1 //===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a semantic tree transformation that takes a given
10 // AST and rebuilds it, possibly transforming some nodes in the process.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CLANG_SEMA_TREETRANSFORM_H
15 #define LLVM_CLANG_SEMA_TREETRANSFORM_H
16
17 #include "clang/Sema/SemaInternal.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/ParsedTemplate.h"
20 #include "clang/Sema/SemaDiagnostic.h"
21 #include "clang/Sema/ScopeInfo.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/Stmt.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Sema/Ownership.h"
32 #include "clang/Sema/Designator.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "TypeLocBuilder.h"
36 #include <algorithm>
37
38 namespace clang {
39 using namespace sema;
40
41 /// \brief A semantic tree transformation that allows one to transform one
42 /// abstract syntax tree into another.
43 ///
44 /// A new tree transformation is defined by creating a new subclass \c X of
45 /// \c TreeTransform<X> and then overriding certain operations to provide
46 /// behavior specific to that transformation. For example, template
47 /// instantiation is implemented as a tree transformation where the
48 /// transformation of TemplateTypeParmType nodes involves substituting the
49 /// template arguments for their corresponding template parameters; a similar
50 /// transformation is performed for non-type template parameters and
51 /// template template parameters.
52 ///
53 /// This tree-transformation template uses static polymorphism to allow
54 /// subclasses to customize any of its operations. Thus, a subclass can
55 /// override any of the transformation or rebuild operators by providing an
56 /// operation with the same signature as the default implementation. The
57 /// overridding function should not be virtual.
58 ///
59 /// Semantic tree transformations are split into two stages, either of which
60 /// can be replaced by a subclass. The "transform" step transforms an AST node
61 /// or the parts of an AST node using the various transformation functions,
62 /// then passes the pieces on to the "rebuild" step, which constructs a new AST
63 /// node of the appropriate kind from the pieces. The default transformation
64 /// routines recursively transform the operands to composite AST nodes (e.g.,
65 /// the pointee type of a PointerType node) and, if any of those operand nodes
66 /// were changed by the transformation, invokes the rebuild operation to create
67 /// a new AST node.
68 ///
69 /// Subclasses can customize the transformation at various levels. The
70 /// most coarse-grained transformations involve replacing TransformType(),
71 /// TransformExpr(), TransformDecl(), TransformNestedNameSpecifierLoc(),
72 /// TransformTemplateName(), or TransformTemplateArgument() with entirely
73 /// new implementations.
74 ///
75 /// For more fine-grained transformations, subclasses can replace any of the
76 /// \c TransformXXX functions (where XXX is the name of an AST node, e.g.,
77 /// PointerType, StmtExpr) to alter the transformation. As mentioned previously,
78 /// replacing TransformTemplateTypeParmType() allows template instantiation
79 /// to substitute template arguments for their corresponding template
80 /// parameters. Additionally, subclasses can override the \c RebuildXXX
81 /// functions to control how AST nodes are rebuilt when their operands change.
82 /// By default, \c TreeTransform will invoke semantic analysis to rebuild
83 /// AST nodes. However, certain other tree transformations (e.g, cloning) may
84 /// be able to use more efficient rebuild steps.
85 ///
86 /// There are a handful of other functions that can be overridden, allowing one
87 /// to avoid traversing nodes that don't need any transformation
88 /// (\c AlreadyTransformed()), force rebuilding AST nodes even when their
89 /// operands have not changed (\c AlwaysRebuild()), and customize the
90 /// default locations and entity names used for type-checking
91 /// (\c getBaseLocation(), \c getBaseEntity()).
92 template<typename Derived>
93 class TreeTransform {
94 /// \brief Private RAII object that helps us forget and then re-remember
95 /// the template argument corresponding to a partially-substituted parameter
96 /// pack.
97 class ForgetPartiallySubstitutedPackRAII {
98 Derived &Self;
99 TemplateArgument Old;
100
101 public:
ForgetPartiallySubstitutedPackRAII(Derived & Self)102 ForgetPartiallySubstitutedPackRAII(Derived &Self) : Self(Self) {
103 Old = Self.ForgetPartiallySubstitutedPack();
104 }
105
~ForgetPartiallySubstitutedPackRAII()106 ~ForgetPartiallySubstitutedPackRAII() {
107 Self.RememberPartiallySubstitutedPack(Old);
108 }
109 };
110
111 protected:
112 Sema &SemaRef;
113
114 public:
115 /// \brief Initializes a new tree transformer.
TreeTransform(Sema & SemaRef)116 TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { }
117
118 /// \brief Retrieves a reference to the derived class.
getDerived()119 Derived &getDerived() { return static_cast<Derived&>(*this); }
120
121 /// \brief Retrieves a reference to the derived class.
getDerived()122 const Derived &getDerived() const {
123 return static_cast<const Derived&>(*this);
124 }
125
Owned(Expr * E)126 static inline ExprResult Owned(Expr *E) { return E; }
Owned(Stmt * S)127 static inline StmtResult Owned(Stmt *S) { return S; }
128
129 /// \brief Retrieves a reference to the semantic analysis object used for
130 /// this tree transform.
getSema()131 Sema &getSema() const { return SemaRef; }
132
133 /// \brief Whether the transformation should always rebuild AST nodes, even
134 /// if none of the children have changed.
135 ///
136 /// Subclasses may override this function to specify when the transformation
137 /// should rebuild all AST nodes.
AlwaysRebuild()138 bool AlwaysRebuild() { return false; }
139
140 /// \brief Returns the location of the entity being transformed, if that
141 /// information was not available elsewhere in the AST.
142 ///
143 /// By default, returns no source-location information. Subclasses can
144 /// provide an alternative implementation that provides better location
145 /// information.
getBaseLocation()146 SourceLocation getBaseLocation() { return SourceLocation(); }
147
148 /// \brief Returns the name of the entity being transformed, if that
149 /// information was not available elsewhere in the AST.
150 ///
151 /// By default, returns an empty name. Subclasses can provide an alternative
152 /// implementation with a more precise name.
getBaseEntity()153 DeclarationName getBaseEntity() { return DeclarationName(); }
154
155 /// \brief Sets the "base" location and entity when that
156 /// information is known based on another transformation.
157 ///
158 /// By default, the source location and entity are ignored. Subclasses can
159 /// override this function to provide a customized implementation.
setBase(SourceLocation Loc,DeclarationName Entity)160 void setBase(SourceLocation Loc, DeclarationName Entity) { }
161
162 /// \brief RAII object that temporarily sets the base location and entity
163 /// used for reporting diagnostics in types.
164 class TemporaryBase {
165 TreeTransform &Self;
166 SourceLocation OldLocation;
167 DeclarationName OldEntity;
168
169 public:
TemporaryBase(TreeTransform & Self,SourceLocation Location,DeclarationName Entity)170 TemporaryBase(TreeTransform &Self, SourceLocation Location,
171 DeclarationName Entity) : Self(Self) {
172 OldLocation = Self.getDerived().getBaseLocation();
173 OldEntity = Self.getDerived().getBaseEntity();
174
175 if (Location.isValid())
176 Self.getDerived().setBase(Location, Entity);
177 }
178
~TemporaryBase()179 ~TemporaryBase() {
180 Self.getDerived().setBase(OldLocation, OldEntity);
181 }
182 };
183
184 /// \brief Determine whether the given type \p T has already been
185 /// transformed.
186 ///
187 /// Subclasses can provide an alternative implementation of this routine
188 /// to short-circuit evaluation when it is known that a given type will
189 /// not change. For example, template instantiation need not traverse
190 /// non-dependent types.
AlreadyTransformed(QualType T)191 bool AlreadyTransformed(QualType T) {
192 return T.isNull();
193 }
194
195 /// \brief Determine whether the given call argument should be dropped, e.g.,
196 /// because it is a default argument.
197 ///
198 /// Subclasses can provide an alternative implementation of this routine to
199 /// determine which kinds of call arguments get dropped. By default,
200 /// CXXDefaultArgument nodes are dropped (prior to transformation).
DropCallArgument(Expr * E)201 bool DropCallArgument(Expr *E) {
202 return E->isDefaultArgument();
203 }
204
205 /// \brief Determine whether we should expand a pack expansion with the
206 /// given set of parameter packs into separate arguments by repeatedly
207 /// transforming the pattern.
208 ///
209 /// By default, the transformer never tries to expand pack expansions.
210 /// Subclasses can override this routine to provide different behavior.
211 ///
212 /// \param EllipsisLoc The location of the ellipsis that identifies the
213 /// pack expansion.
214 ///
215 /// \param PatternRange The source range that covers the entire pattern of
216 /// the pack expansion.
217 ///
218 /// \param Unexpanded The set of unexpanded parameter packs within the
219 /// pattern.
220 ///
221 /// \param NumUnexpanded The number of unexpanded parameter packs in
222 /// \p Unexpanded.
223 ///
224 /// \param ShouldExpand Will be set to \c true if the transformer should
225 /// expand the corresponding pack expansions into separate arguments. When
226 /// set, \c NumExpansions must also be set.
227 ///
228 /// \param RetainExpansion Whether the caller should add an unexpanded
229 /// pack expansion after all of the expanded arguments. This is used
230 /// when extending explicitly-specified template argument packs per
231 /// C++0x [temp.arg.explicit]p9.
232 ///
233 /// \param NumExpansions The number of separate arguments that will be in
234 /// the expanded form of the corresponding pack expansion. This is both an
235 /// input and an output parameter, which can be set by the caller if the
236 /// number of expansions is known a priori (e.g., due to a prior substitution)
237 /// and will be set by the callee when the number of expansions is known.
238 /// The callee must set this value when \c ShouldExpand is \c true; it may
239 /// set this value in other cases.
240 ///
241 /// \returns true if an error occurred (e.g., because the parameter packs
242 /// are to be instantiated with arguments of different lengths), false
243 /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
244 /// must be set.
TryExpandParameterPacks(SourceLocation EllipsisLoc,SourceRange PatternRange,const UnexpandedParameterPack * Unexpanded,unsigned NumUnexpanded,bool & ShouldExpand,bool & RetainExpansion,llvm::Optional<unsigned> & NumExpansions)245 bool TryExpandParameterPacks(SourceLocation EllipsisLoc,
246 SourceRange PatternRange,
247 const UnexpandedParameterPack *Unexpanded,
248 unsigned NumUnexpanded,
249 bool &ShouldExpand,
250 bool &RetainExpansion,
251 llvm::Optional<unsigned> &NumExpansions) {
252 ShouldExpand = false;
253 return false;
254 }
255
256 /// \brief "Forget" about the partially-substituted pack template argument,
257 /// when performing an instantiation that must preserve the parameter pack
258 /// use.
259 ///
260 /// This routine is meant to be overridden by the template instantiator.
ForgetPartiallySubstitutedPack()261 TemplateArgument ForgetPartiallySubstitutedPack() {
262 return TemplateArgument();
263 }
264
265 /// \brief "Remember" the partially-substituted pack template argument
266 /// after performing an instantiation that must preserve the parameter pack
267 /// use.
268 ///
269 /// This routine is meant to be overridden by the template instantiator.
RememberPartiallySubstitutedPack(TemplateArgument Arg)270 void RememberPartiallySubstitutedPack(TemplateArgument Arg) { }
271
272 /// \brief Note to the derived class when a function parameter pack is
273 /// being expanded.
ExpandingFunctionParameterPack(ParmVarDecl * Pack)274 void ExpandingFunctionParameterPack(ParmVarDecl *Pack) { }
275
276 /// \brief Transforms the given type into another type.
277 ///
278 /// By default, this routine transforms a type by creating a
279 /// TypeSourceInfo for it and delegating to the appropriate
280 /// function. This is expensive, but we don't mind, because
281 /// this method is deprecated anyway; all users should be
282 /// switched to storing TypeSourceInfos.
283 ///
284 /// \returns the transformed type.
285 QualType TransformType(QualType T);
286
287 /// \brief Transforms the given type-with-location into a new
288 /// type-with-location.
289 ///
290 /// By default, this routine transforms a type by delegating to the
291 /// appropriate TransformXXXType to build a new type. Subclasses
292 /// may override this function (to take over all type
293 /// transformations) or some set of the TransformXXXType functions
294 /// to alter the transformation.
295 TypeSourceInfo *TransformType(TypeSourceInfo *DI);
296
297 /// \brief Transform the given type-with-location into a new
298 /// type, collecting location information in the given builder
299 /// as necessary.
300 ///
301 QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL);
302
303 /// \brief Transform the given statement.
304 ///
305 /// By default, this routine transforms a statement by delegating to the
306 /// appropriate TransformXXXStmt function to transform a specific kind of
307 /// statement or the TransformExpr() function to transform an expression.
308 /// Subclasses may override this function to transform statements using some
309 /// other mechanism.
310 ///
311 /// \returns the transformed statement.
312 StmtResult TransformStmt(Stmt *S);
313
314 /// \brief Transform the given expression.
315 ///
316 /// By default, this routine transforms an expression by delegating to the
317 /// appropriate TransformXXXExpr function to build a new expression.
318 /// Subclasses may override this function to transform expressions using some
319 /// other mechanism.
320 ///
321 /// \returns the transformed expression.
322 ExprResult TransformExpr(Expr *E);
323
324 /// \brief Transform the given list of expressions.
325 ///
326 /// This routine transforms a list of expressions by invoking
327 /// \c TransformExpr() for each subexpression. However, it also provides
328 /// support for variadic templates by expanding any pack expansions (if the
329 /// derived class permits such expansion) along the way. When pack expansions
330 /// are present, the number of outputs may not equal the number of inputs.
331 ///
332 /// \param Inputs The set of expressions to be transformed.
333 ///
334 /// \param NumInputs The number of expressions in \c Inputs.
335 ///
336 /// \param IsCall If \c true, then this transform is being performed on
337 /// function-call arguments, and any arguments that should be dropped, will
338 /// be.
339 ///
340 /// \param Outputs The transformed input expressions will be added to this
341 /// vector.
342 ///
343 /// \param ArgChanged If non-NULL, will be set \c true if any argument changed
344 /// due to transformation.
345 ///
346 /// \returns true if an error occurred, false otherwise.
347 bool TransformExprs(Expr **Inputs, unsigned NumInputs, bool IsCall,
348 llvm::SmallVectorImpl<Expr *> &Outputs,
349 bool *ArgChanged = 0);
350
351 /// \brief Transform the given declaration, which is referenced from a type
352 /// or expression.
353 ///
354 /// By default, acts as the identity function on declarations. Subclasses
355 /// may override this function to provide alternate behavior.
TransformDecl(SourceLocation Loc,Decl * D)356 Decl *TransformDecl(SourceLocation Loc, Decl *D) { return D; }
357
358 /// \brief Transform the definition of the given declaration.
359 ///
360 /// By default, invokes TransformDecl() to transform the declaration.
361 /// Subclasses may override this function to provide alternate behavior.
TransformDefinition(SourceLocation Loc,Decl * D)362 Decl *TransformDefinition(SourceLocation Loc, Decl *D) {
363 return getDerived().TransformDecl(Loc, D);
364 }
365
366 /// \brief Transform the given declaration, which was the first part of a
367 /// nested-name-specifier in a member access expression.
368 ///
369 /// This specific declaration transformation only applies to the first
370 /// identifier in a nested-name-specifier of a member access expression, e.g.,
371 /// the \c T in \c x->T::member
372 ///
373 /// By default, invokes TransformDecl() to transform the declaration.
374 /// Subclasses may override this function to provide alternate behavior.
TransformFirstQualifierInScope(NamedDecl * D,SourceLocation Loc)375 NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) {
376 return cast_or_null<NamedDecl>(getDerived().TransformDecl(Loc, D));
377 }
378
379 /// \brief Transform the given nested-name-specifier with source-location
380 /// information.
381 ///
382 /// By default, transforms all of the types and declarations within the
383 /// nested-name-specifier. Subclasses may override this function to provide
384 /// alternate behavior.
385 NestedNameSpecifierLoc TransformNestedNameSpecifierLoc(
386 NestedNameSpecifierLoc NNS,
387 QualType ObjectType = QualType(),
388 NamedDecl *FirstQualifierInScope = 0);
389
390 /// \brief Transform the given declaration name.
391 ///
392 /// By default, transforms the types of conversion function, constructor,
393 /// and destructor names and then (if needed) rebuilds the declaration name.
394 /// Identifiers and selectors are returned unmodified. Sublcasses may
395 /// override this function to provide alternate behavior.
396 DeclarationNameInfo
397 TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo);
398
399 /// \brief Transform the given template name.
400 ///
401 /// \param SS The nested-name-specifier that qualifies the template
402 /// name. This nested-name-specifier must already have been transformed.
403 ///
404 /// \param Name The template name to transform.
405 ///
406 /// \param NameLoc The source location of the template name.
407 ///
408 /// \param ObjectType If we're translating a template name within a member
409 /// access expression, this is the type of the object whose member template
410 /// is being referenced.
411 ///
412 /// \param FirstQualifierInScope If the first part of a nested-name-specifier
413 /// also refers to a name within the current (lexical) scope, this is the
414 /// declaration it refers to.
415 ///
416 /// By default, transforms the template name by transforming the declarations
417 /// and nested-name-specifiers that occur within the template name.
418 /// Subclasses may override this function to provide alternate behavior.
419 TemplateName TransformTemplateName(CXXScopeSpec &SS,
420 TemplateName Name,
421 SourceLocation NameLoc,
422 QualType ObjectType = QualType(),
423 NamedDecl *FirstQualifierInScope = 0);
424
425 /// \brief Transform the given template argument.
426 ///
427 /// By default, this operation transforms the type, expression, or
428 /// declaration stored within the template argument and constructs a
429 /// new template argument from the transformed result. Subclasses may
430 /// override this function to provide alternate behavior.
431 ///
432 /// Returns true if there was an error.
433 bool TransformTemplateArgument(const TemplateArgumentLoc &Input,
434 TemplateArgumentLoc &Output);
435
436 /// \brief Transform the given set of template arguments.
437 ///
438 /// By default, this operation transforms all of the template arguments
439 /// in the input set using \c TransformTemplateArgument(), and appends
440 /// the transformed arguments to the output list.
441 ///
442 /// Note that this overload of \c TransformTemplateArguments() is merely
443 /// a convenience function. Subclasses that wish to override this behavior
444 /// should override the iterator-based member template version.
445 ///
446 /// \param Inputs The set of template arguments to be transformed.
447 ///
448 /// \param NumInputs The number of template arguments in \p Inputs.
449 ///
450 /// \param Outputs The set of transformed template arguments output by this
451 /// routine.
452 ///
453 /// Returns true if an error occurred.
TransformTemplateArguments(const TemplateArgumentLoc * Inputs,unsigned NumInputs,TemplateArgumentListInfo & Outputs)454 bool TransformTemplateArguments(const TemplateArgumentLoc *Inputs,
455 unsigned NumInputs,
456 TemplateArgumentListInfo &Outputs) {
457 return TransformTemplateArguments(Inputs, Inputs + NumInputs, Outputs);
458 }
459
460 /// \brief Transform the given set of template arguments.
461 ///
462 /// By default, this operation transforms all of the template arguments
463 /// in the input set using \c TransformTemplateArgument(), and appends
464 /// the transformed arguments to the output list.
465 ///
466 /// \param First An iterator to the first template argument.
467 ///
468 /// \param Last An iterator one step past the last template argument.
469 ///
470 /// \param Outputs The set of transformed template arguments output by this
471 /// routine.
472 ///
473 /// Returns true if an error occurred.
474 template<typename InputIterator>
475 bool TransformTemplateArguments(InputIterator First,
476 InputIterator Last,
477 TemplateArgumentListInfo &Outputs);
478
479 /// \brief Fakes up a TemplateArgumentLoc for a given TemplateArgument.
480 void InventTemplateArgumentLoc(const TemplateArgument &Arg,
481 TemplateArgumentLoc &ArgLoc);
482
483 /// \brief Fakes up a TypeSourceInfo for a type.
InventTypeSourceInfo(QualType T)484 TypeSourceInfo *InventTypeSourceInfo(QualType T) {
485 return SemaRef.Context.getTrivialTypeSourceInfo(T,
486 getDerived().getBaseLocation());
487 }
488
489 #define ABSTRACT_TYPELOC(CLASS, PARENT)
490 #define TYPELOC(CLASS, PARENT) \
491 QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T);
492 #include "clang/AST/TypeLocNodes.def"
493
494 StmtResult
495 TransformSEHHandler(Stmt *Handler);
496
497 QualType
498 TransformTemplateSpecializationType(TypeLocBuilder &TLB,
499 TemplateSpecializationTypeLoc TL,
500 TemplateName Template);
501
502 QualType
503 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
504 DependentTemplateSpecializationTypeLoc TL,
505 TemplateName Template,
506 CXXScopeSpec &SS);
507
508 QualType
509 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
510 DependentTemplateSpecializationTypeLoc TL,
511 NestedNameSpecifierLoc QualifierLoc);
512
513 /// \brief Transforms the parameters of a function type into the
514 /// given vectors.
515 ///
516 /// The result vectors should be kept in sync; null entries in the
517 /// variables vector are acceptable.
518 ///
519 /// Return true on error.
520 bool TransformFunctionTypeParams(SourceLocation Loc,
521 ParmVarDecl **Params, unsigned NumParams,
522 const QualType *ParamTypes,
523 llvm::SmallVectorImpl<QualType> &PTypes,
524 llvm::SmallVectorImpl<ParmVarDecl*> *PVars);
525
526 /// \brief Transforms a single function-type parameter. Return null
527 /// on error.
528 ///
529 /// \param indexAdjustment - A number to add to the parameter's
530 /// scope index; can be negative
531 ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm,
532 int indexAdjustment,
533 llvm::Optional<unsigned> NumExpansions);
534
535 QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL);
536
537 StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr);
538 ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E);
539
540 #define STMT(Node, Parent) \
541 StmtResult Transform##Node(Node *S);
542 #define EXPR(Node, Parent) \
543 ExprResult Transform##Node(Node *E);
544 #define ABSTRACT_STMT(Stmt)
545 #include "clang/AST/StmtNodes.inc"
546
547 /// \brief Build a new pointer type given its pointee type.
548 ///
549 /// By default, performs semantic analysis when building the pointer type.
550 /// Subclasses may override this routine to provide different behavior.
551 QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil);
552
553 /// \brief Build a new block pointer type given its pointee type.
554 ///
555 /// By default, performs semantic analysis when building the block pointer
556 /// type. Subclasses may override this routine to provide different behavior.
557 QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil);
558
559 /// \brief Build a new reference type given the type it references.
560 ///
561 /// By default, performs semantic analysis when building the
562 /// reference type. Subclasses may override this routine to provide
563 /// different behavior.
564 ///
565 /// \param LValue whether the type was written with an lvalue sigil
566 /// or an rvalue sigil.
567 QualType RebuildReferenceType(QualType ReferentType,
568 bool LValue,
569 SourceLocation Sigil);
570
571 /// \brief Build a new member pointer type given the pointee type and the
572 /// class type it refers into.
573 ///
574 /// By default, performs semantic analysis when building the member pointer
575 /// type. Subclasses may override this routine to provide different behavior.
576 QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType,
577 SourceLocation Sigil);
578
579 /// \brief Build a new array type given the element type, size
580 /// modifier, size of the array (if known), size expression, and index type
581 /// qualifiers.
582 ///
583 /// By default, performs semantic analysis when building the array type.
584 /// Subclasses may override this routine to provide different behavior.
585 /// Also by default, all of the other Rebuild*Array
586 QualType RebuildArrayType(QualType ElementType,
587 ArrayType::ArraySizeModifier SizeMod,
588 const llvm::APInt *Size,
589 Expr *SizeExpr,
590 unsigned IndexTypeQuals,
591 SourceRange BracketsRange);
592
593 /// \brief Build a new constant array type given the element type, size
594 /// modifier, (known) size of the array, and index type qualifiers.
595 ///
596 /// By default, performs semantic analysis when building the array type.
597 /// Subclasses may override this routine to provide different behavior.
598 QualType RebuildConstantArrayType(QualType ElementType,
599 ArrayType::ArraySizeModifier SizeMod,
600 const llvm::APInt &Size,
601 unsigned IndexTypeQuals,
602 SourceRange BracketsRange);
603
604 /// \brief Build a new incomplete array type given the element type, size
605 /// modifier, and index type qualifiers.
606 ///
607 /// By default, performs semantic analysis when building the array type.
608 /// Subclasses may override this routine to provide different behavior.
609 QualType RebuildIncompleteArrayType(QualType ElementType,
610 ArrayType::ArraySizeModifier SizeMod,
611 unsigned IndexTypeQuals,
612 SourceRange BracketsRange);
613
614 /// \brief Build a new variable-length array type given the element type,
615 /// size modifier, size expression, and index type qualifiers.
616 ///
617 /// By default, performs semantic analysis when building the array type.
618 /// Subclasses may override this routine to provide different behavior.
619 QualType RebuildVariableArrayType(QualType ElementType,
620 ArrayType::ArraySizeModifier SizeMod,
621 Expr *SizeExpr,
622 unsigned IndexTypeQuals,
623 SourceRange BracketsRange);
624
625 /// \brief Build a new dependent-sized array type given the element type,
626 /// size modifier, size expression, and index type qualifiers.
627 ///
628 /// By default, performs semantic analysis when building the array type.
629 /// Subclasses may override this routine to provide different behavior.
630 QualType RebuildDependentSizedArrayType(QualType ElementType,
631 ArrayType::ArraySizeModifier SizeMod,
632 Expr *SizeExpr,
633 unsigned IndexTypeQuals,
634 SourceRange BracketsRange);
635
636 /// \brief Build a new vector type given the element type and
637 /// number of elements.
638 ///
639 /// By default, performs semantic analysis when building the vector type.
640 /// Subclasses may override this routine to provide different behavior.
641 QualType RebuildVectorType(QualType ElementType, unsigned NumElements,
642 VectorType::VectorKind VecKind);
643
644 /// \brief Build a new extended vector type given the element type and
645 /// number of elements.
646 ///
647 /// By default, performs semantic analysis when building the vector type.
648 /// Subclasses may override this routine to provide different behavior.
649 QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements,
650 SourceLocation AttributeLoc);
651
652 /// \brief Build a new potentially dependently-sized extended vector type
653 /// given the element type and number of elements.
654 ///
655 /// By default, performs semantic analysis when building the vector type.
656 /// Subclasses may override this routine to provide different behavior.
657 QualType RebuildDependentSizedExtVectorType(QualType ElementType,
658 Expr *SizeExpr,
659 SourceLocation AttributeLoc);
660
661 /// \brief Build a new function type.
662 ///
663 /// By default, performs semantic analysis when building the function type.
664 /// Subclasses may override this routine to provide different behavior.
665 QualType RebuildFunctionProtoType(QualType T,
666 QualType *ParamTypes,
667 unsigned NumParamTypes,
668 bool Variadic, unsigned Quals,
669 RefQualifierKind RefQualifier,
670 const FunctionType::ExtInfo &Info);
671
672 /// \brief Build a new unprototyped function type.
673 QualType RebuildFunctionNoProtoType(QualType ResultType);
674
675 /// \brief Rebuild an unresolved typename type, given the decl that
676 /// the UnresolvedUsingTypenameDecl was transformed to.
677 QualType RebuildUnresolvedUsingType(Decl *D);
678
679 /// \brief Build a new typedef type.
RebuildTypedefType(TypedefNameDecl * Typedef)680 QualType RebuildTypedefType(TypedefNameDecl *Typedef) {
681 return SemaRef.Context.getTypeDeclType(Typedef);
682 }
683
684 /// \brief Build a new class/struct/union type.
RebuildRecordType(RecordDecl * Record)685 QualType RebuildRecordType(RecordDecl *Record) {
686 return SemaRef.Context.getTypeDeclType(Record);
687 }
688
689 /// \brief Build a new Enum type.
RebuildEnumType(EnumDecl * Enum)690 QualType RebuildEnumType(EnumDecl *Enum) {
691 return SemaRef.Context.getTypeDeclType(Enum);
692 }
693
694 /// \brief Build a new typeof(expr) type.
695 ///
696 /// By default, performs semantic analysis when building the typeof type.
697 /// Subclasses may override this routine to provide different behavior.
698 QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc);
699
700 /// \brief Build a new typeof(type) type.
701 ///
702 /// By default, builds a new TypeOfType with the given underlying type.
703 QualType RebuildTypeOfType(QualType Underlying);
704
705 /// \brief Build a new unary transform type.
706 QualType RebuildUnaryTransformType(QualType BaseType,
707 UnaryTransformType::UTTKind UKind,
708 SourceLocation Loc);
709
710 /// \brief Build a new C++0x decltype type.
711 ///
712 /// By default, performs semantic analysis when building the decltype type.
713 /// Subclasses may override this routine to provide different behavior.
714 QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc);
715
716 /// \brief Build a new C++0x auto type.
717 ///
718 /// By default, builds a new AutoType with the given deduced type.
RebuildAutoType(QualType Deduced)719 QualType RebuildAutoType(QualType Deduced) {
720 return SemaRef.Context.getAutoType(Deduced);
721 }
722
723 /// \brief Build a new template specialization type.
724 ///
725 /// By default, performs semantic analysis when building the template
726 /// specialization type. Subclasses may override this routine to provide
727 /// different behavior.
728 QualType RebuildTemplateSpecializationType(TemplateName Template,
729 SourceLocation TemplateLoc,
730 TemplateArgumentListInfo &Args);
731
732 /// \brief Build a new parenthesized type.
733 ///
734 /// By default, builds a new ParenType type from the inner type.
735 /// Subclasses may override this routine to provide different behavior.
RebuildParenType(QualType InnerType)736 QualType RebuildParenType(QualType InnerType) {
737 return SemaRef.Context.getParenType(InnerType);
738 }
739
740 /// \brief Build a new qualified name type.
741 ///
742 /// By default, builds a new ElaboratedType type from the keyword,
743 /// the nested-name-specifier and the named type.
744 /// Subclasses may override this routine to provide different behavior.
RebuildElaboratedType(SourceLocation KeywordLoc,ElaboratedTypeKeyword Keyword,NestedNameSpecifierLoc QualifierLoc,QualType Named)745 QualType RebuildElaboratedType(SourceLocation KeywordLoc,
746 ElaboratedTypeKeyword Keyword,
747 NestedNameSpecifierLoc QualifierLoc,
748 QualType Named) {
749 return SemaRef.Context.getElaboratedType(Keyword,
750 QualifierLoc.getNestedNameSpecifier(),
751 Named);
752 }
753
754 /// \brief Build a new typename type that refers to a template-id.
755 ///
756 /// By default, builds a new DependentNameType type from the
757 /// nested-name-specifier and the given type. Subclasses may override
758 /// this routine to provide different behavior.
RebuildDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo * Name,SourceLocation NameLoc,TemplateArgumentListInfo & Args)759 QualType RebuildDependentTemplateSpecializationType(
760 ElaboratedTypeKeyword Keyword,
761 NestedNameSpecifierLoc QualifierLoc,
762 const IdentifierInfo *Name,
763 SourceLocation NameLoc,
764 TemplateArgumentListInfo &Args) {
765 // Rebuild the template name.
766 // TODO: avoid TemplateName abstraction
767 CXXScopeSpec SS;
768 SS.Adopt(QualifierLoc);
769 TemplateName InstName
770 = getDerived().RebuildTemplateName(SS, *Name, NameLoc, QualType(), 0);
771
772 if (InstName.isNull())
773 return QualType();
774
775 // If it's still dependent, make a dependent specialization.
776 if (InstName.getAsDependentTemplateName())
777 return SemaRef.Context.getDependentTemplateSpecializationType(Keyword,
778 QualifierLoc.getNestedNameSpecifier(),
779 Name,
780 Args);
781
782 // Otherwise, make an elaborated type wrapping a non-dependent
783 // specialization.
784 QualType T =
785 getDerived().RebuildTemplateSpecializationType(InstName, NameLoc, Args);
786 if (T.isNull()) return QualType();
787
788 if (Keyword == ETK_None && QualifierLoc.getNestedNameSpecifier() == 0)
789 return T;
790
791 return SemaRef.Context.getElaboratedType(Keyword,
792 QualifierLoc.getNestedNameSpecifier(),
793 T);
794 }
795
796 /// \brief Build a new typename type that refers to an identifier.
797 ///
798 /// By default, performs semantic analysis when building the typename type
799 /// (or elaborated type). Subclasses may override this routine to provide
800 /// different behavior.
RebuildDependentNameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo * Id,SourceLocation IdLoc)801 QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword,
802 SourceLocation KeywordLoc,
803 NestedNameSpecifierLoc QualifierLoc,
804 const IdentifierInfo *Id,
805 SourceLocation IdLoc) {
806 CXXScopeSpec SS;
807 SS.Adopt(QualifierLoc);
808
809 if (QualifierLoc.getNestedNameSpecifier()->isDependent()) {
810 // If the name is still dependent, just build a new dependent name type.
811 if (!SemaRef.computeDeclContext(SS))
812 return SemaRef.Context.getDependentNameType(Keyword,
813 QualifierLoc.getNestedNameSpecifier(),
814 Id);
815 }
816
817 if (Keyword == ETK_None || Keyword == ETK_Typename)
818 return SemaRef.CheckTypenameType(Keyword, KeywordLoc, QualifierLoc,
819 *Id, IdLoc);
820
821 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword);
822
823 // We had a dependent elaborated-type-specifier that has been transformed
824 // into a non-dependent elaborated-type-specifier. Find the tag we're
825 // referring to.
826 LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
827 DeclContext *DC = SemaRef.computeDeclContext(SS, false);
828 if (!DC)
829 return QualType();
830
831 if (SemaRef.RequireCompleteDeclContext(SS, DC))
832 return QualType();
833
834 TagDecl *Tag = 0;
835 SemaRef.LookupQualifiedName(Result, DC);
836 switch (Result.getResultKind()) {
837 case LookupResult::NotFound:
838 case LookupResult::NotFoundInCurrentInstantiation:
839 break;
840
841 case LookupResult::Found:
842 Tag = Result.getAsSingle<TagDecl>();
843 break;
844
845 case LookupResult::FoundOverloaded:
846 case LookupResult::FoundUnresolvedValue:
847 llvm_unreachable("Tag lookup cannot find non-tags");
848 return QualType();
849
850 case LookupResult::Ambiguous:
851 // Let the LookupResult structure handle ambiguities.
852 return QualType();
853 }
854
855 if (!Tag) {
856 // Check where the name exists but isn't a tag type and use that to emit
857 // better diagnostics.
858 LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
859 SemaRef.LookupQualifiedName(Result, DC);
860 switch (Result.getResultKind()) {
861 case LookupResult::Found:
862 case LookupResult::FoundOverloaded:
863 case LookupResult::FoundUnresolvedValue: {
864 NamedDecl *SomeDecl = Result.getRepresentativeDecl();
865 unsigned Kind = 0;
866 if (isa<TypedefDecl>(SomeDecl)) Kind = 1;
867 else if (isa<TypeAliasDecl>(SomeDecl)) Kind = 2;
868 else if (isa<ClassTemplateDecl>(SomeDecl)) Kind = 3;
869 SemaRef.Diag(IdLoc, diag::err_tag_reference_non_tag) << Kind;
870 SemaRef.Diag(SomeDecl->getLocation(), diag::note_declared_at);
871 break;
872 }
873 default:
874 // FIXME: Would be nice to highlight just the source range.
875 SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope)
876 << Kind << Id << DC;
877 break;
878 }
879 return QualType();
880 }
881
882 if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, /*isDefinition*/false,
883 IdLoc, *Id)) {
884 SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id;
885 SemaRef.Diag(Tag->getLocation(), diag::note_previous_use);
886 return QualType();
887 }
888
889 // Build the elaborated-type-specifier type.
890 QualType T = SemaRef.Context.getTypeDeclType(Tag);
891 return SemaRef.Context.getElaboratedType(Keyword,
892 QualifierLoc.getNestedNameSpecifier(),
893 T);
894 }
895
896 /// \brief Build a new pack expansion type.
897 ///
898 /// By default, builds a new PackExpansionType type from the given pattern.
899 /// Subclasses may override this routine to provide different behavior.
RebuildPackExpansionType(QualType Pattern,SourceRange PatternRange,SourceLocation EllipsisLoc,llvm::Optional<unsigned> NumExpansions)900 QualType RebuildPackExpansionType(QualType Pattern,
901 SourceRange PatternRange,
902 SourceLocation EllipsisLoc,
903 llvm::Optional<unsigned> NumExpansions) {
904 return getSema().CheckPackExpansion(Pattern, PatternRange, EllipsisLoc,
905 NumExpansions);
906 }
907
908 /// \brief Build a new template name given a nested name specifier, a flag
909 /// indicating whether the "template" keyword was provided, and the template
910 /// that the template name refers to.
911 ///
912 /// By default, builds the new template name directly. Subclasses may override
913 /// this routine to provide different behavior.
914 TemplateName RebuildTemplateName(CXXScopeSpec &SS,
915 bool TemplateKW,
916 TemplateDecl *Template);
917
918 /// \brief Build a new template name given a nested name specifier and the
919 /// name that is referred to as a template.
920 ///
921 /// By default, performs semantic analysis to determine whether the name can
922 /// be resolved to a specific template, then builds the appropriate kind of
923 /// template name. Subclasses may override this routine to provide different
924 /// behavior.
925 TemplateName RebuildTemplateName(CXXScopeSpec &SS,
926 const IdentifierInfo &Name,
927 SourceLocation NameLoc,
928 QualType ObjectType,
929 NamedDecl *FirstQualifierInScope);
930
931 /// \brief Build a new template name given a nested name specifier and the
932 /// overloaded operator name that is referred to as a template.
933 ///
934 /// By default, performs semantic analysis to determine whether the name can
935 /// be resolved to a specific template, then builds the appropriate kind of
936 /// template name. Subclasses may override this routine to provide different
937 /// behavior.
938 TemplateName RebuildTemplateName(CXXScopeSpec &SS,
939 OverloadedOperatorKind Operator,
940 SourceLocation NameLoc,
941 QualType ObjectType);
942
943 /// \brief Build a new template name given a template template parameter pack
944 /// and the
945 ///
946 /// By default, performs semantic analysis to determine whether the name can
947 /// be resolved to a specific template, then builds the appropriate kind of
948 /// template name. Subclasses may override this routine to provide different
949 /// behavior.
RebuildTemplateName(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack)950 TemplateName RebuildTemplateName(TemplateTemplateParmDecl *Param,
951 const TemplateArgument &ArgPack) {
952 return getSema().Context.getSubstTemplateTemplateParmPack(Param, ArgPack);
953 }
954
955 /// \brief Build a new compound statement.
956 ///
957 /// By default, performs semantic analysis to build the new statement.
958 /// Subclasses may override this routine to provide different behavior.
RebuildCompoundStmt(SourceLocation LBraceLoc,MultiStmtArg Statements,SourceLocation RBraceLoc,bool IsStmtExpr)959 StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc,
960 MultiStmtArg Statements,
961 SourceLocation RBraceLoc,
962 bool IsStmtExpr) {
963 return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements,
964 IsStmtExpr);
965 }
966
967 /// \brief Build a new case statement.
968 ///
969 /// By default, performs semantic analysis to build the new statement.
970 /// Subclasses may override this routine to provide different behavior.
RebuildCaseStmt(SourceLocation CaseLoc,Expr * LHS,SourceLocation EllipsisLoc,Expr * RHS,SourceLocation ColonLoc)971 StmtResult RebuildCaseStmt(SourceLocation CaseLoc,
972 Expr *LHS,
973 SourceLocation EllipsisLoc,
974 Expr *RHS,
975 SourceLocation ColonLoc) {
976 return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS,
977 ColonLoc);
978 }
979
980 /// \brief Attach the body to a new case statement.
981 ///
982 /// By default, performs semantic analysis to build the new statement.
983 /// Subclasses may override this routine to provide different behavior.
RebuildCaseStmtBody(Stmt * S,Stmt * Body)984 StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) {
985 getSema().ActOnCaseStmtBody(S, Body);
986 return S;
987 }
988
989 /// \brief Build a new default statement.
990 ///
991 /// By default, performs semantic analysis to build the new statement.
992 /// Subclasses may override this routine to provide different behavior.
RebuildDefaultStmt(SourceLocation DefaultLoc,SourceLocation ColonLoc,Stmt * SubStmt)993 StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc,
994 SourceLocation ColonLoc,
995 Stmt *SubStmt) {
996 return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt,
997 /*CurScope=*/0);
998 }
999
1000 /// \brief Build a new label statement.
1001 ///
1002 /// By default, performs semantic analysis to build the new statement.
1003 /// Subclasses may override this routine to provide different behavior.
RebuildLabelStmt(SourceLocation IdentLoc,LabelDecl * L,SourceLocation ColonLoc,Stmt * SubStmt)1004 StmtResult RebuildLabelStmt(SourceLocation IdentLoc, LabelDecl *L,
1005 SourceLocation ColonLoc, Stmt *SubStmt) {
1006 return SemaRef.ActOnLabelStmt(IdentLoc, L, ColonLoc, SubStmt);
1007 }
1008
1009 /// \brief Build a new "if" statement.
1010 ///
1011 /// By default, performs semantic analysis to build the new statement.
1012 /// Subclasses may override this routine to provide different behavior.
RebuildIfStmt(SourceLocation IfLoc,Sema::FullExprArg Cond,VarDecl * CondVar,Stmt * Then,SourceLocation ElseLoc,Stmt * Else)1013 StmtResult RebuildIfStmt(SourceLocation IfLoc, Sema::FullExprArg Cond,
1014 VarDecl *CondVar, Stmt *Then,
1015 SourceLocation ElseLoc, Stmt *Else) {
1016 return getSema().ActOnIfStmt(IfLoc, Cond, CondVar, Then, ElseLoc, Else);
1017 }
1018
1019 /// \brief Start building a new switch statement.
1020 ///
1021 /// By default, performs semantic analysis to build the new statement.
1022 /// Subclasses may override this routine to provide different behavior.
RebuildSwitchStmtStart(SourceLocation SwitchLoc,Expr * Cond,VarDecl * CondVar)1023 StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc,
1024 Expr *Cond, VarDecl *CondVar) {
1025 return getSema().ActOnStartOfSwitchStmt(SwitchLoc, Cond,
1026 CondVar);
1027 }
1028
1029 /// \brief Attach the body to the switch statement.
1030 ///
1031 /// By default, performs semantic analysis to build the new statement.
1032 /// Subclasses may override this routine to provide different behavior.
RebuildSwitchStmtBody(SourceLocation SwitchLoc,Stmt * Switch,Stmt * Body)1033 StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc,
1034 Stmt *Switch, Stmt *Body) {
1035 return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body);
1036 }
1037
1038 /// \brief Build a new while statement.
1039 ///
1040 /// By default, performs semantic analysis to build the new statement.
1041 /// Subclasses may override this routine to provide different behavior.
RebuildWhileStmt(SourceLocation WhileLoc,Sema::FullExprArg Cond,VarDecl * CondVar,Stmt * Body)1042 StmtResult RebuildWhileStmt(SourceLocation WhileLoc, Sema::FullExprArg Cond,
1043 VarDecl *CondVar, Stmt *Body) {
1044 return getSema().ActOnWhileStmt(WhileLoc, Cond, CondVar, Body);
1045 }
1046
1047 /// \brief Build a new do-while statement.
