) class type, ...
3679 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
3680 // ... overload resolution is used to determine the conversions (if any)
3681 // to be applied to the operands. If the overload resolution fails, the
3682 // program is ill-formed.
3683 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
3684 return QualType();
3685 }
3686
3687 // C++0x 5.16p6
3688 // LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
3689 // conversions are performed on the second and third operands.
3690 LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
3691 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
3692 if (LHS.isInvalid() || RHS.isInvalid())
3693 return QualType();
3694 LTy = LHS.get()->getType();
3695 RTy = RHS.get()->getType();
3696
3697 // After those conversions, one of the following shall hold:
3698 // -- The second and third operands have the same type; the result
3699 // is of that type. If the operands have class type, the result
3700 // is a prvalue temporary of the result type, which is
3701 // copy-initialized from either the second operand or the third
3702 // operand depending on the value of the first operand.
3703 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
3704 if (LTy->isRecordType()) {
3705 // The operands have class type. Make a temporary copy.
3706 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
3707 ExprResult LHSCopy = PerformCopyInitialization(Entity,
3708 SourceLocation(),
3709 LHS);
3710 if (LHSCopy.isInvalid())
3711 return QualType();
3712
3713 ExprResult RHSCopy = PerformCopyInitialization(Entity,
3714 SourceLocation(),
3715 RHS);
3716 if (RHSCopy.isInvalid())
3717 return QualType();
3718
3719 LHS = LHSCopy;
3720 RHS = RHSCopy;
3721 }
3722
3723 return LTy;
3724 }
3725
3726 // Extension: conditional operator involving vector types.
3727 if (LTy->isVectorType() || RTy->isVectorType())
3728 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
3729
3730 // -- The second and third operands have arithmetic or enumeration type;
3731 // the usual arithmetic conversions are performed to bring them to a
3732 // common type, and the result is of that type.
3733 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
3734 UsualArithmeticConversions(LHS, RHS);
3735 if (LHS.isInvalid() || RHS.isInvalid())
3736 return QualType();
3737 return LHS.get()->getType();
3738 }
3739
3740 // -- The second and third operands have pointer type, or one has pointer
3741 // type and the other is a null pointer constant; pointer conversions
3742 // and qualification conversions are performed to bring them to their
3743 // composite pointer type. The result is of the composite pointer type.
3744 // -- The second and third operands have pointer to member type, or one has
3745 // pointer to member type and the other is a null pointer constant;
3746 // pointer to member conversions and qualification conversions are
3747 // performed to bring them to a common type, whose cv-qualification
3748 // shall match the cv-qualification of either the second or the third
3749 // operand. The result is of the common type.
3750 bool NonStandardCompositeType = false;
3751 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
3752 isSFINAEContext()? 0 : &NonStandardCompositeType);
3753 if (!Composite.isNull()) {
3754 if (NonStandardCompositeType)
3755 Diag(QuestionLoc,
3756 diag::ext_typecheck_cond_incompatible_operands_nonstandard)
3757 << LTy << RTy << Composite
3758 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3759
3760 return Composite;
3761 }
3762
3763 // Similarly, attempt to find composite type of two objective-c pointers.
3764 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
3765 if (!Composite.isNull())
3766 return Composite;
3767
3768 // Check if we are using a null with a non-pointer type.
3769 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
3770 return QualType();
3771
3772 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3773 << LHS.get()->getType() << RHS.get()->getType()
3774 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3775 return QualType();
3776 }
3777
3778 /// \brief Find a merged pointer type and convert the two expressions to it.
3779 ///
3780 /// This finds the composite pointer type (or member pointer type) for @p E1
3781 /// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
3782 /// type and returns it.
3783 /// It does not emit diagnostics.
3784 ///
3785 /// \param Loc The location of the operator requiring these two expressions to
3786 /// be converted to the composite pointer type.
3787 ///
3788 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
3789 /// a non-standard (but still sane) composite type to which both expressions
3790 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
3791 /// will be set true.
FindCompositePointerType(SourceLocation Loc,Expr * & E1,Expr * & E2,bool * NonStandardCompositeType)3792 QualType Sema::FindCompositePointerType(SourceLocation Loc,
3793 Expr *&E1, Expr *&E2,
3794 bool *NonStandardCompositeType) {
3795 if (NonStandardCompositeType)
3796 *NonStandardCompositeType = false;
3797
3798 assert(getLangOptions().CPlusPlus && "This function assumes C++");
3799 QualType T1 = E1->getType(), T2 = E2->getType();
3800
3801 if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
3802 !T2->isAnyPointerType() && !T2->isMemberPointerType())
3803 return QualType();
3804
3805 // C++0x 5.9p2
3806 // Pointer conversions and qualification conversions are performed on
3807 // pointer operands to bring them to their composite pointer type. If
3808 // one operand is a null pointer constant, the composite pointer type is
3809 // the type of the other operand.
