• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for C++ declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/CXXFieldCollector.h"
16 #include "clang/Sema/Scope.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/AST/ASTConsumer.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/ASTMutationListener.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/CXXInheritance.h"
24 #include "clang/AST/DeclVisitor.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/AST/TypeLoc.h"
29 #include "clang/AST/TypeOrdering.h"
30 #include "clang/Sema/DeclSpec.h"
31 #include "clang/Sema/ParsedTemplate.h"
32 #include "clang/Basic/PartialDiagnostic.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include <map>
37 #include <set>
38 
39 using namespace clang;
40 
41 //===----------------------------------------------------------------------===//
42 // CheckDefaultArgumentVisitor
43 //===----------------------------------------------------------------------===//
44 
45 namespace {
46   /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47   /// the default argument of a parameter to determine whether it
48   /// contains any ill-formed subexpressions. For example, this will
49   /// diagnose the use of local variables or parameters within the
50   /// default argument expression.
51   class CheckDefaultArgumentVisitor
52     : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53     Expr *DefaultArg;
54     Sema *S;
55 
56   public:
CheckDefaultArgumentVisitor(Expr * defarg,Sema * s)57     CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58       : DefaultArg(defarg), S(s) {}
59 
60     bool VisitExpr(Expr *Node);
61     bool VisitDeclRefExpr(DeclRefExpr *DRE);
62     bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63   };
64 
65   /// VisitExpr - Visit all of the children of this expression.
VisitExpr(Expr * Node)66   bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67     bool IsInvalid = false;
68     for (Stmt::child_range I = Node->children(); I; ++I)
69       IsInvalid |= Visit(*I);
70     return IsInvalid;
71   }
72 
73   /// VisitDeclRefExpr - Visit a reference to a declaration, to
74   /// determine whether this declaration can be used in the default
75   /// argument expression.
VisitDeclRefExpr(DeclRefExpr * DRE)76   bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77     NamedDecl *Decl = DRE->getDecl();
78     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79       // C++ [dcl.fct.default]p9
80       //   Default arguments are evaluated each time the function is
81       //   called. The order of evaluation of function arguments is
82       //   unspecified. Consequently, parameters of a function shall not
83       //   be used in default argument expressions, even if they are not
84       //   evaluated. Parameters of a function declared before a default
85       //   argument expression are in scope and can hide namespace and
86       //   class member names.
87       return S->Diag(DRE->getSourceRange().getBegin(),
88                      diag::err_param_default_argument_references_param)
89          << Param->getDeclName() << DefaultArg->getSourceRange();
90     } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91       // C++ [dcl.fct.default]p7
92       //   Local variables shall not be used in default argument
93       //   expressions.
94       if (VDecl->isLocalVarDecl())
95         return S->Diag(DRE->getSourceRange().getBegin(),
96                        diag::err_param_default_argument_references_local)
97           << VDecl->getDeclName() << DefaultArg->getSourceRange();
98     }
99 
100     return false;
101   }
102 
103   /// VisitCXXThisExpr - Visit a C++ "this" expression.
VisitCXXThisExpr(CXXThisExpr * ThisE)104   bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105     // C++ [dcl.fct.default]p8:
106     //   The keyword this shall not be used in a default argument of a
107     //   member function.
108     return S->Diag(ThisE->getSourceRange().getBegin(),
109                    diag::err_param_default_argument_references_this)
110                << ThisE->getSourceRange();
111   }
112 }
113 
CalledDecl(CXXMethodDecl * Method)114 void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115   assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116   // If we have an MSAny or unknown spec already, don't bother.
117   if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118     return;
119 
120   const FunctionProtoType *Proto
121     = Method->getType()->getAs<FunctionProtoType>();
122 
123   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124 
125   // If this function can throw any exceptions, make a note of that.
126   if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127     ClearExceptions();
128     ComputedEST = EST;
129     return;
130   }
131 
132   // FIXME: If the call to this decl is using any of its default arguments, we
133   // need to search them for potentially-throwing calls.
134 
135   // If this function has a basic noexcept, it doesn't affect the outcome.
136   if (EST == EST_BasicNoexcept)
137     return;
138 
139   // If we have a throw-all spec at this point, ignore the function.
140   if (ComputedEST == EST_None)
141     return;
142 
143   // If we're still at noexcept(true) and there's a nothrow() callee,
144   // change to that specification.
145   if (EST == EST_DynamicNone) {
146     if (ComputedEST == EST_BasicNoexcept)
147       ComputedEST = EST_DynamicNone;
148     return;
149   }
150 
151   // Check out noexcept specs.
152   if (EST == EST_ComputedNoexcept) {
153     FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154     assert(NR != FunctionProtoType::NR_NoNoexcept &&
155            "Must have noexcept result for EST_ComputedNoexcept.");
156     assert(NR != FunctionProtoType::NR_Dependent &&
157            "Should not generate implicit declarations for dependent cases, "
158            "and don't know how to handle them anyway.");
159 
160     // noexcept(false) -> no spec on the new function
161     if (NR == FunctionProtoType::NR_Throw) {
162       ClearExceptions();
163       ComputedEST = EST_None;
164     }
165     // noexcept(true) won't change anything either.
166     return;
167   }
168 
169   assert(EST == EST_Dynamic && "EST case not considered earlier.");
170   assert(ComputedEST != EST_None &&
171          "Shouldn't collect exceptions when throw-all is guaranteed.");
172   ComputedEST = EST_Dynamic;
173   // Record the exceptions in this function's exception specification.
174   for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                           EEnd = Proto->exception_end();
176        E != EEnd; ++E)
177     if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178       Exceptions.push_back(*E);
179 }
180 
CalledExpr(Expr * E)181 void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182   if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183     return;
184 
185   // FIXME:
186   //
187   // C++0x [except.spec]p14:
188   //   [An] implicit exception-specification specifies the type-id T if and
189   // only if T is allowed by the exception-specification of a function directly
190   // invoked by f's implicit definition; f shall allow all exceptions if any
191   // function it directly invokes allows all exceptions, and f shall allow no
192   // exceptions if every function it directly invokes allows no exceptions.
193   //
194   // Note in particular that if an implicit exception-specification is generated
195   // for a function containing a throw-expression, that specification can still
196   // be noexcept(true).
197   //
198   // Note also that 'directly invoked' is not defined in the standard, and there
199   // is no indication that we should only consider potentially-evaluated calls.
200   //
201   // Ultimately we should implement the intent of the standard: the exception
202   // specification should be the set of exceptions which can be thrown by the
203   // implicit definition. For now, we assume that any non-nothrow expression can
204   // throw any exception.
205 
206   if (E->CanThrow(*Context))
207     ComputedEST = EST_None;
208 }
209 
210 bool
SetParamDefaultArgument(ParmVarDecl * Param,Expr * Arg,SourceLocation EqualLoc)211 Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                               SourceLocation EqualLoc) {
213   if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                           diag::err_typecheck_decl_incomplete_type)) {
215     Param->setInvalidDecl();
216     return true;
217   }
218 
219   // C++ [dcl.fct.default]p5
220   //   A default argument expression is implicitly converted (clause
221   //   4) to the parameter type. The default argument expression has
222   //   the same semantic constraints as the initializer expression in
223   //   a declaration of a variable of the parameter type, using the
224   //   copy-initialization semantics (8.5).
225   InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                     Param);
227   InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                            EqualLoc);
229   InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230   ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                       MultiExprArg(*this, &Arg, 1));
232   if (Result.isInvalid())
233     return true;
234   Arg = Result.takeAs<Expr>();
235 
236   CheckImplicitConversions(Arg, EqualLoc);
237   Arg = MaybeCreateExprWithCleanups(Arg);
238 
239   // Okay: add the default argument to the parameter
240   Param->setDefaultArg(Arg);
241 
242   // We have already instantiated this parameter; provide each of the
243   // instantiations with the uninstantiated default argument.
244   UnparsedDefaultArgInstantiationsMap::iterator InstPos
245     = UnparsedDefaultArgInstantiations.find(Param);
246   if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247     for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248       InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249 
250     // We're done tracking this parameter's instantiations.
251     UnparsedDefaultArgInstantiations.erase(InstPos);
252   }
253 
254   return false;
255 }
256 
257 /// ActOnParamDefaultArgument - Check whether the default argument
258 /// provided for a function parameter is well-formed. If so, attach it
259 /// to the parameter declaration.
260 void
ActOnParamDefaultArgument(Decl * param,SourceLocation EqualLoc,Expr * DefaultArg)261 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                 Expr *DefaultArg) {
263   if (!param || !DefaultArg)
264     return;
265 
266   ParmVarDecl *Param = cast<ParmVarDecl>(param);
267   UnparsedDefaultArgLocs.erase(Param);
268 
269   // Default arguments are only permitted in C++
270   if (!getLangOptions().CPlusPlus) {
271     Diag(EqualLoc, diag::err_param_default_argument)
272       << DefaultArg->getSourceRange();
273     Param->setInvalidDecl();
274     return;
275   }
276 
277   // Check for unexpanded parameter packs.
278   if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279     Param->setInvalidDecl();
280     return;
281   }
282 
283   // Check that the default argument is well-formed
284   CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285   if (DefaultArgChecker.Visit(DefaultArg)) {
286     Param->setInvalidDecl();
287     return;
288   }
289 
290   SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291 }
292 
293 /// ActOnParamUnparsedDefaultArgument - We've seen a default
294 /// argument for a function parameter, but we can't parse it yet
295 /// because we're inside a class definition. Note that this default
296 /// argument will be parsed later.
ActOnParamUnparsedDefaultArgument(Decl * param,SourceLocation EqualLoc,SourceLocation ArgLoc)297 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                              SourceLocation EqualLoc,
299                                              SourceLocation ArgLoc) {
300   if (!param)
301     return;
302 
303   ParmVarDecl *Param = cast<ParmVarDecl>(param);
304   if (Param)
305     Param->setUnparsedDefaultArg();
306 
307   UnparsedDefaultArgLocs[Param] = ArgLoc;
308 }
309 
310 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311 /// the default argument for the parameter param failed.
ActOnParamDefaultArgumentError(Decl * param)312 void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313   if (!param)
314     return;
315 
316   ParmVarDecl *Param = cast<ParmVarDecl>(param);
317 
318   Param->setInvalidDecl();
319 
320   UnparsedDefaultArgLocs.erase(Param);
321 }
322 
323 /// CheckExtraCXXDefaultArguments - Check for any extra default
324 /// arguments in the declarator, which is not a function declaration
325 /// or definition and therefore is not permitted to have default
326 /// arguments. This routine should be invoked for every declarator
327 /// that is not a function declaration or definition.
CheckExtraCXXDefaultArguments(Declarator & D)328 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329   // C++ [dcl.fct.default]p3
330   //   A default argument expression shall be specified only in the
331   //   parameter-declaration-clause of a function declaration or in a
332   //   template-parameter (14.1). It shall not be specified for a
333   //   parameter pack. If it is specified in a
334   //   parameter-declaration-clause, it shall not occur within a
335   //   declarator or abstract-declarator of a parameter-declaration.
336   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337     DeclaratorChunk &chunk = D.getTypeObject(i);
338     if (chunk.Kind == DeclaratorChunk::Function) {
339       for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340         ParmVarDecl *Param =
341           cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342         if (Param->hasUnparsedDefaultArg()) {
343           CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345             << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346           delete Toks;
347           chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348         } else if (Param->getDefaultArg()) {
349           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350             << Param->getDefaultArg()->getSourceRange();
351           Param->setDefaultArg(0);
352         }
353       }
354     }
355   }
356 }
357 
358 // MergeCXXFunctionDecl - Merge two declarations of the same C++
359 // function, once we already know that they have the same
360 // type. Subroutine of MergeFunctionDecl. Returns true if there was an
361 // error, false otherwise.
MergeCXXFunctionDecl(FunctionDecl * New,FunctionDecl * Old)362 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363   bool Invalid = false;
364 
365   // C++ [dcl.fct.default]p4:
366   //   For non-template functions, default arguments can be added in
367   //   later declarations of a function in the same
368   //   scope. Declarations in different scopes have completely
369   //   distinct sets of default arguments. That is, declarations in
370   //   inner scopes do not acquire default arguments from
371   //   declarations in outer scopes, and vice versa. In a given
372   //   function declaration, all parameters subsequent to a
373   //   parameter with a default argument shall have default
374   //   arguments supplied in this or previous declarations. A
375   //   default argument shall not be redefined by a later
376   //   declaration (not even to the same value).
377   //
378   // C++ [dcl.fct.default]p6:
379   //   Except for member functions of class templates, the default arguments
380   //   in a member function definition that appears outside of the class
381   //   definition are added to the set of default arguments provided by the
382   //   member function declaration in the class definition.
383   for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384     ParmVarDecl *OldParam = Old->getParamDecl(p);
385     ParmVarDecl *NewParam = New->getParamDecl(p);
386 
387     if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388 
389       unsigned DiagDefaultParamID =
390         diag::err_param_default_argument_redefinition;
391 
392       // MSVC accepts that default parameters be redefined for member functions
393       // of template class. The new default parameter's value is ignored.
394       Invalid = true;
395       if (getLangOptions().Microsoft) {
396         CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397         if (MD && MD->getParent()->getDescribedClassTemplate()) {
398           // Merge the old default argument into the new parameter.
399           NewParam->setHasInheritedDefaultArg();
400           if (OldParam->hasUninstantiatedDefaultArg())
401             NewParam->setUninstantiatedDefaultArg(
402                                       OldParam->getUninstantiatedDefaultArg());
403           else
404             NewParam->setDefaultArg(OldParam->getInit());
405           DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406           Invalid = false;
407         }
408       }
409 
410       // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411       // hint here. Alternatively, we could walk the type-source information
412       // for NewParam to find the last source location in the type... but it
413       // isn't worth the effort right now. This is the kind of test case that
414       // is hard to get right:
415       //   int f(int);
416       //   void g(int (*fp)(int) = f);
417       //   void g(int (*fp)(int) = &f);
418       Diag(NewParam->getLocation(), DiagDefaultParamID)
419         << NewParam->getDefaultArgRange();
420 
421       // Look for the function declaration where the default argument was
422       // actually written, which may be a declaration prior to Old.
423       for (FunctionDecl *Older = Old->getPreviousDeclaration();
424            Older; Older = Older->getPreviousDeclaration()) {
425         if (!Older->getParamDecl(p)->hasDefaultArg())
426           break;
427 
428         OldParam = Older->getParamDecl(p);
429       }
430 
431       Diag(OldParam->getLocation(), diag::note_previous_definition)
432         << OldParam->getDefaultArgRange();
433     } else if (OldParam->hasDefaultArg()) {
434       // Merge the old default argument into the new parameter.
435       // It's important to use getInit() here;  getDefaultArg()
436       // strips off any top-level ExprWithCleanups.
437       NewParam->setHasInheritedDefaultArg();
438       if (OldParam->hasUninstantiatedDefaultArg())
439         NewParam->setUninstantiatedDefaultArg(
440                                       OldParam->getUninstantiatedDefaultArg());
441       else
442         NewParam->setDefaultArg(OldParam->getInit());
443     } else if (NewParam->hasDefaultArg()) {
444       if (New->getDescribedFunctionTemplate()) {
445         // Paragraph 4, quoted above, only applies to non-template functions.
446         Diag(NewParam->getLocation(),
447              diag::err_param_default_argument_template_redecl)
448           << NewParam->getDefaultArgRange();
449         Diag(Old->getLocation(), diag::note_template_prev_declaration)
450           << false;
451       } else if (New->getTemplateSpecializationKind()
452                    != TSK_ImplicitInstantiation &&
453                  New->getTemplateSpecializationKind() != TSK_Undeclared) {
454         // C++ [temp.expr.spec]p21:
455         //   Default function arguments shall not be specified in a declaration
456         //   or a definition for one of the following explicit specializations:
457         //     - the explicit specialization of a function template;
458         //     - the explicit specialization of a member function template;
459         //     - the explicit specialization of a member function of a class
460         //       template where the class template specialization to which the
461         //       member function specialization belongs is implicitly
462         //       instantiated.
463         Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464           << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465           << New->getDeclName()
466           << NewParam->getDefaultArgRange();
467       } else if (New->getDeclContext()->isDependentContext()) {
468         // C++ [dcl.fct.default]p6 (DR217):
469         //   Default arguments for a member function of a class template shall
470         //   be specified on the initial declaration of the member function
471         //   within the class template.
472         //
473         // Reading the tea leaves a bit in DR217 and its reference to DR205
474         // leads me to the conclusion that one cannot add default function
475         // arguments for an out-of-line definition of a member function of a
476         // dependent type.
477         int WhichKind = 2;
478         if (CXXRecordDecl *Record
479               = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480           if (Record->getDescribedClassTemplate())
481             WhichKind = 0;
482           else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483             WhichKind = 1;
484           else
485             WhichKind = 2;
486         }
487 
488         Diag(NewParam->getLocation(),
489              diag::err_param_default_argument_member_template_redecl)
490           << WhichKind
491           << NewParam->getDefaultArgRange();
492       } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493         CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                          OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495         if (NewSM != OldSM) {
496           Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497             << NewParam->getDefaultArgRange() << NewSM;
498           Diag(Old->getLocation(), diag::note_previous_declaration_special)
499             << OldSM;
500         }
501       }
502     }
503   }
504 
505   if (CheckEquivalentExceptionSpec(Old, New))
506     Invalid = true;
507 
508   return Invalid;
509 }
510 
511 /// \brief Merge the exception specifications of two variable declarations.
512 ///
513 /// This is called when there's a redeclaration of a VarDecl. The function
514 /// checks if the redeclaration might have an exception specification and
515 /// validates compatibility and merges the specs if necessary.
MergeVarDeclExceptionSpecs(VarDecl * New,VarDecl * Old)516 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
517   // Shortcut if exceptions are disabled.
518   if (!getLangOptions().CXXExceptions)
519     return;
520 
521   assert(Context.hasSameType(New->getType(), Old->getType()) &&
522          "Should only be called if types are otherwise the same.");
523 
524   QualType NewType = New->getType();
525   QualType OldType = Old->getType();
526 
527   // We're only interested in pointers and references to functions, as well
528   // as pointers to member functions.
529   if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
530     NewType = R->getPointeeType();
531     OldType = OldType->getAs<ReferenceType>()->getPointeeType();
532   } else if (const PointerType *P = NewType->getAs<PointerType>()) {
533     NewType = P->getPointeeType();
534     OldType = OldType->getAs<PointerType>()->getPointeeType();
535   } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
536     NewType = M->getPointeeType();
537     OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
538   }
539 
540   if (!NewType->isFunctionProtoType())
541     return;
542 
543   // There's lots of special cases for functions. For function pointers, system
544   // libraries are hopefully not as broken so that we don't need these
545   // workarounds.
546   if (CheckEquivalentExceptionSpec(
547         OldType->getAs<FunctionProtoType>(), Old->getLocation(),
548         NewType->getAs<FunctionProtoType>(), New->getLocation())) {
549     New->setInvalidDecl();
550   }
551 }
552 
553 /// CheckCXXDefaultArguments - Verify that the default arguments for a
554 /// function declaration are well-formed according to C++
555 /// [dcl.fct.default].
CheckCXXDefaultArguments(FunctionDecl * FD)556 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
557   unsigned NumParams = FD->getNumParams();
558   unsigned p;
559 
560   // Find first parameter with a default argument
561   for (p = 0; p < NumParams; ++p) {
562     ParmVarDecl *Param = FD->getParamDecl(p);
563     if (Param->hasDefaultArg())
564       break;
565   }
566 
567   // C++ [dcl.fct.default]p4:
568   //   In a given function declaration, all parameters
569   //   subsequent to a parameter with a default argument shall
570   //   have default arguments supplied in this or previous
571   //   declarations. A default argument shall not be redefined
572   //   by a later declaration (not even to the same value).
573   unsigned LastMissingDefaultArg = 0;
574   for (; p < NumParams; ++p) {
575     ParmVarDecl *Param = FD->getParamDecl(p);
576     if (!Param->hasDefaultArg()) {
577       if (Param->isInvalidDecl())
578         /* We already complained about this parameter. */;
579       else if (Param->getIdentifier())
580         Diag(Param->getLocation(),
581              diag::err_param_default_argument_missing_name)
582           << Param->getIdentifier();
583       else
584         Diag(Param->getLocation(),
585              diag::err_param_default_argument_missing);
586 
587       LastMissingDefaultArg = p;
588     }
589   }
590 
591   if (LastMissingDefaultArg > 0) {
592     // Some default arguments were missing. Clear out all of the
593     // default arguments up to (and including) the last missing
594     // default argument, so that we leave the function parameters
595     // in a semantically valid state.
596     for (p = 0; p <= LastMissingDefaultArg; ++p) {
597       ParmVarDecl *Param = FD->getParamDecl(p);
598       if (Param->hasDefaultArg()) {
599         Param->setDefaultArg(0);
600       }
601     }
602   }
603 }
604 
605 /// isCurrentClassName - Determine whether the identifier II is the
606 /// name of the class type currently being defined. In the case of
607 /// nested classes, this will only return true if II is the name of
608 /// the innermost class.
isCurrentClassName(const IdentifierInfo & II,Scope *,const CXXScopeSpec * SS)609 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
610                               const CXXScopeSpec *SS) {
611   assert(getLangOptions().CPlusPlus && "No class names in C!");
612 
613   CXXRecordDecl *CurDecl;
614   if (SS && SS->isSet() && !SS->isInvalid()) {
615     DeclContext *DC = computeDeclContext(*SS, true);
616     CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
617   } else
618     CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
619 
620   if (CurDecl && CurDecl->getIdentifier())
621     return &II == CurDecl->getIdentifier();
622   else
623     return false;
624 }
625 
626 /// \brief Check the validity of a C++ base class specifier.
627 ///
628 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
629 /// and returns NULL otherwise.
630 CXXBaseSpecifier *
CheckBaseSpecifier(CXXRecordDecl * Class,SourceRange SpecifierRange,bool Virtual,AccessSpecifier Access,TypeSourceInfo * TInfo,SourceLocation EllipsisLoc)631 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
632                          SourceRange SpecifierRange,
633                          bool Virtual, AccessSpecifier Access,
634                          TypeSourceInfo *TInfo,
635                          SourceLocation EllipsisLoc) {
636   QualType BaseType = TInfo->getType();
637 
638   // C++ [class.union]p1:
639   //   A union shall not have base classes.
640   if (Class->isUnion()) {
641     Diag(Class->getLocation(), diag::err_base_clause_on_union)
642       << SpecifierRange;
643     return 0;
644   }
645 
646   if (EllipsisLoc.isValid() &&
647       !TInfo->getType()->containsUnexpandedParameterPack()) {
648     Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
649       << TInfo->getTypeLoc().getSourceRange();
650     EllipsisLoc = SourceLocation();
651   }
652 
653   if (BaseType->isDependentType())
654     return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
655                                           Class->getTagKind() == TTK_Class,
656                                           Access, TInfo, EllipsisLoc);
657 
658   SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
659 
660   // Base specifiers must be record types.
661   if (!BaseType->isRecordType()) {
662     Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
663     return 0;
664   }
665 
666   // C++ [class.union]p1:
667   //   A union shall not be used as a base class.
668   if (BaseType->isUnionType()) {
669     Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
670     return 0;
671   }
672 
673   // C++ [class.derived]p2:
674   //   The class-name in a base-specifier shall not be an incompletely
675   //   defined class.
676   if (RequireCompleteType(BaseLoc, BaseType,
677                           PDiag(diag::err_incomplete_base_class)
678                             << SpecifierRange)) {
679     Class->setInvalidDecl();
680     return 0;
681   }
682 
683   // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
684   RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
685   assert(BaseDecl && "Record type has no declaration");
686   BaseDecl = BaseDecl->getDefinition();
687   assert(BaseDecl && "Base type is not incomplete, but has no definition");
688   CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
689   assert(CXXBaseDecl && "Base type is not a C++ type");
690 
691   // C++ [class]p3:
692   //   If a class is marked final and it appears as a base-type-specifier in
693   //   base-clause, the program is ill-formed.
694   if (CXXBaseDecl->hasAttr<FinalAttr>()) {
695     Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
696       << CXXBaseDecl->getDeclName();
697     Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
698       << CXXBaseDecl->getDeclName();
699     return 0;
700   }
701 
702   if (BaseDecl->isInvalidDecl())
703     Class->setInvalidDecl();
704 
705   // Create the base specifier.
706   return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
707                                         Class->getTagKind() == TTK_Class,
708                                         Access, TInfo, EllipsisLoc);
709 }
710 
711 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
712 /// one entry in the base class list of a class specifier, for
713 /// example:
714 ///    class foo : public bar, virtual private baz {
715 /// 'public bar' and 'virtual private baz' are each base-specifiers.
716 BaseResult
ActOnBaseSpecifier(Decl * classdecl,SourceRange SpecifierRange,bool Virtual,AccessSpecifier Access,ParsedType basetype,SourceLocation BaseLoc,SourceLocation EllipsisLoc)717 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
718                          bool Virtual, AccessSpecifier Access,
719                          ParsedType basetype, SourceLocation BaseLoc,
720                          SourceLocation EllipsisLoc) {
721   if (!classdecl)
722     return true;
723 
724   AdjustDeclIfTemplate(classdecl);
725   CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
726   if (!Class)
727     return true;
728 
729   TypeSourceInfo *TInfo = 0;
730   GetTypeFromParser(basetype, &TInfo);
731 
732   if (EllipsisLoc.isInvalid() &&
733       DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
734                                       UPPC_BaseType))
735     return true;
736 
737   if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
738                                                       Virtual, Access, TInfo,
739                                                       EllipsisLoc))
740     return BaseSpec;
741 
742   return true;
743 }
744 
745 /// \brief Performs the actual work of attaching the given base class
746 /// specifiers to a C++ class.
AttachBaseSpecifiers(CXXRecordDecl * Class,CXXBaseSpecifier ** Bases,unsigned NumBases)747 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
748                                 unsigned NumBases) {
749  if (NumBases == 0)
750     return false;
751 
752   // Used to keep track of which base types we have already seen, so
753   // that we can properly diagnose redundant direct base types. Note
754   // that the key is always the unqualified canonical type of the base
755   // class.
756   std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
757 
758   // Copy non-redundant base specifiers into permanent storage.
759   unsigned NumGoodBases = 0;
760   bool Invalid = false;
761   for (unsigned idx = 0; idx < NumBases; ++idx) {
762     QualType NewBaseType
763       = Context.getCanonicalType(Bases[idx]->getType());
764     NewBaseType = NewBaseType.getLocalUnqualifiedType();
765     if (KnownBaseTypes[NewBaseType]) {
766       // C++ [class.mi]p3:
767       //   A class shall not be specified as a direct base class of a
768       //   derived class more than once.
769       Diag(Bases[idx]->getSourceRange().getBegin(),
770            diag::err_duplicate_base_class)
771         << KnownBaseTypes[NewBaseType]->getType()
772         << Bases[idx]->getSourceRange();
773 
774       // Delete the duplicate base class specifier; we're going to
775       // overwrite its pointer later.
776       Context.Deallocate(Bases[idx]);
777 
778       Invalid = true;
779     } else {
780       // Okay, add this new base class.
781       KnownBaseTypes[NewBaseType] = Bases[idx];
782       Bases[NumGoodBases++] = Bases[idx];
783     }
784   }
785 
786   // Attach the remaining base class specifiers to the derived class.
787   Class->setBases(Bases, NumGoodBases);
788 
789   // Delete the remaining (good) base class specifiers, since their
790   // data has been copied into the CXXRecordDecl.
791   for (unsigned idx = 0; idx < NumGoodBases; ++idx)
792     Context.Deallocate(Bases[idx]);
793 
794   return Invalid;
795 }
796 
797 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
798 /// class, after checking whether there are any duplicate base
799 /// classes.
ActOnBaseSpecifiers(Decl * ClassDecl,BaseTy ** Bases,unsigned NumBases)800 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
801                                unsigned NumBases) {
802   if (!ClassDecl || !Bases || !NumBases)
803     return;
804 
805   AdjustDeclIfTemplate(ClassDecl);
806   AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
807                        (CXXBaseSpecifier**)(Bases), NumBases);
808 }
809 
GetClassForType(QualType T)810 static CXXRecordDecl *GetClassForType(QualType T) {
811   if (const RecordType *RT = T->getAs<RecordType>())
812     return cast<CXXRecordDecl>(RT->getDecl());
813   else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
814     return ICT->getDecl();
815   else
816     return 0;
817 }
818 
819 /// \brief Determine whether the type \p Derived is a C++ class that is
820 /// derived from the type \p Base.
IsDerivedFrom(QualType Derived,QualType Base)821 bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
822   if (!getLangOptions().CPlusPlus)
823     return false;
824 
825   CXXRecordDecl *DerivedRD = GetClassForType(Derived);
826   if (!DerivedRD)
827     return false;
828 
829   CXXRecordDecl *BaseRD = GetClassForType(Base);
830   if (!BaseRD)
831     return false;
832 
833   // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
834   return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
835 }
836 
837 /// \brief Determine whether the type \p Derived is a C++ class that is
838 /// derived from the type \p Base.
IsDerivedFrom(QualType Derived,QualType Base,CXXBasePaths & Paths)839 bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
840   if (!getLangOptions().CPlusPlus)
841     return false;
842 
843   CXXRecordDecl *DerivedRD = GetClassForType(Derived);
844   if (!DerivedRD)
845     return false;
846 
847   CXXRecordDecl *BaseRD = GetClassForType(Base);
848   if (!BaseRD)
849     return false;
850 
851   return DerivedRD->isDerivedFrom(BaseRD, Paths);
852 }
853 
BuildBasePathArray(const CXXBasePaths & Paths,CXXCastPath & BasePathArray)854 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
855                               CXXCastPath &BasePathArray) {
856   assert(BasePathArray.empty() && "Base path array must be empty!");
857   assert(Paths.isRecordingPaths() && "Must record paths!");
858 
859   const CXXBasePath &Path = Paths.front();
860 
861   // We first go backward and check if we have a virtual base.
862   // FIXME: It would be better if CXXBasePath had the base specifier for
863   // the nearest virtual base.
864   unsigned Start = 0;
865   for (unsigned I = Path.size(); I != 0; --I) {
866     if (Path[I - 1].Base->isVirtual()) {
867       Start = I - 1;
868       break;
869     }
870   }
871 
872   // Now add all bases.
873   for (unsigned I = Start, E = Path.size(); I != E; ++I)
874     BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
875 }
876 
877 /// \brief Determine whether the given base path includes a virtual
878 /// base class.
BasePathInvolvesVirtualBase(const CXXCastPath & BasePath)879 bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
880   for (CXXCastPath::const_iterator B = BasePath.begin(),
881                                 BEnd = BasePath.end();
882        B != BEnd; ++B)
883     if ((*B)->isVirtual())
884       return true;
885 
886   return false;
887 }
888 
889 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
890 /// conversion (where Derived and Base are class types) is
891 /// well-formed, meaning that the conversion is unambiguous (and
892 /// that all of the base classes are accessible). Returns true
893 /// and emits a diagnostic if the code is ill-formed, returns false
894 /// otherwise. Loc is the location where this routine should point to
895 /// if there is an error, and Range is the source range to highlight
896 /// if there is an error.
897 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,unsigned InaccessibleBaseID,unsigned AmbigiousBaseConvID,SourceLocation Loc,SourceRange Range,DeclarationName Name,CXXCastPath * BasePath)898 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
899                                    unsigned InaccessibleBaseID,
900                                    unsigned AmbigiousBaseConvID,
901                                    SourceLocation Loc, SourceRange Range,
902                                    DeclarationName Name,
903                                    CXXCastPath *BasePath) {
904   // First, determine whether the path from Derived to Base is
905   // ambiguous. This is slightly more expensive than checking whether
906   // the Derived to Base conversion exists, because here we need to
907   // explore multiple paths to determine if there is an ambiguity.
908   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
909                      /*DetectVirtual=*/false);
910   bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
911   assert(DerivationOkay &&
912          "Can only be used with a derived-to-base conversion");
913   (void)DerivationOkay;
914 
915   if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
916     if (InaccessibleBaseID) {
917       // Check that the base class can be accessed.
918       switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
919                                    InaccessibleBaseID)) {
920         case AR_inaccessible:
921           return true;
922         case AR_accessible:
923         case AR_dependent:
924         case AR_delayed:
925           break;
926       }
927     }
928 
929     // Build a base path if necessary.
930     if (BasePath)
931       BuildBasePathArray(Paths, *BasePath);
932     return false;
933   }
934 
935   // We know that the derived-to-base conversion is ambiguous, and
936   // we're going to produce a diagnostic. Perform the derived-to-base
937   // search just one more time to compute all of the possible paths so
938   // that we can print them out. This is more expensive than any of
939   // the previous derived-to-base checks we've done, but at this point
940   // performance isn't as much of an issue.
941   Paths.clear();
942   Paths.setRecordingPaths(true);
943   bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
944   assert(StillOkay && "Can only be used with a derived-to-base conversion");
945   (void)StillOkay;
946 
947   // Build up a textual representation of the ambiguous paths, e.g.,
948   // D -> B -> A, that will be used to illustrate the ambiguous
949   // conversions in the diagnostic. We only print one of the paths
950   // to each base class subobject.
951   std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
952 
953   Diag(Loc, AmbigiousBaseConvID)
954   << Derived << Base << PathDisplayStr << Range << Name;
955   return true;
956 }
957 
958 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,SourceLocation Loc,SourceRange Range,CXXCastPath * BasePath,bool IgnoreAccess)959 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
960                                    SourceLocation Loc, SourceRange Range,
961                                    CXXCastPath *BasePath,
962                                    bool IgnoreAccess) {
963   return CheckDerivedToBaseConversion(Derived, Base,
964                                       IgnoreAccess ? 0
965                                        : diag::err_upcast_to_inaccessible_base,
966                                       diag::err_ambiguous_derived_to_base_conv,
967                                       Loc, Range, DeclarationName(),
968                                       BasePath);
969 }
970 
971 
972 /// @brief Builds a string representing ambiguous paths from a
973 /// specific derived class to different subobjects of the same base
974 /// class.
975 ///
976 /// This function builds a string that can be used in error messages
977 /// to show the different paths that one can take through the
978 /// inheritance hierarchy to go from the derived class to different
979 /// subobjects of a base class. The result looks something like this:
980 /// @code
981 /// struct D -> struct B -> struct A
982 /// struct D -> struct C -> struct A
983 /// @endcode
getAmbiguousPathsDisplayString(CXXBasePaths & Paths)984 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
985   std::string PathDisplayStr;
986   std::set<unsigned> DisplayedPaths;
987   for (CXXBasePaths::paths_iterator Path = Paths.begin();
988        Path != Paths.end(); ++Path) {
989     if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
990       // We haven't displayed a path to this particular base
991       // class subobject yet.
992       PathDisplayStr += "\n    ";
993       PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
994       for (CXXBasePath::const_iterator Element = Path->begin();
995            Element != Path->end(); ++Element)
996         PathDisplayStr += " -> " + Element->Base->getType().getAsString();
997     }
998   }
999 
1000   return PathDisplayStr;
1001 }
1002 
1003 //===----------------------------------------------------------------------===//
1004 // C++ class member Handling
1005 //===----------------------------------------------------------------------===//
1006 
1007 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
ActOnAccessSpecifier(AccessSpecifier Access,SourceLocation ASLoc,SourceLocation ColonLoc)1008 Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1009                                  SourceLocation ASLoc,
1010                                  SourceLocation ColonLoc) {
1011   assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1012   AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1013                                                   ASLoc, ColonLoc);
1014   CurContext->addHiddenDecl(ASDecl);
1015   return ASDecl;
1016 }
1017 
1018 /// CheckOverrideControl - Check C++0x override control semantics.
CheckOverrideControl(const Decl * D)1019 void Sema::CheckOverrideControl(const Decl *D) {
1020   const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
1021   if (!MD || !MD->isVirtual())
1022     return;
1023 
1024   if (MD->isDependentContext())
1025     return;
1026 
1027   // C++0x [class.virtual]p3:
1028   //   If a virtual function is marked with the virt-specifier override and does
1029   //   not override a member function of a base class,
1030   //   the program is ill-formed.
1031   bool HasOverriddenMethods =
1032     MD->begin_overridden_methods() != MD->end_overridden_methods();
1033   if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1034     Diag(MD->getLocation(),
1035                  diag::err_function_marked_override_not_overriding)
1036       << MD->getDeclName();
1037     return;
1038   }
1039 }
1040 
1041 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1042 /// function overrides a virtual member function marked 'final', according to
1043 /// C++0x [class.virtual]p3.
CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl * New,const CXXMethodDecl * Old)1044 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1045                                                   const CXXMethodDecl *Old) {
1046   if (!Old->hasAttr<FinalAttr>())
1047     return false;
1048 
1049   Diag(New->getLocation(), diag::err_final_function_overridden)
1050     << New->getDeclName();
1051   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1052   return true;
1053 }
1054 
1055 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1056 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1057 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
1058 /// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1059 /// present but parsing it has been deferred.
1060 Decl *
ActOnCXXMemberDeclarator(Scope * S,AccessSpecifier AS,Declarator & D,MultiTemplateParamsArg TemplateParameterLists,ExprTy * BW,const VirtSpecifiers & VS,ExprTy * InitExpr,bool HasDeferredInit,bool IsDefinition)1061 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1062                                MultiTemplateParamsArg TemplateParameterLists,
1063                                ExprTy *BW, const VirtSpecifiers &VS,
1064                                ExprTy *InitExpr, bool HasDeferredInit,
1065                                bool IsDefinition) {
1066   const DeclSpec &DS = D.getDeclSpec();
1067   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1068   DeclarationName Name = NameInfo.getName();
1069   SourceLocation Loc = NameInfo.getLoc();
1070 
1071   // For anonymous bitfields, the location should point to the type.
1072   if (Loc.isInvalid())
1073     Loc = D.getSourceRange().getBegin();
1074 
1075   Expr *BitWidth = static_cast<Expr*>(BW);
1076   Expr *Init = static_cast<Expr*>(InitExpr);
1077 
1078   assert(isa<CXXRecordDecl>(CurContext));
1079   assert(!DS.isFriendSpecified());
1080   assert(!Init || !HasDeferredInit);
1081 
1082   bool isFunc = D.isDeclarationOfFunction();
1083 
1084   // C++ 9.2p6: A member shall not be declared to have automatic storage
1085   // duration (auto, register) or with the extern storage-class-specifier.
1086   // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1087   // data members and cannot be applied to names declared const or static,
1088   // and cannot be applied to reference members.
1089   switch (DS.getStorageClassSpec()) {
1090     case DeclSpec::SCS_unspecified:
1091     case DeclSpec::SCS_typedef:
1092     case DeclSpec::SCS_static:
1093       // FALL THROUGH.
1094       break;
1095     case DeclSpec::SCS_mutable:
1096       if (isFunc) {
1097         if (DS.getStorageClassSpecLoc().isValid())
1098           Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1099         else
1100           Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1101 
1102         // FIXME: It would be nicer if the keyword was ignored only for this
1103         // declarator. Otherwise we could get follow-up errors.
1104         D.getMutableDeclSpec().ClearStorageClassSpecs();
1105       }
1106       break;
1107     default:
1108       if (DS.getStorageClassSpecLoc().isValid())
1109         Diag(DS.getStorageClassSpecLoc(),
1110              diag::err_storageclass_invalid_for_member);
1111       else
1112         Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1113       D.getMutableDeclSpec().ClearStorageClassSpecs();
1114   }
1115 
1116   bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1117                        DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1118                       !isFunc);
1119 
1120   Decl *Member;
1121   if (isInstField) {
1122     CXXScopeSpec &SS = D.getCXXScopeSpec();
1123 
1124     if (SS.isSet() && !SS.isInvalid()) {
1125       // The user provided a superfluous scope specifier inside a class
1126       // definition:
1127       //
1128       // class X {
1129       //   int X::member;
1130       // };
1131       DeclContext *DC = 0;
1132       if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1133         Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1134         << Name << FixItHint::CreateRemoval(SS.getRange());
1135       else
1136         Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1137           << Name << SS.getRange();
1138 
1139       SS.clear();
1140     }
1141 
1142     // FIXME: Check for template parameters!
1143     // FIXME: Check that the name is an identifier!
1144     Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1145                          HasDeferredInit, AS);
1146     assert(Member && "HandleField never returns null");
1147   } else {
1148     assert(!HasDeferredInit);
1149 
1150     Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1151     if (!Member) {
1152       return 0;
1153     }
1154 
1155     // Non-instance-fields can't have a bitfield.
1156     if (BitWidth) {
1157       if (Member->isInvalidDecl()) {
1158         // don't emit another diagnostic.
1159       } else if (isa<VarDecl>(Member)) {
1160         // C++ 9.6p3: A bit-field shall not be a static member.
