1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Function.h"
17 #include "llvm/InlineAsm.h"
18 #include "llvm/LLVMContext.h"
19 #include "llvm/Metadata.h"
20 #include "llvm/Module.h"
21 #include "llvm/Type.h"
22 #include "llvm/Value.h"
23 #include "llvm/Assembly/Writer.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/DebugInfo.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/LeakDetector.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/ADT/FoldingSet.h"
43 using namespace llvm;
44
45 //===----------------------------------------------------------------------===//
46 // MachineOperand Implementation
47 //===----------------------------------------------------------------------===//
48
49 /// AddRegOperandToRegInfo - Add this register operand to the specified
50 /// MachineRegisterInfo. If it is null, then the next/prev fields should be
51 /// explicitly nulled out.
AddRegOperandToRegInfo(MachineRegisterInfo * RegInfo)52 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
53 assert(isReg() && "Can only add reg operand to use lists");
54
55 // If the reginfo pointer is null, just explicitly null out or next/prev
56 // pointers, to ensure they are not garbage.
57 if (RegInfo == 0) {
58 Contents.Reg.Prev = 0;
59 Contents.Reg.Next = 0;
60 return;
61 }
62
63 // Otherwise, add this operand to the head of the registers use/def list.
64 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
65
66 // For SSA values, we prefer to keep the definition at the start of the list.
67 // we do this by skipping over the definition if it is at the head of the
68 // list.
69 if (*Head && (*Head)->isDef())
70 Head = &(*Head)->Contents.Reg.Next;
71
72 Contents.Reg.Next = *Head;
73 if (Contents.Reg.Next) {
74 assert(getReg() == Contents.Reg.Next->getReg() &&
75 "Different regs on the same list!");
76 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
77 }
78
79 Contents.Reg.Prev = Head;
80 *Head = this;
81 }
82
83 /// RemoveRegOperandFromRegInfo - Remove this register operand from the
84 /// MachineRegisterInfo it is linked with.
RemoveRegOperandFromRegInfo()85 void MachineOperand::RemoveRegOperandFromRegInfo() {
86 assert(isOnRegUseList() && "Reg operand is not on a use list");
87 // Unlink this from the doubly linked list of operands.
88 MachineOperand *NextOp = Contents.Reg.Next;
89 *Contents.Reg.Prev = NextOp;
90 if (NextOp) {
91 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
92 NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
93 }
94 Contents.Reg.Prev = 0;
95 Contents.Reg.Next = 0;
96 }
97
setReg(unsigned Reg)98 void MachineOperand::setReg(unsigned Reg) {
99 if (getReg() == Reg) return; // No change.
100
101 // Otherwise, we have to change the register. If this operand is embedded
102 // into a machine function, we need to update the old and new register's
103 // use/def lists.
104 if (MachineInstr *MI = getParent())
105 if (MachineBasicBlock *MBB = MI->getParent())
106 if (MachineFunction *MF = MBB->getParent()) {
107 RemoveRegOperandFromRegInfo();
108 SmallContents.RegNo = Reg;
109 AddRegOperandToRegInfo(&MF->getRegInfo());
110 return;
111 }
112
113 // Otherwise, just change the register, no problem. :)
114 SmallContents.RegNo = Reg;
115 }
116
substVirtReg(unsigned Reg,unsigned SubIdx,const TargetRegisterInfo & TRI)117 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
118 const TargetRegisterInfo &TRI) {
119 assert(TargetRegisterInfo::isVirtualRegister(Reg));
120 if (SubIdx && getSubReg())
121 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
122 setReg(Reg);
123 if (SubIdx)
124 setSubReg(SubIdx);
125 }
126
substPhysReg(unsigned Reg,const TargetRegisterInfo & TRI)127 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
128 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
129 if (getSubReg()) {
130 Reg = TRI.getSubReg(Reg, getSubReg());
131 // Note that getSubReg() may return 0 if the sub-register doesn't exist.
132 // That won't happen in legal code.
133 setSubReg(0);
134 }
135 setReg(Reg);
136 }
137
138 /// ChangeToImmediate - Replace this operand with a new immediate operand of
139 /// the specified value. If an operand is known to be an immediate already,
140 /// the setImm method should be used.
ChangeToImmediate(int64_t ImmVal)141 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
142 // If this operand is currently a register operand, and if this is in a
143 // function, deregister the operand from the register's use/def list.
144 if (isReg() && getParent() && getParent()->getParent() &&
145 getParent()->getParent()->getParent())
146 RemoveRegOperandFromRegInfo();
147
148 OpKind = MO_Immediate;
149 Contents.ImmVal = ImmVal;
150 }
151
152 /// ChangeToRegister - Replace this operand with a new register operand of
153 /// the specified value. If an operand is known to be an register already,
154 /// the setReg method should be used.
ChangeToRegister(unsigned Reg,bool isDef,bool isImp,bool isKill,bool isDead,bool isUndef,bool isDebug)155 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
156 bool isKill, bool isDead, bool isUndef,
157 bool isDebug) {
158 // If this operand is already a register operand, use setReg to update the
159 // register's use/def lists.
160 if (isReg()) {
161 assert(!isEarlyClobber());
162 setReg(Reg);
163 } else {
164 // Otherwise, change this to a register and set the reg#.
165 OpKind = MO_Register;
166 SmallContents.RegNo = Reg;
167
168 // If this operand is embedded in a function, add the operand to the
169 // register's use/def list.
170 if (MachineInstr *MI = getParent())
171 if (MachineBasicBlock *MBB = MI->getParent())
172 if (MachineFunction *MF = MBB->getParent())
173 AddRegOperandToRegInfo(&MF->getRegInfo());
174 }
175
176 IsDef = isDef;
177 IsImp = isImp;
178 IsKill = isKill;
179 IsDead = isDead;
180 IsUndef = isUndef;
181 IsEarlyClobber = false;
182 IsDebug = isDebug;
183 SubReg = 0;
184 }
185
186 /// isIdenticalTo - Return true if this operand is identical to the specified
187 /// operand.
isIdenticalTo(const MachineOperand & Other) const188 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
189 if (getType() != Other.getType() ||
190 getTargetFlags() != Other.getTargetFlags())
191 return false;
192
193 switch (getType()) {
194 default: llvm_unreachable("Unrecognized operand type");
195 case MachineOperand::MO_Register:
196 return getReg() == Other.getReg() && isDef() == Other.isDef() &&
197 getSubReg() == Other.getSubReg();
198 case MachineOperand::MO_Immediate:
199 return getImm() == Other.getImm();
200 case MachineOperand::MO_CImmediate:
201 return getCImm() == Other.getCImm();
202 case MachineOperand::MO_FPImmediate:
203 return getFPImm() == Other.getFPImm();
204 case MachineOperand::MO_MachineBasicBlock:
205 return getMBB() == Other.getMBB();
206 case MachineOperand::MO_FrameIndex:
207 return getIndex() == Other.getIndex();
208 case MachineOperand::MO_ConstantPoolIndex:
209 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
210 case MachineOperand::MO_JumpTableIndex:
211 return getIndex() == Other.getIndex();
212 case MachineOperand::MO_GlobalAddress:
213 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
214 case MachineOperand::MO_ExternalSymbol:
215 return !strcmp(getSymbolName(), Other.getSymbolName()) &&
216 getOffset() == Other.getOffset();
217 case MachineOperand::MO_BlockAddress:
218 return getBlockAddress() == Other.getBlockAddress();
219 case MachineOperand::MO_MCSymbol:
220 return getMCSymbol() == Other.getMCSymbol();
221 case MachineOperand::MO_Metadata:
222 return getMetadata() == Other.getMetadata();
223 }
224 }
225
226 /// print - Print the specified machine operand.