3810 if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3811 if (T2->isMemberPointerType())
3812 E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
3813 else
3814 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
3815 return T2;
3816 }
3817 if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3818 if (T1->isMemberPointerType())
3819 E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
3820 else
3821 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
3822 return T1;
3823 }
3824
3825 // Now both have to be pointers or member pointers.
3826 if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
3827 (!T2->isPointerType() && !T2->isMemberPointerType()))
3828 return QualType();
3829
3830 // Otherwise, of one of the operands has type "pointer to cv1 void," then
3831 // the other has type "pointer to cv2 T" and the composite pointer type is
3832 // "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
3833 // Otherwise, the composite pointer type is a pointer type similar to the
3834 // type of one of the operands, with a cv-qualification signature that is
3835 // the union of the cv-qualification signatures of the operand types.
3836 // In practice, the first part here is redundant; it's subsumed by the second.
3837 // What we do here is, we build the two possible composite types, and try the
3838 // conversions in both directions. If only one works, or if the two composite
3839 // types are the same, we have succeeded.
3840 // FIXME: extended qualifiers?
3841 typedef llvm::SmallVector<unsigned, 4> QualifierVector;
3842 QualifierVector QualifierUnion;
3843 typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
3844 ContainingClassVector;
3845 ContainingClassVector MemberOfClass;
3846 QualType Composite1 = Context.getCanonicalType(T1),
3847 Composite2 = Context.getCanonicalType(T2);
3848 unsigned NeedConstBefore = 0;
3849 do {
3850 const PointerType *Ptr1, *Ptr2;
3851 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
3852 (Ptr2 = Composite2->getAs<PointerType>())) {
3853 Composite1 = Ptr1->getPointeeType();
3854 Composite2 = Ptr2->getPointeeType();
3855
3856 // If we're allowed to create a non-standard composite type, keep track
3857 // of where we need to fill in additional 'const' qualifiers.
3858 if (NonStandardCompositeType &&
3859 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3860 NeedConstBefore = QualifierUnion.size();
3861
3862 QualifierUnion.push_back(
3863 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3864 MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
3865 continue;
3866 }
3867
3868 const MemberPointerType *MemPtr1, *MemPtr2;
3869 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
3870 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
3871 Composite1 = MemPtr1->getPointeeType();
3872 Composite2 = MemPtr2->getPointeeType();
3873
3874 // If we're allowed to create a non-standard composite type, keep track
3875 // of where we need to fill in additional 'const' qualifiers.
3876 if (NonStandardCompositeType &&
3877 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3878 NeedConstBefore = QualifierUnion.size();
3879
3880 QualifierUnion.push_back(
3881 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3882 MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
3883 MemPtr2->getClass()));
3884 continue;
3885 }
3886
3887 // FIXME: block pointer types?
3888
3889 // Cannot unwrap any more types.
3890 break;
3891 } while (true);
3892
3893 if (NeedConstBefore && NonStandardCompositeType) {
3894 // Extension: Add 'const' to qualifiers that come before the first qualifier
3895 // mismatch, so that our (non-standard!) composite type meets the
3896 // requirements of C++ [conv.qual]p4 bullet 3.
3897 for (unsigned I = 0; I != NeedConstBefore; ++I) {
3898 if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
3899 QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
3900 *NonStandardCompositeType = true;
3901 }
3902 }
3903 }
3904
3905 // Rewrap the composites as pointers or member pointers with the union CVRs.
3906 ContainingClassVector::reverse_iterator MOC
3907 = MemberOfClass.rbegin();
3908 for (QualifierVector::reverse_iterator
3909 I = QualifierUnion.rbegin(),
3910 E = QualifierUnion.rend();
3911 I != E; (void)++I, ++MOC) {
3912 Qualifiers Quals = Qualifiers::fromCVRMask(*I);
3913 if (MOC->first && MOC->second) {
3914 // Rebuild member pointer type
3915 Composite1 = Context.getMemberPointerType(
3916 Context.getQualifiedType(Composite1, Quals),
3917 MOC->first);
3918 Composite2 = Context.getMemberPointerType(
3919 Context.getQualifiedType(Composite2, Quals),
3920 MOC->second);
3921 } else {
3922 // Rebuild pointer type
3923 Composite1
3924 = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
3925 Composite2
3926 = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
3927 }
3928 }
3929
3930 // Try to convert to the first composite pointer type.