1048 ///
1049 /// By default, performs semantic analysis to build the new statement.
1050 /// Subclasses may override this routine to provide different behavior.
RebuildDoStmt(SourceLocation DoLoc,Stmt * Body,SourceLocation WhileLoc,SourceLocation LParenLoc,Expr * Cond,SourceLocation RParenLoc)1051 StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body,
1052 SourceLocation WhileLoc, SourceLocation LParenLoc,
1053 Expr *Cond, SourceLocation RParenLoc) {
1054 return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc,
1055 Cond, RParenLoc);
1056 }
1057
1058 /// \brief Build a new for statement.
1059 ///
1060 /// By default, performs semantic analysis to build the new statement.
1061 /// Subclasses may override this routine to provide different behavior.
RebuildForStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * Init,Sema::FullExprArg Cond,VarDecl * CondVar,Sema::FullExprArg Inc,SourceLocation RParenLoc,Stmt * Body)1062 StmtResult RebuildForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1063 Stmt *Init, Sema::FullExprArg Cond,
1064 VarDecl *CondVar, Sema::FullExprArg Inc,
1065 SourceLocation RParenLoc, Stmt *Body) {
1066 return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond,
1067 CondVar, Inc, RParenLoc, Body);
1068 }
1069
1070 /// \brief Build a new goto statement.
1071 ///
1072 /// By default, performs semantic analysis to build the new statement.
1073 /// Subclasses may override this routine to provide different behavior.
RebuildGotoStmt(SourceLocation GotoLoc,SourceLocation LabelLoc,LabelDecl * Label)1074 StmtResult RebuildGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
1075 LabelDecl *Label) {
1076 return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label);
1077 }
1078
1079 /// \brief Build a new indirect goto statement.
1080 ///
1081 /// By default, performs semantic analysis to build the new statement.
1082 /// Subclasses may override this routine to provide different behavior.
RebuildIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,Expr * Target)1083 StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc,
1084 SourceLocation StarLoc,
1085 Expr *Target) {
1086 return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target);
1087 }
1088
1089 /// \brief Build a new return statement.
1090 ///
1091 /// By default, performs semantic analysis to build the new statement.
1092 /// Subclasses may override this routine to provide different behavior.
RebuildReturnStmt(SourceLocation ReturnLoc,Expr * Result)1093 StmtResult RebuildReturnStmt(SourceLocation ReturnLoc, Expr *Result) {
1094 return getSema().ActOnReturnStmt(ReturnLoc, Result);
1095 }
1096
1097 /// \brief Build a new declaration statement.
1098 ///
1099 /// By default, performs semantic analysis to build the new statement.
1100 /// Subclasses may override this routine to provide different behavior.
RebuildDeclStmt(Decl ** Decls,unsigned NumDecls,SourceLocation StartLoc,SourceLocation EndLoc)1101 StmtResult RebuildDeclStmt(Decl **Decls, unsigned NumDecls,
1102 SourceLocation StartLoc,
1103 SourceLocation EndLoc) {
1104 Sema::DeclGroupPtrTy DG = getSema().BuildDeclaratorGroup(Decls, NumDecls);
1105 return getSema().ActOnDeclStmt(DG, StartLoc, EndLoc);
1106 }
1107
1108 /// \brief Build a new inline asm statement.
1109 ///
1110 /// By default, performs semantic analysis to build the new statement.
1111 /// Subclasses may override this routine to provide different behavior.
RebuildAsmStmt(SourceLocation AsmLoc,bool IsSimple,bool IsVolatile,unsigned NumOutputs,unsigned NumInputs,IdentifierInfo ** Names,MultiExprArg Constraints,MultiExprArg Exprs,Expr * AsmString,MultiExprArg Clobbers,SourceLocation RParenLoc,bool MSAsm)1112 StmtResult RebuildAsmStmt(SourceLocation AsmLoc,
1113 bool IsSimple,
1114 bool IsVolatile,
1115 unsigned NumOutputs,
1116 unsigned NumInputs,
1117 IdentifierInfo **Names,
1118 MultiExprArg Constraints,
1119 MultiExprArg Exprs,
1120 Expr *AsmString,
1121 MultiExprArg Clobbers,
1122 SourceLocation RParenLoc,
1123 bool MSAsm) {
1124 return getSema().ActOnAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs,
1125 NumInputs, Names, move(Constraints),
1126 Exprs, AsmString, Clobbers,
1127 RParenLoc, MSAsm);
1128 }
1129
1130 /// \brief Build a new Objective-C @try statement.
1131 ///
1132 /// By default, performs semantic analysis to build the new statement.
1133 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtTryStmt(SourceLocation AtLoc,Stmt * TryBody,MultiStmtArg CatchStmts,Stmt * Finally)1134 StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc,
1135 Stmt *TryBody,
1136 MultiStmtArg CatchStmts,
1137 Stmt *Finally) {
1138 return getSema().ActOnObjCAtTryStmt(AtLoc, TryBody, move(CatchStmts),
1139 Finally);
1140 }
1141
1142 /// \brief Rebuild an Objective-C exception declaration.
1143 ///
1144 /// By default, performs semantic analysis to build the new declaration.
1145 /// Subclasses may override this routine to provide different behavior.
RebuildObjCExceptionDecl(VarDecl * ExceptionDecl,TypeSourceInfo * TInfo,QualType T)1146 VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
1147 TypeSourceInfo *TInfo, QualType T) {
1148 return getSema().BuildObjCExceptionDecl(TInfo, T,
1149 ExceptionDecl->getInnerLocStart(),
1150 ExceptionDecl->getLocation(),
1151 ExceptionDecl->getIdentifier());
1152 }
1153
1154 /// \brief Build a new Objective-C @catch statement.
1155 ///
1156 /// By default, performs semantic analysis to build the new statement.
1157 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtCatchStmt(SourceLocation AtLoc,SourceLocation RParenLoc,VarDecl * Var,Stmt * Body)1158 StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc,
1159 SourceLocation RParenLoc,
1160 VarDecl *Var,
1161 Stmt *Body) {
1162 return getSema().ActOnObjCAtCatchStmt(AtLoc, RParenLoc,
1163 Var, Body);
1164 }
1165
1166 /// \brief Build a new Objective-C @finally statement.
1167 ///
1168 /// By default, performs semantic analysis to build the new statement.
1169 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtFinallyStmt(SourceLocation AtLoc,Stmt * Body)1170 StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc,
1171 Stmt *Body) {
1172 return getSema().ActOnObjCAtFinallyStmt(AtLoc, Body);
1173 }
1174
1175 /// \brief Build a new Objective-C @throw statement.
1176 ///
1177 /// By default, performs semantic analysis to build the new statement.
1178 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtThrowStmt(SourceLocation AtLoc,Expr * Operand)1179 StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc,
1180 Expr *Operand) {
1181 return getSema().BuildObjCAtThrowStmt(AtLoc, Operand);
1182 }
1183
1184 /// \brief Build a new Objective-C @synchronized statement.
1185 ///
1186 /// By default, performs semantic analysis to build the new statement.
1187 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,Expr * Object,Stmt * Body)1188 StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,
1189 Expr *Object,
1190 Stmt *Body) {
1191 return getSema().ActOnObjCAtSynchronizedStmt(AtLoc, Object,
1192 Body);
1193 }
1194
1195 /// \brief Build a new Objective-C @autoreleasepool statement.
1196 ///
1197 /// By default, performs semantic analysis to build the new statement.
1198 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc,Stmt * Body)1199 StmtResult RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc,
1200 Stmt *Body) {
1201 return getSema().ActOnObjCAutoreleasePoolStmt(AtLoc, Body);
1202 }
1203
1204
1205 /// \brief Build a new Objective-C fast enumeration statement.
1206 ///
1207 /// By default, performs semantic analysis to build the new statement.
1208 /// Subclasses may override this routine to provide different behavior.
RebuildObjCForCollectionStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * Element,Expr * Collection,SourceLocation RParenLoc,Stmt * Body)1209 StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc,
1210 SourceLocation LParenLoc,
1211 Stmt *Element,
1212 Expr *Collection,
1213 SourceLocation RParenLoc,
1214 Stmt *Body) {
1215 return getSema().ActOnObjCForCollectionStmt(ForLoc, LParenLoc,
1216 Element,
1217 Collection,
1218 RParenLoc,
1219 Body);
1220 }
1221
1222 /// \brief Build a new C++ exception declaration.
1223 ///
1224 /// By default, performs semantic analysis to build the new decaration.
1225 /// Subclasses may override this routine to provide different behavior.
RebuildExceptionDecl(VarDecl * ExceptionDecl,TypeSourceInfo * Declarator,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id)1226 VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl,
1227 TypeSourceInfo *Declarator,
1228 SourceLocation StartLoc,
1229 SourceLocation IdLoc,
1230 IdentifierInfo *Id) {
1231 VarDecl *Var = getSema().BuildExceptionDeclaration(0, Declarator,
1232 StartLoc, IdLoc, Id);
1233 if (Var)
1234 getSema().CurContext->addDecl(Var);
1235 return Var;
1236 }
1237
1238 /// \brief Build a new C++ catch statement.
1239 ///
1240 /// By default, performs semantic analysis to build the new statement.
1241 /// Subclasses may override this routine to provide different behavior.
RebuildCXXCatchStmt(SourceLocation CatchLoc,VarDecl * ExceptionDecl,Stmt * Handler)1242 StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc,
1243 VarDecl *ExceptionDecl,
1244 Stmt *Handler) {
1245 return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl,
1246 Handler));
1247 }
1248
1249 /// \brief Build a new C++ try statement.
1250 ///
1251 /// By default, performs semantic analysis to build the new statement.
1252 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTryStmt(SourceLocation TryLoc,Stmt * TryBlock,MultiStmtArg Handlers)1253 StmtResult RebuildCXXTryStmt(SourceLocation TryLoc,
1254 Stmt *TryBlock,
1255 MultiStmtArg Handlers) {
1256 return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, move(Handlers));
1257 }
1258
1259 /// \brief Build a new C++0x range-based for statement.
1260 ///
1261 /// By default, performs semantic analysis to build the new statement.
1262 /// Subclasses may override this routine to provide different behavior.
RebuildCXXForRangeStmt(SourceLocation ForLoc,SourceLocation ColonLoc,Stmt * Range,Stmt * BeginEnd,Expr * Cond,Expr * Inc,Stmt * LoopVar,SourceLocation RParenLoc)1263 StmtResult RebuildCXXForRangeStmt(SourceLocation ForLoc,
1264 SourceLocation ColonLoc,
1265 Stmt *Range, Stmt *BeginEnd,
1266 Expr *Cond, Expr *Inc,
1267 Stmt *LoopVar,
1268 SourceLocation RParenLoc) {
1269 return getSema().BuildCXXForRangeStmt(ForLoc, ColonLoc, Range, BeginEnd,
1270 Cond, Inc, LoopVar, RParenLoc);
1271 }
1272
1273 /// \brief Attach body to a C++0x range-based for statement.
1274 ///
1275 /// By default, performs semantic analysis to finish the new statement.
1276 /// Subclasses may override this routine to provide different behavior.
FinishCXXForRangeStmt(Stmt * ForRange,Stmt * Body)1277 StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body) {
1278 return getSema().FinishCXXForRangeStmt(ForRange, Body);
1279 }
1280
RebuildSEHTryStmt(bool IsCXXTry,SourceLocation TryLoc,Stmt * TryBlock,Stmt * Handler)1281 StmtResult RebuildSEHTryStmt(bool IsCXXTry,
1282 SourceLocation TryLoc,
1283 Stmt *TryBlock,
1284 Stmt *Handler) {
1285 return getSema().ActOnSEHTryBlock(IsCXXTry,TryLoc,TryBlock,Handler);
1286 }
1287
RebuildSEHExceptStmt(SourceLocation Loc,Expr * FilterExpr,Stmt * Block)1288 StmtResult RebuildSEHExceptStmt(SourceLocation Loc,
1289 Expr *FilterExpr,
1290 Stmt *Block) {
1291 return getSema().ActOnSEHExceptBlock(Loc,FilterExpr,Block);
1292 }
1293
RebuildSEHFinallyStmt(SourceLocation Loc,Stmt * Block)1294 StmtResult RebuildSEHFinallyStmt(SourceLocation Loc,
1295 Stmt *Block) {
1296 return getSema().ActOnSEHFinallyBlock(Loc,Block);
1297 }
1298
1299 /// \brief Build a new expression that references a declaration.
1300 ///
1301 /// By default, performs semantic analysis to build the new expression.
1302 /// Subclasses may override this routine to provide different behavior.
RebuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool RequiresADL)1303 ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS,
1304 LookupResult &R,
1305 bool RequiresADL) {
1306 return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL);
1307 }
1308
1309
1310 /// \brief Build a new expression that references a declaration.
1311 ///
1312 /// By default, performs semantic analysis to build the new expression.
1313 /// Subclasses may override this routine to provide different behavior.
RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,ValueDecl * VD,const DeclarationNameInfo & NameInfo,TemplateArgumentListInfo * TemplateArgs)1314 ExprResult RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
1315 ValueDecl *VD,
1316 const DeclarationNameInfo &NameInfo,
1317 TemplateArgumentListInfo *TemplateArgs) {
1318 CXXScopeSpec SS;
1319 SS.Adopt(QualifierLoc);
1320
1321 // FIXME: loses template args.
1322
1323 return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD);
1324 }
1325
1326 /// \brief Build a new expression in parentheses.
1327 ///
1328 /// By default, performs semantic analysis to build the new expression.
1329 /// Subclasses may override this routine to provide different behavior.
RebuildParenExpr(Expr * SubExpr,SourceLocation LParen,SourceLocation RParen)1330 ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen,
1331 SourceLocation RParen) {
1332 return getSema().ActOnParenExpr(LParen, RParen, SubExpr);
1333 }
1334
1335 /// \brief Build a new pseudo-destructor expression.
1336 ///
1337 /// By default, performs semantic analysis to build the new expression.
1338 /// Subclasses may override this routine to provide different behavior.
1339 ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base,
1340 SourceLocation OperatorLoc,
1341 bool isArrow,
1342 CXXScopeSpec &SS,
1343 TypeSourceInfo *ScopeType,
1344 SourceLocation CCLoc,
1345 SourceLocation TildeLoc,
1346 PseudoDestructorTypeStorage Destroyed);
1347
1348 /// \brief Build a new unary operator expression.
1349 ///
1350 /// By default, performs semantic analysis to build the new expression.
1351 /// Subclasses may override this routine to provide different behavior.
RebuildUnaryOperator(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * SubExpr)1352 ExprResult RebuildUnaryOperator(SourceLocation OpLoc,
1353 UnaryOperatorKind Opc,
1354 Expr *SubExpr) {
1355 return getSema().BuildUnaryOp(/*Scope=*/0, OpLoc, Opc, SubExpr);
1356 }
1357
1358 /// \brief Build a new builtin offsetof expression.
1359 ///
1360 /// By default, performs semantic analysis to build the new expression.
1361 /// Subclasses may override this routine to provide different behavior.
RebuildOffsetOfExpr(SourceLocation OperatorLoc,TypeSourceInfo * Type,Sema::OffsetOfComponent * Components,unsigned NumComponents,SourceLocation RParenLoc)1362 ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc,
1363 TypeSourceInfo *Type,
1364 Sema::OffsetOfComponent *Components,
1365 unsigned NumComponents,
1366 SourceLocation RParenLoc) {
1367 return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components,
1368 NumComponents, RParenLoc);
1369 }
1370
1371 /// \brief Build a new sizeof, alignof or vec_step expression with a
1372 /// type argument.
1373 ///
1374 /// By default, performs semantic analysis to build the new expression.
1375 /// Subclasses may override this routine to provide different behavior.
RebuildUnaryExprOrTypeTrait(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)1376 ExprResult RebuildUnaryExprOrTypeTrait(TypeSourceInfo *TInfo,
1377 SourceLocation OpLoc,
1378 UnaryExprOrTypeTrait ExprKind,
1379 SourceRange R) {
1380 return getSema().CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R);
1381 }
1382
1383 /// \brief Build a new sizeof, alignof or vec step expression with an
1384 /// expression argument.
1385 ///
1386 /// By default, performs semantic analysis to build the new expression.
1387 /// Subclasses may override this routine to provide different behavior.
RebuildUnaryExprOrTypeTrait(Expr * SubExpr,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)1388 ExprResult RebuildUnaryExprOrTypeTrait(Expr *SubExpr, SourceLocation OpLoc,
1389 UnaryExprOrTypeTrait ExprKind,
1390 SourceRange R) {
1391 ExprResult Result
1392 = getSema().CreateUnaryExprOrTypeTraitExpr(SubExpr, OpLoc, ExprKind);
1393 if (Result.isInvalid())
1394 return ExprError();
1395
1396 return move(Result);
1397 }
1398
1399 /// \brief Build a new array subscript expression.
1400 ///
1401 /// By default, performs semantic analysis to build the new expression.
1402 /// Subclasses may override this routine to provide different behavior.
RebuildArraySubscriptExpr(Expr * LHS,SourceLocation LBracketLoc,Expr * RHS,SourceLocation RBracketLoc)1403 ExprResult RebuildArraySubscriptExpr(Expr *LHS,
1404 SourceLocation LBracketLoc,
1405 Expr *RHS,
1406 SourceLocation RBracketLoc) {
1407 return getSema().ActOnArraySubscriptExpr(/*Scope=*/0, LHS,
1408 LBracketLoc, RHS,
1409 RBracketLoc);
1410 }
1411
1412 /// \brief Build a new call expression.
1413 ///
1414 /// By default, performs semantic analysis to build the new expression.
1415 /// Subclasses may override this routine to provide different behavior.
1416 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
1417 MultiExprArg Args,
1418 SourceLocation RParenLoc,
1419 Expr *ExecConfig = 0) {
1420 return getSema().ActOnCallExpr(/*Scope=*/0, Callee, LParenLoc,
1421 move(Args), RParenLoc, ExecConfig);
1422 }
1423
1424 /// \brief Build a new member access expression.
1425 ///
1426 /// By default, performs semantic analysis to build the new expression.
1427 /// Subclasses may override this routine to provide different behavior.
RebuildMemberExpr(Expr * Base,SourceLocation OpLoc,bool isArrow,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & MemberNameInfo,ValueDecl * Member,NamedDecl * FoundDecl,const TemplateArgumentListInfo * ExplicitTemplateArgs,NamedDecl * FirstQualifierInScope)1428 ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc,
1429 bool isArrow,
1430 NestedNameSpecifierLoc QualifierLoc,
1431 const DeclarationNameInfo &MemberNameInfo,
1432 ValueDecl *Member,
1433 NamedDecl *FoundDecl,
1434 const TemplateArgumentListInfo *ExplicitTemplateArgs,
1435 NamedDecl *FirstQualifierInScope) {
1436 if (!Member->getDeclName()) {
1437 // We have a reference to an unnamed field. This is always the
1438 // base of an anonymous struct/union member access, i.e. the
1439 // field is always of record type.
1440 assert(!QualifierLoc && "Can't have an unnamed field with a qualifier!");
1441 assert(Member->getType()->isRecordType() &&
1442 "unnamed member not of record type?");
1443
1444 ExprResult BaseResult =
1445 getSema().PerformObjectMemberConversion(Base,
1446 QualifierLoc.getNestedNameSpecifier(),
1447 FoundDecl, Member);
1448 if (BaseResult.isInvalid())
1449 return ExprError();
1450 Base = BaseResult.take();
1451 ExprValueKind VK = isArrow ? VK_LValue : Base->getValueKind();
1452 MemberExpr *ME =
1453 new (getSema().Context) MemberExpr(Base, isArrow,
1454 Member, MemberNameInfo,
1455 cast<FieldDecl>(Member)->getType(),
1456 VK, OK_Ordinary);
1457 return getSema().Owned(ME);
1458 }
1459
1460 CXXScopeSpec SS;
1461 SS.Adopt(QualifierLoc);
1462
1463 ExprResult BaseResult = getSema().DefaultFunctionArrayConversion(Base);
1464 if (BaseResult.isInvalid())
1465 return ExprError();
1466 Base = BaseResult.take();
1467 QualType BaseType = Base->getType();
1468
1469 // FIXME: this involves duplicating earlier analysis in a lot of
1470 // cases; we should avoid this when possible.
1471 LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName);
1472 R.addDecl(FoundDecl);
1473 R.resolveKind();
1474
1475 return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow,
1476 SS, FirstQualifierInScope,
1477 R, ExplicitTemplateArgs);
1478 }
1479
1480 /// \brief Build a new binary operator expression.
1481 ///
1482 /// By default, performs semantic analysis to build the new expression.
1483 /// Subclasses may override this routine to provide different behavior.
RebuildBinaryOperator(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)1484 ExprResult RebuildBinaryOperator(SourceLocation OpLoc,
1485 BinaryOperatorKind Opc,
1486 Expr *LHS, Expr *RHS) {
1487 return getSema().BuildBinOp(/*Scope=*/0, OpLoc, Opc, LHS, RHS);
1488 }
1489
1490 /// \brief Build a new conditional operator expression.
1491 ///
1492 /// By default, performs semantic analysis to build the new expression.
1493 /// Subclasses may override this routine to provide different behavior.
RebuildConditionalOperator(Expr * Cond,SourceLocation QuestionLoc,Expr * LHS,SourceLocation ColonLoc,Expr * RHS)1494 ExprResult RebuildConditionalOperator(Expr *Cond,
1495 SourceLocation QuestionLoc,
1496 Expr *LHS,
1497 SourceLocation ColonLoc,
1498 Expr *RHS) {
1499 return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond,
1500 LHS, RHS);
1501 }
1502
1503 /// \brief Build a new C-style cast expression.
1504 ///
1505 /// By default, performs semantic analysis to build the new expression.
1506 /// Subclasses may override this routine to provide different behavior.
RebuildCStyleCastExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * SubExpr)1507 ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc,
1508 TypeSourceInfo *TInfo,
1509 SourceLocation RParenLoc,
1510 Expr *SubExpr) {
1511 return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc,
1512 SubExpr);
1513 }
1514
1515 /// \brief Build a new compound literal expression.
1516 ///
1517 /// By default, performs semantic analysis to build the new expression.
1518 /// Subclasses may override this routine to provide different behavior.
RebuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * Init)1519 ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc,
1520 TypeSourceInfo *TInfo,
1521 SourceLocation RParenLoc,
1522 Expr *Init) {
1523 return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc,
1524 Init);
1525 }
1526
1527 /// \brief Build a new extended vector element access expression.
1528 ///
1529 /// By default, performs semantic analysis to build the new expression.
1530 /// Subclasses may override this routine to provide different behavior.
RebuildExtVectorElementExpr(Expr * Base,SourceLocation OpLoc,SourceLocation AccessorLoc,IdentifierInfo & Accessor)1531 ExprResult RebuildExtVectorElementExpr(Expr *Base,
1532 SourceLocation OpLoc,
1533 SourceLocation AccessorLoc,
1534 IdentifierInfo &Accessor) {
1535
1536 CXXScopeSpec SS;
1537 DeclarationNameInfo NameInfo(&Accessor, AccessorLoc);
1538 return getSema().BuildMemberReferenceExpr(Base, Base->getType(),
1539 OpLoc, /*IsArrow*/ false,
1540 SS, /*FirstQualifierInScope*/ 0,
1541 NameInfo,
1542 /* TemplateArgs */ 0);
1543 }
1544
1545 /// \brief Build a new initializer list expression.
1546 ///
1547 /// By default, performs semantic analysis to build the new expression.
1548 /// Subclasses may override this routine to provide different behavior.
RebuildInitList(SourceLocation LBraceLoc,MultiExprArg Inits,SourceLocation RBraceLoc,QualType ResultTy)1549 ExprResult RebuildInitList(SourceLocation LBraceLoc,
1550 MultiExprArg Inits,
1551 SourceLocation RBraceLoc,
1552 QualType ResultTy) {
1553 ExprResult Result
1554 = SemaRef.ActOnInitList(LBraceLoc, move(Inits), RBraceLoc);
1555 if (Result.isInvalid() || ResultTy->isDependentType())
1556 return move(Result);
1557
1558 // Patch in the result type we were given, which may have been computed
1559 // when the initial InitListExpr was built.
1560 InitListExpr *ILE = cast<InitListExpr>((Expr *)Result.get());
1561 ILE->setType(ResultTy);
1562 return move(Result);
1563 }
1564
1565 /// \brief Build a new designated initializer expression.
1566 ///
1567 /// By default, performs semantic analysis to build the new expression.
1568 /// Subclasses may override this routine to provide different behavior.
RebuildDesignatedInitExpr(Designation & Desig,MultiExprArg ArrayExprs,SourceLocation EqualOrColonLoc,bool GNUSyntax,Expr * Init)1569 ExprResult RebuildDesignatedInitExpr(Designation &Desig,
1570 MultiExprArg ArrayExprs,
1571 SourceLocation EqualOrColonLoc,
1572 bool GNUSyntax,
1573 Expr *Init) {
1574 ExprResult Result
1575 = SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax,
1576 Init);
1577 if (Result.isInvalid())
1578 return ExprError();
1579
1580 ArrayExprs.release();
1581 return move(Result);
1582 }
1583
1584 /// \brief Build a new value-initialized expression.
1585 ///
1586 /// By default, builds the implicit value initialization without performing
1587 /// any semantic analysis. Subclasses may override this routine to provide
1588 /// different behavior.
RebuildImplicitValueInitExpr(QualType T)1589 ExprResult RebuildImplicitValueInitExpr(QualType T) {
1590 return SemaRef.Owned(new (SemaRef.Context) ImplicitValueInitExpr(T));
1591 }
1592
1593 /// \brief Build a new \c va_arg expression.
1594 ///
1595 /// By default, performs semantic analysis to build the new expression.
1596 /// Subclasses may override this routine to provide different behavior.
RebuildVAArgExpr(SourceLocation BuiltinLoc,Expr * SubExpr,TypeSourceInfo * TInfo,SourceLocation RParenLoc)1597 ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc,
1598 Expr *SubExpr, TypeSourceInfo *TInfo,
1599 SourceLocation RParenLoc) {
1600 return getSema().BuildVAArgExpr(BuiltinLoc,
1601 SubExpr, TInfo,
1602 RParenLoc);
1603 }
1604
1605 /// \brief Build a new expression list in parentheses.
1606 ///
1607 /// By default, performs semantic analysis to build the new expression.
1608 /// Subclasses may override this routine to provide different behavior.
RebuildParenListExpr(SourceLocation LParenLoc,MultiExprArg SubExprs,SourceLocation RParenLoc)1609 ExprResult RebuildParenListExpr(SourceLocation LParenLoc,
1610 MultiExprArg SubExprs,
1611 SourceLocation RParenLoc) {
1612 return getSema().ActOnParenOrParenListExpr(LParenLoc, RParenLoc,
1613 move(SubExprs));
1614 }
1615
1616 /// \brief Build a new address-of-label expression.
1617 ///
1618 /// By default, performs semantic analysis, using the name of the label
1619 /// rather than attempting to map the label statement itself.
1620 /// Subclasses may override this routine to provide different behavior.
RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,SourceLocation LabelLoc,LabelDecl * Label)1621 ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,
1622 SourceLocation LabelLoc, LabelDecl *Label) {
1623 return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label);
1624 }
1625
1626 /// \brief Build a new GNU statement expression.
1627 ///
1628 /// By default, performs semantic analysis to build the new expression.
1629 /// Subclasses may override this routine to provide different behavior.
RebuildStmtExpr(SourceLocation LParenLoc,Stmt * SubStmt,SourceLocation RParenLoc)1630 ExprResult RebuildStmtExpr(SourceLocation LParenLoc,
1631 Stmt *SubStmt,
1632 SourceLocation RParenLoc) {
1633 return getSema().ActOnStmtExpr(LParenLoc, SubStmt, RParenLoc);
1634 }
1635
1636 /// \brief Build a new __builtin_choose_expr expression.
1637 ///
1638 /// By default, performs semantic analysis to build the new expression.
1639 /// Subclasses may override this routine to provide different behavior.
RebuildChooseExpr(SourceLocation BuiltinLoc,Expr * Cond,Expr * LHS,Expr * RHS,SourceLocation RParenLoc)1640 ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc,
1641 Expr *Cond, Expr *LHS, Expr *RHS,
1642 SourceLocation RParenLoc) {
1643 return SemaRef.ActOnChooseExpr(BuiltinLoc,
1644 Cond, LHS, RHS,
1645 RParenLoc);
1646 }
1647
1648 /// \brief Build a new generic selection expression.
1649 ///
1650 /// By default, performs semantic analysis to build the new expression.
1651 /// Subclasses may override this routine to provide different behavior.
RebuildGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,TypeSourceInfo ** Types,Expr ** Exprs,unsigned NumAssocs)1652 ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc,
1653 SourceLocation DefaultLoc,
1654 SourceLocation RParenLoc,
1655 Expr *ControllingExpr,
1656 TypeSourceInfo **Types,
1657 Expr **Exprs,
1658 unsigned NumAssocs) {
1659 return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1660 ControllingExpr, Types, Exprs,
1661 NumAssocs);
1662 }
1663
1664 /// \brief Build a new overloaded operator call expression.
1665 ///
1666 /// By default, performs semantic analysis to build the new expression.
1667 /// The semantic analysis provides the behavior of template instantiation,
1668 /// copying with transformations that turn what looks like an overloaded
1669 /// operator call into a use of a builtin operator, performing
1670 /// argument-dependent lookup, etc. Subclasses may override this routine to
1671 /// provide different behavior.
1672 ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
1673 SourceLocation OpLoc,
1674 Expr *Callee,
1675 Expr *First,
1676 Expr *Second);
1677
1678 /// \brief Build a new C++ "named" cast expression, such as static_cast or
1679 /// reinterpret_cast.
1680 ///
1681 /// By default, this routine dispatches to one of the more-specific routines
1682 /// for a particular named case, e.g., RebuildCXXStaticCastExpr().
1683 /// Subclasses may override this routine to provide different behavior.
RebuildCXXNamedCastExpr(SourceLocation OpLoc,Stmt::StmtClass Class,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)1684 ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc,
1685 Stmt::StmtClass Class,
1686 SourceLocation LAngleLoc,
1687 TypeSourceInfo *TInfo,
1688 SourceLocation RAngleLoc,
1689 SourceLocation LParenLoc,
1690 Expr *SubExpr,
1691 SourceLocation RParenLoc) {
1692 switch (Class) {
1693 case Stmt::CXXStaticCastExprClass:
1694 return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo,
1695 RAngleLoc, LParenLoc,
1696 SubExpr, RParenLoc);
1697
1698 case Stmt::CXXDynamicCastExprClass:
1699 return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo,
1700 RAngleLoc, LParenLoc,
1701 SubExpr, RParenLoc);
1702
1703 case Stmt::CXXReinterpretCastExprClass:
1704 return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo,
1705 RAngleLoc, LParenLoc,
1706 SubExpr,
1707 RParenLoc);
1708
1709 case Stmt::CXXConstCastExprClass:
1710 return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo,
1711 RAngleLoc, LParenLoc,
1712 SubExpr, RParenLoc);
1713
1714 default:
1715 assert(false && "Invalid C++ named cast");
1716 break;
1717 }
1718
1719 return ExprError();
1720 }
1721
1722 /// \brief Build a new C++ static_cast expression.
1723 ///
1724 /// By default, performs semantic analysis to build the new expression.
1725 /// Subclasses may override this routine to provide different behavior.
RebuildCXXStaticCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)1726 ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc,
1727 SourceLocation LAngleLoc,
1728 TypeSourceInfo *TInfo,
1729 SourceLocation RAngleLoc,
1730 SourceLocation LParenLoc,
1731 Expr *SubExpr,
1732 SourceLocation RParenLoc) {
1733 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast,
1734 TInfo, SubExpr,
1735 SourceRange(LAngleLoc, RAngleLoc),
1736 SourceRange(LParenLoc, RParenLoc));
1737 }
1738
1739 /// \brief Build a new C++ dynamic_cast expression.
1740 ///
1741 /// By default, performs semantic analysis to build the new expression.
1742 /// Subclasses may override this routine to provide different behavior.
RebuildCXXDynamicCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)1743 ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc,
1744 SourceLocation LAngleLoc,
1745 TypeSourceInfo *TInfo,
1746 SourceLocation RAngleLoc,
1747 SourceLocation LParenLoc,
1748 Expr *SubExpr,
1749 SourceLocation RParenLoc) {
1750 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast,
1751 TInfo, SubExpr,
1752 SourceRange(LAngleLoc, RAngleLoc),
1753 SourceRange(LParenLoc, RParenLoc));
1754 }
1755
1756 /// \brief Build a new C++ reinterpret_cast expression.
1757 ///
1758 /// By default, performs semantic analysis to build the new expression.
1759 /// Subclasses may override this routine to provide different behavior.
RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)1760 ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,
1761 SourceLocation LAngleLoc,
1762 TypeSourceInfo *TInfo,
1763 SourceLocation RAngleLoc,
1764 SourceLocation LParenLoc,
1765 Expr *SubExpr,
1766 SourceLocation RParenLoc) {
1767 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast,
1768 TInfo, SubExpr,
1769 SourceRange(LAngleLoc, RAngleLoc),
1770 SourceRange(LParenLoc, RParenLoc));
1771 }
1772
1773 /// \brief Build a new C++ const_cast expression.
1774 ///
1775 /// By default, performs semantic analysis to build the new expression.
1776 /// Subclasses may override this routine to provide different behavior.
RebuildCXXConstCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)1777 ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc,
1778 SourceLocation LAngleLoc,
1779 TypeSourceInfo *TInfo,
1780 SourceLocation RAngleLoc,
1781 SourceLocation LParenLoc,
1782 Expr *SubExpr,
1783 SourceLocation RParenLoc) {
1784 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast,
1785 TInfo, SubExpr,
1786 SourceRange(LAngleLoc, RAngleLoc),
1787 SourceRange(LParenLoc, RParenLoc));
1788 }
1789
1790 /// \brief Build a new C++ functional-style cast expression.
1791 ///
1792 /// By default, performs semantic analysis to build the new expression.
1793 /// Subclasses may override this routine to provide different behavior.
RebuildCXXFunctionalCastExpr(TypeSourceInfo * TInfo,SourceLocation LParenLoc,Expr * Sub,SourceLocation RParenLoc)1794 ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo,
1795 SourceLocation LParenLoc,
1796 Expr *Sub,
1797 SourceLocation RParenLoc) {
1798 return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc,
1799 MultiExprArg(&Sub, 1),
1800 RParenLoc);
1801 }
1802
1803 /// \brief Build a new C++ typeid(type) expression.
1804 ///
1805 /// By default, performs semantic analysis to build the new expression.
1806 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTypeidExpr(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)1807 ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
1808 SourceLocation TypeidLoc,
1809 TypeSourceInfo *Operand,
1810 SourceLocation RParenLoc) {
1811 return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
1812 RParenLoc);
1813 }
1814
1815
1816 /// \brief Build a new C++ typeid(expr) expression.
1817 ///
1818 /// By default, performs semantic analysis to build the new expression.
1819 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTypeidExpr(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * Operand,SourceLocation RParenLoc)1820 ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
1821 SourceLocation TypeidLoc,
1822 Expr *Operand,
1823 SourceLocation RParenLoc) {
1824 return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
1825 RParenLoc);
1826 }
1827
1828 /// \brief Build a new C++ __uuidof(type) expression.
1829 ///
1830 /// By default, performs semantic analysis to build the new expression.
1831 /// Subclasses may override this routine to provide different behavior.
RebuildCXXUuidofExpr(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)1832 ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType,
1833 SourceLocation TypeidLoc,
1834 TypeSourceInfo *Operand,
1835 SourceLocation RParenLoc) {
1836 return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand,
1837 RParenLoc);
1838 }
1839
1840 /// \brief Build a new C++ __uuidof(expr) expression.
1841 ///
1842 /// By default, performs semantic analysis to build the new expression.
1843 /// Subclasses may override this routine to provide different behavior.
RebuildCXXUuidofExpr(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * Operand,SourceLocation RParenLoc)1844 ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType,
1845 SourceLocation TypeidLoc,
1846 Expr *Operand,
1847 SourceLocation RParenLoc) {
1848 return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand,
1849 RParenLoc);
1850 }
1851
1852 /// \brief Build a new C++ "this" expression.
1853 ///
1854 /// By default, builds a new "this" expression without performing any
1855 /// semantic analysis. Subclasses may override this routine to provide
1856 /// different behavior.
RebuildCXXThisExpr(SourceLocation ThisLoc,QualType ThisType,bool isImplicit)1857 ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc,
1858 QualType ThisType,
1859 bool isImplicit) {
1860 return getSema().Owned(
1861 new (getSema().Context) CXXThisExpr(ThisLoc, ThisType,
1862 isImplicit));
1863 }
1864
1865 /// \brief Build a new C++ throw expression.
1866 ///
1867 /// By default, performs semantic analysis to build the new expression.
1868 /// Subclasses may override this routine to provide different behavior.
RebuildCXXThrowExpr(SourceLocation ThrowLoc,Expr * Sub,bool IsThrownVariableInScope)1869 ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub,
1870 bool IsThrownVariableInScope) {
1871 return getSema().BuildCXXThrow(ThrowLoc, Sub, IsThrownVariableInScope);
1872 }
1873
1874 /// \brief Build a new C++ default-argument expression.
1875 ///
1876 /// By default, builds a new default-argument expression, which does not
1877 /// require any semantic analysis. Subclasses may override this routine to
1878 /// provide different behavior.
RebuildCXXDefaultArgExpr(SourceLocation Loc,ParmVarDecl * Param)1879 ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc,
1880 ParmVarDecl *Param) {
1881 return getSema().Owned(CXXDefaultArgExpr::Create(getSema().Context, Loc,
1882 Param));
1883 }
1884
1885 /// \brief Build a new C++ zero-initialization expression.
1886 ///
1887 /// By default, performs semantic analysis to build the new expression.
1888 /// Subclasses may override this routine to provide different behavior.
RebuildCXXScalarValueInitExpr(TypeSourceInfo * TSInfo,SourceLocation LParenLoc,SourceLocation RParenLoc)1889 ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo,
1890 SourceLocation LParenLoc,
1891 SourceLocation RParenLoc) {
1892 return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc,
1893 MultiExprArg(getSema(), 0, 0),
1894 RParenLoc);
1895 }
1896
1897 /// \brief Build a new C++ "new" expression.
1898 ///
1899 /// By default, performs semantic analysis to build the new expression.
1900 /// Subclasses may override this routine to provide different behavior.
RebuildCXXNewExpr(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocatedType,TypeSourceInfo * AllocatedTypeInfo,Expr * ArraySize,SourceLocation ConstructorLParen,MultiExprArg ConstructorArgs,SourceLocation ConstructorRParen)1901 ExprResult RebuildCXXNewExpr(SourceLocation StartLoc,
1902 bool UseGlobal,
1903 SourceLocation PlacementLParen,
1904 MultiExprArg PlacementArgs,
1905 SourceLocation PlacementRParen,
1906 SourceRange TypeIdParens,
1907 QualType AllocatedType,
1908 TypeSourceInfo *AllocatedTypeInfo,
1909 Expr *ArraySize,
1910 SourceLocation ConstructorLParen,
1911 MultiExprArg ConstructorArgs,
1912 SourceLocation ConstructorRParen) {
1913 return getSema().BuildCXXNew(StartLoc, UseGlobal,
1914 PlacementLParen,
1915 move(PlacementArgs),
1916 PlacementRParen,
1917 TypeIdParens,
1918 AllocatedType,
1919 AllocatedTypeInfo,
1920 ArraySize,
1921 ConstructorLParen,
1922 move(ConstructorArgs),
1923 ConstructorRParen);
1924 }
1925
1926 /// \brief Build a new C++ "delete" expression.
1927 ///
1928 /// By default, performs semantic analysis to build the new expression.
1929 /// Subclasses may override this routine to provide different behavior.
RebuildCXXDeleteExpr(SourceLocation StartLoc,bool IsGlobalDelete,bool IsArrayForm,Expr * Operand)1930 ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc,
1931 bool IsGlobalDelete,
1932 bool IsArrayForm,
1933 Expr *Operand) {
1934 return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm,
1935 Operand);
1936 }
1937
1938 /// \brief Build a new unary type trait expression.
1939 ///
1940 /// By default, performs semantic analysis to build the new expression.
1941 /// Subclasses may override this routine to provide different behavior.
RebuildUnaryTypeTrait(UnaryTypeTrait Trait,SourceLocation StartLoc,TypeSourceInfo * T,SourceLocation RParenLoc)1942 ExprResult RebuildUnaryTypeTrait(UnaryTypeTrait Trait,
1943 SourceLocation StartLoc,
1944 TypeSourceInfo *T,
1945 SourceLocation RParenLoc) {
1946 return getSema().BuildUnaryTypeTrait(Trait, StartLoc, T, RParenLoc);
1947 }
1948
1949 /// \brief Build a new binary type trait expression.
1950 ///
1951 /// By default, performs semantic analysis to build the new expression.
1952 /// Subclasses may override this routine to provide different behavior.
RebuildBinaryTypeTrait(BinaryTypeTrait Trait,SourceLocation StartLoc,TypeSourceInfo * LhsT,TypeSourceInfo * RhsT,SourceLocation RParenLoc)1953 ExprResult RebuildBinaryTypeTrait(BinaryTypeTrait Trait,
1954 SourceLocation StartLoc,
1955 TypeSourceInfo *LhsT,
1956 TypeSourceInfo *RhsT,
1957 SourceLocation RParenLoc) {
1958 return getSema().BuildBinaryTypeTrait(Trait, StartLoc, LhsT, RhsT, RParenLoc);
1959 }
1960
1961 /// \brief Build a new array type trait expression.
1962 ///
1963 /// By default, performs semantic analysis to build the new expression.
1964 /// Subclasses may override this routine to provide different behavior.
RebuildArrayTypeTrait(ArrayTypeTrait Trait,SourceLocation StartLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParenLoc)1965 ExprResult RebuildArrayTypeTrait(ArrayTypeTrait Trait,
1966 SourceLocation StartLoc,
1967 TypeSourceInfo *TSInfo,
1968 Expr *DimExpr,
1969 SourceLocation RParenLoc) {
1970 return getSema().BuildArrayTypeTrait(Trait, StartLoc, TSInfo, DimExpr, RParenLoc);
1971 }
1972
1973 /// \brief Build a new expression trait expression.
1974 ///
1975 /// By default, performs semantic analysis to build the new expression.
1976 /// Subclasses may override this routine to provide different behavior.
RebuildExpressionTrait(ExpressionTrait Trait,SourceLocation StartLoc,Expr * Queried,SourceLocation RParenLoc)1977 ExprResult RebuildExpressionTrait(ExpressionTrait Trait,
1978 SourceLocation StartLoc,
1979 Expr *Queried,
1980 SourceLocation RParenLoc) {
1981 return getSema().BuildExpressionTrait(Trait, StartLoc, Queried, RParenLoc);
1982 }
1983
1984 /// \brief Build a new (previously unresolved) declaration reference
1985 /// expression.
1986 ///
1987 /// By default, performs semantic analysis to build the new expression.
1988 /// Subclasses may override this routine to provide different behavior.
RebuildDependentScopeDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)1989 ExprResult RebuildDependentScopeDeclRefExpr(
1990 NestedNameSpecifierLoc QualifierLoc,
1991 const DeclarationNameInfo &NameInfo,
1992 const TemplateArgumentListInfo *TemplateArgs) {
1993 CXXScopeSpec SS;
1994 SS.Adopt(QualifierLoc);
1995
1996 if (TemplateArgs)
1997 return getSema().BuildQualifiedTemplateIdExpr(SS, NameInfo,
1998 *TemplateArgs);
1999
2000 return getSema().BuildQualifiedDeclarationNameExpr(SS, NameInfo);
2001 }
2002
2003 /// \brief Build a new template-id expression.
2004 ///
2005 /// By default, performs semantic analysis to build the new expression.
2006 /// Subclasses may override this routine to provide different behavior.
RebuildTemplateIdExpr(const CXXScopeSpec & SS,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo & TemplateArgs)2007 ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS,
2008 LookupResult &R,
2009 bool RequiresADL,
2010 const TemplateArgumentListInfo &TemplateArgs) {
2011 return getSema().BuildTemplateIdExpr(SS, R, RequiresADL, TemplateArgs);
2012 }
2013
2014 /// \brief Build a new object-construction expression.
2015 ///
2016 /// By default, performs semantic analysis to build the new expression.
2017 /// Subclasses may override this routine to provide different behavior.
RebuildCXXConstructExpr(QualType T,SourceLocation Loc,CXXConstructorDecl * Constructor,bool IsElidable,MultiExprArg Args,bool RequiresZeroInit,CXXConstructExpr::ConstructionKind ConstructKind,SourceRange ParenRange)2018 ExprResult RebuildCXXConstructExpr(QualType T,
2019 SourceLocation Loc,
2020 CXXConstructorDecl *Constructor,
2021 bool IsElidable,
2022 MultiExprArg Args,
2023 bool RequiresZeroInit,
2024 CXXConstructExpr::ConstructionKind ConstructKind,
2025 SourceRange ParenRange) {
2026 ASTOwningVector<Expr*> ConvertedArgs(SemaRef);
2027 if (getSema().CompleteConstructorCall(Constructor, move(Args), Loc,
2028 ConvertedArgs))
2029 return ExprError();
2030
2031 return getSema().BuildCXXConstructExpr(Loc, T, Constructor, IsElidable,
2032 move_arg(ConvertedArgs),
2033 RequiresZeroInit, ConstructKind,
2034 ParenRange);
2035 }
2036
2037 /// \brief Build a new object-construction expression.
2038 ///
2039 /// By default, performs semantic analysis to build the new expression.
2040 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTemporaryObjectExpr(TypeSourceInfo * TSInfo,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc)2041 ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo,
2042 SourceLocation LParenLoc,
2043 MultiExprArg Args,
2044 SourceLocation RParenLoc) {
2045 return getSema().BuildCXXTypeConstructExpr(TSInfo,
2046 LParenLoc,
2047 move(Args),
2048 RParenLoc);
2049 }
2050
2051 /// \brief Build a new object-construction expression.
2052 ///
2053 /// By default, performs semantic analysis to build the new expression.
2054 /// Subclasses may override this routine to provide different behavior.
RebuildCXXUnresolvedConstructExpr(TypeSourceInfo * TSInfo,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc)2055 ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo,
2056 SourceLocation LParenLoc,
2057 MultiExprArg Args,
2058 SourceLocation RParenLoc) {
2059 return getSema().BuildCXXTypeConstructExpr(TSInfo,
2060 LParenLoc,
2061 move(Args),
2062 RParenLoc);
2063 }
2064
2065 /// \brief Build a new member reference expression.
2066 ///
2067 /// By default, performs semantic analysis to build the new expression.
2068 /// Subclasses may override this routine to provide different behavior.
RebuildCXXDependentScopeMemberExpr(Expr * BaseE,QualType BaseType,bool IsArrow,SourceLocation OperatorLoc,NestedNameSpecifierLoc QualifierLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & MemberNameInfo,const TemplateArgumentListInfo * TemplateArgs)2069 ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE,
2070 QualType BaseType,
2071 bool IsArrow,
2072 SourceLocation OperatorLoc,
2073 NestedNameSpecifierLoc QualifierLoc,
2074 NamedDecl *FirstQualifierInScope,
2075 const DeclarationNameInfo &MemberNameInfo,
2076 const TemplateArgumentListInfo *TemplateArgs) {
2077 CXXScopeSpec SS;
2078 SS.Adopt(QualifierLoc);
2079
2080 return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
2081 OperatorLoc, IsArrow,
2082 SS, FirstQualifierInScope,
2083 MemberNameInfo,
2084 TemplateArgs);
2085 }
2086
2087 /// \brief Build a new member reference expression.
2088 ///
2089 /// By default, performs semantic analysis to build the new expression.
2090 /// Subclasses may override this routine to provide different behavior.
RebuildUnresolvedMemberExpr(Expr * BaseE,QualType BaseType,SourceLocation OperatorLoc,bool IsArrow,NestedNameSpecifierLoc QualifierLoc,NamedDecl * FirstQualifierInScope,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs)2091 ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE,
2092 QualType BaseType,
2093 SourceLocation OperatorLoc,
2094 bool IsArrow,
2095 NestedNameSpecifierLoc QualifierLoc,
2096 NamedDecl *FirstQualifierInScope,
2097 LookupResult &R,
2098 const TemplateArgumentListInfo *TemplateArgs) {
2099 CXXScopeSpec SS;
2100 SS.Adopt(QualifierLoc);
2101
2102 return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
2103 OperatorLoc, IsArrow,
2104 SS, FirstQualifierInScope,
2105 R, TemplateArgs);
2106 }
2107
2108 /// \brief Build a new noexcept expression.
2109 ///
2110 /// By default, performs semantic analysis to build the new expression.
2111 /// Subclasses may override this routine to provide different behavior.
RebuildCXXNoexceptExpr(SourceRange Range,Expr * Arg)2112 ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) {
2113 return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd());
2114 }
2115
2116 /// \brief Build a new expression to compute the length of a parameter pack.
RebuildSizeOfPackExpr(SourceLocation OperatorLoc,NamedDecl * Pack,SourceLocation PackLoc,SourceLocation RParenLoc,unsigned Length)2117 ExprResult RebuildSizeOfPackExpr(SourceLocation OperatorLoc, NamedDecl *Pack,
2118 SourceLocation PackLoc,
2119 SourceLocation RParenLoc,
2120 unsigned Length) {
2121 return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(),
2122 OperatorLoc, Pack, PackLoc,
2123 RParenLoc, Length);
2124 }
2125
2126 /// \brief Build a new Objective-C @encode expression.
2127 ///
2128 /// By default, performs semantic analysis to build the new expression.
2129 /// Subclasses may override this routine to provide different behavior.
RebuildObjCEncodeExpr(SourceLocation AtLoc,TypeSourceInfo * EncodeTypeInfo,SourceLocation RParenLoc)2130 ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc,
2131 TypeSourceInfo *EncodeTypeInfo,
2132 SourceLocation RParenLoc) {
2133 return SemaRef.Owned(SemaRef.BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo,
2134 RParenLoc));
2135 }
2136
2137 /// \brief Build a new Objective-C class message.
RebuildObjCMessageExpr(TypeSourceInfo * ReceiverTypeInfo,Selector Sel,SourceLocation SelectorLoc,ObjCMethodDecl * Method,SourceLocation LBracLoc,MultiExprArg Args,SourceLocation RBracLoc)2138 ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo,
2139 Selector Sel,
2140 SourceLocation SelectorLoc,
2141 ObjCMethodDecl *Method,
2142 SourceLocation LBracLoc,
2143 MultiExprArg Args,
2144 SourceLocation RBracLoc) {
2145 return SemaRef.BuildClassMessage(ReceiverTypeInfo,
2146 ReceiverTypeInfo->getType(),
2147 /*SuperLoc=*/SourceLocation(),
2148 Sel, Method, LBracLoc, SelectorLoc,
2149 RBracLoc, move(Args));
2150 }
2151
2152 /// \brief Build a new Objective-C instance message.
RebuildObjCMessageExpr(Expr * Receiver,Selector Sel,SourceLocation SelectorLoc,ObjCMethodDecl * Method,SourceLocation LBracLoc,MultiExprArg Args,SourceLocation RBracLoc)2153 ExprResult RebuildObjCMessageExpr(Expr *Receiver,
2154 Selector Sel,
2155 SourceLocation SelectorLoc,
2156 ObjCMethodDecl *Method,
2157 SourceLocation LBracLoc,
2158 MultiExprArg Args,
2159 SourceLocation RBracLoc) {
2160 return SemaRef.BuildInstanceMessage(Receiver,
2161 Receiver->getType(),
2162 /*SuperLoc=*/SourceLocation(),
2163 Sel, Method, LBracLoc, SelectorLoc,
2164 RBracLoc, move(Args));
2165 }
2166
2167 /// \brief Build a new Objective-C ivar reference expression.
2168 ///
2169 /// By default, performs semantic analysis to build the new expression.
2170 /// Subclasses may override this routine to provide different behavior.
RebuildObjCIvarRefExpr(Expr * BaseArg,ObjCIvarDecl * Ivar,SourceLocation IvarLoc,bool IsArrow,bool IsFreeIvar)2171 ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar,
2172 SourceLocation IvarLoc,
2173 bool IsArrow, bool IsFreeIvar) {
2174 // FIXME: We lose track of the IsFreeIvar bit.
2175 CXXScopeSpec SS;
2176 ExprResult Base = getSema().Owned(BaseArg);
2177 LookupResult R(getSema(), Ivar->getDeclName(), IvarLoc,
2178 Sema::LookupMemberName);
2179 ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow,
2180 /*FIME:*/IvarLoc,
2181 SS, 0,
2182 false);
2183 if (Result.isInvalid() || Base.isInvalid())
2184 return ExprError();
2185
2186 if (Result.get())
2187 return move(Result);
2188
2189 return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(),
2190 /*FIXME:*/IvarLoc, IsArrow, SS,
2191 /*FirstQualifierInScope=*/0,
2192 R,
2193 /*TemplateArgs=*/0);
2194 }
2195
2196 /// \brief Build a new Objective-C property reference expression.
2197 ///
2198 /// By default, performs semantic analysis to build the new expression.
2199 /// Subclasses may override this routine to provide different behavior.
RebuildObjCPropertyRefExpr(Expr * BaseArg,ObjCPropertyDecl * Property,SourceLocation PropertyLoc)2200 ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg,
2201 ObjCPropertyDecl *Property,
2202 SourceLocation PropertyLoc) {
2203 CXXScopeSpec SS;
2204 ExprResult Base = getSema().Owned(BaseArg);
2205 LookupResult R(getSema(), Property->getDeclName(), PropertyLoc,
2206 Sema::LookupMemberName);
2207 bool IsArrow = false;
2208 ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow,
2209 /*FIME:*/PropertyLoc,
2210 SS, 0, false);
2211 if (Result.isInvalid() || Base.isInvalid())
2212 return ExprError();
2213
2214 if (Result.get())
2215 return move(Result);
2216
2217 return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(),
2218 /*FIXME:*/PropertyLoc, IsArrow,
2219 SS,
2220 /*FirstQualifierInScope=*/0,
2221 R,
2222 /*TemplateArgs=*/0);
2223 }
2224
2225 /// \brief Build a new Objective-C property reference expression.
2226 ///
2227 /// By default, performs semantic analysis to build the new expression.
2228 /// Subclasses may override this routine to provide different behavior.
RebuildObjCPropertyRefExpr(Expr * Base,QualType T,ObjCMethodDecl * Getter,ObjCMethodDecl * Setter,SourceLocation PropertyLoc)2229 ExprResult RebuildObjCPropertyRefExpr(Expr *Base, QualType T,
2230 ObjCMethodDecl *Getter,
2231 ObjCMethodDecl *Setter,
2232 SourceLocation PropertyLoc) {
2233 // Since these expressions can only be value-dependent, we do not
2234 // need to perform semantic analysis again.
2235 return Owned(
2236 new (getSema().Context) ObjCPropertyRefExpr(Getter, Setter, T,
2237 VK_LValue, OK_ObjCProperty,
2238 PropertyLoc, Base));
2239 }
2240
2241 /// \brief Build a new Objective-C "isa" expression.
2242 ///
2243 /// By default, performs semantic analysis to build the new expression.
2244 /// Subclasses may override this routine to provide different behavior.
RebuildObjCIsaExpr(Expr * BaseArg,SourceLocation IsaLoc,bool IsArrow)2245 ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc,
2246 bool IsArrow) {
2247 CXXScopeSpec SS;
2248 ExprResult Base = getSema().Owned(BaseArg);
2249 LookupResult R(getSema(), &getSema().Context.Idents.get("isa"), IsaLoc,
2250 Sema::LookupMemberName);
2251 ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow,
2252 /*FIME:*/IsaLoc,
2253 SS, 0, false);
2254 if (Result.isInvalid() || Base.isInvalid())
2255 return ExprError();
2256
2257 if (Result.get())
2258 return move(Result);
2259
2260 return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(),
2261 /*FIXME:*/IsaLoc, IsArrow, SS,
2262 /*FirstQualifierInScope=*/0,
2263 R,
2264 /*TemplateArgs=*/0);
2265 }
2266
2267 /// \brief Build a new shuffle vector expression.
2268 ///
2269 /// By default, performs semantic analysis to build the new expression.
2270 /// Subclasses may override this routine to provide different behavior.
RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,MultiExprArg SubExprs,SourceLocation RParenLoc)2271 ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,
2272 MultiExprArg SubExprs,
2273 SourceLocation RParenLoc) {
2274 // Find the declaration for __builtin_shufflevector
2275 const IdentifierInfo &Name
2276 = SemaRef.Context.Idents.get("__builtin_shufflevector");
2277 TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl();
2278 DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name));
2279 assert(Lookup.first != Lookup.second && "No __builtin_shufflevector?");
2280
2281 // Build a reference to the __builtin_shufflevector builtin
2282 FunctionDecl *Builtin = cast<FunctionDecl>(*Lookup.first);
2283 ExprResult Callee
2284 = SemaRef.Owned(new (SemaRef.Context) DeclRefExpr(Builtin, Builtin->getType(),
2285 VK_LValue, BuiltinLoc));
2286 Callee = SemaRef.UsualUnaryConversions(Callee.take());
2287 if (Callee.isInvalid())
2288 return ExprError();
2289
2290 // Build the CallExpr
2291 unsigned NumSubExprs = SubExprs.size();
2292 Expr **Subs = (Expr **)SubExprs.release();
2293 ExprResult TheCall = SemaRef.Owned(
2294 new (SemaRef.Context) CallExpr(SemaRef.Context, Callee.take(),
2295 Subs, NumSubExprs,
2296 Builtin->getCallResultType(),
2297 Expr::getValueKindForType(Builtin->getResultType()),
2298 RParenLoc));
2299
2300 // Type-check the __builtin_shufflevector expression.
2301 return SemaRef.SemaBuiltinShuffleVector(cast<CallExpr>(TheCall.take()));
2302 }
2303
2304 /// \brief Build a new template argument pack expansion.
2305 ///
2306 /// By default, performs semantic analysis to build a new pack expansion
2307 /// for a template argument. Subclasses may override this routine to provide
2308 /// different behavior.
RebuildPackExpansion(TemplateArgumentLoc Pattern,SourceLocation EllipsisLoc,llvm::Optional<unsigned> NumExpansions)2309 TemplateArgumentLoc RebuildPackExpansion(TemplateArgumentLoc Pattern,
2310 SourceLocation EllipsisLoc,
2311 llvm::Optional<unsigned> NumExpansions) {
2312 switch (Pattern.getArgument().getKind()) {
2313 case TemplateArgument::Expression: {
2314 ExprResult Result
2315 = getSema().CheckPackExpansion(Pattern.getSourceExpression(),
2316 EllipsisLoc, NumExpansions);
2317 if (Result.isInvalid())
2318 return TemplateArgumentLoc();
2319
2320 return TemplateArgumentLoc(Result.get(), Result.get());
2321 }
2322
2323 case TemplateArgument::Template:
2324 return TemplateArgumentLoc(TemplateArgument(
2325 Pattern.getArgument().getAsTemplate(),
2326 NumExpansions),
2327 Pattern.getTemplateQualifierLoc(),
2328 Pattern.getTemplateNameLoc(),
2329 EllipsisLoc);
2330
2331 case TemplateArgument::Null:
2332 case TemplateArgument::Integral:
2333 case TemplateArgument::Declaration:
2334 case TemplateArgument::Pack:
2335 case TemplateArgument::TemplateExpansion:
2336 llvm_unreachable("Pack expansion pattern has no parameter packs");
2337
2338 case TemplateArgument::Type:
2339 if (TypeSourceInfo *Expansion
2340 = getSema().CheckPackExpansion(Pattern.getTypeSourceInfo(),
2341 EllipsisLoc,
2342 NumExpansions))
2343 return TemplateArgumentLoc(TemplateArgument(Expansion->getType()),
2344 Expansion);
2345 break;
2346 }
2347
2348 return TemplateArgumentLoc();
2349 }
2350
2351 /// \brief Build a new expression pack expansion.
2352 ///
2353 /// By default, performs semantic analysis to build a new pack expansion
2354 /// for an expression. Subclasses may override this routine to provide
2355 /// different behavior.
RebuildPackExpansion(Expr * Pattern,SourceLocation EllipsisLoc,llvm::Optional<unsigned> NumExpansions)2356 ExprResult RebuildPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
2357 llvm::Optional<unsigned> NumExpansions) {
2358 return getSema().CheckPackExpansion(Pattern, EllipsisLoc, NumExpansions);
2359 }
2360
2361 private:
2362 TypeLoc TransformTypeInObjectScope(TypeLoc TL,
2363 QualType ObjectType,
2364 NamedDecl *FirstQualifierInScope,
2365 CXXScopeSpec &SS);
2366
2367 TypeSourceInfo *TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
2368 QualType ObjectType,
2369 NamedDecl *FirstQualifierInScope,
2370 CXXScopeSpec &SS);
2371 };
2372
2373 template<typename Derived>
TransformStmt(Stmt * S)2374 StmtResult TreeTransform<Derived>::TransformStmt(Stmt *S) {
2375 if (!S)
2376 return SemaRef.Owned(S);
2377
2378 switch (S->getStmtClass()) {
2379 case Stmt::NoStmtClass: break;
2380
2381 // Transform individual statement nodes
2382 #define STMT(Node, Parent) \
2383 case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(S));
2384 #define ABSTRACT_STMT(Node)
2385 #define EXPR(Node, Parent)
2386 #include "clang/AST/StmtNodes.inc"
2387
2388 // Transform expressions by calling TransformExpr.
2389 #define STMT(Node, Parent)
2390 #define ABSTRACT_STMT(Stmt)
2391 #define EXPR(Node, Parent) case Stmt::Node##Class:
2392 #include "clang/AST/StmtNodes.inc"
2393 {
2394 ExprResult E = getDerived().TransformExpr(cast<Expr>(S));
2395 if (E.isInvalid())
2396 return StmtError();
2397
2398 return getSema().ActOnExprStmt(getSema().MakeFullExpr(E.take()));
2399 }
2400 }
2401
2402 return SemaRef.Owned(S);
2403 }
2404
2405
2406 template<typename Derived>
TransformExpr(Expr * E)2407 ExprResult TreeTransform<Derived>::TransformExpr(Expr *E) {
2408 if (!E)
2409 return SemaRef.Owned(E);
2410
2411 switch (E->getStmtClass()) {
2412 case Stmt::NoStmtClass: break;
2413 #define STMT(Node, Parent) case Stmt::Node##Class: break;
2414 #define ABSTRACT_STMT(Stmt)
2415 #define EXPR(Node, Parent) \
2416 case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(E));
2417 #include "clang/AST/StmtNodes.inc"
2418 }
2419
2420 return SemaRef.Owned(E);
2421 }
2422
2423 template<typename Derived>
TransformExprs(Expr ** Inputs,unsigned NumInputs,bool IsCall,llvm::SmallVectorImpl<Expr * > & Outputs,bool * ArgChanged)2424 bool TreeTransform<Derived>::TransformExprs(Expr **Inputs,
2425 unsigned NumInputs,
2426 bool IsCall,
2427 llvm::SmallVectorImpl<Expr *> &Outputs,
2428 bool *ArgChanged) {
2429 for (unsigned I = 0; I != NumInputs; ++I) {
2430 // If requested, drop call arguments that need to be dropped.
2431 if (IsCall && getDerived().DropCallArgument(Inputs[I])) {
2432 if (ArgChanged)
2433 *ArgChanged = true;
2434
2435 break;
2436 }
2437
2438 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Inputs[I])) {
2439 Expr *Pattern = Expansion->getPattern();
2440
2441 llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2442 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
2443 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
2444
2445 // Determine whether the set of unexpanded parameter packs can and should
2446 // be expanded.
2447 bool Expand = true;
2448 bool RetainExpansion = false;
2449 llvm::Optional<unsigned> OrigNumExpansions
2450 = Expansion->getNumExpansions();
2451 llvm::Optional<unsigned> NumExpansions = OrigNumExpansions;
2452 if (getDerived().TryExpandParameterPacks(Expansion->getEllipsisLoc(),
2453 Pattern->getSourceRange(),
2454 Unexpanded.data(),
2455 Unexpanded.size(),
2456 Expand, RetainExpansion,
2457 NumExpansions))
2458 return true;
2459
2460 if (!Expand) {
2461 // The transform has determined that we should perform a simple
2462 // transformation on the pack expansion, producing another pack
2463 // expansion.
2464 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
2465 ExprResult OutPattern = getDerived().TransformExpr(Pattern);
2466 if (OutPattern.isInvalid())
2467 return true;
2468
2469 ExprResult Out = getDerived().RebuildPackExpansion(OutPattern.get(),
2470 Expansion->getEllipsisLoc(),
2471 NumExpansions);
2472 if (Out.isInvalid())
2473 return true;
2474
2475 if (ArgChanged)
2476 *ArgChanged = true;
2477 Outputs.push_back(Out.get());
2478 continue;
2479 }
2480
2481 // Record right away that the argument was changed. This needs
2482 // to happen even if the array expands to nothing.
2483 if (ArgChanged) *ArgChanged = true;
2484
2485 // The transform has determined that we should perform an elementwise
2486 // expansion of the pattern. Do so.
2487 for (unsigned I = 0; I != *NumExpansions; ++I) {
2488 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
2489 ExprResult Out = getDerived().TransformExpr(Pattern);
2490 if (Out.isInvalid())
2491 return true;
2492
2493 if (Out.get()->containsUnexpandedParameterPack()) {
2494 Out = RebuildPackExpansion(Out.get(), Expansion->getEllipsisLoc(),
2495 OrigNumExpansions);
2496 if (Out.isInvalid())
2497 return true;
2498 }
2499
2500 Outputs.push_back(Out.get());
2501 }
2502
2503 continue;
2504 }
2505
2506 ExprResult Result = getDerived().TransformExpr(Inputs[I]);
2507 if (Result.isInvalid())
2508 return true;
2509
2510 if (Result.get() != Inputs[I] && ArgChanged)
2511 *ArgChanged = true;
2512
2513 Outputs.push_back(Result.get());
2514 }
2515
2516 return false;
2517 }
2518
2519 template<typename Derived>
2520 NestedNameSpecifierLoc
TransformNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,QualType ObjectType,NamedDecl * FirstQualifierInScope)2521 TreeTransform<Derived>::TransformNestedNameSpecifierLoc(
2522 NestedNameSpecifierLoc NNS,
2523 QualType ObjectType,
2524 NamedDecl *FirstQualifierInScope) {
2525 llvm::SmallVector<NestedNameSpecifierLoc, 4> Qualifiers;
2526 for (NestedNameSpecifierLoc Qualifier = NNS; Qualifier;
2527 Qualifier = Qualifier.getPrefix())
2528 Qualifiers.push_back(Qualifier);
2529
2530 CXXScopeSpec SS;
2531 while (!Qualifiers.empty()) {
2532 NestedNameSpecifierLoc Q = Qualifiers.pop_back_val();
2533 NestedNameSpecifier *QNNS = Q.getNestedNameSpecifier();
2534
2535 switch (QNNS->getKind()) {
2536 case NestedNameSpecifier::Identifier:
2537 if (SemaRef.BuildCXXNestedNameSpecifier(/*Scope=*/0,
2538 *QNNS->getAsIdentifier(),
2539 Q.getLocalBeginLoc(),
2540 Q.getLocalEndLoc(),
2541 ObjectType, false, SS,
2542 FirstQualifierInScope, false))
2543 return NestedNameSpecifierLoc();
2544
2545 break;
2546
2547 case NestedNameSpecifier::Namespace: {
2548 NamespaceDecl *NS
2549 = cast_or_null<NamespaceDecl>(
2550 getDerived().TransformDecl(
2551 Q.getLocalBeginLoc(),
2552 QNNS->getAsNamespace()));
2553 SS.Extend(SemaRef.Context, NS, Q.getLocalBeginLoc(), Q.getLocalEndLoc());
2554 break;
2555 }
2556
2557 case NestedNameSpecifier::NamespaceAlias: {
2558 NamespaceAliasDecl *Alias
2559 = cast_or_null<NamespaceAliasDecl>(
2560 getDerived().TransformDecl(Q.getLocalBeginLoc(),
2561 QNNS->getAsNamespaceAlias()));
2562 SS.Extend(SemaRef.Context, Alias, Q.getLocalBeginLoc(),
2563 Q.getLocalEndLoc());
2564 break;
2565 }
2566
2567 case NestedNameSpecifier::Global:
2568 // There is no meaningful transformation that one could perform on the
2569 // global scope.
2570 SS.MakeGlobal(SemaRef.Context, Q.getBeginLoc());
2571 break;
2572
2573 case NestedNameSpecifier::TypeSpecWithTemplate:
2574 case NestedNameSpecifier::TypeSpec: {
2575 TypeLoc TL = TransformTypeInObjectScope(Q.getTypeLoc(), ObjectType,
2576 FirstQualifierInScope, SS);
2577
2578 if (!TL)
2579 return NestedNameSpecifierLoc();
2580
2581 if (TL.getType()->isDependentType() || TL.getType()->isRecordType() ||
2582 (SemaRef.getLangOptions().CPlusPlus0x &&
2583 TL.getType()->isEnumeralType())) {
2584 assert(!TL.getType().hasLocalQualifiers() &&
2585 "Can't get cv-qualifiers here");
2586 SS.Extend(SemaRef.Context, /*FIXME:*/SourceLocation(), TL,
2587 Q.getLocalEndLoc());
2588 break;
2589 }
2590 // If the nested-name-specifier is an invalid type def, don't emit an
2591 // error because a previous error should have already been emitted.
2592 TypedefTypeLoc* TTL = dyn_cast<TypedefTypeLoc>(&TL);
2593 if (!TTL || !TTL->getTypedefNameDecl()->isInvalidDecl()) {
2594 SemaRef.Diag(TL.getBeginLoc(), diag::err_nested_name_spec_non_tag)
2595 << TL.getType() << SS.getRange();
2596 }
2597 return NestedNameSpecifierLoc();
2598 }
2599 }
2600
2601 // The qualifier-in-scope and object type only apply to the leftmost entity.
2602 FirstQualifierInScope = 0;
2603 ObjectType = QualType();
2604 }
2605
2606 // Don't rebuild the nested-name-specifier if we don't have to.
2607 if (SS.getScopeRep() == NNS.getNestedNameSpecifier() &&
2608 !getDerived().AlwaysRebuild())
2609 return NNS;
2610
2611 // If we can re-use the source-location data from the original
2612 // nested-name-specifier, do so.
2613 if (SS.location_size() == NNS.getDataLength() &&
2614 memcmp(SS.location_data(), NNS.getOpaqueData(), SS.location_size()) == 0)
2615 return NestedNameSpecifierLoc(SS.getScopeRep(), NNS.getOpaqueData());
2616
2617 // Allocate new nested-name-specifier location information.
2618 return SS.getWithLocInContext(SemaRef.Context);
2619 }
2620
2621 template<typename Derived>
2622 DeclarationNameInfo
2623 TreeTransform<Derived>
TransformDeclarationNameInfo(const DeclarationNameInfo & NameInfo)2624 ::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo) {
2625 DeclarationName Name = NameInfo.getName();
2626 if (!Name)
2627 return DeclarationNameInfo();
2628
2629 switch (Name.getNameKind()) {
2630 case DeclarationName::Identifier:
2631 case DeclarationName::ObjCZeroArgSelector:
2632 case DeclarationName::ObjCOneArgSelector:
2633 case DeclarationName::ObjCMultiArgSelector:
2634 case DeclarationName::CXXOperatorName:
2635 case DeclarationName::CXXLiteralOperatorName:
2636 case DeclarationName::CXXUsingDirective:
2637 return NameInfo;
2638
2639 case DeclarationName::CXXConstructorName:
2640 case DeclarationName::CXXDestructorName:
2641 case DeclarationName::CXXConversionFunctionName: {
2642 TypeSourceInfo *NewTInfo;
2643 CanQualType NewCanTy;
2644 if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) {
2645 NewTInfo = getDerived().TransformType(OldTInfo);
2646 if (!NewTInfo)
2647 return DeclarationNameInfo();
2648 NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType());
2649 }
2650 else {
2651 NewTInfo = 0;
2652 TemporaryBase Rebase(*this, NameInfo.getLoc(), Name);
2653 QualType NewT = getDerived().TransformType(Name.getCXXNameType());
2654 if (NewT.isNull())
2655 return DeclarationNameInfo();
2656 NewCanTy = SemaRef.Context.getCanonicalType(NewT);
2657 }
2658
2659 DeclarationName NewName
2660 = SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(),
2661 NewCanTy);
2662 DeclarationNameInfo NewNameInfo(NameInfo);
2663 NewNameInfo.setName(NewName);
2664 NewNameInfo.setNamedTypeInfo(NewTInfo);
2665 return NewNameInfo;
2666 }
2667 }
2668
2669 assert(0 && "Unknown name kind.");
2670 return DeclarationNameInfo();
2671 }
2672
2673 template<typename Derived>
2674 TemplateName
TransformTemplateName(CXXScopeSpec & SS,TemplateName Name,SourceLocation NameLoc,QualType ObjectType,NamedDecl * FirstQualifierInScope)2675 TreeTransform<Derived>::TransformTemplateName(CXXScopeSpec &SS,
2676 TemplateName Name,
2677 SourceLocation NameLoc,
2678 QualType ObjectType,
2679 NamedDecl *FirstQualifierInScope) {
2680 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) {
2681 TemplateDecl *Template = QTN->getTemplateDecl();
2682 assert(Template && "qualified template name must refer to a template");
2683
2684 TemplateDecl *TransTemplate
2685 = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
2686 Template));
2687 if (!TransTemplate)
2688 return TemplateName();
2689
2690 if (!getDerived().AlwaysRebuild() &&
2691 SS.getScopeRep() == QTN->getQualifier() &&
2692 TransTemplate == Template)
2693 return Name;
2694
2695 return getDerived().RebuildTemplateName(SS, QTN->hasTemplateKeyword(),
2696 TransTemplate);
2697 }
2698
2699 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2700 if (SS.getScopeRep()) {
2701 // These apply to the scope specifier, not the template.
2702 ObjectType = QualType();
2703 FirstQualifierInScope = 0;
2704 }
2705
2706 if (!getDerived().AlwaysRebuild() &&
2707 SS.getScopeRep() == DTN->getQualifier() &&
2708 ObjectType.isNull())
2709 return Name;
2710
2711 if (DTN->isIdentifier()) {
2712 return getDerived().RebuildTemplateName(SS,
2713 *DTN->getIdentifier(),
2714 NameLoc,
2715 ObjectType,
2716 FirstQualifierInScope);
2717 }
2718
2719 return getDerived().RebuildTemplateName(SS, DTN->getOperator(), NameLoc,
2720 ObjectType);
2721 }
2722
2723 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2724 TemplateDecl *TransTemplate
2725 = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
2726 Template));
2727 if (!TransTemplate)
2728 return TemplateName();
2729
2730 if (!getDerived().AlwaysRebuild() &&
2731 TransTemplate == Template)
2732 return Name;
2733
2734 return TemplateName(TransTemplate);
2735 }
2736
2737 if (SubstTemplateTemplateParmPackStorage *SubstPack
2738 = Name.getAsSubstTemplateTemplateParmPack()) {
2739 TemplateTemplateParmDecl *TransParam
2740 = cast_or_null<TemplateTemplateParmDecl>(
2741 getDerived().TransformDecl(NameLoc, SubstPack->getParameterPack()));
2742 if (!TransParam)
2743 return TemplateName();
2744
2745 if (!getDerived().AlwaysRebuild() &&
2746 TransParam == SubstPack->getParameterPack())
2747 return Name;
2748
2749 return getDerived().RebuildTemplateName(TransParam,
2750 SubstPack->getArgumentPack());
2751 }
2752
2753 // These should be getting filtered out before they reach the AST.
2754 llvm_unreachable("overloaded function decl survived to here");
2755 return TemplateName();
2756 }
2757
2758 template<typename Derived>
InventTemplateArgumentLoc(const TemplateArgument & Arg,TemplateArgumentLoc & Output)2759 void TreeTransform<Derived>::InventTemplateArgumentLoc(
2760 const TemplateArgument &Arg,
2761 TemplateArgumentLoc &Output) {
2762 SourceLocation Loc = getDerived().getBaseLocation();
2763 switch (Arg.getKind()) {
2764 case TemplateArgument::Null:
2765 llvm_unreachable("null template argument in TreeTransform");
2766 break;
2767
2768 case TemplateArgument::Type:
2769 Output = TemplateArgumentLoc(Arg,
2770 SemaRef.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
2771
2772 break;
2773
2774 case TemplateArgument::Template:
2775 case TemplateArgument::TemplateExpansion: {
2776 NestedNameSpecifierLocBuilder Builder;
2777 TemplateName Template = Arg.getAsTemplate();
2778 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
2779 Builder.MakeTrivial(SemaRef.Context, DTN->getQualifier(), Loc);
2780 else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2781 Builder.MakeTrivial(SemaRef.Context, QTN->getQualifier(), Loc);
2782
2783 if (Arg.getKind() == TemplateArgument::Template)
2784 Output = TemplateArgumentLoc(Arg,
2785 Builder.getWithLocInContext(SemaRef.Context),
2786 Loc);
2787 else
2788 Output = TemplateArgumentLoc(Arg,
2789 Builder.getWithLocInContext(SemaRef.Context),
2790 Loc, Loc);
2791
2792 break;
2793 }
2794
2795 case TemplateArgument::Expression:
2796 Output = TemplateArgumentLoc(Arg, Arg.getAsExpr());
2797 break;
2798
2799 case TemplateArgument::Declaration:
2800 case TemplateArgument::Integral:
2801 case TemplateArgument::Pack:
2802 Output = TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
2803 break;
2804 }
2805 }
2806
2807 template<typename Derived>
TransformTemplateArgument(const TemplateArgumentLoc & Input,TemplateArgumentLoc & Output)2808 bool TreeTransform<Derived>::TransformTemplateArgument(
2809 const TemplateArgumentLoc &Input,
2810 TemplateArgumentLoc &Output) {
2811 const TemplateArgument &Arg = Input.getArgument();
2812 switch (Arg.getKind()) {
2813 case TemplateArgument::Null:
2814 case TemplateArgument::Integral:
2815 Output = Input;
2816 return false;
2817
2818 case TemplateArgument::Type: {
2819 TypeSourceInfo *DI = Input.getTypeSourceInfo();
2820 if (DI == NULL)
2821 DI = InventTypeSourceInfo(Input.getArgument().getAsType());
2822
2823 DI = getDerived().TransformType(DI);
2824 if (!DI) return true;
2825
2826 Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2827 return false;
2828 }
2829
2830 case TemplateArgument::Declaration: {
2831 // FIXME: we should never have to transform one of these.
2832 DeclarationName Name;
2833 if (NamedDecl *ND = dyn_cast<NamedDecl>(Arg.getAsDecl()))
2834 Name = ND->getDeclName();
2835 TemporaryBase Rebase(*this, Input.getLocation(), Name);
2836 Decl *D = getDerived().TransformDecl(Input.getLocation(), Arg.getAsDecl());
2837 if (!D) return true;
2838
2839 Expr *SourceExpr = Input.getSourceDeclExpression();
2840 if (SourceExpr) {
2841 EnterExpressionEvaluationContext Unevaluated(getSema(),
2842 Sema::Unevaluated);
2843 ExprResult E = getDerived().TransformExpr(SourceExpr);
2844 SourceExpr = (E.isInvalid() ? 0 : E.take());
2845 }
2846
2847 Output = TemplateArgumentLoc(TemplateArgument(D), SourceExpr);
2848 return false;
2849 }
2850
2851 case TemplateArgument::Template: {
2852 NestedNameSpecifierLoc QualifierLoc = Input.getTemplateQualifierLoc();
2853 if (QualifierLoc) {
2854 QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc);
2855 if (!QualifierLoc)
2856 return true;
2857 }
2858
2859 CXXScopeSpec SS;
2860 SS.Adopt(QualifierLoc);
2861 TemplateName Template
2862 = getDerived().TransformTemplateName(SS, Arg.getAsTemplate(),
2863 Input.getTemplateNameLoc());
2864 if (Template.isNull())
2865 return true;
2866
2867 Output = TemplateArgumentLoc(TemplateArgument(Template), QualifierLoc,
2868 Input.getTemplateNameLoc());
2869 return false;
2870 }
2871
2872 case TemplateArgument::TemplateExpansion:
2873 llvm_unreachable("Caller should expand pack expansions");
2874
2875 case TemplateArgument::Expression: {
2876 // Template argument expressions are not potentially evaluated.
2877 EnterExpressionEvaluationContext Unevaluated(getSema(),
2878 Sema::Unevaluated);
2879
2880 Expr *InputExpr = Input.getSourceExpression();
2881 if (!InputExpr) InputExpr = Input.getArgument().getAsExpr();
2882
2883 ExprResult E = getDerived().TransformExpr(InputExpr);
2884 if (E.isInvalid()) return true;
2885 Output = TemplateArgumentLoc(TemplateArgument(E.take()), E.take());
2886 return false;
2887 }
2888
2889 case TemplateArgument::Pack: {
2890 llvm::SmallVector<TemplateArgument, 4> TransformedArgs;
2891 TransformedArgs.reserve(Arg.pack_size());
2892 for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2893 AEnd = Arg.pack_end();
2894 A != AEnd; ++A) {
2895
2896 // FIXME: preserve source information here when we start
2897 // caring about parameter packs.
2898
2899 TemplateArgumentLoc InputArg;
2900 TemplateArgumentLoc OutputArg;
2901 getDerived().InventTemplateArgumentLoc(*A, InputArg);
2902 if (getDerived().TransformTemplateArgument(InputArg, OutputArg))
2903 return true;
2904
2905 TransformedArgs.push_back(OutputArg.getArgument());
2906 }
2907
2908 TemplateArgument *TransformedArgsPtr
2909 = new (getSema().Context) TemplateArgument[TransformedArgs.size()];
2910 std::copy(TransformedArgs.begin(), TransformedArgs.end(),
2911 TransformedArgsPtr);
2912 Output = TemplateArgumentLoc(TemplateArgument(TransformedArgsPtr,
2913 TransformedArgs.size()),
2914 Input.getLocInfo());
2915 return false;
2916 }
2917 }
2918
2919 // Work around bogus GCC warning
2920 return true;
2921 }
2922
2923 /// \brief Iterator adaptor that invents template argument location information
2924 /// for each of the template arguments in its underlying iterator.
2925 template<typename Derived, typename InputIterator>
2926 class TemplateArgumentLocInventIterator {
2927 TreeTransform<Derived> &Self;
2928 InputIterator Iter;
2929
2930 public:
2931 typedef TemplateArgumentLoc value_type;
2932 typedef TemplateArgumentLoc reference;
2933 typedef typename std::iterator_traits<InputIterator>::difference_type
2934 difference_type;
2935 typedef std::input_iterator_tag iterator_category;
2936
2937 class pointer {
2938 TemplateArgumentLoc Arg;
2939
2940 public:
pointer(TemplateArgumentLoc Arg)2941 explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
2942
2943 const TemplateArgumentLoc *operator->() const { return &Arg; }
2944 };
2945
TemplateArgumentLocInventIterator()2946 TemplateArgumentLocInventIterator() { }
2947
TemplateArgumentLocInventIterator(TreeTransform<Derived> & Self,InputIterator Iter)2948 explicit TemplateArgumentLocInventIterator(TreeTransform<Derived> &Self,
2949 InputIterator Iter)
2950 : Self(Self), Iter(Iter) { }
2951
2952 TemplateArgumentLocInventIterator &operator++() {
2953 ++Iter;
2954 return *this;
2955 }
2956
2957 TemplateArgumentLocInventIterator operator++(int) {
2958 TemplateArgumentLocInventIterator Old(*this);
2959 ++(*this);
2960 return Old;
2961 }
2962
2963 reference operator*() const {
2964 TemplateArgumentLoc Result;
2965 Self.InventTemplateArgumentLoc(*Iter, Result);
2966 return Result;
2967 }
2968
2969 pointer operator->() const { return pointer(**this); }
2970
2971 friend bool operator==(const TemplateArgumentLocInventIterator &X,
2972 const TemplateArgumentLocInventIterator &Y) {
2973 return X.Iter == Y.Iter;
2974 }
2975
2976 friend bool operator!=(const TemplateArgumentLocInventIterator &X,
2977 const TemplateArgumentLocInventIterator &Y) {
2978 return X.Iter != Y.Iter;
2979 }
2980 };
2981
2982 template<typename Derived>
2983 template<typename InputIterator>
TransformTemplateArguments(InputIterator First,InputIterator Last,TemplateArgumentListInfo & Outputs)2984 bool TreeTransform<Derived>::TransformTemplateArguments(InputIterator First,
2985 InputIterator Last,
2986 TemplateArgumentListInfo &Outputs) {
2987 for (; First != Last; ++First) {
2988 TemplateArgumentLoc Out;
2989 TemplateArgumentLoc In = *First;
2990
2991 if (In.getArgument().getKind() == TemplateArgument::Pack) {
2992 // Unpack argument packs, which we translate them into separate
2993 // arguments.
2994 // FIXME: We could do much better if we could guarantee that the
2995 // TemplateArgumentLocInfo for the pack expansion would be usable for
2996 // all of the template arguments in the argument pack.
2997 typedef TemplateArgumentLocInventIterator<Derived,
2998 TemplateArgument::pack_iterator>
2999 PackLocIterator;
3000 if (TransformTemplateArguments(PackLocIterator(*this,
3001 In.getArgument().pack_begin()),
3002 PackLocIterator(*this,
3003 In.getArgument().pack_end()),
3004 Outputs))
3005 return true;
3006
3007 continue;
3008 }
3009
3010 if (In.getArgument().isPackExpansion()) {
3011 // We have a pack expansion, for which we will be substituting into
3012 // the pattern.
3013 SourceLocation Ellipsis;
3014 llvm::Optional<unsigned> OrigNumExpansions;
3015 TemplateArgumentLoc Pattern
3016 = In.getPackExpansionPattern(Ellipsis, OrigNumExpansions,
3017 getSema().Context);
3018
3019 llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3020 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
3021 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
3022
3023 // Determine whether the set of unexpanded parameter packs can and should
3024 // be expanded.