1161         // "static member 'A' cannot be a bit-field"
1162         Diag(Loc, diag::err_static_not_bitfield)
1163           << Name << BitWidth->getSourceRange();
1164       } else if (isa<TypedefDecl>(Member)) {
1165         // "typedef member 'x' cannot be a bit-field"
1166         Diag(Loc, diag::err_typedef_not_bitfield)
1167           << Name << BitWidth->getSourceRange();
1168       } else {
1169         // A function typedef ("typedef int f(); f a;").
1170         // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1171         Diag(Loc, diag::err_not_integral_type_bitfield)
1172           << Name << cast<ValueDecl>(Member)->getType()
1173           << BitWidth->getSourceRange();
1174       }
1175 
1176       BitWidth = 0;
1177       Member->setInvalidDecl();
1178     }
1179 
1180     Member->setAccess(AS);
1181 
1182     // If we have declared a member function template, set the access of the
1183     // templated declaration as well.
1184     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1185       FunTmpl->getTemplatedDecl()->setAccess(AS);
1186   }
1187 
1188   if (VS.isOverrideSpecified()) {
1189     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1190     if (!MD || !MD->isVirtual()) {
1191       Diag(Member->getLocStart(),
1192            diag::override_keyword_only_allowed_on_virtual_member_functions)
1193         << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1194     } else
1195       MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1196   }
1197   if (VS.isFinalSpecified()) {
1198     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1199     if (!MD || !MD->isVirtual()) {
1200       Diag(Member->getLocStart(),
1201            diag::override_keyword_only_allowed_on_virtual_member_functions)
1202       << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1203     } else
1204       MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1205   }
1206 
1207   if (VS.getLastLocation().isValid()) {
1208     // Update the end location of a method that has a virt-specifiers.
1209     if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1210       MD->setRangeEnd(VS.getLastLocation());
1211   }
1212 
1213   CheckOverrideControl(Member);
1214 
1215   assert((Name || isInstField) && "No identifier for non-field ?");
1216 
1217   if (Init)
1218     AddInitializerToDecl(Member, Init, false,
1219                          DS.getTypeSpecType() == DeclSpec::TST_auto);
1220   else if (DS.getTypeSpecType() == DeclSpec::TST_auto &&
1221            DS.getStorageClassSpec() == DeclSpec::SCS_static) {
1222     // C++0x [dcl.spec.auto]p4: 'auto' can only be used in the type of a static
1223     // data member if a brace-or-equal-initializer is provided.
1224     Diag(Loc, diag::err_auto_var_requires_init)
1225       << Name << cast<ValueDecl>(Member)->getType();
1226     Member->setInvalidDecl();
1227   }
1228 
1229   FinalizeDeclaration(Member);
1230 
1231   if (isInstField)
1232     FieldCollector->Add(cast<FieldDecl>(Member));
1233   return Member;
1234 }
1235 
1236 /// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1237 /// in-class initializer for a non-static C++ class member, and after
1238 /// instantiating an in-class initializer in a class template. Such actions
1239 /// are deferred until the class is complete.
1240 void
ActOnCXXInClassMemberInitializer(Decl * D,SourceLocation EqualLoc,Expr * InitExpr)1241 Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1242                                        Expr *InitExpr) {
1243   FieldDecl *FD = cast<FieldDecl>(D);
1244 
1245   if (!InitExpr) {
1246     FD->setInvalidDecl();
1247     FD->removeInClassInitializer();
1248     return;
1249   }
1250 
1251   ExprResult Init = InitExpr;
1252   if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1253     // FIXME: if there is no EqualLoc, this is list-initialization.
1254     Init = PerformCopyInitialization(
1255       InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1256     if (Init.isInvalid()) {
1257       FD->setInvalidDecl();
1258       return;
1259     }
1260 
1261     CheckImplicitConversions(Init.get(), EqualLoc);
1262   }
1263 
1264   // C++0x [class.base.init]p7:
1265   //   The initialization of each base and member constitutes a
1266   //   full-expression.
1267   Init = MaybeCreateExprWithCleanups(Init);
1268   if (Init.isInvalid()) {
1269     FD->setInvalidDecl();
1270     return;
1271   }
1272 
1273   InitExpr = Init.release();
1274 
1275   FD->setInClassInitializer(InitExpr);
1276 }
1277 
1278 /// \brief Find the direct and/or virtual base specifiers that
1279 /// correspond to the given base type, for use in base initialization
1280 /// within a constructor.
FindBaseInitializer(Sema & SemaRef,CXXRecordDecl * ClassDecl,QualType BaseType,const CXXBaseSpecifier * & DirectBaseSpec,const CXXBaseSpecifier * & VirtualBaseSpec)1281 static bool FindBaseInitializer(Sema &SemaRef,
1282                                 CXXRecordDecl *ClassDecl,
1283                                 QualType BaseType,
1284                                 const CXXBaseSpecifier *&DirectBaseSpec,
1285                                 const CXXBaseSpecifier *&VirtualBaseSpec) {
1286   // First, check for a direct base class.
1287   DirectBaseSpec = 0;
1288   for (CXXRecordDecl::base_class_const_iterator Base
1289          = ClassDecl->bases_begin();
1290        Base != ClassDecl->bases_end(); ++Base) {
1291     if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1292       // We found a direct base of this type. That's what we're
1293       // initializing.
1294       DirectBaseSpec = &*Base;
1295       break;
1296     }
1297   }
1298 
1299   // Check for a virtual base class.
1300   // FIXME: We might be able to short-circuit this if we know in advance that
1301   // there are no virtual bases.
1302   VirtualBaseSpec = 0;
1303   if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1304     // We haven't found a base yet; search the class hierarchy for a
1305     // virtual base class.
1306     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1307                        /*DetectVirtual=*/false);
1308     if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1309                               BaseType, Paths)) {
1310       for (CXXBasePaths::paths_iterator Path = Paths.begin();
1311            Path != Paths.end(); ++Path) {
1312         if (Path->back().Base->isVirtual()) {
1313           VirtualBaseSpec = Path->back().Base;
1314           break;
1315         }
1316       }
1317     }
1318   }
1319 
1320   return DirectBaseSpec || VirtualBaseSpec;
1321 }
1322 
1323 /// ActOnMemInitializer - Handle a C++ member initializer.
1324 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,SourceLocation IdLoc,SourceLocation LParenLoc,ExprTy ** Args,unsigned NumArgs,SourceLocation RParenLoc,SourceLocation EllipsisLoc)1325 Sema::ActOnMemInitializer(Decl *ConstructorD,
1326                           Scope *S,
1327                           CXXScopeSpec &SS,
1328                           IdentifierInfo *MemberOrBase,
1329                           ParsedType TemplateTypeTy,
1330                           SourceLocation IdLoc,
1331                           SourceLocation LParenLoc,
1332                           ExprTy **Args, unsigned NumArgs,
1333                           SourceLocation RParenLoc,
1334                           SourceLocation EllipsisLoc) {
1335   if (!ConstructorD)
1336     return true;
1337 
1338   AdjustDeclIfTemplate(ConstructorD);
1339 
1340   CXXConstructorDecl *Constructor
1341     = dyn_cast<CXXConstructorDecl>(ConstructorD);
1342   if (!Constructor) {
1343     // The user wrote a constructor initializer on a function that is
1344     // not a C++ constructor. Ignore the error for now, because we may
1345     // have more member initializers coming; we'll diagnose it just
1346     // once in ActOnMemInitializers.
1347     return true;
1348   }
1349 
1350   CXXRecordDecl *ClassDecl = Constructor->getParent();
1351 
1352   // C++ [class.base.init]p2:
1353   //   Names in a mem-initializer-id are looked up in the scope of the
1354   //   constructor's class and, if not found in that scope, are looked
1355   //   up in the scope containing the constructor's definition.
1356   //   [Note: if the constructor's class contains a member with the
1357   //   same name as a direct or virtual base class of the class, a
1358   //   mem-initializer-id naming the member or base class and composed
1359   //   of a single identifier refers to the class member. A
1360   //   mem-initializer-id for the hidden base class may be specified
1361   //   using a qualified name. ]
1362   if (!SS.getScopeRep() && !TemplateTypeTy) {
1363     // Look for a member, first.
1364     FieldDecl *Member = 0;
1365     DeclContext::lookup_result Result
1366       = ClassDecl->lookup(MemberOrBase);
1367     if (Result.first != Result.second) {
1368       Member = dyn_cast<FieldDecl>(*Result.first);
1369 
1370       if (Member) {
1371         if (EllipsisLoc.isValid())
1372           Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1373             << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1374 
1375         return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1376                                     LParenLoc, RParenLoc);
1377       }
1378 
1379       // Handle anonymous union case.
1380       if (IndirectFieldDecl* IndirectField
1381             = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1382         if (EllipsisLoc.isValid())
1383           Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1384             << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1385 
1386          return BuildMemberInitializer(IndirectField, (Expr**)Args,
1387                                        NumArgs, IdLoc,
1388                                        LParenLoc, RParenLoc);
1389       }
1390     }
1391   }
1392   // It didn't name a member, so see if it names a class.
1393   QualType BaseType;
1394   TypeSourceInfo *TInfo = 0;
1395 
1396   if (TemplateTypeTy) {
1397     BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1398   } else {
1399     LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1400     LookupParsedName(R, S, &SS);
1401 
1402     TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1403     if (!TyD) {
1404       if (R.isAmbiguous()) return true;
1405 
1406       // We don't want access-control diagnostics here.
1407       R.suppressDiagnostics();
1408 
1409       if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1410         bool NotUnknownSpecialization = false;
1411         DeclContext *DC = computeDeclContext(SS, false);
1412         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1413           NotUnknownSpecialization = !Record->hasAnyDependentBases();
1414 
1415         if (!NotUnknownSpecialization) {
1416           // When the scope specifier can refer to a member of an unknown
1417           // specialization, we take it as a type name.
1418           BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1419                                        SS.getWithLocInContext(Context),
1420                                        *MemberOrBase, IdLoc);
1421           if (BaseType.isNull())
1422             return true;
1423 
1424           R.clear();
1425           R.setLookupName(MemberOrBase);
1426         }
1427       }
1428 
1429       // If no results were found, try to correct typos.
1430       TypoCorrection Corr;
1431       if (R.empty() && BaseType.isNull() &&
1432           (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1433                               ClassDecl, false, CTC_NoKeywords))) {
1434         std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1435         std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1436         if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1437           if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1438             // We have found a non-static data member with a similar
1439             // name to what was typed; complain and initialize that
1440             // member.
1441             Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1442               << MemberOrBase << true << CorrectedQuotedStr
1443               << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1444             Diag(Member->getLocation(), diag::note_previous_decl)
1445               << CorrectedQuotedStr;
1446 
1447             return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1448                                           LParenLoc, RParenLoc);
1449           }
1450         } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1451           const CXXBaseSpecifier *DirectBaseSpec;
1452           const CXXBaseSpecifier *VirtualBaseSpec;
1453           if (FindBaseInitializer(*this, ClassDecl,
1454                                   Context.getTypeDeclType(Type),
1455                                   DirectBaseSpec, VirtualBaseSpec)) {
1456             // We have found a direct or virtual base class with a
1457             // similar name to what was typed; complain and initialize
1458             // that base class.
1459             Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1460               << MemberOrBase << false << CorrectedQuotedStr
1461               << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1462 
1463             const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1464                                                              : VirtualBaseSpec;
1465             Diag(BaseSpec->getSourceRange().getBegin(),
1466                  diag::note_base_class_specified_here)
1467               << BaseSpec->getType()
1468               << BaseSpec->getSourceRange();
1469 
1470             TyD = Type;
1471           }
1472         }
1473       }
1474 
1475       if (!TyD && BaseType.isNull()) {
1476         Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1477           << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1478         return true;
1479       }
1480     }
1481 
1482     if (BaseType.isNull()) {
1483       BaseType = Context.getTypeDeclType(TyD);
1484       if (SS.isSet()) {
1485         NestedNameSpecifier *Qualifier =
1486           static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1487 
1488         // FIXME: preserve source range information
1489         BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1490       }
1491     }
1492   }
1493 
1494   if (!TInfo)
1495     TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1496 
1497   return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1498                               LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1499 }
1500 
1501 /// Checks an initializer expression for use of uninitialized fields, such as
1502 /// containing the field that is being initialized. Returns true if there is an
1503 /// uninitialized field was used an updates the SourceLocation parameter; false
1504 /// otherwise.
InitExprContainsUninitializedFields(const Stmt * S,const ValueDecl * LhsField,SourceLocation * L)1505 static bool InitExprContainsUninitializedFields(const Stmt *S,
1506                                                 const ValueDecl *LhsField,
1507                                                 SourceLocation *L) {
1508   assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1509 
1510   if (isa<CallExpr>(S)) {
1511     // Do not descend into function calls or constructors, as the use
1512     // of an uninitialized field may be valid. One would have to inspect
1513     // the contents of the function/ctor to determine if it is safe or not.
1514     // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1515     // may be safe, depending on what the function/ctor does.
1516     return false;
1517   }
1518   if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1519     const NamedDecl *RhsField = ME->getMemberDecl();
1520 
1521     if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1522       // The member expression points to a static data member.
1523       assert(VD->isStaticDataMember() &&
1524              "Member points to non-static data member!");
1525       (void)VD;
1526       return false;
1527     }
1528 
1529     if (isa<EnumConstantDecl>(RhsField)) {
1530       // The member expression points to an enum.
1531       return false;
1532     }
1533 
1534     if (RhsField == LhsField) {
1535       // Initializing a field with itself. Throw a warning.
1536       // But wait; there are exceptions!
1537       // Exception #1:  The field may not belong to this record.
1538       // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1539       const Expr *base = ME->getBase();
1540       if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1541         // Even though the field matches, it does not belong to this record.
1542         return false;
1543       }
1544       // None of the exceptions triggered; return true to indicate an
1545       // uninitialized field was used.
1546       *L = ME->getMemberLoc();
1547       return true;
1548     }
1549   } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1550     // sizeof/alignof doesn't reference contents, do not warn.
1551     return false;
1552   } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1553     // address-of doesn't reference contents (the pointer may be dereferenced
1554     // in the same expression but it would be rare; and weird).
1555     if (UOE->getOpcode() == UO_AddrOf)
1556       return false;
1557   }
1558   for (Stmt::const_child_range it = S->children(); it; ++it) {
1559     if (!*it) {
1560       // An expression such as 'member(arg ?: "")' may trigger this.
1561       continue;
1562     }
1563     if (InitExprContainsUninitializedFields(*it, LhsField, L))
1564       return true;
1565   }
1566   return false;
1567 }
1568 
1569 MemInitResult
BuildMemberInitializer(ValueDecl * Member,Expr ** Args,unsigned NumArgs,SourceLocation IdLoc,SourceLocation LParenLoc,SourceLocation RParenLoc)1570 Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1571                              unsigned NumArgs, SourceLocation IdLoc,
1572                              SourceLocation LParenLoc,
1573                              SourceLocation RParenLoc) {
1574   FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1575   IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1576   assert((DirectMember || IndirectMember) &&
1577          "Member must be a FieldDecl or IndirectFieldDecl");
1578 
1579   if (Member->isInvalidDecl())
1580     return true;
1581 
1582   // Diagnose value-uses of fields to initialize themselves, e.g.
1583   //   foo(foo)
1584   // where foo is not also a parameter to the constructor.
1585   // TODO: implement -Wuninitialized and fold this into that framework.
1586   for (unsigned i = 0; i < NumArgs; ++i) {
1587     SourceLocation L;
1588     if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1589       // FIXME: Return true in the case when other fields are used before being
1590       // uninitialized. For example, let this field be the i'th field. When
1591       // initializing the i'th field, throw a warning if any of the >= i'th
1592       // fields are used, as they are not yet initialized.
1593       // Right now we are only handling the case where the i'th field uses
1594       // itself in its initializer.
1595       Diag(L, diag::warn_field_is_uninit);
1596     }
1597   }
1598 
1599   bool HasDependentArg = false;
1600   for (unsigned i = 0; i < NumArgs; i++)
1601     HasDependentArg |= Args[i]->isTypeDependent();
1602 
1603   Expr *Init;
1604   if (Member->getType()->isDependentType() || HasDependentArg) {
1605     // Can't check initialization for a member of dependent type or when
1606     // any of the arguments are type-dependent expressions.
1607     Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1608                                        RParenLoc,
1609                                        Member->getType().getNonReferenceType());
1610 
1611     DiscardCleanupsInEvaluationContext();
1612   } else {
1613     // Initialize the member.
1614     InitializedEntity MemberEntity =
1615       DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1616                    : InitializedEntity::InitializeMember(IndirectMember, 0);
1617     InitializationKind Kind =
1618       InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1619 
1620     InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1621 
1622     ExprResult MemberInit =
1623       InitSeq.Perform(*this, MemberEntity, Kind,
1624                       MultiExprArg(*this, Args, NumArgs), 0);
1625     if (MemberInit.isInvalid())
1626       return true;
1627 
1628     CheckImplicitConversions(MemberInit.get(), LParenLoc);
1629 
1630     // C++0x [class.base.init]p7:
1631     //   The initialization of each base and member constitutes a
1632     //   full-expression.
1633     MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1634     if (MemberInit.isInvalid())
1635       return true;
1636 
1637     // If we are in a dependent context, template instantiation will
1638     // perform this type-checking again. Just save the arguments that we
1639     // received in a ParenListExpr.
1640     // FIXME: This isn't quite ideal, since our ASTs don't capture all
1641     // of the information that we have about the member
1642     // initializer. However, deconstructing the ASTs is a dicey process,
1643     // and this approach is far more likely to get the corner cases right.
1644     if (CurContext->isDependentContext())
1645       Init = new (Context) ParenListExpr(
1646           Context, LParenLoc, Args, NumArgs, RParenLoc,
1647           Member->getType().getNonReferenceType());
1648     else
1649       Init = MemberInit.get();
1650   }
1651 
1652   if (DirectMember) {
1653     return new (Context) CXXCtorInitializer(Context, DirectMember,
1654                                                     IdLoc, LParenLoc, Init,
1655                                                     RParenLoc);
1656   } else {
1657     return new (Context) CXXCtorInitializer(Context, IndirectMember,
1658                                                     IdLoc, LParenLoc, Init,
1659                                                     RParenLoc);
1660   }
1661 }
1662 
1663 MemInitResult
BuildDelegatingInitializer(TypeSourceInfo * TInfo,Expr ** Args,unsigned NumArgs,SourceLocation NameLoc,SourceLocation LParenLoc,SourceLocation RParenLoc,CXXRecordDecl * ClassDecl)1664 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1665                                  Expr **Args, unsigned NumArgs,
1666                                  SourceLocation NameLoc,
1667                                  SourceLocation LParenLoc,
1668                                  SourceLocation RParenLoc,
1669                                  CXXRecordDecl *ClassDecl) {
1670   SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1671   if (!LangOpts.CPlusPlus0x)
1672     return Diag(Loc, diag::err_delegation_0x_only)
1673       << TInfo->getTypeLoc().getLocalSourceRange();
1674 
1675   // Initialize the object.
1676   InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1677                                      QualType(ClassDecl->getTypeForDecl(), 0));
1678   InitializationKind Kind =
1679     InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1680 
1681   InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1682 
1683   ExprResult DelegationInit =
1684     InitSeq.Perform(*this, DelegationEntity, Kind,
1685                     MultiExprArg(*this, Args, NumArgs), 0);
1686   if (DelegationInit.isInvalid())
1687     return true;
1688 
1689   CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1690   CXXConstructorDecl *Constructor
1691     = ConExpr->getConstructor();
1692   assert(Constructor && "Delegating constructor with no target?");
1693 
1694   CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1695 
1696   // C++0x [class.base.init]p7:
1697   //   The initialization of each base and member constitutes a
1698   //   full-expression.
1699   DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1700   if (DelegationInit.isInvalid())
1701     return true;
1702 
1703   assert(!CurContext->isDependentContext());
1704   return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1705                                           DelegationInit.takeAs<Expr>(),
1706                                           RParenLoc);
1707 }
1708 
1709 MemInitResult
BuildBaseInitializer(QualType BaseType,TypeSourceInfo * BaseTInfo,Expr ** Args,unsigned NumArgs,SourceLocation LParenLoc,SourceLocation RParenLoc,CXXRecordDecl * ClassDecl,SourceLocation EllipsisLoc)1710 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1711                            Expr **Args, unsigned NumArgs,
1712                            SourceLocation LParenLoc, SourceLocation RParenLoc,
1713                            CXXRecordDecl *ClassDecl,
1714                            SourceLocation EllipsisLoc) {
1715   bool HasDependentArg = false;
1716   for (unsigned i = 0; i < NumArgs; i++)
1717     HasDependentArg |= Args[i]->isTypeDependent();
1718 
1719   SourceLocation BaseLoc
1720     = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1721 
1722   if (!BaseType->isDependentType() && !BaseType->isRecordType())
1723     return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1724              << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1725 
1726   // C++ [class.base.init]p2:
1727   //   [...] Unless the mem-initializer-id names a nonstatic data
1728   //   member of the constructor's class or a direct or virtual base
1729   //   of that class, the mem-initializer is ill-formed. A
1730   //   mem-initializer-list can initialize a base class using any
1731   //   name that denotes that base class type.
1732   bool Dependent = BaseType->isDependentType() || HasDependentArg;
1733 
1734   if (EllipsisLoc.isValid()) {
1735     // This is a pack expansion.
1736     if (!BaseType->containsUnexpandedParameterPack())  {
1737       Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1738         << SourceRange(BaseLoc, RParenLoc);
1739 
1740       EllipsisLoc = SourceLocation();
1741     }
1742   } else {
1743     // Check for any unexpanded parameter packs.
1744     if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1745       return true;
1746 
1747     for (unsigned I = 0; I != NumArgs; ++I)
1748       if (DiagnoseUnexpandedParameterPack(Args[I]))
1749         return true;
1750   }
1751 
1752   // Check for direct and virtual base classes.
1753   const CXXBaseSpecifier *DirectBaseSpec = 0;
1754   const CXXBaseSpecifier *VirtualBaseSpec = 0;
1755   if (!Dependent) {
1756     if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1757                                        BaseType))
1758       return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1759                                         LParenLoc, RParenLoc, ClassDecl);
1760 
1761     FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1762                         VirtualBaseSpec);
1763 
1764     // C++ [base.class.init]p2:
1765     // Unless the mem-initializer-id names a nonstatic data member of the
1766     // constructor's class or a direct or virtual base of that class, the
1767     // mem-initializer is ill-formed.
1768     if (!DirectBaseSpec && !VirtualBaseSpec) {
1769       // If the class has any dependent bases, then it's possible that
1770       // one of those types will resolve to the same type as
1771       // BaseType. Therefore, just treat this as a dependent base
1772       // class initialization.  FIXME: Should we try to check the
1773       // initialization anyway? It seems odd.
1774       if (ClassDecl->hasAnyDependentBases())
1775         Dependent = true;
1776       else
1777         return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1778           << BaseType << Context.getTypeDeclType(ClassDecl)
1779           << BaseTInfo->getTypeLoc().getLocalSourceRange();
1780     }
1781   }
1782 
1783   if (Dependent) {
1784     // Can't check initialization for a base of dependent type or when
1785     // any of the arguments are type-dependent expressions.
1786     ExprResult BaseInit
1787       = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1788                                           RParenLoc, BaseType));
1789 
1790     DiscardCleanupsInEvaluationContext();
1791 
1792     return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1793                                                     /*IsVirtual=*/false,
1794                                                     LParenLoc,
1795                                                     BaseInit.takeAs<Expr>(),
1796                                                     RParenLoc,
1797                                                     EllipsisLoc);
1798   }
1799 
1800   // C++ [base.class.init]p2:
1801   //   If a mem-initializer-id is ambiguous because it designates both
1802   //   a direct non-virtual base class and an inherited virtual base
1803   //   class, the mem-initializer is ill-formed.
1804   if (DirectBaseSpec && VirtualBaseSpec)
1805     return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1806       << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1807 
1808   CXXBaseSpecifier *BaseSpec
1809     = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1810   if (!BaseSpec)
1811     BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1812 
1813   // Initialize the base.
1814   InitializedEntity BaseEntity =
1815     InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1816   InitializationKind Kind =
1817     InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1818 
1819   InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1820 
1821   ExprResult BaseInit =
1822     InitSeq.Perform(*this, BaseEntity, Kind,
1823                     MultiExprArg(*this, Args, NumArgs), 0);
1824   if (BaseInit.isInvalid())
1825     return true;
1826 
1827   CheckImplicitConversions(BaseInit.get(), LParenLoc);
1828 
1829   // C++0x [class.base.init]p7:
1830   //   The initialization of each base and member constitutes a
1831   //   full-expression.
1832   BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1833   if (BaseInit.isInvalid())
1834     return true;
1835 
1836   // If we are in a dependent context, template instantiation will
1837   // perform this type-checking again. Just save the arguments that we
1838   // received in a ParenListExpr.
1839   // FIXME: This isn't quite ideal, since our ASTs don't capture all
1840   // of the information that we have about the base
1841   // initializer. However, deconstructing the ASTs is a dicey process,
1842   // and this approach is far more likely to get the corner cases right.
1843   if (CurContext->isDependentContext()) {
1844     ExprResult Init
1845       = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1846                                           RParenLoc, BaseType));
1847     return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1848                                                     BaseSpec->isVirtual(),
1849                                                     LParenLoc,
1850                                                     Init.takeAs<Expr>(),
1851                                                     RParenLoc,
1852                                                     EllipsisLoc);
1853   }
1854 
1855   return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1856                                                   BaseSpec->isVirtual(),
1857                                                   LParenLoc,
1858                                                   BaseInit.takeAs<Expr>(),
1859                                                   RParenLoc,
1860                                                   EllipsisLoc);
1861 }
1862 
1863 /// ImplicitInitializerKind - How an implicit base or member initializer should
1864 /// initialize its base or member.
1865 enum ImplicitInitializerKind {
1866   IIK_Default,
1867   IIK_Copy,
1868   IIK_Move
1869 };
1870 
1871 static bool
BuildImplicitBaseInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,CXXBaseSpecifier * BaseSpec,bool IsInheritedVirtualBase,CXXCtorInitializer * & CXXBaseInit)1872 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1873                              ImplicitInitializerKind ImplicitInitKind,
1874                              CXXBaseSpecifier *BaseSpec,
1875                              bool IsInheritedVirtualBase,
1876                              CXXCtorInitializer *&CXXBaseInit) {
1877   InitializedEntity InitEntity
1878     = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1879                                         IsInheritedVirtualBase);
1880 
1881   ExprResult BaseInit;
1882 
1883   switch (ImplicitInitKind) {
1884   case IIK_Default: {
1885     InitializationKind InitKind
1886       = InitializationKind::CreateDefault(Constructor->getLocation());
1887     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1888     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1889                                MultiExprArg(SemaRef, 0, 0));
1890     break;
1891   }
1892 
1893   case IIK_Copy: {
1894     ParmVarDecl *Param = Constructor->getParamDecl(0);
1895     QualType ParamType = Param->getType().getNonReferenceType();
1896 
1897     Expr *CopyCtorArg =
1898       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1899                           Constructor->getLocation(), ParamType,
1900                           VK_LValue, 0);
1901 
1902     // Cast to the base class to avoid ambiguities.
1903     QualType ArgTy =
1904       SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1905                                        ParamType.getQualifiers());
1906 
1907     CXXCastPath BasePath;
1908     BasePath.push_back(BaseSpec);
1909     CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1910                                             CK_UncheckedDerivedToBase,
1911                                             VK_LValue, &BasePath).take();
1912 
1913     InitializationKind InitKind
1914       = InitializationKind::CreateDirect(Constructor->getLocation(),
1915                                          SourceLocation(), SourceLocation());
1916     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1917                                    &CopyCtorArg, 1);
1918     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1919                                MultiExprArg(&CopyCtorArg, 1));
1920     break;
1921   }
1922 
1923   case IIK_Move:
1924     assert(false && "Unhandled initializer kind!");
1925   }
1926 
1927   BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1928   if (BaseInit.isInvalid())
1929     return true;
1930 
1931   CXXBaseInit =
1932     new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1933                SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1934                                                         SourceLocation()),
1935                                              BaseSpec->isVirtual(),
1936                                              SourceLocation(),
1937                                              BaseInit.takeAs<Expr>(),
1938                                              SourceLocation(),
1939                                              SourceLocation());
1940 
1941   return false;
1942 }
1943 
1944 static bool
BuildImplicitMemberInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,FieldDecl * Field,CXXCtorInitializer * & CXXMemberInit)1945 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1946                                ImplicitInitializerKind ImplicitInitKind,
1947                                FieldDecl *Field,
1948                                CXXCtorInitializer *&CXXMemberInit) {
1949   if (Field->isInvalidDecl())
1950     return true;
1951 
1952   SourceLocation Loc = Constructor->getLocation();
1953 
1954   if (ImplicitInitKind == IIK_Copy) {
1955     ParmVarDecl *Param = Constructor->getParamDecl(0);
1956     QualType ParamType = Param->getType().getNonReferenceType();
1957 
1958     // Suppress copying zero-width bitfields.
1959     if (const Expr *Width = Field->getBitWidth())
1960       if (Width->EvaluateAsInt(SemaRef.Context) == 0)
1961         return false;
1962 
1963     Expr *MemberExprBase =
1964       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1965                           Loc, ParamType, VK_LValue, 0);
1966 
1967     // Build a reference to this field within the parameter.
1968     CXXScopeSpec SS;
1969     LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1970                               Sema::LookupMemberName);
1971     MemberLookup.addDecl(Field, AS_public);
1972     MemberLookup.resolveKind();
1973     ExprResult CopyCtorArg
1974       = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1975                                          ParamType, Loc,
1976                                          /*IsArrow=*/false,
1977                                          SS,
1978                                          /*FirstQualifierInScope=*/0,
1979                                          MemberLookup,
1980                                          /*TemplateArgs=*/0);
1981     if (CopyCtorArg.isInvalid())
1982       return true;
1983 
1984     // When the field we are copying is an array, create index variables for
1985     // each dimension of the array. We use these index variables to subscript
1986     // the source array, and other clients (e.g., CodeGen) will perform the
1987     // necessary iteration with these index variables.
1988     llvm::SmallVector<VarDecl *, 4> IndexVariables;
1989     QualType BaseType = Field->getType();
1990     QualType SizeType = SemaRef.Context.getSizeType();
1991     while (const ConstantArrayType *Array
1992                           = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1993       // Create the iteration variable for this array index.
1994       IdentifierInfo *IterationVarName = 0;
1995       {
1996         llvm::SmallString<8> Str;
1997         llvm::raw_svector_ostream OS(Str);
1998         OS << "__i" << IndexVariables.size();
1999         IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2000       }
2001       VarDecl *IterationVar
2002         = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2003                           IterationVarName, SizeType,
2004                         SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2005                           SC_None, SC_None);
2006       IndexVariables.push_back(IterationVar);
2007 
2008       // Create a reference to the iteration variable.
2009       ExprResult IterationVarRef
2010         = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2011       assert(!IterationVarRef.isInvalid() &&
2012              "Reference to invented variable cannot fail!");
2013 
2014       // Subscript the array with this iteration variable.
2015       CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
2016                                                             Loc,
2017                                                         IterationVarRef.take(),
2018                                                             Loc);
2019       if (CopyCtorArg.isInvalid())
2020         return true;
2021 
2022       BaseType = Array->getElementType();
2023     }
2024 
2025     // Construct the entity that we will be initializing. For an array, this
2026     // will be first element in the array, which may require several levels
2027     // of array-subscript entities.
2028     llvm::SmallVector<InitializedEntity, 4> Entities;
2029     Entities.reserve(1 + IndexVariables.size());
2030     Entities.push_back(InitializedEntity::InitializeMember(Field));
2031     for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2032       Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2033                                                               0,
2034                                                               Entities.back()));
2035 
2036     // Direct-initialize to use the copy constructor.
2037     InitializationKind InitKind =
2038       InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2039 
2040     Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
2041     InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2042                                    &CopyCtorArgE, 1);
2043 
2044     ExprResult MemberInit
2045       = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2046                         MultiExprArg(&CopyCtorArgE, 1));
2047     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2048     if (MemberInit.isInvalid())
2049       return true;
2050 
2051     CXXMemberInit
2052       = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
2053                                            MemberInit.takeAs<Expr>(), Loc,
2054                                            IndexVariables.data(),
2055                                            IndexVariables.size());
2056     return false;
2057   }
2058 
2059   assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2060 
2061   QualType FieldBaseElementType =
2062     SemaRef.Context.getBaseElementType(Field->getType());
2063 
2064   if (FieldBaseElementType->isRecordType()) {
2065     InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
2066     InitializationKind InitKind =
2067       InitializationKind::CreateDefault(Loc);
2068 
2069     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2070     ExprResult MemberInit =
2071       InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2072 
2073     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2074     if (MemberInit.isInvalid())
2075       return true;
2076 
2077     CXXMemberInit =
2078       new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2079                                                        Field, Loc, Loc,
2080                                                        MemberInit.get(),
2081                                                        Loc);
2082     return false;
2083   }
2084 
2085   if (!Field->getParent()->isUnion()) {
2086     if (FieldBaseElementType->isReferenceType()) {
2087       SemaRef.Diag(Constructor->getLocation(),
2088                    diag::err_uninitialized_member_in_ctor)
2089       << (int)Constructor->isImplicit()
2090       << SemaRef.Context.getTagDeclType(Constructor->getParent())
2091       << 0 << Field->getDeclName();
2092       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2093       return true;
2094     }
2095 
2096     if (FieldBaseElementType.isConstQualified()) {
2097       SemaRef.Diag(Constructor->getLocation(),
2098                    diag::err_uninitialized_member_in_ctor)
2099       << (int)Constructor->isImplicit()
2100       << SemaRef.Context.getTagDeclType(Constructor->getParent())
2101       << 1 << Field->getDeclName();
2102       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2103       return true;
2104     }
2105   }
2106 
2107   if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2108       FieldBaseElementType->isObjCRetainableType() &&
2109       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2110       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2111     // Instant objects:
2112     //   Default-initialize Objective-C pointers to NULL.
2113     CXXMemberInit
2114       = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2115                                                  Loc, Loc,
2116                  new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2117                                                  Loc);
2118     return false;
2119   }
2120 
2121   // Nothing to initialize.
2122   CXXMemberInit = 0;
2123   return false;
2124 }
2125 
2126 namespace {
2127 struct BaseAndFieldInfo {
2128   Sema &S;
2129   CXXConstructorDecl *Ctor;
2130   bool AnyErrorsInInits;
2131   ImplicitInitializerKind IIK;
2132   llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2133   llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
2134 
BaseAndFieldInfo__anon87ee27050211::BaseAndFieldInfo2135   BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2136     : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2137     // FIXME: Handle implicit move constructors.
2138     if (Ctor->isImplicit() && Ctor->isCopyConstructor())
2139       IIK = IIK_Copy;
2140     else
2141       IIK = IIK_Default;
2142   }
2143 };
2144 }
2145 
CollectFieldInitializer(Sema & SemaRef,BaseAndFieldInfo & Info,FieldDecl * Top,FieldDecl * Field)2146 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2147                                     FieldDecl *Top, FieldDecl *Field) {
2148 
2149   // Overwhelmingly common case: we have a direct initializer for this field.
2150   if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2151     Info.AllToInit.push_back(Init);
2152     return false;
2153   }
2154 
2155   // C++0x [class.base.init]p8: if the entity is a non-static data member that
2156   // has a brace-or-equal-initializer, the entity is initialized as specified
2157   // in [dcl.init].
2158   if (Field->hasInClassInitializer()) {
2159     Info.AllToInit.push_back(
2160       new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2161                                                SourceLocation(),
2162                                                SourceLocation(), 0,
2163                                                SourceLocation()));
2164     return false;
2165   }
2166 
2167   if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
2168     const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
2169     assert(FieldClassType && "anonymous struct/union without record type");
2170     CXXRecordDecl *FieldClassDecl
2171       = cast<CXXRecordDecl>(FieldClassType->getDecl());
2172 
2173     // Even though union members never have non-trivial default
2174     // constructions in C++03, we still build member initializers for aggregate
2175     // record types which can be union members, and C++0x allows non-trivial
2176     // default constructors for union members, so we ensure that only one
2177     // member is initialized for these.
2178     if (FieldClassDecl->isUnion()) {
2179       // First check for an explicit initializer for one field.
2180       for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2181            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2182         if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2183           Info.AllToInit.push_back(Init);
2184 
2185           // Once we've initialized a field of an anonymous union, the union
2186           // field in the class is also initialized, so exit immediately.
2187           return false;
2188         } else if ((*FA)->isAnonymousStructOrUnion()) {
2189           if (CollectFieldInitializer(SemaRef, Info, Top, *FA))
2190             return true;
2191         }
2192       }
2193 
2194       // FIXME: C++0x unrestricted unions might call a default constructor here.
2195       return false;
2196     } else {
2197       // For structs, we simply descend through to initialize all members where
2198       // necessary.
2199       for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2200            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2201         if (CollectFieldInitializer(SemaRef, Info, Top, *FA))
2202           return true;
2203       }
2204     }
2205   }
2206 
2207   // Don't try to build an implicit initializer if there were semantic
2208   // errors in any of the initializers (and therefore we might be
2209   // missing some that the user actually wrote).
2210   if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2211     return false;
2212 
2213   CXXCtorInitializer *Init = 0;
2214   if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2215     return true;
2216 
2217   if (Init)
2218     Info.AllToInit.push_back(Init);
2219 
2220   return false;
2221 }
2222 
2223 bool
SetDelegatingInitializer(CXXConstructorDecl * Constructor,CXXCtorInitializer * Initializer)2224 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2225                                CXXCtorInitializer *Initializer) {
2226   assert(Initializer->isDelegatingInitializer());
2227   Constructor->setNumCtorInitializers(1);
2228   CXXCtorInitializer **initializer =
2229     new (Context) CXXCtorInitializer*[1];
2230   memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2231   Constructor->setCtorInitializers(initializer);
2232 
2233   if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2234     MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2235     DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2236   }
2237 
2238   DelegatingCtorDecls.push_back(Constructor);
2239 
2240   return false;
2241 }
2242 
SetCtorInitializers(CXXConstructorDecl * Constructor,CXXCtorInitializer ** Initializers,unsigned NumInitializers,bool AnyErrors)2243 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2244                                CXXCtorInitializer **Initializers,
2245                                unsigned NumInitializers,
2246                                bool AnyErrors) {
2247   if (Constructor->getDeclContext()->isDependentContext()) {
2248     // Just store the initializers as written, they will be checked during
2249     // instantiation.
2250     if (NumInitializers > 0) {
2251       Constructor->setNumCtorInitializers(NumInitializers);
2252       CXXCtorInitializer **baseOrMemberInitializers =
2253         new (Context) CXXCtorInitializer*[NumInitializers];
2254       memcpy(baseOrMemberInitializers, Initializers,
2255              NumInitializers * sizeof(CXXCtorInitializer*));
2256       Constructor->setCtorInitializers(baseOrMemberInitializers);
2257     }
2258 
2259     return false;
2260   }
2261 
2262   BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2263 
2264   // We need to build the initializer AST according to order of construction
2265   // and not what user specified in the Initializers list.
2266   CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2267   if (!ClassDecl)
2268     return true;
2269 
2270   bool HadError = false;
2271 
2272   for (unsigned i = 0; i < NumInitializers; i++) {
2273     CXXCtorInitializer *Member = Initializers[i];
2274 
2275     if (Member->isBaseInitializer())
2276       Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2277     else
2278       Info.AllBaseFields[Member->getAnyMember()] = Member;
2279   }
2280 
2281   // Keep track of the direct virtual bases.
2282   llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2283   for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2284        E = ClassDecl->bases_end(); I != E; ++I) {
2285     if (I->isVirtual())
2286       DirectVBases.insert(I);
2287   }
2288 
2289   // Push virtual bases before others.
2290   for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2291        E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2292 
2293     if (CXXCtorInitializer *Value
2294         = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2295       Info.AllToInit.push_back(Value);
2296     } else if (!AnyErrors) {
2297       bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2298       CXXCtorInitializer *CXXBaseInit;
2299       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2300                                        VBase, IsInheritedVirtualBase,
2301                                        CXXBaseInit)) {
2302         HadError = true;
2303         continue;
2304       }
2305 
2306       Info.AllToInit.push_back(CXXBaseInit);
2307     }
2308   }
2309 
2310   // Non-virtual bases.
2311   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2312        E = ClassDecl->bases_end(); Base != E; ++Base) {
2313     // Virtuals are in the virtual base list and already constructed.
2314     if (Base->isVirtual())
2315       continue;
2316 
2317     if (CXXCtorInitializer *Value
2318           = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2319       Info.AllToInit.push_back(Value);
2320     } else if (!AnyErrors) {
2321       CXXCtorInitializer *CXXBaseInit;
2322       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2323                                        Base, /*IsInheritedVirtualBase=*/false,
2324                                        CXXBaseInit)) {
2325         HadError = true;
2326         continue;
2327       }
2328 
2329       Info.AllToInit.push_back(CXXBaseInit);
2330     }
2331   }
2332 
2333   // Fields.