3931 InitializedEntity Entity1
3932 = InitializedEntity::InitializeTemporary(Composite1);
3933 InitializationKind Kind
3934 = InitializationKind::CreateCopy(Loc, SourceLocation());
3935 InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
3936 InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
3937
3938 if (E1ToC1 && E2ToC1) {
3939 // Conversion to Composite1 is viable.
3940 if (!Context.hasSameType(Composite1, Composite2)) {
3941 // Composite2 is a different type from Composite1. Check whether
3942 // Composite2 is also viable.
3943 InitializedEntity Entity2
3944 = InitializedEntity::InitializeTemporary(Composite2);
3945 InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3946 InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3947 if (E1ToC2 && E2ToC2) {
3948 // Both Composite1 and Composite2 are viable and are different;
3949 // this is an ambiguity.
3950 return QualType();
3951 }
3952 }
3953
3954 // Convert E1 to Composite1
3955 ExprResult E1Result
3956 = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
3957 if (E1Result.isInvalid())
3958 return QualType();
3959 E1 = E1Result.takeAs<Expr>();
3960
3961 // Convert E2 to Composite1
3962 ExprResult E2Result
3963 = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
3964 if (E2Result.isInvalid())
3965 return QualType();
3966 E2 = E2Result.takeAs<Expr>();
3967
3968 return Composite1;
3969 }
3970
3971 // Check whether Composite2 is viable.
3972 InitializedEntity Entity2
3973 = InitializedEntity::InitializeTemporary(Composite2);
3974 InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3975 InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3976 if (!E1ToC2 || !E2ToC2)
3977 return QualType();
3978
3979 // Convert E1 to Composite2
3980 ExprResult E1Result
3981 = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
3982 if (E1Result.isInvalid())
3983 return QualType();
3984 E1 = E1Result.takeAs<Expr>();
3985
3986 // Convert E2 to Composite2
3987 ExprResult E2Result
3988 = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
3989 if (E2Result.isInvalid())
3990 return QualType();
3991 E2 = E2Result.takeAs<Expr>();
3992
3993 return Composite2;
3994 }
3995
MaybeBindToTemporary(Expr * E)3996 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
3997 if (!E)
3998 return ExprError();
3999
4000 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4001
4002 // If the result is a glvalue, we shouldn't bind it.
4003 if (!E->isRValue())
4004 return Owned(E);
4005
4006 // In ARC, calls that return a retainable type can return retained,
4007 // in which case we have to insert a consuming cast.
4008 if (getLangOptions().ObjCAutoRefCount &&
4009 E->getType()->isObjCRetainableType()) {
4010
4011 bool ReturnsRetained;
4012
4013 // For actual calls, we compute this by examining the type of the
4014 // called value.
4015 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4016 Expr *Callee = Call->getCallee()->IgnoreParens();
4017 QualType T = Callee->getType();
4018
4019 if (T == Context.BoundMemberTy) {
4020 // Handle pointer-to-members.
4021 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4022 T = BinOp->getRHS()->getType();
4023 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4024 T = Mem->getMemberDecl()->getType();
4025 }
4026
4027 if (const PointerType *Ptr = T->getAs<PointerType>())
4028 T = Ptr->getPointeeType();
4029 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4030 T = Ptr->getPointeeType();
4031 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4032 T = MemPtr->getPointeeType();
4033
4034 const FunctionType *FTy = T->getAs<FunctionType>();
4035 assert(FTy && "call to value not of function type?");
4036 ReturnsRetained = FTy->getExtInfo().getProducesResult();
4037
4038 // ActOnStmtExpr arranges things so that StmtExprs of retainable
4039 // type always produce a +1 object.
4040 } else if (isa<StmtExpr>(E)) {
4041 ReturnsRetained = true;
4042
4043 // For message sends and property references, we try to find an
4044 // actual method. FIXME: we should infer retention by selector in
4045 // cases where we don't have an actual method.
4046 } else {
4047 Decl *D = 0;
4048 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4049 D = Send->getMethodDecl();
4050 } else {
4051 CastExpr *CE = cast<CastExpr>(E);
4052 // FIXME. What other cast kinds to check for?