227 ///
print(raw_ostream & OS,const TargetMachine * TM) const228 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
229 // If the instruction is embedded into a basic block, we can find the
230 // target info for the instruction.
231 if (!TM)
232 if (const MachineInstr *MI = getParent())
233 if (const MachineBasicBlock *MBB = MI->getParent())
234 if (const MachineFunction *MF = MBB->getParent())
235 TM = &MF->getTarget();
236 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
237
238 switch (getType()) {
239 case MachineOperand::MO_Register:
240 OS << PrintReg(getReg(), TRI, getSubReg());
241
242 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
243 isEarlyClobber()) {
244 OS << '<';
245 bool NeedComma = false;
246 if (isDef()) {
247 if (NeedComma) OS << ',';
248 if (isEarlyClobber())
249 OS << "earlyclobber,";
250 if (isImplicit())
251 OS << "imp-";
252 OS << "def";
253 NeedComma = true;
254 } else if (isImplicit()) {
255 OS << "imp-use";
256 NeedComma = true;
257 }
258
259 if (isKill() || isDead() || isUndef()) {
260 if (NeedComma) OS << ',';
261 if (isKill()) OS << "kill";
262 if (isDead()) OS << "dead";
263 if (isUndef()) {
264 if (isKill() || isDead())
265 OS << ',';
266 OS << "undef";
267 }
268 }
269 OS << '>';
270 }
271 break;
272 case MachineOperand::MO_Immediate:
273 OS << getImm();
274 break;
275 case MachineOperand::MO_CImmediate:
276 getCImm()->getValue().print(OS, false);
277 break;
278 case MachineOperand::MO_FPImmediate:
279 if (getFPImm()->getType()->isFloatTy())
280 OS << getFPImm()->getValueAPF().convertToFloat();
281 else
282 OS << getFPImm()->getValueAPF().convertToDouble();
283 break;
284 case MachineOperand::MO_MachineBasicBlock:
285 OS << "<BB#" << getMBB()->getNumber() << ">";
286 break;
287 case MachineOperand::MO_FrameIndex:
288 OS << "<fi#" << getIndex() << '>';
289 break;
290 case MachineOperand::MO_ConstantPoolIndex:
291 OS << "<cp#" << getIndex();
292 if (getOffset()) OS << "+" << getOffset();
293 OS << '>';
294 break;
295 case MachineOperand::MO_JumpTableIndex:
296 OS << "<jt#" << getIndex() << '>';
297 break;
298 case MachineOperand::MO_GlobalAddress:
299 OS << "<ga:";
300 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
301 if (getOffset()) OS << "+" << getOffset();
302 OS << '>';
303 break;
304 case MachineOperand::MO_ExternalSymbol:
305 OS << "<es:" << getSymbolName();
306 if (getOffset()) OS << "+" << getOffset();
307 OS << '>';
308 break;
309 case MachineOperand::MO_BlockAddress:
310 OS << '<';
311 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
312 OS << '>';
313 break;
314 case MachineOperand::MO_Metadata:
315 OS << '<';
316 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
317 OS << '>';
318 break;
319 case MachineOperand::MO_MCSymbol:
320 OS << "<MCSym=" << *getMCSymbol() << '>';
321 break;
322 default:
323 llvm_unreachable("Unrecognized operand type");
324 }
325
326 if (unsigned TF = getTargetFlags())
327 OS << "[TF=" << TF << ']';
328 }
329
330 //===----------------------------------------------------------------------===//
331 // MachineMemOperand Implementation
332 //===----------------------------------------------------------------------===//
333
334 /// getAddrSpace - Return the LLVM IR address space number that this pointer
335 /// points into.
getAddrSpace() const336 unsigned MachinePointerInfo::getAddrSpace() const {
337 if (V == 0) return 0;
338 return cast<PointerType>(V->getType())->getAddressSpace();
339 }
340
341 /// getConstantPool - Return a MachinePointerInfo record that refers to the
342 /// constant pool.
getConstantPool()343 MachinePointerInfo MachinePointerInfo::getConstantPool() {
344 return MachinePointerInfo(PseudoSourceValue::getConstantPool());
345 }
346
347 /// getFixedStack - Return a MachinePointerInfo record that refers to the
348 /// the specified FrameIndex.
getFixedStack(int FI,int64_t offset)349 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
350 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
351 }
352
getJumpTable()353 MachinePointerInfo MachinePointerInfo::getJumpTable() {
354 return MachinePointerInfo(PseudoSourceValue::getJumpTable());
355 }
356
getGOT()357 MachinePointerInfo MachinePointerInfo::getGOT() {
358 return MachinePointerInfo(PseudoSourceValue::getGOT());
359 }
360
getStack(int64_t Offset)361 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
362 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
363 }
364
MachineMemOperand(MachinePointerInfo ptrinfo,unsigned f,uint64_t s,unsigned int a,const MDNode * TBAAInfo)365 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
366 uint64_t s, unsigned int a,
367 const MDNode *TBAAInfo)
368 : PtrInfo(ptrinfo), Size(s),
369 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
370 TBAAInfo(TBAAInfo) {
371 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
372 "invalid pointer value");
373 assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
374 assert((isLoad() || isStore()) && "Not a load/store!");
375 }
376
377 /// Profile - Gather unique data for the object.
378 ///
Profile(FoldingSetNodeID & ID) const379 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
380 ID.AddInteger(getOffset());
381 ID.AddInteger(Size);
382 ID.AddPointer(getValue());
383 ID.AddInteger(Flags);
384 }
385
refineAlignment(const MachineMemOperand * MMO)386 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
387 // The Value and Offset may differ due to CSE. But the flags and size
388 // should be the same.
389 assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
390 assert(MMO->getSize() == getSize() && "Size mismatch!");
391
392 if (MMO->getBaseAlignment() >= getBaseAlignment()) {
393 // Update the alignment value.
394 Flags = (Flags & ((1 << MOMaxBits) - 1)) |
395 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
396 // Also update the base and offset, because the new alignment may
397 // not be applicable with the old ones.
398 PtrInfo = MMO->PtrInfo;
399 }
400 }
401
402 /// getAlignment - Return the minimum known alignment in bytes of the
403 /// actual memory reference.
getAlignment() const404 uint64_t MachineMemOperand::getAlignment() const {
405 return MinAlign(getBaseAlignment(), getOffset());
406 }
407
operator <<(raw_ostream & OS,const MachineMemOperand & MMO)408 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
409 assert((MMO.isLoad() || MMO.isStore()) &&
410 "SV has to be a load, store or both.");
411
412 if (MMO.isVolatile())
413 OS << "Volatile ";
414
415 if (MMO.isLoad())
416 OS << "LD";
417 if (MMO.isStore())
418 OS << "ST";
419 OS << MMO.getSize();
420
421 // Print the address information.
422 OS << "[";
423 if (!MMO.getValue())
424 OS << "<unknown>";
425 else
426 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
427
428 // If the alignment of the memory reference itself differs from the alignment
429 // of the base pointer, print the base alignment explicitly, next to the base
430 // pointer.
431 if (MMO.getBaseAlignment() != MMO.getAlignment())
432 OS << "(align=" << MMO.getBaseAlignment() << ")";
433
434 if (MMO.getOffset() != 0)
435 OS << "+" << MMO.getOffset();
436 OS << "]";
437
438 // Print the alignment of the reference.
439 if (MMO.getBaseAlignment() != MMO.getAlignment() ||
440 MMO.getBaseAlignment() != MMO.getSize())
441 OS << "(align=" << MMO.getAlignment() << ")";
442
443 // Print TBAA info.