2334   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2335        E = ClassDecl->field_end(); Field != E; ++Field) {
2336     if ((*Field)->getType()->isIncompleteArrayType()) {
2337       assert(ClassDecl->hasFlexibleArrayMember() &&
2338              "Incomplete array type is not valid");
2339       continue;
2340     }
2341     if (CollectFieldInitializer(*this, Info, *Field, *Field))
2342       HadError = true;
2343   }
2344 
2345   NumInitializers = Info.AllToInit.size();
2346   if (NumInitializers > 0) {
2347     Constructor->setNumCtorInitializers(NumInitializers);
2348     CXXCtorInitializer **baseOrMemberInitializers =
2349       new (Context) CXXCtorInitializer*[NumInitializers];
2350     memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2351            NumInitializers * sizeof(CXXCtorInitializer*));
2352     Constructor->setCtorInitializers(baseOrMemberInitializers);
2353 
2354     // Constructors implicitly reference the base and member
2355     // destructors.
2356     MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2357                                            Constructor->getParent());
2358   }
2359 
2360   return HadError;
2361 }
2362 
GetKeyForTopLevelField(FieldDecl * Field)2363 static void *GetKeyForTopLevelField(FieldDecl *Field) {
2364   // For anonymous unions, use the class declaration as the key.
2365   if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2366     if (RT->getDecl()->isAnonymousStructOrUnion())
2367       return static_cast<void *>(RT->getDecl());
2368   }
2369   return static_cast<void *>(Field);
2370 }
2371 
GetKeyForBase(ASTContext & Context,QualType BaseType)2372 static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2373   return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2374 }
2375 
GetKeyForMember(ASTContext & Context,CXXCtorInitializer * Member)2376 static void *GetKeyForMember(ASTContext &Context,
2377                              CXXCtorInitializer *Member) {
2378   if (!Member->isAnyMemberInitializer())
2379     return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2380 
2381   // For fields injected into the class via declaration of an anonymous union,
2382   // use its anonymous union class declaration as the unique key.
2383   FieldDecl *Field = Member->getAnyMember();
2384 
2385   // If the field is a member of an anonymous struct or union, our key
2386   // is the anonymous record decl that's a direct child of the class.
2387   RecordDecl *RD = Field->getParent();
2388   if (RD->isAnonymousStructOrUnion()) {
2389     while (true) {
2390       RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2391       if (Parent->isAnonymousStructOrUnion())
2392         RD = Parent;
2393       else
2394         break;
2395     }
2396 
2397     return static_cast<void *>(RD);
2398   }
2399 
2400   return static_cast<void *>(Field);
2401 }
2402 
2403 static void
DiagnoseBaseOrMemInitializerOrder(Sema & SemaRef,const CXXConstructorDecl * Constructor,CXXCtorInitializer ** Inits,unsigned NumInits)2404 DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2405                                   const CXXConstructorDecl *Constructor,
2406                                   CXXCtorInitializer **Inits,
2407                                   unsigned NumInits) {
2408   if (Constructor->getDeclContext()->isDependentContext())
2409     return;
2410 
2411   // Don't check initializers order unless the warning is enabled at the
2412   // location of at least one initializer.
2413   bool ShouldCheckOrder = false;
2414   for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2415     CXXCtorInitializer *Init = Inits[InitIndex];
2416     if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2417                                          Init->getSourceLocation())
2418           != Diagnostic::Ignored) {
2419       ShouldCheckOrder = true;
2420       break;
2421     }
2422   }
2423   if (!ShouldCheckOrder)
2424     return;
2425 
2426   // Build the list of bases and members in the order that they'll
2427   // actually be initialized.  The explicit initializers should be in
2428   // this same order but may be missing things.
2429   llvm::SmallVector<const void*, 32> IdealInitKeys;
2430 
2431   const CXXRecordDecl *ClassDecl = Constructor->getParent();
2432 
2433   // 1. Virtual bases.
2434   for (CXXRecordDecl::base_class_const_iterator VBase =
2435        ClassDecl->vbases_begin(),
2436        E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2437     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2438 
2439   // 2. Non-virtual bases.
2440   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2441        E = ClassDecl->bases_end(); Base != E; ++Base) {
2442     if (Base->isVirtual())
2443       continue;
2444     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2445   }
2446 
2447   // 3. Direct fields.
2448   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2449        E = ClassDecl->field_end(); Field != E; ++Field)
2450     IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2451 
2452   unsigned NumIdealInits = IdealInitKeys.size();
2453   unsigned IdealIndex = 0;
2454 
2455   CXXCtorInitializer *PrevInit = 0;
2456   for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2457     CXXCtorInitializer *Init = Inits[InitIndex];
2458     void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2459 
2460     // Scan forward to try to find this initializer in the idealized
2461     // initializers list.
2462     for (; IdealIndex != NumIdealInits; ++IdealIndex)
2463       if (InitKey == IdealInitKeys[IdealIndex])
2464         break;
2465 
2466     // If we didn't find this initializer, it must be because we
2467     // scanned past it on a previous iteration.  That can only
2468     // happen if we're out of order;  emit a warning.
2469     if (IdealIndex == NumIdealInits && PrevInit) {
2470       Sema::SemaDiagnosticBuilder D =
2471         SemaRef.Diag(PrevInit->getSourceLocation(),
2472                      diag::warn_initializer_out_of_order);
2473 
2474       if (PrevInit->isAnyMemberInitializer())
2475         D << 0 << PrevInit->getAnyMember()->getDeclName();
2476       else
2477         D << 1 << PrevInit->getBaseClassInfo()->getType();
2478 
2479       if (Init->isAnyMemberInitializer())
2480         D << 0 << Init->getAnyMember()->getDeclName();
2481       else
2482         D << 1 << Init->getBaseClassInfo()->getType();
2483 
2484       // Move back to the initializer's location in the ideal list.
2485       for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2486         if (InitKey == IdealInitKeys[IdealIndex])
2487           break;
2488 
2489       assert(IdealIndex != NumIdealInits &&
2490              "initializer not found in initializer list");
2491     }
2492 
2493     PrevInit = Init;
2494   }
2495 }
2496 
2497 namespace {
CheckRedundantInit(Sema & S,CXXCtorInitializer * Init,CXXCtorInitializer * & PrevInit)2498 bool CheckRedundantInit(Sema &S,
2499                         CXXCtorInitializer *Init,
2500                         CXXCtorInitializer *&PrevInit) {
2501   if (!PrevInit) {
2502     PrevInit = Init;
2503     return false;
2504   }
2505 
2506   if (FieldDecl *Field = Init->getMember())
2507     S.Diag(Init->getSourceLocation(),
2508            diag::err_multiple_mem_initialization)
2509       << Field->getDeclName()
2510       << Init->getSourceRange();
2511   else {
2512     const Type *BaseClass = Init->getBaseClass();
2513     assert(BaseClass && "neither field nor base");
2514     S.Diag(Init->getSourceLocation(),
2515            diag::err_multiple_base_initialization)
2516       << QualType(BaseClass, 0)
2517       << Init->getSourceRange();
2518   }
2519   S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2520     << 0 << PrevInit->getSourceRange();
2521 
2522   return true;
2523 }
2524 
2525 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2526 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2527 
CheckRedundantUnionInit(Sema & S,CXXCtorInitializer * Init,RedundantUnionMap & Unions)2528 bool CheckRedundantUnionInit(Sema &S,
2529                              CXXCtorInitializer *Init,
2530                              RedundantUnionMap &Unions) {
2531   FieldDecl *Field = Init->getAnyMember();
2532   RecordDecl *Parent = Field->getParent();
2533   if (!Parent->isAnonymousStructOrUnion())
2534     return false;
2535 
2536   NamedDecl *Child = Field;
2537   do {
2538     if (Parent->isUnion()) {
2539       UnionEntry &En = Unions[Parent];
2540       if (En.first && En.first != Child) {
2541         S.Diag(Init->getSourceLocation(),
2542                diag::err_multiple_mem_union_initialization)
2543           << Field->getDeclName()
2544           << Init->getSourceRange();
2545         S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2546           << 0 << En.second->getSourceRange();
2547         return true;
2548       } else if (!En.first) {
2549         En.first = Child;
2550         En.second = Init;
2551       }
2552     }
2553 
2554     Child = Parent;
2555     Parent = cast<RecordDecl>(Parent->getDeclContext());
2556   } while (Parent->isAnonymousStructOrUnion());
2557 
2558   return false;
2559 }
2560 }
2561 
2562 /// ActOnMemInitializers - Handle the member initializers for a constructor.
ActOnMemInitializers(Decl * ConstructorDecl,SourceLocation ColonLoc,MemInitTy ** meminits,unsigned NumMemInits,bool AnyErrors)2563 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2564                                 SourceLocation ColonLoc,
2565                                 MemInitTy **meminits, unsigned NumMemInits,
2566                                 bool AnyErrors) {
2567   if (!ConstructorDecl)
2568     return;
2569 
2570   AdjustDeclIfTemplate(ConstructorDecl);
2571 
2572   CXXConstructorDecl *Constructor
2573     = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2574 
2575   if (!Constructor) {
2576     Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2577     return;
2578   }
2579 
2580   CXXCtorInitializer **MemInits =
2581     reinterpret_cast<CXXCtorInitializer **>(meminits);
2582 
2583   // Mapping for the duplicate initializers check.
2584   // For member initializers, this is keyed with a FieldDecl*.
2585   // For base initializers, this is keyed with a Type*.
2586   llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2587 
2588   // Mapping for the inconsistent anonymous-union initializers check.
2589   RedundantUnionMap MemberUnions;
2590 
2591   bool HadError = false;
2592   for (unsigned i = 0; i < NumMemInits; i++) {
2593     CXXCtorInitializer *Init = MemInits[i];
2594 
2595     // Set the source order index.
2596     Init->setSourceOrder(i);
2597 
2598     if (Init->isAnyMemberInitializer()) {
2599       FieldDecl *Field = Init->getAnyMember();
2600       if (CheckRedundantInit(*this, Init, Members[Field]) ||
2601           CheckRedundantUnionInit(*this, Init, MemberUnions))
2602         HadError = true;
2603     } else if (Init->isBaseInitializer()) {
2604       void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2605       if (CheckRedundantInit(*this, Init, Members[Key]))
2606         HadError = true;
2607     } else {
2608       assert(Init->isDelegatingInitializer());
2609       // This must be the only initializer
2610       if (i != 0 || NumMemInits > 1) {
2611         Diag(MemInits[0]->getSourceLocation(),
2612              diag::err_delegating_initializer_alone)
2613           << MemInits[0]->getSourceRange();
2614         HadError = true;
2615         // We will treat this as being the only initializer.
2616       }
2617       SetDelegatingInitializer(Constructor, MemInits[i]);
2618       // Return immediately as the initializer is set.
2619       return;
2620     }
2621   }
2622 
2623   if (HadError)
2624     return;
2625 
2626   DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2627 
2628   SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2629 }
2630 
2631 void
MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,CXXRecordDecl * ClassDecl)2632 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2633                                              CXXRecordDecl *ClassDecl) {
2634   // Ignore dependent contexts.
2635   if (ClassDecl->isDependentContext())
2636     return;
2637 
2638   // FIXME: all the access-control diagnostics are positioned on the
2639   // field/base declaration.  That's probably good; that said, the
2640   // user might reasonably want to know why the destructor is being
2641   // emitted, and we currently don't say.
2642 
2643   // Non-static data members.
2644   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2645        E = ClassDecl->field_end(); I != E; ++I) {
2646     FieldDecl *Field = *I;
2647     if (Field->isInvalidDecl())
2648       continue;
2649     QualType FieldType = Context.getBaseElementType(Field->getType());
2650 
2651     const RecordType* RT = FieldType->getAs<RecordType>();
2652     if (!RT)
2653       continue;
2654 
2655     CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2656     if (FieldClassDecl->isInvalidDecl())
2657       continue;
2658     if (FieldClassDecl->hasTrivialDestructor())
2659       continue;
2660 
2661     CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2662     assert(Dtor && "No dtor found for FieldClassDecl!");
2663     CheckDestructorAccess(Field->getLocation(), Dtor,
2664                           PDiag(diag::err_access_dtor_field)
2665                             << Field->getDeclName()
2666                             << FieldType);
2667 
2668     MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2669   }
2670 
2671   llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2672 
2673   // Bases.
2674   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2675        E = ClassDecl->bases_end(); Base != E; ++Base) {
2676     // Bases are always records in a well-formed non-dependent class.
2677     const RecordType *RT = Base->getType()->getAs<RecordType>();
2678 
2679     // Remember direct virtual bases.
2680     if (Base->isVirtual())
2681       DirectVirtualBases.insert(RT);
2682 
2683     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2684     // If our base class is invalid, we probably can't get its dtor anyway.
2685     if (BaseClassDecl->isInvalidDecl())
2686       continue;
2687     // Ignore trivial destructors.
2688     if (BaseClassDecl->hasTrivialDestructor())
2689       continue;
2690 
2691     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2692     assert(Dtor && "No dtor found for BaseClassDecl!");
2693 
2694     // FIXME: caret should be on the start of the class name
2695     CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2696                           PDiag(diag::err_access_dtor_base)
2697                             << Base->getType()
2698                             << Base->getSourceRange());
2699 
2700     MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2701   }
2702 
2703   // Virtual bases.
2704   for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2705        E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2706 
2707     // Bases are always records in a well-formed non-dependent class.
2708     const RecordType *RT = VBase->getType()->getAs<RecordType>();
2709 
2710     // Ignore direct virtual bases.
2711     if (DirectVirtualBases.count(RT))
2712       continue;
2713 
2714     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2715     // If our base class is invalid, we probably can't get its dtor anyway.
2716     if (BaseClassDecl->isInvalidDecl())
2717       continue;
2718     // Ignore trivial destructors.
2719     if (BaseClassDecl->hasTrivialDestructor())
2720       continue;
2721 
2722     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2723     assert(Dtor && "No dtor found for BaseClassDecl!");
2724     CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2725                           PDiag(diag::err_access_dtor_vbase)
2726                             << VBase->getType());
2727 
2728     MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2729   }
2730 }
2731 
ActOnDefaultCtorInitializers(Decl * CDtorDecl)2732 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2733   if (!CDtorDecl)
2734     return;
2735 
2736   if (CXXConstructorDecl *Constructor
2737       = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2738     SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2739 }
2740 
RequireNonAbstractType(SourceLocation Loc,QualType T,unsigned DiagID,AbstractDiagSelID SelID)2741 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2742                                   unsigned DiagID, AbstractDiagSelID SelID) {
2743   if (SelID == -1)
2744     return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2745   else
2746     return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2747 }
2748 
RequireNonAbstractType(SourceLocation Loc,QualType T,const PartialDiagnostic & PD)2749 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2750                                   const PartialDiagnostic &PD) {
2751   if (!getLangOptions().CPlusPlus)
2752     return false;
2753 
2754   if (const ArrayType *AT = Context.getAsArrayType(T))
2755     return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2756 
2757   if (const PointerType *PT = T->getAs<PointerType>()) {
2758     // Find the innermost pointer type.
2759     while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2760       PT = T;
2761 
2762     if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2763       return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2764   }
2765 
2766   const RecordType *RT = T->getAs<RecordType>();
2767   if (!RT)
2768     return false;
2769 
2770   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2771 
2772   // We can't answer whether something is abstract until it has a
2773   // definition.  If it's currently being defined, we'll walk back
2774   // over all the declarations when we have a full definition.
2775   const CXXRecordDecl *Def = RD->getDefinition();
2776   if (!Def || Def->isBeingDefined())
2777     return false;
2778 
2779   if (!RD->isAbstract())
2780     return false;
2781 
2782   Diag(Loc, PD) << RD->getDeclName();
2783   DiagnoseAbstractType(RD);
2784 
2785   return true;
2786 }
2787 
DiagnoseAbstractType(const CXXRecordDecl * RD)2788 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2789   // Check if we've already emitted the list of pure virtual functions
2790   // for this class.
2791   if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2792     return;
2793 
2794   CXXFinalOverriderMap FinalOverriders;
2795   RD->getFinalOverriders(FinalOverriders);
2796 
2797   // Keep a set of seen pure methods so we won't diagnose the same method
2798   // more than once.
2799   llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2800 
2801   for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2802                                    MEnd = FinalOverriders.end();
2803        M != MEnd;
2804        ++M) {
2805     for (OverridingMethods::iterator SO = M->second.begin(),
2806                                   SOEnd = M->second.end();
2807          SO != SOEnd; ++SO) {
2808       // C++ [class.abstract]p4:
2809       //   A class is abstract if it contains or inherits at least one
2810       //   pure virtual function for which the final overrider is pure
2811       //   virtual.
2812 
2813       //
2814       if (SO->second.size() != 1)
2815         continue;
2816 
2817       if (!SO->second.front().Method->isPure())
2818         continue;
2819 
2820       if (!SeenPureMethods.insert(SO->second.front().Method))
2821         continue;
2822 
2823       Diag(SO->second.front().Method->getLocation(),
2824            diag::note_pure_virtual_function)
2825         << SO->second.front().Method->getDeclName() << RD->getDeclName();
2826     }
2827   }
2828 
2829   if (!PureVirtualClassDiagSet)
2830     PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2831   PureVirtualClassDiagSet->insert(RD);
2832 }
2833 
2834 namespace {
2835 struct AbstractUsageInfo {
2836   Sema &S;
2837   CXXRecordDecl *Record;
2838   CanQualType AbstractType;
2839   bool Invalid;
2840 
AbstractUsageInfo__anon87ee27050411::AbstractUsageInfo2841   AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2842     : S(S), Record(Record),
2843       AbstractType(S.Context.getCanonicalType(
2844                    S.Context.getTypeDeclType(Record))),
2845       Invalid(false) {}
2846 
DiagnoseAbstractType__anon87ee27050411::AbstractUsageInfo2847   void DiagnoseAbstractType() {
2848     if (Invalid) return;
2849     S.DiagnoseAbstractType(Record);
2850     Invalid = true;
2851   }
2852 
2853   void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2854 };
2855 
2856 struct CheckAbstractUsage {
2857   AbstractUsageInfo &Info;
2858   const NamedDecl *Ctx;
2859 
CheckAbstractUsage__anon87ee27050411::CheckAbstractUsage2860   CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2861     : Info(Info), Ctx(Ctx) {}
2862 
Visit__anon87ee27050411::CheckAbstractUsage2863   void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2864     switch (TL.getTypeLocClass()) {
2865 #define ABSTRACT_TYPELOC(CLASS, PARENT)
2866 #define TYPELOC(CLASS, PARENT) \
2867     case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2868 #include "clang/AST/TypeLocNodes.def"
2869     }
2870   }
2871 
Check__anon87ee27050411::CheckAbstractUsage2872   void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2873     Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2874     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2875       if (!TL.getArg(I))
2876         continue;
2877 
2878       TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2879       if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2880     }
2881   }
2882 
Check__anon87ee27050411::CheckAbstractUsage2883   void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2884     Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2885   }
2886 
Check__anon87ee27050411::CheckAbstractUsage2887   void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2888     // Visit the type parameters from a permissive context.
2889     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2890       TemplateArgumentLoc TAL = TL.getArgLoc(I);
2891       if (TAL.getArgument().getKind() == TemplateArgument::Type)
2892         if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2893           Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2894       // TODO: other template argument types?
2895     }
2896   }
2897 
2898   // Visit pointee types from a permissive context.
2899 #define CheckPolymorphic(Type) \
2900   void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2901     Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2902   }
2903   CheckPolymorphic(PointerTypeLoc)
CheckPolymorphic__anon87ee27050411::CheckAbstractUsage2904   CheckPolymorphic(ReferenceTypeLoc)
2905   CheckPolymorphic(MemberPointerTypeLoc)
2906   CheckPolymorphic(BlockPointerTypeLoc)
2907 
2908   /// Handle all the types we haven't given a more specific
2909   /// implementation for above.
2910   void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2911     // Every other kind of type that we haven't called out already
2912     // that has an inner type is either (1) sugar or (2) contains that
2913     // inner type in some way as a subobject.
2914     if (TypeLoc Next = TL.getNextTypeLoc())
2915       return Visit(Next, Sel);
2916 
2917     // If there's no inner type and we're in a permissive context,
2918     // don't diagnose.
2919     if (Sel == Sema::AbstractNone) return;
2920 
2921     // Check whether the type matches the abstract type.
2922     QualType T = TL.getType();
2923     if (T->isArrayType()) {
2924       Sel = Sema::AbstractArrayType;
2925       T = Info.S.Context.getBaseElementType(T);
2926     }
2927     CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2928     if (CT != Info.AbstractType) return;
2929 
2930     // It matched; do some magic.
2931     if (Sel == Sema::AbstractArrayType) {
2932       Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2933         << T << TL.getSourceRange();
2934     } else {
2935       Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2936         << Sel << T << TL.getSourceRange();
2937     }
2938     Info.DiagnoseAbstractType();
2939   }
2940 };
2941 
CheckType(const NamedDecl * D,TypeLoc TL,Sema::AbstractDiagSelID Sel)2942 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2943                                   Sema::AbstractDiagSelID Sel) {
2944   CheckAbstractUsage(*this, D).Visit(TL, Sel);
2945 }
2946 
2947 }
2948 
2949 /// Check for invalid uses of an abstract type in a method declaration.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXMethodDecl * MD)2950 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2951                                     CXXMethodDecl *MD) {
2952   // No need to do the check on definitions, which require that
2953   // the return/param types be complete.
2954   if (MD->doesThisDeclarationHaveABody())
2955     return;
2956 
2957   // For safety's sake, just ignore it if we don't have type source
2958   // information.  This should never happen for non-implicit methods,
2959   // but...
2960   if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2961     Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2962 }
2963 
2964 /// Check for invalid uses of an abstract type within a class definition.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXRecordDecl * RD)2965 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2966                                     CXXRecordDecl *RD) {
2967   for (CXXRecordDecl::decl_iterator
2968          I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2969     Decl *D = *I;
2970     if (D->isImplicit()) continue;
2971 
2972     // Methods and method templates.
2973     if (isa<CXXMethodDecl>(D)) {
2974       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2975     } else if (isa<FunctionTemplateDecl>(D)) {
2976       FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2977       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2978 
2979     // Fields and static variables.
2980     } else if (isa<FieldDecl>(D)) {
2981       FieldDecl *FD = cast<FieldDecl>(D);
2982       if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2983         Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2984     } else if (isa<VarDecl>(D)) {
2985       VarDecl *VD = cast<VarDecl>(D);
2986       if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2987         Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2988 
2989     // Nested classes and class templates.
2990     } else if (isa<CXXRecordDecl>(D)) {
2991       CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2992     } else if (isa<ClassTemplateDecl>(D)) {
2993       CheckAbstractClassUsage(Info,
2994                              cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2995     }
2996   }
2997 }
2998 
2999 /// \brief Perform semantic checks on a class definition that has been
3000 /// completing, introducing implicitly-declared members, checking for
3001 /// abstract types, etc.
CheckCompletedCXXClass(CXXRecordDecl * Record)3002 void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3003   if (!Record)
3004     return;
3005 
3006   if (Record->isAbstract() && !Record->isInvalidDecl()) {
3007     AbstractUsageInfo Info(*this, Record);
3008     CheckAbstractClassUsage(Info, Record);
3009   }
3010 
3011   // If this is not an aggregate type and has no user-declared constructor,
3012   // complain about any non-static data members of reference or const scalar
3013   // type, since they will never get initializers.
3014   if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3015       !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3016     bool Complained = false;
3017     for (RecordDecl::field_iterator F = Record->field_begin(),
3018                                  FEnd = Record->field_end();
3019          F != FEnd; ++F) {
3020       if (F->hasInClassInitializer())
3021         continue;
3022 
3023       if (F->getType()->isReferenceType() ||
3024           (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3025         if (!Complained) {
3026           Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3027             << Record->getTagKind() << Record;
3028           Complained = true;
3029         }
3030 
3031         Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3032           << F->getType()->isReferenceType()
3033           << F->getDeclName();
3034       }
3035     }
3036   }
3037 
3038   if (Record->isDynamicClass() && !Record->isDependentType())
3039     DynamicClasses.push_back(Record);
3040 
3041   if (Record->getIdentifier()) {
3042     // C++ [class.mem]p13:
3043     //   If T is the name of a class, then each of the following shall have a
3044     //   name different from T:
3045     //     - every member of every anonymous union that is a member of class T.
3046     //
3047     // C++ [class.mem]p14:
3048     //   In addition, if class T has a user-declared constructor (12.1), every
3049     //   non-static data member of class T shall have a name different from T.
3050     for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3051          R.first != R.second; ++R.first) {
3052       NamedDecl *D = *R.first;
3053       if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3054           isa<IndirectFieldDecl>(D)) {
3055         Diag(D->getLocation(), diag::err_member_name_of_class)
3056           << D->getDeclName();
3057         break;
3058       }
3059     }
3060   }
3061 
3062   // Warn if the class has virtual methods but non-virtual public destructor.
3063   if (Record->isPolymorphic() && !Record->isDependentType()) {
3064     CXXDestructorDecl *dtor = Record->getDestructor();
3065     if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3066       Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3067            diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3068   }
3069 
3070   // See if a method overloads virtual methods in a base
3071   /// class without overriding any.
3072   if (!Record->isDependentType()) {
3073     for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3074                                      MEnd = Record->method_end();
3075          M != MEnd; ++M) {
3076       if (!(*M)->isStatic())
3077         DiagnoseHiddenVirtualMethods(Record, *M);
3078     }
3079   }
3080 
3081   // Declare inherited constructors. We do this eagerly here because:
3082   // - The standard requires an eager diagnostic for conflicting inherited
3083   //   constructors from different classes.
3084   // - The lazy declaration of the other implicit constructors is so as to not
3085   //   waste space and performance on classes that are not meant to be
3086   //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3087   //   have inherited constructors.
3088   DeclareInheritedConstructors(Record);
3089 
3090   if (!Record->isDependentType())
3091     CheckExplicitlyDefaultedMethods(Record);
3092 }
3093 
CheckExplicitlyDefaultedMethods(CXXRecordDecl * Record)3094 void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3095   for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3096                                       ME = Record->method_end();
3097        MI != ME; ++MI) {
3098     if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3099       switch (getSpecialMember(*MI)) {
3100       case CXXDefaultConstructor:
3101         CheckExplicitlyDefaultedDefaultConstructor(
3102                                                   cast<CXXConstructorDecl>(*MI));
3103         break;
3104 
3105       case CXXDestructor:
3106         CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3107         break;
3108 
3109       case CXXCopyConstructor:
3110         CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3111         break;
3112 
3113       case CXXCopyAssignment:
3114         CheckExplicitlyDefaultedCopyAssignment(*MI);
3115         break;
3116 
3117       case CXXMoveConstructor:
3118       case CXXMoveAssignment:
3119         Diag(MI->getLocation(), diag::err_defaulted_move_unsupported);
3120         break;
3121 
3122       default:
3123         // FIXME: Do moves once they exist
3124         llvm_unreachable("non-special member explicitly defaulted!");
3125       }
3126     }
3127   }
3128 
3129 }
3130 
CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl * CD)3131 void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3132   assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3133 
3134   // Whether this was the first-declared instance of the constructor.
3135   // This affects whether we implicitly add an exception spec (and, eventually,
3136   // constexpr). It is also ill-formed to explicitly default a constructor such
3137   // that it would be deleted. (C++0x [decl.fct.def.default])
3138   bool First = CD == CD->getCanonicalDecl();
3139 
3140   bool HadError = false;
3141   if (CD->getNumParams() != 0) {
3142     Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3143       << CD->getSourceRange();
3144     HadError = true;
3145   }
3146 
3147   ImplicitExceptionSpecification Spec
3148     = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3149   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3150   if (EPI.ExceptionSpecType == EST_Delayed) {
3151     // Exception specification depends on some deferred part of the class. We'll
3152     // try again when the class's definition has been fully processed.
3153     return;
3154   }
3155   const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3156                           *ExceptionType = Context.getFunctionType(
3157                          Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3158 
3159   if (CtorType->hasExceptionSpec()) {
3160     if (CheckEquivalentExceptionSpec(
3161           PDiag(diag::err_incorrect_defaulted_exception_spec)
3162             << CXXDefaultConstructor,
3163           PDiag(),
3164           ExceptionType, SourceLocation(),
3165           CtorType, CD->getLocation())) {
3166       HadError = true;
3167     }
3168   } else if (First) {
3169     // We set the declaration to have the computed exception spec here.
3170     // We know there are no parameters.
3171     EPI.ExtInfo = CtorType->getExtInfo();
3172     CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3173   }
3174 
3175   if (HadError) {
3176     CD->setInvalidDecl();
3177     return;
3178   }
3179 
3180   if (ShouldDeleteDefaultConstructor(CD)) {
3181     if (First) {
3182       CD->setDeletedAsWritten();
3183     } else {
3184       Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3185         << CXXDefaultConstructor;
3186       CD->setInvalidDecl();
3187     }
3188   }
3189 }
3190 
CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl * CD)3191 void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3192   assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3193 
3194   // Whether this was the first-declared instance of the constructor.
3195   bool First = CD == CD->getCanonicalDecl();
3196 
3197   bool HadError = false;
3198   if (CD->getNumParams() != 1) {
3199     Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3200       << CD->getSourceRange();
3201     HadError = true;
3202   }
3203 
3204   ImplicitExceptionSpecification Spec(Context);
3205   bool Const;
3206   llvm::tie(Spec, Const) =
3207     ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3208 
3209   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3210   const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3211                           *ExceptionType = Context.getFunctionType(
3212                          Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3213 
3214   // Check for parameter type matching.
3215   // This is a copy ctor so we know it's a cv-qualified reference to T.
3216   QualType ArgType = CtorType->getArgType(0);
3217   if (ArgType->getPointeeType().isVolatileQualified()) {
3218     Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3219     HadError = true;
3220   }
3221   if (ArgType->getPointeeType().isConstQualified() && !Const) {
3222     Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3223     HadError = true;
3224   }
3225 
3226   if (CtorType->hasExceptionSpec()) {
3227     if (CheckEquivalentExceptionSpec(
3228           PDiag(diag::err_incorrect_defaulted_exception_spec)
3229             << CXXCopyConstructor,
3230           PDiag(),
3231           ExceptionType, SourceLocation(),
3232           CtorType, CD->getLocation())) {
3233       HadError = true;
3234     }
3235   } else if (First) {
3236     // We set the declaration to have the computed exception spec here.
3237     // We duplicate the one parameter type.
3238     EPI.ExtInfo = CtorType->getExtInfo();
3239     CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3240   }
3241 
3242   if (HadError) {
3243     CD->setInvalidDecl();
3244     return;
3245   }
3246 
3247   if (ShouldDeleteCopyConstructor(CD)) {
3248     if (First) {
3249       CD->setDeletedAsWritten();
3250     } else {
3251       Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3252         << CXXCopyConstructor;
3253       CD->setInvalidDecl();
3254     }
3255   }
3256 }
3257 
CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl * MD)3258 void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3259   assert(MD->isExplicitlyDefaulted());
3260 
3261   // Whether this was the first-declared instance of the operator
3262   bool First = MD == MD->getCanonicalDecl();
3263 
3264   bool HadError = false;
3265   if (MD->getNumParams() != 1) {
3266     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3267       << MD->getSourceRange();
3268     HadError = true;
3269   }
3270 
3271   QualType ReturnType =
3272     MD->getType()->getAs<FunctionType>()->getResultType();
3273   if (!ReturnType->isLValueReferenceType() ||
3274       !Context.hasSameType(
3275         Context.getCanonicalType(ReturnType->getPointeeType()),
3276         Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3277     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3278     HadError = true;
3279   }
3280 
3281   ImplicitExceptionSpecification Spec(Context);
3282   bool Const;
3283   llvm::tie(Spec, Const) =
3284     ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3285 
3286   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3287   const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3288                           *ExceptionType = Context.getFunctionType(
3289                          Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3290 
3291   QualType ArgType = OperType->getArgType(0);
3292   if (!ArgType->isReferenceType()) {
3293     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3294     HadError = true;
3295   } else {
3296     if (ArgType->getPointeeType().isVolatileQualified()) {
3297       Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3298       HadError = true;
3299     }
3300     if (ArgType->getPointeeType().isConstQualified() && !Const) {
3301       Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3302       HadError = true;
3303     }
3304   }
3305 
3306   if (OperType->getTypeQuals()) {
3307     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3308     HadError = true;
3309   }
3310 
3311   if (OperType->hasExceptionSpec()) {
3312     if (CheckEquivalentExceptionSpec(
3313           PDiag(diag::err_incorrect_defaulted_exception_spec)
3314             << CXXCopyAssignment,
3315           PDiag(),
3316           ExceptionType, SourceLocation(),
3317           OperType, MD->getLocation())) {
3318       HadError = true;
3319     }
3320   } else if (First) {
3321     // We set the declaration to have the computed exception spec here.
3322     // We duplicate the one parameter type.
3323     EPI.RefQualifier = OperType->getRefQualifier();
3324     EPI.ExtInfo = OperType->getExtInfo();
3325     MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3326   }
3327 
3328   if (HadError) {
3329     MD->setInvalidDecl();
3330     return;
3331   }
3332 
3333   if (ShouldDeleteCopyAssignmentOperator(MD)) {
3334     if (First) {
3335       MD->setDeletedAsWritten();
3336     } else {
3337       Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3338         << CXXCopyAssignment;
3339       MD->setInvalidDecl();
3340     }
3341   }
3342 }
3343 
CheckExplicitlyDefaultedDestructor(CXXDestructorDecl * DD)3344 void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
3345   assert(DD->isExplicitlyDefaulted());
3346 
3347   // Whether this was the first-declared instance of the destructor.
3348   bool First = DD == DD->getCanonicalDecl();
3349 
3350   ImplicitExceptionSpecification Spec
3351     = ComputeDefaultedDtorExceptionSpec(DD->getParent());
3352   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3353   const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
3354                           *ExceptionType = Context.getFunctionType(
3355                          Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3356 
3357   if (DtorType->hasExceptionSpec()) {
3358     if (CheckEquivalentExceptionSpec(
3359           PDiag(diag::err_incorrect_defaulted_exception_spec)
3360             << CXXDestructor,
3361           PDiag(),
3362           ExceptionType, SourceLocation(),
3363           DtorType, DD->getLocation())) {
3364       DD->setInvalidDecl();
3365       return;
3366     }
3367   } else if (First) {
3368     // We set the declaration to have the computed exception spec here.
3369     // There are no parameters.
3370     EPI.ExtInfo = DtorType->getExtInfo();
3371     DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3372   }
3373 
3374   if (ShouldDeleteDestructor(DD)) {
3375     if (First) {
3376       DD->setDeletedAsWritten();
3377     } else {
3378       Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
3379         << CXXDestructor;
3380       DD->setInvalidDecl();
3381     }
3382   }
3383 }
3384 
ShouldDeleteDefaultConstructor(CXXConstructorDecl * CD)3385 bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
3386   CXXRecordDecl *RD = CD->getParent();
3387   assert(!RD->isDependentType() && "do deletion after instantiation");
3388   if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3389     return false;
3390 
3391   SourceLocation Loc = CD->getLocation();
3392 
3393   // Do access control from the constructor
3394   ContextRAII CtorContext(*this, CD);
3395 
3396   bool Union = RD->isUnion();
3397   bool AllConst = true;
3398 
3399   // We do this because we should never actually use an anonymous
3400   // union's constructor.
3401   if (Union && RD->isAnonymousStructOrUnion())
3402     return false;
3403 
3404   // FIXME: We should put some diagnostic logic right into this function.
3405 
3406   // C++0x [class.ctor]/5
3407   //    A defaulted default constructor for class X is defined as deleted if:
3408 
3409   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3410                                           BE = RD->bases_end();
3411        BI != BE; ++BI) {
3412     // We'll handle this one later
3413     if (BI->isVirtual())
3414       continue;
3415 
3416     CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3417     assert(BaseDecl && "base isn't a CXXRecordDecl");
3418 
3419     // -- any [direct base class] has a type with a destructor that is
3420     //    deleted or inaccessible from the defaulted default constructor
3421     CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3422     if (BaseDtor->isDeleted())
3423       return true;
3424     if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3425         AR_accessible)
3426       return true;
3427 
3428     // -- any [direct base class either] has no default constructor or
3429     //    overload resolution as applied to [its] default constructor
3430     //    results in an ambiguity or in a function that is deleted or
3431     //    inaccessible from the defaulted default constructor
3432     CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3433     if (!BaseDefault || BaseDefault->isDeleted())
3434       return true;
3435 
3436     if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3437                                PDiag()) != AR_accessible)
3438       return true;
3439   }
3440 
3441   for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3442                                           BE = RD->vbases_end();
3443        BI != BE; ++BI) {
3444     CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3445     assert(BaseDecl && "base isn't a CXXRecordDecl");
3446 
3447     // -- any [virtual base class] has a type with a destructor that is
3448     //    delete or inaccessible from the defaulted default constructor
3449     CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3450     if (BaseDtor->isDeleted())
3451       return true;
3452     if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3453         AR_accessible)
3454       return true;
3455 
3456     // -- any [virtual base class either] has no default constructor or
3457     //    overload resolution as applied to [its] default constructor
3458     //    results in an ambiguity or in a function that is deleted or
3459     //    inaccessible from the defaulted default constructor
3460     CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3461     if (!BaseDefault || BaseDefault->isDeleted())
3462       return true;
3463 
3464     if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3465                                PDiag()) != AR_accessible)
3466       return true;
3467   }
3468 
3469   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3470                                      FE = RD->field_end();
3471        FI != FE; ++FI) {
3472     if (FI->isInvalidDecl())
3473       continue;
3474 
3475     QualType FieldType = Context.getBaseElementType(FI->getType());
3476     CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3477 
3478     // -- any non-static data member with no brace-or-equal-initializer is of
3479     //    reference type
3480     if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
3481       return true;
3482 
3483     // -- X is a union and all its variant members are of const-qualified type
3484     //    (or array thereof)
3485     if (Union && !FieldType.isConstQualified())
3486       AllConst = false;
3487 
3488     if (FieldRecord) {
3489       // -- X is a union-like class that has a variant member with a non-trivial
3490       //    default constructor
3491       if (Union && !FieldRecord->hasTrivialDefaultConstructor())
3492         return true;
3493 
3494       CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3495       if (FieldDtor->isDeleted())
3496         return true;
3497       if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3498           AR_accessible)
3499         return true;
3500 
3501       // -- any non-variant non-static data member of const-qualified type (or
3502       //    array thereof) with no brace-or-equal-initializer does not have a
3503       //    user-provided default constructor
3504       if (FieldType.isConstQualified() &&
3505           !FI->hasInClassInitializer() &&
3506           !FieldRecord->hasUserProvidedDefaultConstructor())
3507         return true;
3508 
3509       if (!Union && FieldRecord->isUnion() &&
3510           FieldRecord->isAnonymousStructOrUnion()) {
3511         // We're okay to reuse AllConst here since we only care about the
3512         // value otherwise if we're in a union.
3513         AllConst = true;
3514 
3515         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3516                                            UE = FieldRecord->field_end();
3517              UI != UE; ++UI) {
3518           QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3519           CXXRecordDecl *UnionFieldRecord =
3520             UnionFieldType->getAsCXXRecordDecl();
3521 
3522           if (!UnionFieldType.isConstQualified())
3523             AllConst = false;
3524 
3525           if (UnionFieldRecord &&
3526               !UnionFieldRecord->hasTrivialDefaultConstructor())
3527             return true;
3528         }
3529 
3530         if (AllConst)
3531           return true;
3532 
3533         // Don't try to initialize the anonymous union
3534         // This is technically non-conformant, but sanity demands it.
3535         continue;
3536       }
3537 
3538       // -- any non-static data member with no brace-or-equal-initializer has
3539       //    class type M (or array thereof) and either M has no default
3540       //    constructor or overload resolution as applied to M's default
3541       //    constructor results in an ambiguity or in a function that is deleted
3542       //    or inaccessible from the defaulted default constructor.