4053 if (CE->getCastKind() == CK_ObjCProduceObject ||
4054 CE->getCastKind() == CK_LValueToRValue)
4055 return MaybeBindToTemporary(CE->getSubExpr());
4056 assert(CE->getCastKind() == CK_GetObjCProperty);
4057 const ObjCPropertyRefExpr *PRE = CE->getSubExpr()->getObjCProperty();
4058 D = (PRE->isImplicitProperty() ? PRE->getImplicitPropertyGetter() : 0);
4059 }
4060
4061 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4062 }
4063
4064 ExprNeedsCleanups = true;
4065
4066 CastKind ck = (ReturnsRetained ? CK_ObjCConsumeObject
4067 : CK_ObjCReclaimReturnedObject);
4068 return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4069 VK_RValue));
4070 }
4071
4072 if (!getLangOptions().CPlusPlus)
4073 return Owned(E);
4074
4075 const RecordType *RT = E->getType()->getAs<RecordType>();
4076 if (!RT)
4077 return Owned(E);
4078
4079 // That should be enough to guarantee that this type is complete.
4080 // If it has a trivial destructor, we can avoid the extra copy.
4081 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4082 if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
4083 return Owned(E);
4084
4085 CXXDestructorDecl *Destructor = LookupDestructor(RD);
4086
4087 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4088 if (Destructor) {
4089 MarkDeclarationReferenced(E->getExprLoc(), Destructor);
4090 CheckDestructorAccess(E->getExprLoc(), Destructor,
4091 PDiag(diag::err_access_dtor_temp)
4092 << E->getType());
4093
4094 ExprTemporaries.push_back(Temp);
4095 ExprNeedsCleanups = true;
4096 }
4097 return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
4098 }
4099
MaybeCreateExprWithCleanups(Expr * SubExpr)4100 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4101 assert(SubExpr && "sub expression can't be null!");
4102
4103 unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
4104 assert(ExprTemporaries.size() >= FirstTemporary);
4105 assert(ExprNeedsCleanups || ExprTemporaries.size() == FirstTemporary);
4106 if (!ExprNeedsCleanups)
4107 return SubExpr;
4108
4109 Expr *E = ExprWithCleanups::Create(Context, SubExpr,
4110 ExprTemporaries.begin() + FirstTemporary,
4111 ExprTemporaries.size() - FirstTemporary);
4112 ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
4113 ExprTemporaries.end());
4114 ExprNeedsCleanups = false;
4115
4116 return E;
4117 }
4118
4119 ExprResult
MaybeCreateExprWithCleanups(ExprResult SubExpr)4120 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4121 if (SubExpr.isInvalid())
4122 return ExprError();
4123
4124 return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4125 }
4126
MaybeCreateStmtWithCleanups(Stmt * SubStmt)4127 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4128 assert(SubStmt && "sub statement can't be null!");
4129
4130 if (!ExprNeedsCleanups)
4131 return SubStmt;
4132
4133 // FIXME: In order to attach the temporaries, wrap the statement into
4134 // a StmtExpr; currently this is only used for asm statements.
4135 // This is hacky, either create a new CXXStmtWithTemporaries statement or
4136 // a new AsmStmtWithTemporaries.
4137 CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
4138 SourceLocation(),
4139 SourceLocation());
4140 Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4141 SourceLocation());
4142 return MaybeCreateExprWithCleanups(E);
4143 }
4144
4145 ExprResult
ActOnStartCXXMemberReference(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,ParsedType & ObjectType,bool & MayBePseudoDestructor)4146 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4147 tok::TokenKind OpKind, ParsedType &ObjectType,
4148 bool &MayBePseudoDestructor) {
4149 // Since this might be a postfix expression, get rid of ParenListExprs.
4150 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4151 if (Result.isInvalid()) return ExprError();
4152 Base = Result.get();
4153
4154 QualType BaseType = Base->getType();
4155 MayBePseudoDestructor = false;
4156 if (BaseType->isDependentType()) {
4157 // If we have a pointer to a dependent type and are using the -> operator,
4158 // the object type is the type that the pointer points to. We might still
4159 // have enough information about that type to do something useful.
4160 if (OpKind == tok::arrow)
4161 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4162 BaseType = Ptr->getPointeeType();
4163
4164 ObjectType = ParsedType::make(BaseType);
4165 MayBePseudoDestructor = true;
4166 return Owned(Base);
4167 }
4168
4169 // C++ [over.match.oper]p8:
4170 // [...] When operator->returns, the operator-> is applied to the value
4171 // returned, with the original second operand.