444 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
445 OS << "(tbaa=";
446 if (TBAAInfo->getNumOperands() > 0)
447 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
448 else
449 OS << "<unknown>";
450 OS << ")";
451 }
452
453 // Print nontemporal info.
454 if (MMO.isNonTemporal())
455 OS << "(nontemporal)";
456
457 return OS;
458 }
459
460 //===----------------------------------------------------------------------===//
461 // MachineInstr Implementation
462 //===----------------------------------------------------------------------===//
463
464 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
465 /// MCID NULL and no operands.
MachineInstr()466 MachineInstr::MachineInstr()
467 : MCID(0), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
468 MemRefs(0), MemRefsEnd(0),
469 Parent(0) {
470 // Make sure that we get added to a machine basicblock
471 LeakDetector::addGarbageObject(this);
472 }
473
addImplicitDefUseOperands()474 void MachineInstr::addImplicitDefUseOperands() {
475 if (MCID->ImplicitDefs)
476 for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs)
477 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
478 if (MCID->ImplicitUses)
479 for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses)
480 addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
481 }
482
483 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
484 /// implicit operands. It reserves space for the number of operands specified by
485 /// the MCInstrDesc.
MachineInstr(const MCInstrDesc & tid,bool NoImp)486 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
487 : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
488 MemRefs(0), MemRefsEnd(0), Parent(0) {
489 if (!NoImp)
490 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
491 Operands.reserve(NumImplicitOps + MCID->getNumOperands());
492 if (!NoImp)
493 addImplicitDefUseOperands();
494 // Make sure that we get added to a machine basicblock
495 LeakDetector::addGarbageObject(this);
496 }
497
498 /// MachineInstr ctor - As above, but with a DebugLoc.
MachineInstr(const MCInstrDesc & tid,const DebugLoc dl,bool NoImp)499 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
500 bool NoImp)
501 : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
502 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
503 if (!NoImp)
504 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
505 Operands.reserve(NumImplicitOps + MCID->getNumOperands());
506 if (!NoImp)
507 addImplicitDefUseOperands();
508 // Make sure that we get added to a machine basicblock
509 LeakDetector::addGarbageObject(this);
510 }
511
512 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
513 /// that the MachineInstr is created and added to the end of the specified
514 /// basic block.
MachineInstr(MachineBasicBlock * MBB,const MCInstrDesc & tid)515 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
516 : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
517 MemRefs(0), MemRefsEnd(0), Parent(0) {
518 assert(MBB && "Cannot use inserting ctor with null basic block!");
519 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
520 Operands.reserve(NumImplicitOps + MCID->getNumOperands());
521 addImplicitDefUseOperands();
522 // Make sure that we get added to a machine basicblock
523 LeakDetector::addGarbageObject(this);
524 MBB->push_back(this); // Add instruction to end of basic block!
525 }
526
527 /// MachineInstr ctor - As above, but with a DebugLoc.
528 ///
MachineInstr(MachineBasicBlock * MBB,const DebugLoc dl,const MCInstrDesc & tid)529 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
530 const MCInstrDesc &tid)
531 : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
532 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
533 assert(MBB && "Cannot use inserting ctor with null basic block!");
534 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
535 Operands.reserve(NumImplicitOps + MCID->getNumOperands());
536 addImplicitDefUseOperands();
537 // Make sure that we get added to a machine basicblock
538 LeakDetector::addGarbageObject(this);
539 MBB->push_back(this); // Add instruction to end of basic block!
540 }
541
542 /// MachineInstr ctor - Copies MachineInstr arg exactly
543 ///
MachineInstr(MachineFunction & MF,const MachineInstr & MI)544 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
545 : MCID(&MI.getDesc()), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
546 MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
547 Parent(0), debugLoc(MI.getDebugLoc()) {
548 Operands.reserve(MI.getNumOperands());
549
550 // Add operands
551 for (unsigned i = 0; i != MI.getNumOperands(); ++i)
552 addOperand(MI.getOperand(i));
553 NumImplicitOps = MI.NumImplicitOps;
554
555 // Copy all the flags.
556 Flags = MI.Flags;
557
558 // Set parent to null.
559 Parent = 0;
560
561 LeakDetector::addGarbageObject(this);
562 }
563
~MachineInstr()564 MachineInstr::~MachineInstr() {
565 LeakDetector::removeGarbageObject(this);
566 #ifndef NDEBUG
567 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
568 assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
569 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
570 "Reg operand def/use list corrupted");
571 }
572 #endif
573 }
574
575 /// getRegInfo - If this instruction is embedded into a MachineFunction,
576 /// return the MachineRegisterInfo object for the current function, otherwise
577 /// return null.
getRegInfo()578 MachineRegisterInfo *MachineInstr::getRegInfo() {
579 if (MachineBasicBlock *MBB = getParent())
580 return &MBB->getParent()->getRegInfo();
581 return 0;
582 }
583
584 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
585 /// this instruction from their respective use lists. This requires that the
586 /// operands already be on their use lists.
RemoveRegOperandsFromUseLists()587 void MachineInstr::RemoveRegOperandsFromUseLists() {
588 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
589 if (Operands[i].isReg())
590 Operands[i].RemoveRegOperandFromRegInfo();
591 }
592 }
593
594 /// AddRegOperandsToUseLists - Add all of the register operands in
595 /// this instruction from their respective use lists. This requires that the
596 /// operands not be on their use lists yet.
AddRegOperandsToUseLists(MachineRegisterInfo & RegInfo)597 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
598 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
599 if (Operands[i].isReg())
600 Operands[i].AddRegOperandToRegInfo(&RegInfo);
601 }
602 }
603
604
605 /// addOperand - Add the specified operand to the instruction. If it is an
606 /// implicit operand, it is added to the end of the operand list. If it is
607 /// an explicit operand it is added at the end of the explicit operand list
608 /// (before the first implicit operand).
addOperand(const MachineOperand & Op)609 void MachineInstr::addOperand(const MachineOperand &Op) {
610 bool isImpReg = Op.isReg() && Op.isImplicit();
611 assert((isImpReg || !OperandsComplete()) &&
612 "Trying to add an operand to a machine instr that is already done!");
613
614 MachineRegisterInfo *RegInfo = getRegInfo();
615
616 // If we are adding the operand to the end of the list, our job is simpler.
617 // This is true most of the time, so this is a reasonable optimization.
618 if (isImpReg || NumImplicitOps == 0) {
619 // We can only do this optimization if we know that the operand list won't
620 // reallocate.
621 if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
622 Operands.push_back(Op);
623
624 // Set the parent of the operand.
625 Operands.back().ParentMI = this;
626
627 // If the operand is a register, update the operand's use list.
628 if (Op.isReg()) {
629 Operands.back().AddRegOperandToRegInfo(RegInfo);
630 // If the register operand is flagged as early, mark the operand as such
631 unsigned OpNo = Operands.size() - 1;
632 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
633 Operands[OpNo].setIsEarlyClobber(true);
634 }
635 return;
636 }
637 }
638
639 // Otherwise, we have to insert a real operand before any implicit ones.
640 unsigned OpNo = Operands.size()-NumImplicitOps;
641
642 // If this instruction isn't embedded into a function, then we don't need to
643 // update any operand lists.
644 if (RegInfo == 0) {
645 // Simple insertion, no reginfo update needed for other register operands.
646 Operands.insert(Operands.begin()+OpNo, Op);
647 Operands[OpNo].ParentMI = this;
648
649 // Do explicitly set the reginfo for this operand though, to ensure the
650 // next/prev fields are properly nulled out.
