1 //== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defined the types Store and StoreManager.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/GRState.h"
16 #include "clang/AST/CharUnits.h"
17
18 using namespace clang;
19 using namespace ento;
20
StoreManager(GRStateManager & stateMgr)21 StoreManager::StoreManager(GRStateManager &stateMgr)
22 : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
23 MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
24
enterStackFrame(const GRState * state,const StackFrameContext * frame)25 StoreRef StoreManager::enterStackFrame(const GRState *state,
26 const StackFrameContext *frame) {
27 return StoreRef(state->getStore(), *this);
28 }
29
MakeElementRegion(const MemRegion * Base,QualType EleTy,uint64_t index)30 const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
31 QualType EleTy, uint64_t index) {
32 NonLoc idx = svalBuilder.makeArrayIndex(index);
33 return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
34 }
35
36 // FIXME: Merge with the implementation of the same method in MemRegion.cpp
IsCompleteType(ASTContext & Ctx,QualType Ty)37 static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
38 if (const RecordType *RT = Ty->getAs<RecordType>()) {
39 const RecordDecl *D = RT->getDecl();
40 if (!D->getDefinition())
41 return false;
42 }
43
44 return true;
45 }
46
BindDefault(Store store,const MemRegion * R,SVal V)47 StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
48 return StoreRef(store, *this);
49 }
50
GetElementZeroRegion(const MemRegion * R,QualType T)51 const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R,
52 QualType T) {
53 NonLoc idx = svalBuilder.makeZeroArrayIndex();
54 assert(!T.isNull());
55 return MRMgr.getElementRegion(T, idx, R, Ctx);
56 }
57
castRegion(const MemRegion * R,QualType CastToTy)58 const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
59
60 ASTContext& Ctx = StateMgr.getContext();
61
62 // Handle casts to Objective-C objects.
63 if (CastToTy->isObjCObjectPointerType())
64 return R->StripCasts();
65
66 if (CastToTy->isBlockPointerType()) {
67 // FIXME: We may need different solutions, depending on the symbol
68 // involved. Blocks can be casted to/from 'id', as they can be treated
69 // as Objective-C objects. This could possibly be handled by enhancing
70 // our reasoning of downcasts of symbolic objects.
71 if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
72 return R;
73
74 // We don't know what to make of it. Return a NULL region, which
75 // will be interpretted as UnknownVal.
76 return NULL;
77 }
78
79 // Now assume we are casting from pointer to pointer. Other cases should
80 // already be handled.
81 QualType PointeeTy = CastToTy->getPointeeType();
82 QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
83
84 // Handle casts to void*. We just pass the region through.
85 if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
86 return R;
87
88 // Handle casts from compatible types.
89 if (R->isBoundable())
90 if (const TypedRegion *TR = dyn_cast<TypedRegion>(R)) {
91 QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
92 if (CanonPointeeTy == ObjTy)
93 return R;
94 }
95
96 // Process region cast according to the kind of the region being cast.
97 switch (R->getKind()) {
98 case MemRegion::CXXThisRegionKind:
99 case MemRegion::GenericMemSpaceRegionKind:
100 case MemRegion::StackLocalsSpaceRegionKind:
101 case MemRegion::StackArgumentsSpaceRegionKind:
102 case MemRegion::HeapSpaceRegionKind:
103 case MemRegion::UnknownSpaceRegionKind:
104 case MemRegion::NonStaticGlobalSpaceRegionKind:
105 case MemRegion::StaticGlobalSpaceRegionKind: {
106 assert(0 && "Invalid region cast");
107 break;
108 }
109
110 case MemRegion::FunctionTextRegionKind:
111 case MemRegion::BlockTextRegionKind:
112 case MemRegion::BlockDataRegionKind:
113 case MemRegion::StringRegionKind:
114 // FIXME: Need to handle arbitrary downcasts.