3543       if (!FI->hasInClassInitializer()) {
3544         CXXConstructorDecl *FieldDefault = LookupDefaultConstructor(FieldRecord);
3545         if (!FieldDefault || FieldDefault->isDeleted())
3546           return true;
3547         if (CheckConstructorAccess(Loc, FieldDefault, FieldDefault->getAccess(),
3548                                    PDiag()) != AR_accessible)
3549           return true;
3550       }
3551     } else if (!Union && FieldType.isConstQualified() &&
3552                !FI->hasInClassInitializer()) {
3553       // -- any non-variant non-static data member of const-qualified type (or
3554       //    array thereof) with no brace-or-equal-initializer does not have a
3555       //    user-provided default constructor
3556       return true;
3557     }
3558   }
3559 
3560   if (Union && AllConst)
3561     return true;
3562 
3563   return false;
3564 }
3565 
ShouldDeleteCopyConstructor(CXXConstructorDecl * CD)3566 bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
3567   CXXRecordDecl *RD = CD->getParent();
3568   assert(!RD->isDependentType() && "do deletion after instantiation");
3569   if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3570     return false;
3571 
3572   SourceLocation Loc = CD->getLocation();
3573 
3574   // Do access control from the constructor
3575   ContextRAII CtorContext(*this, CD);
3576 
3577   bool Union = RD->isUnion();
3578 
3579   assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
3580          "copy assignment arg has no pointee type");
3581   unsigned ArgQuals =
3582     CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
3583       Qualifiers::Const : 0;
3584 
3585   // We do this because we should never actually use an anonymous
3586   // union's constructor.
3587   if (Union && RD->isAnonymousStructOrUnion())
3588     return false;
3589 
3590   // FIXME: We should put some diagnostic logic right into this function.
3591 
3592   // C++0x [class.copy]/11
3593   //    A defaulted [copy] constructor for class X is defined as delete if X has:
3594 
3595   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3596                                           BE = RD->bases_end();
3597        BI != BE; ++BI) {
3598     // We'll handle this one later
3599     if (BI->isVirtual())
3600       continue;
3601 
3602     QualType BaseType = BI->getType();
3603     CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3604     assert(BaseDecl && "base isn't a CXXRecordDecl");
3605 
3606     // -- any [direct base class] of a type with a destructor that is deleted or
3607     //    inaccessible from the defaulted constructor
3608     CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3609     if (BaseDtor->isDeleted())
3610       return true;
3611     if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3612         AR_accessible)
3613       return true;
3614 
3615     // -- a [direct base class] B that cannot be [copied] because overload
3616     //    resolution, as applied to B's [copy] constructor, results in an
3617     //    ambiguity or a function that is deleted or inaccessible from the
3618     //    defaulted constructor
3619     CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
3620     if (!BaseCtor || BaseCtor->isDeleted())
3621       return true;
3622     if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3623         AR_accessible)
3624       return true;
3625   }
3626 
3627   for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3628                                           BE = RD->vbases_end();
3629        BI != BE; ++BI) {
3630     QualType BaseType = BI->getType();
3631     CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3632     assert(BaseDecl && "base isn't a CXXRecordDecl");
3633 
3634     // -- any [virtual base class] of a type with a destructor that is deleted or
3635     //    inaccessible from the defaulted constructor
3636     CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3637     if (BaseDtor->isDeleted())
3638       return true;
3639     if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3640         AR_accessible)
3641       return true;
3642 
3643     // -- a [virtual base class] B that cannot be [copied] because overload
3644     //    resolution, as applied to B's [copy] constructor, results in an
3645     //    ambiguity or a function that is deleted or inaccessible from the
3646     //    defaulted constructor
3647     CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
3648     if (!BaseCtor || BaseCtor->isDeleted())
3649       return true;
3650     if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3651         AR_accessible)
3652       return true;
3653   }
3654 
3655   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3656                                      FE = RD->field_end();
3657        FI != FE; ++FI) {
3658     QualType FieldType = Context.getBaseElementType(FI->getType());
3659 
3660     // -- for a copy constructor, a non-static data member of rvalue reference
3661     //    type
3662     if (FieldType->isRValueReferenceType())
3663       return true;
3664 
3665     CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3666 
3667     if (FieldRecord) {
3668       // This is an anonymous union
3669       if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3670         // Anonymous unions inside unions do not variant members create
3671         if (!Union) {
3672           for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3673                                              UE = FieldRecord->field_end();
3674                UI != UE; ++UI) {
3675             QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3676             CXXRecordDecl *UnionFieldRecord =
3677               UnionFieldType->getAsCXXRecordDecl();
3678 
3679             // -- a variant member with a non-trivial [copy] constructor and X
3680             //    is a union-like class
3681             if (UnionFieldRecord &&
3682                 !UnionFieldRecord->hasTrivialCopyConstructor())
3683               return true;
3684           }
3685         }
3686 
3687         // Don't try to initalize an anonymous union
3688         continue;
3689       } else {
3690          // -- a variant member with a non-trivial [copy] constructor and X is a
3691          //    union-like class
3692         if (Union && !FieldRecord->hasTrivialCopyConstructor())
3693           return true;
3694 
3695         // -- any [non-static data member] of a type with a destructor that is
3696         //    deleted or inaccessible from the defaulted constructor
3697         CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3698         if (FieldDtor->isDeleted())
3699           return true;
3700         if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3701             AR_accessible)
3702           return true;
3703       }
3704 
3705     // -- a [non-static data member of class type (or array thereof)] B that
3706     //    cannot be [copied] because overload resolution, as applied to B's
3707     //    [copy] constructor, results in an ambiguity or a function that is
3708     //    deleted or inaccessible from the defaulted constructor
3709       CXXConstructorDecl *FieldCtor = LookupCopyingConstructor(FieldRecord,
3710                                                                ArgQuals);
3711       if (!FieldCtor || FieldCtor->isDeleted())
3712         return true;
3713       if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
3714                                  PDiag()) != AR_accessible)
3715         return true;
3716     }
3717   }
3718 
3719   return false;
3720 }
3721 
ShouldDeleteCopyAssignmentOperator(CXXMethodDecl * MD)3722 bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
3723   CXXRecordDecl *RD = MD->getParent();
3724   assert(!RD->isDependentType() && "do deletion after instantiation");
3725   if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3726     return false;
3727 
3728   SourceLocation Loc = MD->getLocation();
3729 
3730   // Do access control from the constructor
3731   ContextRAII MethodContext(*this, MD);
3732 
3733   bool Union = RD->isUnion();
3734 
3735   unsigned ArgQuals =
3736     MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
3737       Qualifiers::Const : 0;
3738 
3739   // We do this because we should never actually use an anonymous
3740   // union's constructor.
3741   if (Union && RD->isAnonymousStructOrUnion())
3742     return false;
3743 
3744   // FIXME: We should put some diagnostic logic right into this function.
3745 
3746   // C++0x [class.copy]/11
3747   //    A defaulted [copy] assignment operator for class X is defined as deleted
3748   //    if X has:
3749 
3750   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3751                                           BE = RD->bases_end();
3752        BI != BE; ++BI) {
3753     // We'll handle this one later
3754     if (BI->isVirtual())
3755       continue;
3756 
3757     QualType BaseType = BI->getType();
3758     CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3759     assert(BaseDecl && "base isn't a CXXRecordDecl");
3760 
3761     // -- a [direct base class] B that cannot be [copied] because overload
3762     //    resolution, as applied to B's [copy] assignment operator, results in
3763     //    an ambiguity or a function that is deleted or inaccessible from the
3764     //    assignment operator
3765     CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
3766                                                       0);
3767     if (!CopyOper || CopyOper->isDeleted())
3768       return true;
3769     if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3770       return true;
3771   }
3772 
3773   for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3774                                           BE = RD->vbases_end();
3775        BI != BE; ++BI) {
3776     QualType BaseType = BI->getType();
3777     CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3778     assert(BaseDecl && "base isn't a CXXRecordDecl");
3779 
3780     // -- a [virtual base class] B that cannot be [copied] because overload
3781     //    resolution, as applied to B's [copy] assignment operator, results in
3782     //    an ambiguity or a function that is deleted or inaccessible from the
3783     //    assignment operator
3784     CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
3785                                                       0);
3786     if (!CopyOper || CopyOper->isDeleted())
3787       return true;
3788     if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3789       return true;
3790   }
3791 
3792   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3793                                      FE = RD->field_end();
3794        FI != FE; ++FI) {
3795     QualType FieldType = Context.getBaseElementType(FI->getType());
3796 
3797     // -- a non-static data member of reference type
3798     if (FieldType->isReferenceType())
3799       return true;
3800 
3801     // -- a non-static data member of const non-class type (or array thereof)
3802     if (FieldType.isConstQualified() && !FieldType->isRecordType())
3803       return true;
3804 
3805     CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3806 
3807     if (FieldRecord) {
3808       // This is an anonymous union
3809       if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3810         // Anonymous unions inside unions do not variant members create
3811         if (!Union) {
3812           for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3813                                              UE = FieldRecord->field_end();
3814                UI != UE; ++UI) {
3815             QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3816             CXXRecordDecl *UnionFieldRecord =
3817               UnionFieldType->getAsCXXRecordDecl();
3818 
3819             // -- a variant member with a non-trivial [copy] assignment operator
3820             //    and X is a union-like class
3821             if (UnionFieldRecord &&
3822                 !UnionFieldRecord->hasTrivialCopyAssignment())
3823               return true;
3824           }
3825         }
3826 
3827         // Don't try to initalize an anonymous union
3828         continue;
3829       // -- a variant member with a non-trivial [copy] assignment operator
3830       //    and X is a union-like class
3831       } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
3832           return true;
3833       }
3834 
3835       CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
3836                                                         false, 0);
3837       if (!CopyOper || CopyOper->isDeleted())
3838         return false;
3839       if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3840         return false;
3841     }
3842   }
3843 
3844   return false;
3845 }
3846 
ShouldDeleteDestructor(CXXDestructorDecl * DD)3847 bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
3848   CXXRecordDecl *RD = DD->getParent();
3849   assert(!RD->isDependentType() && "do deletion after instantiation");
3850   if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3851     return false;
3852 
3853   SourceLocation Loc = DD->getLocation();
3854 
3855   // Do access control from the destructor
3856   ContextRAII CtorContext(*this, DD);
3857 
3858   bool Union = RD->isUnion();
3859 
3860   // We do this because we should never actually use an anonymous
3861   // union's destructor.
3862   if (Union && RD->isAnonymousStructOrUnion())
3863     return false;
3864 
3865   // C++0x [class.dtor]p5
3866   //    A defaulted destructor for a class X is defined as deleted if:
3867   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3868                                           BE = RD->bases_end();
3869        BI != BE; ++BI) {
3870     // We'll handle this one later
3871     if (BI->isVirtual())
3872       continue;
3873 
3874     CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3875     CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3876     assert(BaseDtor && "base has no destructor");
3877 
3878     // -- any direct or virtual base class has a deleted destructor or
3879     //    a destructor that is inaccessible from the defaulted destructor
3880     if (BaseDtor->isDeleted())
3881       return true;
3882     if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3883         AR_accessible)
3884       return true;
3885   }
3886 
3887   for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3888                                           BE = RD->vbases_end();
3889        BI != BE; ++BI) {
3890     CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3891     CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3892     assert(BaseDtor && "base has no destructor");
3893 
3894     // -- any direct or virtual base class has a deleted destructor or
3895     //    a destructor that is inaccessible from the defaulted destructor
3896     if (BaseDtor->isDeleted())
3897       return true;
3898     if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3899         AR_accessible)
3900       return true;
3901   }
3902 
3903   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3904                                      FE = RD->field_end();
3905        FI != FE; ++FI) {
3906     QualType FieldType = Context.getBaseElementType(FI->getType());
3907     CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3908     if (FieldRecord) {
3909       if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3910          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3911                                             UE = FieldRecord->field_end();
3912               UI != UE; ++UI) {
3913            QualType UnionFieldType = Context.getBaseElementType(FI->getType());
3914            CXXRecordDecl *UnionFieldRecord =
3915              UnionFieldType->getAsCXXRecordDecl();
3916 
3917            // -- X is a union-like class that has a variant member with a non-
3918            //    trivial destructor.
3919            if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
3920              return true;
3921          }
3922       // Technically we are supposed to do this next check unconditionally.
3923       // But that makes absolutely no sense.
3924       } else {
3925         CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3926 
3927         // -- any of the non-static data members has class type M (or array
3928         //    thereof) and M has a deleted destructor or a destructor that is
3929         //    inaccessible from the defaulted destructor
3930         if (FieldDtor->isDeleted())
3931           return true;
3932         if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3933           AR_accessible)
3934         return true;
3935 
3936         // -- X is a union-like class that has a variant member with a non-
3937         //    trivial destructor.
3938         if (Union && !FieldDtor->isTrivial())
3939           return true;
3940       }
3941     }
3942   }
3943 
3944   if (DD->isVirtual()) {
3945     FunctionDecl *OperatorDelete = 0;
3946     DeclarationName Name =
3947       Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3948     if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
3949           false))
3950       return true;
3951   }
3952 
3953 
3954   return false;
3955 }
3956 
3957 /// \brief Data used with FindHiddenVirtualMethod
3958 namespace {
3959   struct FindHiddenVirtualMethodData {
3960     Sema *S;
3961     CXXMethodDecl *Method;
3962     llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
3963     llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3964   };
3965 }
3966 
3967 /// \brief Member lookup function that determines whether a given C++
3968 /// method overloads virtual methods in a base class without overriding any,
3969 /// to be used with CXXRecordDecl::lookupInBases().
FindHiddenVirtualMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)3970 static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
3971                                     CXXBasePath &Path,
3972                                     void *UserData) {
3973   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3974 
3975   FindHiddenVirtualMethodData &Data
3976     = *static_cast<FindHiddenVirtualMethodData*>(UserData);
3977 
3978   DeclarationName Name = Data.Method->getDeclName();
3979   assert(Name.getNameKind() == DeclarationName::Identifier);
3980 
3981   bool foundSameNameMethod = false;
3982   llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
3983   for (Path.Decls = BaseRecord->lookup(Name);
3984        Path.Decls.first != Path.Decls.second;
3985        ++Path.Decls.first) {
3986     NamedDecl *D = *Path.Decls.first;
3987     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3988       MD = MD->getCanonicalDecl();
3989       foundSameNameMethod = true;
3990       // Interested only in hidden virtual methods.
3991       if (!MD->isVirtual())
3992         continue;
3993       // If the method we are checking overrides a method from its base
3994       // don't warn about the other overloaded methods.
3995       if (!Data.S->IsOverload(Data.Method, MD, false))
3996         return true;
3997       // Collect the overload only if its hidden.
3998       if (!Data.OverridenAndUsingBaseMethods.count(MD))
3999         overloadedMethods.push_back(MD);
4000     }
4001   }
4002 
4003   if (foundSameNameMethod)
4004     Data.OverloadedMethods.append(overloadedMethods.begin(),
4005                                    overloadedMethods.end());
4006   return foundSameNameMethod;
4007 }
4008 
4009 /// \brief See if a method overloads virtual methods in a base class without
4010 /// overriding any.
DiagnoseHiddenVirtualMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)4011 void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4012   if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4013                                MD->getLocation()) == Diagnostic::Ignored)
4014     return;
4015   if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4016     return;
4017 
4018   CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4019                      /*bool RecordPaths=*/false,
4020                      /*bool DetectVirtual=*/false);
4021   FindHiddenVirtualMethodData Data;
4022   Data.Method = MD;
4023   Data.S = this;
4024 
4025   // Keep the base methods that were overriden or introduced in the subclass
4026   // by 'using' in a set. A base method not in this set is hidden.
4027   for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4028        res.first != res.second; ++res.first) {
4029     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4030       for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4031                                           E = MD->end_overridden_methods();
4032            I != E; ++I)
4033         Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4034     if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4035       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4036         Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4037   }
4038 
4039   if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4040       !Data.OverloadedMethods.empty()) {
4041     Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4042       << MD << (Data.OverloadedMethods.size() > 1);
4043 
4044     for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4045       CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4046       Diag(overloadedMD->getLocation(),
4047            diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4048     }
4049   }
4050 }
4051 
ActOnFinishCXXMemberSpecification(Scope * S,SourceLocation RLoc,Decl * TagDecl,SourceLocation LBrac,SourceLocation RBrac,AttributeList * AttrList)4052 void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4053                                              Decl *TagDecl,
4054                                              SourceLocation LBrac,
4055                                              SourceLocation RBrac,
4056                                              AttributeList *AttrList) {
4057   if (!TagDecl)
4058     return;
4059 
4060   AdjustDeclIfTemplate(TagDecl);
4061 
4062   ActOnFields(S, RLoc, TagDecl,
4063               // strict aliasing violation!
4064               reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4065               FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
4066 
4067   CheckCompletedCXXClass(
4068                         dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4069 }
4070 
4071 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4072 /// special functions, such as the default constructor, copy
4073 /// constructor, or destructor, to the given C++ class (C++
4074 /// [special]p1).  This routine can only be executed just before the
4075 /// definition of the class is complete.
AddImplicitlyDeclaredMembersToClass(CXXRecordDecl * ClassDecl)4076 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4077   if (!ClassDecl->hasUserDeclaredConstructor())
4078     ++ASTContext::NumImplicitDefaultConstructors;
4079 
4080   if (!ClassDecl->hasUserDeclaredCopyConstructor())
4081     ++ASTContext::NumImplicitCopyConstructors;
4082 
4083   if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4084     ++ASTContext::NumImplicitCopyAssignmentOperators;
4085 
4086     // If we have a dynamic class, then the copy assignment operator may be
4087     // virtual, so we have to declare it immediately. This ensures that, e.g.,
4088     // it shows up in the right place in the vtable and that we diagnose
4089     // problems with the implicit exception specification.
4090     if (ClassDecl->isDynamicClass())
4091       DeclareImplicitCopyAssignment(ClassDecl);
4092   }
4093 
4094   if (!ClassDecl->hasUserDeclaredDestructor()) {
4095     ++ASTContext::NumImplicitDestructors;
4096 
4097     // If we have a dynamic class, then the destructor may be virtual, so we
4098     // have to declare the destructor immediately. This ensures that, e.g., it
4099     // shows up in the right place in the vtable and that we diagnose problems
4100     // with the implicit exception specification.
4101     if (ClassDecl->isDynamicClass())
4102       DeclareImplicitDestructor(ClassDecl);
4103   }
4104 }
4105 
ActOnReenterDeclaratorTemplateScope(Scope * S,DeclaratorDecl * D)4106 void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4107   if (!D)
4108     return;
4109 
4110   int NumParamList = D->getNumTemplateParameterLists();
4111   for (int i = 0; i < NumParamList; i++) {
4112     TemplateParameterList* Params = D->getTemplateParameterList(i);
4113     for (TemplateParameterList::iterator Param = Params->begin(),
4114                                       ParamEnd = Params->end();
4115           Param != ParamEnd; ++Param) {
4116       NamedDecl *Named = cast<NamedDecl>(*Param);
4117       if (Named->getDeclName()) {
4118         S->AddDecl(Named);
4119         IdResolver.AddDecl(Named);
4120       }
4121     }
4122   }
4123 }
4124 
ActOnReenterTemplateScope(Scope * S,Decl * D)4125 void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4126   if (!D)
4127     return;
4128 
4129   TemplateParameterList *Params = 0;
4130   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4131     Params = Template->getTemplateParameters();
4132   else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4133            = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4134     Params = PartialSpec->getTemplateParameters();
4135   else
4136     return;
4137 
4138   for (TemplateParameterList::iterator Param = Params->begin(),
4139                                     ParamEnd = Params->end();
4140        Param != ParamEnd; ++Param) {
4141     NamedDecl *Named = cast<NamedDecl>(*Param);
4142     if (Named->getDeclName()) {
4143       S->AddDecl(Named);
4144       IdResolver.AddDecl(Named);
4145     }
4146   }
4147 }
4148 
ActOnStartDelayedMemberDeclarations(Scope * S,Decl * RecordD)4149 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4150   if (!RecordD) return;
4151   AdjustDeclIfTemplate(RecordD);
4152   CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4153   PushDeclContext(S, Record);
4154 }
4155 
ActOnFinishDelayedMemberDeclarations(Scope * S,Decl * RecordD)4156 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4157   if (!RecordD) return;
4158   PopDeclContext();
4159 }
4160 
4161 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
4162 /// parsing a top-level (non-nested) C++ class, and we are now
4163 /// parsing those parts of the given Method declaration that could
4164 /// not be parsed earlier (C++ [class.mem]p2), such as default
4165 /// arguments. This action should enter the scope of the given
4166 /// Method declaration as if we had just parsed the qualified method
4167 /// name. However, it should not bring the parameters into scope;
4168 /// that will be performed by ActOnDelayedCXXMethodParameter.
ActOnStartDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)4169 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4170 }
4171 
4172 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
4173 /// C++ method declaration. We're (re-)introducing the given
4174 /// function parameter into scope for use in parsing later parts of
4175 /// the method declaration. For example, we could see an
4176 /// ActOnParamDefaultArgument event for this parameter.
ActOnDelayedCXXMethodParameter(Scope * S,Decl * ParamD)4177 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4178   if (!ParamD)
4179     return;
4180 
4181   ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4182 
4183   // If this parameter has an unparsed default argument, clear it out
4184   // to make way for the parsed default argument.
4185   if (Param->hasUnparsedDefaultArg())
4186     Param->setDefaultArg(0);
4187 
4188   S->AddDecl(Param);
4189   if (Param->getDeclName())
4190     IdResolver.AddDecl(Param);
4191 }
4192 
4193 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4194 /// processing the delayed method declaration for Method. The method
4195 /// declaration is now considered finished. There may be a separate
4196 /// ActOnStartOfFunctionDef action later (not necessarily
4197 /// immediately!) for this method, if it was also defined inside the
4198 /// class body.
ActOnFinishDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)4199 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4200   if (!MethodD)
4201     return;
4202 
4203   AdjustDeclIfTemplate(MethodD);
4204 
4205   FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4206 
4207   // Now that we have our default arguments, check the constructor
4208   // again. It could produce additional diagnostics or affect whether
4209   // the class has implicitly-declared destructors, among other
4210   // things.
4211   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4212     CheckConstructor(Constructor);
4213 
4214   // Check the default arguments, which we may have added.
4215   if (!Method->isInvalidDecl())
4216     CheckCXXDefaultArguments(Method);
4217 }
4218 
4219 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4220 /// the well-formedness of the constructor declarator @p D with type @p
4221 /// R. If there are any errors in the declarator, this routine will
4222 /// emit diagnostics and set the invalid bit to true.  In any case, the type
4223 /// will be updated to reflect a well-formed type for the constructor and
4224 /// returned.
CheckConstructorDeclarator(Declarator & D,QualType R,StorageClass & SC)4225 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4226                                           StorageClass &SC) {
4227   bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4228 
4229   // C++ [class.ctor]p3:
4230   //   A constructor shall not be virtual (10.3) or static (9.4). A
4231   //   constructor can be invoked for a const, volatile or const
4232   //   volatile object. A constructor shall not be declared const,
4233   //   volatile, or const volatile (9.3.2).
4234   if (isVirtual) {
4235     if (!D.isInvalidType())
4236       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4237         << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4238         << SourceRange(D.getIdentifierLoc());
4239     D.setInvalidType();
4240   }
4241   if (SC == SC_Static) {
4242     if (!D.isInvalidType())
4243       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4244         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4245         << SourceRange(D.getIdentifierLoc());
4246     D.setInvalidType();
4247     SC = SC_None;
4248   }
4249 
4250   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4251   if (FTI.TypeQuals != 0) {
4252     if (FTI.TypeQuals & Qualifiers::Const)
4253       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4254         << "const" << SourceRange(D.getIdentifierLoc());
4255     if (FTI.TypeQuals & Qualifiers::Volatile)
4256       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4257         << "volatile" << SourceRange(D.getIdentifierLoc());
4258     if (FTI.TypeQuals & Qualifiers::Restrict)
4259       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4260         << "restrict" << SourceRange(D.getIdentifierLoc());
4261     D.setInvalidType();
4262   }
4263 
4264   // C++0x [class.ctor]p4:
4265   //   A constructor shall not be declared with a ref-qualifier.
4266   if (FTI.hasRefQualifier()) {
4267     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4268       << FTI.RefQualifierIsLValueRef
4269       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4270     D.setInvalidType();
4271   }
4272 
4273   // Rebuild the function type "R" without any type qualifiers (in
4274   // case any of the errors above fired) and with "void" as the
4275   // return type, since constructors don't have return types.
4276   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4277   if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4278     return R;
4279 
4280   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4281   EPI.TypeQuals = 0;
4282   EPI.RefQualifier = RQ_None;
4283 
4284   return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4285                                  Proto->getNumArgs(), EPI);
4286 }
4287 
4288 /// CheckConstructor - Checks a fully-formed constructor for
4289 /// well-formedness, issuing any diagnostics required. Returns true if
4290 /// the constructor declarator is invalid.
CheckConstructor(CXXConstructorDecl * Constructor)4291 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4292   CXXRecordDecl *ClassDecl
4293     = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4294   if (!ClassDecl)
4295     return Constructor->setInvalidDecl();
4296 
4297   // C++ [class.copy]p3:
4298   //   A declaration of a constructor for a class X is ill-formed if
4299   //   its first parameter is of type (optionally cv-qualified) X and
4300   //   either there are no other parameters or else all other
4301   //   parameters have default arguments.
4302   if (!Constructor->isInvalidDecl() &&
4303       ((Constructor->getNumParams() == 1) ||
4304        (Constructor->getNumParams() > 1 &&
4305         Constructor->getParamDecl(1)->hasDefaultArg())) &&
4306       Constructor->getTemplateSpecializationKind()
4307                                               != TSK_ImplicitInstantiation) {
4308     QualType ParamType = Constructor->getParamDecl(0)->getType();
4309     QualType ClassTy = Context.getTagDeclType(ClassDecl);
4310     if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4311       SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4312       const char *ConstRef
4313         = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4314                                                         : " const &";
4315       Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4316         << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4317 
4318       // FIXME: Rather that making the constructor invalid, we should endeavor
4319       // to fix the type.
4320       Constructor->setInvalidDecl();
4321     }
4322   }
4323 }
4324 
4325 /// CheckDestructor - Checks a fully-formed destructor definition for
4326 /// well-formedness, issuing any diagnostics required.  Returns true
4327 /// on error.
CheckDestructor(CXXDestructorDecl * Destructor)4328 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4329   CXXRecordDecl *RD = Destructor->getParent();
4330 
4331   if (Destructor->isVirtual()) {
4332     SourceLocation Loc;
4333 
4334     if (!Destructor->isImplicit())
4335       Loc = Destructor->getLocation();
4336     else
4337       Loc = RD->getLocation();
4338 
4339     // If we have a virtual destructor, look up the deallocation function
4340     FunctionDecl *OperatorDelete = 0;
4341     DeclarationName Name =
4342     Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4343     if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4344       return true;
4345 
4346     MarkDeclarationReferenced(Loc, OperatorDelete);
4347 
4348     Destructor->setOperatorDelete(OperatorDelete);
4349   }
4350 
4351   return false;
4352 }
4353 
4354 static inline bool
FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo & FTI)4355 FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4356   return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4357           FTI.ArgInfo[0].Param &&
4358           cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4359 }
4360 
4361 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4362 /// the well-formednes of the destructor declarator @p D with type @p
4363 /// R. If there are any errors in the declarator, this routine will
4364 /// emit diagnostics and set the declarator to invalid.  Even if this happens,
4365 /// will be updated to reflect a well-formed type for the destructor and
4366 /// returned.
CheckDestructorDeclarator(Declarator & D,QualType R,StorageClass & SC)4367 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
4368                                          StorageClass& SC) {
4369   // C++ [class.dtor]p1:
4370   //   [...] A typedef-name that names a class is a class-name
4371   //   (7.1.3); however, a typedef-name that names a class shall not
4372   //   be used as the identifier in the declarator for a destructor
4373   //   declaration.
4374   QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
4375   if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
4376     Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4377       << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
4378   else if (const TemplateSpecializationType *TST =
4379              DeclaratorType->getAs<TemplateSpecializationType>())
4380     if (TST->isTypeAlias())
4381       Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4382         << DeclaratorType << 1;
4383 
4384   // C++ [class.dtor]p2:
4385   //   A destructor is used to destroy objects of its class type. A
4386   //   destructor takes no parameters, and no return type can be
4387   //   specified for it (not even void). The address of a destructor
4388   //   shall not be taken. A destructor shall not be static. A
4389   //   destructor can be invoked for a const, volatile or const
4390   //   volatile object. A destructor shall not be declared const,
4391   //   volatile or const volatile (9.3.2).
4392   if (SC == SC_Static) {
4393     if (!D.isInvalidType())
4394       Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
4395         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4396         << SourceRange(D.getIdentifierLoc())
4397         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4398 
4399     SC = SC_None;
4400   }
4401   if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4402     // Destructors don't have return types, but the parser will
4403     // happily parse something like:
4404     //
4405     //   class X {
4406     //     float ~X();
4407     //   };
4408     //
4409     // The return type will be eliminated later.
4410     Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
4411       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4412       << SourceRange(D.getIdentifierLoc());
4413   }
4414 
4415   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4416   if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
4417     if (FTI.TypeQuals & Qualifiers::Const)
4418       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4419         << "const" << SourceRange(D.getIdentifierLoc());
4420     if (FTI.TypeQuals & Qualifiers::Volatile)
4421       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4422         << "volatile" << SourceRange(D.getIdentifierLoc());
4423     if (FTI.TypeQuals & Qualifiers::Restrict)
4424       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4425         << "restrict" << SourceRange(D.getIdentifierLoc());
4426     D.setInvalidType();
4427   }
4428 
4429   // C++0x [class.dtor]p2:
4430   //   A destructor shall not be declared with a ref-qualifier.
4431   if (FTI.hasRefQualifier()) {
4432     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
4433       << FTI.RefQualifierIsLValueRef
4434       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4435     D.setInvalidType();
4436   }
4437 
4438   // Make sure we don't have any parameters.
4439   if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
4440     Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
4441 
4442     // Delete the parameters.
4443     FTI.freeArgs();
4444     D.setInvalidType();
4445   }
4446 
4447   // Make sure the destructor isn't variadic.
4448   if (FTI.isVariadic) {
4449     Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
4450     D.setInvalidType();
4451   }
4452 
4453   // Rebuild the function type "R" without any type qualifiers or
4454   // parameters (in case any of the errors above fired) and with
4455   // "void" as the return type, since destructors don't have return
4456   // types.
4457   if (!D.isInvalidType())
4458     return R;
4459 
4460   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4461   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4462   EPI.Variadic = false;
4463   EPI.TypeQuals = 0;
4464   EPI.RefQualifier = RQ_None;
4465   return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4466 }
4467 
4468 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
4469 /// well-formednes of the conversion function declarator @p D with
4470 /// type @p R. If there are any errors in the declarator, this routine
4471 /// will emit diagnostics and return true. Otherwise, it will return
4472 /// false. Either way, the type @p R will be updated to reflect a
4473 /// well-formed type for the conversion operator.
CheckConversionDeclarator(Declarator & D,QualType & R,StorageClass & SC)4474 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
4475                                      StorageClass& SC) {
4476   // C++ [class.conv.fct]p1:
4477   //   Neither parameter types nor return type can be specified. The
4478   //   type of a conversion function (8.3.5) is "function taking no
4479   //   parameter returning conversion-type-id."
4480   if (SC == SC_Static) {
4481     if (!D.isInvalidType())
4482       Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
4483         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4484         << SourceRange(D.getIdentifierLoc());
4485     D.setInvalidType();
4486     SC = SC_None;
4487   }
4488 
4489   QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
4490 
4491   if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4492     // Conversion functions don't have return types, but the parser will
4493     // happily parse something like:
4494     //
4495     //   class X {
4496     //     float operator bool();
4497     //   };
4498     //
4499     // The return type will be changed later anyway.
4500     Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
4501       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4502       << SourceRange(D.getIdentifierLoc());
4503     D.setInvalidType();
4504   }
4505 
4506   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4507 
4508   // Make sure we don't have any parameters.
4509   if (Proto->getNumArgs() > 0) {
4510     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
4511 
4512     // Delete the parameters.
4513     D.getFunctionTypeInfo().freeArgs();
4514     D.setInvalidType();
4515   } else if (Proto->isVariadic()) {
4516     Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
4517     D.setInvalidType();
4518   }
4519 
4520   // Diagnose "&operator bool()" and other such nonsense.  This
4521   // is actually a gcc extension which we don't support.
4522   if (Proto->getResultType() != ConvType) {
4523     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
4524       << Proto->getResultType();
4525     D.setInvalidType();
4526     ConvType = Proto->getResultType();
4527   }
4528 
4529   // C++ [class.conv.fct]p4:
4530   //   The conversion-type-id shall not represent a function type nor
4531   //   an array type.
4532   if (ConvType->isArrayType()) {
4533     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
4534     ConvType = Context.getPointerType(ConvType);
4535     D.setInvalidType();
4536   } else if (ConvType->isFunctionType()) {
4537     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
4538     ConvType = Context.getPointerType(ConvType);
4539     D.setInvalidType();
4540   }
4541 
4542   // Rebuild the function type "R" without any parameters (in case any
4543   // of the errors above fired) and with the conversion type as the
4544   // return type.
4545   if (D.isInvalidType())
4546     R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
4547 
4548   // C++0x explicit conversion operators.
4549   if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
4550     Diag(D.getDeclSpec().getExplicitSpecLoc(),
4551          diag::warn_explicit_conversion_functions)
4552       << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
4553 }
4554 
4555 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
4556 /// the declaration of the given C++ conversion function. This routine
4557 /// is responsible for recording the conversion function in the C++
4558 /// class, if possible.
ActOnConversionDeclarator(CXXConversionDecl * Conversion)4559 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
4560   assert(Conversion && "Expected to receive a conversion function declaration");
4561 
4562   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
4563 
4564   // Make sure we aren't redeclaring the conversion function.
4565   QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
4566 
4567   // C++ [class.conv.fct]p1:
4568   //   [...] A conversion function is never used to convert a
4569   //   (possibly cv-qualified) object to the (possibly cv-qualified)
4570   //   same object type (or a reference to it), to a (possibly
4571   //   cv-qualified) base class of that type (or a reference to it),
4572   //   or to (possibly cv-qualified) void.
4573   // FIXME: Suppress this warning if the conversion function ends up being a
4574   // virtual function that overrides a virtual function in a base class.
4575   QualType ClassType
4576     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4577   if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
4578     ConvType = ConvTypeRef->getPointeeType();
4579   if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
4580       Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4581     /* Suppress diagnostics for instantiations. */;
4582   else if (ConvType->isRecordType()) {
4583     ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
4584     if (ConvType == ClassType)
4585       Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
4586         << ClassType;
4587     else if (IsDerivedFrom(ClassType, ConvType))
4588       Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
4589         <<  ClassType << ConvType;
4590   } else if (ConvType->isVoidType()) {
4591     Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
4592       << ClassType << ConvType;
4593   }
4594 
4595   if (FunctionTemplateDecl *ConversionTemplate
4596                                 = Conversion->getDescribedFunctionTemplate())
4597     return ConversionTemplate;
4598 
4599   return Conversion;
4600 }
4601 
4602 //===----------------------------------------------------------------------===//
4603 // Namespace Handling
4604 //===----------------------------------------------------------------------===//
4605 
4606 
4607 
4608 /// ActOnStartNamespaceDef - This is called at the start of a namespace
4609 /// definition.
ActOnStartNamespaceDef(Scope * NamespcScope,SourceLocation InlineLoc,SourceLocation NamespaceLoc,SourceLocation IdentLoc,IdentifierInfo * II,SourceLocation LBrace,AttributeList * AttrList)4610 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
4611                                    SourceLocation InlineLoc,
4612                                    SourceLocation NamespaceLoc,
4613                                    SourceLocation IdentLoc,
4614                                    IdentifierInfo *II,
4615                                    SourceLocation LBrace,
4616                                    AttributeList *AttrList) {
4617   SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
4618   // For anonymous namespace, take the location of the left brace.
4619   SourceLocation Loc = II ? IdentLoc : LBrace;
4620   NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
4621                                                  StartLoc, Loc, II);
4622   Namespc->setInline(InlineLoc.isValid());
4623 
4624   Scope *DeclRegionScope = NamespcScope->getParent();
4625 
4626   ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
4627 
4628   if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
4629     PushNamespaceVisibilityAttr(Attr);
4630 
4631   if (II) {
4632     // C++ [namespace.def]p2:
4633     //   The identifier in an original-namespace-definition shall not
4634     //   have been previously defined in the declarative region in
4635     //   which the original-namespace-definition appears. The
4636     //   identifier in an original-namespace-definition is the name of
4637     //   the namespace. Subsequently in that declarative region, it is
4638     //   treated as an original-namespace-name.
4639     //
4640     // Since namespace names are unique in their scope, and we don't
4641     // look through using directives, just look for any ordinary names.
4642 
4643     const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
4644       Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
4645       Decl::IDNS_Namespace;
4646     NamedDecl *PrevDecl = 0;
4647     for (DeclContext::lookup_result R
4648             = CurContext->getRedeclContext()->lookup(II);
4649          R.first != R.second; ++R.first) {
4650       if ((*R.first)->getIdentifierNamespace() & IDNS) {
4651         PrevDecl = *R.first;
4652         break;
4653       }
4654     }
4655 
4656     if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
4657       // This is an extended namespace definition.
4658       if (Namespc->isInline() != OrigNS->isInline()) {
4659         // inline-ness must match
4660         if (OrigNS->isInline()) {
4661           // The user probably just forgot the 'inline', so suggest that it
4662           // be added back.
4663           Diag(Namespc->getLocation(),
4664                diag::warn_inline_namespace_reopened_noninline)
4665             << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
4666         } else {
4667           Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4668             << Namespc->isInline();
4669         }
4670         Diag(OrigNS->getLocation(), diag::note_previous_definition);
4671 
4672         // Recover by ignoring the new namespace's inline status.
4673         Namespc->setInline(OrigNS->isInline());
4674       }
4675 
4676       // Attach this namespace decl to the chain of extended namespace
4677       // definitions.
4678       OrigNS->setNextNamespace(Namespc);
4679       Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
4680 
4681       // Remove the previous declaration from the scope.
4682       if (DeclRegionScope->isDeclScope(OrigNS)) {
4683         IdResolver.RemoveDecl(OrigNS);
4684         DeclRegionScope->RemoveDecl(OrigNS);
4685       }
4686     } else if (PrevDecl) {
4687       // This is an invalid name redefinition.
4688       Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
4689        << Namespc->getDeclName();
4690       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4691       Namespc->setInvalidDecl();
4692       // Continue on to push Namespc as current DeclContext and return it.
4693     } else if (II->isStr("std") &&
4694                CurContext->getRedeclContext()->isTranslationUnit()) {
4695       // This is the first "real" definition of the namespace "std", so update
4696       // our cache of the "std" namespace to point at this definition.
4697       if (NamespaceDecl *StdNS = getStdNamespace()) {
4698         // We had already defined a dummy namespace "std". Link this new
4699         // namespace definition to the dummy namespace "std".
4700         StdNS->setNextNamespace(Namespc);
4701         StdNS->setLocation(IdentLoc);
4702         Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
4703       }
4704 
4705       // Make our StdNamespace cache point at the first real definition of the
4706       // "std" namespace.
4707       StdNamespace = Namespc;
4708 
4709       // Add this instance of "std" to the set of known namespaces
4710       KnownNamespaces[Namespc] = false;
4711     } else if (!Namespc->isInline()) {
4712       // Since this is an "original" namespace, add it to the known set of
4713       // namespaces if it is not an inline namespace.
4714       KnownNamespaces[Namespc] = false;
4715     }
4716 
4717     PushOnScopeChains(Namespc, DeclRegionScope);
4718   } else {
4719     // Anonymous namespaces.
4720     assert(Namespc->isAnonymousNamespace());
4721 
4722     // Link the anonymous namespace into its parent.
4723     NamespaceDecl *PrevDecl;
4724     DeclContext *Parent = CurContext->getRedeclContext();
4725     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
4726       PrevDecl = TU->getAnonymousNamespace();
4727       TU->setAnonymousNamespace(Namespc);
4728     } else {
4729       NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
4730       PrevDecl = ND->getAnonymousNamespace();
4731       ND->setAnonymousNamespace(Namespc);
4732     }
4733 
4734     // Link the anonymous namespace with its previous declaration.
4735     if (PrevDecl) {
4736       assert(PrevDecl->isAnonymousNamespace());
4737       assert(!PrevDecl->getNextNamespace());
4738       Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
4739       PrevDecl->setNextNamespace(Namespc);
4740 
4741       if (Namespc->isInline() != PrevDecl->isInline()) {
4742         // inline-ness must match
4743         Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4744           << Namespc->isInline();
4745         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4746         Namespc->setInvalidDecl();
4747         // Recover by ignoring the new namespace's inline status.
4748         Namespc->setInline(PrevDecl->isInline());
4749       }
4750     }
4751 
4752     CurContext->addDecl(Namespc);
4753 
4754     // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
4755     //   behaves as if it were replaced by
4756     //     namespace unique { /* empty body */ }
4757     //     using namespace unique;
4758     //     namespace unique { namespace-body }
4759     //   where all occurrences of 'unique' in a translation unit are
4760     //   replaced by the same identifier and this identifier differs
4761     //   from all other identifiers in the entire program.
4762 
4763     // We just create the namespace with an empty name and then add an
4764     // implicit using declaration, just like the standard suggests.