651 if (Operands[OpNo].isReg()) {
652 Operands[OpNo].AddRegOperandToRegInfo(0);
653 // If the register operand is flagged as early, mark the operand as such
654 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
655 Operands[OpNo].setIsEarlyClobber(true);
656 }
657
658 } else if (Operands.size()+1 <= Operands.capacity()) {
659 // Otherwise, we have to remove register operands from their register use
660 // list, add the operand, then add the register operands back to their use
661 // list. This also must handle the case when the operand list reallocates
662 // to somewhere else.
663
664 // If insertion of this operand won't cause reallocation of the operand
665 // list, just remove the implicit operands, add the operand, then re-add all
666 // the rest of the operands.
667 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
668 assert(Operands[i].isReg() && "Should only be an implicit reg!");
669 Operands[i].RemoveRegOperandFromRegInfo();
670 }
671
672 // Add the operand. If it is a register, add it to the reg list.
673 Operands.insert(Operands.begin()+OpNo, Op);
674 Operands[OpNo].ParentMI = this;
675
676 if (Operands[OpNo].isReg()) {
677 Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
678 // If the register operand is flagged as early, mark the operand as such
679 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
680 Operands[OpNo].setIsEarlyClobber(true);
681 }
682
683 // Re-add all the implicit ops.
684 for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
685 assert(Operands[i].isReg() && "Should only be an implicit reg!");
686 Operands[i].AddRegOperandToRegInfo(RegInfo);
687 }
688 } else {
689 // Otherwise, we will be reallocating the operand list. Remove all reg
690 // operands from their list, then readd them after the operand list is
691 // reallocated.
692 RemoveRegOperandsFromUseLists();
693
694 Operands.insert(Operands.begin()+OpNo, Op);
695 Operands[OpNo].ParentMI = this;
696
697 // Re-add all the operands.
698 AddRegOperandsToUseLists(*RegInfo);
699
700 // If the register operand is flagged as early, mark the operand as such
701 if (Operands[OpNo].isReg()
702 && MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
703 Operands[OpNo].setIsEarlyClobber(true);
704 }
705 }
706
707 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
708 /// fewer operand than it started with.
709 ///
RemoveOperand(unsigned OpNo)710 void MachineInstr::RemoveOperand(unsigned OpNo) {
711 assert(OpNo < Operands.size() && "Invalid operand number");
712
713 // Special case removing the last one.
714 if (OpNo == Operands.size()-1) {
715 // If needed, remove from the reg def/use list.
716 if (Operands.back().isReg() && Operands.back().isOnRegUseList())
717 Operands.back().RemoveRegOperandFromRegInfo();
718
719 Operands.pop_back();
720 return;
721 }
722
723 // Otherwise, we are removing an interior operand. If we have reginfo to
724 // update, remove all operands that will be shifted down from their reg lists,
725 // move everything down, then re-add them.
726 MachineRegisterInfo *RegInfo = getRegInfo();
727 if (RegInfo) {
728 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
729 if (Operands[i].isReg())
730 Operands[i].RemoveRegOperandFromRegInfo();
731 }
732 }
733
734 Operands.erase(Operands.begin()+OpNo);
735
736 if (RegInfo) {
737 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
738 if (Operands[i].isReg())
739 Operands[i].AddRegOperandToRegInfo(RegInfo);
740 }
741 }
742 }
743
744 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
745 /// This function should be used only occasionally. The setMemRefs function
746 /// is the primary method for setting up a MachineInstr's MemRefs list.
addMemOperand(MachineFunction & MF,MachineMemOperand * MO)747 void MachineInstr::addMemOperand(MachineFunction &MF,
748 MachineMemOperand *MO) {
749 mmo_iterator OldMemRefs = MemRefs;
750 mmo_iterator OldMemRefsEnd = MemRefsEnd;
751
752 size_t NewNum = (MemRefsEnd - MemRefs) + 1;
753 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
754 mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
755
756 std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
757 NewMemRefs[NewNum - 1] = MO;
758
759 MemRefs = NewMemRefs;
760 MemRefsEnd = NewMemRefsEnd;
761 }
762
isIdenticalTo(const MachineInstr * Other,MICheckType Check) const763 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
764 MICheckType Check) const {
765 // If opcodes or number of operands are not the same then the two
766 // instructions are obviously not identical.
767 if (Other->getOpcode() != getOpcode() ||
768 Other->getNumOperands() != getNumOperands())
769 return false;
770
771 // Check operands to make sure they match.
772 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
773 const MachineOperand &MO = getOperand(i);
774 const MachineOperand &OMO = Other->getOperand(i);
775 if (!MO.isReg()) {
776 if (!MO.isIdenticalTo(OMO))
777 return false;
778 continue;
779 }
780
781 // Clients may or may not want to ignore defs when testing for equality.
782 // For example, machine CSE pass only cares about finding common
783 // subexpressions, so it's safe to ignore virtual register defs.
784 if (MO.isDef()) {
785 if (Check == IgnoreDefs)
786 continue;
787 else if (Check == IgnoreVRegDefs) {
788 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
789 TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
790 if (MO.getReg() != OMO.getReg())
791 return false;
792 } else {
793 if (!MO.isIdenticalTo(OMO))
794 return false;
795 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
796 return false;
797 }
798 } else {
799 if (!MO.isIdenticalTo(OMO))
800 return false;
801 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
802 return false;
803 }
804 }
805 // If DebugLoc does not match then two dbg.values are not identical.
806 if (isDebugValue())
807 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
808 && getDebugLoc() != Other->getDebugLoc())
809 return false;
810 return true;
811 }
812
813 /// removeFromParent - This method unlinks 'this' from the containing basic
814 /// block, and returns it, but does not delete it.
removeFromParent()815 MachineInstr *MachineInstr::removeFromParent() {
816 assert(getParent() && "Not embedded in a basic block!");
817 getParent()->remove(this);
818 return this;
819 }
820
821
822 /// eraseFromParent - This method unlinks 'this' from the containing basic
823 /// block, and deletes it.
eraseFromParent()824 void MachineInstr::eraseFromParent() {
825 assert(getParent() && "Not embedded in a basic block!");
826 getParent()->erase(this);
827 }
828
829
830 /// OperandComplete - Return true if it's illegal to add a new operand
831 ///
OperandsComplete() const832 bool MachineInstr::OperandsComplete() const {
833 unsigned short NumOperands = MCID->getNumOperands();
834 if (!MCID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
835 return true; // Broken: we have all the operands of this instruction!
836 return false;
837 }
838
839 /// getNumExplicitOperands - Returns the number of non-implicit operands.
840 ///
getNumExplicitOperands() const841 unsigned MachineInstr::getNumExplicitOperands() const {
842 unsigned NumOperands = MCID->getNumOperands();
843 if (!MCID->isVariadic())
844 return NumOperands;
845
846 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
847 const MachineOperand &MO = getOperand(i);
848 if (!MO.isReg() || !MO.isImplicit())
849 NumOperands++;
850 }
851 return NumOperands;
852 }
853
isStackAligningInlineAsm() const854 bool MachineInstr::isStackAligningInlineAsm() const {
855 if (isInlineAsm()) {
856 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
857 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
858 return true;
859 }
860 return false;
861 }
862
863 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
864 /// the specific register or -1 if it is not found. It further tightens
865 /// the search criteria to a use that kills the register if isKill is true.
findRegisterUseOperandIdx(unsigned Reg,bool isKill,const TargetRegisterInfo * TRI) const866 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
867 const TargetRegisterInfo *TRI) const {
868 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
869 const MachineOperand &MO = getOperand(i);
870 if (!MO.isReg() || !MO.isUse())
871 continue;
872 unsigned MOReg = MO.getReg();
873 if (!MOReg)
874 continue;
875 if (MOReg == Reg ||
876 (TRI &&
877 TargetRegisterInfo::isPhysicalRegister(MOReg) &&
878 TargetRegisterInfo::isPhysicalRegister(Reg) &&
879 TRI->isSubRegister(MOReg, Reg)))
880 if (!isKill || MO.isKill())
881 return i;
882 }
883 return -1;
884 }
885
886 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
887 /// indicating if this instruction reads or writes Reg. This also considers
888 /// partial defines.