4172 if (OpKind == tok::arrow) {
4173 // The set of types we've considered so far.
4174 llvm::SmallPtrSet<CanQualType,8> CTypes;
4175 llvm::SmallVector<SourceLocation, 8> Locations;
4176 CTypes.insert(Context.getCanonicalType(BaseType));
4177
4178 while (BaseType->isRecordType()) {
4179 Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
4180 if (Result.isInvalid())
4181 return ExprError();
4182 Base = Result.get();
4183 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
4184 Locations.push_back(OpCall->getDirectCallee()->getLocation());
4185 BaseType = Base->getType();
4186 CanQualType CBaseType = Context.getCanonicalType(BaseType);
4187 if (!CTypes.insert(CBaseType)) {
4188 Diag(OpLoc, diag::err_operator_arrow_circular);
4189 for (unsigned i = 0; i < Locations.size(); i++)
4190 Diag(Locations[i], diag::note_declared_at);
4191 return ExprError();
4192 }
4193 }
4194
4195 if (BaseType->isPointerType())
4196 BaseType = BaseType->getPointeeType();
4197 }
4198
4199 // We could end up with various non-record types here, such as extended
4200 // vector types or Objective-C interfaces. Just return early and let
4201 // ActOnMemberReferenceExpr do the work.
4202 if (!BaseType->isRecordType()) {
4203 // C++ [basic.lookup.classref]p2:
4204 // [...] If the type of the object expression is of pointer to scalar
4205 // type, the unqualified-id is looked up in the context of the complete
4206 // postfix-expression.
4207 //
4208 // This also indicates that we should be parsing a
4209 // pseudo-destructor-name.
4210 ObjectType = ParsedType();
4211 MayBePseudoDestructor = true;
4212 return Owned(Base);
4213 }
4214
4215 // The object type must be complete (or dependent).
4216 if (!BaseType->isDependentType() &&
4217 RequireCompleteType(OpLoc, BaseType,
4218 PDiag(diag::err_incomplete_member_access)))
4219 return ExprError();
4220
4221 // C++ [basic.lookup.classref]p2:
4222 // If the id-expression in a class member access (5.2.5) is an
4223 // unqualified-id, and the type of the object expression is of a class
4224 // type C (or of pointer to a class type C), the unqualified-id is looked
4225 // up in the scope of class C. [...]
4226 ObjectType = ParsedType::make(BaseType);
4227 return move(Base);
4228 }
4229
DiagnoseDtorReference(SourceLocation NameLoc,Expr * MemExpr)4230 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
4231 Expr *MemExpr) {
4232 SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
4233 Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
4234 << isa<CXXPseudoDestructorExpr>(MemExpr)
4235 << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
4236
4237 return ActOnCallExpr(/*Scope*/ 0,
4238 MemExpr,
4239 /*LPLoc*/ ExpectedLParenLoc,
4240 MultiExprArg(),
4241 /*RPLoc*/ ExpectedLParenLoc);
4242 }
4243
BuildPseudoDestructorExpr(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,const CXXScopeSpec & SS,TypeSourceInfo * ScopeTypeInfo,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destructed,bool HasTrailingLParen)4244 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
4245 SourceLocation OpLoc,
4246 tok::TokenKind OpKind,
4247 const CXXScopeSpec &SS,
4248 TypeSourceInfo *ScopeTypeInfo,
4249 SourceLocation CCLoc,
4250 SourceLocation TildeLoc,
4251 PseudoDestructorTypeStorage Destructed,
4252 bool HasTrailingLParen) {
4253 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
4254
4255 // C++ [expr.pseudo]p2:
4256 // The left-hand side of the dot operator shall be of scalar type. The
4257 // left-hand side of the arrow operator shall be of pointer to scalar type.
4258 // This scalar type is the object type.
4259 QualType ObjectType = Base->getType();
4260 if (OpKind == tok::arrow) {
4261 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
4262 ObjectType = Ptr->getPointeeType();
4263 } else if (!Base->isTypeDependent()) {
4264 // The user wrote "p->" when she probably meant "p."; fix it.