4765     //
4766     // CodeGen enforces the "universally unique" aspect by giving all
4767     // declarations semantically contained within an anonymous
4768     // namespace internal linkage.
4769 
4770     if (!PrevDecl) {
4771       UsingDirectiveDecl* UD
4772         = UsingDirectiveDecl::Create(Context, CurContext,
4773                                      /* 'using' */ LBrace,
4774                                      /* 'namespace' */ SourceLocation(),
4775                                      /* qualifier */ NestedNameSpecifierLoc(),
4776                                      /* identifier */ SourceLocation(),
4777                                      Namespc,
4778                                      /* Ancestor */ CurContext);
4779       UD->setImplicit();
4780       CurContext->addDecl(UD);
4781     }
4782   }
4783 
4784   // Although we could have an invalid decl (i.e. the namespace name is a
4785   // redefinition), push it as current DeclContext and try to continue parsing.
4786   // FIXME: We should be able to push Namespc here, so that the each DeclContext
4787   // for the namespace has the declarations that showed up in that particular
4788   // namespace definition.
4789   PushDeclContext(NamespcScope, Namespc);
4790   return Namespc;
4791 }
4792 
4793 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
4794 /// is a namespace alias, returns the namespace it points to.
getNamespaceDecl(NamedDecl * D)4795 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
4796   if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
4797     return AD->getNamespace();
4798   return dyn_cast_or_null<NamespaceDecl>(D);
4799 }
4800 
4801 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
4802 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
ActOnFinishNamespaceDef(Decl * Dcl,SourceLocation RBrace)4803 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
4804   NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
4805   assert(Namespc && "Invalid parameter, expected NamespaceDecl");
4806   Namespc->setRBraceLoc(RBrace);
4807   PopDeclContext();
4808   if (Namespc->hasAttr<VisibilityAttr>())
4809     PopPragmaVisibility();
4810 }
4811 
getStdBadAlloc() const4812 CXXRecordDecl *Sema::getStdBadAlloc() const {
4813   return cast_or_null<CXXRecordDecl>(
4814                                   StdBadAlloc.get(Context.getExternalSource()));
4815 }
4816 
getStdNamespace() const4817 NamespaceDecl *Sema::getStdNamespace() const {
4818   return cast_or_null<NamespaceDecl>(
4819                                  StdNamespace.get(Context.getExternalSource()));
4820 }
4821 
4822 /// \brief Retrieve the special "std" namespace, which may require us to
4823 /// implicitly define the namespace.
getOrCreateStdNamespace()4824 NamespaceDecl *Sema::getOrCreateStdNamespace() {
4825   if (!StdNamespace) {
4826     // The "std" namespace has not yet been defined, so build one implicitly.
4827     StdNamespace = NamespaceDecl::Create(Context,
4828                                          Context.getTranslationUnitDecl(),
4829                                          SourceLocation(), SourceLocation(),
4830                                          &PP.getIdentifierTable().get("std"));
4831     getStdNamespace()->setImplicit(true);
4832   }
4833 
4834   return getStdNamespace();
4835 }
4836 
4837 /// \brief Determine whether a using statement is in a context where it will be
4838 /// apply in all contexts.
IsUsingDirectiveInToplevelContext(DeclContext * CurContext)4839 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
4840   switch (CurContext->getDeclKind()) {
4841     case Decl::TranslationUnit:
4842       return true;
4843     case Decl::LinkageSpec:
4844       return IsUsingDirectiveInToplevelContext(CurContext->getParent());
4845     default:
4846       return false;
4847   }
4848 }
4849 
TryNamespaceTypoCorrection(Sema & S,LookupResult & R,Scope * Sc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)4850 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
4851                                        CXXScopeSpec &SS,
4852                                        SourceLocation IdentLoc,
4853                                        IdentifierInfo *Ident) {
4854   R.clear();
4855   if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
4856                                                R.getLookupKind(), Sc, &SS, NULL,
4857                                                false, S.CTC_NoKeywords, NULL)) {
4858     if (Corrected.getCorrectionDeclAs<NamespaceDecl>() ||
4859         Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) {
4860       std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
4861       std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
4862       if (DeclContext *DC = S.computeDeclContext(SS, false))
4863         S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
4864           << Ident << DC << CorrectedQuotedStr << SS.getRange()
4865           << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
4866       else
4867         S.Diag(IdentLoc, diag::err_using_directive_suggest)
4868           << Ident << CorrectedQuotedStr
4869           << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
4870 
4871       S.Diag(Corrected.getCorrectionDecl()->getLocation(),
4872            diag::note_namespace_defined_here) << CorrectedQuotedStr;
4873 
4874       Ident = Corrected.getCorrectionAsIdentifierInfo();
4875       R.addDecl(Corrected.getCorrectionDecl());
4876       return true;
4877     }
4878     R.setLookupName(Ident);
4879   }
4880   return false;
4881 }
4882 
ActOnUsingDirective(Scope * S,SourceLocation UsingLoc,SourceLocation NamespcLoc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * NamespcName,AttributeList * AttrList)4883 Decl *Sema::ActOnUsingDirective(Scope *S,
4884                                           SourceLocation UsingLoc,
4885                                           SourceLocation NamespcLoc,
4886                                           CXXScopeSpec &SS,
4887                                           SourceLocation IdentLoc,
4888                                           IdentifierInfo *NamespcName,
4889                                           AttributeList *AttrList) {
4890   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4891   assert(NamespcName && "Invalid NamespcName.");
4892   assert(IdentLoc.isValid() && "Invalid NamespceName location.");
4893 
4894   // This can only happen along a recovery path.
4895   while (S->getFlags() & Scope::TemplateParamScope)
4896     S = S->getParent();
4897   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4898 
4899   UsingDirectiveDecl *UDir = 0;
4900   NestedNameSpecifier *Qualifier = 0;
4901   if (SS.isSet())
4902     Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4903 
4904   // Lookup namespace name.
4905   LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
4906   LookupParsedName(R, S, &SS);
4907   if (R.isAmbiguous())
4908     return 0;
4909 
4910   if (R.empty()) {
4911     R.clear();
4912     // Allow "using namespace std;" or "using namespace ::std;" even if
4913     // "std" hasn't been defined yet, for GCC compatibility.
4914     if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
4915         NamespcName->isStr("std")) {
4916       Diag(IdentLoc, diag::ext_using_undefined_std);
4917       R.addDecl(getOrCreateStdNamespace());
4918       R.resolveKind();
4919     }
4920     // Otherwise, attempt typo correction.
4921     else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
4922   }
4923 
4924   if (!R.empty()) {
4925     NamedDecl *Named = R.getFoundDecl();
4926     assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
4927         && "expected namespace decl");
4928     // C++ [namespace.udir]p1:
4929     //   A using-directive specifies that the names in the nominated
4930     //   namespace can be used in the scope in which the
4931     //   using-directive appears after the using-directive. During
4932     //   unqualified name lookup (3.4.1), the names appear as if they
4933     //   were declared in the nearest enclosing namespace which
4934     //   contains both the using-directive and the nominated
4935     //   namespace. [Note: in this context, "contains" means "contains
4936     //   directly or indirectly". ]
4937 
4938     // Find enclosing context containing both using-directive and
4939     // nominated namespace.
4940     NamespaceDecl *NS = getNamespaceDecl(Named);
4941     DeclContext *CommonAncestor = cast<DeclContext>(NS);
4942     while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
4943       CommonAncestor = CommonAncestor->getParent();
4944 
4945     UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
4946                                       SS.getWithLocInContext(Context),
4947                                       IdentLoc, Named, CommonAncestor);
4948 
4949     if (IsUsingDirectiveInToplevelContext(CurContext) &&
4950         !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
4951       Diag(IdentLoc, diag::warn_using_directive_in_header);
4952     }
4953 
4954     PushUsingDirective(S, UDir);
4955   } else {
4956     Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
4957   }
4958 
4959   // FIXME: We ignore attributes for now.
4960   return UDir;
4961 }
4962 
PushUsingDirective(Scope * S,UsingDirectiveDecl * UDir)4963 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
4964   // If scope has associated entity, then using directive is at namespace
4965   // or translation unit scope. We add UsingDirectiveDecls, into
4966   // it's lookup structure.
4967   if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
4968     Ctx->addDecl(UDir);
4969   else
4970     // Otherwise it is block-sope. using-directives will affect lookup
4971     // only to the end of scope.
4972     S->PushUsingDirective(UDir);
4973 }
4974 
4975 
ActOnUsingDeclaration(Scope * S,AccessSpecifier AS,bool HasUsingKeyword,SourceLocation UsingLoc,CXXScopeSpec & SS,UnqualifiedId & Name,AttributeList * AttrList,bool IsTypeName,SourceLocation TypenameLoc)4976 Decl *Sema::ActOnUsingDeclaration(Scope *S,
4977                                   AccessSpecifier AS,
4978                                   bool HasUsingKeyword,
4979                                   SourceLocation UsingLoc,
4980                                   CXXScopeSpec &SS,
4981                                   UnqualifiedId &Name,
4982                                   AttributeList *AttrList,
4983                                   bool IsTypeName,
4984                                   SourceLocation TypenameLoc) {
4985   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4986 
4987   switch (Name.getKind()) {
4988   case UnqualifiedId::IK_ImplicitSelfParam:
4989   case UnqualifiedId::IK_Identifier:
4990   case UnqualifiedId::IK_OperatorFunctionId:
4991   case UnqualifiedId::IK_LiteralOperatorId:
4992   case UnqualifiedId::IK_ConversionFunctionId:
4993     break;
4994 
4995   case UnqualifiedId::IK_ConstructorName:
4996   case UnqualifiedId::IK_ConstructorTemplateId:
4997     // C++0x inherited constructors.
4998     if (getLangOptions().CPlusPlus0x) break;
4999 
5000     Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
5001       << SS.getRange();
5002     return 0;
5003 
5004   case UnqualifiedId::IK_DestructorName:
5005     Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5006       << SS.getRange();
5007     return 0;
5008 
5009   case UnqualifiedId::IK_TemplateId:
5010     Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5011       << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5012     return 0;
5013   }
5014 
5015   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5016   DeclarationName TargetName = TargetNameInfo.getName();
5017   if (!TargetName)
5018     return 0;
5019 
5020   // Warn about using declarations.
5021   // TODO: store that the declaration was written without 'using' and
5022   // talk about access decls instead of using decls in the
5023   // diagnostics.
5024   if (!HasUsingKeyword) {
5025     UsingLoc = Name.getSourceRange().getBegin();
5026 
5027     Diag(UsingLoc, diag::warn_access_decl_deprecated)
5028       << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5029   }
5030 
5031   if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5032       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5033     return 0;
5034 
5035   NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5036                                         TargetNameInfo, AttrList,
5037                                         /* IsInstantiation */ false,
5038                                         IsTypeName, TypenameLoc);
5039   if (UD)
5040     PushOnScopeChains(UD, S, /*AddToContext*/ false);
5041 
5042   return UD;
5043 }
5044 
5045 /// \brief Determine whether a using declaration considers the given
5046 /// declarations as "equivalent", e.g., if they are redeclarations of
5047 /// the same entity or are both typedefs of the same type.
5048 static bool
IsEquivalentForUsingDecl(ASTContext & Context,NamedDecl * D1,NamedDecl * D2,bool & SuppressRedeclaration)5049 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5050                          bool &SuppressRedeclaration) {
5051   if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5052     SuppressRedeclaration = false;
5053     return true;
5054   }
5055 
5056   if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5057     if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5058       SuppressRedeclaration = true;
5059       return Context.hasSameType(TD1->getUnderlyingType(),
5060                                  TD2->getUnderlyingType());
5061     }
5062 
5063   return false;
5064 }
5065 
5066 
5067 /// Determines whether to create a using shadow decl for a particular
5068 /// decl, given the set of decls existing prior to this using lookup.
CheckUsingShadowDecl(UsingDecl * Using,NamedDecl * Orig,const LookupResult & Previous)5069 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5070                                 const LookupResult &Previous) {
5071   // Diagnose finding a decl which is not from a base class of the
5072   // current class.  We do this now because there are cases where this
5073   // function will silently decide not to build a shadow decl, which
5074   // will pre-empt further diagnostics.
5075   //
5076   // We don't need to do this in C++0x because we do the check once on
5077   // the qualifier.
5078   //
5079   // FIXME: diagnose the following if we care enough:
5080   //   struct A { int foo; };
5081   //   struct B : A { using A::foo; };
5082   //   template <class T> struct C : A {};
5083   //   template <class T> struct D : C<T> { using B::foo; } // <---
5084   // This is invalid (during instantiation) in C++03 because B::foo
5085   // resolves to the using decl in B, which is not a base class of D<T>.
5086   // We can't diagnose it immediately because C<T> is an unknown
5087   // specialization.  The UsingShadowDecl in D<T> then points directly
5088   // to A::foo, which will look well-formed when we instantiate.
5089   // The right solution is to not collapse the shadow-decl chain.
5090   if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5091     DeclContext *OrigDC = Orig->getDeclContext();
5092 
5093     // Handle enums and anonymous structs.
5094     if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5095     CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5096     while (OrigRec->isAnonymousStructOrUnion())
5097       OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5098 
5099     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5100       if (OrigDC == CurContext) {
5101         Diag(Using->getLocation(),
5102              diag::err_using_decl_nested_name_specifier_is_current_class)
5103           << Using->getQualifierLoc().getSourceRange();
5104         Diag(Orig->getLocation(), diag::note_using_decl_target);
5105         return true;
5106       }
5107 
5108       Diag(Using->getQualifierLoc().getBeginLoc(),
5109            diag::err_using_decl_nested_name_specifier_is_not_base_class)
5110         << Using->getQualifier()
5111         << cast<CXXRecordDecl>(CurContext)
5112         << Using->getQualifierLoc().getSourceRange();
5113       Diag(Orig->getLocation(), diag::note_using_decl_target);
5114       return true;
5115     }
5116   }
5117 
5118   if (Previous.empty()) return false;
5119 
5120   NamedDecl *Target = Orig;
5121   if (isa<UsingShadowDecl>(Target))
5122     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5123 
5124   // If the target happens to be one of the previous declarations, we
5125   // don't have a conflict.
5126   //
5127   // FIXME: but we might be increasing its access, in which case we
5128   // should redeclare it.
5129   NamedDecl *NonTag = 0, *Tag = 0;
5130   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5131          I != E; ++I) {
5132     NamedDecl *D = (*I)->getUnderlyingDecl();
5133     bool Result;
5134     if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5135       return Result;
5136 
5137     (isa<TagDecl>(D) ? Tag : NonTag) = D;
5138   }
5139 
5140   if (Target->isFunctionOrFunctionTemplate()) {
5141     FunctionDecl *FD;
5142     if (isa<FunctionTemplateDecl>(Target))
5143       FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5144     else
5145       FD = cast<FunctionDecl>(Target);
5146 
5147     NamedDecl *OldDecl = 0;
5148     switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5149     case Ovl_Overload:
5150       return false;
5151 
5152     case Ovl_NonFunction:
5153       Diag(Using->getLocation(), diag::err_using_decl_conflict);
5154       break;
5155 
5156     // We found a decl with the exact signature.
5157     case Ovl_Match:
5158       // If we're in a record, we want to hide the target, so we
5159       // return true (without a diagnostic) to tell the caller not to
5160       // build a shadow decl.
5161       if (CurContext->isRecord())
5162         return true;
5163 
5164       // If we're not in a record, this is an error.
5165       Diag(Using->getLocation(), diag::err_using_decl_conflict);
5166       break;
5167     }
5168 
5169     Diag(Target->getLocation(), diag::note_using_decl_target);
5170     Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5171     return true;
5172   }
5173 
5174   // Target is not a function.
5175 
5176   if (isa<TagDecl>(Target)) {
5177     // No conflict between a tag and a non-tag.
5178     if (!Tag) return false;
5179 
5180     Diag(Using->getLocation(), diag::err_using_decl_conflict);
5181     Diag(Target->getLocation(), diag::note_using_decl_target);
5182     Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5183     return true;
5184   }
5185 
5186   // No conflict between a tag and a non-tag.
5187   if (!NonTag) return false;
5188 
5189   Diag(Using->getLocation(), diag::err_using_decl_conflict);
5190   Diag(Target->getLocation(), diag::note_using_decl_target);
5191   Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5192   return true;
5193 }
5194 
5195 /// Builds a shadow declaration corresponding to a 'using' declaration.
BuildUsingShadowDecl(Scope * S,UsingDecl * UD,NamedDecl * Orig)5196 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5197                                             UsingDecl *UD,
5198                                             NamedDecl *Orig) {
5199 
5200   // If we resolved to another shadow declaration, just coalesce them.
5201   NamedDecl *Target = Orig;
5202   if (isa<UsingShadowDecl>(Target)) {
5203     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5204     assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5205   }
5206 
5207   UsingShadowDecl *Shadow
5208     = UsingShadowDecl::Create(Context, CurContext,
5209                               UD->getLocation(), UD, Target);
5210   UD->addShadowDecl(Shadow);
5211 
5212   Shadow->setAccess(UD->getAccess());
5213   if (Orig->isInvalidDecl() || UD->isInvalidDecl())
5214     Shadow->setInvalidDecl();
5215 
5216   if (S)
5217     PushOnScopeChains(Shadow, S);
5218   else
5219     CurContext->addDecl(Shadow);
5220 
5221 
5222   return Shadow;
5223 }
5224 
5225 /// Hides a using shadow declaration.  This is required by the current
5226 /// using-decl implementation when a resolvable using declaration in a
5227 /// class is followed by a declaration which would hide or override
5228 /// one or more of the using decl's targets; for example:
5229 ///
5230 ///   struct Base { void foo(int); };
5231 ///   struct Derived : Base {
5232 ///     using Base::foo;
5233 ///     void foo(int);
5234 ///   };
5235 ///
5236 /// The governing language is C++03 [namespace.udecl]p12:
5237 ///
5238 ///   When a using-declaration brings names from a base class into a
5239 ///   derived class scope, member functions in the derived class
5240 ///   override and/or hide member functions with the same name and
5241 ///   parameter types in a base class (rather than conflicting).
5242 ///
5243 /// There are two ways to implement this:
5244 ///   (1) optimistically create shadow decls when they're not hidden
5245 ///       by existing declarations, or
5246 ///   (2) don't create any shadow decls (or at least don't make them
5247 ///       visible) until we've fully parsed/instantiated the class.
5248 /// The problem with (1) is that we might have to retroactively remove
5249 /// a shadow decl, which requires several O(n) operations because the
5250 /// decl structures are (very reasonably) not designed for removal.
5251 /// (2) avoids this but is very fiddly and phase-dependent.
HideUsingShadowDecl(Scope * S,UsingShadowDecl * Shadow)5252 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
5253   if (Shadow->getDeclName().getNameKind() ==
5254         DeclarationName::CXXConversionFunctionName)
5255     cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
5256 
5257   // Remove it from the DeclContext...
5258   Shadow->getDeclContext()->removeDecl(Shadow);
5259 
5260   // ...and the scope, if applicable...
5261   if (S) {
5262     S->RemoveDecl(Shadow);
5263     IdResolver.RemoveDecl(Shadow);
5264   }
5265 
5266   // ...and the using decl.
5267   Shadow->getUsingDecl()->removeShadowDecl(Shadow);
5268 
5269   // TODO: complain somehow if Shadow was used.  It shouldn't
5270   // be possible for this to happen, because...?
5271 }
5272 
5273 /// Builds a using declaration.
5274 ///
5275 /// \param IsInstantiation - Whether this call arises from an
5276 ///   instantiation of an unresolved using declaration.  We treat
5277 ///   the lookup differently for these declarations.
BuildUsingDeclaration(Scope * S,AccessSpecifier AS,SourceLocation UsingLoc,CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,AttributeList * AttrList,bool IsInstantiation,bool IsTypeName,SourceLocation TypenameLoc)5278 NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
5279                                        SourceLocation UsingLoc,
5280                                        CXXScopeSpec &SS,
5281                                        const DeclarationNameInfo &NameInfo,
5282                                        AttributeList *AttrList,
5283                                        bool IsInstantiation,
5284                                        bool IsTypeName,
5285                                        SourceLocation TypenameLoc) {
5286   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5287   SourceLocation IdentLoc = NameInfo.getLoc();
5288   assert(IdentLoc.isValid() && "Invalid TargetName location.");
5289 
5290   // FIXME: We ignore attributes for now.
5291 
5292   if (SS.isEmpty()) {
5293     Diag(IdentLoc, diag::err_using_requires_qualname);
5294     return 0;
5295   }
5296 
5297   // Do the redeclaration lookup in the current scope.
5298   LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
5299                         ForRedeclaration);
5300   Previous.setHideTags(false);
5301   if (S) {
5302     LookupName(Previous, S);
5303 
5304     // It is really dumb that we have to do this.
5305     LookupResult::Filter F = Previous.makeFilter();
5306     while (F.hasNext()) {
5307       NamedDecl *D = F.next();
5308       if (!isDeclInScope(D, CurContext, S))
5309         F.erase();
5310     }
5311     F.done();
5312   } else {
5313     assert(IsInstantiation && "no scope in non-instantiation");
5314     assert(CurContext->isRecord() && "scope not record in instantiation");
5315     LookupQualifiedName(Previous, CurContext);
5316   }
5317 
5318   // Check for invalid redeclarations.
5319   if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
5320     return 0;
5321 
5322   // Check for bad qualifiers.
5323   if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
5324     return 0;
5325 
5326   DeclContext *LookupContext = computeDeclContext(SS);
5327   NamedDecl *D;
5328   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
5329   if (!LookupContext) {
5330     if (IsTypeName) {
5331       // FIXME: not all declaration name kinds are legal here
5332       D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
5333                                               UsingLoc, TypenameLoc,
5334                                               QualifierLoc,
5335                                               IdentLoc, NameInfo.getName());
5336     } else {
5337       D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
5338                                            QualifierLoc, NameInfo);
5339     }
5340   } else {
5341     D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
5342                           NameInfo, IsTypeName);
5343   }
5344   D->setAccess(AS);
5345   CurContext->addDecl(D);
5346 
5347   if (!LookupContext) return D;
5348   UsingDecl *UD = cast<UsingDecl>(D);
5349 
5350   if (RequireCompleteDeclContext(SS, LookupContext)) {
5351     UD->setInvalidDecl();
5352     return UD;
5353   }
5354 
5355   // Constructor inheriting using decls get special treatment.
5356   if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
5357     if (CheckInheritedConstructorUsingDecl(UD))
5358       UD->setInvalidDecl();
5359     return UD;
5360   }
5361 
5362   // Otherwise, look up the target name.
5363 
5364   LookupResult R(*this, NameInfo, LookupOrdinaryName);
5365   R.setUsingDeclaration(true);
5366 
5367   // Unlike most lookups, we don't always want to hide tag
5368   // declarations: tag names are visible through the using declaration
5369   // even if hidden by ordinary names, *except* in a dependent context
5370   // where it's important for the sanity of two-phase lookup.
5371   if (!IsInstantiation)
5372     R.setHideTags(false);
5373 
5374   LookupQualifiedName(R, LookupContext);
5375 
5376   if (R.empty()) {
5377     Diag(IdentLoc, diag::err_no_member)
5378       << NameInfo.getName() << LookupContext << SS.getRange();
5379     UD->setInvalidDecl();
5380     return UD;
5381   }
5382 
5383   if (R.isAmbiguous()) {
5384     UD->setInvalidDecl();
5385     return UD;
5386   }
5387 
5388   if (IsTypeName) {
5389     // If we asked for a typename and got a non-type decl, error out.
5390     if (!R.getAsSingle<TypeDecl>()) {
5391       Diag(IdentLoc, diag::err_using_typename_non_type);
5392       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
5393         Diag((*I)->getUnderlyingDecl()->getLocation(),
5394              diag::note_using_decl_target);
5395       UD->setInvalidDecl();
5396       return UD;
5397     }
5398   } else {
5399     // If we asked for a non-typename and we got a type, error out,
5400     // but only if this is an instantiation of an unresolved using
5401     // decl.  Otherwise just silently find the type name.
5402     if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
5403       Diag(IdentLoc, diag::err_using_dependent_value_is_type);
5404       Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
5405       UD->setInvalidDecl();
5406       return UD;
5407     }
5408   }
5409 
5410   // C++0x N2914 [namespace.udecl]p6:
5411   // A using-declaration shall not name a namespace.
5412   if (R.getAsSingle<NamespaceDecl>()) {
5413     Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
5414       << SS.getRange();
5415     UD->setInvalidDecl();
5416     return UD;
5417   }
5418 
5419   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
5420     if (!CheckUsingShadowDecl(UD, *I, Previous))
5421       BuildUsingShadowDecl(S, UD, *I);
5422   }
5423 
5424   return UD;
5425 }
5426 
5427 /// Additional checks for a using declaration referring to a constructor name.
CheckInheritedConstructorUsingDecl(UsingDecl * UD)5428 bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
5429   if (UD->isTypeName()) {
5430     // FIXME: Cannot specify typename when specifying constructor
5431     return true;
5432   }
5433 
5434   const Type *SourceType = UD->getQualifier()->getAsType();
5435   assert(SourceType &&
5436          "Using decl naming constructor doesn't have type in scope spec.");
5437   CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
5438 
5439   // Check whether the named type is a direct base class.
5440   CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
5441   CXXRecordDecl::base_class_iterator BaseIt, BaseE;
5442   for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
5443        BaseIt != BaseE; ++BaseIt) {
5444     CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
5445     if (CanonicalSourceType == BaseType)
5446       break;
5447   }
5448 
5449   if (BaseIt == BaseE) {
5450     // Did not find SourceType in the bases.
5451     Diag(UD->getUsingLocation(),
5452          diag::err_using_decl_constructor_not_in_direct_base)
5453       << UD->getNameInfo().getSourceRange()
5454       << QualType(SourceType, 0) << TargetClass;
5455     return true;
5456   }
5457 
5458   BaseIt->setInheritConstructors();
5459 
5460   return false;
5461 }
5462 
5463 /// Checks that the given using declaration is not an invalid
5464 /// redeclaration.  Note that this is checking only for the using decl
5465 /// itself, not for any ill-formedness among the UsingShadowDecls.
CheckUsingDeclRedeclaration(SourceLocation UsingLoc,bool isTypeName,const CXXScopeSpec & SS,SourceLocation NameLoc,const LookupResult & Prev)5466 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5467                                        bool isTypeName,
5468                                        const CXXScopeSpec &SS,
5469                                        SourceLocation NameLoc,
5470                                        const LookupResult &Prev) {
5471   // C++03 [namespace.udecl]p8:
5472   // C++0x [namespace.udecl]p10:
5473   //   A using-declaration is a declaration and can therefore be used
5474   //   repeatedly where (and only where) multiple declarations are
5475   //   allowed.
5476   //
5477   // That's in non-member contexts.
5478   if (!CurContext->getRedeclContext()->isRecord())
5479     return false;
5480 
5481   NestedNameSpecifier *Qual
5482     = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5483 
5484   for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
5485     NamedDecl *D = *I;
5486 
5487     bool DTypename;
5488     NestedNameSpecifier *DQual;
5489     if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
5490       DTypename = UD->isTypeName();
5491       DQual = UD->getQualifier();
5492     } else if (UnresolvedUsingValueDecl *UD
5493                  = dyn_cast<UnresolvedUsingValueDecl>(D)) {
5494       DTypename = false;
5495       DQual = UD->getQualifier();
5496     } else if (UnresolvedUsingTypenameDecl *UD
5497                  = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
5498       DTypename = true;
5499       DQual = UD->getQualifier();
5500     } else continue;
5501 
5502     // using decls differ if one says 'typename' and the other doesn't.
5503     // FIXME: non-dependent using decls?
5504     if (isTypeName != DTypename) continue;
5505 
5506     // using decls differ if they name different scopes (but note that
5507     // template instantiation can cause this check to trigger when it
5508     // didn't before instantiation).
5509     if (Context.getCanonicalNestedNameSpecifier(Qual) !=
5510         Context.getCanonicalNestedNameSpecifier(DQual))
5511       continue;
5512 
5513     Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
5514     Diag(D->getLocation(), diag::note_using_decl) << 1;
5515     return true;
5516   }
5517 
5518   return false;
5519 }
5520 
5521 
5522 /// Checks that the given nested-name qualifier used in a using decl
5523 /// in the current context is appropriately related to the current
5524 /// scope.  If an error is found, diagnoses it and returns true.
CheckUsingDeclQualifier(SourceLocation UsingLoc,const CXXScopeSpec & SS,SourceLocation NameLoc)5525 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
5526                                    const CXXScopeSpec &SS,
5527                                    SourceLocation NameLoc) {
5528   DeclContext *NamedContext = computeDeclContext(SS);
5529 
5530   if (!CurContext->isRecord()) {
5531     // C++03 [namespace.udecl]p3:
5532     // C++0x [namespace.udecl]p8:
5533     //   A using-declaration for a class member shall be a member-declaration.
5534 
5535     // If we weren't able to compute a valid scope, it must be a
5536     // dependent class scope.
5537     if (!NamedContext || NamedContext->isRecord()) {
5538       Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
5539         << SS.getRange();
5540       return true;
5541     }
5542 
5543     // Otherwise, everything is known to be fine.
5544     return false;
5545   }
5546 
5547   // The current scope is a record.
5548 
5549   // If the named context is dependent, we can't decide much.
5550   if (!NamedContext) {
5551     // FIXME: in C++0x, we can diagnose if we can prove that the
5552     // nested-name-specifier does not refer to a base class, which is
5553     // still possible in some cases.
5554 
5555     // Otherwise we have to conservatively report that things might be
5556     // okay.
5557     return false;
5558   }
5559 
5560   if (!NamedContext->isRecord()) {
5561     // Ideally this would point at the last name in the specifier,
5562     // but we don't have that level of source info.
5563     Diag(SS.getRange().getBegin(),
5564          diag::err_using_decl_nested_name_specifier_is_not_class)
5565       << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
5566     return true;
5567   }
5568 
5569   if (!NamedContext->isDependentContext() &&
5570       RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
5571     return true;
5572 
5573   if (getLangOptions().CPlusPlus0x) {
5574     // C++0x [namespace.udecl]p3:
5575     //   In a using-declaration used as a member-declaration, the
5576     //   nested-name-specifier shall name a base class of the class
5577     //   being defined.
5578 
5579     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
5580                                  cast<CXXRecordDecl>(NamedContext))) {
5581       if (CurContext == NamedContext) {
5582         Diag(NameLoc,
5583              diag::err_using_decl_nested_name_specifier_is_current_class)
5584           << SS.getRange();
5585         return true;
5586       }
5587 
5588       Diag(SS.getRange().getBegin(),
5589            diag::err_using_decl_nested_name_specifier_is_not_base_class)
5590         << (NestedNameSpecifier*) SS.getScopeRep()
5591         << cast<CXXRecordDecl>(CurContext)
5592         << SS.getRange();
5593       return true;
5594     }
5595 
5596     return false;
5597   }
5598 
5599   // C++03 [namespace.udecl]p4:
5600   //   A using-declaration used as a member-declaration shall refer
5601   //   to a member of a base class of the class being defined [etc.].
5602 
5603   // Salient point: SS doesn't have to name a base class as long as
5604   // lookup only finds members from base classes.  Therefore we can
5605   // diagnose here only if we can prove that that can't happen,
5606   // i.e. if the class hierarchies provably don't intersect.
5607 
5608   // TODO: it would be nice if "definitely valid" results were cached
5609   // in the UsingDecl and UsingShadowDecl so that these checks didn't
5610   // need to be repeated.
5611 
5612   struct UserData {
5613     llvm::DenseSet<const CXXRecordDecl*> Bases;
5614 
5615     static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
5616       UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5617       Data->Bases.insert(Base);
5618       return true;
5619     }
5620 
5621     bool hasDependentBases(const CXXRecordDecl *Class) {
5622       return !Class->forallBases(collect, this);
5623     }
5624 
5625     /// Returns true if the base is dependent or is one of the
5626     /// accumulated base classes.
5627     static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
5628       UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5629       return !Data->Bases.count(Base);
5630     }
5631 
5632     bool mightShareBases(const CXXRecordDecl *Class) {
5633       return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
5634     }
5635   };
5636 
5637   UserData Data;
5638 
5639   // Returns false if we find a dependent base.
5640   if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
5641     return false;
5642 
5643   // Returns false if the class has a dependent base or if it or one
5644   // of its bases is present in the base set of the current context.
5645   if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
5646     return false;
5647 
5648   Diag(SS.getRange().getBegin(),
5649        diag::err_using_decl_nested_name_specifier_is_not_base_class)
5650     << (NestedNameSpecifier*) SS.getScopeRep()
5651     << cast<CXXRecordDecl>(CurContext)
5652     << SS.getRange();
5653 
5654   return true;
5655 }
5656 
ActOnAliasDeclaration(Scope * S,AccessSpecifier AS,MultiTemplateParamsArg TemplateParamLists,SourceLocation UsingLoc,UnqualifiedId & Name,TypeResult Type)5657 Decl *Sema::ActOnAliasDeclaration(Scope *S,
5658                                   AccessSpecifier AS,
5659                                   MultiTemplateParamsArg TemplateParamLists,
5660                                   SourceLocation UsingLoc,
5661                                   UnqualifiedId &Name,
5662                                   TypeResult Type) {
5663   // Skip up to the relevant declaration scope.
5664   while (S->getFlags() & Scope::TemplateParamScope)
5665     S = S->getParent();
5666   assert((S->getFlags() & Scope::DeclScope) &&
5667          "got alias-declaration outside of declaration scope");
5668 
5669   if (Type.isInvalid())
5670     return 0;
5671 
5672   bool Invalid = false;
5673   DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
5674   TypeSourceInfo *TInfo = 0;
5675   GetTypeFromParser(Type.get(), &TInfo);
5676 
5677   if (DiagnoseClassNameShadow(CurContext, NameInfo))
5678     return 0;
5679 
5680   if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
5681                                       UPPC_DeclarationType)) {
5682     Invalid = true;
5683     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
5684                                              TInfo->getTypeLoc().getBeginLoc());
5685   }
5686 
5687   LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
5688   LookupName(Previous, S);
5689 
5690   // Warn about shadowing the name of a template parameter.
5691   if (Previous.isSingleResult() &&
5692       Previous.getFoundDecl()->isTemplateParameter()) {
5693     if (DiagnoseTemplateParameterShadow(Name.StartLocation,
5694                                         Previous.getFoundDecl()))
5695       Invalid = true;
5696     Previous.clear();
5697   }
5698 
5699   assert(Name.Kind == UnqualifiedId::IK_Identifier &&
5700          "name in alias declaration must be an identifier");
5701   TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
5702                                                Name.StartLocation,
5703                                                Name.Identifier, TInfo);
5704 
5705   NewTD->setAccess(AS);
5706 
5707   if (Invalid)
5708     NewTD->setInvalidDecl();
5709 
5710   CheckTypedefForVariablyModifiedType(S, NewTD);
5711   Invalid |= NewTD->isInvalidDecl();
5712 
5713   bool Redeclaration = false;
5714 
5715   NamedDecl *NewND;
5716   if (TemplateParamLists.size()) {
5717     TypeAliasTemplateDecl *OldDecl = 0;
5718     TemplateParameterList *OldTemplateParams = 0;
5719 
5720     if (TemplateParamLists.size() != 1) {
5721       Diag(UsingLoc, diag::err_alias_template_extra_headers)
5722         << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
5723          TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
5724     }
5725     TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
5726 
5727     // Only consider previous declarations in the same scope.
5728     FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
5729                          /*ExplicitInstantiationOrSpecialization*/false);
5730     if (!Previous.empty()) {
5731       Redeclaration = true;
5732 
5733       OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
5734       if (!OldDecl && !Invalid) {
5735         Diag(UsingLoc, diag::err_redefinition_different_kind)
5736           << Name.Identifier;
5737 
5738         NamedDecl *OldD = Previous.getRepresentativeDecl();
5739         if (OldD->getLocation().isValid())
5740           Diag(OldD->getLocation(), diag::note_previous_definition);
5741 
5742         Invalid = true;
5743       }
5744 
5745       if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
5746         if (TemplateParameterListsAreEqual(TemplateParams,
5747                                            OldDecl->getTemplateParameters(),
5748                                            /*Complain=*/true,
5749                                            TPL_TemplateMatch))
5750           OldTemplateParams = OldDecl->getTemplateParameters();
5751         else
5752           Invalid = true;
5753 
5754         TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
5755         if (!Invalid &&
5756             !Context.hasSameType(OldTD->getUnderlyingType(),
5757                                  NewTD->getUnderlyingType())) {
5758           // FIXME: The C++0x standard does not clearly say this is ill-formed,
5759           // but we can't reasonably accept it.
5760           Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
5761             << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
5762           if (OldTD->getLocation().isValid())
5763             Diag(OldTD->getLocation(), diag::note_previous_definition);
5764           Invalid = true;
5765         }
5766       }
5767     }
5768 
5769     // Merge any previous default template arguments into our parameters,
5770     // and check the parameter list.
5771     if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
5772                                    TPC_TypeAliasTemplate))
5773       return 0;
5774 
5775     TypeAliasTemplateDecl *NewDecl =
5776       TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
5777                                     Name.Identifier, TemplateParams,
5778                                     NewTD);
5779 
5780     NewDecl->setAccess(AS);
5781 
5782     if (Invalid)
5783       NewDecl->setInvalidDecl();
5784     else if (OldDecl)
5785       NewDecl->setPreviousDeclaration(OldDecl);
5786 
5787     NewND = NewDecl;
5788   } else {
5789     ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
5790     NewND = NewTD;
5791   }
5792 
5793   if (!Redeclaration)
5794     PushOnScopeChains(NewND, S);
5795 
5796   return NewND;
5797 }
5798 
ActOnNamespaceAliasDef(Scope * S,SourceLocation NamespaceLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)5799 Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
5800                                              SourceLocation NamespaceLoc,
5801                                              SourceLocation AliasLoc,
5802                                              IdentifierInfo *Alias,
5803                                              CXXScopeSpec &SS,
5804                                              SourceLocation IdentLoc,
5805                                              IdentifierInfo *Ident) {
5806 
5807   // Lookup the namespace name.
5808   LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
5809   LookupParsedName(R, S, &SS);
5810 
5811   // Check if we have a previous declaration with the same name.
5812   NamedDecl *PrevDecl
5813     = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
5814                        ForRedeclaration);
5815   if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
5816     PrevDecl = 0;
5817 
5818   if (PrevDecl) {
5819     if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
5820       // We already have an alias with the same name that points to the same
5821       // namespace, so don't create a new one.
5822       // FIXME: At some point, we'll want to create the (redundant)
5823       // declaration to maintain better source information.
5824       if (!R.isAmbiguous() && !R.empty() &&
5825           AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
5826         return 0;
5827     }
5828 
5829     unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
5830       diag::err_redefinition_different_kind;
5831     Diag(AliasLoc, DiagID) << Alias;
5832     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5833     return 0;
5834   }
5835 
5836   if (R.isAmbiguous())
5837     return 0;
5838 
5839   if (R.empty()) {
5840     if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
5841       Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
5842       return 0;
5843     }
5844   }
5845 
5846   NamespaceAliasDecl *AliasDecl =
5847     NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
5848                                Alias, SS.getWithLocInContext(Context),
5849                                IdentLoc, R.getFoundDecl());
5850 
5851   PushOnScopeChains(AliasDecl, S);
5852   return AliasDecl;
5853 }
5854 
5855 namespace {
5856   /// \brief Scoped object used to handle the state changes required in Sema
5857   /// to implicitly define the body of a C++ member function;
5858   class ImplicitlyDefinedFunctionScope {
5859     Sema &S;
5860     Sema::ContextRAII SavedContext;
5861 
5862   public:
ImplicitlyDefinedFunctionScope(Sema & S,CXXMethodDecl * Method)5863     ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
5864       : S(S), SavedContext(S, Method)
5865     {
5866       S.PushFunctionScope();
5867       S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
5868     }
5869 
~ImplicitlyDefinedFunctionScope()5870     ~ImplicitlyDefinedFunctionScope() {
5871       S.PopExpressionEvaluationContext();
5872       S.PopFunctionOrBlockScope();
5873     }
5874   };
5875 }
5876 
5877 Sema::ImplicitExceptionSpecification
ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl * ClassDecl)5878 Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
5879   // C++ [except.spec]p14:
5880   //   An implicitly declared special member function (Clause 12) shall have an
5881   //   exception-specification. [...]
5882   ImplicitExceptionSpecification ExceptSpec(Context);
5883   if (ClassDecl->isInvalidDecl())
5884     return ExceptSpec;
5885 
5886   // Direct base-class constructors.
5887   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5888                                        BEnd = ClassDecl->bases_end();
5889        B != BEnd; ++B) {
5890     if (B->isVirtual()) // Handled below.
5891       continue;
5892 
5893     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5894       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5895       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
5896       // If this is a deleted function, add it anyway. This might be conformant
5897       // with the standard. This might not. I'm not sure. It might not matter.