889 std::pair<bool,bool>
readsWritesVirtualRegister(unsigned Reg,SmallVectorImpl<unsigned> * Ops) const890 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
891 SmallVectorImpl<unsigned> *Ops) const {
892 bool PartDef = false; // Partial redefine.
893 bool FullDef = false; // Full define.
894 bool Use = false;
895
896 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
897 const MachineOperand &MO = getOperand(i);
898 if (!MO.isReg() || MO.getReg() != Reg)
899 continue;
900 if (Ops)
901 Ops->push_back(i);
902 if (MO.isUse())
903 Use |= !MO.isUndef();
904 else if (MO.getSubReg())
905 PartDef = true;
906 else
907 FullDef = true;
908 }
909 // A partial redefine uses Reg unless there is also a full define.
910 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
911 }
912
913 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
914 /// the specified register or -1 if it is not found. If isDead is true, defs
915 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
916 /// also checks if there is a def of a super-register.
917 int
findRegisterDefOperandIdx(unsigned Reg,bool isDead,bool Overlap,const TargetRegisterInfo * TRI) const918 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
919 const TargetRegisterInfo *TRI) const {
920 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
921 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
922 const MachineOperand &MO = getOperand(i);
923 if (!MO.isReg() || !MO.isDef())
924 continue;
925 unsigned MOReg = MO.getReg();
926 bool Found = (MOReg == Reg);
927 if (!Found && TRI && isPhys &&
928 TargetRegisterInfo::isPhysicalRegister(MOReg)) {
929 if (Overlap)
930 Found = TRI->regsOverlap(MOReg, Reg);
931 else
932 Found = TRI->isSubRegister(MOReg, Reg);
933 }
934 if (Found && (!isDead || MO.isDead()))
935 return i;
936 }
937 return -1;
938 }
939
940 /// findFirstPredOperandIdx() - Find the index of the first operand in the
941 /// operand list that is used to represent the predicate. It returns -1 if
942 /// none is found.
findFirstPredOperandIdx() const943 int MachineInstr::findFirstPredOperandIdx() const {
944 const MCInstrDesc &MCID = getDesc();
945 if (MCID.isPredicable()) {
946 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
947 if (MCID.OpInfo[i].isPredicate())
948 return i;
949 }
950
951 return -1;
952 }
953
954 /// isRegTiedToUseOperand - Given the index of a register def operand,
955 /// check if the register def is tied to a source operand, due to either
956 /// two-address elimination or inline assembly constraints. Returns the
957 /// first tied use operand index by reference is UseOpIdx is not null.
958 bool MachineInstr::
isRegTiedToUseOperand(unsigned DefOpIdx,unsigned * UseOpIdx) const959 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
960 if (isInlineAsm()) {
961 assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
962 const MachineOperand &MO = getOperand(DefOpIdx);
963 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
964 return false;
965 // Determine the actual operand index that corresponds to this index.
966 unsigned DefNo = 0;
967 unsigned DefPart = 0;
968 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
969 i < e; ) {
970 const MachineOperand &FMO = getOperand(i);
971 // After the normal asm operands there may be additional imp-def regs.
972 if (!FMO.isImm())
973 return false;
974 // Skip over this def.
975 unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
976 unsigned PrevDef = i + 1;
977 i = PrevDef + NumOps;
978 if (i > DefOpIdx) {
979 DefPart = DefOpIdx - PrevDef;
980 break;
981 }
982 ++DefNo;
983 }
984 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
985 i != e; ++i) {
986 const MachineOperand &FMO = getOperand(i);
987 if (!FMO.isImm())
988 continue;
989 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
990 continue;
991 unsigned Idx;
992 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
993 Idx == DefNo) {
994 if (UseOpIdx)
995 *UseOpIdx = (unsigned)i + 1 + DefPart;
996 return true;
997 }
998 }
999 return false;
1000 }
1001
1002 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
1003 const MCInstrDesc &MCID = getDesc();
1004 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
1005 const MachineOperand &MO = getOperand(i);
1006 if (MO.isReg() && MO.isUse() &&
1007 MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
1008 if (UseOpIdx)
1009 *UseOpIdx = (unsigned)i;
1010 return true;
1011 }
1012 }
1013 return false;
1014 }
1015
1016 /// isRegTiedToDefOperand - Return true if the operand of the specified index
1017 /// is a register use and it is tied to an def operand. It also returns the def
1018 /// operand index by reference.
1019 bool MachineInstr::
isRegTiedToDefOperand(unsigned UseOpIdx,unsigned * DefOpIdx) const1020 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
1021 if (isInlineAsm()) {
1022 const MachineOperand &MO = getOperand(UseOpIdx);
1023 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
1024 return false;
1025
1026 // Find the flag operand corresponding to UseOpIdx
1027 unsigned FlagIdx, NumOps=0;
1028 for (FlagIdx = InlineAsm::MIOp_FirstOperand;
1029 FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
1030 const MachineOperand &UFMO = getOperand(FlagIdx);
1031 // After the normal asm operands there may be additional imp-def regs.
1032 if (!UFMO.isImm())
1033 return false;
1034 NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
1035 assert(NumOps < getNumOperands() && "Invalid inline asm flag");
1036 if (UseOpIdx < FlagIdx+NumOps+1)
1037 break;
1038 }
1039 if (FlagIdx >= UseOpIdx)
1040 return false;
1041 const MachineOperand &UFMO = getOperand(FlagIdx);
1042 unsigned DefNo;
1043 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
1044 if (!DefOpIdx)
1045 return true;
1046
1047 unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
1048 // Remember to adjust the index. First operand is asm string, second is
1049 // the HasSideEffects and AlignStack bits, then there is a flag for each.
1050 while (DefNo) {
1051 const MachineOperand &FMO = getOperand(DefIdx);
1052 assert(FMO.isImm());
1053 // Skip over this def.
1054 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
1055 --DefNo;
1056 }
1057 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
1058 return true;
1059 }
1060 return false;
1061 }
1062
1063 const MCInstrDesc &MCID = getDesc();
1064 if (UseOpIdx >= MCID.getNumOperands())
1065 return false;
1066 const MachineOperand &MO = getOperand(UseOpIdx);
1067 if (!MO.isReg() || !MO.isUse())
1068 return false;
1069 int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
1070 if (DefIdx == -1)
1071 return false;
1072 if (DefOpIdx)
1073 *DefOpIdx = (unsigned)DefIdx;
1074 return true;
1075 }
1076
1077 /// clearKillInfo - Clears kill flags on all operands.