3025 bool Expand = true;
3026 bool RetainExpansion = false;
3027 llvm::Optional<unsigned> NumExpansions = OrigNumExpansions;
3028 if (getDerived().TryExpandParameterPacks(Ellipsis,
3029 Pattern.getSourceRange(),
3030 Unexpanded.data(),
3031 Unexpanded.size(),
3032 Expand,
3033 RetainExpansion,
3034 NumExpansions))
3035 return true;
3036
3037 if (!Expand) {
3038 // The transform has determined that we should perform a simple
3039 // transformation on the pack expansion, producing another pack
3040 // expansion.
3041 TemplateArgumentLoc OutPattern;
3042 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
3043 if (getDerived().TransformTemplateArgument(Pattern, OutPattern))
3044 return true;
3045
3046 Out = getDerived().RebuildPackExpansion(OutPattern, Ellipsis,
3047 NumExpansions);
3048 if (Out.getArgument().isNull())
3049 return true;
3050
3051 Outputs.addArgument(Out);
3052 continue;
3053 }
3054
3055 // The transform has determined that we should perform an elementwise
3056 // expansion of the pattern. Do so.
3057 for (unsigned I = 0; I != *NumExpansions; ++I) {
3058 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
3059
3060 if (getDerived().TransformTemplateArgument(Pattern, Out))
3061 return true;
3062
3063 if (Out.getArgument().containsUnexpandedParameterPack()) {
3064 Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
3065 OrigNumExpansions);
3066 if (Out.getArgument().isNull())
3067 return true;
3068 }
3069
3070 Outputs.addArgument(Out);
3071 }
3072
3073 // If we're supposed to retain a pack expansion, do so by temporarily
3074 // forgetting the partially-substituted parameter pack.
3075 if (RetainExpansion) {
3076 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
3077
3078 if (getDerived().TransformTemplateArgument(Pattern, Out))
3079 return true;
3080
3081 Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
3082 OrigNumExpansions);
3083 if (Out.getArgument().isNull())
3084 return true;
3085
3086 Outputs.addArgument(Out);
3087 }
3088
3089 continue;
3090 }
3091
3092 // The simple case:
3093 if (getDerived().TransformTemplateArgument(In, Out))
3094 return true;
3095
3096 Outputs.addArgument(Out);
3097 }
3098
3099 return false;
3100
3101 }
3102
3103 //===----------------------------------------------------------------------===//
3104 // Type transformation
3105 //===----------------------------------------------------------------------===//
3106
3107 template<typename Derived>
TransformType(QualType T)3108 QualType TreeTransform<Derived>::TransformType(QualType T) {
3109 if (getDerived().AlreadyTransformed(T))
3110 return T;
3111
3112 // Temporary workaround. All of these transformations should
3113 // eventually turn into transformations on TypeLocs.
3114 TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T,
3115 getDerived().getBaseLocation());
3116
3117 TypeSourceInfo *NewDI = getDerived().TransformType(DI);
3118
3119 if (!NewDI)
3120 return QualType();
3121
3122 return NewDI->getType();
3123 }
3124
3125 template<typename Derived>
TransformType(TypeSourceInfo * DI)3126 TypeSourceInfo *TreeTransform<Derived>::TransformType(TypeSourceInfo *DI) {
3127 if (getDerived().AlreadyTransformed(DI->getType()))
3128 return DI;
3129
3130 TypeLocBuilder TLB;
3131
3132 TypeLoc TL = DI->getTypeLoc();
3133 TLB.reserve(TL.getFullDataSize());
3134
3135 QualType Result = getDerived().TransformType(TLB, TL);
3136 if (Result.isNull())
3137 return 0;
3138
3139 return TLB.getTypeSourceInfo(SemaRef.Context, Result);
3140 }
3141
3142 template<typename Derived>
3143 QualType
TransformType(TypeLocBuilder & TLB,TypeLoc T)3144 TreeTransform<Derived>::TransformType(TypeLocBuilder &TLB, TypeLoc T) {
3145 switch (T.getTypeLocClass()) {
3146 #define ABSTRACT_TYPELOC(CLASS, PARENT)
3147 #define TYPELOC(CLASS, PARENT) \
3148 case TypeLoc::CLASS: \
3149 return getDerived().Transform##CLASS##Type(TLB, cast<CLASS##TypeLoc>(T));
3150 #include "clang/AST/TypeLocNodes.def"
3151 }
3152
3153 llvm_unreachable("unhandled type loc!");
3154 return QualType();
3155 }
3156
3157 /// FIXME: By default, this routine adds type qualifiers only to types
3158 /// that can have qualifiers, and silently suppresses those qualifiers
3159 /// that are not permitted (e.g., qualifiers on reference or function
3160 /// types). This is the right thing for template instantiation, but
3161 /// probably not for other clients.
3162 template<typename Derived>
3163 QualType
TransformQualifiedType(TypeLocBuilder & TLB,QualifiedTypeLoc T)3164 TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB,
3165 QualifiedTypeLoc T) {
3166 Qualifiers Quals = T.getType().getLocalQualifiers();
3167
3168 QualType Result = getDerived().TransformType(TLB, T.getUnqualifiedLoc());
3169 if (Result.isNull())
3170 return QualType();
3171
3172 // Silently suppress qualifiers if the result type can't be qualified.
3173 // FIXME: this is the right thing for template instantiation, but
3174 // probably not for other clients.
3175 if (Result->isFunctionType() || Result->isReferenceType())
3176 return Result;
3177
3178 // Suppress Objective-C lifetime qualifiers if they don't make sense for the
3179 // resulting type.
3180 if (Quals.hasObjCLifetime()) {
3181 if (!Result->isObjCLifetimeType() && !Result->isDependentType())
3182 Quals.removeObjCLifetime();
3183 else if (Result.getObjCLifetime()) {
3184 // Objective-C ARC:
3185 // A lifetime qualifier applied to a substituted template parameter
3186 // overrides the lifetime qualifier from the template argument.
3187 if (const SubstTemplateTypeParmType *SubstTypeParam
3188 = dyn_cast<SubstTemplateTypeParmType>(Result)) {
3189 QualType Replacement = SubstTypeParam->getReplacementType();
3190 Qualifiers Qs = Replacement.getQualifiers();
3191 Qs.removeObjCLifetime();
3192 Replacement
3193 = SemaRef.Context.getQualifiedType(Replacement.getUnqualifiedType(),
3194 Qs);
3195 Result = SemaRef.Context.getSubstTemplateTypeParmType(
3196 SubstTypeParam->getReplacedParameter(),
3197 Replacement);
3198 TLB.TypeWasModifiedSafely(Result);
3199 } else {
3200 // Otherwise, complain about the addition of a qualifier to an
3201 // already-qualified type.
3202 SourceRange R = TLB.getTemporaryTypeLoc(Result).getSourceRange();
3203 SemaRef.Diag(R.getBegin(), diag::err_attr_objc_ownership_redundant)
3204 << Result << R;
3205
3206 Quals.removeObjCLifetime();
3207 }
3208 }
3209 }
3210 if (!Quals.empty()) {
3211 Result = SemaRef.BuildQualifiedType(Result, T.getBeginLoc(), Quals);
3212 TLB.push<QualifiedTypeLoc>(Result);
3213 // No location information to preserve.
3214 }
3215
3216 return Result;
3217 }
3218
3219 template<typename Derived>
3220 TypeLoc
TransformTypeInObjectScope(TypeLoc TL,QualType ObjectType,NamedDecl * UnqualLookup,CXXScopeSpec & SS)3221 TreeTransform<Derived>::TransformTypeInObjectScope(TypeLoc TL,
3222 QualType ObjectType,
3223 NamedDecl *UnqualLookup,
3224 CXXScopeSpec &SS) {
3225 QualType T = TL.getType();
3226 if (getDerived().AlreadyTransformed(T))
3227 return TL;
3228
3229 TypeLocBuilder TLB;
3230 QualType Result;
3231
3232 if (isa<TemplateSpecializationType>(T)) {
3233 TemplateSpecializationTypeLoc SpecTL
3234 = cast<TemplateSpecializationTypeLoc>(TL);
3235
3236 TemplateName Template =
3237 getDerived().TransformTemplateName(SS,
3238 SpecTL.getTypePtr()->getTemplateName(),
3239 SpecTL.getTemplateNameLoc(),
3240 ObjectType, UnqualLookup);
3241 if (Template.isNull())
3242 return TypeLoc();
3243
3244 Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL,
3245 Template);
3246 } else if (isa<DependentTemplateSpecializationType>(T)) {
3247 DependentTemplateSpecializationTypeLoc SpecTL
3248 = cast<DependentTemplateSpecializationTypeLoc>(TL);
3249
3250 TemplateName Template
3251 = getDerived().RebuildTemplateName(SS,
3252 *SpecTL.getTypePtr()->getIdentifier(),
3253 SpecTL.getNameLoc(),
3254 ObjectType, UnqualLookup);
3255 if (Template.isNull())
3256 return TypeLoc();
3257
3258 Result = getDerived().TransformDependentTemplateSpecializationType(TLB,
3259 SpecTL,
3260 Template,
3261 SS);
3262 } else {
3263 // Nothing special needs to be done for these.
3264 Result = getDerived().TransformType(TLB, TL);
3265 }
3266
3267 if (Result.isNull())
3268 return TypeLoc();
3269
3270 return TLB.getTypeSourceInfo(SemaRef.Context, Result)->getTypeLoc();
3271 }
3272
3273 template<typename Derived>
3274 TypeSourceInfo *
TransformTypeInObjectScope(TypeSourceInfo * TSInfo,QualType ObjectType,NamedDecl * UnqualLookup,CXXScopeSpec & SS)3275 TreeTransform<Derived>::TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
3276 QualType ObjectType,
3277 NamedDecl *UnqualLookup,
3278 CXXScopeSpec &SS) {
3279 // FIXME: Painfully copy-paste from the above!
3280
3281 QualType T = TSInfo->getType();
3282 if (getDerived().AlreadyTransformed(T))
3283 return TSInfo;
3284
3285 TypeLocBuilder TLB;
3286 QualType Result;
3287
3288 TypeLoc TL = TSInfo->getTypeLoc();
3289 if (isa<TemplateSpecializationType>(T)) {
3290 TemplateSpecializationTypeLoc SpecTL
3291 = cast<TemplateSpecializationTypeLoc>(TL);
3292
3293 TemplateName Template
3294 = getDerived().TransformTemplateName(SS,
3295 SpecTL.getTypePtr()->getTemplateName(),
3296 SpecTL.getTemplateNameLoc(),
3297 ObjectType, UnqualLookup);
3298 if (Template.isNull())
3299 return 0;
3300
3301 Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL,
3302 Template);
3303 } else if (isa<DependentTemplateSpecializationType>(T)) {
3304 DependentTemplateSpecializationTypeLoc SpecTL
3305 = cast<DependentTemplateSpecializationTypeLoc>(TL);
3306
3307 TemplateName Template
3308 = getDerived().RebuildTemplateName(SS,
3309 *SpecTL.getTypePtr()->getIdentifier(),
3310 SpecTL.getNameLoc(),
3311 ObjectType, UnqualLookup);
3312 if (Template.isNull())
3313 return 0;
3314
3315 Result = getDerived().TransformDependentTemplateSpecializationType(TLB,
3316 SpecTL,
3317 Template,
3318 SS);
3319 } else {
3320 // Nothing special needs to be done for these.
3321 Result = getDerived().TransformType(TLB, TL);
3322 }
3323
3324 if (Result.isNull())
3325 return 0;
3326
3327 return TLB.getTypeSourceInfo(SemaRef.Context, Result);
3328 }
3329
3330 template <class TyLoc> static inline
TransformTypeSpecType(TypeLocBuilder & TLB,TyLoc T)3331 QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) {
3332 TyLoc NewT = TLB.push<TyLoc>(T.getType());
3333 NewT.setNameLoc(T.getNameLoc());
3334 return T.getType();
3335 }
3336
3337 template<typename Derived>
TransformBuiltinType(TypeLocBuilder & TLB,BuiltinTypeLoc T)3338 QualType TreeTransform<Derived>::TransformBuiltinType(TypeLocBuilder &TLB,
3339 BuiltinTypeLoc T) {
3340 BuiltinTypeLoc NewT = TLB.push<BuiltinTypeLoc>(T.getType());
3341 NewT.setBuiltinLoc(T.getBuiltinLoc());
3342 if (T.needsExtraLocalData())
3343 NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs();
3344 return T.getType();
3345 }
3346
3347 template<typename Derived>
TransformComplexType(TypeLocBuilder & TLB,ComplexTypeLoc T)3348 QualType TreeTransform<Derived>::TransformComplexType(TypeLocBuilder &TLB,
3349 ComplexTypeLoc T) {
3350 // FIXME: recurse?
3351 return TransformTypeSpecType(TLB, T);
3352 }
3353
3354 template<typename Derived>
TransformPointerType(TypeLocBuilder & TLB,PointerTypeLoc TL)3355 QualType TreeTransform<Derived>::TransformPointerType(TypeLocBuilder &TLB,
3356 PointerTypeLoc TL) {
3357 QualType PointeeType
3358 = getDerived().TransformType(TLB, TL.getPointeeLoc());
3359 if (PointeeType.isNull())
3360 return QualType();
3361
3362 QualType Result = TL.getType();
3363 if (PointeeType->getAs<ObjCObjectType>()) {
3364 // A dependent pointer type 'T *' has is being transformed such
3365 // that an Objective-C class type is being replaced for 'T'. The
3366 // resulting pointer type is an ObjCObjectPointerType, not a
3367 // PointerType.
3368 Result = SemaRef.Context.getObjCObjectPointerType(PointeeType);
3369
3370 ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result);
3371 NewT.setStarLoc(TL.getStarLoc());
3372 return Result;
3373 }
3374
3375 if (getDerived().AlwaysRebuild() ||
3376 PointeeType != TL.getPointeeLoc().getType()) {
3377 Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc());
3378 if (Result.isNull())
3379 return QualType();
3380 }
3381
3382 // Objective-C ARC can add lifetime qualifiers to the type that we're
3383 // pointing to.
3384 TLB.TypeWasModifiedSafely(Result->getPointeeType());
3385
3386 PointerTypeLoc NewT = TLB.push<PointerTypeLoc>(Result);
3387 NewT.setSigilLoc(TL.getSigilLoc());
3388 return Result;
3389 }
3390
3391 template<typename Derived>
3392 QualType
TransformBlockPointerType(TypeLocBuilder & TLB,BlockPointerTypeLoc TL)3393 TreeTransform<Derived>::TransformBlockPointerType(TypeLocBuilder &TLB,
3394 BlockPointerTypeLoc TL) {
3395 QualType PointeeType
3396 = getDerived().TransformType(TLB, TL.getPointeeLoc());
3397 if (PointeeType.isNull())
3398 return QualType();
3399
3400 QualType Result = TL.getType();
3401 if (getDerived().AlwaysRebuild() ||
3402 PointeeType != TL.getPointeeLoc().getType()) {
3403 Result = getDerived().RebuildBlockPointerType(PointeeType,
3404 TL.getSigilLoc());
3405 if (Result.isNull())
3406 return QualType();
3407 }
3408
3409 BlockPointerTypeLoc NewT = TLB.push<BlockPointerTypeLoc>(Result);
3410 NewT.setSigilLoc(TL.getSigilLoc());
3411 return Result;
3412 }
3413
3414 /// Transforms a reference type. Note that somewhat paradoxically we
3415 /// don't care whether the type itself is an l-value type or an r-value
3416 /// type; we only care if the type was *written* as an l-value type
3417 /// or an r-value type.
3418 template<typename Derived>
3419 QualType
TransformReferenceType(TypeLocBuilder & TLB,ReferenceTypeLoc TL)3420 TreeTransform<Derived>::TransformReferenceType(TypeLocBuilder &TLB,
3421 ReferenceTypeLoc TL) {
3422 const ReferenceType *T = TL.getTypePtr();
3423
3424 // Note that this works with the pointee-as-written.
3425 QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
3426 if (PointeeType.isNull())
3427 return QualType();
3428
3429 QualType Result = TL.getType();
3430 if (getDerived().AlwaysRebuild() ||
3431 PointeeType != T->getPointeeTypeAsWritten()) {
3432 Result = getDerived().RebuildReferenceType(PointeeType,
3433 T->isSpelledAsLValue(),
3434 TL.getSigilLoc());
3435 if (Result.isNull())
3436 return QualType();
3437 }
3438
3439 // Objective-C ARC can add lifetime qualifiers to the type that we're
3440 // referring to.
3441 TLB.TypeWasModifiedSafely(
3442 Result->getAs<ReferenceType>()->getPointeeTypeAsWritten());
3443
3444 // r-value references can be rebuilt as l-value references.
3445 ReferenceTypeLoc NewTL;
3446 if (isa<LValueReferenceType>(Result))
3447 NewTL = TLB.push<LValueReferenceTypeLoc>(Result);
3448 else
3449 NewTL = TLB.push<RValueReferenceTypeLoc>(Result);
3450 NewTL.setSigilLoc(TL.getSigilLoc());
3451
3452 return Result;
3453 }
3454
3455 template<typename Derived>
3456 QualType
TransformLValueReferenceType(TypeLocBuilder & TLB,LValueReferenceTypeLoc TL)3457 TreeTransform<Derived>::TransformLValueReferenceType(TypeLocBuilder &TLB,
3458 LValueReferenceTypeLoc TL) {
3459 return TransformReferenceType(TLB, TL);
3460 }
3461
3462 template<typename Derived>
3463 QualType
TransformRValueReferenceType(TypeLocBuilder & TLB,RValueReferenceTypeLoc TL)3464 TreeTransform<Derived>::TransformRValueReferenceType(TypeLocBuilder &TLB,
3465 RValueReferenceTypeLoc TL) {
3466 return TransformReferenceType(TLB, TL);
3467 }
3468
3469 template<typename Derived>
3470 QualType
TransformMemberPointerType(TypeLocBuilder & TLB,MemberPointerTypeLoc TL)3471 TreeTransform<Derived>::TransformMemberPointerType(TypeLocBuilder &TLB,
3472 MemberPointerTypeLoc TL) {
3473 QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
3474 if (PointeeType.isNull())
3475 return QualType();
3476
3477 TypeSourceInfo* OldClsTInfo = TL.getClassTInfo();
3478 TypeSourceInfo* NewClsTInfo = 0;
3479 if (OldClsTInfo) {
3480 NewClsTInfo = getDerived().TransformType(OldClsTInfo);
3481 if (!NewClsTInfo)
3482 return QualType();
3483 }
3484
3485 const MemberPointerType *T = TL.getTypePtr();
3486 QualType OldClsType = QualType(T->getClass(), 0);
3487 QualType NewClsType;
3488 if (NewClsTInfo)
3489 NewClsType = NewClsTInfo->getType();
3490 else {
3491 NewClsType = getDerived().TransformType(OldClsType);
3492 if (NewClsType.isNull())
3493 return QualType();
3494 }
3495
3496 QualType Result = TL.getType();
3497 if (getDerived().AlwaysRebuild() ||
3498 PointeeType != T->getPointeeType() ||
3499 NewClsType != OldClsType) {
3500 Result = getDerived().RebuildMemberPointerType(PointeeType, NewClsType,
3501 TL.getStarLoc());
3502 if (Result.isNull())
3503 return QualType();
3504 }
3505
3506 MemberPointerTypeLoc NewTL = TLB.push<MemberPointerTypeLoc>(Result);
3507 NewTL.setSigilLoc(TL.getSigilLoc());
3508 NewTL.setClassTInfo(NewClsTInfo);
3509
3510 return Result;
3511 }
3512
3513 template<typename Derived>
3514 QualType
TransformConstantArrayType(TypeLocBuilder & TLB,ConstantArrayTypeLoc TL)3515 TreeTransform<Derived>::TransformConstantArrayType(TypeLocBuilder &TLB,
3516 ConstantArrayTypeLoc TL) {
3517 const ConstantArrayType *T = TL.getTypePtr();
3518 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
3519 if (ElementType.isNull())
3520 return QualType();
3521
3522 QualType Result = TL.getType();
3523 if (getDerived().AlwaysRebuild() ||
3524 ElementType != T->getElementType()) {
3525 Result = getDerived().RebuildConstantArrayType(ElementType,
3526 T->getSizeModifier(),
3527 T->getSize(),
3528 T->getIndexTypeCVRQualifiers(),
3529 TL.getBracketsRange());
3530 if (Result.isNull())
3531 return QualType();
3532 }
3533
3534 ConstantArrayTypeLoc NewTL = TLB.push<ConstantArrayTypeLoc>(Result);
3535 NewTL.setLBracketLoc(TL.getLBracketLoc());
3536 NewTL.setRBracketLoc(TL.getRBracketLoc());
3537
3538 Expr *Size = TL.getSizeExpr();
3539 if (Size) {
3540 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
3541 Size = getDerived().TransformExpr(Size).template takeAs<Expr>();
3542 }
3543 NewTL.setSizeExpr(Size);
3544
3545 return Result;
3546 }
3547
3548 template<typename Derived>
TransformIncompleteArrayType(TypeLocBuilder & TLB,IncompleteArrayTypeLoc TL)3549 QualType TreeTransform<Derived>::TransformIncompleteArrayType(
3550 TypeLocBuilder &TLB,
3551 IncompleteArrayTypeLoc TL) {
3552 const IncompleteArrayType *T = TL.getTypePtr();
3553 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
3554 if (ElementType.isNull())
3555 return QualType();
3556
3557 QualType Result = TL.getType();
3558 if (getDerived().AlwaysRebuild() ||
3559 ElementType != T->getElementType()) {
3560 Result = getDerived().RebuildIncompleteArrayType(ElementType,
3561 T->getSizeModifier(),
3562 T->getIndexTypeCVRQualifiers(),
3563 TL.getBracketsRange());
3564 if (Result.isNull())
3565 return QualType();
3566 }
3567
3568 IncompleteArrayTypeLoc NewTL = TLB.push<IncompleteArrayTypeLoc>(Result);
3569 NewTL.setLBracketLoc(TL.getLBracketLoc());
3570 NewTL.setRBracketLoc(TL.getRBracketLoc());
3571 NewTL.setSizeExpr(0);
3572
3573 return Result;
3574 }
3575
3576 template<typename Derived>
3577 QualType
TransformVariableArrayType(TypeLocBuilder & TLB,VariableArrayTypeLoc TL)3578 TreeTransform<Derived>::TransformVariableArrayType(TypeLocBuilder &TLB,
3579 VariableArrayTypeLoc TL) {
3580 const VariableArrayType *T = TL.getTypePtr();
3581 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
3582 if (ElementType.isNull())
3583 return QualType();
3584
3585 // Array bounds are not potentially evaluated contexts
3586 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
3587
3588 ExprResult SizeResult
3589 = getDerived().TransformExpr(T->getSizeExpr());
3590 if (SizeResult.isInvalid())
3591 return QualType();
3592
3593 Expr *Size = SizeResult.take();
3594
3595 QualType Result = TL.getType();
3596 if (getDerived().AlwaysRebuild() ||
3597 ElementType != T->getElementType() ||
3598 Size != T->getSizeExpr()) {
3599 Result = getDerived().RebuildVariableArrayType(ElementType,
3600 T->getSizeModifier(),
3601 Size,
3602 T->getIndexTypeCVRQualifiers(),
3603 TL.getBracketsRange());
3604 if (Result.isNull())
3605 return QualType();
3606 }
3607
3608 VariableArrayTypeLoc NewTL = TLB.push<VariableArrayTypeLoc>(Result);
3609 NewTL.setLBracketLoc(TL.getLBracketLoc());
3610 NewTL.setRBracketLoc(TL.getRBracketLoc());
3611 NewTL.setSizeExpr(Size);
3612
3613 return Result;
3614 }
3615
3616 template<typename Derived>
3617 QualType
TransformDependentSizedArrayType(TypeLocBuilder & TLB,DependentSizedArrayTypeLoc TL)3618 TreeTransform<Derived>::TransformDependentSizedArrayType(TypeLocBuilder &TLB,
3619 DependentSizedArrayTypeLoc TL) {
3620 const DependentSizedArrayType *T = TL.getTypePtr();
3621 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
3622 if (ElementType.isNull())
3623 return QualType();
3624
3625 // Array bounds are not potentially evaluated contexts
3626 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
3627
3628 // Prefer the expression from the TypeLoc; the other may have been uniqued.
3629 Expr *origSize = TL.getSizeExpr();
3630 if (!origSize) origSize = T->getSizeExpr();
3631
3632 ExprResult sizeResult
3633 = getDerived().TransformExpr(origSize);
3634 if (sizeResult.isInvalid())
3635 return QualType();
3636
3637 Expr *size = sizeResult.get();
3638
3639 QualType Result = TL.getType();
3640 if (getDerived().AlwaysRebuild() ||
3641 ElementType != T->getElementType() ||
3642 size != origSize) {
3643 Result = getDerived().RebuildDependentSizedArrayType(ElementType,
3644 T->getSizeModifier(),
3645 size,
3646 T->getIndexTypeCVRQualifiers(),
3647 TL.getBracketsRange());
3648 if (Result.isNull())
3649 return QualType();
3650 }
3651
3652 // We might have any sort of array type now, but fortunately they
3653 // all have the same location layout.
3654 ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
3655 NewTL.setLBracketLoc(TL.getLBracketLoc());
3656 NewTL.setRBracketLoc(TL.getRBracketLoc());
3657 NewTL.setSizeExpr(size);
3658
3659 return Result;
3660 }
3661
3662 template<typename Derived>
TransformDependentSizedExtVectorType(TypeLocBuilder & TLB,DependentSizedExtVectorTypeLoc TL)3663 QualType TreeTransform<Derived>::TransformDependentSizedExtVectorType(
3664 TypeLocBuilder &TLB,
3665 DependentSizedExtVectorTypeLoc TL) {
3666 const DependentSizedExtVectorType *T = TL.getTypePtr();
3667
3668 // FIXME: ext vector locs should be nested
3669 QualType ElementType = getDerived().TransformType(T->getElementType());
3670 if (ElementType.isNull())
3671 return QualType();
3672
3673 // Vector sizes are not potentially evaluated contexts
3674 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
3675
3676 ExprResult Size = getDerived().TransformExpr(T->getSizeExpr());
3677 if (Size.isInvalid())
3678 return QualType();
3679
3680 QualType Result = TL.getType();
3681 if (getDerived().AlwaysRebuild() ||
3682 ElementType != T->getElementType() ||
3683 Size.get() != T->getSizeExpr()) {
3684 Result = getDerived().RebuildDependentSizedExtVectorType(ElementType,
3685 Size.take(),
3686 T->getAttributeLoc());
3687 if (Result.isNull())
3688 return QualType();
3689 }
3690
3691 // Result might be dependent or not.
3692 if (isa<DependentSizedExtVectorType>(Result)) {
3693 DependentSizedExtVectorTypeLoc NewTL
3694 = TLB.push<DependentSizedExtVectorTypeLoc>(Result);
3695 NewTL.setNameLoc(TL.getNameLoc());
3696 } else {
3697 ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
3698 NewTL.setNameLoc(TL.getNameLoc());
3699 }
3700
3701 return Result;
3702 }
3703
3704 template<typename Derived>
TransformVectorType(TypeLocBuilder & TLB,VectorTypeLoc TL)3705 QualType TreeTransform<Derived>::TransformVectorType(TypeLocBuilder &TLB,
3706 VectorTypeLoc TL) {
3707 const VectorType *T = TL.getTypePtr();
3708 QualType ElementType = getDerived().TransformType(T->getElementType());
3709 if (ElementType.isNull())
3710 return QualType();
3711
3712 QualType Result = TL.getType();
3713 if (getDerived().AlwaysRebuild() ||
3714 ElementType != T->getElementType()) {
3715 Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(),
3716 T->getVectorKind());
3717 if (Result.isNull())
3718 return QualType();
3719 }
3720
3721 VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result);
3722 NewTL.setNameLoc(TL.getNameLoc());
3723
3724 return Result;
3725 }
3726
3727 template<typename Derived>
TransformExtVectorType(TypeLocBuilder & TLB,ExtVectorTypeLoc TL)3728 QualType TreeTransform<Derived>::TransformExtVectorType(TypeLocBuilder &TLB,
3729 ExtVectorTypeLoc TL) {
3730 const VectorType *T = TL.getTypePtr();
3731 QualType ElementType = getDerived().TransformType(T->getElementType());
3732 if (ElementType.isNull())
3733 return QualType();
3734
3735 QualType Result = TL.getType();
3736 if (getDerived().AlwaysRebuild() ||
3737 ElementType != T->getElementType()) {
3738 Result = getDerived().RebuildExtVectorType(ElementType,
3739 T->getNumElements(),
3740 /*FIXME*/ SourceLocation());
3741 if (Result.isNull())
3742 return QualType();
3743 }
3744
3745 ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
3746 NewTL.setNameLoc(TL.getNameLoc());
3747
3748 return Result;
3749 }
3750
3751 template<typename Derived>
3752 ParmVarDecl *
TransformFunctionTypeParam(ParmVarDecl * OldParm,int indexAdjustment,llvm::Optional<unsigned> NumExpansions)3753 TreeTransform<Derived>::TransformFunctionTypeParam(ParmVarDecl *OldParm,
3754 int indexAdjustment,
3755 llvm::Optional<unsigned> NumExpansions) {
3756 TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo();
3757 TypeSourceInfo *NewDI = 0;
3758
3759 if (NumExpansions && isa<PackExpansionType>(OldDI->getType())) {
3760 // If we're substituting into a pack expansion type and we know the
3761 TypeLoc OldTL = OldDI->getTypeLoc();
3762 PackExpansionTypeLoc OldExpansionTL = cast<PackExpansionTypeLoc>(OldTL);
3763
3764 TypeLocBuilder TLB;
3765 TypeLoc NewTL = OldDI->getTypeLoc();
3766 TLB.reserve(NewTL.getFullDataSize());
3767
3768 QualType Result = getDerived().TransformType(TLB,
3769 OldExpansionTL.getPatternLoc());
3770 if (Result.isNull())
3771 return 0;
3772
3773 Result = RebuildPackExpansionType(Result,
3774 OldExpansionTL.getPatternLoc().getSourceRange(),
3775 OldExpansionTL.getEllipsisLoc(),
3776 NumExpansions);
3777 if (Result.isNull())
3778 return 0;
3779
3780 PackExpansionTypeLoc NewExpansionTL
3781 = TLB.push<PackExpansionTypeLoc>(Result);
3782 NewExpansionTL.setEllipsisLoc(OldExpansionTL.getEllipsisLoc());
3783 NewDI = TLB.getTypeSourceInfo(SemaRef.Context, Result);
3784 } else
3785 NewDI = getDerived().TransformType(OldDI);
3786 if (!NewDI)
3787 return 0;
3788
3789 if (NewDI == OldDI && indexAdjustment == 0)
3790 return OldParm;
3791
3792 ParmVarDecl *newParm = ParmVarDecl::Create(SemaRef.Context,
3793 OldParm->getDeclContext(),
3794 OldParm->getInnerLocStart(),
3795 OldParm->getLocation(),
3796 OldParm->getIdentifier(),
3797 NewDI->getType(),
3798 NewDI,
3799 OldParm->getStorageClass(),
3800 OldParm->getStorageClassAsWritten(),
3801 /* DefArg */ NULL);
3802 newParm->setScopeInfo(OldParm->getFunctionScopeDepth(),
3803 OldParm->getFunctionScopeIndex() + indexAdjustment);
3804 return newParm;
3805 }
3806
3807 template<typename Derived>
3808 bool TreeTransform<Derived>::
TransformFunctionTypeParams(SourceLocation Loc,ParmVarDecl ** Params,unsigned NumParams,const QualType * ParamTypes,llvm::SmallVectorImpl<QualType> & OutParamTypes,llvm::SmallVectorImpl<ParmVarDecl * > * PVars)3809 TransformFunctionTypeParams(SourceLocation Loc,
3810 ParmVarDecl **Params, unsigned NumParams,
3811 const QualType *ParamTypes,
3812 llvm::SmallVectorImpl<QualType> &OutParamTypes,
3813 llvm::SmallVectorImpl<ParmVarDecl*> *PVars) {
3814 int indexAdjustment = 0;
3815
3816 for (unsigned i = 0; i != NumParams; ++i) {
3817 if (ParmVarDecl *OldParm = Params[i]) {
3818 assert(OldParm->getFunctionScopeIndex() == i);
3819
3820 llvm::Optional<unsigned> NumExpansions;
3821 ParmVarDecl *NewParm = 0;
3822 if (OldParm->isParameterPack()) {
3823 // We have a function parameter pack that may need to be expanded.
3824 llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3825
3826 // Find the parameter packs that could be expanded.
3827 TypeLoc TL = OldParm->getTypeSourceInfo()->getTypeLoc();
3828 PackExpansionTypeLoc ExpansionTL = cast<PackExpansionTypeLoc>(TL);
3829 TypeLoc Pattern = ExpansionTL.getPatternLoc();
3830 SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
3831 assert(Unexpanded.size() > 0 && "Could not find parameter packs!");
3832
3833 // Determine whether we should expand the parameter packs.
3834 bool ShouldExpand = false;
3835 bool RetainExpansion = false;
3836 llvm::Optional<unsigned> OrigNumExpansions
3837 = ExpansionTL.getTypePtr()->getNumExpansions();
3838 NumExpansions = OrigNumExpansions;
3839 if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
3840 Pattern.getSourceRange(),
3841 Unexpanded.data(),
3842 Unexpanded.size(),
3843 ShouldExpand,
3844 RetainExpansion,
3845 NumExpansions)) {
3846 return true;
3847 }
3848
3849 if (ShouldExpand) {
3850 // Expand the function parameter pack into multiple, separate
3851 // parameters.
3852 getDerived().ExpandingFunctionParameterPack(OldParm);
3853 for (unsigned I = 0; I != *NumExpansions; ++I) {
3854 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
3855 ParmVarDecl *NewParm
3856 = getDerived().TransformFunctionTypeParam(OldParm,
3857 indexAdjustment++,
3858 OrigNumExpansions);
3859 if (!NewParm)
3860 return true;
3861
3862 OutParamTypes.push_back(NewParm->getType());
3863 if (PVars)
3864 PVars->push_back(NewParm);
3865 }
3866
3867 // If we're supposed to retain a pack expansion, do so by temporarily
3868 // forgetting the partially-substituted parameter pack.
3869 if (RetainExpansion) {
3870 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
3871 ParmVarDecl *NewParm
3872 = getDerived().TransformFunctionTypeParam(OldParm,
3873 indexAdjustment++,
3874 OrigNumExpansions);
3875 if (!NewParm)
3876 return true;
3877
3878 OutParamTypes.push_back(NewParm->getType());
3879 if (PVars)
3880 PVars->push_back(NewParm);
3881 }
3882
3883 // The next parameter should have the same adjustment as the
3884 // last thing we pushed, but we post-incremented indexAdjustment
3885 // on every push. Also, if we push nothing, the adjustment should
3886 // go down by one.
3887 indexAdjustment--;
3888
3889 // We're done with the pack expansion.
3890 continue;
3891 }
3892
3893 // We'll substitute the parameter now without expanding the pack
3894 // expansion.
3895 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
3896 NewParm = getDerived().TransformFunctionTypeParam(OldParm,
3897 indexAdjustment,
3898 NumExpansions);
3899 } else {
3900 NewParm = getDerived().TransformFunctionTypeParam(OldParm,
3901 indexAdjustment,
3902 llvm::Optional<unsigned>());
3903 }
3904
3905 if (!NewParm)
3906 return true;
3907
3908 OutParamTypes.push_back(NewParm->getType());
3909 if (PVars)
3910 PVars->push_back(NewParm);
3911 continue;
3912 }
3913
3914 // Deal with the possibility that we don't have a parameter
3915 // declaration for this parameter.
3916 QualType OldType = ParamTypes[i];
3917 bool IsPackExpansion = false;
3918 llvm::Optional<unsigned> NumExpansions;
3919 QualType NewType;
3920 if (const PackExpansionType *Expansion
3921 = dyn_cast<PackExpansionType>(OldType)) {
3922 // We have a function parameter pack that may need to be expanded.
3923 QualType Pattern = Expansion->getPattern();
3924 llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3925 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
3926
3927 // Determine whether we should expand the parameter packs.
3928 bool ShouldExpand = false;
3929 bool RetainExpansion = false;
3930 if (getDerived().TryExpandParameterPacks(Loc, SourceRange(),
3931 Unexpanded.data(),
3932 Unexpanded.size(),
3933 ShouldExpand,
3934 RetainExpansion,
3935 NumExpansions)) {
3936 return true;
3937 }
3938
3939 if (ShouldExpand) {
3940 // Expand the function parameter pack into multiple, separate
3941 // parameters.
3942 for (unsigned I = 0; I != *NumExpansions; ++I) {
3943 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
3944 QualType NewType = getDerived().TransformType(Pattern);
3945 if (NewType.isNull())
3946 return true;
3947
3948 OutParamTypes.push_back(NewType);
3949 if (PVars)
3950 PVars->push_back(0);
3951 }
3952
3953 // We're done with the pack expansion.
3954 continue;
3955 }
3956
3957 // If we're supposed to retain a pack expansion, do so by temporarily
3958 // forgetting the partially-substituted parameter pack.
3959 if (RetainExpansion) {
3960 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
3961 QualType NewType = getDerived().TransformType(Pattern);
3962 if (NewType.isNull())
3963 return true;
3964
3965 OutParamTypes.push_back(NewType);
3966 if (PVars)
3967 PVars->push_back(0);
3968 }
3969
3970 // We'll substitute the parameter now without expanding the pack
3971 // expansion.
3972 OldType = Expansion->getPattern();
3973 IsPackExpansion = true;
3974 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
3975 NewType = getDerived().TransformType(OldType);
3976 } else {
3977 NewType = getDerived().TransformType(OldType);
3978 }
3979
3980 if (NewType.isNull())
3981 return true;
3982
3983 if (IsPackExpansion)
3984 NewType = getSema().Context.getPackExpansionType(NewType,
3985 NumExpansions);
3986
3987 OutParamTypes.push_back(NewType);
3988 if (PVars)
3989 PVars->push_back(0);
3990 }
3991
3992 #ifndef NDEBUG
3993 if (PVars) {
3994 for (unsigned i = 0, e = PVars->size(); i != e; ++i)
3995 if (ParmVarDecl *parm = (*PVars)[i])
3996 assert(parm->getFunctionScopeIndex() == i);
3997 }
3998 #endif
3999
4000 return false;
4001 }
4002
4003 template<typename Derived>
4004 QualType
TransformFunctionProtoType(TypeLocBuilder & TLB,FunctionProtoTypeLoc TL)4005 TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB,
4006 FunctionProtoTypeLoc TL) {
4007 // Transform the parameters and return type.
4008 //
4009 // We instantiate in source order, with the return type first followed by
4010 // the parameters, because users tend to expect this (even if they shouldn't
4011 // rely on it!).
4012 //
4013 // When the function has a trailing return type, we instantiate the
4014 // parameters before the return type, since the return type can then refer
4015 // to the parameters themselves (via decltype, sizeof, etc.).
4016 //
4017 llvm::SmallVector<QualType, 4> ParamTypes;
4018 llvm::SmallVector<ParmVarDecl*, 4> ParamDecls;
4019 const FunctionProtoType *T = TL.getTypePtr();
4020
4021 QualType ResultType;
4022
4023 if (TL.getTrailingReturn()) {
4024 if (getDerived().TransformFunctionTypeParams(TL.getBeginLoc(),
4025 TL.getParmArray(),
4026 TL.getNumArgs(),
4027 TL.getTypePtr()->arg_type_begin(),
4028 ParamTypes, &ParamDecls))
4029 return QualType();
4030
4031 ResultType = getDerived().TransformType(TLB, TL.getResultLoc());
4032 if (ResultType.isNull())
4033 return QualType();
4034 }
4035 else {
4036 ResultType = getDerived().TransformType(TLB, TL.getResultLoc());
4037 if (ResultType.isNull())
4038 return QualType();
4039
4040 if (getDerived().TransformFunctionTypeParams(TL.getBeginLoc(),
4041 TL.getParmArray(),
4042 TL.getNumArgs(),
4043 TL.getTypePtr()->arg_type_begin(),
4044 ParamTypes, &ParamDecls))
4045 return QualType();
4046 }
4047
4048 QualType Result = TL.getType();
4049 if (getDerived().AlwaysRebuild() ||
4050 ResultType != T->getResultType() ||
4051 T->getNumArgs() != ParamTypes.size() ||
4052 !std::equal(T->arg_type_begin(), T->arg_type_end(), ParamTypes.begin())) {
4053 Result = getDerived().RebuildFunctionProtoType(ResultType,
4054 ParamTypes.data(),
4055 ParamTypes.size(),
4056 T->isVariadic(),
4057 T->getTypeQuals(),
4058 T->getRefQualifier(),
4059 T->getExtInfo());
4060 if (Result.isNull())
4061 return QualType();
4062 }
4063
4064 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
4065 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
4066 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
4067 NewTL.setTrailingReturn(TL.getTrailingReturn());
4068 for (unsigned i = 0, e = NewTL.getNumArgs(); i != e; ++i)
4069 NewTL.setArg(i, ParamDecls[i]);
4070
4071 return Result;
4072 }
4073
4074 template<typename Derived>
TransformFunctionNoProtoType(TypeLocBuilder & TLB,FunctionNoProtoTypeLoc TL)4075 QualType TreeTransform<Derived>::TransformFunctionNoProtoType(
4076 TypeLocBuilder &TLB,
4077 FunctionNoProtoTypeLoc TL) {
4078 const FunctionNoProtoType *T = TL.getTypePtr();
4079 QualType ResultType = getDerived().TransformType(TLB, TL.getResultLoc());
4080 if (ResultType.isNull())
4081 return QualType();
4082
4083 QualType Result = TL.getType();
4084 if (getDerived().AlwaysRebuild() ||
4085 ResultType != T->getResultType())
4086 Result = getDerived().RebuildFunctionNoProtoType(ResultType);
4087
4088 FunctionNoProtoTypeLoc NewTL = TLB.push<FunctionNoProtoTypeLoc>(Result);
4089 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
4090 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
4091 NewTL.setTrailingReturn(false);
4092
4093 return Result;
4094 }
4095
4096 template<typename Derived> QualType
TransformUnresolvedUsingType(TypeLocBuilder & TLB,UnresolvedUsingTypeLoc TL)4097 TreeTransform<Derived>::TransformUnresolvedUsingType(TypeLocBuilder &TLB,
4098 UnresolvedUsingTypeLoc TL) {
4099 const UnresolvedUsingType *T = TL.getTypePtr();
4100 Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl());
4101 if (!D)
4102 return QualType();
4103
4104 QualType Result = TL.getType();
4105 if (getDerived().AlwaysRebuild() || D != T->getDecl()) {
4106 Result = getDerived().RebuildUnresolvedUsingType(D);
4107 if (Result.isNull())
4108 return QualType();
4109 }
4110
4111 // We might get an arbitrary type spec type back. We should at
4112 // least always get a type spec type, though.