4265 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
4266 << ObjectType << true
4267 << FixItHint::CreateReplacement(OpLoc, ".");
4268 if (isSFINAEContext())
4269 return ExprError();
4270
4271 OpKind = tok::period;
4272 }
4273 }
4274
4275 if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
4276 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
4277 << ObjectType << Base->getSourceRange();
4278 return ExprError();
4279 }
4280
4281 // C++ [expr.pseudo]p2:
4282 // [...] The cv-unqualified versions of the object type and of the type
4283 // designated by the pseudo-destructor-name shall be the same type.
4284 if (DestructedTypeInfo) {
4285 QualType DestructedType = DestructedTypeInfo->getType();
4286 SourceLocation DestructedTypeStart
4287 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
4288 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
4289 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
4290 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
4291 << ObjectType << DestructedType << Base->getSourceRange()
4292 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4293
4294 // Recover by setting the destructed type to the object type.
4295 DestructedType = ObjectType;
4296 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4297 DestructedTypeStart);
4298 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4299 } else if (DestructedType.getObjCLifetime() !=
4300 ObjectType.getObjCLifetime()) {
4301
4302 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
4303 // Okay: just pretend that the user provided the correctly-qualified
4304 // type.
4305 } else {
4306 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
4307 << ObjectType << DestructedType << Base->getSourceRange()
4308 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4309 }
4310
4311 // Recover by setting the destructed type to the object type.
4312 DestructedType = ObjectType;
4313 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4314 DestructedTypeStart);
4315 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4316 }
4317 }
4318 }
4319
4320 // C++ [expr.pseudo]p2:
4321 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
4322 // form
4323 //
4324 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
4325 //
4326 // shall designate the same scalar type.
4327 if (ScopeTypeInfo) {
4328 QualType ScopeType = ScopeTypeInfo->getType();
4329 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
4330 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
4331
4332 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
4333 diag::err_pseudo_dtor_type_mismatch)
4334 << ObjectType << ScopeType << Base->getSourceRange()
4335 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
4336
4337 ScopeType = QualType();
4338 ScopeTypeInfo = 0;
4339 }
4340 }
4341
4342 Expr *Result
4343 = new (Context) CXXPseudoDestructorExpr(Context, Base,
4344 OpKind == tok::arrow, OpLoc,
4345 SS.getWithLocInContext(Context),
4346 ScopeTypeInfo,
4347 CCLoc,
4348 TildeLoc,
4349 Destructed);
4350
4351 if (HasTrailingLParen)
4352 return Owned(Result);
4353
4354 return DiagnoseDtorReference(Destructed.getLocation(), Result);
4355 }
4356
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,UnqualifiedId & FirstTypeName,SourceLocation CCLoc,SourceLocation TildeLoc,UnqualifiedId & SecondTypeName,bool HasTrailingLParen)4357 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
4358 SourceLocation OpLoc,
4359 tok::TokenKind OpKind,
4360 CXXScopeSpec &SS,
4361 UnqualifiedId &FirstTypeName,
4362 SourceLocation CCLoc,
4363 SourceLocation TildeLoc,
4364 UnqualifiedId &SecondTypeName,
4365 bool HasTrailingLParen) {
4366 assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4367 FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
4368 "Invalid first type name in pseudo-destructor");
4369 assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4370 SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
4371 "Invalid second type name in pseudo-destructor");
4372
4373 // C++ [expr.pseudo]p2:
4374 // The left-hand side of the dot operator shall be of scalar type. The
4375 // left-hand side of the arrow operator shall be of pointer to scalar type.
4376 // This scalar type is the object type.
4377 QualType ObjectType = Base->getType();
4378 if (OpKind == tok::arrow) {
4379 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
4380 ObjectType = Ptr->getPointeeType();
4381 } else if (!ObjectType->isDependentType()) {
4382 // The user wrote "p->" when she probably meant "p."; fix it.
4383 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
4384 << ObjectType << true
4385 << FixItHint::CreateReplacement(OpLoc, ".");
4386 if (isSFINAEContext())
4387 return ExprError();
4388
4389 OpKind = tok::period;
4390 }
4391 }
4392
4393 // Compute the object type that we should use for name lookup purposes. Only
4394 // record types and dependent types matter.
4395 ParsedType ObjectTypePtrForLookup;
4396 if (!SS.isSet()) {
4397 if (ObjectType->isRecordType())
4398 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
4399 else if (ObjectType->isDependentType())
4400 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
4401 }
4402
4403 // Convert the name of the type being destructed (following the ~) into a
4404 // type (with source-location information).