1078 ///
clearKillInfo()1079 void MachineInstr::clearKillInfo() {
1080 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1081 MachineOperand &MO = getOperand(i);
1082 if (MO.isReg() && MO.isUse())
1083 MO.setIsKill(false);
1084 }
1085 }
1086
1087 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1088 ///
copyKillDeadInfo(const MachineInstr * MI)1089 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1090 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1091 const MachineOperand &MO = MI->getOperand(i);
1092 if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1093 continue;
1094 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1095 MachineOperand &MOp = getOperand(j);
1096 if (!MOp.isIdenticalTo(MO))
1097 continue;
1098 if (MO.isKill())
1099 MOp.setIsKill();
1100 else
1101 MOp.setIsDead();
1102 break;
1103 }
1104 }
1105 }
1106
1107 /// copyPredicates - Copies predicate operand(s) from MI.
copyPredicates(const MachineInstr * MI)1108 void MachineInstr::copyPredicates(const MachineInstr *MI) {
1109 const MCInstrDesc &MCID = MI->getDesc();
1110 if (!MCID.isPredicable())
1111 return;
1112 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1113 if (MCID.OpInfo[i].isPredicate()) {
1114 // Predicated operands must be last operands.
1115 addOperand(MI->getOperand(i));
1116 }
1117 }
1118 }
1119
substituteRegister(unsigned FromReg,unsigned ToReg,unsigned SubIdx,const TargetRegisterInfo & RegInfo)1120 void MachineInstr::substituteRegister(unsigned FromReg,
1121 unsigned ToReg,
1122 unsigned SubIdx,
1123 const TargetRegisterInfo &RegInfo) {
1124 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1125 if (SubIdx)
1126 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1127 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1128 MachineOperand &MO = getOperand(i);
1129 if (!MO.isReg() || MO.getReg() != FromReg)
1130 continue;
1131 MO.substPhysReg(ToReg, RegInfo);
1132 }
1133 } else {
1134 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1135 MachineOperand &MO = getOperand(i);
1136 if (!MO.isReg() || MO.getReg() != FromReg)
1137 continue;
1138 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1139 }
1140 }
1141 }
1142
1143 /// isSafeToMove - Return true if it is safe to move this instruction. If
1144 /// SawStore is set to true, it means that there is a store (or call) between
1145 /// the instruction's location and its intended destination.
isSafeToMove(const TargetInstrInfo * TII,AliasAnalysis * AA,bool & SawStore) const1146 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1147 AliasAnalysis *AA,
1148 bool &SawStore) const {
1149 // Ignore stuff that we obviously can't move.
1150 if (MCID->mayStore() || MCID->isCall()) {
1151 SawStore = true;
1152 return false;
1153 }
1154
1155 if (isLabel() || isDebugValue() ||
1156 MCID->isTerminator() || hasUnmodeledSideEffects())
1157 return false;
1158
1159 // See if this instruction does a load. If so, we have to guarantee that the
1160 // loaded value doesn't change between the load and the its intended
1161 // destination. The check for isInvariantLoad gives the targe the chance to
1162 // classify the load as always returning a constant, e.g. a constant pool
1163 // load.
1164 if (MCID->mayLoad() && !isInvariantLoad(AA))
1165 // Otherwise, this is a real load. If there is a store between the load and
1166 // end of block, or if the load is volatile, we can't move it.
1167 return !SawStore && !hasVolatileMemoryRef();
1168
1169 return true;
1170 }
1171
1172 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
1173 /// instruction which defined the specified register instead of copying it.
isSafeToReMat(const TargetInstrInfo * TII,AliasAnalysis * AA,unsigned DstReg) const1174 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1175 AliasAnalysis *AA,
1176 unsigned DstReg) const {
1177 bool SawStore = false;
1178 if (!TII->isTriviallyReMaterializable(this, AA) ||
1179 !isSafeToMove(TII, AA, SawStore))
1180 return false;
1181 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1182 const MachineOperand &MO = getOperand(i);
1183 if (!MO.isReg())
1184 continue;
1185 // FIXME: For now, do not remat any instruction with register operands.
1186 // Later on, we can loosen the restriction is the register operands have
1187 // not been modified between the def and use. Note, this is different from
1188 // MachineSink because the code is no longer in two-address form (at least
1189 // partially).
1190 if (MO.isUse())
1191 return false;
1192 else if (!MO.isDead() && MO.getReg() != DstReg)
1193 return false;
1194 }
1195 return true;
1196 }
1197
1198 /// hasVolatileMemoryRef - Return true if this instruction may have a
1199 /// volatile memory reference, or if the information describing the
1200 /// memory reference is not available. Return false if it is known to
1201 /// have no volatile memory references.
hasVolatileMemoryRef() const1202 bool MachineInstr::hasVolatileMemoryRef() const {
1203 // An instruction known never to access memory won't have a volatile access.
1204 if (!MCID->mayStore() &&
1205 !MCID->mayLoad() &&
1206 !MCID->isCall() &&
1207 !hasUnmodeledSideEffects())
1208 return false;
1209
1210 // Otherwise, if the instruction has no memory reference information,
1211 // conservatively assume it wasn't preserved.
1212 if (memoperands_empty())
1213 return true;
1214
1215 // Check the memory reference information for volatile references.
1216 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1217 if ((*I)->isVolatile())
1218 return true;
1219
1220 return false;
1221 }
1222
1223 /// isInvariantLoad - Return true if this instruction is loading from a
1224 /// location whose value is invariant across the function. For example,
1225 /// loading a value from the constant pool or from the argument area
1226 /// of a function if it does not change. This should only return true of
1227 /// *all* loads the instruction does are invariant (if it does multiple loads).
isInvariantLoad(AliasAnalysis * AA) const1228 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1229 // If the instruction doesn't load at all, it isn't an invariant load.
1230 if (!MCID->mayLoad())
1231 return false;
1232
1233 // If the instruction has lost its memoperands, conservatively assume that
1234 // it may not be an invariant load.
1235 if (memoperands_empty())
1236 return false;
1237
1238 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1239
1240 for (mmo_iterator I = memoperands_begin(),
1241 E = memoperands_end(); I != E; ++I) {
1242 if ((*I)->isVolatile()) return false;
1243 if ((*I)->isStore()) return false;
1244
1245 if (const Value *V = (*I)->getValue()) {
1246 // A load from a constant PseudoSourceValue is invariant.
1247 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1248 if (PSV->isConstant(MFI))
1249 continue;
1250 // If we have an AliasAnalysis, ask it whether the memory is constant.
1251 if (AA && AA->pointsToConstantMemory(
1252 AliasAnalysis::Location(V, (*I)->getSize(),
1253 (*I)->getTBAAInfo())))
1254 continue;
1255 }
1256
1257 // Otherwise assume conservatively.
1258 return false;
1259 }
1260
1261 // Everything checks out.
1262 return true;
1263 }
1264
1265 /// isConstantValuePHI - If the specified instruction is a PHI that always
1266 /// merges together the same virtual register, return the register, otherwise
1267 /// return 0.
isConstantValuePHI() const1268 unsigned MachineInstr::isConstantValuePHI() const {
1269 if (!isPHI())
1270 return 0;
1271 assert(getNumOperands() >= 3 &&
1272 "It's illegal to have a PHI without source operands");
1273
1274 unsigned Reg = getOperand(1).getReg();
1275 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1276 if (getOperand(i).getReg() != Reg)
1277 return 0;
1278 return Reg;
1279 }
1280
hasUnmodeledSideEffects() const1281 bool MachineInstr::hasUnmodeledSideEffects() const {
1282 if (getDesc().hasUnmodeledSideEffects())
1283 return true;
1284 if (isInlineAsm()) {
1285 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1286 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1287 return true;
1288 }
1289
1290 return false;
1291 }
1292
1293 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1294 ///
allDefsAreDead() const1295 bool MachineInstr::allDefsAreDead() const {
1296 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1297 const MachineOperand &MO = getOperand(i);
1298 if (!MO.isReg() || MO.isUse())
1299 continue;
1300 if (!MO.isDead())
1301 return false;
1302 }
1303 return true;
1304 }
1305
1306 /// copyImplicitOps - Copy implicit register operands from specified
1307 /// instruction to this instruction.
copyImplicitOps(const MachineInstr * MI)1308 void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
1309 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1310 i != e; ++i) {
1311 const MachineOperand &MO = MI->getOperand(i);
1312 if (MO.isReg() && MO.isImplicit())
1313 addOperand(MO);
1314 }
1315 }
1316
dump() const1317 void MachineInstr::dump() const {
1318 dbgs() << " " << *this;
1319 }
1320
printDebugLoc(DebugLoc DL,const MachineFunction * MF,raw_ostream & CommentOS)1321 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1322 raw_ostream &CommentOS) {
1323 const LLVMContext &Ctx = MF->getFunction()->getContext();
1324 if (!DL.isUnknown()) { // Print source line info.