4113 TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result);
4114 NewTL.setNameLoc(TL.getNameLoc());
4115
4116 return Result;
4117 }
4118
4119 template<typename Derived>
TransformTypedefType(TypeLocBuilder & TLB,TypedefTypeLoc TL)4120 QualType TreeTransform<Derived>::TransformTypedefType(TypeLocBuilder &TLB,
4121 TypedefTypeLoc TL) {
4122 const TypedefType *T = TL.getTypePtr();
4123 TypedefNameDecl *Typedef
4124 = cast_or_null<TypedefNameDecl>(getDerived().TransformDecl(TL.getNameLoc(),
4125 T->getDecl()));
4126 if (!Typedef)
4127 return QualType();
4128
4129 QualType Result = TL.getType();
4130 if (getDerived().AlwaysRebuild() ||
4131 Typedef != T->getDecl()) {
4132 Result = getDerived().RebuildTypedefType(Typedef);
4133 if (Result.isNull())
4134 return QualType();
4135 }
4136
4137 TypedefTypeLoc NewTL = TLB.push<TypedefTypeLoc>(Result);
4138 NewTL.setNameLoc(TL.getNameLoc());
4139
4140 return Result;
4141 }
4142
4143 template<typename Derived>
TransformTypeOfExprType(TypeLocBuilder & TLB,TypeOfExprTypeLoc TL)4144 QualType TreeTransform<Derived>::TransformTypeOfExprType(TypeLocBuilder &TLB,
4145 TypeOfExprTypeLoc TL) {
4146 // typeof expressions are not potentially evaluated contexts
4147 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
4148
4149 ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr());
4150 if (E.isInvalid())
4151 return QualType();
4152
4153 QualType Result = TL.getType();
4154 if (getDerived().AlwaysRebuild() ||
4155 E.get() != TL.getUnderlyingExpr()) {
4156 Result = getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc());
4157 if (Result.isNull())
4158 return QualType();
4159 }
4160 else E.take();
4161
4162 TypeOfExprTypeLoc NewTL = TLB.push<TypeOfExprTypeLoc>(Result);
4163 NewTL.setTypeofLoc(TL.getTypeofLoc());
4164 NewTL.setLParenLoc(TL.getLParenLoc());
4165 NewTL.setRParenLoc(TL.getRParenLoc());
4166
4167 return Result;
4168 }
4169
4170 template<typename Derived>
TransformTypeOfType(TypeLocBuilder & TLB,TypeOfTypeLoc TL)4171 QualType TreeTransform<Derived>::TransformTypeOfType(TypeLocBuilder &TLB,
4172 TypeOfTypeLoc TL) {
4173 TypeSourceInfo* Old_Under_TI = TL.getUnderlyingTInfo();
4174 TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI);
4175 if (!New_Under_TI)
4176 return QualType();
4177
4178 QualType Result = TL.getType();
4179 if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) {
4180 Result = getDerived().RebuildTypeOfType(New_Under_TI->getType());
4181 if (Result.isNull())
4182 return QualType();
4183 }
4184
4185 TypeOfTypeLoc NewTL = TLB.push<TypeOfTypeLoc>(Result);
4186 NewTL.setTypeofLoc(TL.getTypeofLoc());
4187 NewTL.setLParenLoc(TL.getLParenLoc());
4188 NewTL.setRParenLoc(TL.getRParenLoc());
4189 NewTL.setUnderlyingTInfo(New_Under_TI);
4190
4191 return Result;
4192 }
4193
4194 template<typename Derived>
TransformDecltypeType(TypeLocBuilder & TLB,DecltypeTypeLoc TL)4195 QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB,
4196 DecltypeTypeLoc TL) {
4197 const DecltypeType *T = TL.getTypePtr();
4198
4199 // decltype expressions are not potentially evaluated contexts
4200 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
4201
4202 ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr());
4203 if (E.isInvalid())
4204 return QualType();
4205
4206 QualType Result = TL.getType();
4207 if (getDerived().AlwaysRebuild() ||
4208 E.get() != T->getUnderlyingExpr()) {
4209 Result = getDerived().RebuildDecltypeType(E.get(), TL.getNameLoc());
4210 if (Result.isNull())
4211 return QualType();
4212 }
4213 else E.take();
4214
4215 DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(Result);
4216 NewTL.setNameLoc(TL.getNameLoc());
4217
4218 return Result;
4219 }
4220
4221 template<typename Derived>
TransformUnaryTransformType(TypeLocBuilder & TLB,UnaryTransformTypeLoc TL)4222 QualType TreeTransform<Derived>::TransformUnaryTransformType(
4223 TypeLocBuilder &TLB,
4224 UnaryTransformTypeLoc TL) {
4225 QualType Result = TL.getType();
4226 if (Result->isDependentType()) {
4227 const UnaryTransformType *T = TL.getTypePtr();
4228 QualType NewBase =
4229 getDerived().TransformType(TL.getUnderlyingTInfo())->getType();
4230 Result = getDerived().RebuildUnaryTransformType(NewBase,
4231 T->getUTTKind(),
4232 TL.getKWLoc());
4233 if (Result.isNull())
4234 return QualType();
4235 }
4236
4237 UnaryTransformTypeLoc NewTL = TLB.push<UnaryTransformTypeLoc>(Result);
4238 NewTL.setKWLoc(TL.getKWLoc());
4239 NewTL.setParensRange(TL.getParensRange());
4240 NewTL.setUnderlyingTInfo(TL.getUnderlyingTInfo());
4241 return Result;
4242 }
4243
4244 template<typename Derived>
TransformAutoType(TypeLocBuilder & TLB,AutoTypeLoc TL)4245 QualType TreeTransform<Derived>::TransformAutoType(TypeLocBuilder &TLB,
4246 AutoTypeLoc TL) {
4247 const AutoType *T = TL.getTypePtr();
4248 QualType OldDeduced = T->getDeducedType();
4249 QualType NewDeduced;
4250 if (!OldDeduced.isNull()) {
4251 NewDeduced = getDerived().TransformType(OldDeduced);
4252 if (NewDeduced.isNull())
4253 return QualType();
4254 }
4255
4256 QualType Result = TL.getType();
4257 if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced) {
4258 Result = getDerived().RebuildAutoType(NewDeduced);
4259 if (Result.isNull())
4260 return QualType();
4261 }
4262
4263 AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
4264 NewTL.setNameLoc(TL.getNameLoc());
4265
4266 return Result;
4267 }
4268
4269 template<typename Derived>
TransformRecordType(TypeLocBuilder & TLB,RecordTypeLoc TL)4270 QualType TreeTransform<Derived>::TransformRecordType(TypeLocBuilder &TLB,
4271 RecordTypeLoc TL) {
4272 const RecordType *T = TL.getTypePtr();
4273 RecordDecl *Record
4274 = cast_or_null<RecordDecl>(getDerived().TransformDecl(TL.getNameLoc(),
4275 T->getDecl()));
4276 if (!Record)
4277 return QualType();
4278
4279 QualType Result = TL.getType();
4280 if (getDerived().AlwaysRebuild() ||
4281 Record != T->getDecl()) {
4282 Result = getDerived().RebuildRecordType(Record);
4283 if (Result.isNull())
4284 return QualType();
4285 }
4286
4287 RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
4288 NewTL.setNameLoc(TL.getNameLoc());
4289
4290 return Result;
4291 }
4292
4293 template<typename Derived>
TransformEnumType(TypeLocBuilder & TLB,EnumTypeLoc TL)4294 QualType TreeTransform<Derived>::TransformEnumType(TypeLocBuilder &TLB,
4295 EnumTypeLoc TL) {
4296 const EnumType *T = TL.getTypePtr();
4297 EnumDecl *Enum
4298 = cast_or_null<EnumDecl>(getDerived().TransformDecl(TL.getNameLoc(),
4299 T->getDecl()));
4300 if (!Enum)
4301 return QualType();
4302
4303 QualType Result = TL.getType();
4304 if (getDerived().AlwaysRebuild() ||
4305 Enum != T->getDecl()) {
4306 Result = getDerived().RebuildEnumType(Enum);
4307 if (Result.isNull())
4308 return QualType();
4309 }
4310
4311 EnumTypeLoc NewTL = TLB.push<EnumTypeLoc>(Result);
4312 NewTL.setNameLoc(TL.getNameLoc());
4313
4314 return Result;
4315 }
4316
4317 template<typename Derived>
TransformInjectedClassNameType(TypeLocBuilder & TLB,InjectedClassNameTypeLoc TL)4318 QualType TreeTransform<Derived>::TransformInjectedClassNameType(
4319 TypeLocBuilder &TLB,
4320 InjectedClassNameTypeLoc TL) {
4321 Decl *D = getDerived().TransformDecl(TL.getNameLoc(),
4322 TL.getTypePtr()->getDecl());
4323 if (!D) return QualType();
4324
4325 QualType T = SemaRef.Context.getTypeDeclType(cast<TypeDecl>(D));
4326 TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc());
4327 return T;
4328 }
4329
4330 template<typename Derived>
TransformTemplateTypeParmType(TypeLocBuilder & TLB,TemplateTypeParmTypeLoc TL)4331 QualType TreeTransform<Derived>::TransformTemplateTypeParmType(
4332 TypeLocBuilder &TLB,
4333 TemplateTypeParmTypeLoc TL) {
4334 return TransformTypeSpecType(TLB, TL);
4335 }
4336
4337 template<typename Derived>
TransformSubstTemplateTypeParmType(TypeLocBuilder & TLB,SubstTemplateTypeParmTypeLoc TL)4338 QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmType(
4339 TypeLocBuilder &TLB,
4340 SubstTemplateTypeParmTypeLoc TL) {
4341 const SubstTemplateTypeParmType *T = TL.getTypePtr();
4342
4343 // Substitute into the replacement type, which itself might involve something
4344 // that needs to be transformed. This only tends to occur with default
4345 // template arguments of template template parameters.
4346 TemporaryBase Rebase(*this, TL.getNameLoc(), DeclarationName());
4347 QualType Replacement = getDerived().TransformType(T->getReplacementType());
4348 if (Replacement.isNull())
4349 return QualType();
4350
4351 // Always canonicalize the replacement type.
4352 Replacement = SemaRef.Context.getCanonicalType(Replacement);
4353 QualType Result
4354 = SemaRef.Context.getSubstTemplateTypeParmType(T->getReplacedParameter(),
4355 Replacement);
4356
4357 // Propagate type-source information.
4358 SubstTemplateTypeParmTypeLoc NewTL
4359 = TLB.push<SubstTemplateTypeParmTypeLoc>(Result);
4360 NewTL.setNameLoc(TL.getNameLoc());
4361 return Result;
4362
4363 }
4364
4365 template<typename Derived>
TransformSubstTemplateTypeParmPackType(TypeLocBuilder & TLB,SubstTemplateTypeParmPackTypeLoc TL)4366 QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmPackType(
4367 TypeLocBuilder &TLB,
4368 SubstTemplateTypeParmPackTypeLoc TL) {
4369 return TransformTypeSpecType(TLB, TL);
4370 }
4371
4372 template<typename Derived>
TransformTemplateSpecializationType(TypeLocBuilder & TLB,TemplateSpecializationTypeLoc TL)4373 QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
4374 TypeLocBuilder &TLB,
4375 TemplateSpecializationTypeLoc TL) {
4376 const TemplateSpecializationType *T = TL.getTypePtr();
4377
4378 // The nested-name-specifier never matters in a TemplateSpecializationType,
4379 // because we can't have a dependent nested-name-specifier anyway.
4380 CXXScopeSpec SS;
4381 TemplateName Template
4382 = getDerived().TransformTemplateName(SS, T->getTemplateName(),
4383 TL.getTemplateNameLoc());
4384 if (Template.isNull())
4385 return QualType();
4386
4387 return getDerived().TransformTemplateSpecializationType(TLB, TL, Template);
4388 }
4389
4390 namespace {
4391 /// \brief Simple iterator that traverses the template arguments in a
4392 /// container that provides a \c getArgLoc() member function.
4393 ///
4394 /// This iterator is intended to be used with the iterator form of
4395 /// \c TreeTransform<Derived>::TransformTemplateArguments().
4396 template<typename ArgLocContainer>
4397 class TemplateArgumentLocContainerIterator {
4398 ArgLocContainer *Container;
4399 unsigned Index;
4400
4401 public:
4402 typedef TemplateArgumentLoc value_type;
4403 typedef TemplateArgumentLoc reference;
4404 typedef int difference_type;
4405 typedef std::input_iterator_tag iterator_category;
4406
4407 class pointer {
4408 TemplateArgumentLoc Arg;
4409
4410 public:
pointer(TemplateArgumentLoc Arg)4411 explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
4412
4413 const TemplateArgumentLoc *operator->() const {
4414 return &Arg;
4415 }
4416 };
4417
4418
TemplateArgumentLocContainerIterator()4419 TemplateArgumentLocContainerIterator() {}
4420
TemplateArgumentLocContainerIterator(ArgLocContainer & Container,unsigned Index)4421 TemplateArgumentLocContainerIterator(ArgLocContainer &Container,
4422 unsigned Index)
4423 : Container(&Container), Index(Index) { }
4424
4425 TemplateArgumentLocContainerIterator &operator++() {
4426 ++Index;
4427 return *this;
4428 }
4429
4430 TemplateArgumentLocContainerIterator operator++(int) {
4431 TemplateArgumentLocContainerIterator Old(*this);
4432 ++(*this);
4433 return Old;
4434 }
4435
4436 TemplateArgumentLoc operator*() const {
4437 return Container->getArgLoc(Index);
4438 }
4439
4440 pointer operator->() const {
4441 return pointer(Container->getArgLoc(Index));
4442 }
4443
4444 friend bool operator==(const TemplateArgumentLocContainerIterator &X,
4445 const TemplateArgumentLocContainerIterator &Y) {
4446 return X.Container == Y.Container && X.Index == Y.Index;
4447 }
4448
4449 friend bool operator!=(const TemplateArgumentLocContainerIterator &X,
4450 const TemplateArgumentLocContainerIterator &Y) {
4451 return !(X == Y);
4452 }
4453 };
4454 }
4455
4456
4457 template <typename Derived>
TransformTemplateSpecializationType(TypeLocBuilder & TLB,TemplateSpecializationTypeLoc TL,TemplateName Template)4458 QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
4459 TypeLocBuilder &TLB,
4460 TemplateSpecializationTypeLoc TL,
4461 TemplateName Template) {
4462 TemplateArgumentListInfo NewTemplateArgs;
4463 NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
4464 NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
4465 typedef TemplateArgumentLocContainerIterator<TemplateSpecializationTypeLoc>
4466 ArgIterator;
4467 if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
4468 ArgIterator(TL, TL.getNumArgs()),
4469 NewTemplateArgs))
4470 return QualType();
4471
4472 // FIXME: maybe don't rebuild if all the template arguments are the same.
4473
4474 QualType Result =
4475 getDerived().RebuildTemplateSpecializationType(Template,
4476 TL.getTemplateNameLoc(),
4477 NewTemplateArgs);
4478
4479 if (!Result.isNull()) {
4480 // Specializations of template template parameters are represented as
4481 // TemplateSpecializationTypes, and substitution of type alias templates
4482 // within a dependent context can transform them into
4483 // DependentTemplateSpecializationTypes.
4484 if (isa<DependentTemplateSpecializationType>(Result)) {
4485 DependentTemplateSpecializationTypeLoc NewTL
4486 = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
4487 NewTL.setKeywordLoc(TL.getTemplateNameLoc());
4488 NewTL.setQualifierLoc(NestedNameSpecifierLoc());
4489 NewTL.setNameLoc(TL.getTemplateNameLoc());
4490 NewTL.setLAngleLoc(TL.getLAngleLoc());
4491 NewTL.setRAngleLoc(TL.getRAngleLoc());
4492 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
4493 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
4494 return Result;
4495 }
4496
4497 TemplateSpecializationTypeLoc NewTL
4498 = TLB.push<TemplateSpecializationTypeLoc>(Result);
4499 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
4500 NewTL.setLAngleLoc(TL.getLAngleLoc());
4501 NewTL.setRAngleLoc(TL.getRAngleLoc());
4502 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
4503 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
4504 }
4505
4506 return Result;
4507 }
4508
4509 template <typename Derived>
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL,TemplateName Template,CXXScopeSpec & SS)4510 QualType TreeTransform<Derived>::TransformDependentTemplateSpecializationType(
4511 TypeLocBuilder &TLB,
4512 DependentTemplateSpecializationTypeLoc TL,
4513 TemplateName Template,
4514 CXXScopeSpec &SS) {
4515 TemplateArgumentListInfo NewTemplateArgs;
4516 NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
4517 NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
4518 typedef TemplateArgumentLocContainerIterator<
4519 DependentTemplateSpecializationTypeLoc> ArgIterator;
4520 if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
4521 ArgIterator(TL, TL.getNumArgs()),
4522 NewTemplateArgs))
4523 return QualType();
4524
4525 // FIXME: maybe don't rebuild if all the template arguments are the same.
4526
4527 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4528 QualType Result
4529 = getSema().Context.getDependentTemplateSpecializationType(
4530 TL.getTypePtr()->getKeyword(),
4531 DTN->getQualifier(),
4532 DTN->getIdentifier(),
4533 NewTemplateArgs);
4534
4535 DependentTemplateSpecializationTypeLoc NewTL
4536 = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
4537 NewTL.setKeywordLoc(TL.getKeywordLoc());
4538
4539 NewTL.setQualifierLoc(SS.getWithLocInContext(SemaRef.Context));
4540 NewTL.setNameLoc(TL.getNameLoc());
4541 NewTL.setLAngleLoc(TL.getLAngleLoc());
4542 NewTL.setRAngleLoc(TL.getRAngleLoc());
4543 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
4544 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
4545 return Result;
4546 }
4547
4548 QualType Result
4549 = getDerived().RebuildTemplateSpecializationType(Template,
4550 TL.getNameLoc(),
4551 NewTemplateArgs);
4552
4553 if (!Result.isNull()) {
4554 /// FIXME: Wrap this in an elaborated-type-specifier?
4555 TemplateSpecializationTypeLoc NewTL
4556 = TLB.push<TemplateSpecializationTypeLoc>(Result);
4557 NewTL.setTemplateNameLoc(TL.getNameLoc());
4558 NewTL.setLAngleLoc(TL.getLAngleLoc());
4559 NewTL.setRAngleLoc(TL.getRAngleLoc());
4560 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
4561 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
4562 }
4563
4564 return Result;
4565 }
4566
4567 template<typename Derived>
4568 QualType
TransformElaboratedType(TypeLocBuilder & TLB,ElaboratedTypeLoc TL)4569 TreeTransform<Derived>::TransformElaboratedType(TypeLocBuilder &TLB,
4570 ElaboratedTypeLoc TL) {
4571 const ElaboratedType *T = TL.getTypePtr();
4572
4573 NestedNameSpecifierLoc QualifierLoc;
4574 // NOTE: the qualifier in an ElaboratedType is optional.
4575 if (TL.getQualifierLoc()) {
4576 QualifierLoc
4577 = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
4578 if (!QualifierLoc)
4579 return QualType();
4580 }
4581
4582 QualType NamedT = getDerived().TransformType(TLB, TL.getNamedTypeLoc());
4583 if (NamedT.isNull())
4584 return QualType();
4585
4586 // C++0x [dcl.type.elab]p2:
4587 // If the identifier resolves to a typedef-name or the simple-template-id
4588 // resolves to an alias template specialization, the
4589 // elaborated-type-specifier is ill-formed.
4590 if (T->getKeyword() != ETK_None && T->getKeyword() != ETK_Typename) {
4591 if (const TemplateSpecializationType *TST =
4592 NamedT->getAs<TemplateSpecializationType>()) {
4593 TemplateName Template = TST->getTemplateName();
4594 if (TypeAliasTemplateDecl *TAT =
4595 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
4596 SemaRef.Diag(TL.getNamedTypeLoc().getBeginLoc(),
4597 diag::err_tag_reference_non_tag) << 4;
4598 SemaRef.Diag(TAT->getLocation(), diag::note_declared_at);
4599 }
4600 }
4601 }
4602
4603 QualType Result = TL.getType();
4604 if (getDerived().AlwaysRebuild() ||
4605 QualifierLoc != TL.getQualifierLoc() ||
4606 NamedT != T->getNamedType()) {
4607 Result = getDerived().RebuildElaboratedType(TL.getKeywordLoc(),
4608 T->getKeyword(),
4609 QualifierLoc, NamedT);
4610 if (Result.isNull())
4611 return QualType();
4612 }
4613
4614 ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
4615 NewTL.setKeywordLoc(TL.getKeywordLoc());
4616 NewTL.setQualifierLoc(QualifierLoc);
4617 return Result;
4618 }
4619
4620 template<typename Derived>
TransformAttributedType(TypeLocBuilder & TLB,AttributedTypeLoc TL)4621 QualType TreeTransform<Derived>::TransformAttributedType(
4622 TypeLocBuilder &TLB,
4623 AttributedTypeLoc TL) {
4624 const AttributedType *oldType = TL.getTypePtr();
4625 QualType modifiedType = getDerived().TransformType(TLB, TL.getModifiedLoc());
4626 if (modifiedType.isNull())
4627 return QualType();
4628
4629 QualType result = TL.getType();
4630
4631 // FIXME: dependent operand expressions?
4632 if (getDerived().AlwaysRebuild() ||
4633 modifiedType != oldType->getModifiedType()) {
4634 // TODO: this is really lame; we should really be rebuilding the
4635 // equivalent type from first principles.
4636 QualType equivalentType
4637 = getDerived().TransformType(oldType->getEquivalentType());
4638 if (equivalentType.isNull())
4639 return QualType();
4640 result = SemaRef.Context.getAttributedType(oldType->getAttrKind(),
4641 modifiedType,
4642 equivalentType);
4643 }
4644
4645 AttributedTypeLoc newTL = TLB.push<AttributedTypeLoc>(result);
4646 newTL.setAttrNameLoc(TL.getAttrNameLoc());
4647 if (TL.hasAttrOperand())
4648 newTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
4649 if (TL.hasAttrExprOperand())
4650 newTL.setAttrExprOperand(TL.getAttrExprOperand());
4651 else if (TL.hasAttrEnumOperand())
4652 newTL.setAttrEnumOperandLoc(TL.getAttrEnumOperandLoc());
4653
4654 return result;
4655 }
4656
4657 template<typename Derived>
4658 QualType
TransformParenType(TypeLocBuilder & TLB,ParenTypeLoc TL)4659 TreeTransform<Derived>::TransformParenType(TypeLocBuilder &TLB,
4660 ParenTypeLoc TL) {
4661 QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc());
4662 if (Inner.isNull())
4663 return QualType();
4664
4665 QualType Result = TL.getType();
4666 if (getDerived().AlwaysRebuild() ||
4667 Inner != TL.getInnerLoc().getType()) {
4668 Result = getDerived().RebuildParenType(Inner);
4669 if (Result.isNull())
4670 return QualType();
4671 }
4672
4673 ParenTypeLoc NewTL = TLB.push<ParenTypeLoc>(Result);
4674 NewTL.setLParenLoc(TL.getLParenLoc());
4675 NewTL.setRParenLoc(TL.getRParenLoc());
4676 return Result;
4677 }
4678
4679 template<typename Derived>
TransformDependentNameType(TypeLocBuilder & TLB,DependentNameTypeLoc TL)4680 QualType TreeTransform<Derived>::TransformDependentNameType(TypeLocBuilder &TLB,
4681 DependentNameTypeLoc TL) {
4682 const DependentNameType *T = TL.getTypePtr();
4683
4684 NestedNameSpecifierLoc QualifierLoc
4685 = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
4686 if (!QualifierLoc)
4687 return QualType();
4688
4689 QualType Result
4690 = getDerived().RebuildDependentNameType(T->getKeyword(),
4691 TL.getKeywordLoc(),
4692 QualifierLoc,
4693 T->getIdentifier(),
4694 TL.getNameLoc());
4695 if (Result.isNull())
4696 return QualType();
4697
4698 if (const ElaboratedType* ElabT = Result->getAs<ElaboratedType>()) {
4699 QualType NamedT = ElabT->getNamedType();
4700 TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc());
4701
4702 ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
4703 NewTL.setKeywordLoc(TL.getKeywordLoc());
4704 NewTL.setQualifierLoc(QualifierLoc);
4705 } else {
4706 DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
4707 NewTL.setKeywordLoc(TL.getKeywordLoc());
4708 NewTL.setQualifierLoc(QualifierLoc);
4709 NewTL.setNameLoc(TL.getNameLoc());
4710 }
4711 return Result;
4712 }
4713
4714 template<typename Derived>
4715 QualType TreeTransform<Derived>::
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL)4716 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
4717 DependentTemplateSpecializationTypeLoc TL) {
4718 NestedNameSpecifierLoc QualifierLoc;
4719 if (TL.getQualifierLoc()) {
4720 QualifierLoc
4721 = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
4722 if (!QualifierLoc)
4723 return QualType();
4724 }
4725
4726 return getDerived()
4727 .TransformDependentTemplateSpecializationType(TLB, TL, QualifierLoc);
4728 }
4729
4730 template<typename Derived>
4731 QualType TreeTransform<Derived>::
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL,NestedNameSpecifierLoc QualifierLoc)4732 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
4733 DependentTemplateSpecializationTypeLoc TL,
4734 NestedNameSpecifierLoc QualifierLoc) {
4735 const DependentTemplateSpecializationType *T = TL.getTypePtr();
4736
4737 TemplateArgumentListInfo NewTemplateArgs;
4738 NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
4739 NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
4740
4741 typedef TemplateArgumentLocContainerIterator<
4742 DependentTemplateSpecializationTypeLoc> ArgIterator;
4743 if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
4744 ArgIterator(TL, TL.getNumArgs()),
4745 NewTemplateArgs))
4746 return QualType();
4747
4748 QualType Result
4749 = getDerived().RebuildDependentTemplateSpecializationType(T->getKeyword(),
4750 QualifierLoc,
4751 T->getIdentifier(),
4752 TL.getNameLoc(),
4753 NewTemplateArgs);
4754 if (Result.isNull())
4755 return QualType();
4756
4757 if (const ElaboratedType *ElabT = dyn_cast<ElaboratedType>(Result)) {
4758 QualType NamedT = ElabT->getNamedType();
4759
4760 // Copy information relevant to the template specialization.
4761 TemplateSpecializationTypeLoc NamedTL
4762 = TLB.push<TemplateSpecializationTypeLoc>(NamedT);
4763 NamedTL.setTemplateNameLoc(TL.getNameLoc());
4764 NamedTL.setLAngleLoc(TL.getLAngleLoc());
4765 NamedTL.setRAngleLoc(TL.getRAngleLoc());
4766 for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
4767 NamedTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
4768
4769 // Copy information relevant to the elaborated type.
4770 ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
4771 NewTL.setKeywordLoc(TL.getKeywordLoc());
4772 NewTL.setQualifierLoc(QualifierLoc);
4773 } else if (isa<DependentTemplateSpecializationType>(Result)) {
4774 DependentTemplateSpecializationTypeLoc SpecTL
4775 = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
4776 SpecTL.setKeywordLoc(TL.getKeywordLoc());
4777 SpecTL.setQualifierLoc(QualifierLoc);
4778 SpecTL.setNameLoc(TL.getNameLoc());
4779 SpecTL.setLAngleLoc(TL.getLAngleLoc());
4780 SpecTL.setRAngleLoc(TL.getRAngleLoc());
4781 for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
4782 SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
4783 } else {
4784 TemplateSpecializationTypeLoc SpecTL
4785 = TLB.push<TemplateSpecializationTypeLoc>(Result);
4786 SpecTL.setTemplateNameLoc(TL.getNameLoc());
4787 SpecTL.setLAngleLoc(TL.getLAngleLoc());
4788 SpecTL.setRAngleLoc(TL.getRAngleLoc());
4789 for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
4790 SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
4791 }
4792 return Result;
4793 }
4794
4795 template<typename Derived>
TransformPackExpansionType(TypeLocBuilder & TLB,PackExpansionTypeLoc TL)4796 QualType TreeTransform<Derived>::TransformPackExpansionType(TypeLocBuilder &TLB,
4797 PackExpansionTypeLoc TL) {
4798 QualType Pattern
4799 = getDerived().TransformType(TLB, TL.getPatternLoc());
4800 if (Pattern.isNull())
4801 return QualType();
4802
4803 QualType Result = TL.getType();
4804 if (getDerived().AlwaysRebuild() ||
4805 Pattern != TL.getPatternLoc().getType()) {
4806 Result = getDerived().RebuildPackExpansionType(Pattern,
4807 TL.getPatternLoc().getSourceRange(),
4808 TL.getEllipsisLoc(),
4809 TL.getTypePtr()->getNumExpansions());
4810 if (Result.isNull())
4811 return QualType();
4812 }
4813
4814 PackExpansionTypeLoc NewT = TLB.push<PackExpansionTypeLoc>(Result);
4815 NewT.setEllipsisLoc(TL.getEllipsisLoc());
4816 return Result;
4817 }
4818
4819 template<typename Derived>
4820 QualType
TransformObjCInterfaceType(TypeLocBuilder & TLB,ObjCInterfaceTypeLoc TL)4821 TreeTransform<Derived>::TransformObjCInterfaceType(TypeLocBuilder &TLB,
4822 ObjCInterfaceTypeLoc TL) {
4823 // ObjCInterfaceType is never dependent.
4824 TLB.pushFullCopy(TL);
4825 return TL.getType();
4826 }
4827
4828 template<typename Derived>
4829 QualType
TransformObjCObjectType(TypeLocBuilder & TLB,ObjCObjectTypeLoc TL)4830 TreeTransform<Derived>::TransformObjCObjectType(TypeLocBuilder &TLB,
4831 ObjCObjectTypeLoc TL) {
4832 // ObjCObjectType is never dependent.
4833 TLB.pushFullCopy(TL);
4834 return TL.getType();
4835 }
4836
4837 template<typename Derived>
4838 QualType
TransformObjCObjectPointerType(TypeLocBuilder & TLB,ObjCObjectPointerTypeLoc TL)4839 TreeTransform<Derived>::TransformObjCObjectPointerType(TypeLocBuilder &TLB,
4840 ObjCObjectPointerTypeLoc TL) {
4841 // ObjCObjectPointerType is never dependent.
4842 TLB.pushFullCopy(TL);
4843 return TL.getType();
4844 }
4845
4846 //===----------------------------------------------------------------------===//
4847 // Statement transformation
4848 //===----------------------------------------------------------------------===//
4849 template<typename Derived>
4850 StmtResult
TransformNullStmt(NullStmt * S)4851 TreeTransform<Derived>::TransformNullStmt(NullStmt *S) {
4852 return SemaRef.Owned(S);
4853 }
4854
4855 template<typename Derived>
4856 StmtResult
TransformCompoundStmt(CompoundStmt * S)4857 TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S) {
4858 return getDerived().TransformCompoundStmt(S, false);
4859 }
4860
4861 template<typename Derived>
4862 StmtResult
TransformCompoundStmt(CompoundStmt * S,bool IsStmtExpr)4863 TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S,
4864 bool IsStmtExpr) {
4865 bool SubStmtInvalid = false;
4866 bool SubStmtChanged = false;
4867 ASTOwningVector<Stmt*> Statements(getSema());
4868 for (CompoundStmt::body_iterator B = S->body_begin(), BEnd = S->body_end();
4869 B != BEnd; ++B) {
4870 StmtResult Result = getDerived().TransformStmt(*B);
4871 if (Result.isInvalid()) {
4872 // Immediately fail if this was a DeclStmt, since it's very
4873 // likely that this will cause problems for future statements.
4874 if (isa<DeclStmt>(*B))
4875 return StmtError();
4876
4877 // Otherwise, just keep processing substatements and fail later.
4878 SubStmtInvalid = true;
4879 continue;
4880 }
4881
4882 SubStmtChanged = SubStmtChanged || Result.get() != *B;
4883 Statements.push_back(Result.takeAs<Stmt>());
4884 }
4885
4886 if (SubStmtInvalid)
4887 return StmtError();
4888
4889 if (!getDerived().AlwaysRebuild() &&
4890 !SubStmtChanged)
4891 return SemaRef.Owned(S);
4892
4893 return getDerived().RebuildCompoundStmt(S->getLBracLoc(),
4894 move_arg(Statements),
4895 S->getRBracLoc(),
4896 IsStmtExpr);
4897 }
4898
4899 template<typename Derived>
4900 StmtResult
TransformCaseStmt(CaseStmt * S)4901 TreeTransform<Derived>::TransformCaseStmt(CaseStmt *S) {
4902 ExprResult LHS, RHS;
4903 {
4904 // The case value expressions are not potentially evaluated.
4905 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
4906
4907 // Transform the left-hand case value.
4908 LHS = getDerived().TransformExpr(S->getLHS());
4909 if (LHS.isInvalid())
4910 return StmtError();
4911
4912 // Transform the right-hand case value (for the GNU case-range extension).
4913 RHS = getDerived().TransformExpr(S->getRHS());
4914 if (RHS.isInvalid())
4915 return StmtError();
4916 }
4917
4918 // Build the case statement.
4919 // Case statements are always rebuilt so that they will attached to their
4920 // transformed switch statement.
4921 StmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(),
4922 LHS.get(),
4923 S->getEllipsisLoc(),
4924 RHS.get(),
4925 S->getColonLoc());
4926 if (Case.isInvalid())
4927 return StmtError();
4928
4929 // Transform the statement following the case
4930 StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
4931 if (SubStmt.isInvalid())
4932 return StmtError();
4933
4934 // Attach the body to the case statement
4935 return getDerived().RebuildCaseStmtBody(Case.get(), SubStmt.get());
4936 }
4937
4938 template<typename Derived>
4939 StmtResult
TransformDefaultStmt(DefaultStmt * S)4940 TreeTransform<Derived>::TransformDefaultStmt(DefaultStmt *S) {
4941 // Transform the statement following the default case
4942 StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
4943 if (SubStmt.isInvalid())
4944 return StmtError();
4945
4946 // Default statements are always rebuilt
4947 return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(),
4948 SubStmt.get());
4949 }
4950
4951 template<typename Derived>
4952 StmtResult
TransformLabelStmt(LabelStmt * S)4953 TreeTransform<Derived>::TransformLabelStmt(LabelStmt *S) {
4954 StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
4955 if (SubStmt.isInvalid())
4956 return StmtError();
4957
4958 Decl *LD = getDerived().TransformDecl(S->getDecl()->getLocation(),
4959 S->getDecl());
4960 if (!LD)
4961 return StmtError();
4962
4963
4964 // FIXME: Pass the real colon location in.
4965 return getDerived().RebuildLabelStmt(S->getIdentLoc(),
4966 cast<LabelDecl>(LD), SourceLocation(),
4967 SubStmt.get());
4968 }
4969
4970 template<typename Derived>
4971 StmtResult
TransformIfStmt(IfStmt * S)4972 TreeTransform<Derived>::TransformIfStmt(IfStmt *S) {
4973 // Transform the condition
4974 ExprResult Cond;
4975 VarDecl *ConditionVar = 0;
4976 if (S->getConditionVariable()) {
4977 ConditionVar
4978 = cast_or_null<VarDecl>(
4979 getDerived().TransformDefinition(
4980 S->getConditionVariable()->getLocation(),
4981 S->getConditionVariable()));
4982 if (!ConditionVar)
4983 return StmtError();
4984 } else {
4985 Cond = getDerived().TransformExpr(S->getCond());
4986
4987 if (Cond.isInvalid())
4988 return StmtError();
4989
4990 // Convert the condition to a boolean value.
4991 if (S->getCond()) {
4992 ExprResult CondE = getSema().ActOnBooleanCondition(0, S->getIfLoc(),
4993 Cond.get());
4994 if (CondE.isInvalid())
4995 return StmtError();
4996
4997 Cond = CondE.get();
4998 }
4999 }
5000
5001 Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take()));
5002 if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
5003 return StmtError();
5004
5005 // Transform the "then" branch.
5006 StmtResult Then = getDerived().TransformStmt(S->getThen());
5007 if (Then.isInvalid())
5008 return StmtError();
5009
5010 // Transform the "else" branch.
5011 StmtResult Else = getDerived().TransformStmt(S->getElse());
5012 if (Else.isInvalid())
5013 return StmtError();
5014
5015 if (!getDerived().AlwaysRebuild() &&
5016 FullCond.get() == S->getCond() &&
5017 ConditionVar == S->getConditionVariable() &&
5018 Then.get() == S->getThen() &&
5019 Else.get() == S->getElse())
5020 return SemaRef.Owned(S);
5021
5022 return getDerived().RebuildIfStmt(S->getIfLoc(), FullCond, ConditionVar,
5023 Then.get(),
5024 S->getElseLoc(), Else.get());
5025 }
5026
5027 template<typename Derived>
5028 StmtResult
TransformSwitchStmt(SwitchStmt * S)5029 TreeTransform<Derived>::TransformSwitchStmt(SwitchStmt *S) {
5030 // Transform the condition.
5031 ExprResult Cond;
5032 VarDecl *ConditionVar = 0;
5033 if (S->getConditionVariable()) {
5034 ConditionVar
5035 = cast_or_null<VarDecl>(
5036 getDerived().TransformDefinition(
5037 S->getConditionVariable()->getLocation(),
5038 S->getConditionVariable()));
5039 if (!ConditionVar)
5040 return StmtError();
5041 } else {
5042 Cond = getDerived().TransformExpr(S->getCond());
5043
5044 if (Cond.isInvalid())
5045 return StmtError();
5046 }
5047
5048 // Rebuild the switch statement.
5049 StmtResult Switch
5050 = getDerived().RebuildSwitchStmtStart(S->getSwitchLoc(), Cond.get(),
5051 ConditionVar);
5052 if (Switch.isInvalid())
5053 return StmtError();
5054
5055 // Transform the body of the switch statement.
5056 StmtResult Body = getDerived().TransformStmt(S->getBody());
5057 if (Body.isInvalid())
5058 return StmtError();
5059
5060 // Complete the switch statement.
5061 return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), Switch.get(),
5062 Body.get());
5063 }
5064
5065 template<typename Derived>
5066 StmtResult
TransformWhileStmt(WhileStmt * S)5067 TreeTransform<Derived>::TransformWhileStmt(WhileStmt *S) {
5068 // Transform the condition
5069 ExprResult Cond;
5070 VarDecl *ConditionVar = 0;
5071 if (S->getConditionVariable()) {
5072 ConditionVar
5073 = cast_or_null<VarDecl>(
5074 getDerived().TransformDefinition(
5075 S->getConditionVariable()->getLocation(),
5076 S->getConditionVariable()));
5077 if (!ConditionVar)
5078 return StmtError();
5079 } else {
5080 Cond = getDerived().TransformExpr(S->getCond());
5081
5082 if (Cond.isInvalid())
5083 return StmtError();
5084
5085 if (S->getCond()) {
5086 // Convert the condition to a boolean value.
5087 ExprResult CondE = getSema().ActOnBooleanCondition(0, S->getWhileLoc(),
5088 Cond.get());
5089 if (CondE.isInvalid())
5090 return StmtError();
5091 Cond = CondE;
5092 }
5093 }
5094
5095 Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take()));
5096 if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
5097 return StmtError();
5098
5099 // Transform the body
5100 StmtResult Body = getDerived().TransformStmt(S->getBody());
5101 if (Body.isInvalid())
5102 return StmtError();
5103
5104 if (!getDerived().AlwaysRebuild() &&
5105 FullCond.get() == S->getCond() &&
5106 ConditionVar == S->getConditionVariable() &&
5107 Body.get() == S->getBody())
5108 return Owned(S);
5109
5110 return getDerived().RebuildWhileStmt(S->getWhileLoc(), FullCond,
5111 ConditionVar, Body.get());
5112 }
5113
5114 template<typename Derived>
5115 StmtResult
TransformDoStmt(DoStmt * S)5116 TreeTransform<Derived>::TransformDoStmt(DoStmt *S) {
5117 // Transform the body
5118 StmtResult Body = getDerived().TransformStmt(S->getBody());
5119 if (Body.isInvalid())
5120 return StmtError();
5121
5122 // Transform the condition
5123 ExprResult Cond = getDerived().TransformExpr(S->getCond());
5124 if (Cond.isInvalid())
5125 return StmtError();
5126
5127 if (!getDerived().AlwaysRebuild() &&
5128 Cond.get() == S->getCond() &&
5129 Body.get() == S->getBody())
5130 return SemaRef.Owned(S);
5131
5132 return getDerived().RebuildDoStmt(S->getDoLoc(), Body.get(), S->getWhileLoc(),
5133 /*FIXME:*/S->getWhileLoc(), Cond.get(),
5134 S->getRParenLoc());
5135 }
5136
5137 template<typename Derived>
5138 StmtResult
TransformForStmt(ForStmt * S)5139 TreeTransform<Derived>::TransformForStmt(ForStmt *S) {
5140 // Transform the initialization statement
5141 StmtResult Init = getDerived().TransformStmt(S->getInit());
5142 if (Init.isInvalid())
5143 return StmtError();
5144
5145 // Transform the condition
5146 ExprResult Cond;
5147 VarDecl *ConditionVar = 0;
5148 if (S->getConditionVariable()) {
5149 ConditionVar
5150 = cast_or_null<VarDecl>(
5151 getDerived().TransformDefinition(
5152 S->getConditionVariable()->getLocation(),
5153 S->getConditionVariable()));
5154 if (!ConditionVar)
5155 return StmtError();
5156 } else {
5157 Cond = getDerived().TransformExpr(S->getCond());
5158
5159 if (Cond.isInvalid())
5160 return StmtError();
5161
5162 if (S->getCond()) {
5163 // Convert the condition to a boolean value.
5164 ExprResult CondE = getSema().ActOnBooleanCondition(0, S->getForLoc(),
5165 Cond.get());
5166 if (CondE.isInvalid())
5167 return StmtError();
5168
5169 Cond = CondE.get();
5170 }
5171 }
5172
5173 Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take()));
5174 if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
5175 return StmtError();
5176
5177 // Transform the increment
5178 ExprResult Inc = getDerived().TransformExpr(S->getInc());
5179 if (Inc.isInvalid())
5180 return StmtError();
5181
5182 Sema::FullExprArg FullInc(getSema().MakeFullExpr(Inc.get()));
5183 if (S->getInc() && !FullInc.get())
5184 return StmtError();
5185
5186 // Transform the body
5187 StmtResult Body = getDerived().TransformStmt(S->getBody());
5188 if (Body.isInvalid())
5189 return StmtError();
5190
5191 if (!getDerived().AlwaysRebuild() &&
5192 Init.get() == S->getInit() &&
5193 FullCond.get() == S->getCond() &&
5194 Inc.get() == S->getInc() &&
5195 Body.get() == S->getBody())
5196 return SemaRef.Owned(S);
5197
5198 return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(),
5199 Init.get(), FullCond, ConditionVar,
5200 FullInc, S->getRParenLoc(), Body.get());
5201 }
5202
5203 template<typename Derived>
5204 StmtResult
TransformGotoStmt(GotoStmt * S)5205 TreeTransform<Derived>::TransformGotoStmt(GotoStmt *S) {
5206 Decl *LD = getDerived().TransformDecl(S->getLabel()->getLocation(),
5207 S->getLabel());
5208 if (!LD)
5209 return StmtError();
5210
5211 // Goto statements must always be rebuilt, to resolve the label.