5898       if (Constructor)
5899         ExceptSpec.CalledDecl(Constructor);
5900     }
5901   }
5902 
5903   // Virtual base-class constructors.
5904   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5905                                        BEnd = ClassDecl->vbases_end();
5906        B != BEnd; ++B) {
5907     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5908       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5909       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
5910       // If this is a deleted function, add it anyway. This might be conformant
5911       // with the standard. This might not. I'm not sure. It might not matter.
5912       if (Constructor)
5913         ExceptSpec.CalledDecl(Constructor);
5914     }
5915   }
5916 
5917   // Field constructors.
5918   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5919                                FEnd = ClassDecl->field_end();
5920        F != FEnd; ++F) {
5921     if (F->hasInClassInitializer()) {
5922       if (Expr *E = F->getInClassInitializer())
5923         ExceptSpec.CalledExpr(E);
5924       else if (!F->isInvalidDecl())
5925         ExceptSpec.SetDelayed();
5926     } else if (const RecordType *RecordTy
5927               = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
5928       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5929       CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
5930       // If this is a deleted function, add it anyway. This might be conformant
5931       // with the standard. This might not. I'm not sure. It might not matter.
5932       // In particular, the problem is that this function never gets called. It
5933       // might just be ill-formed because this function attempts to refer to
5934       // a deleted function here.
5935       if (Constructor)
5936         ExceptSpec.CalledDecl(Constructor);
5937     }
5938   }
5939 
5940   return ExceptSpec;
5941 }
5942 
DeclareImplicitDefaultConstructor(CXXRecordDecl * ClassDecl)5943 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
5944                                                      CXXRecordDecl *ClassDecl) {
5945   // C++ [class.ctor]p5:
5946   //   A default constructor for a class X is a constructor of class X
5947   //   that can be called without an argument. If there is no
5948   //   user-declared constructor for class X, a default constructor is
5949   //   implicitly declared. An implicitly-declared default constructor
5950   //   is an inline public member of its class.
5951   assert(!ClassDecl->hasUserDeclaredConstructor() &&
5952          "Should not build implicit default constructor!");
5953 
5954   ImplicitExceptionSpecification Spec =
5955     ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
5956   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
5957 
5958   // Create the actual constructor declaration.
5959   CanQualType ClassType
5960     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5961   SourceLocation ClassLoc = ClassDecl->getLocation();
5962   DeclarationName Name
5963     = Context.DeclarationNames.getCXXConstructorName(ClassType);
5964   DeclarationNameInfo NameInfo(Name, ClassLoc);
5965   CXXConstructorDecl *DefaultCon
5966     = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5967                                  Context.getFunctionType(Context.VoidTy,
5968                                                          0, 0, EPI),
5969                                  /*TInfo=*/0,
5970                                  /*isExplicit=*/false,
5971                                  /*isInline=*/true,
5972                                  /*isImplicitlyDeclared=*/true);
5973   DefaultCon->setAccess(AS_public);
5974   DefaultCon->setDefaulted();
5975   DefaultCon->setImplicit();
5976   DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
5977 
5978   // Note that we have declared this constructor.
5979   ++ASTContext::NumImplicitDefaultConstructorsDeclared;
5980 
5981   if (Scope *S = getScopeForContext(ClassDecl))
5982     PushOnScopeChains(DefaultCon, S, false);
5983   ClassDecl->addDecl(DefaultCon);
5984 
5985   if (ShouldDeleteDefaultConstructor(DefaultCon))
5986     DefaultCon->setDeletedAsWritten();
5987 
5988   return DefaultCon;
5989 }
5990 
DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)5991 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
5992                                             CXXConstructorDecl *Constructor) {
5993   assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5994           !Constructor->doesThisDeclarationHaveABody() &&
5995           !Constructor->isDeleted()) &&
5996     "DefineImplicitDefaultConstructor - call it for implicit default ctor");
5997 
5998   CXXRecordDecl *ClassDecl = Constructor->getParent();
5999   assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6000 
6001   ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6002   DiagnosticErrorTrap Trap(Diags);
6003   if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6004       Trap.hasErrorOccurred()) {
6005     Diag(CurrentLocation, diag::note_member_synthesized_at)
6006       << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6007     Constructor->setInvalidDecl();
6008     return;
6009   }
6010 
6011   SourceLocation Loc = Constructor->getLocation();
6012   Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6013 
6014   Constructor->setUsed();
6015   MarkVTableUsed(CurrentLocation, ClassDecl);
6016 
6017   if (ASTMutationListener *L = getASTMutationListener()) {
6018     L->CompletedImplicitDefinition(Constructor);
6019   }
6020 }
6021 
6022 /// Get any existing defaulted default constructor for the given class. Do not
6023 /// implicitly define one if it does not exist.
getDefaultedDefaultConstructorUnsafe(Sema & Self,CXXRecordDecl * D)6024 static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6025                                                              CXXRecordDecl *D) {
6026   ASTContext &Context = Self.Context;
6027   QualType ClassType = Context.getTypeDeclType(D);
6028   DeclarationName ConstructorName
6029     = Context.DeclarationNames.getCXXConstructorName(
6030                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
6031 
6032   DeclContext::lookup_const_iterator Con, ConEnd;
6033   for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6034        Con != ConEnd; ++Con) {
6035     // A function template cannot be defaulted.
6036     if (isa<FunctionTemplateDecl>(*Con))
6037       continue;
6038 
6039     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6040     if (Constructor->isDefaultConstructor())
6041       return Constructor->isDefaulted() ? Constructor : 0;
6042   }
6043   return 0;
6044 }
6045 
ActOnFinishDelayedMemberInitializers(Decl * D)6046 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6047   if (!D) return;
6048   AdjustDeclIfTemplate(D);
6049 
6050   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6051   CXXConstructorDecl *CtorDecl
6052     = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6053 
6054   if (!CtorDecl) return;
6055 
6056   // Compute the exception specification for the default constructor.
6057   const FunctionProtoType *CtorTy =
6058     CtorDecl->getType()->castAs<FunctionProtoType>();
6059   if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6060     ImplicitExceptionSpecification Spec =
6061       ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6062     FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6063     assert(EPI.ExceptionSpecType != EST_Delayed);
6064 
6065     CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6066   }
6067 
6068   // If the default constructor is explicitly defaulted, checking the exception
6069   // specification is deferred until now.
6070   if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6071       !ClassDecl->isDependentType())
6072     CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6073 }
6074 
DeclareInheritedConstructors(CXXRecordDecl * ClassDecl)6075 void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6076   // We start with an initial pass over the base classes to collect those that
6077   // inherit constructors from. If there are none, we can forgo all further
6078   // processing.
6079   typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
6080   BasesVector BasesToInheritFrom;
6081   for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6082                                           BaseE = ClassDecl->bases_end();
6083          BaseIt != BaseE; ++BaseIt) {
6084     if (BaseIt->getInheritConstructors()) {
6085       QualType Base = BaseIt->getType();
6086       if (Base->isDependentType()) {
6087         // If we inherit constructors from anything that is dependent, just
6088         // abort processing altogether. We'll get another chance for the
6089         // instantiations.
6090         return;
6091       }
6092       BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6093     }
6094   }
6095   if (BasesToInheritFrom.empty())
6096     return;
6097 
6098   // Now collect the constructors that we already have in the current class.
6099   // Those take precedence over inherited constructors.
6100   // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6101   //   unless there is a user-declared constructor with the same signature in
6102   //   the class where the using-declaration appears.
6103   llvm::SmallSet<const Type *, 8> ExistingConstructors;
6104   for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6105                                     CtorE = ClassDecl->ctor_end();
6106        CtorIt != CtorE; ++CtorIt) {
6107     ExistingConstructors.insert(
6108         Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6109   }
6110 
6111   Scope *S = getScopeForContext(ClassDecl);
6112   DeclarationName CreatedCtorName =
6113       Context.DeclarationNames.getCXXConstructorName(
6114           ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6115 
6116   // Now comes the true work.
6117   // First, we keep a map from constructor types to the base that introduced
6118   // them. Needed for finding conflicting constructors. We also keep the
6119   // actually inserted declarations in there, for pretty diagnostics.
6120   typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6121   typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6122   ConstructorToSourceMap InheritedConstructors;
6123   for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6124                              BaseE = BasesToInheritFrom.end();
6125        BaseIt != BaseE; ++BaseIt) {
6126     const RecordType *Base = *BaseIt;
6127     CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6128     CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6129     for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6130                                       CtorE = BaseDecl->ctor_end();
6131          CtorIt != CtorE; ++CtorIt) {
6132       // Find the using declaration for inheriting this base's constructors.
6133       DeclarationName Name =
6134           Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6135       UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6136           LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6137       SourceLocation UsingLoc = UD ? UD->getLocation() :
6138                                      ClassDecl->getLocation();
6139 
6140       // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6141       //   from the class X named in the using-declaration consists of actual
6142       //   constructors and notional constructors that result from the
6143       //   transformation of defaulted parameters as follows:
6144       //   - all non-template default constructors of X, and
6145       //   - for each non-template constructor of X that has at least one
6146       //     parameter with a default argument, the set of constructors that
6147       //     results from omitting any ellipsis parameter specification and
6148       //     successively omitting parameters with a default argument from the
6149       //     end of the parameter-type-list.
6150       CXXConstructorDecl *BaseCtor = *CtorIt;
6151       bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6152       const FunctionProtoType *BaseCtorType =
6153           BaseCtor->getType()->getAs<FunctionProtoType>();
6154 
6155       for (unsigned params = BaseCtor->getMinRequiredArguments(),
6156                     maxParams = BaseCtor->getNumParams();
6157            params <= maxParams; ++params) {
6158         // Skip default constructors. They're never inherited.
6159         if (params == 0)
6160           continue;
6161         // Skip copy and move constructors for the same reason.
6162         if (CanBeCopyOrMove && params == 1)
6163           continue;
6164 
6165         // Build up a function type for this particular constructor.
6166         // FIXME: The working paper does not consider that the exception spec
6167         // for the inheriting constructor might be larger than that of the
6168         // source. This code doesn't yet, either. When it does, this code will
6169         // need to be delayed until after exception specifications and in-class
6170         // member initializers are attached.
6171         const Type *NewCtorType;
6172         if (params == maxParams)
6173           NewCtorType = BaseCtorType;
6174         else {
6175           llvm::SmallVector<QualType, 16> Args;
6176           for (unsigned i = 0; i < params; ++i) {
6177             Args.push_back(BaseCtorType->getArgType(i));
6178           }
6179           FunctionProtoType::ExtProtoInfo ExtInfo =
6180               BaseCtorType->getExtProtoInfo();
6181           ExtInfo.Variadic = false;
6182           NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6183                                                 Args.data(), params, ExtInfo)
6184                        .getTypePtr();
6185         }
6186         const Type *CanonicalNewCtorType =
6187             Context.getCanonicalType(NewCtorType);
6188 
6189         // Now that we have the type, first check if the class already has a
6190         // constructor with this signature.
6191         if (ExistingConstructors.count(CanonicalNewCtorType))
6192           continue;
6193 
6194         // Then we check if we have already declared an inherited constructor
6195         // with this signature.
6196         std::pair<ConstructorToSourceMap::iterator, bool> result =
6197             InheritedConstructors.insert(std::make_pair(
6198                 CanonicalNewCtorType,
6199                 std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6200         if (!result.second) {
6201           // Already in the map. If it came from a different class, that's an
6202           // error. Not if it's from the same.
6203           CanQualType PreviousBase = result.first->second.first;
6204           if (CanonicalBase != PreviousBase) {
6205             const CXXConstructorDecl *PrevCtor = result.first->second.second;
6206             const CXXConstructorDecl *PrevBaseCtor =
6207                 PrevCtor->getInheritedConstructor();
6208             assert(PrevBaseCtor && "Conflicting constructor was not inherited");
6209 
6210             Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
6211             Diag(BaseCtor->getLocation(),
6212                  diag::note_using_decl_constructor_conflict_current_ctor);
6213             Diag(PrevBaseCtor->getLocation(),
6214                  diag::note_using_decl_constructor_conflict_previous_ctor);
6215             Diag(PrevCtor->getLocation(),
6216                  diag::note_using_decl_constructor_conflict_previous_using);
6217           }
6218           continue;
6219         }
6220 
6221         // OK, we're there, now add the constructor.
6222         // C++0x [class.inhctor]p8: [...] that would be performed by a
6223         //   user-writtern inline constructor [...]
6224         DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
6225         CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
6226             Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
6227             /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
6228             /*ImplicitlyDeclared=*/true);
6229         NewCtor->setAccess(BaseCtor->getAccess());
6230 
6231         // Build up the parameter decls and add them.
6232         llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
6233         for (unsigned i = 0; i < params; ++i) {
6234           ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
6235                                                    UsingLoc, UsingLoc,
6236                                                    /*IdentifierInfo=*/0,
6237                                                    BaseCtorType->getArgType(i),
6238                                                    /*TInfo=*/0, SC_None,
6239                                                    SC_None, /*DefaultArg=*/0));
6240         }
6241         NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
6242         NewCtor->setInheritedConstructor(BaseCtor);
6243 
6244         PushOnScopeChains(NewCtor, S, false);
6245         ClassDecl->addDecl(NewCtor);
6246         result.first->second.second = NewCtor;
6247       }
6248     }
6249   }
6250 }
6251 
6252 Sema::ImplicitExceptionSpecification
ComputeDefaultedDtorExceptionSpec(CXXRecordDecl * ClassDecl)6253 Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6254   // C++ [except.spec]p14:
6255   //   An implicitly declared special member function (Clause 12) shall have
6256   //   an exception-specification.
6257   ImplicitExceptionSpecification ExceptSpec(Context);
6258   if (ClassDecl->isInvalidDecl())
6259     return ExceptSpec;
6260 
6261   // Direct base-class destructors.
6262   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6263                                        BEnd = ClassDecl->bases_end();
6264        B != BEnd; ++B) {
6265     if (B->isVirtual()) // Handled below.
6266       continue;
6267 
6268     if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6269       ExceptSpec.CalledDecl(
6270                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6271   }
6272 
6273   // Virtual base-class destructors.
6274   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6275                                        BEnd = ClassDecl->vbases_end();
6276        B != BEnd; ++B) {
6277     if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6278       ExceptSpec.CalledDecl(
6279                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6280   }
6281 
6282   // Field destructors.
6283   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6284                                FEnd = ClassDecl->field_end();
6285        F != FEnd; ++F) {
6286     if (const RecordType *RecordTy
6287         = Context.getBaseElementType(F->getType())->getAs<RecordType>())
6288       ExceptSpec.CalledDecl(
6289                   LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
6290   }
6291 
6292   return ExceptSpec;
6293 }
6294 
DeclareImplicitDestructor(CXXRecordDecl * ClassDecl)6295 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
6296   // C++ [class.dtor]p2:
6297   //   If a class has no user-declared destructor, a destructor is
6298   //   declared implicitly. An implicitly-declared destructor is an
6299   //   inline public member of its class.
6300 
6301   ImplicitExceptionSpecification Spec =
6302       ComputeDefaultedDtorExceptionSpec(ClassDecl);
6303   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6304 
6305   // Create the actual destructor declaration.
6306   QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
6307 
6308   CanQualType ClassType
6309     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6310   SourceLocation ClassLoc = ClassDecl->getLocation();
6311   DeclarationName Name
6312     = Context.DeclarationNames.getCXXDestructorName(ClassType);
6313   DeclarationNameInfo NameInfo(Name, ClassLoc);
6314   CXXDestructorDecl *Destructor
6315       = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
6316                                   /*isInline=*/true,
6317                                   /*isImplicitlyDeclared=*/true);
6318   Destructor->setAccess(AS_public);
6319   Destructor->setDefaulted();
6320   Destructor->setImplicit();
6321   Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
6322 
6323   // Note that we have declared this destructor.
6324   ++ASTContext::NumImplicitDestructorsDeclared;
6325 
6326   // Introduce this destructor into its scope.
6327   if (Scope *S = getScopeForContext(ClassDecl))
6328     PushOnScopeChains(Destructor, S, false);
6329   ClassDecl->addDecl(Destructor);
6330 
6331   // This could be uniqued if it ever proves significant.
6332   Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
6333 
6334   if (ShouldDeleteDestructor(Destructor))
6335     Destructor->setDeletedAsWritten();
6336 
6337   AddOverriddenMethods(ClassDecl, Destructor);
6338 
6339   return Destructor;
6340 }
6341 
DefineImplicitDestructor(SourceLocation CurrentLocation,CXXDestructorDecl * Destructor)6342 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
6343                                     CXXDestructorDecl *Destructor) {
6344   assert((Destructor->isDefaulted() &&
6345           !Destructor->doesThisDeclarationHaveABody()) &&
6346          "DefineImplicitDestructor - call it for implicit default dtor");
6347   CXXRecordDecl *ClassDecl = Destructor->getParent();
6348   assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
6349 
6350   if (Destructor->isInvalidDecl())
6351     return;
6352 
6353   ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
6354 
6355   DiagnosticErrorTrap Trap(Diags);
6356   MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6357                                          Destructor->getParent());
6358 
6359   if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
6360     Diag(CurrentLocation, diag::note_member_synthesized_at)
6361       << CXXDestructor << Context.getTagDeclType(ClassDecl);
6362 
6363     Destructor->setInvalidDecl();
6364     return;
6365   }
6366 
6367   SourceLocation Loc = Destructor->getLocation();
6368   Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6369 
6370   Destructor->setUsed();
6371   MarkVTableUsed(CurrentLocation, ClassDecl);
6372 
6373   if (ASTMutationListener *L = getASTMutationListener()) {
6374     L->CompletedImplicitDefinition(Destructor);
6375   }
6376 }
6377 
AdjustDestructorExceptionSpec(CXXRecordDecl * classDecl,CXXDestructorDecl * destructor)6378 void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
6379                                          CXXDestructorDecl *destructor) {
6380   // C++11 [class.dtor]p3:
6381   //   A declaration of a destructor that does not have an exception-
6382   //   specification is implicitly considered to have the same exception-
6383   //   specification as an implicit declaration.
6384   const FunctionProtoType *dtorType = destructor->getType()->
6385                                         getAs<FunctionProtoType>();
6386   if (dtorType->hasExceptionSpec())
6387     return;
6388 
6389   ImplicitExceptionSpecification exceptSpec =
6390       ComputeDefaultedDtorExceptionSpec(classDecl);
6391 
6392   // Replace the destructor's type.
6393   FunctionProtoType::ExtProtoInfo epi;
6394   epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
6395   epi.NumExceptions = exceptSpec.size();
6396   epi.Exceptions = exceptSpec.data();
6397   QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
6398 
6399   destructor->setType(ty);
6400 
6401   // FIXME: If the destructor has a body that could throw, and the newly created
6402   // spec doesn't allow exceptions, we should emit a warning, because this
6403   // change in behavior can break conforming C++03 programs at runtime.
6404   // However, we don't have a body yet, so it needs to be done somewhere else.
6405 }
6406 
6407 /// \brief Builds a statement that copies the given entity from \p From to
6408 /// \c To.
6409 ///
6410 /// This routine is used to copy the members of a class with an
6411 /// implicitly-declared copy assignment operator. When the entities being
6412 /// copied are arrays, this routine builds for loops to copy them.
6413 ///
6414 /// \param S The Sema object used for type-checking.
6415 ///
6416 /// \param Loc The location where the implicit copy is being generated.
6417 ///
6418 /// \param T The type of the expressions being copied. Both expressions must
6419 /// have this type.
6420 ///
6421 /// \param To The expression we are copying to.
6422 ///
6423 /// \param From The expression we are copying from.
6424 ///
6425 /// \param CopyingBaseSubobject Whether we're copying a base subobject.
6426 /// Otherwise, it's a non-static member subobject.
6427 ///
6428 /// \param Depth Internal parameter recording the depth of the recursion.
6429 ///
6430 /// \returns A statement or a loop that copies the expressions.
6431 static StmtResult
BuildSingleCopyAssign(Sema & S,SourceLocation Loc,QualType T,Expr * To,Expr * From,bool CopyingBaseSubobject,unsigned Depth=0)6432 BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
6433                       Expr *To, Expr *From,
6434                       bool CopyingBaseSubobject, unsigned Depth = 0) {
6435   // C++0x [class.copy]p30:
6436   //   Each subobject is assigned in the manner appropriate to its type:
6437   //
6438   //     - if the subobject is of class type, the copy assignment operator
6439   //       for the class is used (as if by explicit qualification; that is,
6440   //       ignoring any possible virtual overriding functions in more derived
6441   //       classes);
6442   if (const RecordType *RecordTy = T->getAs<RecordType>()) {
6443     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6444 
6445     // Look for operator=.
6446     DeclarationName Name
6447       = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6448     LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
6449     S.LookupQualifiedName(OpLookup, ClassDecl, false);
6450 
6451     // Filter out any result that isn't a copy-assignment operator.
6452     LookupResult::Filter F = OpLookup.makeFilter();
6453     while (F.hasNext()) {
6454       NamedDecl *D = F.next();
6455       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
6456         if (Method->isCopyAssignmentOperator())
6457           continue;
6458 
6459       F.erase();
6460     }
6461     F.done();
6462 
6463     // Suppress the protected check (C++ [class.protected]) for each of the
6464     // assignment operators we found. This strange dance is required when
6465     // we're assigning via a base classes's copy-assignment operator. To
6466     // ensure that we're getting the right base class subobject (without
6467     // ambiguities), we need to cast "this" to that subobject type; to
6468     // ensure that we don't go through the virtual call mechanism, we need
6469     // to qualify the operator= name with the base class (see below). However,
6470     // this means that if the base class has a protected copy assignment
6471     // operator, the protected member access check will fail. So, we
6472     // rewrite "protected" access to "public" access in this case, since we
6473     // know by construction that we're calling from a derived class.
6474     if (CopyingBaseSubobject) {
6475       for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
6476            L != LEnd; ++L) {
6477         if (L.getAccess() == AS_protected)
6478           L.setAccess(AS_public);
6479       }
6480     }
6481 
6482     // Create the nested-name-specifier that will be used to qualify the
6483     // reference to operator=; this is required to suppress the virtual
6484     // call mechanism.
6485     CXXScopeSpec SS;
6486     SS.MakeTrivial(S.Context,
6487                    NestedNameSpecifier::Create(S.Context, 0, false,
6488                                                T.getTypePtr()),
6489                    Loc);
6490 
6491     // Create the reference to operator=.
6492     ExprResult OpEqualRef
6493       = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
6494                                    /*FirstQualifierInScope=*/0, OpLookup,
6495                                    /*TemplateArgs=*/0,
6496                                    /*SuppressQualifierCheck=*/true);
6497     if (OpEqualRef.isInvalid())
6498       return StmtError();
6499 
6500     // Build the call to the assignment operator.
6501 
6502     ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
6503                                                   OpEqualRef.takeAs<Expr>(),
6504                                                   Loc, &From, 1, Loc);
6505     if (Call.isInvalid())
6506       return StmtError();
6507 
6508     return S.Owned(Call.takeAs<Stmt>());
6509   }
6510 
6511   //     - if the subobject is of scalar type, the built-in assignment
6512   //       operator is used.
6513   const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
6514   if (!ArrayTy) {
6515     ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
6516     if (Assignment.isInvalid())
6517       return StmtError();
6518 
6519     return S.Owned(Assignment.takeAs<Stmt>());
6520   }
6521 
6522   //     - if the subobject is an array, each element is assigned, in the
6523   //       manner appropriate to the element type;
6524 
6525   // Construct a loop over the array bounds, e.g.,
6526   //
6527   //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
6528   //
6529   // that will copy each of the array elements.
6530   QualType SizeType = S.Context.getSizeType();
6531 
6532   // Create the iteration variable.
6533   IdentifierInfo *IterationVarName = 0;
6534   {
6535     llvm::SmallString<8> Str;
6536     llvm::raw_svector_ostream OS(Str);
6537     OS << "__i" << Depth;
6538     IterationVarName = &S.Context.Idents.get(OS.str());
6539   }
6540   VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
6541                                           IterationVarName, SizeType,
6542                             S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
6543                                           SC_None, SC_None);
6544 
6545   // Initialize the iteration variable to zero.
6546   llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
6547   IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
6548 
6549   // Create a reference to the iteration variable; we'll use this several
6550   // times throughout.
6551   Expr *IterationVarRef
6552     = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
6553   assert(IterationVarRef && "Reference to invented variable cannot fail!");
6554 
6555   // Create the DeclStmt that holds the iteration variable.
6556   Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
6557 
6558   // Create the comparison against the array bound.
6559   llvm::APInt Upper
6560     = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
6561   Expr *Comparison
6562     = new (S.Context) BinaryOperator(IterationVarRef,
6563                      IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
6564                                      BO_NE, S.Context.BoolTy,
6565                                      VK_RValue, OK_Ordinary, Loc);
6566 
6567   // Create the pre-increment of the iteration variable.
6568   Expr *Increment
6569     = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
6570                                     VK_LValue, OK_Ordinary, Loc);
6571 
6572   // Subscript the "from" and "to" expressions with the iteration variable.
6573   From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
6574                                                          IterationVarRef, Loc));
6575   To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
6576                                                        IterationVarRef, Loc));
6577 
6578   // Build the copy for an individual element of the array.
6579   StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
6580                                           To, From, CopyingBaseSubobject,
6581                                           Depth + 1);
6582   if (Copy.isInvalid())
6583     return StmtError();
6584 
6585   // Construct the loop that copies all elements of this array.
6586   return S.ActOnForStmt(Loc, Loc, InitStmt,
6587                         S.MakeFullExpr(Comparison),
6588                         0, S.MakeFullExpr(Increment),
6589                         Loc, Copy.take());
6590 }
6591 
6592 std::pair<Sema::ImplicitExceptionSpecification, bool>
ComputeDefaultedCopyAssignmentExceptionSpecAndConst(CXXRecordDecl * ClassDecl)6593 Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
6594                                                    CXXRecordDecl *ClassDecl) {
6595   if (ClassDecl->isInvalidDecl())
6596     return std::make_pair(ImplicitExceptionSpecification(Context), false);
6597 
6598   // C++ [class.copy]p10:
6599   //   If the class definition does not explicitly declare a copy
6600   //   assignment operator, one is declared implicitly.
6601   //   The implicitly-defined copy assignment operator for a class X
6602   //   will have the form
6603   //
6604   //       X& X::operator=(const X&)
6605   //
6606   //   if
6607   bool HasConstCopyAssignment = true;
6608 
6609   //       -- each direct base class B of X has a copy assignment operator
6610   //          whose parameter is of type const B&, const volatile B& or B,
6611   //          and
6612   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6613                                        BaseEnd = ClassDecl->bases_end();
6614        HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6615     // We'll handle this below
6616     if (LangOpts.CPlusPlus0x && Base->isVirtual())
6617       continue;
6618 
6619     assert(!Base->getType()->isDependentType() &&
6620            "Cannot generate implicit members for class with dependent bases.");
6621     CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
6622     LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
6623                             &HasConstCopyAssignment);
6624   }
6625 
6626   // In C++0x, the above citation has "or virtual added"
6627   if (LangOpts.CPlusPlus0x) {
6628     for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
6629                                          BaseEnd = ClassDecl->vbases_end();
6630          HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6631       assert(!Base->getType()->isDependentType() &&
6632              "Cannot generate implicit members for class with dependent bases.");
6633       CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
6634       LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
6635                               &HasConstCopyAssignment);
6636     }
6637   }
6638 
6639   //       -- for all the nonstatic data members of X that are of a class
6640   //          type M (or array thereof), each such class type has a copy
6641   //          assignment operator whose parameter is of type const M&,
6642   //          const volatile M& or M.
6643   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6644                                   FieldEnd = ClassDecl->field_end();
6645        HasConstCopyAssignment && Field != FieldEnd;
6646        ++Field) {
6647     QualType FieldType = Context.getBaseElementType((*Field)->getType());
6648     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
6649       LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
6650                               &HasConstCopyAssignment);
6651     }
6652   }
6653 
6654   //   Otherwise, the implicitly declared copy assignment operator will
6655   //   have the form
6656   //
6657   //       X& X::operator=(X&)
6658 
6659   // C++ [except.spec]p14:
6660   //   An implicitly declared special member function (Clause 12) shall have an
6661   //   exception-specification. [...]
6662 
6663   // It is unspecified whether or not an implicit copy assignment operator
6664   // attempts to deduplicate calls to assignment operators of virtual bases are
6665   // made. As such, this exception specification is effectively unspecified.
6666   // Based on a similar decision made for constness in C++0x, we're erring on
6667   // the side of assuming such calls to be made regardless of whether they
6668   // actually happen.
6669   ImplicitExceptionSpecification ExceptSpec(Context);
6670   unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
6671   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6672                                        BaseEnd = ClassDecl->bases_end();
6673        Base != BaseEnd; ++Base) {
6674     if (Base->isVirtual())
6675       continue;
6676 
6677     CXXRecordDecl *BaseClassDecl
6678       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6679     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
6680                                                             ArgQuals, false, 0))
6681       ExceptSpec.CalledDecl(CopyAssign);
6682   }
6683 
6684   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
6685                                        BaseEnd = ClassDecl->vbases_end();
6686        Base != BaseEnd; ++Base) {
6687     CXXRecordDecl *BaseClassDecl
6688       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6689     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
6690                                                             ArgQuals, false, 0))
6691       ExceptSpec.CalledDecl(CopyAssign);
6692   }
6693 
6694   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6695                                   FieldEnd = ClassDecl->field_end();
6696        Field != FieldEnd;
6697        ++Field) {
6698     QualType FieldType = Context.getBaseElementType((*Field)->getType());
6699     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
6700       if (CXXMethodDecl *CopyAssign =
6701           LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
6702         ExceptSpec.CalledDecl(CopyAssign);
6703     }
6704   }
6705 
6706   return std::make_pair(ExceptSpec, HasConstCopyAssignment);
6707 }
6708 
DeclareImplicitCopyAssignment(CXXRecordDecl * ClassDecl)6709 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
6710   // Note: The following rules are largely analoguous to the copy
6711   // constructor rules. Note that virtual bases are not taken into account
6712   // for determining the argument type of the operator. Note also that
6713   // operators taking an object instead of a reference are allowed.
6714 
6715   ImplicitExceptionSpecification Spec(Context);
6716   bool Const;
6717   llvm::tie(Spec, Const) =
6718     ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
6719 
6720   QualType ArgType = Context.getTypeDeclType(ClassDecl);
6721   QualType RetType = Context.getLValueReferenceType(ArgType);
6722   if (Const)
6723     ArgType = ArgType.withConst();
6724   ArgType = Context.getLValueReferenceType(ArgType);
6725 
6726   //   An implicitly-declared copy assignment operator is an inline public
6727   //   member of its class.
6728   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6729   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6730   SourceLocation ClassLoc = ClassDecl->getLocation();
6731   DeclarationNameInfo NameInfo(Name, ClassLoc);
6732   CXXMethodDecl *CopyAssignment
6733     = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6734                             Context.getFunctionType(RetType, &ArgType, 1, EPI),
6735                             /*TInfo=*/0, /*isStatic=*/false,
6736                             /*StorageClassAsWritten=*/SC_None,
6737                             /*isInline=*/true,
6738                             SourceLocation());
6739   CopyAssignment->setAccess(AS_public);
6740   CopyAssignment->setDefaulted();
6741   CopyAssignment->setImplicit();
6742   CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
6743 
6744   // Add the parameter to the operator.
6745   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
6746                                                ClassLoc, ClassLoc, /*Id=*/0,
6747                                                ArgType, /*TInfo=*/0,
6748                                                SC_None,
6749                                                SC_None, 0);
6750   CopyAssignment->setParams(&FromParam, 1);
6751 
6752   // Note that we have added this copy-assignment operator.
6753   ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
6754 
6755   if (Scope *S = getScopeForContext(ClassDecl))
6756     PushOnScopeChains(CopyAssignment, S, false);
6757   ClassDecl->addDecl(CopyAssignment);
6758 
6759   // C++0x [class.copy]p18:
6760   //   ... If the class definition declares a move constructor or move
6761   //   assignment operator, the implicitly declared copy assignment operator is
6762   //   defined as deleted; ...
6763   if (ClassDecl->hasUserDeclaredMoveConstructor() ||
6764       ClassDecl->hasUserDeclaredMoveAssignment() ||
6765       ShouldDeleteCopyAssignmentOperator(CopyAssignment))
6766     CopyAssignment->setDeletedAsWritten();
6767 
6768   AddOverriddenMethods(ClassDecl, CopyAssignment);
6769   return CopyAssignment;
6770 }
6771 
DefineImplicitCopyAssignment(SourceLocation CurrentLocation,CXXMethodDecl * CopyAssignOperator)6772 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6773                                         CXXMethodDecl *CopyAssignOperator) {
6774   assert((CopyAssignOperator->isDefaulted() &&
6775           CopyAssignOperator->isOverloadedOperator() &&
6776           CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
6777           !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
6778          "DefineImplicitCopyAssignment called for wrong function");
6779 
6780   CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
6781 
6782   if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
6783     CopyAssignOperator->setInvalidDecl();
6784     return;
6785   }
6786 
6787   CopyAssignOperator->setUsed();
6788 
6789   ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
6790   DiagnosticErrorTrap Trap(Diags);
6791 
6792   // C++0x [class.copy]p30:
6793   //   The implicitly-defined or explicitly-defaulted copy assignment operator
6794   //   for a non-union class X performs memberwise copy assignment of its
6795   //   subobjects. The direct base classes of X are assigned first, in the
6796   //   order of their declaration in the base-specifier-list, and then the
6797   //   immediate non-static data members of X are assigned, in the order in
6798   //   which they were declared in the class definition.
6799 
6800   // The statements that form the synthesized function body.
6801   ASTOwningVector<Stmt*> Statements(*this);
6802 
6803   // The parameter for the "other" object, which we are copying from.
6804   ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
6805   Qualifiers OtherQuals = Other->getType().getQualifiers();
6806   QualType OtherRefType = Other->getType();
6807   if (const LValueReferenceType *OtherRef
6808                                 = OtherRefType->getAs<LValueReferenceType>()) {
6809     OtherRefType = OtherRef->getPointeeType();
6810     OtherQuals = OtherRefType.getQualifiers();
6811   }
6812 
6813   // Our location for everything implicitly-generated.
6814   SourceLocation Loc = CopyAssignOperator->getLocation();
6815 
6816   // Construct a reference to the "other" object. We'll be using this
6817   // throughout the generated ASTs.
6818   Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
6819   assert(OtherRef && "Reference to parameter cannot fail!");
6820 
6821   // Construct the "this" pointer. We'll be using this throughout the generated
6822   // ASTs.
6823   Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
6824   assert(This && "Reference to this cannot fail!");
6825 
6826   // Assign base classes.
6827   bool Invalid = false;
6828   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6829        E = ClassDecl->bases_end(); Base != E; ++Base) {
6830     // Form the assignment:
6831     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
6832     QualType BaseType = Base->getType().getUnqualifiedType();
6833     if (!BaseType->isRecordType()) {
6834       Invalid = true;
6835       continue;
6836     }
6837 
6838     CXXCastPath BasePath;
6839     BasePath.push_back(Base);
6840 
6841     // Construct the "from" expression, which is an implicit cast to the
6842     // appropriately-qualified base type.
6843     Expr *From = OtherRef;
6844     From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
6845                              CK_UncheckedDerivedToBase,
6846                              VK_LValue, &BasePath).take();
6847 
6848     // Dereference "this".
6849     ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
6850 
6851     // Implicitly cast "this" to the appropriately-qualified base type.
6852     To = ImpCastExprToType(To.take(),
6853                            Context.getCVRQualifiedType(BaseType,
6854                                      CopyAssignOperator->getTypeQualifiers()),
6855                            CK_UncheckedDerivedToBase,
6856                            VK_LValue, &BasePath);
6857 
6858     // Build the copy.
6859     StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
6860                                             To.get(), From,
6861                                             /*CopyingBaseSubobject=*/true);
6862     if (Copy.isInvalid()) {
6863       Diag(CurrentLocation, diag::note_member_synthesized_at)
6864         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6865       CopyAssignOperator->setInvalidDecl();
6866       return;
6867     }
6868 
6869     // Success! Record the copy.
6870     Statements.push_back(Copy.takeAs<Expr>());
6871   }
6872 
6873   // \brief Reference to the __builtin_memcpy function.
6874   Expr *BuiltinMemCpyRef = 0;
6875   // \brief Reference to the __builtin_objc_memmove_collectable function.
6876   Expr *CollectableMemCpyRef = 0;
6877 
6878   // Assign non-static members.
6879   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6880                                   FieldEnd = ClassDecl->field_end();
6881        Field != FieldEnd; ++Field) {
6882     // Check for members of reference type; we can't copy those.
6883     if (Field->getType()->isReferenceType()) {
6884       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6885         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
6886       Diag(Field->getLocation(), diag::note_declared_at);
6887       Diag(CurrentLocation, diag::note_member_synthesized_at)
6888         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6889       Invalid = true;
6890       continue;
6891     }
6892 
6893     // Check for members of const-qualified, non-class type.
6894     QualType BaseType = Context.getBaseElementType(Field->getType());
6895     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
6896       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6897         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
6898       Diag(Field->getLocation(), diag::note_declared_at);
6899       Diag(CurrentLocation, diag::note_member_synthesized_at)
6900         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6901       Invalid = true;
6902       continue;
6903     }
6904 
6905     // Suppress assigning zero-width bitfields.
6906     if (const Expr *Width = Field->getBitWidth())
6907       if (Width->EvaluateAsInt(Context) == 0)
6908         continue;
6909 
6910     QualType FieldType = Field->getType().getNonReferenceType();
6911     if (FieldType->isIncompleteArrayType()) {
6912       assert(ClassDecl->hasFlexibleArrayMember() &&
6913              "Incomplete array type is not valid");
6914       continue;
6915     }
6916 
6917     // Build references to the field in the object we're copying from and to.
6918     CXXScopeSpec SS; // Intentionally empty
6919     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
6920                               LookupMemberName);
6921     MemberLookup.addDecl(*Field);
6922     MemberLookup.resolveKind();
6923     ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
6924                                                Loc, /*IsArrow=*/false,
6925                                                SS, 0, MemberLookup, 0);
6926     ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
6927                                              Loc, /*IsArrow=*/true,
6928                                              SS, 0, MemberLookup, 0);
6929     assert(!From.isInvalid() && "Implicit field reference cannot fail");
6930     assert(!To.isInvalid() && "Implicit field reference cannot fail");
6931 
6932     // If the field should be copied with __builtin_memcpy rather than via
6933     // explicit assignments, do so. This optimization only applies for arrays
6934     // of scalars and arrays of class type with trivial copy-assignment
6935     // operators.
6936     if (FieldType->isArrayType() &&
6937         BaseType.hasTrivialCopyAssignment(Context)) {
6938       // Compute the size of the memory buffer to be copied.
6939       QualType SizeType = Context.getSizeType();
6940       llvm::APInt Size(Context.getTypeSize(SizeType),
6941                        Context.getTypeSizeInChars(BaseType).getQuantity());
6942       for (const ConstantArrayType *Array
6943               = Context.getAsConstantArrayType(FieldType);
6944            Array;
6945            Array = Context.getAsConstantArrayType(Array->getElementType())) {
6946         llvm::APInt ArraySize
6947           = Array->getSize().zextOrTrunc(Size.getBitWidth());
6948         Size *= ArraySize;
6949       }
6950 
6951       // Take the address of the field references for "from" and "to".
6952       From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
6953       To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
6954 
6955       bool NeedsCollectableMemCpy =
6956           (BaseType->isRecordType() &&
6957            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
6958 
6959       if (NeedsCollectableMemCpy) {
6960         if (!CollectableMemCpyRef) {
6961           // Create a reference to the __builtin_objc_memmove_collectable function.
6962           LookupResult R(*this,
6963                          &Context.Idents.get("__builtin_objc_memmove_collectable"),
6964                          Loc, LookupOrdinaryName);
6965           LookupName(R, TUScope, true);
6966 
6967           FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
6968           if (!CollectableMemCpy) {
6969             // Something went horribly wrong earlier, and we will have
6970             // complained about it.
6971             Invalid = true;
6972             continue;
6973           }
6974 
6975           CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
6976                                                   CollectableMemCpy->getType(),
6977                                                   VK_LValue, Loc, 0).take();
6978           assert(CollectableMemCpyRef && "Builtin reference cannot fail");
6979         }
6980       }
6981       // Create a reference to the __builtin_memcpy builtin function.
6982       else if (!BuiltinMemCpyRef) {
6983         LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
6984                        LookupOrdinaryName);
6985         LookupName(R, TUScope, true);
6986 
6987         FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
6988         if (!BuiltinMemCpy) {
6989           // Something went horribly wrong earlier, and we will have complained
6990           // about it.