4405 QualType DestructedType;
4406 TypeSourceInfo *DestructedTypeInfo = 0;
4407 PseudoDestructorTypeStorage Destructed;
4408 if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
4409 ParsedType T = getTypeName(*SecondTypeName.Identifier,
4410 SecondTypeName.StartLocation,
4411 S, &SS, true, false, ObjectTypePtrForLookup);
4412 if (!T &&
4413 ((SS.isSet() && !computeDeclContext(SS, false)) ||
4414 (!SS.isSet() && ObjectType->isDependentType()))) {
4415 // The name of the type being destroyed is a dependent name, and we
4416 // couldn't find anything useful in scope. Just store the identifier and
4417 // it's location, and we'll perform (qualified) name lookup again at
4418 // template instantiation time.
4419 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
4420 SecondTypeName.StartLocation);
4421 } else if (!T) {
4422 Diag(SecondTypeName.StartLocation,
4423 diag::err_pseudo_dtor_destructor_non_type)
4424 << SecondTypeName.Identifier << ObjectType;
4425 if (isSFINAEContext())
4426 return ExprError();
4427
4428 // Recover by assuming we had the right type all along.
4429 DestructedType = ObjectType;
4430 } else
4431 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
4432 } else {
4433 // Resolve the template-id to a type.
4434 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
4435 ASTTemplateArgsPtr TemplateArgsPtr(*this,
4436 TemplateId->getTemplateArgs(),
4437 TemplateId->NumArgs);
4438 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
4439 TemplateId->Template,
4440 TemplateId->TemplateNameLoc,
4441 TemplateId->LAngleLoc,
4442 TemplateArgsPtr,
4443 TemplateId->RAngleLoc);
4444 if (T.isInvalid() || !T.get()) {
4445 // Recover by assuming we had the right type all along.
4446 DestructedType = ObjectType;
4447 } else
4448 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
4449 }
4450
4451 // If we've performed some kind of recovery, (re-)build the type source
4452 // information.
4453 if (!DestructedType.isNull()) {
4454 if (!DestructedTypeInfo)
4455 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
4456 SecondTypeName.StartLocation);
4457 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4458 }
4459
4460 // Convert the name of the scope type (the type prior to '::') into a type.
4461 TypeSourceInfo *ScopeTypeInfo = 0;
4462 QualType ScopeType;
4463 if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4464 FirstTypeName.Identifier) {
4465 if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
4466 ParsedType T = getTypeName(*FirstTypeName.Identifier,
4467 FirstTypeName.StartLocation,
4468 S, &SS, true, false, ObjectTypePtrForLookup);
4469 if (!T) {
4470 Diag(FirstTypeName.StartLocation,
4471 diag::err_pseudo_dtor_destructor_non_type)
4472 << FirstTypeName.Identifier << ObjectType;
4473
4474 if (isSFINAEContext())
4475 return ExprError();
4476
4477 // Just drop this type. It's unnecessary anyway.
4478 ScopeType = QualType();
4479 } else
4480 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
4481 } else {
4482 // Resolve the template-id to a type.
4483 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
4484 ASTTemplateArgsPtr TemplateArgsPtr(*this,
4485 TemplateId->getTemplateArgs(),
4486 TemplateId->NumArgs);
4487 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
4488 TemplateId->Template,
4489 TemplateId->TemplateNameLoc,
4490 TemplateId->LAngleLoc,
4491 TemplateArgsPtr,
4492 TemplateId->RAngleLoc);
4493 if (T.isInvalid() || !T.get()) {
4494 // Recover by dropping this type.