5212 return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(),
5213 cast<LabelDecl>(LD));
5214 }
5215
5216 template<typename Derived>
5217 StmtResult
TransformIndirectGotoStmt(IndirectGotoStmt * S)5218 TreeTransform<Derived>::TransformIndirectGotoStmt(IndirectGotoStmt *S) {
5219 ExprResult Target = getDerived().TransformExpr(S->getTarget());
5220 if (Target.isInvalid())
5221 return StmtError();
5222
5223 if (!getDerived().AlwaysRebuild() &&
5224 Target.get() == S->getTarget())
5225 return SemaRef.Owned(S);
5226
5227 return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(),
5228 Target.get());
5229 }
5230
5231 template<typename Derived>
5232 StmtResult
TransformContinueStmt(ContinueStmt * S)5233 TreeTransform<Derived>::TransformContinueStmt(ContinueStmt *S) {
5234 return SemaRef.Owned(S);
5235 }
5236
5237 template<typename Derived>
5238 StmtResult
TransformBreakStmt(BreakStmt * S)5239 TreeTransform<Derived>::TransformBreakStmt(BreakStmt *S) {
5240 return SemaRef.Owned(S);
5241 }
5242
5243 template<typename Derived>
5244 StmtResult
TransformReturnStmt(ReturnStmt * S)5245 TreeTransform<Derived>::TransformReturnStmt(ReturnStmt *S) {
5246 ExprResult Result = getDerived().TransformExpr(S->getRetValue());
5247 if (Result.isInvalid())
5248 return StmtError();
5249
5250 // FIXME: We always rebuild the return statement because there is no way
5251 // to tell whether the return type of the function has changed.
5252 return getDerived().RebuildReturnStmt(S->getReturnLoc(), Result.get());
5253 }
5254
5255 template<typename Derived>
5256 StmtResult
TransformDeclStmt(DeclStmt * S)5257 TreeTransform<Derived>::TransformDeclStmt(DeclStmt *S) {
5258 bool DeclChanged = false;
5259 llvm::SmallVector<Decl *, 4> Decls;
5260 for (DeclStmt::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
5261 D != DEnd; ++D) {
5262 Decl *Transformed = getDerived().TransformDefinition((*D)->getLocation(),
5263 *D);
5264 if (!Transformed)
5265 return StmtError();
5266
5267 if (Transformed != *D)
5268 DeclChanged = true;
5269
5270 Decls.push_back(Transformed);
5271 }
5272
5273 if (!getDerived().AlwaysRebuild() && !DeclChanged)
5274 return SemaRef.Owned(S);
5275
5276 return getDerived().RebuildDeclStmt(Decls.data(), Decls.size(),
5277 S->getStartLoc(), S->getEndLoc());
5278 }
5279
5280 template<typename Derived>
5281 StmtResult
TransformAsmStmt(AsmStmt * S)5282 TreeTransform<Derived>::TransformAsmStmt(AsmStmt *S) {
5283
5284 ASTOwningVector<Expr*> Constraints(getSema());
5285 ASTOwningVector<Expr*> Exprs(getSema());
5286 llvm::SmallVector<IdentifierInfo *, 4> Names;
5287
5288 ExprResult AsmString;
5289 ASTOwningVector<Expr*> Clobbers(getSema());
5290
5291 bool ExprsChanged = false;
5292
5293 // Go through the outputs.
5294 for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) {
5295 Names.push_back(S->getOutputIdentifier(I));
5296
5297 // No need to transform the constraint literal.
5298 Constraints.push_back(S->getOutputConstraintLiteral(I));
5299
5300 // Transform the output expr.
5301 Expr *OutputExpr = S->getOutputExpr(I);
5302 ExprResult Result = getDerived().TransformExpr(OutputExpr);
5303 if (Result.isInvalid())
5304 return StmtError();
5305
5306 ExprsChanged |= Result.get() != OutputExpr;
5307
5308 Exprs.push_back(Result.get());
5309 }
5310
5311 // Go through the inputs.
5312 for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) {
5313 Names.push_back(S->getInputIdentifier(I));
5314
5315 // No need to transform the constraint literal.
5316 Constraints.push_back(S->getInputConstraintLiteral(I));
5317
5318 // Transform the input expr.
5319 Expr *InputExpr = S->getInputExpr(I);
5320 ExprResult Result = getDerived().TransformExpr(InputExpr);
5321 if (Result.isInvalid())
5322 return StmtError();
5323
5324 ExprsChanged |= Result.get() != InputExpr;
5325
5326 Exprs.push_back(Result.get());
5327 }
5328
5329 if (!getDerived().AlwaysRebuild() && !ExprsChanged)
5330 return SemaRef.Owned(S);
5331
5332 // Go through the clobbers.
5333 for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I)
5334 Clobbers.push_back(S->getClobber(I));
5335
5336 // No need to transform the asm string literal.
5337 AsmString = SemaRef.Owned(S->getAsmString());
5338
5339 return getDerived().RebuildAsmStmt(S->getAsmLoc(),
5340 S->isSimple(),
5341 S->isVolatile(),
5342 S->getNumOutputs(),
5343 S->getNumInputs(),
5344 Names.data(),
5345 move_arg(Constraints),
5346 move_arg(Exprs),
5347 AsmString.get(),
5348 move_arg(Clobbers),
5349 S->getRParenLoc(),
5350 S->isMSAsm());
5351 }
5352
5353
5354 template<typename Derived>
5355 StmtResult
TransformObjCAtTryStmt(ObjCAtTryStmt * S)5356 TreeTransform<Derived>::TransformObjCAtTryStmt(ObjCAtTryStmt *S) {
5357 // Transform the body of the @try.
5358 StmtResult TryBody = getDerived().TransformStmt(S->getTryBody());
5359 if (TryBody.isInvalid())
5360 return StmtError();
5361
5362 // Transform the @catch statements (if present).
5363 bool AnyCatchChanged = false;
5364 ASTOwningVector<Stmt*> CatchStmts(SemaRef);
5365 for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) {
5366 StmtResult Catch = getDerived().TransformStmt(S->getCatchStmt(I));
5367 if (Catch.isInvalid())
5368 return StmtError();
5369 if (Catch.get() != S->getCatchStmt(I))
5370 AnyCatchChanged = true;
5371 CatchStmts.push_back(Catch.release());
5372 }
5373
5374 // Transform the @finally statement (if present).
5375 StmtResult Finally;
5376 if (S->getFinallyStmt()) {
5377 Finally = getDerived().TransformStmt(S->getFinallyStmt());
5378 if (Finally.isInvalid())
5379 return StmtError();
5380 }
5381
5382 // If nothing changed, just retain this statement.
5383 if (!getDerived().AlwaysRebuild() &&
5384 TryBody.get() == S->getTryBody() &&
5385 !AnyCatchChanged &&
5386 Finally.get() == S->getFinallyStmt())
5387 return SemaRef.Owned(S);
5388
5389 // Build a new statement.
5390 return getDerived().RebuildObjCAtTryStmt(S->getAtTryLoc(), TryBody.get(),
5391 move_arg(CatchStmts), Finally.get());
5392 }
5393
5394 template<typename Derived>
5395 StmtResult
TransformObjCAtCatchStmt(ObjCAtCatchStmt * S)5396 TreeTransform<Derived>::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) {
5397 // Transform the @catch parameter, if there is one.
5398 VarDecl *Var = 0;
5399 if (VarDecl *FromVar = S->getCatchParamDecl()) {
5400 TypeSourceInfo *TSInfo = 0;
5401 if (FromVar->getTypeSourceInfo()) {
5402 TSInfo = getDerived().TransformType(FromVar->getTypeSourceInfo());
5403 if (!TSInfo)
5404 return StmtError();
5405 }
5406
5407 QualType T;
5408 if (TSInfo)
5409 T = TSInfo->getType();
5410 else {
5411 T = getDerived().TransformType(FromVar->getType());
5412 if (T.isNull())
5413 return StmtError();
5414 }
5415
5416 Var = getDerived().RebuildObjCExceptionDecl(FromVar, TSInfo, T);
5417 if (!Var)
5418 return StmtError();
5419 }
5420
5421 StmtResult Body = getDerived().TransformStmt(S->getCatchBody());
5422 if (Body.isInvalid())
5423 return StmtError();
5424
5425 return getDerived().RebuildObjCAtCatchStmt(S->getAtCatchLoc(),
5426 S->getRParenLoc(),
5427 Var, Body.get());
5428 }
5429
5430 template<typename Derived>
5431 StmtResult
TransformObjCAtFinallyStmt(ObjCAtFinallyStmt * S)5432 TreeTransform<Derived>::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
5433 // Transform the body.
5434 StmtResult Body = getDerived().TransformStmt(S->getFinallyBody());
5435 if (Body.isInvalid())
5436 return StmtError();
5437
5438 // If nothing changed, just retain this statement.
5439 if (!getDerived().AlwaysRebuild() &&
5440 Body.get() == S->getFinallyBody())
5441 return SemaRef.Owned(S);
5442
5443 // Build a new statement.
5444 return getDerived().RebuildObjCAtFinallyStmt(S->getAtFinallyLoc(),
5445 Body.get());
5446 }
5447
5448 template<typename Derived>
5449 StmtResult
TransformObjCAtThrowStmt(ObjCAtThrowStmt * S)5450 TreeTransform<Derived>::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) {
5451 ExprResult Operand;
5452 if (S->getThrowExpr()) {
5453 Operand = getDerived().TransformExpr(S->getThrowExpr());
5454 if (Operand.isInvalid())
5455 return StmtError();
5456 }
5457
5458 if (!getDerived().AlwaysRebuild() &&
5459 Operand.get() == S->getThrowExpr())
5460 return getSema().Owned(S);
5461
5462 return getDerived().RebuildObjCAtThrowStmt(S->getThrowLoc(), Operand.get());
5463 }
5464
5465 template<typename Derived>
5466 StmtResult
TransformObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt * S)5467 TreeTransform<Derived>::TransformObjCAtSynchronizedStmt(
5468 ObjCAtSynchronizedStmt *S) {
5469 // Transform the object we are locking.
5470 ExprResult Object = getDerived().TransformExpr(S->getSynchExpr());
5471 if (Object.isInvalid())
5472 return StmtError();
5473
5474 // Transform the body.
5475 StmtResult Body = getDerived().TransformStmt(S->getSynchBody());
5476 if (Body.isInvalid())
5477 return StmtError();
5478
5479 // If nothing change, just retain the current statement.
5480 if (!getDerived().AlwaysRebuild() &&
5481 Object.get() == S->getSynchExpr() &&
5482 Body.get() == S->getSynchBody())
5483 return SemaRef.Owned(S);
5484
5485 // Build a new statement.
5486 return getDerived().RebuildObjCAtSynchronizedStmt(S->getAtSynchronizedLoc(),
5487 Object.get(), Body.get());
5488 }
5489
5490 template<typename Derived>
5491 StmtResult
TransformObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt * S)5492 TreeTransform<Derived>::TransformObjCAutoreleasePoolStmt(
5493 ObjCAutoreleasePoolStmt *S) {
5494 // Transform the body.
5495 StmtResult Body = getDerived().TransformStmt(S->getSubStmt());
5496 if (Body.isInvalid())
5497 return StmtError();
5498
5499 // If nothing changed, just retain this statement.
5500 if (!getDerived().AlwaysRebuild() &&
5501 Body.get() == S->getSubStmt())
5502 return SemaRef.Owned(S);
5503
5504 // Build a new statement.
5505 return getDerived().RebuildObjCAutoreleasePoolStmt(
5506 S->getAtLoc(), Body.get());
5507 }
5508
5509 template<typename Derived>
5510 StmtResult
TransformObjCForCollectionStmt(ObjCForCollectionStmt * S)5511 TreeTransform<Derived>::TransformObjCForCollectionStmt(
5512 ObjCForCollectionStmt *S) {
5513 // Transform the element statement.
5514 StmtResult Element = getDerived().TransformStmt(S->getElement());
5515 if (Element.isInvalid())
5516 return StmtError();
5517
5518 // Transform the collection expression.
5519 ExprResult Collection = getDerived().TransformExpr(S->getCollection());
5520 if (Collection.isInvalid())
5521 return StmtError();
5522
5523 // Transform the body.
5524 StmtResult Body = getDerived().TransformStmt(S->getBody());
5525 if (Body.isInvalid())
5526 return StmtError();
5527
5528 // If nothing changed, just retain this statement.
5529 if (!getDerived().AlwaysRebuild() &&
5530 Element.get() == S->getElement() &&
5531 Collection.get() == S->getCollection() &&
5532 Body.get() == S->getBody())
5533 return SemaRef.Owned(S);
5534
5535 // Build a new statement.
5536 return getDerived().RebuildObjCForCollectionStmt(S->getForLoc(),
5537 /*FIXME:*/S->getForLoc(),
5538 Element.get(),
5539 Collection.get(),
5540 S->getRParenLoc(),
5541 Body.get());
5542 }
5543
5544
5545 template<typename Derived>
5546 StmtResult
TransformCXXCatchStmt(CXXCatchStmt * S)5547 TreeTransform<Derived>::TransformCXXCatchStmt(CXXCatchStmt *S) {
5548 // Transform the exception declaration, if any.
5549 VarDecl *Var = 0;
5550 if (S->getExceptionDecl()) {
5551 VarDecl *ExceptionDecl = S->getExceptionDecl();
5552 TypeSourceInfo *T = getDerived().TransformType(
5553 ExceptionDecl->getTypeSourceInfo());
5554 if (!T)
5555 return StmtError();
5556
5557 Var = getDerived().RebuildExceptionDecl(ExceptionDecl, T,
5558 ExceptionDecl->getInnerLocStart(),
5559 ExceptionDecl->getLocation(),
5560 ExceptionDecl->getIdentifier());
5561 if (!Var || Var->isInvalidDecl())
5562 return StmtError();
5563 }
5564
5565 // Transform the actual exception handler.
5566 StmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock());
5567 if (Handler.isInvalid())
5568 return StmtError();
5569
5570 if (!getDerived().AlwaysRebuild() &&
5571 !Var &&
5572 Handler.get() == S->getHandlerBlock())
5573 return SemaRef.Owned(S);
5574
5575 return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(),
5576 Var,
5577 Handler.get());
5578 }
5579
5580 template<typename Derived>
5581 StmtResult
TransformCXXTryStmt(CXXTryStmt * S)5582 TreeTransform<Derived>::TransformCXXTryStmt(CXXTryStmt *S) {
5583 // Transform the try block itself.
5584 StmtResult TryBlock
5585 = getDerived().TransformCompoundStmt(S->getTryBlock());
5586 if (TryBlock.isInvalid())
5587 return StmtError();
5588
5589 // Transform the handlers.
5590 bool HandlerChanged = false;
5591 ASTOwningVector<Stmt*> Handlers(SemaRef);
5592 for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) {
5593 StmtResult Handler
5594 = getDerived().TransformCXXCatchStmt(S->getHandler(I));
5595 if (Handler.isInvalid())
5596 return StmtError();
5597
5598 HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I);
5599 Handlers.push_back(Handler.takeAs<Stmt>());
5600 }
5601
5602 if (!getDerived().AlwaysRebuild() &&
5603 TryBlock.get() == S->getTryBlock() &&
5604 !HandlerChanged)
5605 return SemaRef.Owned(S);
5606
5607 return getDerived().RebuildCXXTryStmt(S->getTryLoc(), TryBlock.get(),
5608 move_arg(Handlers));
5609 }
5610
5611 template<typename Derived>
5612 StmtResult
TransformCXXForRangeStmt(CXXForRangeStmt * S)5613 TreeTransform<Derived>::TransformCXXForRangeStmt(CXXForRangeStmt *S) {
5614 StmtResult Range = getDerived().TransformStmt(S->getRangeStmt());
5615 if (Range.isInvalid())
5616 return StmtError();
5617
5618 StmtResult BeginEnd = getDerived().TransformStmt(S->getBeginEndStmt());
5619 if (BeginEnd.isInvalid())
5620 return StmtError();
5621
5622 ExprResult Cond = getDerived().TransformExpr(S->getCond());
5623 if (Cond.isInvalid())
5624 return StmtError();
5625
5626 ExprResult Inc = getDerived().TransformExpr(S->getInc());
5627 if (Inc.isInvalid())
5628 return StmtError();
5629
5630 StmtResult LoopVar = getDerived().TransformStmt(S->getLoopVarStmt());
5631 if (LoopVar.isInvalid())
5632 return StmtError();
5633
5634 StmtResult NewStmt = S;
5635 if (getDerived().AlwaysRebuild() ||
5636 Range.get() != S->getRangeStmt() ||
5637 BeginEnd.get() != S->getBeginEndStmt() ||
5638 Cond.get() != S->getCond() ||
5639 Inc.get() != S->getInc() ||
5640 LoopVar.get() != S->getLoopVarStmt())
5641 NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
5642 S->getColonLoc(), Range.get(),
5643 BeginEnd.get(), Cond.get(),
5644 Inc.get(), LoopVar.get(),
5645 S->getRParenLoc());
5646
5647 StmtResult Body = getDerived().TransformStmt(S->getBody());
5648 if (Body.isInvalid())
5649 return StmtError();
5650
5651 // Body has changed but we didn't rebuild the for-range statement. Rebuild
5652 // it now so we have a new statement to attach the body to.
5653 if (Body.get() != S->getBody() && NewStmt.get() == S)
5654 NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
5655 S->getColonLoc(), Range.get(),
5656 BeginEnd.get(), Cond.get(),
5657 Inc.get(), LoopVar.get(),
5658 S->getRParenLoc());
5659
5660 if (NewStmt.get() == S)
5661 return SemaRef.Owned(S);
5662
5663 return FinishCXXForRangeStmt(NewStmt.get(), Body.get());
5664 }
5665
5666 template<typename Derived>
5667 StmtResult
TransformSEHTryStmt(SEHTryStmt * S)5668 TreeTransform<Derived>::TransformSEHTryStmt(SEHTryStmt *S) {
5669 StmtResult TryBlock; // = getDerived().TransformCompoundStmt(S->getTryBlock());
5670 if(TryBlock.isInvalid()) return StmtError();
5671
5672 StmtResult Handler = getDerived().TransformSEHHandler(S->getHandler());
5673 if(!getDerived().AlwaysRebuild() &&
5674 TryBlock.get() == S->getTryBlock() &&
5675 Handler.get() == S->getHandler())
5676 return SemaRef.Owned(S);
5677
5678 return getDerived().RebuildSEHTryStmt(S->getIsCXXTry(),
5679 S->getTryLoc(),
5680 TryBlock.take(),
5681 Handler.take());
5682 }
5683
5684 template<typename Derived>
5685 StmtResult
TransformSEHFinallyStmt(SEHFinallyStmt * S)5686 TreeTransform<Derived>::TransformSEHFinallyStmt(SEHFinallyStmt *S) {
5687 StmtResult Block; // = getDerived().TransformCompoundStatement(S->getBlock());
5688 if(Block.isInvalid()) return StmtError();
5689
5690 return getDerived().RebuildSEHFinallyStmt(S->getFinallyLoc(),
5691 Block.take());
5692 }
5693
5694 template<typename Derived>
5695 StmtResult
TransformSEHExceptStmt(SEHExceptStmt * S)5696 TreeTransform<Derived>::TransformSEHExceptStmt(SEHExceptStmt *S) {
5697 ExprResult FilterExpr = getDerived().TransformExpr(S->getFilterExpr());
5698 if(FilterExpr.isInvalid()) return StmtError();
5699
5700 StmtResult Block; // = getDerived().TransformCompoundStatement(S->getBlock());
5701 if(Block.isInvalid()) return StmtError();
5702
5703 return getDerived().RebuildSEHExceptStmt(S->getExceptLoc(),
5704 FilterExpr.take(),
5705 Block.take());
5706 }
5707
5708 template<typename Derived>
5709 StmtResult
TransformSEHHandler(Stmt * Handler)5710 TreeTransform<Derived>::TransformSEHHandler(Stmt *Handler) {
5711 if(isa<SEHFinallyStmt>(Handler))
5712 return getDerived().TransformSEHFinallyStmt(cast<SEHFinallyStmt>(Handler));
5713 else
5714 return getDerived().TransformSEHExceptStmt(cast<SEHExceptStmt>(Handler));
5715 }
5716
5717 //===----------------------------------------------------------------------===//
5718 // Expression transformation
5719 //===----------------------------------------------------------------------===//
5720 template<typename Derived>
5721 ExprResult
TransformPredefinedExpr(PredefinedExpr * E)5722 TreeTransform<Derived>::TransformPredefinedExpr(PredefinedExpr *E) {
5723 return SemaRef.Owned(E);
5724 }
5725
5726 template<typename Derived>
5727 ExprResult
TransformDeclRefExpr(DeclRefExpr * E)5728 TreeTransform<Derived>::TransformDeclRefExpr(DeclRefExpr *E) {
5729 NestedNameSpecifierLoc QualifierLoc;
5730 if (E->getQualifierLoc()) {
5731 QualifierLoc
5732 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
5733 if (!QualifierLoc)
5734 return ExprError();
5735 }
5736
5737 ValueDecl *ND
5738 = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(),
5739 E->getDecl()));
5740 if (!ND)
5741 return ExprError();
5742
5743 DeclarationNameInfo NameInfo = E->getNameInfo();
5744 if (NameInfo.getName()) {
5745 NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
5746 if (!NameInfo.getName())
5747 return ExprError();
5748 }
5749
5750 if (!getDerived().AlwaysRebuild() &&
5751 QualifierLoc == E->getQualifierLoc() &&
5752 ND == E->getDecl() &&
5753 NameInfo.getName() == E->getDecl()->getDeclName() &&
5754 !E->hasExplicitTemplateArgs()) {
5755
5756 // Mark it referenced in the new context regardless.
5757 // FIXME: this is a bit instantiation-specific.
5758 SemaRef.MarkDeclarationReferenced(E->getLocation(), ND);
5759
5760 return SemaRef.Owned(E);
5761 }
5762
5763 TemplateArgumentListInfo TransArgs, *TemplateArgs = 0;
5764 if (E->hasExplicitTemplateArgs()) {
5765 TemplateArgs = &TransArgs;
5766 TransArgs.setLAngleLoc(E->getLAngleLoc());
5767 TransArgs.setRAngleLoc(E->getRAngleLoc());
5768 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
5769 E->getNumTemplateArgs(),
5770 TransArgs))
5771 return ExprError();
5772 }
5773
5774 return getDerived().RebuildDeclRefExpr(QualifierLoc, ND, NameInfo,
5775 TemplateArgs);
5776 }
5777
5778 template<typename Derived>
5779 ExprResult
TransformIntegerLiteral(IntegerLiteral * E)5780 TreeTransform<Derived>::TransformIntegerLiteral(IntegerLiteral *E) {
5781 return SemaRef.Owned(E);
5782 }
5783
5784 template<typename Derived>
5785 ExprResult
TransformFloatingLiteral(FloatingLiteral * E)5786 TreeTransform<Derived>::TransformFloatingLiteral(FloatingLiteral *E) {
5787 return SemaRef.Owned(E);
5788 }
5789
5790 template<typename Derived>
5791 ExprResult
TransformImaginaryLiteral(ImaginaryLiteral * E)5792 TreeTransform<Derived>::TransformImaginaryLiteral(ImaginaryLiteral *E) {
5793 return SemaRef.Owned(E);
5794 }
5795
5796 template<typename Derived>
5797 ExprResult
TransformStringLiteral(StringLiteral * E)5798 TreeTransform<Derived>::TransformStringLiteral(StringLiteral *E) {
5799 return SemaRef.Owned(E);
5800 }
5801
5802 template<typename Derived>
5803 ExprResult
TransformCharacterLiteral(CharacterLiteral * E)5804 TreeTransform<Derived>::TransformCharacterLiteral(CharacterLiteral *E) {
5805 return SemaRef.Owned(E);
5806 }
5807
5808 template<typename Derived>
5809 ExprResult
TransformGenericSelectionExpr(GenericSelectionExpr * E)5810 TreeTransform<Derived>::TransformGenericSelectionExpr(GenericSelectionExpr *E) {
5811 ExprResult ControllingExpr =
5812 getDerived().TransformExpr(E->getControllingExpr());
5813 if (ControllingExpr.isInvalid())
5814 return ExprError();
5815
5816 llvm::SmallVector<Expr *, 4> AssocExprs;
5817 llvm::SmallVector<TypeSourceInfo *, 4> AssocTypes;
5818 for (unsigned i = 0; i != E->getNumAssocs(); ++i) {
5819 TypeSourceInfo *TS = E->getAssocTypeSourceInfo(i);
5820 if (TS) {
5821 TypeSourceInfo *AssocType = getDerived().TransformType(TS);
5822 if (!AssocType)
5823 return ExprError();
5824 AssocTypes.push_back(AssocType);
5825 } else {
5826 AssocTypes.push_back(0);
5827 }
5828
5829 ExprResult AssocExpr = getDerived().TransformExpr(E->getAssocExpr(i));
5830 if (AssocExpr.isInvalid())
5831 return ExprError();
5832 AssocExprs.push_back(AssocExpr.release());
5833 }
5834
5835 return getDerived().RebuildGenericSelectionExpr(E->getGenericLoc(),
5836 E->getDefaultLoc(),
5837 E->getRParenLoc(),
5838 ControllingExpr.release(),
5839 AssocTypes.data(),
5840 AssocExprs.data(),
5841 E->getNumAssocs());
5842 }
5843
5844 template<typename Derived>
5845 ExprResult
TransformParenExpr(ParenExpr * E)5846 TreeTransform<Derived>::TransformParenExpr(ParenExpr *E) {
5847 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
5848 if (SubExpr.isInvalid())
5849 return ExprError();
5850
5851 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
5852 return SemaRef.Owned(E);
5853
5854 return getDerived().RebuildParenExpr(SubExpr.get(), E->getLParen(),
5855 E->getRParen());
5856 }
5857
5858 template<typename Derived>
5859 ExprResult
TransformUnaryOperator(UnaryOperator * E)5860 TreeTransform<Derived>::TransformUnaryOperator(UnaryOperator *E) {
5861 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
5862 if (SubExpr.isInvalid())
5863 return ExprError();
5864
5865 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
5866 return SemaRef.Owned(E);
5867
5868 return getDerived().RebuildUnaryOperator(E->getOperatorLoc(),
5869 E->getOpcode(),
5870 SubExpr.get());
5871 }
5872
5873 template<typename Derived>
5874 ExprResult
TransformOffsetOfExpr(OffsetOfExpr * E)5875 TreeTransform<Derived>::TransformOffsetOfExpr(OffsetOfExpr *E) {
5876 // Transform the type.
5877 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
5878 if (!Type)
5879 return ExprError();
5880
5881 // Transform all of the components into components similar to what the
5882 // parser uses.
5883 // FIXME: It would be slightly more efficient in the non-dependent case to
5884 // just map FieldDecls, rather than requiring the rebuilder to look for
5885 // the fields again. However, __builtin_offsetof is rare enough in
5886 // template code that we don't care.
5887 bool ExprChanged = false;
5888 typedef Sema::OffsetOfComponent Component;
5889 typedef OffsetOfExpr::OffsetOfNode Node;
5890 llvm::SmallVector<Component, 4> Components;
5891 for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) {
5892 const Node &ON = E->getComponent(I);
5893 Component Comp;
5894 Comp.isBrackets = true;
5895 Comp.LocStart = ON.getSourceRange().getBegin();
5896 Comp.LocEnd = ON.getSourceRange().getEnd();
5897 switch (ON.getKind()) {
5898 case Node::Array: {
5899 Expr *FromIndex = E->getIndexExpr(ON.getArrayExprIndex());
5900 ExprResult Index = getDerived().TransformExpr(FromIndex);
5901 if (Index.isInvalid())
5902 return ExprError();
5903
5904 ExprChanged = ExprChanged || Index.get() != FromIndex;
5905 Comp.isBrackets = true;
5906 Comp.U.E = Index.get();
5907 break;
5908 }
5909
5910 case Node::Field:
5911 case Node::Identifier:
5912 Comp.isBrackets = false;
5913 Comp.U.IdentInfo = ON.getFieldName();
5914 if (!Comp.U.IdentInfo)
5915 continue;
5916
5917 break;
5918
5919 case Node::Base:
5920 // Will be recomputed during the rebuild.
5921 continue;
5922 }
5923
5924 Components.push_back(Comp);
5925 }
5926
5927 // If nothing changed, retain the existing expression.
5928 if (!getDerived().AlwaysRebuild() &&
5929 Type == E->getTypeSourceInfo() &&
5930 !ExprChanged)
5931 return SemaRef.Owned(E);
5932
5933 // Build a new offsetof expression.
5934 return getDerived().RebuildOffsetOfExpr(E->getOperatorLoc(), Type,
5935 Components.data(), Components.size(),
5936 E->getRParenLoc());
5937 }
5938
5939 template<typename Derived>
5940 ExprResult
TransformOpaqueValueExpr(OpaqueValueExpr * E)5941 TreeTransform<Derived>::TransformOpaqueValueExpr(OpaqueValueExpr *E) {
5942 assert(getDerived().AlreadyTransformed(E->getType()) &&
5943 "opaque value expression requires transformation");
5944 return SemaRef.Owned(E);
5945 }
5946
5947 template<typename Derived>
5948 ExprResult
TransformUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr * E)5949 TreeTransform<Derived>::TransformUnaryExprOrTypeTraitExpr(
5950 UnaryExprOrTypeTraitExpr *E) {
5951 if (E->isArgumentType()) {
5952 TypeSourceInfo *OldT = E->getArgumentTypeInfo();
5953
5954 TypeSourceInfo *NewT = getDerived().TransformType(OldT);
5955 if (!NewT)
5956 return ExprError();
5957
5958 if (!getDerived().AlwaysRebuild() && OldT == NewT)
5959 return SemaRef.Owned(E);
5960
5961 return getDerived().RebuildUnaryExprOrTypeTrait(NewT, E->getOperatorLoc(),
5962 E->getKind(),
5963 E->getSourceRange());
5964 }
5965
5966 ExprResult SubExpr;
5967 {
5968 // C++0x [expr.sizeof]p1:
5969 // The operand is either an expression, which is an unevaluated operand
5970 // [...]
5971 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
5972
5973 SubExpr = getDerived().TransformExpr(E->getArgumentExpr());
5974 if (SubExpr.isInvalid())
5975 return ExprError();
5976
5977 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr())
5978 return SemaRef.Owned(E);
5979 }
5980
5981 return getDerived().RebuildUnaryExprOrTypeTrait(SubExpr.get(),
5982 E->getOperatorLoc(),
5983 E->getKind(),
5984 E->getSourceRange());
5985 }
5986
5987 template<typename Derived>
5988 ExprResult
TransformArraySubscriptExpr(ArraySubscriptExpr * E)5989 TreeTransform<Derived>::TransformArraySubscriptExpr(ArraySubscriptExpr *E) {
5990 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
5991 if (LHS.isInvalid())
5992 return ExprError();
5993
5994 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
5995 if (RHS.isInvalid())
5996 return ExprError();
5997
5998
5999 if (!getDerived().AlwaysRebuild() &&
6000 LHS.get() == E->getLHS() &&
6001 RHS.get() == E->getRHS())
6002 return SemaRef.Owned(E);
6003
6004 return getDerived().RebuildArraySubscriptExpr(LHS.get(),
6005 /*FIXME:*/E->getLHS()->getLocStart(),
6006 RHS.get(),
6007 E->getRBracketLoc());
6008 }
6009
6010 template<typename Derived>
6011 ExprResult
TransformCallExpr(CallExpr * E)6012 TreeTransform<Derived>::TransformCallExpr(CallExpr *E) {
6013 // Transform the callee.
6014 ExprResult Callee = getDerived().TransformExpr(E->getCallee());
6015 if (Callee.isInvalid())
6016 return ExprError();
6017
6018 // Transform arguments.
6019 bool ArgChanged = false;
6020 ASTOwningVector<Expr*> Args(SemaRef);
6021 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
6022 &ArgChanged))
6023 return ExprError();
6024
6025 if (!getDerived().AlwaysRebuild() &&
6026 Callee.get() == E->getCallee() &&
6027 !ArgChanged)
6028 return SemaRef.Owned(E);
6029
6030 // FIXME: Wrong source location information for the '('.
6031 SourceLocation FakeLParenLoc
6032 = ((Expr *)Callee.get())->getSourceRange().getBegin();
6033 return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
6034 move_arg(Args),
6035 E->getRParenLoc());
6036 }
6037
6038 template<typename Derived>
6039 ExprResult
TransformMemberExpr(MemberExpr * E)6040 TreeTransform<Derived>::TransformMemberExpr(MemberExpr *E) {
6041 ExprResult Base = getDerived().TransformExpr(E->getBase());
6042 if (Base.isInvalid())
6043 return ExprError();
6044
6045 NestedNameSpecifierLoc QualifierLoc;
6046 if (E->hasQualifier()) {
6047 QualifierLoc
6048 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
6049
6050 if (!QualifierLoc)
6051 return ExprError();
6052 }
6053
6054 ValueDecl *Member
6055 = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getMemberLoc(),
6056 E->getMemberDecl()));
6057 if (!Member)
6058 return ExprError();
6059
6060 NamedDecl *FoundDecl = E->getFoundDecl();
6061 if (FoundDecl == E->getMemberDecl()) {
6062 FoundDecl = Member;
6063 } else {
6064 FoundDecl = cast_or_null<NamedDecl>(
6065 getDerived().TransformDecl(E->getMemberLoc(), FoundDecl));
6066 if (!FoundDecl)
6067 return ExprError();
6068 }
6069
6070 if (!getDerived().AlwaysRebuild() &&
6071 Base.get() == E->getBase() &&
6072 QualifierLoc == E->getQualifierLoc() &&
6073 Member == E->getMemberDecl() &&
6074 FoundDecl == E->getFoundDecl() &&
6075 !E->hasExplicitTemplateArgs()) {
6076
6077 // Mark it referenced in the new context regardless.
6078 // FIXME: this is a bit instantiation-specific.
6079 SemaRef.MarkDeclarationReferenced(E->getMemberLoc(), Member);
6080 return SemaRef.Owned(E);
6081 }
6082
6083 TemplateArgumentListInfo TransArgs;
6084 if (E->hasExplicitTemplateArgs()) {
6085 TransArgs.setLAngleLoc(E->getLAngleLoc());
6086 TransArgs.setRAngleLoc(E->getRAngleLoc());
6087 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
6088 E->getNumTemplateArgs(),
6089 TransArgs))
6090 return ExprError();
6091 }
6092
6093 // FIXME: Bogus source location for the operator
6094 SourceLocation FakeOperatorLoc
6095 = SemaRef.PP.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd());
6096
6097 // FIXME: to do this check properly, we will need to preserve the
6098 // first-qualifier-in-scope here, just in case we had a dependent
6099 // base (and therefore couldn't do the check) and a
6100 // nested-name-qualifier (and therefore could do the lookup).
6101 NamedDecl *FirstQualifierInScope = 0;
6102
6103 return getDerived().RebuildMemberExpr(Base.get(), FakeOperatorLoc,
6104 E->isArrow(),
6105 QualifierLoc,
6106 E->getMemberNameInfo(),
6107 Member,
6108 FoundDecl,
6109 (E->hasExplicitTemplateArgs()
6110 ? &TransArgs : 0),
6111 FirstQualifierInScope);
6112 }
6113
6114 template<typename Derived>
6115 ExprResult
TransformBinaryOperator(BinaryOperator * E)6116 TreeTransform<Derived>::TransformBinaryOperator(BinaryOperator *E) {
6117 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
6118 if (LHS.isInvalid())
6119 return ExprError();
6120
6121 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
6122 if (RHS.isInvalid())
6123 return ExprError();
6124
6125 if (!getDerived().AlwaysRebuild() &&
6126 LHS.get() == E->getLHS() &&
6127 RHS.get() == E->getRHS())
6128 return SemaRef.Owned(E);
6129
6130 return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(),
6131 LHS.get(), RHS.get());
6132 }
6133
6134 template<typename Derived>
6135 ExprResult
TransformCompoundAssignOperator(CompoundAssignOperator * E)6136 TreeTransform<Derived>::TransformCompoundAssignOperator(
6137 CompoundAssignOperator *E) {
6138 return getDerived().TransformBinaryOperator(E);
6139 }
6140
6141 template<typename Derived>
6142 ExprResult TreeTransform<Derived>::
TransformBinaryConditionalOperator(BinaryConditionalOperator * e)6143 TransformBinaryConditionalOperator(BinaryConditionalOperator *e) {
6144 // Just rebuild the common and RHS expressions and see whether we
6145 // get any changes.
6146
6147 ExprResult commonExpr = getDerived().TransformExpr(e->getCommon());
6148 if (commonExpr.isInvalid())
6149 return ExprError();
6150
6151 ExprResult rhs = getDerived().TransformExpr(e->getFalseExpr());
6152 if (rhs.isInvalid())
6153 return ExprError();
6154
6155 if (!getDerived().AlwaysRebuild() &&
6156 commonExpr.get() == e->getCommon() &&
6157 rhs.get() == e->getFalseExpr())
6158 return SemaRef.Owned(e);
6159
6160 return getDerived().RebuildConditionalOperator(commonExpr.take(),
6161 e->getQuestionLoc(),
6162 0,
6163 e->getColonLoc(),
6164 rhs.get());
6165 }
6166
6167 template<typename Derived>
6168 ExprResult
TransformConditionalOperator(ConditionalOperator * E)6169 TreeTransform<Derived>::TransformConditionalOperator(ConditionalOperator *E) {
6170 ExprResult Cond = getDerived().TransformExpr(E->getCond());
6171 if (Cond.isInvalid())
6172 return ExprError();
6173
6174 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
6175 if (LHS.isInvalid())
6176 return ExprError();
6177
6178 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
6179 if (RHS.isInvalid())
6180 return ExprError();
6181
6182 if (!getDerived().AlwaysRebuild() &&
6183 Cond.get() == E->getCond() &&
6184 LHS.get() == E->getLHS() &&
6185 RHS.get() == E->getRHS())
6186 return SemaRef.Owned(E);
6187
6188 return getDerived().RebuildConditionalOperator(Cond.get(),
6189 E->getQuestionLoc(),
6190 LHS.get(),
6191 E->getColonLoc(),
6192 RHS.get());
6193 }
6194
6195 template<typename Derived>
6196 ExprResult
TransformImplicitCastExpr(ImplicitCastExpr * E)6197 TreeTransform<Derived>::TransformImplicitCastExpr(ImplicitCastExpr *E) {
6198 // Implicit casts are eliminated during transformation, since they
6199 // will be recomputed by semantic analysis after transformation.
6200 return getDerived().TransformExpr(E->getSubExprAsWritten());
6201 }
6202
6203 template<typename Derived>
6204 ExprResult
TransformCStyleCastExpr(CStyleCastExpr * E)6205 TreeTransform<Derived>::TransformCStyleCastExpr(CStyleCastExpr *E) {
6206 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
6207 if (!Type)
6208 return ExprError();
6209
6210 ExprResult SubExpr
6211 = getDerived().TransformExpr(E->getSubExprAsWritten());
6212 if (SubExpr.isInvalid())
6213 return ExprError();
6214
6215 if (!getDerived().AlwaysRebuild() &&
6216 Type == E->getTypeInfoAsWritten() &&
6217 SubExpr.get() == E->getSubExpr())
6218 return SemaRef.Owned(E);
6219
6220 return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(),
6221 Type,
6222 E->getRParenLoc(),
6223 SubExpr.get());
6224 }
6225
6226 template<typename Derived>
6227 ExprResult
TransformCompoundLiteralExpr(CompoundLiteralExpr * E)6228 TreeTransform<Derived>::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) {
6229 TypeSourceInfo *OldT = E->getTypeSourceInfo();
6230 TypeSourceInfo *NewT = getDerived().TransformType(OldT);
6231 if (!NewT)
6232 return ExprError();
6233
6234 ExprResult Init = getDerived().TransformExpr(E->getInitializer());
6235 if (Init.isInvalid())
6236 return ExprError();
6237
6238 if (!getDerived().AlwaysRebuild() &&
6239 OldT == NewT &&
6240 Init.get() == E->getInitializer())
6241 return SemaRef.Owned(E);
6242
6243 // Note: the expression type doesn't necessarily match the
6244 // type-as-written, but that's okay, because it should always be
6245 // derivable from the initializer.
6246
6247 return getDerived().RebuildCompoundLiteralExpr(E->getLParenLoc(), NewT,
6248 /*FIXME:*/E->getInitializer()->getLocEnd(),
6249 Init.get());
6250 }
6251
6252 template<typename Derived>
6253 ExprResult
TransformExtVectorElementExpr(ExtVectorElementExpr * E)6254 TreeTransform<Derived>::TransformExtVectorElementExpr(ExtVectorElementExpr *E) {
6255 ExprResult Base = getDerived().TransformExpr(E->getBase());
6256 if (Base.isInvalid())
6257 return ExprError();
6258
6259 if (!getDerived().AlwaysRebuild() &&
6260 Base.get() == E->getBase())
6261 return SemaRef.Owned(E);
6262
6263 // FIXME: Bad source location
6264 SourceLocation FakeOperatorLoc
6265 = SemaRef.PP.getLocForEndOfToken(E->getBase()->getLocEnd());
6266 return getDerived().RebuildExtVectorElementExpr(Base.get(), FakeOperatorLoc,
6267 E->getAccessorLoc(),
6268 E->getAccessor());
6269 }
6270
6271 template<typename Derived>
6272 ExprResult
TransformInitListExpr(InitListExpr * E)6273 TreeTransform<Derived>::TransformInitListExpr(InitListExpr *E) {
6274 bool InitChanged = false;
6275
6276 ASTOwningVector<Expr*, 4> Inits(SemaRef);
6277 if (getDerived().TransformExprs(E->getInits(), E->getNumInits(), false,
6278 Inits, &InitChanged))
6279 return ExprError();
6280
6281 if (!getDerived().AlwaysRebuild() && !InitChanged)
6282 return SemaRef.Owned(E);
6283
6284 return getDerived().RebuildInitList(E->getLBraceLoc(), move_arg(Inits),
6285 E->getRBraceLoc(), E->getType());
6286 }
6287
6288 template<typename Derived>
6289 ExprResult
TransformDesignatedInitExpr(DesignatedInitExpr * E)6290 TreeTransform<Derived>::TransformDesignatedInitExpr(DesignatedInitExpr *E) {
6291 Designation Desig;
6292
6293 // transform the initializer value
6294 ExprResult Init = getDerived().TransformExpr(E->getInit());
6295 if (Init.isInvalid())
6296 return ExprError();
6297
6298 // transform the designators.