1325 DIScope Scope(DL.getScope(Ctx));
1326 // Omit the directory, because it's likely to be long and uninteresting.
1327 if (Scope.Verify())
1328 CommentOS << Scope.getFilename();
1329 else
1330 CommentOS << "<unknown>";
1331 CommentOS << ':' << DL.getLine();
1332 if (DL.getCol() != 0)
1333 CommentOS << ':' << DL.getCol();
1334 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1335 if (!InlinedAtDL.isUnknown()) {
1336 CommentOS << " @[ ";
1337 printDebugLoc(InlinedAtDL, MF, CommentOS);
1338 CommentOS << " ]";
1339 }
1340 }
1341 }
1342
print(raw_ostream & OS,const TargetMachine * TM) const1343 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1344 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1345 const MachineFunction *MF = 0;
1346 const MachineRegisterInfo *MRI = 0;
1347 if (const MachineBasicBlock *MBB = getParent()) {
1348 MF = MBB->getParent();
1349 if (!TM && MF)
1350 TM = &MF->getTarget();
1351 if (MF)
1352 MRI = &MF->getRegInfo();
1353 }
1354
1355 // Save a list of virtual registers.
1356 SmallVector<unsigned, 8> VirtRegs;
1357
1358 // Print explicitly defined operands on the left of an assignment syntax.
1359 unsigned StartOp = 0, e = getNumOperands();
1360 for (; StartOp < e && getOperand(StartOp).isReg() &&
1361 getOperand(StartOp).isDef() &&
1362 !getOperand(StartOp).isImplicit();
1363 ++StartOp) {
1364 if (StartOp != 0) OS << ", ";
1365 getOperand(StartOp).print(OS, TM);
1366 unsigned Reg = getOperand(StartOp).getReg();
1367 if (TargetRegisterInfo::isVirtualRegister(Reg))
1368 VirtRegs.push_back(Reg);
1369 }
1370
1371 if (StartOp != 0)
1372 OS << " = ";
1373
1374 // Print the opcode name.
1375 OS << getDesc().getName();
1376
1377 // Print the rest of the operands.
1378 bool OmittedAnyCallClobbers = false;
1379 bool FirstOp = true;
1380 unsigned AsmDescOp = ~0u;
1381 unsigned AsmOpCount = 0;
1382
1383 if (isInlineAsm()) {
1384 // Print asm string.
1385 OS << " ";
1386 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1387
1388 // Print HasSideEffects, IsAlignStack
1389 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1390 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1391 OS << " [sideeffect]";
1392 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1393 OS << " [alignstack]";
1394
1395 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1396 FirstOp = false;
1397 }
1398
1399
1400 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1401 const MachineOperand &MO = getOperand(i);
1402
1403 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1404 VirtRegs.push_back(MO.getReg());
1405
1406 // Omit call-clobbered registers which aren't used anywhere. This makes
1407 // call instructions much less noisy on targets where calls clobber lots
1408 // of registers. Don't rely on MO.isDead() because we may be called before
1409 // LiveVariables is run, or we may be looking at a non-allocatable reg.
1410 if (MF && getDesc().isCall() &&
1411 MO.isReg() && MO.isImplicit() && MO.isDef()) {
1412 unsigned Reg = MO.getReg();
1413 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1414 const MachineRegisterInfo &MRI = MF->getRegInfo();
1415 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1416 bool HasAliasLive = false;
1417 for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1418 unsigned AliasReg = *Alias; ++Alias)
1419 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1420 HasAliasLive = true;
1421 break;
1422 }
1423 if (!HasAliasLive) {
1424 OmittedAnyCallClobbers = true;
1425 continue;
1426 }
1427 }
1428 }
1429 }
1430
1431 if (FirstOp) FirstOp = false; else OS << ",";
1432 OS << " ";
1433 if (i < getDesc().NumOperands) {
1434 const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1435 if (MCOI.isPredicate())
1436 OS << "pred:";
1437 if (MCOI.isOptionalDef())
1438 OS << "opt:";
1439 }
1440 if (isDebugValue() && MO.isMetadata()) {
1441 // Pretty print DBG_VALUE instructions.
1442 const MDNode *MD = MO.getMetadata();
1443 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1444 OS << "!\"" << MDS->getString() << '\"';
1445 else
1446 MO.print(OS, TM);
1447 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1448 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1449 } else if (i == AsmDescOp && MO.isImm()) {
1450 // Pretty print the inline asm operand descriptor.
1451 OS << '$' << AsmOpCount++;
1452 unsigned Flag = MO.getImm();
1453 switch (InlineAsm::getKind(Flag)) {
1454 case InlineAsm::Kind_RegUse: OS << ":[reguse]"; break;
1455 case InlineAsm::Kind_RegDef: OS << ":[regdef]"; break;
1456 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec]"; break;
1457 case InlineAsm::Kind_Clobber: OS << ":[clobber]"; break;
1458 case InlineAsm::Kind_Imm: OS << ":[imm]"; break;
1459 case InlineAsm::Kind_Mem: OS << ":[mem]"; break;
1460 default: OS << ":[??" << InlineAsm::getKind(Flag) << ']'; break;
1461 }
1462
1463 unsigned TiedTo = 0;
1464 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1465 OS << " [tiedto:$" << TiedTo << ']';
1466
1467 // Compute the index of the next operand descriptor.
1468 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1469 } else
1470 MO.print(OS, TM);
1471 }
1472
1473 // Briefly indicate whether any call clobbers were omitted.
1474 if (OmittedAnyCallClobbers) {
1475 if (!FirstOp) OS << ",";
1476 OS << " ...";
1477 }
1478
1479 bool HaveSemi = false;
1480 if (Flags) {
1481 if (!HaveSemi) OS << ";"; HaveSemi = true;
1482 OS << " flags: ";
1483
1484 if (Flags & FrameSetup)
1485 OS << "FrameSetup";
1486 }
1487
1488 if (!memoperands_empty()) {
1489 if (!HaveSemi) OS << ";"; HaveSemi = true;
1490
1491 OS << " mem:";
1492 for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1493 i != e; ++i) {
1494 OS << **i;
1495 if (llvm::next(i) != e)
1496 OS << " ";
1497 }
1498 }
1499
1500 // Print the regclass of any virtual registers encountered.
1501 if (MRI && !VirtRegs.empty()) {
1502 if (!HaveSemi) OS << ";"; HaveSemi = true;
1503 for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1504 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1505 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1506 for (unsigned j = i+1; j != VirtRegs.size();) {
1507 if (MRI->getRegClass(VirtRegs[j]) != RC) {
1508 ++j;
1509 continue;
1510 }
1511 if (VirtRegs[i] != VirtRegs[j])
1512 OS << "," << PrintReg(VirtRegs[j]);
1513 VirtRegs.erase(VirtRegs.begin()+j);
1514 }
1515 }
1516 }
1517
1518 // Print debug location information.