115 case MemRegion::SymbolicRegionKind:
116 case MemRegion::AllocaRegionKind:
117 case MemRegion::CompoundLiteralRegionKind:
118 case MemRegion::FieldRegionKind:
119 case MemRegion::ObjCIvarRegionKind:
120 case MemRegion::VarRegionKind:
121 case MemRegion::CXXTempObjectRegionKind:
122 case MemRegion::CXXBaseObjectRegionKind:
123 return MakeElementRegion(R, PointeeTy);
124
125 case MemRegion::ElementRegionKind: {
126 // If we are casting from an ElementRegion to another type, the
127 // algorithm is as follows:
128 //
129 // (1) Compute the "raw offset" of the ElementRegion from the
130 // base region. This is done by calling 'getAsRawOffset()'.
131 //
132 // (2a) If we get a 'RegionRawOffset' after calling
133 // 'getAsRawOffset()', determine if the absolute offset
134 // can be exactly divided into chunks of the size of the
135 // casted-pointee type. If so, create a new ElementRegion with
136 // the pointee-cast type as the new ElementType and the index
137 // being the offset divded by the chunk size. If not, create
138 // a new ElementRegion at offset 0 off the raw offset region.
139 //
140 // (2b) If we don't a get a 'RegionRawOffset' after calling
141 // 'getAsRawOffset()', it means that we are at offset 0.
142 //
143 // FIXME: Handle symbolic raw offsets.
144
145 const ElementRegion *elementR = cast<ElementRegion>(R);
146 const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
147 const MemRegion *baseR = rawOff.getRegion();
148
149 // If we cannot compute a raw offset, throw up our hands and return
150 // a NULL MemRegion*.
151 if (!baseR)
152 return NULL;
153
154 CharUnits off = rawOff.getOffset();
155
156 if (off.isZero()) {
157 // Edge case: we are at 0 bytes off the beginning of baseR. We
158 // check to see if type we are casting to is the same as the base
159 // region. If so, just return the base region.
160 if (const TypedRegion *TR = dyn_cast<TypedRegion>(baseR)) {
161 QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
162 QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
163 if (CanonPointeeTy == ObjTy)
164 return baseR;
165 }
166
167 // Otherwise, create a new ElementRegion at offset 0.
168 return MakeElementRegion(baseR, PointeeTy);
169 }
170
171 // We have a non-zero offset from the base region. We want to determine
172 // if the offset can be evenly divided by sizeof(PointeeTy). If so,
173 // we create an ElementRegion whose index is that value. Otherwise, we
174 // create two ElementRegions, one that reflects a raw offset and the other
175 // that reflects the cast.
176
177 // Compute the index for the new ElementRegion.
178 int64_t newIndex = 0;
179 const MemRegion *newSuperR = 0;
180
181 // We can only compute sizeof(PointeeTy) if it is a complete type.
182 if (IsCompleteType(Ctx, PointeeTy)) {
183 // Compute the size in **bytes**.
184 CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
185 if (!pointeeTySize.isZero()) {
186 // Is the offset a multiple of the size? If so, we can layer the
187 // ElementRegion (with elementType == PointeeTy) directly on top of
188 // the base region.
189 if (off % pointeeTySize == 0) {
190 newIndex = off / pointeeTySize;
191 newSuperR = baseR;
192 }
193 }
194 }
195
196 if (!newSuperR) {
197 // Create an intermediate ElementRegion to represent the raw byte.
198 // This will be the super region of the final ElementRegion.
199 newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
200 }
201
202 return MakeElementRegion(newSuperR, PointeeTy, newIndex);
203 }
204 }
205
206 assert(0 && "unreachable");
207 return 0;
208 }
209
210
211 /// CastRetrievedVal - Used by subclasses of StoreManager to implement
212 /// implicit casts that arise from loads from regions that are reinterpreted
213 /// as another region.