6299 ASTOwningVector<Expr*, 4> ArrayExprs(SemaRef);
6300 bool ExprChanged = false;
6301 for (DesignatedInitExpr::designators_iterator D = E->designators_begin(),
6302 DEnd = E->designators_end();
6303 D != DEnd; ++D) {
6304 if (D->isFieldDesignator()) {
6305 Desig.AddDesignator(Designator::getField(D->getFieldName(),
6306 D->getDotLoc(),
6307 D->getFieldLoc()));
6308 continue;
6309 }
6310
6311 if (D->isArrayDesignator()) {
6312 ExprResult Index = getDerived().TransformExpr(E->getArrayIndex(*D));
6313 if (Index.isInvalid())
6314 return ExprError();
6315
6316 Desig.AddDesignator(Designator::getArray(Index.get(),
6317 D->getLBracketLoc()));
6318
6319 ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(*D);
6320 ArrayExprs.push_back(Index.release());
6321 continue;
6322 }
6323
6324 assert(D->isArrayRangeDesignator() && "New kind of designator?");
6325 ExprResult Start
6326 = getDerived().TransformExpr(E->getArrayRangeStart(*D));
6327 if (Start.isInvalid())
6328 return ExprError();
6329
6330 ExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(*D));
6331 if (End.isInvalid())
6332 return ExprError();
6333
6334 Desig.AddDesignator(Designator::getArrayRange(Start.get(),
6335 End.get(),
6336 D->getLBracketLoc(),
6337 D->getEllipsisLoc()));
6338
6339 ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(*D) ||
6340 End.get() != E->getArrayRangeEnd(*D);
6341
6342 ArrayExprs.push_back(Start.release());
6343 ArrayExprs.push_back(End.release());
6344 }
6345
6346 if (!getDerived().AlwaysRebuild() &&
6347 Init.get() == E->getInit() &&
6348 !ExprChanged)
6349 return SemaRef.Owned(E);
6350
6351 return getDerived().RebuildDesignatedInitExpr(Desig, move_arg(ArrayExprs),
6352 E->getEqualOrColonLoc(),
6353 E->usesGNUSyntax(), Init.get());
6354 }
6355
6356 template<typename Derived>
6357 ExprResult
TransformImplicitValueInitExpr(ImplicitValueInitExpr * E)6358 TreeTransform<Derived>::TransformImplicitValueInitExpr(
6359 ImplicitValueInitExpr *E) {
6360 TemporaryBase Rebase(*this, E->getLocStart(), DeclarationName());
6361
6362 // FIXME: Will we ever have proper type location here? Will we actually
6363 // need to transform the type?
6364 QualType T = getDerived().TransformType(E->getType());
6365 if (T.isNull())
6366 return ExprError();
6367
6368 if (!getDerived().AlwaysRebuild() &&
6369 T == E->getType())
6370 return SemaRef.Owned(E);
6371
6372 return getDerived().RebuildImplicitValueInitExpr(T);
6373 }
6374
6375 template<typename Derived>
6376 ExprResult
TransformVAArgExpr(VAArgExpr * E)6377 TreeTransform<Derived>::TransformVAArgExpr(VAArgExpr *E) {
6378 TypeSourceInfo *TInfo = getDerived().TransformType(E->getWrittenTypeInfo());
6379 if (!TInfo)
6380 return ExprError();
6381
6382 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
6383 if (SubExpr.isInvalid())
6384 return ExprError();
6385
6386 if (!getDerived().AlwaysRebuild() &&
6387 TInfo == E->getWrittenTypeInfo() &&
6388 SubExpr.get() == E->getSubExpr())
6389 return SemaRef.Owned(E);
6390
6391 return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), SubExpr.get(),
6392 TInfo, E->getRParenLoc());
6393 }
6394
6395 template<typename Derived>
6396 ExprResult
TransformParenListExpr(ParenListExpr * E)6397 TreeTransform<Derived>::TransformParenListExpr(ParenListExpr *E) {
6398 bool ArgumentChanged = false;
6399 ASTOwningVector<Expr*, 4> Inits(SemaRef);
6400 if (TransformExprs(E->getExprs(), E->getNumExprs(), true, Inits,
6401 &ArgumentChanged))
6402 return ExprError();
6403
6404 return getDerived().RebuildParenListExpr(E->getLParenLoc(),
6405 move_arg(Inits),
6406 E->getRParenLoc());
6407 }
6408
6409 /// \brief Transform an address-of-label expression.
6410 ///
6411 /// By default, the transformation of an address-of-label expression always
6412 /// rebuilds the expression, so that the label identifier can be resolved to
6413 /// the corresponding label statement by semantic analysis.
6414 template<typename Derived>
6415 ExprResult
TransformAddrLabelExpr(AddrLabelExpr * E)6416 TreeTransform<Derived>::TransformAddrLabelExpr(AddrLabelExpr *E) {
6417 Decl *LD = getDerived().TransformDecl(E->getLabel()->getLocation(),
6418 E->getLabel());
6419 if (!LD)
6420 return ExprError();
6421
6422 return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(),
6423 cast<LabelDecl>(LD));
6424 }
6425
6426 template<typename Derived>
6427 ExprResult
TransformStmtExpr(StmtExpr * E)6428 TreeTransform<Derived>::TransformStmtExpr(StmtExpr *E) {
6429 StmtResult SubStmt
6430 = getDerived().TransformCompoundStmt(E->getSubStmt(), true);
6431 if (SubStmt.isInvalid())
6432 return ExprError();
6433
6434 if (!getDerived().AlwaysRebuild() &&
6435 SubStmt.get() == E->getSubStmt())
6436 return SemaRef.Owned(E);
6437
6438 return getDerived().RebuildStmtExpr(E->getLParenLoc(),
6439 SubStmt.get(),
6440 E->getRParenLoc());
6441 }
6442
6443 template<typename Derived>
6444 ExprResult
TransformChooseExpr(ChooseExpr * E)6445 TreeTransform<Derived>::TransformChooseExpr(ChooseExpr *E) {
6446 ExprResult Cond = getDerived().TransformExpr(E->getCond());
6447 if (Cond.isInvalid())
6448 return ExprError();
6449
6450 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
6451 if (LHS.isInvalid())
6452 return ExprError();
6453
6454 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
6455 if (RHS.isInvalid())
6456 return ExprError();
6457
6458 if (!getDerived().AlwaysRebuild() &&
6459 Cond.get() == E->getCond() &&
6460 LHS.get() == E->getLHS() &&
6461 RHS.get() == E->getRHS())
6462 return SemaRef.Owned(E);
6463
6464 return getDerived().RebuildChooseExpr(E->getBuiltinLoc(),
6465 Cond.get(), LHS.get(), RHS.get(),
6466 E->getRParenLoc());
6467 }
6468
6469 template<typename Derived>
6470 ExprResult
TransformGNUNullExpr(GNUNullExpr * E)6471 TreeTransform<Derived>::TransformGNUNullExpr(GNUNullExpr *E) {
6472 return SemaRef.Owned(E);
6473 }
6474
6475 template<typename Derived>
6476 ExprResult
TransformCXXOperatorCallExpr(CXXOperatorCallExpr * E)6477 TreeTransform<Derived>::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
6478 switch (E->getOperator()) {
6479 case OO_New:
6480 case OO_Delete:
6481 case OO_Array_New:
6482 case OO_Array_Delete:
6483 llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr");
6484 return ExprError();
6485
6486 case OO_Call: {
6487 // This is a call to an object's operator().
6488 assert(E->getNumArgs() >= 1 && "Object call is missing arguments");
6489
6490 // Transform the object itself.
6491 ExprResult Object = getDerived().TransformExpr(E->getArg(0));
6492 if (Object.isInvalid())
6493 return ExprError();
6494
6495 // FIXME: Poor location information
6496 SourceLocation FakeLParenLoc
6497 = SemaRef.PP.getLocForEndOfToken(
6498 static_cast<Expr *>(Object.get())->getLocEnd());
6499
6500 // Transform the call arguments.
6501 ASTOwningVector<Expr*> Args(SemaRef);
6502 if (getDerived().TransformExprs(E->getArgs() + 1, E->getNumArgs() - 1, true,
6503 Args))
6504 return ExprError();
6505
6506 return getDerived().RebuildCallExpr(Object.get(), FakeLParenLoc,
6507 move_arg(Args),
6508 E->getLocEnd());
6509 }
6510
6511 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
6512 case OO_##Name:
6513 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
6514 #include "clang/Basic/OperatorKinds.def"
6515 case OO_Subscript:
6516 // Handled below.
6517 break;
6518
6519 case OO_Conditional:
6520 llvm_unreachable("conditional operator is not actually overloadable");
6521 return ExprError();
6522
6523 case OO_None:
6524 case NUM_OVERLOADED_OPERATORS:
6525 llvm_unreachable("not an overloaded operator?");
6526 return ExprError();
6527 }
6528
6529 ExprResult Callee = getDerived().TransformExpr(E->getCallee());
6530 if (Callee.isInvalid())
6531 return ExprError();
6532
6533 ExprResult First = getDerived().TransformExpr(E->getArg(0));
6534 if (First.isInvalid())
6535 return ExprError();
6536
6537 ExprResult Second;
6538 if (E->getNumArgs() == 2) {
6539 Second = getDerived().TransformExpr(E->getArg(1));
6540 if (Second.isInvalid())
6541 return ExprError();
6542 }
6543
6544 if (!getDerived().AlwaysRebuild() &&
6545 Callee.get() == E->getCallee() &&
6546 First.get() == E->getArg(0) &&
6547 (E->getNumArgs() != 2 || Second.get() == E->getArg(1)))
6548 return SemaRef.Owned(E);
6549
6550 return getDerived().RebuildCXXOperatorCallExpr(E->getOperator(),
6551 E->getOperatorLoc(),
6552 Callee.get(),
6553 First.get(),
6554 Second.get());
6555 }
6556
6557 template<typename Derived>
6558 ExprResult
TransformCXXMemberCallExpr(CXXMemberCallExpr * E)6559 TreeTransform<Derived>::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) {
6560 return getDerived().TransformCallExpr(E);
6561 }
6562
6563 template<typename Derived>
6564 ExprResult
TransformCUDAKernelCallExpr(CUDAKernelCallExpr * E)6565 TreeTransform<Derived>::TransformCUDAKernelCallExpr(CUDAKernelCallExpr *E) {
6566 // Transform the callee.
6567 ExprResult Callee = getDerived().TransformExpr(E->getCallee());
6568 if (Callee.isInvalid())
6569 return ExprError();
6570
6571 // Transform exec config.
6572 ExprResult EC = getDerived().TransformCallExpr(E->getConfig());
6573 if (EC.isInvalid())
6574 return ExprError();
6575
6576 // Transform arguments.
6577 bool ArgChanged = false;
6578 ASTOwningVector<Expr*> Args(SemaRef);
6579 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
6580 &ArgChanged))
6581 return ExprError();
6582
6583 if (!getDerived().AlwaysRebuild() &&
6584 Callee.get() == E->getCallee() &&
6585 !ArgChanged)
6586 return SemaRef.Owned(E);
6587
6588 // FIXME: Wrong source location information for the '('.
6589 SourceLocation FakeLParenLoc
6590 = ((Expr *)Callee.get())->getSourceRange().getBegin();
6591 return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
6592 move_arg(Args),
6593 E->getRParenLoc(), EC.get());
6594 }
6595
6596 template<typename Derived>
6597 ExprResult
TransformCXXNamedCastExpr(CXXNamedCastExpr * E)6598 TreeTransform<Derived>::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) {
6599 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
6600 if (!Type)
6601 return ExprError();
6602
6603 ExprResult SubExpr
6604 = getDerived().TransformExpr(E->getSubExprAsWritten());
6605 if (SubExpr.isInvalid())
6606 return ExprError();
6607
6608 if (!getDerived().AlwaysRebuild() &&
6609 Type == E->getTypeInfoAsWritten() &&
6610 SubExpr.get() == E->getSubExpr())
6611 return SemaRef.Owned(E);
6612
6613 // FIXME: Poor source location information here.
6614 SourceLocation FakeLAngleLoc
6615 = SemaRef.PP.getLocForEndOfToken(E->getOperatorLoc());
6616 SourceLocation FakeRAngleLoc = E->getSubExpr()->getSourceRange().getBegin();
6617 SourceLocation FakeRParenLoc
6618 = SemaRef.PP.getLocForEndOfToken(
6619 E->getSubExpr()->getSourceRange().getEnd());
6620 return getDerived().RebuildCXXNamedCastExpr(E->getOperatorLoc(),
6621 E->getStmtClass(),
6622 FakeLAngleLoc,
6623 Type,
6624 FakeRAngleLoc,
6625 FakeRAngleLoc,
6626 SubExpr.get(),
6627 FakeRParenLoc);
6628 }
6629
6630 template<typename Derived>
6631 ExprResult
TransformCXXStaticCastExpr(CXXStaticCastExpr * E)6632 TreeTransform<Derived>::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) {
6633 return getDerived().TransformCXXNamedCastExpr(E);
6634 }
6635
6636 template<typename Derived>
6637 ExprResult
TransformCXXDynamicCastExpr(CXXDynamicCastExpr * E)6638 TreeTransform<Derived>::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) {
6639 return getDerived().TransformCXXNamedCastExpr(E);
6640 }
6641
6642 template<typename Derived>
6643 ExprResult
TransformCXXReinterpretCastExpr(CXXReinterpretCastExpr * E)6644 TreeTransform<Derived>::TransformCXXReinterpretCastExpr(
6645 CXXReinterpretCastExpr *E) {
6646 return getDerived().TransformCXXNamedCastExpr(E);
6647 }
6648
6649 template<typename Derived>
6650 ExprResult
TransformCXXConstCastExpr(CXXConstCastExpr * E)6651 TreeTransform<Derived>::TransformCXXConstCastExpr(CXXConstCastExpr *E) {
6652 return getDerived().TransformCXXNamedCastExpr(E);
6653 }
6654
6655 template<typename Derived>
6656 ExprResult
TransformCXXFunctionalCastExpr(CXXFunctionalCastExpr * E)6657 TreeTransform<Derived>::TransformCXXFunctionalCastExpr(
6658 CXXFunctionalCastExpr *E) {
6659 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
6660 if (!Type)
6661 return ExprError();
6662
6663 ExprResult SubExpr
6664 = getDerived().TransformExpr(E->getSubExprAsWritten());
6665 if (SubExpr.isInvalid())
6666 return ExprError();
6667
6668 if (!getDerived().AlwaysRebuild() &&
6669 Type == E->getTypeInfoAsWritten() &&
6670 SubExpr.get() == E->getSubExpr())
6671 return SemaRef.Owned(E);
6672
6673 return getDerived().RebuildCXXFunctionalCastExpr(Type,
6674 /*FIXME:*/E->getSubExpr()->getLocStart(),
6675 SubExpr.get(),
6676 E->getRParenLoc());
6677 }
6678
6679 template<typename Derived>
6680 ExprResult
TransformCXXTypeidExpr(CXXTypeidExpr * E)6681 TreeTransform<Derived>::TransformCXXTypeidExpr(CXXTypeidExpr *E) {
6682 if (E->isTypeOperand()) {
6683 TypeSourceInfo *TInfo
6684 = getDerived().TransformType(E->getTypeOperandSourceInfo());
6685 if (!TInfo)
6686 return ExprError();
6687
6688 if (!getDerived().AlwaysRebuild() &&
6689 TInfo == E->getTypeOperandSourceInfo())
6690 return SemaRef.Owned(E);
6691
6692 return getDerived().RebuildCXXTypeidExpr(E->getType(),
6693 E->getLocStart(),
6694 TInfo,
6695 E->getLocEnd());
6696 }
6697
6698 // We don't know whether the expression is potentially evaluated until
6699 // after we perform semantic analysis, so the expression is potentially
6700 // potentially evaluated.
6701 EnterExpressionEvaluationContext Unevaluated(SemaRef,
6702 Sema::PotentiallyPotentiallyEvaluated);
6703
6704 ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
6705 if (SubExpr.isInvalid())
6706 return ExprError();
6707
6708 if (!getDerived().AlwaysRebuild() &&
6709 SubExpr.get() == E->getExprOperand())
6710 return SemaRef.Owned(E);
6711
6712 return getDerived().RebuildCXXTypeidExpr(E->getType(),
6713 E->getLocStart(),
6714 SubExpr.get(),
6715 E->getLocEnd());
6716 }
6717
6718 template<typename Derived>
6719 ExprResult
TransformCXXUuidofExpr(CXXUuidofExpr * E)6720 TreeTransform<Derived>::TransformCXXUuidofExpr(CXXUuidofExpr *E) {
6721 if (E->isTypeOperand()) {
6722 TypeSourceInfo *TInfo
6723 = getDerived().TransformType(E->getTypeOperandSourceInfo());
6724 if (!TInfo)
6725 return ExprError();
6726
6727 if (!getDerived().AlwaysRebuild() &&
6728 TInfo == E->getTypeOperandSourceInfo())
6729 return SemaRef.Owned(E);
6730
6731 return getDerived().RebuildCXXUuidofExpr(E->getType(),
6732 E->getLocStart(),
6733 TInfo,
6734 E->getLocEnd());
6735 }
6736
6737 // We don't know whether the expression is potentially evaluated until
6738 // after we perform semantic analysis, so the expression is potentially
6739 // potentially evaluated.
6740 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
6741
6742 ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
6743 if (SubExpr.isInvalid())
6744 return ExprError();
6745
6746 if (!getDerived().AlwaysRebuild() &&
6747 SubExpr.get() == E->getExprOperand())
6748 return SemaRef.Owned(E);
6749
6750 return getDerived().RebuildCXXUuidofExpr(E->getType(),
6751 E->getLocStart(),
6752 SubExpr.get(),
6753 E->getLocEnd());
6754 }
6755
6756 template<typename Derived>
6757 ExprResult
TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr * E)6758 TreeTransform<Derived>::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) {
6759 return SemaRef.Owned(E);
6760 }
6761
6762 template<typename Derived>
6763 ExprResult
TransformCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr * E)6764 TreeTransform<Derived>::TransformCXXNullPtrLiteralExpr(
6765 CXXNullPtrLiteralExpr *E) {
6766 return SemaRef.Owned(E);
6767 }
6768
6769 template<typename Derived>
6770 ExprResult
TransformCXXThisExpr(CXXThisExpr * E)6771 TreeTransform<Derived>::TransformCXXThisExpr(CXXThisExpr *E) {
6772 DeclContext *DC = getSema().getFunctionLevelDeclContext();
6773 QualType T;
6774 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
6775 T = MD->getThisType(getSema().Context);
6776 else
6777 T = getSema().Context.getPointerType(
6778 getSema().Context.getRecordType(cast<CXXRecordDecl>(DC)));
6779
6780 if (!getDerived().AlwaysRebuild() && T == E->getType())
6781 return SemaRef.Owned(E);
6782
6783 return getDerived().RebuildCXXThisExpr(E->getLocStart(), T, E->isImplicit());
6784 }
6785
6786 template<typename Derived>
6787 ExprResult
TransformCXXThrowExpr(CXXThrowExpr * E)6788 TreeTransform<Derived>::TransformCXXThrowExpr(CXXThrowExpr *E) {
6789 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
6790 if (SubExpr.isInvalid())
6791 return ExprError();
6792
6793 if (!getDerived().AlwaysRebuild() &&
6794 SubExpr.get() == E->getSubExpr())
6795 return SemaRef.Owned(E);
6796
6797 return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), SubExpr.get(),
6798 E->isThrownVariableInScope());
6799 }
6800
6801 template<typename Derived>
6802 ExprResult
TransformCXXDefaultArgExpr(CXXDefaultArgExpr * E)6803 TreeTransform<Derived>::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
6804 ParmVarDecl *Param
6805 = cast_or_null<ParmVarDecl>(getDerived().TransformDecl(E->getLocStart(),
6806 E->getParam()));
6807 if (!Param)
6808 return ExprError();
6809
6810 if (!getDerived().AlwaysRebuild() &&
6811 Param == E->getParam())
6812 return SemaRef.Owned(E);
6813
6814 return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param);
6815 }
6816
6817 template<typename Derived>
6818 ExprResult
TransformCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)6819 TreeTransform<Derived>::TransformCXXScalarValueInitExpr(
6820 CXXScalarValueInitExpr *E) {
6821 TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
6822 if (!T)
6823 return ExprError();
6824
6825 if (!getDerived().AlwaysRebuild() &&
6826 T == E->getTypeSourceInfo())
6827 return SemaRef.Owned(E);
6828
6829 return getDerived().RebuildCXXScalarValueInitExpr(T,
6830 /*FIXME:*/T->getTypeLoc().getEndLoc(),
6831 E->getRParenLoc());
6832 }
6833
6834 template<typename Derived>
6835 ExprResult
TransformCXXNewExpr(CXXNewExpr * E)6836 TreeTransform<Derived>::TransformCXXNewExpr(CXXNewExpr *E) {
6837 // Transform the type that we're allocating
6838 TypeSourceInfo *AllocTypeInfo
6839 = getDerived().TransformType(E->getAllocatedTypeSourceInfo());
6840 if (!AllocTypeInfo)
6841 return ExprError();
6842
6843 // Transform the size of the array we're allocating (if any).
6844 ExprResult ArraySize = getDerived().TransformExpr(E->getArraySize());
6845 if (ArraySize.isInvalid())
6846 return ExprError();
6847
6848 // Transform the placement arguments (if any).
6849 bool ArgumentChanged = false;
6850 ASTOwningVector<Expr*> PlacementArgs(SemaRef);
6851 if (getDerived().TransformExprs(E->getPlacementArgs(),
6852 E->getNumPlacementArgs(), true,
6853 PlacementArgs, &ArgumentChanged))
6854 return ExprError();
6855
6856 // transform the constructor arguments (if any).
6857 ASTOwningVector<Expr*> ConstructorArgs(SemaRef);
6858 if (TransformExprs(E->getConstructorArgs(), E->getNumConstructorArgs(), true,
6859 ConstructorArgs, &ArgumentChanged))
6860 return ExprError();
6861
6862 // Transform constructor, new operator, and delete operator.
6863 CXXConstructorDecl *Constructor = 0;
6864 if (E->getConstructor()) {
6865 Constructor = cast_or_null<CXXConstructorDecl>(
6866 getDerived().TransformDecl(E->getLocStart(),
6867 E->getConstructor()));
6868 if (!Constructor)
6869 return ExprError();
6870 }
6871
6872 FunctionDecl *OperatorNew = 0;
6873 if (E->getOperatorNew()) {
6874 OperatorNew = cast_or_null<FunctionDecl>(
6875 getDerived().TransformDecl(E->getLocStart(),
6876 E->getOperatorNew()));
6877 if (!OperatorNew)
6878 return ExprError();
6879 }
6880
6881 FunctionDecl *OperatorDelete = 0;
6882 if (E->getOperatorDelete()) {
6883 OperatorDelete = cast_or_null<FunctionDecl>(
6884 getDerived().TransformDecl(E->getLocStart(),
6885 E->getOperatorDelete()));
6886 if (!OperatorDelete)
6887 return ExprError();
6888 }
6889
6890 if (!getDerived().AlwaysRebuild() &&
6891 AllocTypeInfo == E->getAllocatedTypeSourceInfo() &&
6892 ArraySize.get() == E->getArraySize() &&
6893 Constructor == E->getConstructor() &&
6894 OperatorNew == E->getOperatorNew() &&
6895 OperatorDelete == E->getOperatorDelete() &&
6896 !ArgumentChanged) {
6897 // Mark any declarations we need as referenced.
6898 // FIXME: instantiation-specific.
6899 if (Constructor)
6900 SemaRef.MarkDeclarationReferenced(E->getLocStart(), Constructor);
6901 if (OperatorNew)
6902 SemaRef.MarkDeclarationReferenced(E->getLocStart(), OperatorNew);
6903 if (OperatorDelete)
6904 SemaRef.MarkDeclarationReferenced(E->getLocStart(), OperatorDelete);
6905 return SemaRef.Owned(E);
6906 }
6907
6908 QualType AllocType = AllocTypeInfo->getType();
6909 if (!ArraySize.get()) {
6910 // If no array size was specified, but the new expression was
6911 // instantiated with an array type (e.g., "new T" where T is
6912 // instantiated with "int[4]"), extract the outer bound from the
6913 // array type as our array size. We do this with constant and
6914 // dependently-sized array types.
6915 const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType);
6916 if (!ArrayT) {
6917 // Do nothing
6918 } else if (const ConstantArrayType *ConsArrayT
6919 = dyn_cast<ConstantArrayType>(ArrayT)) {
6920 ArraySize
6921 = SemaRef.Owned(IntegerLiteral::Create(SemaRef.Context,
6922 ConsArrayT->getSize(),
6923 SemaRef.Context.getSizeType(),
6924 /*FIXME:*/E->getLocStart()));
6925 AllocType = ConsArrayT->getElementType();
6926 } else if (const DependentSizedArrayType *DepArrayT
6927 = dyn_cast<DependentSizedArrayType>(ArrayT)) {
6928 if (DepArrayT->getSizeExpr()) {
6929 ArraySize = SemaRef.Owned(DepArrayT->getSizeExpr());
6930 AllocType = DepArrayT->getElementType();
6931 }
6932 }
6933 }
6934
6935 return getDerived().RebuildCXXNewExpr(E->getLocStart(),
6936 E->isGlobalNew(),
6937 /*FIXME:*/E->getLocStart(),
6938 move_arg(PlacementArgs),
6939 /*FIXME:*/E->getLocStart(),
6940 E->getTypeIdParens(),
6941 AllocType,
6942 AllocTypeInfo,
6943 ArraySize.get(),
6944 /*FIXME:*/E->hasInitializer()
6945 ? E->getLocStart()
6946 : SourceLocation(),
6947 move_arg(ConstructorArgs),
6948 /*FIXME:*/E->hasInitializer()
6949 ? E->getLocEnd()
6950 : SourceLocation());
6951 }
6952
6953 template<typename Derived>
6954 ExprResult
TransformCXXDeleteExpr(CXXDeleteExpr * E)6955 TreeTransform<Derived>::TransformCXXDeleteExpr(CXXDeleteExpr *E) {
6956 ExprResult Operand = getDerived().TransformExpr(E->getArgument());
6957 if (Operand.isInvalid())
6958 return ExprError();
6959
6960 // Transform the delete operator, if known.
6961 FunctionDecl *OperatorDelete = 0;
6962 if (E->getOperatorDelete()) {
6963 OperatorDelete = cast_or_null<FunctionDecl>(
6964 getDerived().TransformDecl(E->getLocStart(),
6965 E->getOperatorDelete()));
6966 if (!OperatorDelete)
6967 return ExprError();
6968 }
6969
6970 if (!getDerived().AlwaysRebuild() &&
6971 Operand.get() == E->getArgument() &&
6972 OperatorDelete == E->getOperatorDelete()) {
6973 // Mark any declarations we need as referenced.
6974 // FIXME: instantiation-specific.
6975 if (OperatorDelete)
6976 SemaRef.MarkDeclarationReferenced(E->getLocStart(), OperatorDelete);
6977
6978 if (!E->getArgument()->isTypeDependent()) {
6979 QualType Destroyed = SemaRef.Context.getBaseElementType(
6980 E->getDestroyedType());
6981 if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
6982 CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
6983 SemaRef.MarkDeclarationReferenced(E->getLocStart(),
6984 SemaRef.LookupDestructor(Record));
6985 }
6986 }
6987
6988 return SemaRef.Owned(E);
6989 }
6990
6991 return getDerived().RebuildCXXDeleteExpr(E->getLocStart(),
6992 E->isGlobalDelete(),
6993 E->isArrayForm(),
6994 Operand.get());
6995 }
6996
6997 template<typename Derived>
6998 ExprResult
TransformCXXPseudoDestructorExpr(CXXPseudoDestructorExpr * E)6999 TreeTransform<Derived>::TransformCXXPseudoDestructorExpr(
7000 CXXPseudoDestructorExpr *E) {
7001 ExprResult Base = getDerived().TransformExpr(E->getBase());
7002 if (Base.isInvalid())
7003 return ExprError();
7004
7005 ParsedType ObjectTypePtr;
7006 bool MayBePseudoDestructor = false;
7007 Base = SemaRef.ActOnStartCXXMemberReference(0, Base.get(),
7008 E->getOperatorLoc(),
7009 E->isArrow()? tok::arrow : tok::period,
7010 ObjectTypePtr,
7011 MayBePseudoDestructor);
7012 if (Base.isInvalid())
7013 return ExprError();
7014
7015 QualType ObjectType = ObjectTypePtr.get();
7016 NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc();
7017 if (QualifierLoc) {
7018 QualifierLoc
7019 = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc, ObjectType);
7020 if (!QualifierLoc)
7021 return ExprError();
7022 }
7023 CXXScopeSpec SS;
7024 SS.Adopt(QualifierLoc);
7025
7026 PseudoDestructorTypeStorage Destroyed;
7027 if (E->getDestroyedTypeInfo()) {
7028 TypeSourceInfo *DestroyedTypeInfo
7029 = getDerived().TransformTypeInObjectScope(E->getDestroyedTypeInfo(),
7030 ObjectType, 0, SS);
7031 if (!DestroyedTypeInfo)
7032 return ExprError();
7033 Destroyed = DestroyedTypeInfo;
7034 } else if (ObjectType->isDependentType()) {
7035 // We aren't likely to be able to resolve the identifier down to a type
7036 // now anyway, so just retain the identifier.
7037 Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(),
7038 E->getDestroyedTypeLoc());
7039 } else {
7040 // Look for a destructor known with the given name.
7041 ParsedType T = SemaRef.getDestructorName(E->getTildeLoc(),
7042 *E->getDestroyedTypeIdentifier(),
7043 E->getDestroyedTypeLoc(),
7044 /*Scope=*/0,
7045 SS, ObjectTypePtr,
7046 false);
7047 if (!T)
7048 return ExprError();
7049
7050 Destroyed
7051 = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T),
7052 E->getDestroyedTypeLoc());
7053 }
7054
7055 TypeSourceInfo *ScopeTypeInfo = 0;
7056 if (E->getScopeTypeInfo()) {
7057 ScopeTypeInfo = getDerived().TransformType(E->getScopeTypeInfo());
7058 if (!ScopeTypeInfo)
7059 return ExprError();
7060 }
7061
7062 return getDerived().RebuildCXXPseudoDestructorExpr(Base.get(),
7063 E->getOperatorLoc(),
7064 E->isArrow(),
7065 SS,
7066 ScopeTypeInfo,
7067 E->getColonColonLoc(),
7068 E->getTildeLoc(),
7069 Destroyed);
7070 }
7071
7072 template<typename Derived>
7073 ExprResult
TransformUnresolvedLookupExpr(UnresolvedLookupExpr * Old)7074 TreeTransform<Derived>::TransformUnresolvedLookupExpr(
7075 UnresolvedLookupExpr *Old) {
7076 LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(),
7077 Sema::LookupOrdinaryName);
7078
7079 // Transform all the decls.
7080 for (UnresolvedLookupExpr::decls_iterator I = Old->decls_begin(),
7081 E = Old->decls_end(); I != E; ++I) {
7082 NamedDecl *InstD = static_cast<NamedDecl*>(
7083 getDerived().TransformDecl(Old->getNameLoc(),
7084 *I));
7085 if (!InstD) {
7086 // Silently ignore these if a UsingShadowDecl instantiated to nothing.
7087 // This can happen because of dependent hiding.
7088 if (isa<UsingShadowDecl>(*I))
7089 continue;
7090 else
7091 return ExprError();
7092 }
7093
7094 // Expand using declarations.
7095 if (isa<UsingDecl>(InstD)) {
7096 UsingDecl *UD = cast<UsingDecl>(InstD);
7097 for (UsingDecl::shadow_iterator I = UD->shadow_begin(),
7098 E = UD->shadow_end(); I != E; ++I)
7099 R.addDecl(*I);
7100 continue;
7101 }
7102
7103 R.addDecl(InstD);
7104 }
7105
7106 // Resolve a kind, but don't do any further analysis. If it's
7107 // ambiguous, the callee needs to deal with it.
7108 R.resolveKind();
7109
7110 // Rebuild the nested-name qualifier, if present.
7111 CXXScopeSpec SS;
7112 if (Old->getQualifierLoc()) {
7113 NestedNameSpecifierLoc QualifierLoc
7114 = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
7115 if (!QualifierLoc)
7116 return ExprError();
7117
7118 SS.Adopt(QualifierLoc);
7119 }
7120
7121 if (Old->getNamingClass()) {
7122 CXXRecordDecl *NamingClass
7123 = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
7124 Old->getNameLoc(),
7125 Old->getNamingClass()));
7126 if (!NamingClass)
7127 return ExprError();
7128
7129 R.setNamingClass(NamingClass);
7130 }
7131
7132 // If we have no template arguments, it's a normal declaration name.
7133 if (!Old->hasExplicitTemplateArgs())
7134 return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL());
7135
7136 // If we have template arguments, rebuild them, then rebuild the
7137 // templateid expression.
7138 TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc());
7139 if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
7140 Old->getNumTemplateArgs(),
7141 TransArgs))
7142 return ExprError();
7143
7144 return getDerived().RebuildTemplateIdExpr(SS, R, Old->requiresADL(),
7145 TransArgs);
7146 }
7147
7148 template<typename Derived>
7149 ExprResult
TransformUnaryTypeTraitExpr(UnaryTypeTraitExpr * E)7150 TreeTransform<Derived>::TransformUnaryTypeTraitExpr(UnaryTypeTraitExpr *E) {
7151 TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo());
7152 if (!T)
7153 return ExprError();
7154
7155 if (!getDerived().AlwaysRebuild() &&
7156 T == E->getQueriedTypeSourceInfo())
7157 return SemaRef.Owned(E);
7158
7159 return getDerived().RebuildUnaryTypeTrait(E->getTrait(),
7160 E->getLocStart(),
7161 T,
7162 E->getLocEnd());
7163 }
7164
7165 template<typename Derived>
7166 ExprResult
TransformBinaryTypeTraitExpr(BinaryTypeTraitExpr * E)7167 TreeTransform<Derived>::TransformBinaryTypeTraitExpr(BinaryTypeTraitExpr *E) {
7168 TypeSourceInfo *LhsT = getDerived().TransformType(E->getLhsTypeSourceInfo());
7169 if (!LhsT)
7170 return ExprError();
7171
7172 TypeSourceInfo *RhsT = getDerived().TransformType(E->getRhsTypeSourceInfo());
7173 if (!RhsT)
7174 return ExprError();
7175
7176 if (!getDerived().AlwaysRebuild() &&
7177 LhsT == E->getLhsTypeSourceInfo() && RhsT == E->getRhsTypeSourceInfo())
7178 return SemaRef.Owned(E);
7179
7180 return getDerived().RebuildBinaryTypeTrait(E->getTrait(),
7181 E->getLocStart(),
7182 LhsT, RhsT,
7183 E->getLocEnd());
7184 }
7185
7186 template<typename Derived>
7187 ExprResult
TransformArrayTypeTraitExpr(ArrayTypeTraitExpr * E)7188 TreeTransform<Derived>::TransformArrayTypeTraitExpr(ArrayTypeTraitExpr *E) {
7189 TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo());
7190 if (!T)
7191 return ExprError();
7192
7193 if (!getDerived().AlwaysRebuild() &&
7194 T == E->getQueriedTypeSourceInfo())
7195 return SemaRef.Owned(E);
7196
7197 ExprResult SubExpr;
7198 {
7199 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
7200 SubExpr = getDerived().TransformExpr(E->getDimensionExpression());
7201 if (SubExpr.isInvalid())
7202 return ExprError();
7203
7204 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getDimensionExpression())
7205 return SemaRef.Owned(E);
7206 }
7207
7208 return getDerived().RebuildArrayTypeTrait(E->getTrait(),
7209 E->getLocStart(),
7210 T,
7211 SubExpr.get(),
7212 E->getLocEnd());
7213 }
7214
7215 template<typename Derived>
7216 ExprResult
TransformExpressionTraitExpr(ExpressionTraitExpr * E)7217 TreeTransform<Derived>::TransformExpressionTraitExpr(ExpressionTraitExpr *E) {
7218 ExprResult SubExpr;
7219 {
7220 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
7221 SubExpr = getDerived().TransformExpr(E->getQueriedExpression());
7222 if (SubExpr.isInvalid())
7223 return ExprError();
7224
7225 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getQueriedExpression())
7226 return SemaRef.Owned(E);
7227 }
7228
7229 return getDerived().RebuildExpressionTrait(
7230 E->getTrait(), E->getLocStart(), SubExpr.get(), E->getLocEnd());
7231 }
7232
7233 template<typename Derived>
7234 ExprResult
TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr * E)7235 TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
7236 DependentScopeDeclRefExpr *E) {
7237 NestedNameSpecifierLoc QualifierLoc
7238 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
7239 if (!QualifierLoc)
7240 return ExprError();
7241
7242 // TODO: If this is a conversion-function-id, verify that the
7243 // destination type name (if present) resolves the same way after
7244 // instantiation as it did in the local scope.
7245
7246 DeclarationNameInfo NameInfo
7247 = getDerived().TransformDeclarationNameInfo(E->getNameInfo());
7248 if (!NameInfo.getName())
7249 return ExprError();
7250
7251 if (!E->hasExplicitTemplateArgs()) {
7252 if (!getDerived().AlwaysRebuild() &&
7253 QualifierLoc == E->getQualifierLoc() &&
7254 // Note: it is sufficient to compare the Name component of NameInfo:
7255 // if name has not changed, DNLoc has not changed either.
7256 NameInfo.getName() == E->getDeclName())
7257 return SemaRef.Owned(E);
7258
7259 return getDerived().RebuildDependentScopeDeclRefExpr(QualifierLoc,
7260 NameInfo,
7261 /*TemplateArgs*/ 0);
7262 }
7263
7264 TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
7265 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
7266 E->getNumTemplateArgs(),
7267 TransArgs))
7268 return ExprError();
7269
7270 return getDerived().RebuildDependentScopeDeclRefExpr(QualifierLoc,
7271 NameInfo,
7272 &TransArgs);
7273 }
7274
7275 template<typename Derived>
7276 ExprResult
TransformCXXConstructExpr(CXXConstructExpr * E)7277 TreeTransform<Derived>::TransformCXXConstructExpr(CXXConstructExpr *E) {
7278 // CXXConstructExprs are always implicit, so when we have a
7279 // 1-argument construction we just transform that argument.
7280 if (E->getNumArgs() == 1 ||
7281 (E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1))))
7282 return getDerived().TransformExpr(E->getArg(0));
7283
7284 TemporaryBase Rebase(*this, /*FIXME*/E->getLocStart(), DeclarationName());
7285
7286 QualType T = getDerived().TransformType(E->getType());
7287 if (T.isNull())
7288 return ExprError();
7289
7290 CXXConstructorDecl *Constructor
7291 = cast_or_null<CXXConstructorDecl>(
7292 getDerived().TransformDecl(E->getLocStart(),
7293 E->getConstructor()));
7294 if (!Constructor)
7295 return ExprError();
7296
7297 bool ArgumentChanged = false;
7298 ASTOwningVector<Expr*> Args(SemaRef);
7299 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
7300 &ArgumentChanged))
7301 return ExprError();
7302
7303 if (!getDerived().AlwaysRebuild() &&
7304 T == E->getType() &&
7305 Constructor == E->getConstructor() &&
7306 !ArgumentChanged) {
7307 // Mark the constructor as referenced.
7308 // FIXME: Instantiation-specific
7309 SemaRef.MarkDeclarationReferenced(E->getLocStart(), Constructor);
7310 return SemaRef.Owned(E);
7311 }
7312
7313 return getDerived().RebuildCXXConstructExpr(T, /*FIXME:*/E->getLocStart(),
7314 Constructor, E->isElidable(),
7315 move_arg(Args),
7316 E->requiresZeroInitialization(),
7317 E->getConstructionKind(),
7318 E->getParenRange());
7319 }
7320
7321 /// \brief Transform a C++ temporary-binding expression.
7322 ///
7323 /// Since CXXBindTemporaryExpr nodes are implicitly generated, we just
7324 /// transform the subexpression and return that.
7325 template<typename Derived>
7326 ExprResult
TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)7327 TreeTransform<Derived>::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
7328 return getDerived().TransformExpr(E->getSubExpr());
7329 }
7330
7331 /// \brief Transform a C++ expression that contains cleanups that should
7332 /// be run after the expression is evaluated.
7333 ///
7334 /// Since ExprWithCleanups nodes are implicitly generated, we
7335 /// just transform the subexpression and return that.
7336 template<typename Derived>
7337 ExprResult
TransformExprWithCleanups(ExprWithCleanups * E)7338 TreeTransform<Derived>::TransformExprWithCleanups(ExprWithCleanups *E) {
7339 return getDerived().TransformExpr(E->getSubExpr());
7340 }
7341
7342 template<typename Derived>
7343 ExprResult
TransformCXXTemporaryObjectExpr(CXXTemporaryObjectExpr * E)7344 TreeTransform<Derived>::TransformCXXTemporaryObjectExpr(
7345 CXXTemporaryObjectExpr *E) {
7346 TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
7347 if (!T)
7348 return ExprError();
7349
7350 CXXConstructorDecl *Constructor
7351 = cast_or_null<CXXConstructorDecl>(
7352 getDerived().TransformDecl(E->getLocStart(),
7353 E->getConstructor()));
7354 if (!Constructor)
7355 return ExprError();
7356
7357 bool ArgumentChanged = false;
7358 ASTOwningVector<Expr*> Args(SemaRef);
7359 Args.reserve(E->getNumArgs());
7360 if (TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
7361 &ArgumentChanged))
7362 return ExprError();
7363
7364 if (!getDerived().AlwaysRebuild() &&
7365 T == E->getTypeSourceInfo() &&
7366 Constructor == E->getConstructor() &&
7367 !ArgumentChanged) {
7368 // FIXME: Instantiation-specific
7369 SemaRef.MarkDeclarationReferenced(E->getLocStart(), Constructor);
7370 return SemaRef.MaybeBindToTemporary(E);
7371 }
7372
7373 return getDerived().RebuildCXXTemporaryObjectExpr(T,
7374 /*FIXME:*/T->getTypeLoc().getEndLoc(),
7375 move_arg(Args),
7376 E->getLocEnd());
7377 }
7378
7379 template<typename Derived>
7380 ExprResult
TransformCXXUnresolvedConstructExpr(CXXUnresolvedConstructExpr * E)7381 TreeTransform<Derived>::TransformCXXUnresolvedConstructExpr(
7382 CXXUnresolvedConstructExpr *E) {
7383 TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
7384 if (!T)
7385 return ExprError();
7386
7387 bool ArgumentChanged = false;
7388 ASTOwningVector<Expr*> Args(SemaRef);
7389 Args.reserve(E->arg_size());
7390 if (getDerived().TransformExprs(E->arg_begin(), E->arg_size(), true, Args,
7391 &ArgumentChanged))
7392 return ExprError();
7393
7394 if (!getDerived().AlwaysRebuild() &&
7395 T == E->getTypeSourceInfo() &&
7396 !ArgumentChanged)
7397 return SemaRef.Owned(E);
7398
7399 // FIXME: we're faking the locations of the commas
7400 return getDerived().RebuildCXXUnresolvedConstructExpr(T,
7401 E->getLParenLoc(),
7402 move_arg(Args),
7403 E->getRParenLoc());
7404 }
7405
7406 template<typename Derived>
7407 ExprResult
TransformCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr * E)7408 TreeTransform<Derived>::TransformCXXDependentScopeMemberExpr(
7409 CXXDependentScopeMemberExpr *E) {
7410 // Transform the base of the expression.
7411 ExprResult Base((Expr*) 0);
7412 Expr *OldBase;
7413 QualType BaseType;
7414 QualType ObjectType;
7415 if (!E->isImplicitAccess()) {
7416 OldBase = E->getBase();
7417 Base = getDerived().TransformExpr(OldBase);
7418 if (Base.isInvalid())
7419 return ExprError();
7420
7421 // Start the member reference and compute the object's type.