1519 if (!debugLoc.isUnknown() && MF) {
1520 if (!HaveSemi) OS << ";"; HaveSemi = true;
1521 OS << " dbg:";
1522 printDebugLoc(debugLoc, MF, OS);
1523 }
1524
1525 OS << '\n';
1526 }
1527
addRegisterKilled(unsigned IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1528 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1529 const TargetRegisterInfo *RegInfo,
1530 bool AddIfNotFound) {
1531 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1532 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1533 bool Found = false;
1534 SmallVector<unsigned,4> DeadOps;
1535 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1536 MachineOperand &MO = getOperand(i);
1537 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1538 continue;
1539 unsigned Reg = MO.getReg();
1540 if (!Reg)
1541 continue;
1542
1543 if (Reg == IncomingReg) {
1544 if (!Found) {
1545 if (MO.isKill())
1546 // The register is already marked kill.
1547 return true;
1548 if (isPhysReg && isRegTiedToDefOperand(i))
1549 // Two-address uses of physregs must not be marked kill.
1550 return true;
1551 MO.setIsKill();
1552 Found = true;
1553 }
1554 } else if (hasAliases && MO.isKill() &&
1555 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1556 // A super-register kill already exists.
1557 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1558 return true;
1559 if (RegInfo->isSubRegister(IncomingReg, Reg))
1560 DeadOps.push_back(i);
1561 }
1562 }
1563
1564 // Trim unneeded kill operands.
1565 while (!DeadOps.empty()) {
1566 unsigned OpIdx = DeadOps.back();
1567 if (getOperand(OpIdx).isImplicit())
1568 RemoveOperand(OpIdx);
1569 else
1570 getOperand(OpIdx).setIsKill(false);
1571 DeadOps.pop_back();
1572 }
1573
1574 // If not found, this means an alias of one of the operands is killed. Add a
1575 // new implicit operand if required.
1576 if (!Found && AddIfNotFound) {
1577 addOperand(MachineOperand::CreateReg(IncomingReg,
1578 false /*IsDef*/,
1579 true /*IsImp*/,
1580 true /*IsKill*/));
1581 return true;
1582 }
1583 return Found;
1584 }
1585
addRegisterDead(unsigned IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1586 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1587 const TargetRegisterInfo *RegInfo,
1588 bool AddIfNotFound) {
1589 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1590 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1591 bool Found = false;
1592 SmallVector<unsigned,4> DeadOps;
1593 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1594 MachineOperand &MO = getOperand(i);
1595 if (!MO.isReg() || !MO.isDef())
1596 continue;
1597 unsigned Reg = MO.getReg();
1598 if (!Reg)
1599 continue;
1600
1601 if (Reg == IncomingReg) {
1602 MO.setIsDead();
1603 Found = true;
1604 } else if (hasAliases && MO.isDead() &&
1605 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1606 // There exists a super-register that's marked dead.
1607 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1608 return true;
1609 if (RegInfo->getSubRegisters(IncomingReg) &&
1610 RegInfo->getSuperRegisters(Reg) &&
1611 RegInfo->isSubRegister(IncomingReg, Reg))
1612 DeadOps.push_back(i);
1613 }
1614 }
1615
1616 // Trim unneeded dead operands.
1617 while (!DeadOps.empty()) {
1618 unsigned OpIdx = DeadOps.back();
1619 if (getOperand(OpIdx).isImplicit())
1620 RemoveOperand(OpIdx);
1621 else
1622 getOperand(OpIdx).setIsDead(false);
1623 DeadOps.pop_back();
1624 }
1625
1626 // If not found, this means an alias of one of the operands is dead. Add a
1627 // new implicit operand if required.
1628 if (Found || !AddIfNotFound)
1629 return Found;
1630
1631 addOperand(MachineOperand::CreateReg(IncomingReg,
1632 true /*IsDef*/,
1633 true /*IsImp*/,
1634 false /*IsKill*/,
1635 true /*IsDead*/));
1636 return true;
1637 }
1638
addRegisterDefined(unsigned IncomingReg,const TargetRegisterInfo * RegInfo)1639 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1640 const TargetRegisterInfo *RegInfo) {
1641 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1642 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1643 if (MO)
1644 return;
1645 } else {
1646 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1647 const MachineOperand &MO = getOperand(i);
1648 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1649 MO.getSubReg() == 0)
1650 return;
1651 }
1652 }
1653 addOperand(MachineOperand::CreateReg(IncomingReg,
1654 true /*IsDef*/,
1655 true /*IsImp*/));
1656 }
1657
setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> & UsedRegs,const TargetRegisterInfo & TRI)1658 void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs,
1659 const TargetRegisterInfo &TRI) {
1660 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1661 MachineOperand &MO = getOperand(i);
1662 if (!MO.isReg() || !MO.isDef()) continue;
1663 unsigned Reg = MO.getReg();
1664 if (Reg == 0) continue;
1665 bool Dead = true;
1666 for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(),
1667 E = UsedRegs.end(); I != E; ++I)
1668 if (TRI.regsOverlap(*I, Reg)) {
1669 Dead = false;
1670 break;
1671 }
1672 // If there are no uses, including partial uses, the def is dead.
1673 if (Dead) MO.setIsDead();
1674 }
1675 }
1676
1677 unsigned
getHashValue(const MachineInstr * const & MI)1678 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1679 unsigned Hash = MI->getOpcode() * 37;
1680 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1681 const MachineOperand &MO = MI->getOperand(i);
1682 uint64_t Key = (uint64_t)MO.getType() << 32;
1683 switch (MO.getType()) {
1684 default: break;
1685 case MachineOperand::MO_Register:
1686 if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1687 continue; // Skip virtual register defs.
1688 Key |= MO.getReg();
1689 break;
1690 case MachineOperand::MO_Immediate:
1691 Key |= MO.getImm();
1692 break;
1693 case MachineOperand::MO_FrameIndex:
1694 case MachineOperand::MO_ConstantPoolIndex:
1695 case MachineOperand::MO_JumpTableIndex:
1696 Key |= MO.getIndex();
1697 break;
1698 case MachineOperand::MO_MachineBasicBlock:
1699 Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
1700 break;
1701 case MachineOperand::MO_GlobalAddress:
1702 Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
1703 break;
1704 case MachineOperand::MO_BlockAddress:
1705 Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
1706 break;
1707 case MachineOperand::MO_MCSymbol:
1708 Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
1709 break;
1710 }
1711 Key += ~(Key << 32);
1712 Key ^= (Key >> 22);
1713 Key += ~(Key << 13);
1714 Key ^= (Key >> 8);
1715 Key += (Key << 3);
1716 Key ^= (Key >> 15);
1717 Key += ~(Key << 27);
1718 Key ^= (Key >> 31);
1719 Hash = (unsigned)Key + Hash * 37;
1720 }
1721 return Hash;
1722 }
1723
emitError(StringRef Msg) const1724 void MachineInstr::emitError(StringRef Msg) const {
1725 // Find the source location cookie.
1726 unsigned LocCookie = 0;
1727 const MDNode *LocMD = 0;
1728 for (unsigned i = getNumOperands(); i != 0; --i) {
1729 if (getOperand(i-1).isMetadata() &&
1730 (LocMD = getOperand(i-1).getMetadata()) &&
1731 LocMD->getNumOperands() != 0) {
1732 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
1733 LocCookie = CI->getZExtValue();
1734 break;
1735 }
1736 }
1737 }
1738
1739 if (const MachineBasicBlock *MBB = getParent())
1740 if (const MachineFunction *MF = MBB->getParent())
1741 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1742 report_fatal_error(Msg);
1743 }
1744