CastRetrievedVal(SVal V,const TypedRegion * R,QualType castTy,bool performTestOnly)214 SVal StoreManager::CastRetrievedVal(SVal V, const TypedRegion *R,
215 QualType castTy, bool performTestOnly) {
216
217 if (castTy.isNull())
218 return V;
219
220 ASTContext &Ctx = svalBuilder.getContext();
221
222 if (performTestOnly) {
223 // Automatically translate references to pointers.
224 QualType T = R->getValueType();
225 if (const ReferenceType *RT = T->getAs<ReferenceType>())
226 T = Ctx.getPointerType(RT->getPointeeType());
227
228 assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
229 return V;
230 }
231
232 if (const Loc *L = dyn_cast<Loc>(&V))
233 return svalBuilder.evalCastFromLoc(*L, castTy);
234 else if (const NonLoc *NL = dyn_cast<NonLoc>(&V))
235 return svalBuilder.evalCastFromNonLoc(*NL, castTy);
236
237 return V;
238 }
239
getLValueFieldOrIvar(const Decl * D,SVal Base)240 SVal StoreManager::getLValueFieldOrIvar(const Decl* D, SVal Base) {
241 if (Base.isUnknownOrUndef())
242 return Base;
243
244 Loc BaseL = cast<Loc>(Base);
245 const MemRegion* BaseR = 0;
246
247 switch (BaseL.getSubKind()) {
248 case loc::MemRegionKind:
249 BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
250 break;
251
252 case loc::GotoLabelKind:
253 // These are anormal cases. Flag an undefined value.
254 return UndefinedVal();
255
256 case loc::ConcreteIntKind:
257 // While these seem funny, this can happen through casts.
258 // FIXME: What we should return is the field offset. For example,
259 // add the field offset to the integer value. That way funny things
260 // like this work properly: &(((struct foo *) 0xa)->f)
261 return Base;
262
263 default:
264 assert(0 && "Unhandled Base.");
265 return Base;
266 }
267
268 // NOTE: We must have this check first because ObjCIvarDecl is a subclass
269 // of FieldDecl.
270 if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
271 return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
272
273 return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
274 }
275
getLValueElement(QualType elementType,NonLoc Offset,SVal Base)276 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
277 SVal Base) {
278
279 // If the base is an unknown or undefined value, just return it back.
280 // FIXME: For absolute pointer addresses, we just return that value back as
281 // well, although in reality we should return the offset added to that
282 // value.
283 if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
284 return Base;
285
286 const MemRegion* BaseRegion = cast<loc::MemRegionVal>(Base).getRegion();
287
288 // Pointer of any type can be cast and used as array base.
289 const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
290
291 // Convert the offset to the appropriate size and signedness.
292 Offset = cast<NonLoc>(svalBuilder.convertToArrayIndex(Offset));
293
294 if (!ElemR) {
295 //
296 // If the base region is not an ElementRegion, create one.
297 // This can happen in the following example:
298 //
299 // char *p = __builtin_alloc(10);
300 // p[1] = 8;
301 //
302 // Observe that 'p' binds to an AllocaRegion.
303 //
304 return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
305 BaseRegion, Ctx));
306 }
307
308 SVal BaseIdx = ElemR->getIndex();
309
310 if (!isa<nonloc::ConcreteInt>(BaseIdx))
311 return UnknownVal();
312
313 const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue();
314
315 // Only allow non-integer offsets if the base region has no offset itself.
316 // FIXME: This is a somewhat arbitrary restriction. We should be using
317 // SValBuilder here to add the two offsets without checking their types.
318 if (!isa<nonloc::ConcreteInt>(Offset)) {
319 if (isa<ElementRegion>(BaseRegion->StripCasts()))
320 return UnknownVal();
321
322 return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
323 ElemR->getSuperRegion(),
324 Ctx));
325 }
326
327 const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue();
328 assert(BaseIdxI.isSigned());
329
330 // Compute the new index.
331 nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
332 OffI));
333
334 // Construct the new ElementRegion.
335 const MemRegion *ArrayR = ElemR->getSuperRegion();
336 return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
337 Ctx));
338 }
339