7422 ParsedType ObjectTy;
7423 bool MayBePseudoDestructor = false;
7424 Base = SemaRef.ActOnStartCXXMemberReference(0, Base.get(),
7425 E->getOperatorLoc(),
7426 E->isArrow()? tok::arrow : tok::period,
7427 ObjectTy,
7428 MayBePseudoDestructor);
7429 if (Base.isInvalid())
7430 return ExprError();
7431
7432 ObjectType = ObjectTy.get();
7433 BaseType = ((Expr*) Base.get())->getType();
7434 } else {
7435 OldBase = 0;
7436 BaseType = getDerived().TransformType(E->getBaseType());
7437 ObjectType = BaseType->getAs<PointerType>()->getPointeeType();
7438 }
7439
7440 // Transform the first part of the nested-name-specifier that qualifies
7441 // the member name.
7442 NamedDecl *FirstQualifierInScope
7443 = getDerived().TransformFirstQualifierInScope(
7444 E->getFirstQualifierFoundInScope(),
7445 E->getQualifierLoc().getBeginLoc());
7446
7447 NestedNameSpecifierLoc QualifierLoc;
7448 if (E->getQualifier()) {
7449 QualifierLoc
7450 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc(),
7451 ObjectType,
7452 FirstQualifierInScope);
7453 if (!QualifierLoc)
7454 return ExprError();
7455 }
7456
7457 // TODO: If this is a conversion-function-id, verify that the
7458 // destination type name (if present) resolves the same way after
7459 // instantiation as it did in the local scope.
7460
7461 DeclarationNameInfo NameInfo
7462 = getDerived().TransformDeclarationNameInfo(E->getMemberNameInfo());
7463 if (!NameInfo.getName())
7464 return ExprError();
7465
7466 if (!E->hasExplicitTemplateArgs()) {
7467 // This is a reference to a member without an explicitly-specified
7468 // template argument list. Optimize for this common case.
7469 if (!getDerived().AlwaysRebuild() &&
7470 Base.get() == OldBase &&
7471 BaseType == E->getBaseType() &&
7472 QualifierLoc == E->getQualifierLoc() &&
7473 NameInfo.getName() == E->getMember() &&
7474 FirstQualifierInScope == E->getFirstQualifierFoundInScope())
7475 return SemaRef.Owned(E);
7476
7477 return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
7478 BaseType,
7479 E->isArrow(),
7480 E->getOperatorLoc(),
7481 QualifierLoc,
7482 FirstQualifierInScope,
7483 NameInfo,
7484 /*TemplateArgs*/ 0);
7485 }
7486
7487 TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
7488 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
7489 E->getNumTemplateArgs(),
7490 TransArgs))
7491 return ExprError();
7492
7493 return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
7494 BaseType,
7495 E->isArrow(),
7496 E->getOperatorLoc(),
7497 QualifierLoc,
7498 FirstQualifierInScope,
7499 NameInfo,
7500 &TransArgs);
7501 }
7502
7503 template<typename Derived>
7504 ExprResult
TransformUnresolvedMemberExpr(UnresolvedMemberExpr * Old)7505 TreeTransform<Derived>::TransformUnresolvedMemberExpr(UnresolvedMemberExpr *Old) {
7506 // Transform the base of the expression.
7507 ExprResult Base((Expr*) 0);
7508 QualType BaseType;
7509 if (!Old->isImplicitAccess()) {
7510 Base = getDerived().TransformExpr(Old->getBase());
7511 if (Base.isInvalid())
7512 return ExprError();
7513 BaseType = ((Expr*) Base.get())->getType();
7514 } else {
7515 BaseType = getDerived().TransformType(Old->getBaseType());
7516 }
7517
7518 NestedNameSpecifierLoc QualifierLoc;
7519 if (Old->getQualifierLoc()) {
7520 QualifierLoc
7521 = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
7522 if (!QualifierLoc)
7523 return ExprError();
7524 }
7525
7526 LookupResult R(SemaRef, Old->getMemberNameInfo(),
7527 Sema::LookupOrdinaryName);
7528
7529 // Transform all the decls.
7530 for (UnresolvedMemberExpr::decls_iterator I = Old->decls_begin(),
7531 E = Old->decls_end(); I != E; ++I) {
7532 NamedDecl *InstD = static_cast<NamedDecl*>(
7533 getDerived().TransformDecl(Old->getMemberLoc(),
7534 *I));
7535 if (!InstD) {
7536 // Silently ignore these if a UsingShadowDecl instantiated to nothing.
7537 // This can happen because of dependent hiding.
7538 if (isa<UsingShadowDecl>(*I))
7539 continue;
7540 else {
7541 R.clear();
7542 return ExprError();
7543 }
7544 }
7545
7546 // Expand using declarations.
7547 if (isa<UsingDecl>(InstD)) {
7548 UsingDecl *UD = cast<UsingDecl>(InstD);
7549 for (UsingDecl::shadow_iterator I = UD->shadow_begin(),
7550 E = UD->shadow_end(); I != E; ++I)
7551 R.addDecl(*I);
7552 continue;
7553 }
7554
7555 R.addDecl(InstD);
7556 }
7557
7558 R.resolveKind();
7559
7560 // Determine the naming class.
7561 if (Old->getNamingClass()) {
7562 CXXRecordDecl *NamingClass
7563 = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
7564 Old->getMemberLoc(),
7565 Old->getNamingClass()));
7566 if (!NamingClass)
7567 return ExprError();
7568
7569 R.setNamingClass(NamingClass);
7570 }
7571
7572 TemplateArgumentListInfo TransArgs;
7573 if (Old->hasExplicitTemplateArgs()) {
7574 TransArgs.setLAngleLoc(Old->getLAngleLoc());
7575 TransArgs.setRAngleLoc(Old->getRAngleLoc());
7576 if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
7577 Old->getNumTemplateArgs(),
7578 TransArgs))
7579 return ExprError();
7580 }
7581
7582 // FIXME: to do this check properly, we will need to preserve the
7583 // first-qualifier-in-scope here, just in case we had a dependent
7584 // base (and therefore couldn't do the check) and a
7585 // nested-name-qualifier (and therefore could do the lookup).
7586 NamedDecl *FirstQualifierInScope = 0;
7587
7588 return getDerived().RebuildUnresolvedMemberExpr(Base.get(),
7589 BaseType,
7590 Old->getOperatorLoc(),
7591 Old->isArrow(),
7592 QualifierLoc,
7593 FirstQualifierInScope,
7594 R,
7595 (Old->hasExplicitTemplateArgs()
7596 ? &TransArgs : 0));
7597 }
7598
7599 template<typename Derived>
7600 ExprResult
TransformCXXNoexceptExpr(CXXNoexceptExpr * E)7601 TreeTransform<Derived>::TransformCXXNoexceptExpr(CXXNoexceptExpr *E) {
7602 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
7603 ExprResult SubExpr = getDerived().TransformExpr(E->getOperand());
7604 if (SubExpr.isInvalid())
7605 return ExprError();
7606
7607 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getOperand())
7608 return SemaRef.Owned(E);
7609
7610 return getDerived().RebuildCXXNoexceptExpr(E->getSourceRange(),SubExpr.get());
7611 }
7612
7613 template<typename Derived>
7614 ExprResult
TransformPackExpansionExpr(PackExpansionExpr * E)7615 TreeTransform<Derived>::TransformPackExpansionExpr(PackExpansionExpr *E) {
7616 ExprResult Pattern = getDerived().TransformExpr(E->getPattern());
7617 if (Pattern.isInvalid())
7618 return ExprError();
7619
7620 if (!getDerived().AlwaysRebuild() && Pattern.get() == E->getPattern())
7621 return SemaRef.Owned(E);
7622
7623 return getDerived().RebuildPackExpansion(Pattern.get(), E->getEllipsisLoc(),
7624 E->getNumExpansions());
7625 }
7626
7627 template<typename Derived>
7628 ExprResult
TransformSizeOfPackExpr(SizeOfPackExpr * E)7629 TreeTransform<Derived>::TransformSizeOfPackExpr(SizeOfPackExpr *E) {
7630 // If E is not value-dependent, then nothing will change when we transform it.
7631 // Note: This is an instantiation-centric view.
7632 if (!E->isValueDependent())
7633 return SemaRef.Owned(E);
7634
7635 // Note: None of the implementations of TryExpandParameterPacks can ever
7636 // produce a diagnostic when given only a single unexpanded parameter pack,
7637 // so
7638 UnexpandedParameterPack Unexpanded(E->getPack(), E->getPackLoc());
7639 bool ShouldExpand = false;
7640 bool RetainExpansion = false;
7641 llvm::Optional<unsigned> NumExpansions;
7642 if (getDerived().TryExpandParameterPacks(E->getOperatorLoc(), E->getPackLoc(),
7643 &Unexpanded, 1,
7644 ShouldExpand, RetainExpansion,
7645 NumExpansions))
7646 return ExprError();
7647
7648 if (!ShouldExpand || RetainExpansion)
7649 return SemaRef.Owned(E);
7650
7651 // We now know the length of the parameter pack, so build a new expression
7652 // that stores that length.
7653 return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), E->getPack(),
7654 E->getPackLoc(), E->getRParenLoc(),
7655 *NumExpansions);
7656 }
7657
7658 template<typename Derived>
7659 ExprResult
TransformSubstNonTypeTemplateParmPackExpr(SubstNonTypeTemplateParmPackExpr * E)7660 TreeTransform<Derived>::TransformSubstNonTypeTemplateParmPackExpr(
7661 SubstNonTypeTemplateParmPackExpr *E) {
7662 // Default behavior is to do nothing with this transformation.
7663 return SemaRef.Owned(E);
7664 }
7665
7666 template<typename Derived>
7667 ExprResult
TransformSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)7668 TreeTransform<Derived>::TransformSubstNonTypeTemplateParmExpr(
7669 SubstNonTypeTemplateParmExpr *E) {
7670 // Default behavior is to do nothing with this transformation.
7671 return SemaRef.Owned(E);
7672 }
7673
7674 template<typename Derived>
7675 ExprResult
TransformMaterializeTemporaryExpr(MaterializeTemporaryExpr * E)7676 TreeTransform<Derived>::TransformMaterializeTemporaryExpr(
7677 MaterializeTemporaryExpr *E) {
7678 return getDerived().TransformExpr(E->GetTemporaryExpr());
7679 }
7680
7681 template<typename Derived>
7682 ExprResult
TransformObjCStringLiteral(ObjCStringLiteral * E)7683 TreeTransform<Derived>::TransformObjCStringLiteral(ObjCStringLiteral *E) {
7684 return SemaRef.Owned(E);
7685 }
7686
7687 template<typename Derived>
7688 ExprResult
TransformObjCEncodeExpr(ObjCEncodeExpr * E)7689 TreeTransform<Derived>::TransformObjCEncodeExpr(ObjCEncodeExpr *E) {
7690 TypeSourceInfo *EncodedTypeInfo
7691 = getDerived().TransformType(E->getEncodedTypeSourceInfo());
7692 if (!EncodedTypeInfo)
7693 return ExprError();
7694
7695 if (!getDerived().AlwaysRebuild() &&
7696 EncodedTypeInfo == E->getEncodedTypeSourceInfo())
7697 return SemaRef.Owned(E);
7698
7699 return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(),
7700 EncodedTypeInfo,
7701 E->getRParenLoc());
7702 }
7703
7704 template<typename Derived>
7705 ExprResult TreeTransform<Derived>::
TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr * E)7706 TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) {
7707 ExprResult result = getDerived().TransformExpr(E->getSubExpr());
7708 if (result.isInvalid()) return ExprError();
7709 Expr *subExpr = result.take();
7710
7711 if (!getDerived().AlwaysRebuild() &&
7712 subExpr == E->getSubExpr())
7713 return SemaRef.Owned(E);
7714
7715 return SemaRef.Owned(new(SemaRef.Context)
7716 ObjCIndirectCopyRestoreExpr(subExpr, E->getType(), E->shouldCopy()));
7717 }
7718
7719 template<typename Derived>
7720 ExprResult TreeTransform<Derived>::
TransformObjCBridgedCastExpr(ObjCBridgedCastExpr * E)7721 TransformObjCBridgedCastExpr(ObjCBridgedCastExpr *E) {
7722 TypeSourceInfo *TSInfo
7723 = getDerived().TransformType(E->getTypeInfoAsWritten());
7724 if (!TSInfo)
7725 return ExprError();
7726
7727 ExprResult Result = getDerived().TransformExpr(E->getSubExpr());
7728 if (Result.isInvalid())
7729 return ExprError();
7730
7731 if (!getDerived().AlwaysRebuild() &&
7732 TSInfo == E->getTypeInfoAsWritten() &&
7733 Result.get() == E->getSubExpr())
7734 return SemaRef.Owned(E);
7735
7736 return SemaRef.BuildObjCBridgedCast(E->getLParenLoc(), E->getBridgeKind(),
7737 E->getBridgeKeywordLoc(), TSInfo,
7738 Result.get());
7739 }
7740
7741 template<typename Derived>
7742 ExprResult
TransformObjCMessageExpr(ObjCMessageExpr * E)7743 TreeTransform<Derived>::TransformObjCMessageExpr(ObjCMessageExpr *E) {
7744 // Transform arguments.
7745 bool ArgChanged = false;
7746 ASTOwningVector<Expr*> Args(SemaRef);
7747 Args.reserve(E->getNumArgs());
7748 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), false, Args,
7749 &ArgChanged))
7750 return ExprError();
7751
7752 if (E->getReceiverKind() == ObjCMessageExpr::Class) {
7753 // Class message: transform the receiver type.
7754 TypeSourceInfo *ReceiverTypeInfo
7755 = getDerived().TransformType(E->getClassReceiverTypeInfo());
7756 if (!ReceiverTypeInfo)
7757 return ExprError();
7758
7759 // If nothing changed, just retain the existing message send.
7760 if (!getDerived().AlwaysRebuild() &&
7761 ReceiverTypeInfo == E->getClassReceiverTypeInfo() && !ArgChanged)
7762 return SemaRef.Owned(E);
7763
7764 // Build a new class message send.
7765 return getDerived().RebuildObjCMessageExpr(ReceiverTypeInfo,
7766 E->getSelector(),
7767 E->getSelectorLoc(),
7768 E->getMethodDecl(),
7769 E->getLeftLoc(),
7770 move_arg(Args),
7771 E->getRightLoc());
7772 }
7773
7774 // Instance message: transform the receiver
7775 assert(E->getReceiverKind() == ObjCMessageExpr::Instance &&
7776 "Only class and instance messages may be instantiated");
7777 ExprResult Receiver
7778 = getDerived().TransformExpr(E->getInstanceReceiver());
7779 if (Receiver.isInvalid())
7780 return ExprError();
7781
7782 // If nothing changed, just retain the existing message send.
7783 if (!getDerived().AlwaysRebuild() &&
7784 Receiver.get() == E->getInstanceReceiver() && !ArgChanged)
7785 return SemaRef.Owned(E);
7786
7787 // Build a new instance message send.
7788 return getDerived().RebuildObjCMessageExpr(Receiver.get(),
7789 E->getSelector(),
7790 E->getSelectorLoc(),
7791 E->getMethodDecl(),
7792 E->getLeftLoc(),
7793 move_arg(Args),
7794 E->getRightLoc());
7795 }
7796
7797 template<typename Derived>
7798 ExprResult
TransformObjCSelectorExpr(ObjCSelectorExpr * E)7799 TreeTransform<Derived>::TransformObjCSelectorExpr(ObjCSelectorExpr *E) {
7800 return SemaRef.Owned(E);
7801 }
7802
7803 template<typename Derived>
7804 ExprResult
TransformObjCProtocolExpr(ObjCProtocolExpr * E)7805 TreeTransform<Derived>::TransformObjCProtocolExpr(ObjCProtocolExpr *E) {
7806 return SemaRef.Owned(E);
7807 }
7808
7809 template<typename Derived>
7810 ExprResult
TransformObjCIvarRefExpr(ObjCIvarRefExpr * E)7811 TreeTransform<Derived>::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) {
7812 // Transform the base expression.
7813 ExprResult Base = getDerived().TransformExpr(E->getBase());
7814 if (Base.isInvalid())
7815 return ExprError();
7816
7817 // We don't need to transform the ivar; it will never change.
7818
7819 // If nothing changed, just retain the existing expression.
7820 if (!getDerived().AlwaysRebuild() &&
7821 Base.get() == E->getBase())
7822 return SemaRef.Owned(E);
7823
7824 return getDerived().RebuildObjCIvarRefExpr(Base.get(), E->getDecl(),
7825 E->getLocation(),
7826 E->isArrow(), E->isFreeIvar());
7827 }
7828
7829 template<typename Derived>
7830 ExprResult
TransformObjCPropertyRefExpr(ObjCPropertyRefExpr * E)7831 TreeTransform<Derived>::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
7832 // 'super' and types never change. Property never changes. Just
7833 // retain the existing expression.
7834 if (!E->isObjectReceiver())
7835 return SemaRef.Owned(E);
7836
7837 // Transform the base expression.
7838 ExprResult Base = getDerived().TransformExpr(E->getBase());
7839 if (Base.isInvalid())
7840 return ExprError();
7841
7842 // We don't need to transform the property; it will never change.
7843
7844 // If nothing changed, just retain the existing expression.
7845 if (!getDerived().AlwaysRebuild() &&
7846 Base.get() == E->getBase())
7847 return SemaRef.Owned(E);
7848
7849 if (E->isExplicitProperty())
7850 return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
7851 E->getExplicitProperty(),
7852 E->getLocation());
7853
7854 return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
7855 E->getType(),
7856 E->getImplicitPropertyGetter(),
7857 E->getImplicitPropertySetter(),
7858 E->getLocation());
7859 }
7860
7861 template<typename Derived>
7862 ExprResult
TransformObjCIsaExpr(ObjCIsaExpr * E)7863 TreeTransform<Derived>::TransformObjCIsaExpr(ObjCIsaExpr *E) {
7864 // Transform the base expression.
7865 ExprResult Base = getDerived().TransformExpr(E->getBase());
7866 if (Base.isInvalid())
7867 return ExprError();
7868
7869 // If nothing changed, just retain the existing expression.
7870 if (!getDerived().AlwaysRebuild() &&
7871 Base.get() == E->getBase())
7872 return SemaRef.Owned(E);
7873
7874 return getDerived().RebuildObjCIsaExpr(Base.get(), E->getIsaMemberLoc(),
7875 E->isArrow());
7876 }
7877
7878 template<typename Derived>
7879 ExprResult
TransformShuffleVectorExpr(ShuffleVectorExpr * E)7880 TreeTransform<Derived>::TransformShuffleVectorExpr(ShuffleVectorExpr *E) {
7881 bool ArgumentChanged = false;
7882 ASTOwningVector<Expr*> SubExprs(SemaRef);
7883 SubExprs.reserve(E->getNumSubExprs());
7884 if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
7885 SubExprs, &ArgumentChanged))
7886 return ExprError();
7887
7888 if (!getDerived().AlwaysRebuild() &&
7889 !ArgumentChanged)
7890 return SemaRef.Owned(E);
7891
7892 return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(),
7893 move_arg(SubExprs),
7894 E->getRParenLoc());
7895 }
7896
7897 template<typename Derived>
7898 ExprResult
TransformBlockExpr(BlockExpr * E)7899 TreeTransform<Derived>::TransformBlockExpr(BlockExpr *E) {
7900 BlockDecl *oldBlock = E->getBlockDecl();
7901
7902 SemaRef.ActOnBlockStart(E->getCaretLocation(), /*Scope=*/0);
7903 BlockScopeInfo *blockScope = SemaRef.getCurBlock();
7904
7905 blockScope->TheDecl->setIsVariadic(oldBlock->isVariadic());
7906 // We built a new blockScopeInfo in call to ActOnBlockStart
7907 // in above, CapturesCXXThis need be set here from the block
7908 // expression.
7909 blockScope->CapturesCXXThis = oldBlock->capturesCXXThis();
7910
7911 llvm::SmallVector<ParmVarDecl*, 4> params;
7912 llvm::SmallVector<QualType, 4> paramTypes;
7913
7914 // Parameter substitution.
7915 if (getDerived().TransformFunctionTypeParams(E->getCaretLocation(),
7916 oldBlock->param_begin(),
7917 oldBlock->param_size(),
7918 0, paramTypes, ¶ms))
7919 return true;
7920
7921 const FunctionType *exprFunctionType = E->getFunctionType();
7922 QualType exprResultType = exprFunctionType->getResultType();
7923 if (!exprResultType.isNull()) {
7924 if (!exprResultType->isDependentType())
7925 blockScope->ReturnType = exprResultType;
7926 else if (exprResultType != getSema().Context.DependentTy)
7927 blockScope->ReturnType = getDerived().TransformType(exprResultType);
7928 }
7929
7930 // If the return type has not been determined yet, leave it as a dependent
7931 // type; it'll get set when we process the body.
7932 if (blockScope->ReturnType.isNull())
7933 blockScope->ReturnType = getSema().Context.DependentTy;
7934
7935 // Don't allow returning a objc interface by value.
7936 if (blockScope->ReturnType->isObjCObjectType()) {
7937 getSema().Diag(E->getCaretLocation(),
7938 diag::err_object_cannot_be_passed_returned_by_value)
7939 << 0 << blockScope->ReturnType;
7940 return ExprError();
7941 }
7942
7943 QualType functionType = getDerived().RebuildFunctionProtoType(
7944 blockScope->ReturnType,
7945 paramTypes.data(),
7946 paramTypes.size(),
7947 oldBlock->isVariadic(),
7948 0, RQ_None,
7949 exprFunctionType->getExtInfo());
7950 blockScope->FunctionType = functionType;
7951
7952 // Set the parameters on the block decl.
7953 if (!params.empty())
7954 blockScope->TheDecl->setParams(params.data(), params.size());
7955
7956 // If the return type wasn't explicitly set, it will have been marked as a
7957 // dependent type (DependentTy); clear out the return type setting so
7958 // we will deduce the return type when type-checking the block's body.
7959 if (blockScope->ReturnType == getSema().Context.DependentTy)
7960 blockScope->ReturnType = QualType();
7961
7962 // Transform the body
7963 StmtResult body = getDerived().TransformStmt(E->getBody());
7964 if (body.isInvalid())
7965 return ExprError();
7966
7967 #ifndef NDEBUG
7968 // In builds with assertions, make sure that we captured everything we
7969 // captured before.
7970 if (!SemaRef.getDiagnostics().hasErrorOccurred()) {
7971 for (BlockDecl::capture_iterator i = oldBlock->capture_begin(),
7972 e = oldBlock->capture_end(); i != e; ++i) {
7973 VarDecl *oldCapture = i->getVariable();
7974
7975 // Ignore parameter packs.
7976 if (isa<ParmVarDecl>(oldCapture) &&
7977 cast<ParmVarDecl>(oldCapture)->isParameterPack())
7978 continue;
7979
7980 VarDecl *newCapture =
7981 cast<VarDecl>(getDerived().TransformDecl(E->getCaretLocation(),
7982 oldCapture));
7983 assert(blockScope->CaptureMap.count(newCapture));
7984 }
7985 }
7986 #endif
7987
7988 return SemaRef.ActOnBlockStmtExpr(E->getCaretLocation(), body.get(),
7989 /*Scope=*/0);
7990 }
7991
7992 template<typename Derived>
7993 ExprResult
TransformBlockDeclRefExpr(BlockDeclRefExpr * E)7994 TreeTransform<Derived>::TransformBlockDeclRefExpr(BlockDeclRefExpr *E) {
7995 ValueDecl *ND
7996 = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(),
7997 E->getDecl()));
7998 if (!ND)
7999 return ExprError();
8000
8001 if (!getDerived().AlwaysRebuild() &&
8002 ND == E->getDecl()) {
8003 // Mark it referenced in the new context regardless.
8004 // FIXME: this is a bit instantiation-specific.
8005 SemaRef.MarkDeclarationReferenced(E->getLocation(), ND);
8006
8007 return SemaRef.Owned(E);
8008 }
8009
8010 DeclarationNameInfo NameInfo(E->getDecl()->getDeclName(), E->getLocation());
8011 return getDerived().RebuildDeclRefExpr(NestedNameSpecifierLoc(),
8012 ND, NameInfo, 0);
8013 }
8014
8015 template<typename Derived>
8016 ExprResult
TransformAsTypeExpr(AsTypeExpr * E)8017 TreeTransform<Derived>::TransformAsTypeExpr(AsTypeExpr *E) {
8018 assert(false && "Cannot transform asType expressions yet");
8019 return SemaRef.Owned(E);
8020 }
8021
8022 //===----------------------------------------------------------------------===//
8023 // Type reconstruction
8024 //===----------------------------------------------------------------------===//
8025
8026 template<typename Derived>
RebuildPointerType(QualType PointeeType,SourceLocation Star)8027 QualType TreeTransform<Derived>::RebuildPointerType(QualType PointeeType,
8028 SourceLocation Star) {
8029 return SemaRef.BuildPointerType(PointeeType, Star,
8030 getDerived().getBaseEntity());
8031 }
8032
8033 template<typename Derived>
RebuildBlockPointerType(QualType PointeeType,SourceLocation Star)8034 QualType TreeTransform<Derived>::RebuildBlockPointerType(QualType PointeeType,
8035 SourceLocation Star) {
8036 return SemaRef.BuildBlockPointerType(PointeeType, Star,
8037 getDerived().getBaseEntity());
8038 }
8039
8040 template<typename Derived>
8041 QualType
RebuildReferenceType(QualType ReferentType,bool WrittenAsLValue,SourceLocation Sigil)8042 TreeTransform<Derived>::RebuildReferenceType(QualType ReferentType,
8043 bool WrittenAsLValue,
8044 SourceLocation Sigil) {
8045 return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue,
8046 Sigil, getDerived().getBaseEntity());
8047 }
8048
8049 template<typename Derived>
8050 QualType
RebuildMemberPointerType(QualType PointeeType,QualType ClassType,SourceLocation Sigil)8051 TreeTransform<Derived>::RebuildMemberPointerType(QualType PointeeType,
8052 QualType ClassType,
8053 SourceLocation Sigil) {
8054 return SemaRef.BuildMemberPointerType(PointeeType, ClassType,
8055 Sigil, getDerived().getBaseEntity());
8056 }
8057
8058 template<typename Derived>
8059 QualType
RebuildArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,const llvm::APInt * Size,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)8060 TreeTransform<Derived>::RebuildArrayType(QualType ElementType,
8061 ArrayType::ArraySizeModifier SizeMod,
8062 const llvm::APInt *Size,
8063 Expr *SizeExpr,
8064 unsigned IndexTypeQuals,
8065 SourceRange BracketsRange) {
8066 if (SizeExpr || !Size)
8067 return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr,
8068 IndexTypeQuals, BracketsRange,
8069 getDerived().getBaseEntity());
8070
8071 QualType Types[] = {
8072 SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy,
8073 SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy,
8074 SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty
8075 };
8076 const unsigned NumTypes = sizeof(Types) / sizeof(QualType);
8077 QualType SizeType;
8078 for (unsigned I = 0; I != NumTypes; ++I)
8079 if (Size->getBitWidth() == SemaRef.Context.getIntWidth(Types[I])) {
8080 SizeType = Types[I];
8081 break;
8082 }
8083
8084 IntegerLiteral ArraySize(SemaRef.Context, *Size, SizeType,
8085 /*FIXME*/BracketsRange.getBegin());
8086 return SemaRef.BuildArrayType(ElementType, SizeMod, &ArraySize,
8087 IndexTypeQuals, BracketsRange,
8088 getDerived().getBaseEntity());
8089 }
8090
8091 template<typename Derived>
8092 QualType
RebuildConstantArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,const llvm::APInt & Size,unsigned IndexTypeQuals,SourceRange BracketsRange)8093 TreeTransform<Derived>::RebuildConstantArrayType(QualType ElementType,
8094 ArrayType::ArraySizeModifier SizeMod,
8095 const llvm::APInt &Size,
8096 unsigned IndexTypeQuals,
8097 SourceRange BracketsRange) {
8098 return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, 0,
8099 IndexTypeQuals, BracketsRange);
8100 }
8101
8102 template<typename Derived>
8103 QualType
RebuildIncompleteArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,unsigned IndexTypeQuals,SourceRange BracketsRange)8104 TreeTransform<Derived>::RebuildIncompleteArrayType(QualType ElementType,
8105 ArrayType::ArraySizeModifier SizeMod,
8106 unsigned IndexTypeQuals,
8107 SourceRange BracketsRange) {
8108 return getDerived().RebuildArrayType(ElementType, SizeMod, 0, 0,
8109 IndexTypeQuals, BracketsRange);
8110 }
8111
8112 template<typename Derived>
8113 QualType
RebuildVariableArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)8114 TreeTransform<Derived>::RebuildVariableArrayType(QualType ElementType,
8115 ArrayType::ArraySizeModifier SizeMod,
8116 Expr *SizeExpr,
8117 unsigned IndexTypeQuals,
8118 SourceRange BracketsRange) {
8119 return getDerived().RebuildArrayType(ElementType, SizeMod, 0,
8120 SizeExpr,
8121 IndexTypeQuals, BracketsRange);
8122 }
8123
8124 template<typename Derived>
8125 QualType
RebuildDependentSizedArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)8126 TreeTransform<Derived>::RebuildDependentSizedArrayType(QualType ElementType,
8127 ArrayType::ArraySizeModifier SizeMod,
8128 Expr *SizeExpr,
8129 unsigned IndexTypeQuals,
8130 SourceRange BracketsRange) {
8131 return getDerived().RebuildArrayType(ElementType, SizeMod, 0,
8132 SizeExpr,
8133 IndexTypeQuals, BracketsRange);
8134 }
8135
8136 template<typename Derived>
RebuildVectorType(QualType ElementType,unsigned NumElements,VectorType::VectorKind VecKind)8137 QualType TreeTransform<Derived>::RebuildVectorType(QualType ElementType,
8138 unsigned NumElements,
8139 VectorType::VectorKind VecKind) {
8140 // FIXME: semantic checking!
8141 return SemaRef.Context.getVectorType(ElementType, NumElements, VecKind);
8142 }
8143
8144 template<typename Derived>
RebuildExtVectorType(QualType ElementType,unsigned NumElements,SourceLocation AttributeLoc)8145 QualType TreeTransform<Derived>::RebuildExtVectorType(QualType ElementType,
8146 unsigned NumElements,
8147 SourceLocation AttributeLoc) {
8148 llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy),
8149 NumElements, true);
8150 IntegerLiteral *VectorSize
8151 = IntegerLiteral::Create(SemaRef.Context, numElements, SemaRef.Context.IntTy,
8152 AttributeLoc);
8153 return SemaRef.BuildExtVectorType(ElementType, VectorSize, AttributeLoc);
8154 }
8155
8156 template<typename Derived>
8157 QualType
RebuildDependentSizedExtVectorType(QualType ElementType,Expr * SizeExpr,SourceLocation AttributeLoc)8158 TreeTransform<Derived>::RebuildDependentSizedExtVectorType(QualType ElementType,
8159 Expr *SizeExpr,
8160 SourceLocation AttributeLoc) {
8161 return SemaRef.BuildExtVectorType(ElementType, SizeExpr, AttributeLoc);
8162 }
8163
8164 template<typename Derived>
RebuildFunctionProtoType(QualType T,QualType * ParamTypes,unsigned NumParamTypes,bool Variadic,unsigned Quals,RefQualifierKind RefQualifier,const FunctionType::ExtInfo & Info)8165 QualType TreeTransform<Derived>::RebuildFunctionProtoType(QualType T,
8166 QualType *ParamTypes,
8167 unsigned NumParamTypes,
8168 bool Variadic,
8169 unsigned Quals,
8170 RefQualifierKind RefQualifier,
8171 const FunctionType::ExtInfo &Info) {
8172 return SemaRef.BuildFunctionType(T, ParamTypes, NumParamTypes, Variadic,
8173 Quals, RefQualifier,
8174 getDerived().getBaseLocation(),
8175 getDerived().getBaseEntity(),
8176 Info);
8177 }
8178
8179 template<typename Derived>
RebuildFunctionNoProtoType(QualType T)8180 QualType TreeTransform<Derived>::RebuildFunctionNoProtoType(QualType T) {
8181 return SemaRef.Context.getFunctionNoProtoType(T);
8182 }
8183
8184 template<typename Derived>
RebuildUnresolvedUsingType(Decl * D)8185 QualType TreeTransform<Derived>::RebuildUnresolvedUsingType(Decl *D) {
8186 assert(D && "no decl found");
8187 if (D->isInvalidDecl()) return QualType();
8188
8189 // FIXME: Doesn't account for ObjCInterfaceDecl!
8190 TypeDecl *Ty;
8191 if (isa<UsingDecl>(D)) {
8192 UsingDecl *Using = cast<UsingDecl>(D);
8193 assert(Using->isTypeName() &&
8194 "UnresolvedUsingTypenameDecl transformed to non-typename using");
8195
8196 // A valid resolved using typename decl points to exactly one type decl.
8197 assert(++Using->shadow_begin() == Using->shadow_end());
8198 Ty = cast<TypeDecl>((*Using->shadow_begin())->getTargetDecl());
8199
8200 } else {
8201 assert(isa<UnresolvedUsingTypenameDecl>(D) &&
8202 "UnresolvedUsingTypenameDecl transformed to non-using decl");
8203 Ty = cast<UnresolvedUsingTypenameDecl>(D);
8204 }
8205
8206 return SemaRef.Context.getTypeDeclType(Ty);
8207 }
8208
8209 template<typename Derived>
RebuildTypeOfExprType(Expr * E,SourceLocation Loc)8210 QualType TreeTransform<Derived>::RebuildTypeOfExprType(Expr *E,
8211 SourceLocation Loc) {
8212 return SemaRef.BuildTypeofExprType(E, Loc);
8213 }
8214
8215 template<typename Derived>
RebuildTypeOfType(QualType Underlying)8216 QualType TreeTransform<Derived>::RebuildTypeOfType(QualType Underlying) {
8217 return SemaRef.Context.getTypeOfType(Underlying);
8218 }
8219
8220 template<typename Derived>
RebuildDecltypeType(Expr * E,SourceLocation Loc)8221 QualType TreeTransform<Derived>::RebuildDecltypeType(Expr *E,
8222 SourceLocation Loc) {
8223 return SemaRef.BuildDecltypeType(E, Loc);
8224 }
8225
8226 template<typename Derived>
RebuildUnaryTransformType(QualType BaseType,UnaryTransformType::UTTKind UKind,SourceLocation Loc)8227 QualType TreeTransform<Derived>::RebuildUnaryTransformType(QualType BaseType,
8228 UnaryTransformType::UTTKind UKind,
8229 SourceLocation Loc) {
8230 return SemaRef.BuildUnaryTransformType(BaseType, UKind, Loc);
8231 }
8232
8233 template<typename Derived>
RebuildTemplateSpecializationType(TemplateName Template,SourceLocation TemplateNameLoc,TemplateArgumentListInfo & TemplateArgs)8234 QualType TreeTransform<Derived>::RebuildTemplateSpecializationType(
8235 TemplateName Template,
8236 SourceLocation TemplateNameLoc,
8237 TemplateArgumentListInfo &TemplateArgs) {
8238 return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
8239 }
8240
8241 template<typename Derived>
8242 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,bool TemplateKW,TemplateDecl * Template)8243 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
8244 bool TemplateKW,
8245 TemplateDecl *Template) {
8246 return SemaRef.Context.getQualifiedTemplateName(SS.getScopeRep(), TemplateKW,
8247 Template);
8248 }
8249
8250 template<typename Derived>
8251 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,const IdentifierInfo & Name,SourceLocation NameLoc,QualType ObjectType,NamedDecl * FirstQualifierInScope)8252 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
8253 const IdentifierInfo &Name,
8254 SourceLocation NameLoc,
8255 QualType ObjectType,
8256 NamedDecl *FirstQualifierInScope) {
8257 UnqualifiedId TemplateName;
8258 TemplateName.setIdentifier(&Name, NameLoc);
8259 Sema::TemplateTy Template;
8260 getSema().ActOnDependentTemplateName(/*Scope=*/0,
8261 /*FIXME:*/SourceLocation(),
8262 SS,
8263 TemplateName,
8264 ParsedType::make(ObjectType),
8265 /*EnteringContext=*/false,
8266 Template);
8267 return Template.get();
8268 }
8269
8270 template<typename Derived>
8271 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,OverloadedOperatorKind Operator,SourceLocation NameLoc,QualType ObjectType)8272 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
8273 OverloadedOperatorKind Operator,
8274 SourceLocation NameLoc,
8275 QualType ObjectType) {
8276 UnqualifiedId Name;
8277 // FIXME: Bogus location information.
8278 SourceLocation SymbolLocations[3] = { NameLoc, NameLoc, NameLoc };
8279 Name.setOperatorFunctionId(NameLoc, Operator, SymbolLocations);
8280 Sema::TemplateTy Template;
8281 getSema().ActOnDependentTemplateName(/*Scope=*/0,
8282 /*FIXME:*/SourceLocation(),
8283 SS,
8284 Name,
8285 ParsedType::make(ObjectType),
8286 /*EnteringContext=*/false,
8287 Template);
8288 return Template.template getAsVal<TemplateName>();
8289 }
8290
8291 template<typename Derived>
8292 ExprResult
RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,SourceLocation OpLoc,Expr * OrigCallee,Expr * First,Expr * Second)8293 TreeTransform<Derived>::RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
8294 SourceLocation OpLoc,
8295 Expr *OrigCallee,
8296 Expr *First,
8297 Expr *Second) {
8298 Expr *Callee = OrigCallee->IgnoreParenCasts();
8299 bool isPostIncDec = Second && (Op == OO_PlusPlus || Op == OO_MinusMinus);
8300
8301 // Determine whether this should be a builtin operation.
8302 if (Op == OO_Subscript) {
8303 if (!First->getType()->isOverloadableType() &&
8304 !Second->getType()->isOverloadableType())
8305 return getSema().CreateBuiltinArraySubscriptExpr(First,
8306 Callee->getLocStart(),
8307 Second, OpLoc);
8308 } else if (Op == OO_Arrow) {
8309 // -> is never a builtin operation.
8310 return SemaRef.BuildOverloadedArrowExpr(0, First, OpLoc);
8311 } else if (Second == 0 || isPostIncDec) {
8312 if (!First->getType()->isOverloadableType()) {
8313 // The argument is not of overloadable type, so try to create a
8314 // built-in unary operation.
8315 UnaryOperatorKind Opc
8316 = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
8317
8318 return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, First);
8319 }
8320 } else {
8321 if (!First->getType()->isOverloadableType() &&
8322 !Second->getType()->isOverloadableType()) {
8323 // Neither of the arguments is an overloadable type, so try to
8324 // create a built-in binary operation.
8325 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
8326 ExprResult Result
8327 = SemaRef.CreateBuiltinBinOp(OpLoc, Opc, First, Second);
8328 if (Result.isInvalid())
8329 return ExprError();
8330
8331 return move(Result);
8332 }
8333 }
8334
8335 // Compute the transformed set of functions (and function templates) to be
8336 // used during overload resolution.
8337 UnresolvedSet<16> Functions;
8338
8339 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Callee)) {
8340 assert(ULE->requiresADL());
8341
8342 // FIXME: Do we have to check
8343 // IsAcceptableNonMemberOperatorCandidate for each of these?
8344 Functions.append(ULE->decls_begin(), ULE->decls_end());
8345 } else {
8346 Functions.addDecl(cast<DeclRefExpr>(Callee)->getDecl());
8347 }
8348
8349 // Add any functions found via argument-dependent lookup.
8350 Expr *Args[2] = { First, Second };
8351 unsigned NumArgs = 1 + (Second != 0);
8352
8353 // Create the overloaded operator invocation for unary operators.
8354 if (NumArgs == 1 || isPostIncDec) {
8355 UnaryOperatorKind Opc
8356 = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
8357 return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, First);
8358 }
8359
8360 if (Op == OO_Subscript) {
8361 SourceLocation LBrace;
8362 SourceLocation RBrace;
8363
8364 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Callee)) {
8365 DeclarationNameLoc &NameLoc = DRE->getNameInfo().getInfo();
8366 LBrace = SourceLocation::getFromRawEncoding(
8367 NameLoc.CXXOperatorName.BeginOpNameLoc);
8368 RBrace = SourceLocation::getFromRawEncoding(
8369 NameLoc.CXXOperatorName.EndOpNameLoc);
8370 } else {
8371 LBrace = Callee->getLocStart();
8372 RBrace = OpLoc;
8373 }
8374
8375 return SemaRef.CreateOverloadedArraySubscriptExpr(LBrace, RBrace,
8376 First, Second);
8377 }
8378
8379 // Create the overloaded operator invocation for binary operators.
8380 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
8381 ExprResult Result
8382 = SemaRef.CreateOverloadedBinOp(OpLoc, Opc, Functions, Args[0], Args[1]);
8383 if (Result.isInvalid())
8384 return ExprError();
8385
8386 return move(Result);
8387 }
8388
8389 template<typename Derived>
8390 ExprResult
RebuildCXXPseudoDestructorExpr(Expr * Base,SourceLocation OperatorLoc,bool isArrow,CXXScopeSpec & SS,TypeSourceInfo * ScopeType,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destroyed)8391 TreeTransform<Derived>::RebuildCXXPseudoDestructorExpr(Expr *Base,
8392 SourceLocation OperatorLoc,
8393 bool isArrow,
8394 CXXScopeSpec &SS,
8395 TypeSourceInfo *ScopeType,
8396 SourceLocation CCLoc,
8397 SourceLocation TildeLoc,
8398 PseudoDestructorTypeStorage Destroyed) {
8399 QualType BaseType = Base->getType();
8400 if (Base->isTypeDependent() || Destroyed.getIdentifier() ||
8401 (!isArrow && !BaseType->getAs<RecordType>()) ||
8402 (isArrow && BaseType->getAs<PointerType>() &&
8403 !BaseType->getAs<PointerType>()->getPointeeType()
8404 ->template getAs<RecordType>())){
8405 // This pseudo-destructor expression is still a pseudo-destructor.
8406 return SemaRef.BuildPseudoDestructorExpr(Base, OperatorLoc,
8407 isArrow? tok::arrow : tok::period,
8408 SS, ScopeType, CCLoc, TildeLoc,
8409 Destroyed,
8410 /*FIXME?*/true);
8411 }
8412
8413 TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo();
8414 DeclarationName Name(SemaRef.Context.DeclarationNames.getCXXDestructorName(
8415 SemaRef.Context.getCanonicalType(DestroyedType->getType())));
8416 DeclarationNameInfo NameInfo(Name, Destroyed.getLocation());
8417 NameInfo.setNamedTypeInfo(DestroyedType);
8418
8419 // FIXME: the ScopeType should be tacked onto SS.
8420
8421 return getSema().BuildMemberReferenceExpr(Base, BaseType,
8422 OperatorLoc, isArrow,
8423 SS, /*FIXME: FirstQualifier*/ 0,
8424 NameInfo,
8425 /*TemplateArgs*/ 0);
8426 }
8427
8428 } // end namespace clang
8429
8430 #endif // LLVM_CLANG_SEMA_TREETRANSFORM_H
8431