4495 ScopeType = QualType();
4496 } else
4497 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
4498 }
4499 }
4500
4501 if (!ScopeType.isNull() && !ScopeTypeInfo)
4502 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
4503 FirstTypeName.StartLocation);
4504
4505
4506 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
4507 ScopeTypeInfo, CCLoc, TildeLoc,
4508 Destructed, HasTrailingLParen);
4509 }
4510
BuildCXXMemberCallExpr(Expr * E,NamedDecl * FoundDecl,CXXMethodDecl * Method)4511 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
4512 CXXMethodDecl *Method) {
4513 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
4514 FoundDecl, Method);
4515 if (Exp.isInvalid())
4516 return true;
4517
4518 MemberExpr *ME =
4519 new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
4520 SourceLocation(), Method->getType(),
4521 VK_RValue, OK_Ordinary);
4522 QualType ResultType = Method->getResultType();
4523 ExprValueKind VK = Expr::getValueKindForType(ResultType);
4524 ResultType = ResultType.getNonLValueExprType(Context);
4525
4526 MarkDeclarationReferenced(Exp.get()->getLocStart(), Method);
4527 CXXMemberCallExpr *CE =
4528 new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
4529 Exp.get()->getLocEnd());
4530 return CE;
4531 }
4532
BuildCXXNoexceptExpr(SourceLocation KeyLoc,Expr * Operand,SourceLocation RParen)4533 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
4534 SourceLocation RParen) {
4535 return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
4536 Operand->CanThrow(Context),
4537 KeyLoc, RParen));
4538 }
4539
ActOnNoexceptExpr(SourceLocation KeyLoc,SourceLocation,Expr * Operand,SourceLocation RParen)4540 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
4541 Expr *Operand, SourceLocation RParen) {
4542 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
4543 }
4544
4545 /// Perform the conversions required for an expression used in a
4546 /// context that ignores the result.
IgnoredValueConversions(Expr * E)4547 ExprResult Sema::IgnoredValueConversions(Expr *E) {
4548 // C99 6.3.2.1:
4549 // [Except in specific positions,] an lvalue that does not have
4550 // array type is converted to the value stored in the
4551 // designated object (and is no longer an lvalue).
4552 if (E->isRValue()) {
4553 // In C, function designators (i.e. expressions of function type)
4554 // are r-values, but we still want to do function-to-pointer decay
4555 // on them. This is both technically correct and convenient for
4556 // some clients.
4557 if (!getLangOptions().CPlusPlus && E->getType()->isFunctionType())
4558 return DefaultFunctionArrayConversion(E);
4559
4560 return Owned(E);
4561 }
4562
4563 // We always want to do this on ObjC property references.
4564 if (E->getObjectKind() == OK_ObjCProperty) {
4565 ExprResult Res = ConvertPropertyForRValue(E);
4566 if (Res.isInvalid()) return Owned(E);
4567 E = Res.take();
4568 if (E->isRValue()) return Owned(E);
4569 }
4570
4571 // Otherwise, this rule does not apply in C++, at least not for the moment.
4572 if (getLangOptions().CPlusPlus) return Owned(E);
4573
4574 // GCC seems to also exclude expressions of incomplete enum type.
4575 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
4576 if (!T->getDecl()->isComplete()) {
4577 // FIXME: stupid workaround for a codegen bug!
4578 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
4579 return Owned(E);
4580 }
4581 }
4582
4583 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
4584 if (Res.isInvalid())
4585 return Owned(E);
4586 E = Res.take();
4587
4588 if (!E->getType()->isVoidType())
4589 RequireCompleteType(E->getExprLoc(), E->getType(),
4590 diag::err_incomplete_type);
4591 return Owned(E);
4592 }
4593
ActOnFinishFullExpr(Expr * FE)4594 ExprResult Sema::ActOnFinishFullExpr(Expr *FE) {
4595 ExprResult FullExpr = Owned(FE);
4596
4597 if (!FullExpr.get())
4598 return ExprError();
4599
4600 if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
4601 return ExprError();
4602
4603 FullExpr = CheckPlaceholderExpr(FullExpr.take());
4604 if (FullExpr.isInvalid())
4605 return ExprError();
4606
4607 FullExpr = IgnoredValueConversions(FullExpr.take());
4608 if (FullExpr.isInvalid())
4609 return ExprError();
4610
4611 CheckImplicitConversions(FullExpr.get());
4612 return MaybeCreateExprWithCleanups(FullExpr);
4613 }
4614
ActOnFinishFullStmt(Stmt * FullStmt)4615 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
4616 if (!FullStmt) return StmtError();
4617
4618 return MaybeCreateStmtWithCleanups(FullStmt);
4619 }
4620
CheckMicrosoftIfExistsSymbol(CXXScopeSpec & SS,UnqualifiedId & Name)4621 bool Sema::CheckMicrosoftIfExistsSymbol(CXXScopeSpec &SS,
4622 UnqualifiedId &Name) {
4623 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
4624 DeclarationName TargetName = TargetNameInfo.getName();
4625 if (!TargetName)
4626 return false;
4627
4628 // Do the redeclaration lookup in the current scope.
4629 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
4630 Sema::NotForRedeclaration);
4631 R.suppressDiagnostics();
4632 LookupParsedName(R, getCurScope(), &SS);
4633 return !R.empty();
4634 }
4635