6991           Invalid = true;
6992           continue;
6993         }
6994 
6995         BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
6996                                             BuiltinMemCpy->getType(),
6997                                             VK_LValue, Loc, 0).take();
6998         assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
6999       }
7000 
7001       ASTOwningVector<Expr*> CallArgs(*this);
7002       CallArgs.push_back(To.takeAs<Expr>());
7003       CallArgs.push_back(From.takeAs<Expr>());
7004       CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7005       ExprResult Call = ExprError();
7006       if (NeedsCollectableMemCpy)
7007         Call = ActOnCallExpr(/*Scope=*/0,
7008                              CollectableMemCpyRef,
7009                              Loc, move_arg(CallArgs),
7010                              Loc);
7011       else
7012         Call = ActOnCallExpr(/*Scope=*/0,
7013                              BuiltinMemCpyRef,
7014                              Loc, move_arg(CallArgs),
7015                              Loc);
7016 
7017       assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7018       Statements.push_back(Call.takeAs<Expr>());
7019       continue;
7020     }
7021 
7022     // Build the copy of this field.
7023     StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7024                                                   To.get(), From.get(),
7025                                               /*CopyingBaseSubobject=*/false);
7026     if (Copy.isInvalid()) {
7027       Diag(CurrentLocation, diag::note_member_synthesized_at)
7028         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7029       CopyAssignOperator->setInvalidDecl();
7030       return;
7031     }
7032 
7033     // Success! Record the copy.
7034     Statements.push_back(Copy.takeAs<Stmt>());
7035   }
7036 
7037   if (!Invalid) {
7038     // Add a "return *this;"
7039     ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7040 
7041     StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7042     if (Return.isInvalid())
7043       Invalid = true;
7044     else {
7045       Statements.push_back(Return.takeAs<Stmt>());
7046 
7047       if (Trap.hasErrorOccurred()) {
7048         Diag(CurrentLocation, diag::note_member_synthesized_at)
7049           << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7050         Invalid = true;
7051       }
7052     }
7053   }
7054 
7055   if (Invalid) {
7056     CopyAssignOperator->setInvalidDecl();
7057     return;
7058   }
7059 
7060   StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7061                                             /*isStmtExpr=*/false);
7062   assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7063   CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7064 
7065   if (ASTMutationListener *L = getASTMutationListener()) {
7066     L->CompletedImplicitDefinition(CopyAssignOperator);
7067   }
7068 }
7069 
7070 std::pair<Sema::ImplicitExceptionSpecification, bool>
ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl * ClassDecl)7071 Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
7072   if (ClassDecl->isInvalidDecl())
7073     return std::make_pair(ImplicitExceptionSpecification(Context), false);
7074 
7075   // C++ [class.copy]p5:
7076   //   The implicitly-declared copy constructor for a class X will
7077   //   have the form
7078   //
7079   //       X::X(const X&)
7080   //
7081   //   if
7082   // FIXME: It ought to be possible to store this on the record.
7083   bool HasConstCopyConstructor = true;
7084 
7085   //     -- each direct or virtual base class B of X has a copy
7086   //        constructor whose first parameter is of type const B& or
7087   //        const volatile B&, and
7088   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7089                                        BaseEnd = ClassDecl->bases_end();
7090        HasConstCopyConstructor && Base != BaseEnd;
7091        ++Base) {
7092     // Virtual bases are handled below.
7093     if (Base->isVirtual())
7094       continue;
7095 
7096     CXXRecordDecl *BaseClassDecl
7097       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7098     LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
7099                              &HasConstCopyConstructor);
7100   }
7101 
7102   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7103                                        BaseEnd = ClassDecl->vbases_end();
7104        HasConstCopyConstructor && Base != BaseEnd;
7105        ++Base) {
7106     CXXRecordDecl *BaseClassDecl
7107       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7108     LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
7109                              &HasConstCopyConstructor);
7110   }
7111 
7112   //     -- for all the nonstatic data members of X that are of a
7113   //        class type M (or array thereof), each such class type
7114   //        has a copy constructor whose first parameter is of type
7115   //        const M& or const volatile M&.
7116   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7117                                   FieldEnd = ClassDecl->field_end();
7118        HasConstCopyConstructor && Field != FieldEnd;
7119        ++Field) {
7120     QualType FieldType = Context.getBaseElementType((*Field)->getType());
7121     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7122       LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
7123                                &HasConstCopyConstructor);
7124     }
7125   }
7126   //   Otherwise, the implicitly declared copy constructor will have
7127   //   the form
7128   //
7129   //       X::X(X&)
7130 
7131   // C++ [except.spec]p14:
7132   //   An implicitly declared special member function (Clause 12) shall have an
7133   //   exception-specification. [...]
7134   ImplicitExceptionSpecification ExceptSpec(Context);
7135   unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
7136   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7137                                        BaseEnd = ClassDecl->bases_end();
7138        Base != BaseEnd;
7139        ++Base) {
7140     // Virtual bases are handled below.
7141     if (Base->isVirtual())
7142       continue;
7143 
7144     CXXRecordDecl *BaseClassDecl
7145       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7146     if (CXXConstructorDecl *CopyConstructor =
7147           LookupCopyingConstructor(BaseClassDecl, Quals))
7148       ExceptSpec.CalledDecl(CopyConstructor);
7149   }
7150   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7151                                        BaseEnd = ClassDecl->vbases_end();
7152        Base != BaseEnd;
7153        ++Base) {
7154     CXXRecordDecl *BaseClassDecl
7155       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7156     if (CXXConstructorDecl *CopyConstructor =
7157           LookupCopyingConstructor(BaseClassDecl, Quals))
7158       ExceptSpec.CalledDecl(CopyConstructor);
7159   }
7160   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7161                                   FieldEnd = ClassDecl->field_end();
7162        Field != FieldEnd;
7163        ++Field) {
7164     QualType FieldType = Context.getBaseElementType((*Field)->getType());
7165     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7166       if (CXXConstructorDecl *CopyConstructor =
7167         LookupCopyingConstructor(FieldClassDecl, Quals))
7168       ExceptSpec.CalledDecl(CopyConstructor);
7169     }
7170   }
7171 
7172   return std::make_pair(ExceptSpec, HasConstCopyConstructor);
7173 }
7174 
DeclareImplicitCopyConstructor(CXXRecordDecl * ClassDecl)7175 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
7176                                                     CXXRecordDecl *ClassDecl) {
7177   // C++ [class.copy]p4:
7178   //   If the class definition does not explicitly declare a copy
7179   //   constructor, one is declared implicitly.
7180 
7181   ImplicitExceptionSpecification Spec(Context);
7182   bool Const;
7183   llvm::tie(Spec, Const) =
7184     ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
7185 
7186   QualType ClassType = Context.getTypeDeclType(ClassDecl);
7187   QualType ArgType = ClassType;
7188   if (Const)
7189     ArgType = ArgType.withConst();
7190   ArgType = Context.getLValueReferenceType(ArgType);
7191 
7192   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7193 
7194   DeclarationName Name
7195     = Context.DeclarationNames.getCXXConstructorName(
7196                                            Context.getCanonicalType(ClassType));
7197   SourceLocation ClassLoc = ClassDecl->getLocation();
7198   DeclarationNameInfo NameInfo(Name, ClassLoc);
7199 
7200   //   An implicitly-declared copy constructor is an inline public
7201   //   member of its class.
7202   CXXConstructorDecl *CopyConstructor
7203     = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7204                                  Context.getFunctionType(Context.VoidTy,
7205                                                          &ArgType, 1, EPI),
7206                                  /*TInfo=*/0,
7207                                  /*isExplicit=*/false,
7208                                  /*isInline=*/true,
7209                                  /*isImplicitlyDeclared=*/true);
7210   CopyConstructor->setAccess(AS_public);
7211   CopyConstructor->setDefaulted();
7212   CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
7213 
7214   // Note that we have declared this constructor.
7215   ++ASTContext::NumImplicitCopyConstructorsDeclared;
7216 
7217   // Add the parameter to the constructor.
7218   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
7219                                                ClassLoc, ClassLoc,
7220                                                /*IdentifierInfo=*/0,
7221                                                ArgType, /*TInfo=*/0,
7222                                                SC_None,
7223                                                SC_None, 0);
7224   CopyConstructor->setParams(&FromParam, 1);
7225 
7226   if (Scope *S = getScopeForContext(ClassDecl))
7227     PushOnScopeChains(CopyConstructor, S, false);
7228   ClassDecl->addDecl(CopyConstructor);
7229 
7230   // C++0x [class.copy]p7:
7231   //   ... If the class definition declares a move constructor or move
7232   //   assignment operator, the implicitly declared constructor is defined as
7233   //   deleted; ...
7234   if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7235       ClassDecl->hasUserDeclaredMoveAssignment() ||
7236       ShouldDeleteCopyConstructor(CopyConstructor))
7237     CopyConstructor->setDeletedAsWritten();
7238 
7239   return CopyConstructor;
7240 }
7241 
DefineImplicitCopyConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * CopyConstructor)7242 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
7243                                    CXXConstructorDecl *CopyConstructor) {
7244   assert((CopyConstructor->isDefaulted() &&
7245           CopyConstructor->isCopyConstructor() &&
7246           !CopyConstructor->doesThisDeclarationHaveABody()) &&
7247          "DefineImplicitCopyConstructor - call it for implicit copy ctor");
7248 
7249   CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
7250   assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
7251 
7252   ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
7253   DiagnosticErrorTrap Trap(Diags);
7254 
7255   if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
7256       Trap.hasErrorOccurred()) {
7257     Diag(CurrentLocation, diag::note_member_synthesized_at)
7258       << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
7259     CopyConstructor->setInvalidDecl();
7260   }  else {
7261     CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
7262                                                CopyConstructor->getLocation(),
7263                                                MultiStmtArg(*this, 0, 0),
7264                                                /*isStmtExpr=*/false)
7265                                                               .takeAs<Stmt>());
7266   }
7267 
7268   CopyConstructor->setUsed();
7269 
7270   if (ASTMutationListener *L = getASTMutationListener()) {
7271     L->CompletedImplicitDefinition(CopyConstructor);
7272   }
7273 }
7274 
7275 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,MultiExprArg ExprArgs,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)7276 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7277                             CXXConstructorDecl *Constructor,
7278                             MultiExprArg ExprArgs,
7279                             bool RequiresZeroInit,
7280                             unsigned ConstructKind,
7281                             SourceRange ParenRange) {
7282   bool Elidable = false;
7283 
7284   // C++0x [class.copy]p34:
7285   //   When certain criteria are met, an implementation is allowed to
7286   //   omit the copy/move construction of a class object, even if the
7287   //   copy/move constructor and/or destructor for the object have
7288   //   side effects. [...]
7289   //     - when a temporary class object that has not been bound to a
7290   //       reference (12.2) would be copied/moved to a class object
7291   //       with the same cv-unqualified type, the copy/move operation
7292   //       can be omitted by constructing the temporary object
7293   //       directly into the target of the omitted copy/move
7294   if (ConstructKind == CXXConstructExpr::CK_Complete &&
7295       Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
7296     Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
7297     Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
7298   }
7299 
7300   return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
7301                                Elidable, move(ExprArgs), RequiresZeroInit,
7302                                ConstructKind, ParenRange);
7303 }
7304 
7305 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
7306 /// including handling of its default argument expressions.
7307 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,bool Elidable,MultiExprArg ExprArgs,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)7308 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7309                             CXXConstructorDecl *Constructor, bool Elidable,
7310                             MultiExprArg ExprArgs,
7311                             bool RequiresZeroInit,
7312                             unsigned ConstructKind,
7313                             SourceRange ParenRange) {
7314   unsigned NumExprs = ExprArgs.size();
7315   Expr **Exprs = (Expr **)ExprArgs.release();
7316 
7317   for (specific_attr_iterator<NonNullAttr>
7318            i = Constructor->specific_attr_begin<NonNullAttr>(),
7319            e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
7320     const NonNullAttr *NonNull = *i;
7321     CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
7322   }
7323 
7324   MarkDeclarationReferenced(ConstructLoc, Constructor);
7325   return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
7326                                         Constructor, Elidable, Exprs, NumExprs,
7327                                         RequiresZeroInit,
7328               static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
7329                                         ParenRange));
7330 }
7331 
InitializeVarWithConstructor(VarDecl * VD,CXXConstructorDecl * Constructor,MultiExprArg Exprs)7332 bool Sema::InitializeVarWithConstructor(VarDecl *VD,
7333                                         CXXConstructorDecl *Constructor,
7334                                         MultiExprArg Exprs) {
7335   // FIXME: Provide the correct paren SourceRange when available.
7336   ExprResult TempResult =
7337     BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
7338                           move(Exprs), false, CXXConstructExpr::CK_Complete,
7339                           SourceRange());
7340   if (TempResult.isInvalid())
7341     return true;
7342 
7343   Expr *Temp = TempResult.takeAs<Expr>();
7344   CheckImplicitConversions(Temp, VD->getLocation());
7345   MarkDeclarationReferenced(VD->getLocation(), Constructor);
7346   Temp = MaybeCreateExprWithCleanups(Temp);
7347   VD->setInit(Temp);
7348 
7349   return false;
7350 }
7351 
FinalizeVarWithDestructor(VarDecl * VD,const RecordType * Record)7352 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
7353   if (VD->isInvalidDecl()) return;
7354 
7355   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
7356   if (ClassDecl->isInvalidDecl()) return;
7357   if (ClassDecl->hasTrivialDestructor()) return;
7358   if (ClassDecl->isDependentContext()) return;
7359 
7360   CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
7361   MarkDeclarationReferenced(VD->getLocation(), Destructor);
7362   CheckDestructorAccess(VD->getLocation(), Destructor,
7363                         PDiag(diag::err_access_dtor_var)
7364                         << VD->getDeclName()
7365                         << VD->getType());
7366 
7367   if (!VD->hasGlobalStorage()) return;
7368 
7369   // Emit warning for non-trivial dtor in global scope (a real global,
7370   // class-static, function-static).
7371   Diag(VD->getLocation(), diag::warn_exit_time_destructor);
7372 
7373   // TODO: this should be re-enabled for static locals by !CXAAtExit
7374   if (!VD->isStaticLocal())
7375     Diag(VD->getLocation(), diag::warn_global_destructor);
7376 }
7377 
7378 /// AddCXXDirectInitializerToDecl - This action is called immediately after
7379 /// ActOnDeclarator, when a C++ direct initializer is present.
7380 /// e.g: "int x(1);"
AddCXXDirectInitializerToDecl(Decl * RealDecl,SourceLocation LParenLoc,MultiExprArg Exprs,SourceLocation RParenLoc,bool TypeMayContainAuto)7381 void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
7382                                          SourceLocation LParenLoc,
7383                                          MultiExprArg Exprs,
7384                                          SourceLocation RParenLoc,
7385                                          bool TypeMayContainAuto) {
7386   assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
7387 
7388   // If there is no declaration, there was an error parsing it.  Just ignore
7389   // the initializer.
7390   if (RealDecl == 0)
7391     return;
7392 
7393   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7394   if (!VDecl) {
7395     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7396     RealDecl->setInvalidDecl();
7397     return;
7398   }
7399 
7400   // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7401   if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
7402     // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
7403     if (Exprs.size() > 1) {
7404       Diag(Exprs.get()[1]->getSourceRange().getBegin(),
7405            diag::err_auto_var_init_multiple_expressions)
7406         << VDecl->getDeclName() << VDecl->getType()
7407         << VDecl->getSourceRange();
7408       RealDecl->setInvalidDecl();
7409       return;
7410     }
7411 
7412     Expr *Init = Exprs.get()[0];
7413     TypeSourceInfo *DeducedType = 0;
7414     if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
7415       Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
7416         << VDecl->getDeclName() << VDecl->getType() << Init->getType()
7417         << Init->getSourceRange();
7418     if (!DeducedType) {
7419       RealDecl->setInvalidDecl();
7420       return;
7421     }
7422     VDecl->setTypeSourceInfo(DeducedType);
7423     VDecl->setType(DeducedType->getType());
7424 
7425     // In ARC, infer lifetime.
7426     if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7427       VDecl->setInvalidDecl();
7428 
7429     // If this is a redeclaration, check that the type we just deduced matches
7430     // the previously declared type.
7431     if (VarDecl *Old = VDecl->getPreviousDeclaration())
7432       MergeVarDeclTypes(VDecl, Old);
7433   }
7434 
7435   // We will represent direct-initialization similarly to copy-initialization:
7436   //    int x(1);  -as-> int x = 1;
7437   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7438   //
7439   // Clients that want to distinguish between the two forms, can check for
7440   // direct initializer using VarDecl::hasCXXDirectInitializer().
7441   // A major benefit is that clients that don't particularly care about which
7442   // exactly form was it (like the CodeGen) can handle both cases without
7443   // special case code.
7444 
7445   // C++ 8.5p11:
7446   // The form of initialization (using parentheses or '=') is generally
7447   // insignificant, but does matter when the entity being initialized has a
7448   // class type.
7449 
7450   if (!VDecl->getType()->isDependentType() &&
7451       RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
7452                           diag::err_typecheck_decl_incomplete_type)) {
7453     VDecl->setInvalidDecl();
7454     return;
7455   }
7456 
7457   // The variable can not have an abstract class type.
7458   if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7459                              diag::err_abstract_type_in_decl,
7460                              AbstractVariableType))
7461     VDecl->setInvalidDecl();
7462 
7463   const VarDecl *Def;
7464   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7465     Diag(VDecl->getLocation(), diag::err_redefinition)
7466     << VDecl->getDeclName();
7467     Diag(Def->getLocation(), diag::note_previous_definition);
7468     VDecl->setInvalidDecl();
7469     return;
7470   }
7471 
7472   // C++ [class.static.data]p4
7473   //   If a static data member is of const integral or const
7474   //   enumeration type, its declaration in the class definition can
7475   //   specify a constant-initializer which shall be an integral
7476   //   constant expression (5.19). In that case, the member can appear
7477   //   in integral constant expressions. The member shall still be
7478   //   defined in a namespace scope if it is used in the program and the
7479   //   namespace scope definition shall not contain an initializer.
7480   //
7481   // We already performed a redefinition check above, but for static
7482   // data members we also need to check whether there was an in-class
7483   // declaration with an initializer.
7484   const VarDecl* PrevInit = 0;
7485   if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7486     Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
7487     Diag(PrevInit->getLocation(), diag::note_previous_definition);
7488     return;
7489   }
7490 
7491   bool IsDependent = false;
7492   for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
7493     if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
7494       VDecl->setInvalidDecl();
7495       return;
7496     }
7497 
7498     if (Exprs.get()[I]->isTypeDependent())
7499       IsDependent = true;
7500   }
7501 
7502   // If either the declaration has a dependent type or if any of the
7503   // expressions is type-dependent, we represent the initialization
7504   // via a ParenListExpr for later use during template instantiation.
7505   if (VDecl->getType()->isDependentType() || IsDependent) {
7506     // Let clients know that initialization was done with a direct initializer.
7507     VDecl->setCXXDirectInitializer(true);
7508 
7509     // Store the initialization expressions as a ParenListExpr.
7510     unsigned NumExprs = Exprs.size();
7511     VDecl->setInit(new (Context) ParenListExpr(
7512         Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
7513         VDecl->getType().getNonReferenceType()));
7514     return;
7515   }
7516 
7517   // Capture the variable that is being initialized and the style of
7518   // initialization.
7519   InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7520 
7521   // FIXME: Poor source location information.
7522   InitializationKind Kind
7523     = InitializationKind::CreateDirect(VDecl->getLocation(),
7524                                        LParenLoc, RParenLoc);
7525 
7526   InitializationSequence InitSeq(*this, Entity, Kind,
7527                                  Exprs.get(), Exprs.size());
7528   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
7529   if (Result.isInvalid()) {
7530     VDecl->setInvalidDecl();
7531     return;
7532   }
7533 
7534   CheckImplicitConversions(Result.get(), LParenLoc);
7535 
7536   Result = MaybeCreateExprWithCleanups(Result);
7537   VDecl->setInit(Result.takeAs<Expr>());
7538   VDecl->setCXXDirectInitializer(true);
7539 
7540   CheckCompleteVariableDeclaration(VDecl);
7541 }
7542 
7543 /// \brief Given a constructor and the set of arguments provided for the
7544 /// constructor, convert the arguments and add any required default arguments
7545 /// to form a proper call to this constructor.
7546 ///
7547 /// \returns true if an error occurred, false otherwise.
7548 bool
CompleteConstructorCall(CXXConstructorDecl * Constructor,MultiExprArg ArgsPtr,SourceLocation Loc,ASTOwningVector<Expr * > & ConvertedArgs)7549 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
7550                               MultiExprArg ArgsPtr,
7551                               SourceLocation Loc,
7552                               ASTOwningVector<Expr*> &ConvertedArgs) {
7553   // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
7554   unsigned NumArgs = ArgsPtr.size();
7555   Expr **Args = (Expr **)ArgsPtr.get();
7556 
7557   const FunctionProtoType *Proto
7558     = Constructor->getType()->getAs<FunctionProtoType>();
7559   assert(Proto && "Constructor without a prototype?");
7560   unsigned NumArgsInProto = Proto->getNumArgs();
7561 
7562   // If too few arguments are available, we'll fill in the rest with defaults.
7563   if (NumArgs < NumArgsInProto)
7564     ConvertedArgs.reserve(NumArgsInProto);
7565   else
7566     ConvertedArgs.reserve(NumArgs);
7567 
7568   VariadicCallType CallType =
7569     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
7570   llvm::SmallVector<Expr *, 8> AllArgs;
7571   bool Invalid = GatherArgumentsForCall(Loc, Constructor,
7572                                         Proto, 0, Args, NumArgs, AllArgs,
7573                                         CallType);
7574   for (unsigned i =0, size = AllArgs.size(); i < size; i++)
7575     ConvertedArgs.push_back(AllArgs[i]);
7576   return Invalid;
7577 }
7578 
7579 static inline bool
CheckOperatorNewDeleteDeclarationScope(Sema & SemaRef,const FunctionDecl * FnDecl)7580 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
7581                                        const FunctionDecl *FnDecl) {
7582   const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
7583   if (isa<NamespaceDecl>(DC)) {
7584     return SemaRef.Diag(FnDecl->getLocation(),
7585                         diag::err_operator_new_delete_declared_in_namespace)
7586       << FnDecl->getDeclName();
7587   }
7588 
7589   if (isa<TranslationUnitDecl>(DC) &&
7590       FnDecl->getStorageClass() == SC_Static) {
7591     return SemaRef.Diag(FnDecl->getLocation(),
7592                         diag::err_operator_new_delete_declared_static)
7593       << FnDecl->getDeclName();
7594   }
7595 
7596   return false;
7597 }
7598 
7599 static inline bool
CheckOperatorNewDeleteTypes(Sema & SemaRef,const FunctionDecl * FnDecl,CanQualType ExpectedResultType,CanQualType ExpectedFirstParamType,unsigned DependentParamTypeDiag,unsigned InvalidParamTypeDiag)7600 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
7601                             CanQualType ExpectedResultType,
7602                             CanQualType ExpectedFirstParamType,
7603                             unsigned DependentParamTypeDiag,
7604                             unsigned InvalidParamTypeDiag) {
7605   QualType ResultType =
7606     FnDecl->getType()->getAs<FunctionType>()->getResultType();
7607 
7608   // Check that the result type is not dependent.
7609   if (ResultType->isDependentType())
7610     return SemaRef.Diag(FnDecl->getLocation(),
7611                         diag::err_operator_new_delete_dependent_result_type)
7612     << FnDecl->getDeclName() << ExpectedResultType;
7613 
7614   // Check that the result type is what we expect.
7615   if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
7616     return SemaRef.Diag(FnDecl->getLocation(),
7617                         diag::err_operator_new_delete_invalid_result_type)
7618     << FnDecl->getDeclName() << ExpectedResultType;
7619 
7620   // A function template must have at least 2 parameters.
7621   if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
7622     return SemaRef.Diag(FnDecl->getLocation(),
7623                       diag::err_operator_new_delete_template_too_few_parameters)
7624         << FnDecl->getDeclName();
7625 
7626   // The function decl must have at least 1 parameter.
7627   if (FnDecl->getNumParams() == 0)
7628     return SemaRef.Diag(FnDecl->getLocation(),
7629                         diag::err_operator_new_delete_too_few_parameters)
7630       << FnDecl->getDeclName();
7631 
7632   // Check the the first parameter type is not dependent.
7633   QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
7634   if (FirstParamType->isDependentType())
7635     return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
7636       << FnDecl->getDeclName() << ExpectedFirstParamType;
7637 
7638   // Check that the first parameter type is what we expect.
7639   if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
7640       ExpectedFirstParamType)
7641     return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
7642     << FnDecl->getDeclName() << ExpectedFirstParamType;
7643 
7644   return false;
7645 }
7646 
7647 static bool
CheckOperatorNewDeclaration(Sema & SemaRef,const FunctionDecl * FnDecl)7648 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7649   // C++ [basic.stc.dynamic.allocation]p1:
7650   //   A program is ill-formed if an allocation function is declared in a
7651   //   namespace scope other than global scope or declared static in global
7652   //   scope.
7653   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7654     return true;
7655 
7656   CanQualType SizeTy =
7657     SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
7658 
7659   // C++ [basic.stc.dynamic.allocation]p1:
7660   //  The return type shall be void*. The first parameter shall have type
7661   //  std::size_t.
7662   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
7663                                   SizeTy,
7664                                   diag::err_operator_new_dependent_param_type,
7665                                   diag::err_operator_new_param_type))
7666     return true;
7667 
7668   // C++ [basic.stc.dynamic.allocation]p1:
7669   //  The first parameter shall not have an associated default argument.
7670   if (FnDecl->getParamDecl(0)->hasDefaultArg())
7671     return SemaRef.Diag(FnDecl->getLocation(),
7672                         diag::err_operator_new_default_arg)
7673       << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
7674 
7675   return false;
7676 }
7677 
7678 static bool
CheckOperatorDeleteDeclaration(Sema & SemaRef,const FunctionDecl * FnDecl)7679 CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7680   // C++ [basic.stc.dynamic.deallocation]p1:
7681   //   A program is ill-formed if deallocation functions are declared in a
7682   //   namespace scope other than global scope or declared static in global
7683   //   scope.
7684   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7685     return true;
7686 
7687   // C++ [basic.stc.dynamic.deallocation]p2:
7688   //   Each deallocation function shall return void and its first parameter
7689   //   shall be void*.
7690   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
7691                                   SemaRef.Context.VoidPtrTy,
7692                                  diag::err_operator_delete_dependent_param_type,
7693                                  diag::err_operator_delete_param_type))
7694     return true;
7695 
7696   return false;
7697 }
7698 
7699 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
7700 /// of this overloaded operator is well-formed. If so, returns false;
7701 /// otherwise, emits appropriate diagnostics and returns true.
CheckOverloadedOperatorDeclaration(FunctionDecl * FnDecl)7702 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
7703   assert(FnDecl && FnDecl->isOverloadedOperator() &&
7704          "Expected an overloaded operator declaration");
7705 
7706   OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
7707 
7708   // C++ [over.oper]p5:
7709   //   The allocation and deallocation functions, operator new,
7710   //   operator new[], operator delete and operator delete[], are
7711   //   described completely in 3.7.3. The attributes and restrictions
7712   //   found in the rest of this subclause do not apply to them unless
7713   //   explicitly stated in 3.7.3.
7714   if (Op == OO_Delete || Op == OO_Array_Delete)
7715     return CheckOperatorDeleteDeclaration(*this, FnDecl);
7716 
7717   if (Op == OO_New || Op == OO_Array_New)
7718     return CheckOperatorNewDeclaration(*this, FnDecl);
7719 
7720   // C++ [over.oper]p6:
7721   //   An operator function shall either be a non-static member
7722   //   function or be a non-member function and have at least one
7723   //   parameter whose type is a class, a reference to a class, an
7724   //   enumeration, or a reference to an enumeration.
7725   if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
7726     if (MethodDecl->isStatic())
7727       return Diag(FnDecl->getLocation(),
7728                   diag::err_operator_overload_static) << FnDecl->getDeclName();
7729   } else {
7730     bool ClassOrEnumParam = false;
7731     for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
7732                                    ParamEnd = FnDecl->param_end();
7733          Param != ParamEnd; ++Param) {
7734       QualType ParamType = (*Param)->getType().getNonReferenceType();
7735       if (ParamType->isDependentType() || ParamType->isRecordType() ||
7736           ParamType->isEnumeralType()) {
7737         ClassOrEnumParam = true;
7738         break;
7739       }
7740     }
7741 
7742     if (!ClassOrEnumParam)
7743       return Diag(FnDecl->getLocation(),
7744                   diag::err_operator_overload_needs_class_or_enum)
7745         << FnDecl->getDeclName();
7746   }
7747 
7748   // C++ [over.oper]p8:
7749   //   An operator function cannot have default arguments (8.3.6),
7750   //   except where explicitly stated below.
7751   //
7752   // Only the function-call operator allows default arguments
7753   // (C++ [over.call]p1).
7754   if (Op != OO_Call) {
7755     for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
7756          Param != FnDecl->param_end(); ++Param) {
7757       if ((*Param)->hasDefaultArg())
7758         return Diag((*Param)->getLocation(),
7759                     diag::err_operator_overload_default_arg)
7760           << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
7761     }
7762   }
7763 
7764   static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
7765     { false, false, false }
7766 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
7767     , { Unary, Binary, MemberOnly }
7768 #include "clang/Basic/OperatorKinds.def"
7769   };
7770 
7771   bool CanBeUnaryOperator = OperatorUses[Op][0];
7772   bool CanBeBinaryOperator = OperatorUses[Op][1];
7773   bool MustBeMemberOperator = OperatorUses[Op][2];
7774 
7775   // C++ [over.oper]p8:
7776   //   [...] Operator functions cannot have more or fewer parameters
7777   //   than the number required for the corresponding operator, as
7778   //   described in the rest of this subclause.
7779   unsigned NumParams = FnDecl->getNumParams()
7780                      + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
7781   if (Op != OO_Call &&
7782       ((NumParams == 1 && !CanBeUnaryOperator) ||
7783        (NumParams == 2 && !CanBeBinaryOperator) ||
7784        (NumParams < 1) || (NumParams > 2))) {
7785     // We have the wrong number of parameters.
7786     unsigned ErrorKind;
7787     if (CanBeUnaryOperator && CanBeBinaryOperator) {
7788       ErrorKind = 2;  // 2 -> unary or binary.
7789     } else if (CanBeUnaryOperator) {
7790       ErrorKind = 0;  // 0 -> unary
7791     } else {
7792       assert(CanBeBinaryOperator &&
7793              "All non-call overloaded operators are unary or binary!");
7794       ErrorKind = 1;  // 1 -> binary
7795     }
7796 
7797     return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
7798       << FnDecl->getDeclName() << NumParams << ErrorKind;
7799   }
7800 
7801   // Overloaded operators other than operator() cannot be variadic.
7802   if (Op != OO_Call &&
7803       FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
7804     return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
7805       << FnDecl->getDeclName();
7806   }
7807 
7808   // Some operators must be non-static member functions.
7809   if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
7810     return Diag(FnDecl->getLocation(),
7811                 diag::err_operator_overload_must_be_member)
7812       << FnDecl->getDeclName();
7813   }
7814 
7815   // C++ [over.inc]p1:
7816   //   The user-defined function called operator++ implements the
7817   //   prefix and postfix ++ operator. If this function is a member
7818   //   function with no parameters, or a non-member function with one
7819   //   parameter of class or enumeration type, it defines the prefix
7820   //   increment operator ++ for objects of that type. If the function
7821   //   is a member function with one parameter (which shall be of type
7822   //   int) or a non-member function with two parameters (the second
7823   //   of which shall be of type int), it defines the postfix
7824   //   increment operator ++ for objects of that type.
7825   if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
7826     ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
7827     bool ParamIsInt = false;
7828     if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
7829       ParamIsInt = BT->getKind() == BuiltinType::Int;
7830 
7831     if (!ParamIsInt)
7832       return Diag(LastParam->getLocation(),
7833                   diag::err_operator_overload_post_incdec_must_be_int)
7834         << LastParam->getType() << (Op == OO_MinusMinus);
7835   }
7836 
7837   return false;
7838 }
7839 
7840 /// CheckLiteralOperatorDeclaration - Check whether the declaration
7841 /// of this literal operator function is well-formed. If so, returns
7842 /// false; otherwise, emits appropriate diagnostics and returns true.
CheckLiteralOperatorDeclaration(FunctionDecl * FnDecl)7843 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
7844   DeclContext *DC = FnDecl->getDeclContext();
7845   Decl::Kind Kind = DC->getDeclKind();
7846   if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
7847       Kind != Decl::LinkageSpec) {
7848     Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
7849       << FnDecl->getDeclName();
7850     return true;
7851   }
7852 
7853   bool Valid = false;
7854 
7855   // template <char...> type operator "" name() is the only valid template
7856   // signature, and the only valid signature with no parameters.
7857   if (FnDecl->param_size() == 0) {
7858     if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
7859       // Must have only one template parameter
7860       TemplateParameterList *Params = TpDecl->getTemplateParameters();
7861       if (Params->size() == 1) {
7862         NonTypeTemplateParmDecl *PmDecl =
7863           cast<NonTypeTemplateParmDecl>(Params->getParam(0));
7864 
7865         // The template parameter must be a char parameter pack.
7866         if (PmDecl && PmDecl->isTemplateParameterPack() &&
7867             Context.hasSameType(PmDecl->getType(), Context.CharTy))
7868           Valid = true;
7869       }
7870     }
7871   } else {
7872     // Check the first parameter
7873     FunctionDecl::param_iterator Param = FnDecl->param_begin();
7874 
7875     QualType T = (*Param)->getType();
7876 
7877     // unsigned long long int, long double, and any character type are allowed
7878     // as the only parameters.
7879     if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
7880         Context.hasSameType(T, Context.LongDoubleTy) ||
7881         Context.hasSameType(T, Context.CharTy) ||
7882         Context.hasSameType(T, Context.WCharTy) ||
7883         Context.hasSameType(T, Context.Char16Ty) ||
7884         Context.hasSameType(T, Context.Char32Ty)) {
7885       if (++Param == FnDecl->param_end())
7886         Valid = true;
7887       goto FinishedParams;
7888     }
7889 
7890     // Otherwise it must be a pointer to const; let's strip those qualifiers.
7891     const PointerType *PT = T->getAs<PointerType>();
7892     if (!PT)
7893       goto FinishedParams;
7894     T = PT->getPointeeType();
7895     if (!T.isConstQualified())
7896       goto FinishedParams;
7897     T = T.getUnqualifiedType();
7898 
7899     // Move on to the second parameter;
7900     ++Param;
7901 
7902     // If there is no second parameter, the first must be a const char *
7903     if (Param == FnDecl->param_end()) {
7904       if (Context.hasSameType(T, Context.CharTy))
7905         Valid = true;
7906       goto FinishedParams;
7907     }
7908 
7909     // const char *, const wchar_t*, const char16_t*, and const char32_t*
7910     // are allowed as the first parameter to a two-parameter function
7911     if (!(Context.hasSameType(T, Context.CharTy) ||
7912           Context.hasSameType(T, Context.WCharTy) ||
7913           Context.hasSameType(T, Context.Char16Ty) ||
7914           Context.hasSameType(T, Context.Char32Ty)))
7915       goto FinishedParams;
7916 
7917     // The second and final parameter must be an std::size_t
7918     T = (*Param)->getType().getUnqualifiedType();
7919     if (Context.hasSameType(T, Context.getSizeType()) &&
7920         ++Param == FnDecl->param_end())
7921       Valid = true;
7922   }
7923 
7924   // FIXME: This diagnostic is absolutely terrible.
7925 FinishedParams:
7926   if (!Valid) {
7927     Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
7928       << FnDecl->getDeclName();
7929     return true;
7930   }
7931 
7932   return false;
7933 }
7934 
7935 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
7936 /// linkage specification, including the language and (if present)
7937 /// the '{'. ExternLoc is the location of the 'extern', LangLoc is
7938 /// the location of the language string literal, which is provided
7939 /// by Lang/StrSize. LBraceLoc, if valid, provides the location of
7940 /// the '{' brace. Otherwise, this linkage specification does not
7941 /// have any braces.
ActOnStartLinkageSpecification(Scope * S,SourceLocation ExternLoc,SourceLocation LangLoc,llvm::StringRef Lang,SourceLocation LBraceLoc)7942 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
7943                                            SourceLocation LangLoc,
7944                                            llvm::StringRef Lang,
7945                                            SourceLocation LBraceLoc) {
7946   LinkageSpecDecl::LanguageIDs Language;
7947   if (Lang == "\"C\"")
7948     Language = LinkageSpecDecl::lang_c;
7949   else if (Lang == "\"C++\"")
7950     Language = LinkageSpecDecl::lang_cxx;
7951   else {
7952     Diag(LangLoc, diag::err_bad_language);
7953     return 0;
7954   }
7955 
7956   // FIXME: Add all the various semantics of linkage specifications
7957 
7958   LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
7959                                                ExternLoc, LangLoc, Language);
7960   CurContext->addDecl(D);
7961   PushDeclContext(S, D);
7962   return D;
7963 }
7964 
7965 /// ActOnFinishLinkageSpecification - Complete the definition of
7966 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
7967 /// valid, it's the position of the closing '}' brace in a linkage
7968 /// specification that uses braces.
ActOnFinishLinkageSpecification(Scope * S,Decl * LinkageSpec,SourceLocation RBraceLoc)7969 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
7970                                             Decl *LinkageSpec,
7971                                             SourceLocation RBraceLoc) {
7972   if (LinkageSpec) {
7973     if (RBraceLoc.isValid()) {
7974       LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
7975       LSDecl->setRBraceLoc(RBraceLoc);
7976     }
7977     PopDeclContext();
7978   }
7979   return LinkageSpec;
7980 }
7981 
7982 /// \brief Perform semantic analysis for the variable declaration that
7983 /// occurs within a C++ catch clause, returning the newly-created
7984 /// variable.
BuildExceptionDeclaration(Scope * S,TypeSourceInfo * TInfo,SourceLocation StartLoc,SourceLocation Loc,IdentifierInfo * Name)7985 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
7986                                          TypeSourceInfo *TInfo,
7987                                          SourceLocation StartLoc,
7988                                          SourceLocation Loc,
7989                                          IdentifierInfo *Name) {
7990   bool Invalid = false;
7991   QualType ExDeclType = TInfo->getType();
7992 
7993   // Arrays and functions decay.
7994   if (ExDeclType->isArrayType())
7995     ExDeclType = Context.getArrayDecayedType(ExDeclType);
7996   else if (ExDeclType->isFunctionType())
7997     ExDeclType = Context.getPointerType(ExDeclType);
7998 
7999   // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
8000   // The exception-declaration shall not denote a pointer or reference to an
8001   // incomplete type, other than [cv] void*.
8002   // N2844 forbids rvalue references.
8003   if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
8004     Diag(Loc, diag::err_catch_rvalue_ref);
8005     Invalid = true;
8006   }
8007 
8008   // GCC allows catching pointers and references to incomplete types
8009   // as an extension; so do we, but we warn by default.
8010 
8011   QualType BaseType = ExDeclType;
8012   int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
8013   unsigned DK = diag::err_catch_incomplete;
8014   bool IncompleteCatchIsInvalid = true;
8015   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
8016     BaseType = Ptr->getPointeeType();
8017     Mode = 1;
8018     DK = diag::ext_catch_incomplete_ptr;
8019     IncompleteCatchIsInvalid = false;
8020   } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
8021     // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
8022     BaseType = Ref->getPointeeType();
8023     Mode = 2;
8024     DK = diag::ext_catch_incomplete_ref;
8025     IncompleteCatchIsInvalid = false;
8026   }
8027   if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
8028       !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
8029       IncompleteCatchIsInvalid)
8030     Invalid = true;
8031 
8032   if (!Invalid && !ExDeclType->isDependentType() &&
8033       RequireNonAbstractType(Loc, ExDeclType,
8034                              diag::err_abstract_type_in_decl,
8035                              AbstractVariableType))
8036     Invalid = true;
8037 
8038   // Only the non-fragile NeXT runtime currently supports C++ catches
8039   // of ObjC types, and no runtime supports catching ObjC types by value.
8040   if (!Invalid && getLangOptions().ObjC1) {
8041     QualType T = ExDeclType;
8042     if (const ReferenceType *RT = T->getAs<ReferenceType>())
8043       T = RT->getPointeeType();
8044 
8045     if (T->isObjCObjectType()) {
8046       Diag(Loc, diag::err_objc_object_catch);
8047       Invalid = true;
8048     } else if (T->isObjCObjectPointerType()) {
8049       if (!getLangOptions().ObjCNonFragileABI)
8050         Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
8051     }
8052   }
8053 
8054   VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
8055                                     ExDeclType, TInfo, SC_None, SC_None);
8056   ExDecl->setExceptionVariable(true);
8057 
8058   if (!Invalid && !ExDeclType->isDependentType()) {
8059     if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
8060       // C++ [except.handle]p16:
8061       //   The object declared in an exception-declaration or, if the
8062       //   exception-declaration does not specify a name, a temporary (12.2) is
8063       //   copy-initialized (8.5) from the exception object. [...]
8064       //   The object is destroyed when the handler exits, after the destruction
8065       //   of any automatic objects initialized within the handler.
8066       //
8067       // We just pretend to initialize the object with itself, then make sure
8068       // it can be destroyed later.
8069       QualType initType = ExDeclType;
8070 
8071       InitializedEntity entity =
8072         InitializedEntity::InitializeVariable(ExDecl);
8073       InitializationKind initKind =
8074         InitializationKind::CreateCopy(Loc, SourceLocation());
8075 
8076       Expr *opaqueValue =
8077         new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
8078       InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
8079       ExprResult result = sequence.Perform(*this, entity, initKind,
8080                                            MultiExprArg(&opaqueValue, 1));
8081       if (result.isInvalid())
8082         Invalid = true;
8083       else {
8084         // If the constructor used was non-trivial, set this as the
8085         // "initializer".
8086         CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
8087         if (!construct->getConstructor()->isTrivial()) {
8088           Expr *init = MaybeCreateExprWithCleanups(construct);
8089           ExDecl->setInit(init);
8090         }
8091 
8092         // And make sure it's destructable.
8093         FinalizeVarWithDestructor(ExDecl, recordType);
8094       }
8095     }
8096   }
8097 
8098   if (Invalid)
8099     ExDecl->setInvalidDecl();
8100 
8101   return ExDecl;
8102 }
8103 
8104 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
8105 /// handler.
ActOnExceptionDeclarator(Scope * S,Declarator & D)8106 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
8107   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8108   bool Invalid = D.isInvalidType();
8109 
8110   // Check for unexpanded parameter packs.
8111   if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8112                                                UPPC_ExceptionType)) {
8113     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8114                                              D.getIdentifierLoc());
8115     Invalid = true;
8116   }
8117 
8118   IdentifierInfo *II = D.getIdentifier();
8119   if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
8120                                              LookupOrdinaryName,
8121                                              ForRedeclaration)) {
8122     // The scope should be freshly made just for us. There is just no way
8123     // it contains any previous declaration.
8124     assert(!S->isDeclScope(PrevDecl));
8125     if (PrevDecl->isTemplateParameter()) {
8126       // Maybe we will complain about the shadowed template parameter.
8127       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8128     }
8129   }
8130 
8131   if (D.getCXXScopeSpec().isSet() && !Invalid) {
8132     Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
8133       << D.getCXXScopeSpec().getRange();
8134     Invalid = true;
8135   }
8136 
8137   VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
8138                                               D.getSourceRange().getBegin(),
8139                                               D.getIdentifierLoc(),
8140                                               D.getIdentifier());
8141   if (Invalid)
8142     ExDecl->setInvalidDecl();
8143 
8144   // Add the exception declaration into this scope.
8145   if (II)
8146     PushOnScopeChains(ExDecl, S);
8147   else
8148     CurContext->addDecl(ExDecl);
8149 
8150   ProcessDeclAttributes(S, ExDecl, D);
8151   return ExDecl;
8152 }
8153 
ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,Expr * AssertMessageExpr_,SourceLocation RParenLoc)8154 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
8155                                          Expr *AssertExpr,
8156                                          Expr *AssertMessageExpr_,
8157                                          SourceLocation RParenLoc) {
8158   StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
8159 
8160   if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
8161     llvm::APSInt Value(32);
8162     if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
8163       Diag(StaticAssertLoc,
8164            diag::err_static_assert_expression_is_not_constant) <<
8165         AssertExpr->getSourceRange();
8166       return 0;
8167     }
8168 
8169     if (Value == 0) {
8170       Diag(StaticAssertLoc, diag::err_static_assert_failed)
8171         << AssertMessage->getString() << AssertExpr->getSourceRange();
8172     }
8173   }
8174 
8175   if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
8176     return 0;
8177 
8178   Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
8179                                         AssertExpr, AssertMessage, RParenLoc);
8180 
8181   CurContext->addDecl(Decl);
8182   return Decl;
8183 }
8184 
8185 /// \brief Perform semantic analysis of the given friend type declaration.
8186 ///
8187 /// \returns A friend declaration that.
CheckFriendTypeDecl(SourceLocation FriendLoc,TypeSourceInfo * TSInfo)8188 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
8189                                       TypeSourceInfo *TSInfo) {
8190   assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
8191 
8192   QualType T = TSInfo->getType();
8193   SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
8194 
8195   if (!getLangOptions().CPlusPlus0x) {
8196     // C++03 [class.friend]p2:
8197     //   An elaborated-type-specifier shall be used in a friend declaration
8198     //   for a class.*
8199     //
8200     //   * The class-key of the elaborated-type-specifier is required.
8201     if (!ActiveTemplateInstantiations.empty()) {
8202       // Do not complain about the form of friend template types during
8203       // template instantiation; we will already have complained when the
8204       // template was declared.
8205     } else if (!T->isElaboratedTypeSpecifier()) {
8206       // If we evaluated the type to a record type, suggest putting
8207       // a tag in front.
8208       if (const RecordType *RT = T->getAs<RecordType>()) {
8209         RecordDecl *RD = RT->getDecl();
8210 
8211         std::string InsertionText = std::string(" ") + RD->getKindName();
8212 
8213         Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
8214           << (unsigned) RD->getTagKind()
8215           << T
8216           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
8217                                         InsertionText);
8218       } else {
8219         Diag(FriendLoc, diag::ext_nonclass_type_friend)
8220           << T
8221           << SourceRange(FriendLoc, TypeRange.getEnd());
8222       }
8223     } else if (T->getAs<EnumType>()) {
8224       Diag(FriendLoc, diag::ext_enum_friend)
8225         << T
8226         << SourceRange(FriendLoc, TypeRange.getEnd());
8227     }
8228   }
8229 
8230   // C++0x [class.friend]p3:
8231   //   If the type specifier in a friend declaration designates a (possibly
8232   //   cv-qualified) class type, that class is declared as a friend; otherwise,
8233   //   the friend declaration is ignored.
8234 
8235   // FIXME: C++0x has some syntactic restrictions on friend type declarations
8236   // in [class.friend]p3 that we do not implement.
8237 
8238   return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
8239 }
8240 
8241 /// Handle a friend tag declaration where the scope specifier was
8242 /// templated.
ActOnTemplatedFriendTag(Scope * S,SourceLocation FriendLoc,unsigned TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,MultiTemplateParamsArg TempParamLists)8243 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
8244                                     unsigned TagSpec, SourceLocation TagLoc,
8245                                     CXXScopeSpec &SS,
8246                                     IdentifierInfo *Name, SourceLocation NameLoc,
8247                                     AttributeList *Attr,
8248                                     MultiTemplateParamsArg TempParamLists) {
8249   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8250 
8251   bool isExplicitSpecialization = false;
8252   bool Invalid = false;
8253 
8254   if (TemplateParameterList *TemplateParams
8255         = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
8256                                                   TempParamLists.get(),
8257                                                   TempParamLists.size(),
8258                                                   /*friend*/ true,
8259                                                   isExplicitSpecialization,
8260                                                   Invalid)) {
8261     if (TemplateParams->size() > 0) {
8262       // This is a declaration of a class template.
8263       if (Invalid)
8264         return 0;
8265 
8266       return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
8267                                 SS, Name, NameLoc, Attr,
8268                                 TemplateParams, AS_public,
8269                                 TempParamLists.size() - 1,
8270                    (TemplateParameterList**) TempParamLists.release()).take();
8271     } else {
8272       // The "template<>" header is extraneous.
8273       Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8274         << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8275       isExplicitSpecialization = true;
8276     }
8277   }
8278 
8279   if (Invalid) return 0;
8280 
8281   assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
8282 
8283   bool isAllExplicitSpecializations = true;
8284   for (unsigned I = TempParamLists.size(); I-- > 0; ) {
8285     if (TempParamLists.get()[I]->size()) {
8286       isAllExplicitSpecializations = false;
8287       break;
8288     }
8289   }
8290 
8291   // FIXME: don't ignore attributes.
8292 
8293   // If it's explicit specializations all the way down, just forget
8294   // about the template header and build an appropriate non-templated
8295   // friend.  TODO: for source fidelity, remember the headers.
8296   if (isAllExplicitSpecializations) {
8297     NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8298     ElaboratedTypeKeyword Keyword
8299       = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8300     QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
8301                                    *Name, NameLoc);
8302     if (T.isNull())
8303       return 0;
8304 
8305     TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8306     if (isa<DependentNameType>(T)) {
8307       DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8308       TL.setKeywordLoc(TagLoc);
8309       TL.setQualifierLoc(QualifierLoc);
8310       TL.setNameLoc(NameLoc);
8311     } else {
8312       ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
8313       TL.setKeywordLoc(TagLoc);
8314       TL.setQualifierLoc(QualifierLoc);
8315       cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
8316     }
8317 
8318     FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8319                                             TSI, FriendLoc);
8320     Friend->setAccess(AS_public);
8321     CurContext->addDecl(Friend);
8322     return Friend;
8323   }
8324 
8325   // Handle the case of a templated-scope friend class.  e.g.
8326   //   template <class T> class A<T>::B;
8327   // FIXME: we don't support these right now.
8328   ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8329   QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
8330   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8331   DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8332   TL.setKeywordLoc(TagLoc);
8333   TL.setQualifierLoc(SS.getWithLocInContext(Context));
8334   TL.setNameLoc(NameLoc);
8335 
8336   FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8337                                           TSI, FriendLoc);
8338   Friend->setAccess(AS_public);
8339   Friend->setUnsupportedFriend(true);
8340   CurContext->addDecl(Friend);
8341   return Friend;
8342 }
8343 
8344 
8345 /// Handle a friend type declaration.  This works in tandem with
8346 /// ActOnTag.
8347 ///
8348 /// Notes on friend class templates:
8349 ///
8350 /// We generally treat friend class declarations as if they were
8351 /// declaring a class.  So, for example, the elaborated type specifier
8352 /// in a friend declaration is required to obey the restrictions of a
8353 /// class-head (i.e. no typedefs in the scope chain), template
8354 /// parameters are required to match up with simple template-ids, &c.
8355 /// However, unlike when declaring a template specialization, it's
8356 /// okay to refer to a template specialization without an empty
8357 /// template parameter declaration, e.g.
8358 ///   friend class A<T>::B<unsigned>;
8359 /// We permit this as a special case; if there are any template
8360 /// parameters present at all, require proper matching, i.e.
8361 ///   template <> template <class T> friend class A<int>::B;
ActOnFriendTypeDecl(Scope * S,const DeclSpec & DS,MultiTemplateParamsArg TempParams)8362 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
8363                                 MultiTemplateParamsArg TempParams) {
8364   SourceLocation Loc = DS.getSourceRange().getBegin();
8365 
8366   assert(DS.isFriendSpecified());
8367   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8368 
8369   // Try to convert the decl specifier to a type.  This works for
8370   // friend templates because ActOnTag never produces a ClassTemplateDecl
8371   // for a TUK_Friend.
8372   Declarator TheDeclarator(DS, Declarator::MemberContext);
8373   TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
8374   QualType T = TSI->getType();
8375   if (TheDeclarator.isInvalidType())
8376     return 0;
8377 
8378   if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
8379     return 0;
8380 
8381   // This is definitely an error in C++98.  It's probably meant to
8382   // be forbidden in C++0x, too, but the specification is just
8383   // poorly written.
8384   //
8385   // The problem is with declarations like the following:
8386   //   template <T> friend A<T>::foo;
8387   // where deciding whether a class C is a friend or not now hinges
8388   // on whether there exists an instantiation of A that causes
8389   // 'foo' to equal C.  There are restrictions on class-heads
8390   // (which we declare (by fiat) elaborated friend declarations to
8391   // be) that makes this tractable.
8392   //
8393   // FIXME: handle "template <> friend class A<T>;", which
8394   // is possibly well-formed?  Who even knows?
8395   if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
8396     Diag(Loc, diag::err_tagless_friend_type_template)
8397       << DS.getSourceRange();
8398     return 0;
8399   }
8400 
8401   // C++98 [class.friend]p1: A friend of a class is a function
8402   //   or class that is not a member of the class . . .
8403   // This is fixed in DR77, which just barely didn't make the C++03
8404   // deadline.  It's also a very silly restriction that seriously
8405   // affects inner classes and which nobody else seems to implement;
8406   // thus we never diagnose it, not even in -pedantic.
8407   //
8408   // But note that we could warn about it: it's always useless to
8409   // friend one of your own members (it's not, however, worthless to
8410   // friend a member of an arbitrary specialization of your template).
8411 
8412   Decl *D;
8413   if (unsigned NumTempParamLists = TempParams.size())
8414     D = FriendTemplateDecl::Create(Context, CurContext, Loc,
8415                                    NumTempParamLists,
8416                                    TempParams.release(),
8417                                    TSI,
8418                                    DS.getFriendSpecLoc());
8419   else
8420     D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
8421 
8422   if (!D)
8423     return 0;
8424 
8425   D->setAccess(AS_public);
8426   CurContext->addDecl(D);
8427 
8428   return D;
8429 }
8430 
ActOnFriendFunctionDecl(Scope * S,Declarator & D,bool IsDefinition,MultiTemplateParamsArg TemplateParams)8431 Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
8432                                     MultiTemplateParamsArg TemplateParams) {
8433   const DeclSpec &DS = D.getDeclSpec();
8434 
8435   assert(DS.isFriendSpecified());
8436   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8437 
8438   SourceLocation Loc = D.getIdentifierLoc();
8439   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8440   QualType T = TInfo->getType();
8441 
8442   // C++ [class.friend]p1
8443   //   A friend of a class is a function or class....
8444   // Note that this sees through typedefs, which is intended.
8445   // It *doesn't* see through dependent types, which is correct
8446   // according to [temp.arg.type]p3:
8447   //   If a declaration acquires a function type through a
8448   //   type dependent on a template-parameter and this causes
8449   //   a declaration that does not use the syntactic form of a
8450   //   function declarator to have a function type, the program
8451   //   is ill-formed.
8452   if (!T->isFunctionType()) {
8453     Diag(Loc, diag::err_unexpected_friend);
8454 
8455     // It might be worthwhile to try to recover by creating an
8456     // appropriate declaration.
8457     return 0;
8458   }
8459 
8460   // C++ [namespace.memdef]p3
8461   //  - If a friend declaration in a non-local class first declares a
8462   //    class or function, the friend class or function is a member
8463   //    of the innermost enclosing namespace.
8464   //  - The name of the friend is not found by simple name lookup
8465   //    until a matching declaration is provided in that namespace
8466   //    scope (either before or after the class declaration granting
8467   //    friendship).
8468   //  - If a friend function is called, its name may be found by the
8469   //    name lookup that considers functions from namespaces and
8470   //    classes associated with the types of the function arguments.
8471   //  - When looking for a prior declaration of a class or a function
8472   //    declared as a friend, scopes outside the innermost enclosing
8473   //    namespace scope are not considered.
8474 
8475   CXXScopeSpec &SS = D.getCXXScopeSpec();
8476   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8477   DeclarationName Name = NameInfo.getName();
8478   assert(Name);
8479 
8480   // Check for unexpanded parameter packs.
8481   if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
8482       DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
8483       DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
8484     return 0;
8485 
8486   // The context we found the declaration in, or in which we should
8487   // create the declaration.
8488   DeclContext *DC;
8489   Scope *DCScope = S;
8490   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8491                         ForRedeclaration);
8492 
8493   // FIXME: there are different rules in local classes
8494 
8495   // There are four cases here.
8496   //   - There's no scope specifier, in which case we just go to the
8497   //     appropriate scope and look for a function or function template
8498   //     there as appropriate.
8499   // Recover from invalid scope qualifiers as if they just weren't there.
8500   if (SS.isInvalid() || !SS.isSet()) {
8501     // C++0x [namespace.memdef]p3:
8502     //   If the name in a friend declaration is neither qualified nor
8503     //   a template-id and the declaration is a function or an
8504     //   elaborated-type-specifier, the lookup to determine whether
8505     //   the entity has been previously declared shall not consider
8506     //   any scopes outside the innermost enclosing namespace.
8507     // C++0x [class.friend]p11:
8508     //   If a friend declaration appears in a local class and the name
8509     //   specified is an unqualified name, a prior declaration is
8510     //   looked up without considering scopes that are outside the
8511     //   innermost enclosing non-class scope. For a friend function
8512     //   declaration, if there is no prior declaration, the program is
8513     //   ill-formed.
8514     bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
8515     bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
8516 
8517     // Find the appropriate context according to the above.
8518     DC = CurContext;
8519     while (true) {
8520       // Skip class contexts.  If someone can cite chapter and verse
8521       // for this behavior, that would be nice --- it's what GCC and
8522       // EDG do, and it seems like a reasonable intent, but the spec
8523       // really only says that checks for unqualified existing
8524       // declarations should stop at the nearest enclosing namespace,
8525       // not that they should only consider the nearest enclosing
8526       // namespace.
8527       while (DC->isRecord())
8528         DC = DC->getParent();
8529 
8530       LookupQualifiedName(Previous, DC);
8531 
8532       // TODO: decide what we think about using declarations.
8533       if (isLocal || !Previous.empty())
8534         break;
8535 
8536       if (isTemplateId) {
8537         if (isa<TranslationUnitDecl>(DC)) break;
8538       } else {
8539         if (DC->isFileContext()) break;
8540       }
8541       DC = DC->getParent();
8542     }
8543 
8544     // C++ [class.friend]p1: A friend of a class is a function or
8545     //   class that is not a member of the class . . .
8546     // C++0x changes this for both friend types and functions.
8547     // Most C++ 98 compilers do seem to give an error here, so
8548     // we do, too.
8549     if (!Previous.empty() && DC->Equals(CurContext)
8550         && !getLangOptions().CPlusPlus0x)
8551       Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8552 
8553     DCScope = getScopeForDeclContext(S, DC);
8554 
8555   //   - There's a non-dependent scope specifier, in which case we
8556   //     compute it and do a previous lookup there for a function
8557   //     or function template.
8558   } else if (!SS.getScopeRep()->isDependent()) {
8559     DC = computeDeclContext(SS);
8560     if (!DC) return 0;
8561 
8562     if (RequireCompleteDeclContext(SS, DC)) return 0;
8563 
8564     LookupQualifiedName(Previous, DC);
8565 
8566     // Ignore things found implicitly in the wrong scope.
8567     // TODO: better diagnostics for this case.  Suggesting the right
8568     // qualified scope would be nice...
8569     LookupResult::Filter F = Previous.makeFilter();
8570     while (F.hasNext()) {
8571       NamedDecl *D = F.next();
8572       if (!DC->InEnclosingNamespaceSetOf(
8573               D->getDeclContext()->getRedeclContext()))
8574         F.erase();
8575     }
8576     F.done();
8577 
8578     if (Previous.empty()) {
8579       D.setInvalidType();
8580       Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
8581       return 0;
8582     }
8583 
8584     // C++ [class.friend]p1: A friend of a class is a function or
8585     //   class that is not a member of the class . . .
8586     if (DC->Equals(CurContext))
8587       Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8588 
8589   //   - There's a scope specifier that does not match any template
8590   //     parameter lists, in which case we use some arbitrary context,
8591   //     create a method or method template, and wait for instantiation.
8592   //   - There's a scope specifier that does match some template
8593   //     parameter lists, which we don't handle right now.
8594   } else {
8595     DC = CurContext;
8596     assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
8597   }
8598 
8599   if (!DC->isRecord()) {
8600     // This implies that it has to be an operator or function.
8601     if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
8602         D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
8603         D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
8604       Diag(Loc, diag::err_introducing_special_friend) <<
8605         (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
8606          D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
8607       return 0;
8608     }
8609   }
8610 
8611   bool Redeclaration = false;
8612   NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
8613                                           move(TemplateParams),
8614                                           IsDefinition,
8615                                           Redeclaration);
8616   if (!ND) return 0;
8617 
8618   assert(ND->getDeclContext() == DC);
8619   assert(ND->getLexicalDeclContext() == CurContext);
8620 
8621   // Add the function declaration to the appropriate lookup tables,
8622   // adjusting the redeclarations list as necessary.  We don't
8623   // want to do this yet if the friending class is dependent.
8624   //
8625   // Also update the scope-based lookup if the target context's
8626   // lookup context is in lexical scope.
8627   if (!CurContext->isDependentContext()) {
8628     DC = DC->getRedeclContext();
8629     DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
8630     if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8631       PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
8632   }
8633 
8634   FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
8635                                        D.getIdentifierLoc(), ND,
8636                                        DS.getFriendSpecLoc());
8637   FrD->setAccess(AS_public);
8638   CurContext->addDecl(FrD);
8639 
8640   if (ND->isInvalidDecl())
8641     FrD->setInvalidDecl();
8642   else {
8643     FunctionDecl *FD;
8644     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
8645       FD = FTD->getTemplatedDecl();
8646     else
8647       FD = cast<FunctionDecl>(ND);
8648 
8649     // Mark templated-scope function declarations as unsupported.
8650     if (FD->getNumTemplateParameterLists())
8651       FrD->setUnsupportedFriend(true);
8652   }
8653 
8654   return ND;
8655 }
8656 
SetDeclDeleted(Decl * Dcl,SourceLocation DelLoc)8657 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
8658   AdjustDeclIfTemplate(Dcl);
8659 
8660   FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
8661   if (!Fn) {
8662     Diag(DelLoc, diag::err_deleted_non_function);
8663     return;
8664   }
8665   if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
8666     Diag(DelLoc, diag::err_deleted_decl_not_first);
8667     Diag(Prev->getLocation(), diag::note_previous_declaration);
8668     // If the declaration wasn't the first, we delete the function anyway for
8669     // recovery.
8670   }
8671   Fn->setDeletedAsWritten();
8672 }
8673 
SetDeclDefaulted(Decl * Dcl,SourceLocation DefaultLoc)8674 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
8675   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
8676 
8677   if (MD) {
8678     if (MD->getParent()->isDependentType()) {
8679       MD->setDefaulted();
8680       MD->setExplicitlyDefaulted();
8681       return;
8682     }
8683 
8684     CXXSpecialMember Member = getSpecialMember(MD);
8685     if (Member == CXXInvalid) {
8686       Diag(DefaultLoc, diag::err_default_special_members);
8687       return;
8688     }
8689 
8690     MD->setDefaulted();
8691     MD->setExplicitlyDefaulted();
8692 
8693     // If this definition appears within the record, do the checking when
8694     // the record is complete.
8695     const FunctionDecl *Primary = MD;
8696     if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
8697       // Find the uninstantiated declaration that actually had the '= default'
8698       // on it.
8699       MD->getTemplateInstantiationPattern()->isDefined(Primary);
8700 
8701     if (Primary == Primary->getCanonicalDecl())
8702       return;
8703 
8704     switch (Member) {
8705     case CXXDefaultConstructor: {
8706       CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8707       CheckExplicitlyDefaultedDefaultConstructor(CD);
8708       if (!CD->isInvalidDecl())
8709         DefineImplicitDefaultConstructor(DefaultLoc, CD);
8710       break;
8711     }
8712 
8713     case CXXCopyConstructor: {
8714       CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8715       CheckExplicitlyDefaultedCopyConstructor(CD);
8716       if (!CD->isInvalidDecl())
8717         DefineImplicitCopyConstructor(DefaultLoc, CD);
8718       break;
8719     }
8720 
8721     case CXXCopyAssignment: {
8722       CheckExplicitlyDefaultedCopyAssignment(MD);
8723       if (!MD->isInvalidDecl())
8724         DefineImplicitCopyAssignment(DefaultLoc, MD);
8725       break;
8726     }
8727 
8728     case CXXDestructor: {
8729       CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
8730       CheckExplicitlyDefaultedDestructor(DD);
8731       if (!DD->isInvalidDecl())
8732         DefineImplicitDestructor(DefaultLoc, DD);
8733       break;
8734     }
8735 
8736     case CXXMoveConstructor:
8737     case CXXMoveAssignment:
8738       Diag(Dcl->getLocation(), diag::err_defaulted_move_unsupported);
8739       break;
8740 
8741     default:
8742       // FIXME: Do the rest once we have move functions
8743       break;
8744     }
8745   } else {
8746     Diag(DefaultLoc, diag::err_default_special_members);
8747   }
8748 }
8749 
SearchForReturnInStmt(Sema & Self,Stmt * S)8750 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
8751   for (Stmt::child_range CI = S->children(); CI; ++CI) {
8752     Stmt *SubStmt = *CI;
8753     if (!SubStmt)
8754       continue;
8755     if (isa<ReturnStmt>(SubStmt))
8756       Self.Diag(SubStmt->getSourceRange().getBegin(),
8757            diag::err_return_in_constructor_handler);
8758     if (!isa<Expr>(SubStmt))
8759       SearchForReturnInStmt(Self, SubStmt);
8760   }
8761 }
8762 
DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt * TryBlock)8763 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
8764   for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
8765     CXXCatchStmt *Handler = TryBlock->getHandler(I);
8766     SearchForReturnInStmt(*this, Handler);
8767   }
8768 }
8769 
CheckOverridingFunctionReturnType(const CXXMethodDecl * New,const CXXMethodDecl * Old)8770 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
8771                                              const CXXMethodDecl *Old) {
8772   QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
8773   QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
8774 
8775   if (Context.hasSameType(NewTy, OldTy) ||
8776       NewTy->isDependentType() || OldTy->isDependentType())
8777     return false;
8778 
8779   // Check if the return types are covariant
8780   QualType NewClassTy, OldClassTy;
8781 
8782   /// Both types must be pointers or references to classes.
8783   if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
8784     if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
8785       NewClassTy = NewPT->getPointeeType();
8786       OldClassTy = OldPT->getPointeeType();
8787     }
8788   } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
8789     if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
8790       if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
8791         NewClassTy = NewRT->getPointeeType();
8792         OldClassTy = OldRT->getPointeeType();
8793       }
8794     }
8795   }
8796 
8797   // The return types aren't either both pointers or references to a class type.
8798   if (NewClassTy.isNull()) {
8799     Diag(New->getLocation(),
8800          diag::err_different_return_type_for_overriding_virtual_function)
8801       << New->getDeclName() << NewTy << OldTy;
8802     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8803 
8804     return true;
8805   }
8806 
8807   // C++ [class.virtual]p6:
8808   //   If the return type of D::f differs from the return type of B::f, the
8809   //   class type in the return type of D::f shall be complete at the point of
8810   //   declaration of D::f or shall be the class type D.
8811   if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
8812     if (!RT->isBeingDefined() &&
8813         RequireCompleteType(New->getLocation(), NewClassTy,
8814                             PDiag(diag::err_covariant_return_incomplete)
8815                               << New->getDeclName()))
8816     return true;
8817   }
8818 
8819   if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
8820     // Check if the new class derives from the old class.
8821     if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
8822       Diag(New->getLocation(),
8823            diag::err_covariant_return_not_derived)
8824       << New->getDeclName() << NewTy << OldTy;
8825       Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8826       return true;
8827     }
8828 
8829     // Check if we the conversion from derived to base is valid.
8830     if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
8831                     diag::err_covariant_return_inaccessible_base,
8832                     diag::err_covariant_return_ambiguous_derived_to_base_conv,
8833                     // FIXME: Should this point to the return type?
8834                     New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
8835       // FIXME: this note won't trigger for delayed access control
8836       // diagnostics, and it's impossible to get an undelayed error
8837       // here from access control during the original parse because
8838       // the ParsingDeclSpec/ParsingDeclarator are still in scope.
8839       Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8840       return true;
8841     }
8842   }
8843 
8844   // The qualifiers of the return types must be the same.
8845   if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
8846     Diag(New->getLocation(),
8847          diag::err_covariant_return_type_different_qualifications)
8848     << New->getDeclName() << NewTy << OldTy;
8849     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8850     return true;
8851   };
8852 
8853 
8854   // The new class type must have the same or less qualifiers as the old type.
8855   if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
8856     Diag(New->getLocation(),
8857          diag::err_covariant_return_type_class_type_more_qualified)
8858     << New->getDeclName() << NewTy << OldTy;
8859     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8860     return true;
8861   };
8862 
8863   return false;
8864 }
8865 
8866 /// \brief Mark the given method pure.
8867 ///
8868 /// \param Method the method to be marked pure.
8869 ///
8870 /// \param InitRange the source range that covers the "0" initializer.
CheckPureMethod(CXXMethodDecl * Method,SourceRange InitRange)8871 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
8872   SourceLocation EndLoc = InitRange.getEnd();
8873   if (EndLoc.isValid())
8874     Method->setRangeEnd(EndLoc);
8875 
8876   if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
8877     Method->setPure();
8878     return false;
8879   }
8880 
8881   if (!Method->isInvalidDecl())
8882     Diag(Method->getLocation(), diag::err_non_virtual_pure)
8883       << Method->getDeclName() << InitRange;
8884   return true;
8885 }
8886 
8887 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
8888 /// an initializer for the out-of-line declaration 'Dcl'.  The scope
8889 /// is a fresh scope pushed for just this purpose.
8890 ///
8891 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
8892 /// static data member of class X, names should be looked up in the scope of
8893 /// class X.
ActOnCXXEnterDeclInitializer(Scope * S,Decl * D)8894 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
8895   // If there is no declaration, there was an error parsing it.
8896   if (D == 0 || D->isInvalidDecl()) return;
8897 
8898   // We should only get called for declarations with scope specifiers, like:
8899   //   int foo::bar;
8900   assert(D->isOutOfLine());
8901   EnterDeclaratorContext(S, D->getDeclContext());
8902 }
8903 
8904 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
8905 /// initializer for the out-of-line declaration 'D'.
ActOnCXXExitDeclInitializer(Scope * S,Decl * D)8906 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
8907   // If there is no declaration, there was an error parsing it.
8908   if (D == 0 || D->isInvalidDecl()) return;
8909 
8910   assert(D->isOutOfLine());
8911   ExitDeclaratorContext(S);
8912 }
8913 
8914 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
8915 /// C++ if/switch/while/for statement.
8916 /// e.g: "if (int x = f()) {...}"
ActOnCXXConditionDeclaration(Scope * S,Declarator & D)8917 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
8918   // C++ 6.4p2:
8919   // The declarator shall not specify a function or an array.
8920   // The type-specifier-seq shall not contain typedef and shall not declare a
8921   // new class or enumeration.
8922   assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
8923          "Parser allowed 'typedef' as storage class of condition decl.");
8924 
8925   Decl *Dcl = ActOnDeclarator(S, D);
8926   if (!Dcl)
8927     return true;
8928 
8929   if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
8930     Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
8931       << D.getSourceRange();
8932     return true;
8933   }
8934 
8935   return Dcl;
8936 }
8937 
MarkVTableUsed(SourceLocation Loc,CXXRecordDecl * Class,bool DefinitionRequired)8938 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
8939                           bool DefinitionRequired) {
8940   // Ignore any vtable uses in unevaluated operands or for classes that do
8941   // not have a vtable.
8942   if (!Class->isDynamicClass() || Class->isDependentContext() ||
8943       CurContext->isDependentContext() ||
8944       ExprEvalContexts.back().Context == Unevaluated)
8945     return;
8946 
8947   // Try to insert this class into the map.
8948   Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
8949   std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
8950     Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
8951   if (!Pos.second) {
8952     // If we already had an entry, check to see if we are promoting this vtable
8953     // to required a definition. If so, we need to reappend to the VTableUses
8954     // list, since we may have already processed the first entry.
8955     if (DefinitionRequired && !Pos.first->second) {
8956       Pos.first->second = true;
8957     } else {
8958       // Otherwise, we can early exit.
8959       return;
8960     }
8961   }
8962 
8963   // Local classes need to have their virtual members marked
8964   // immediately. For all other classes, we mark their virtual members
8965   // at the end of the translation unit.
8966   if (Class->isLocalClass())
8967     MarkVirtualMembersReferenced(Loc, Class);
8968   else
8969     VTableUses.push_back(std::make_pair(Class, Loc));
8970 }
8971 
DefineUsedVTables()8972 bool Sema::DefineUsedVTables() {
8973   if (VTableUses.empty())
8974     return false;
8975 
8976   // Note: The VTableUses vector could grow as a result of marking
8977   // the members of a class as "used", so we check the size each
8978   // time through the loop and prefer indices (with are stable) to
8979   // iterators (which are not).
8980   bool DefinedAnything = false;
8981   for (unsigned I = 0; I != VTableUses.size(); ++I) {
8982     CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
8983     if (!Class)
8984       continue;
8985 
8986     SourceLocation Loc = VTableUses[I].second;
8987 
8988     // If this class has a key function, but that key function is
8989     // defined in another translation unit, we don't need to emit the
8990     // vtable even though we're using it.
8991     const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
8992     if (KeyFunction && !KeyFunction->hasBody()) {
8993       switch (KeyFunction->getTemplateSpecializationKind()) {
8994       case TSK_Undeclared:
8995       case TSK_ExplicitSpecialization:
8996       case TSK_ExplicitInstantiationDeclaration:
8997         // The key function is in another translation unit.
8998         continue;
8999 
9000       case TSK_ExplicitInstantiationDefinition:
9001       case TSK_ImplicitInstantiation:
9002         // We will be instantiating the key function.
9003         break;
9004       }
9005     } else if (!KeyFunction) {
9006       // If we have a class with no key function that is the subject
9007       // of an explicit instantiation declaration, suppress the
9008       // vtable; it will live with the explicit instantiation
9009       // definition.
9010       bool IsExplicitInstantiationDeclaration
9011         = Class->getTemplateSpecializationKind()
9012                                       == TSK_ExplicitInstantiationDeclaration;
9013       for (TagDecl::redecl_iterator R = Class->redecls_begin(),
9014                                  REnd = Class->redecls_end();
9015            R != REnd; ++R) {
9016         TemplateSpecializationKind TSK
9017           = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
9018         if (TSK == TSK_ExplicitInstantiationDeclaration)
9019           IsExplicitInstantiationDeclaration = true;
9020         else if (TSK == TSK_ExplicitInstantiationDefinition) {
9021           IsExplicitInstantiationDeclaration = false;
9022           break;
9023         }
9024       }
9025 
9026       if (IsExplicitInstantiationDeclaration)
9027         continue;
9028     }
9029 
9030     // Mark all of the virtual members of this class as referenced, so
9031     // that we can build a vtable. Then, tell the AST consumer that a
9032     // vtable for this class is required.
9033     DefinedAnything = true;
9034     MarkVirtualMembersReferenced(Loc, Class);
9035     CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
9036     Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
9037 
9038     // Optionally warn if we're emitting a weak vtable.
9039     if (Class->getLinkage() == ExternalLinkage &&
9040         Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
9041       if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
9042         Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
9043     }
9044   }
9045   VTableUses.clear();
9046 
9047   return DefinedAnything;
9048 }
9049 
MarkVirtualMembersReferenced(SourceLocation Loc,const CXXRecordDecl * RD)9050 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
9051                                         const CXXRecordDecl *RD) {
9052   for (CXXRecordDecl::method_iterator i = RD->method_begin(),
9053        e = RD->method_end(); i != e; ++i) {
9054     CXXMethodDecl *MD = *i;
9055 
9056     // C++ [basic.def.odr]p2:
9057     //   [...] A virtual member function is used if it is not pure. [...]
9058     if (MD->isVirtual() && !MD->isPure())
9059       MarkDeclarationReferenced(Loc, MD);
9060   }
9061 
9062   // Only classes that have virtual bases need a VTT.
9063   if (RD->getNumVBases() == 0)
9064     return;
9065 
9066   for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
9067            e = RD->bases_end(); i != e; ++i) {
9068     const CXXRecordDecl *Base =
9069         cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
9070     if (Base->getNumVBases() == 0)
9071       continue;
9072     MarkVirtualMembersReferenced(Loc, Base);
9073   }
9074 }
9075 
9076 /// SetIvarInitializers - This routine builds initialization ASTs for the
9077 /// Objective-C implementation whose ivars need be initialized.
SetIvarInitializers(ObjCImplementationDecl * ObjCImplementation)9078 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
9079   if (!getLangOptions().CPlusPlus)
9080     return;
9081   if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
9082     llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
9083     CollectIvarsToConstructOrDestruct(OID, ivars);
9084     if (ivars.empty())
9085       return;
9086     llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
9087     for (unsigned i = 0; i < ivars.size(); i++) {
9088       FieldDecl *Field = ivars[i];
9089       if (Field->isInvalidDecl())
9090         continue;
9091 
9092       CXXCtorInitializer *Member;
9093       InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
9094       InitializationKind InitKind =
9095         InitializationKind::CreateDefault(ObjCImplementation->getLocation());
9096 
9097       InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
9098       ExprResult MemberInit =
9099         InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
9100       MemberInit = MaybeCreateExprWithCleanups(MemberInit);
9101       // Note, MemberInit could actually come back empty if no initialization
9102       // is required (e.g., because it would call a trivial default constructor)
9103       if (!MemberInit.get() || MemberInit.isInvalid())
9104         continue;
9105 
9106       Member =
9107         new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
9108                                          SourceLocation(),
9109                                          MemberInit.takeAs<Expr>(),
9110                                          SourceLocation());
9111       AllToInit.push_back(Member);
9112 
9113       // Be sure that the destructor is accessible and is marked as referenced.
9114       if (const RecordType *RecordTy
9115                   = Context.getBaseElementType(Field->getType())
9116                                                         ->getAs<RecordType>()) {
9117                     CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
9118         if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
9119           MarkDeclarationReferenced(Field->getLocation(), Destructor);
9120           CheckDestructorAccess(Field->getLocation(), Destructor,
9121                             PDiag(diag::err_access_dtor_ivar)
9122                               << Context.getBaseElementType(Field->getType()));
9123         }
9124       }
9125     }
9126     ObjCImplementation->setIvarInitializers(Context,
9127                                             AllToInit.data(), AllToInit.size());
9128   }
9129 }
9130 
9131 static
DelegatingCycleHelper(CXXConstructorDecl * Ctor,llvm::SmallSet<CXXConstructorDecl *,4> & Valid,llvm::SmallSet<CXXConstructorDecl *,4> & Invalid,llvm::SmallSet<CXXConstructorDecl *,4> & Current,Sema & S)9132 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
9133                            llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
9134                            llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
9135                            llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
9136                            Sema &S) {
9137   llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9138                                                    CE = Current.end();
9139   if (Ctor->isInvalidDecl())
9140     return;
9141 
9142   const FunctionDecl *FNTarget = 0;
9143   CXXConstructorDecl *Target;
9144 
9145   // We ignore the result here since if we don't have a body, Target will be
9146   // null below.
9147   (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
9148   Target
9149 = const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
9150 
9151   CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
9152                      // Avoid dereferencing a null pointer here.
9153                      *TCanonical = Target ? Target->getCanonicalDecl() : 0;
9154 
9155   if (!Current.insert(Canonical))
9156     return;
9157 
9158   // We know that beyond here, we aren't chaining into a cycle.
9159   if (!Target || !Target->isDelegatingConstructor() ||
9160       Target->isInvalidDecl() || Valid.count(TCanonical)) {
9161     for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9162       Valid.insert(*CI);
9163     Current.clear();
9164   // We've hit a cycle.
9165   } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
9166              Current.count(TCanonical)) {
9167     // If we haven't diagnosed this cycle yet, do so now.
9168     if (!Invalid.count(TCanonical)) {
9169       S.Diag((*Ctor->init_begin())->getSourceLocation(),
9170              diag::warn_delegating_ctor_cycle)
9171         << Ctor;
9172 
9173       // Don't add a note for a function delegating directo to itself.
9174       if (TCanonical != Canonical)
9175         S.Diag(Target->getLocation(), diag::note_it_delegates_to);
9176 
9177       CXXConstructorDecl *C = Target;
9178       while (C->getCanonicalDecl() != Canonical) {
9179         (void)C->getTargetConstructor()->hasBody(FNTarget);
9180         assert(FNTarget && "Ctor cycle through bodiless function");
9181 
9182         C
9183        = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
9184         S.Diag(C->getLocation(), diag::note_which_delegates_to);
9185       }
9186     }
9187 
9188     for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9189       Invalid.insert(*CI);
9190     Current.clear();
9191   } else {
9192     DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
9193   }
9194 }
9195 
9196 
CheckDelegatingCtorCycles()9197 void Sema::CheckDelegatingCtorCycles() {
9198   llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
9199 
9200   llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9201                                                    CE = Current.end();
9202 
9203   for (llvm::SmallVector<CXXConstructorDecl*, 4>::iterator
9204          I = DelegatingCtorDecls.begin(),
9205          E = DelegatingCtorDecls.end();
9206        I != E; ++I) {
9207    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
9208   }
9209 
9210   for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
9211     (*CI)->setInvalidDecl();
9212 }
9213