• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements extra semantic analysis beyond what is enforced
11 //  by the C type system.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Sema/Sema.h"
16 #include "clang/Sema/SemaInternal.h"
17 #include "clang/Sema/ScopeInfo.h"
18 #include "clang/Analysis/Analyses/FormatString.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/EvaluatedExprVisitor.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "clang/Basic/TargetBuiltins.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "clang/Basic/ConvertUTF.h"
36 #include <limits>
37 using namespace clang;
38 using namespace sema;
39 
getLocationOfStringLiteralByte(const StringLiteral * SL,unsigned ByteNo) const40 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
41                                                     unsigned ByteNo) const {
42   return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
43                                PP.getLangOptions(), PP.getTargetInfo());
44 }
45 
46 
47 /// CheckablePrintfAttr - does a function call have a "printf" attribute
48 /// and arguments that merit checking?
CheckablePrintfAttr(const FormatAttr * Format,CallExpr * TheCall)49 bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
50   if (Format->getType() == "printf") return true;
51   if (Format->getType() == "printf0") {
52     // printf0 allows null "format" string; if so don't check format/args
53     unsigned format_idx = Format->getFormatIdx() - 1;
54     // Does the index refer to the implicit object argument?
55     if (isa<CXXMemberCallExpr>(TheCall)) {
56       if (format_idx == 0)
57         return false;
58       --format_idx;
59     }
60     if (format_idx < TheCall->getNumArgs()) {
61       Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
62       if (!Format->isNullPointerConstant(Context,
63                                          Expr::NPC_ValueDependentIsNull))
64         return true;
65     }
66   }
67   return false;
68 }
69 
70 /// Checks that a call expression's argument count is the desired number.
71 /// This is useful when doing custom type-checking.  Returns true on error.
checkArgCount(Sema & S,CallExpr * call,unsigned desiredArgCount)72 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
73   unsigned argCount = call->getNumArgs();
74   if (argCount == desiredArgCount) return false;
75 
76   if (argCount < desiredArgCount)
77     return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
78         << 0 /*function call*/ << desiredArgCount << argCount
79         << call->getSourceRange();
80 
81   // Highlight all the excess arguments.
82   SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
83                     call->getArg(argCount - 1)->getLocEnd());
84 
85   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
86     << 0 /*function call*/ << desiredArgCount << argCount
87     << call->getArg(1)->getSourceRange();
88 }
89 
90 ExprResult
CheckBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)91 Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
92   ExprResult TheCallResult(Owned(TheCall));
93 
94   // Find out if any arguments are required to be integer constant expressions.
95   unsigned ICEArguments = 0;
96   ASTContext::GetBuiltinTypeError Error;
97   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
98   if (Error != ASTContext::GE_None)
99     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
100 
101   // If any arguments are required to be ICE's, check and diagnose.
102   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
103     // Skip arguments not required to be ICE's.
104     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
105 
106     llvm::APSInt Result;
107     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
108       return true;
109     ICEArguments &= ~(1 << ArgNo);
110   }
111 
112   switch (BuiltinID) {
113   case Builtin::BI__builtin___CFStringMakeConstantString:
114     assert(TheCall->getNumArgs() == 1 &&
115            "Wrong # arguments to builtin CFStringMakeConstantString");
116     if (CheckObjCString(TheCall->getArg(0)))
117       return ExprError();
118     break;
119   case Builtin::BI__builtin_stdarg_start:
120   case Builtin::BI__builtin_va_start:
121     if (SemaBuiltinVAStart(TheCall))
122       return ExprError();
123     break;
124   case Builtin::BI__builtin_isgreater:
125   case Builtin::BI__builtin_isgreaterequal:
126   case Builtin::BI__builtin_isless:
127   case Builtin::BI__builtin_islessequal:
128   case Builtin::BI__builtin_islessgreater:
129   case Builtin::BI__builtin_isunordered:
130     if (SemaBuiltinUnorderedCompare(TheCall))
131       return ExprError();
132     break;
133   case Builtin::BI__builtin_fpclassify:
134     if (SemaBuiltinFPClassification(TheCall, 6))
135       return ExprError();
136     break;
137   case Builtin::BI__builtin_isfinite:
138   case Builtin::BI__builtin_isinf:
139   case Builtin::BI__builtin_isinf_sign:
140   case Builtin::BI__builtin_isnan:
141   case Builtin::BI__builtin_isnormal:
142     if (SemaBuiltinFPClassification(TheCall, 1))
143       return ExprError();
144     break;
145   case Builtin::BI__builtin_shufflevector:
146     return SemaBuiltinShuffleVector(TheCall);
147     // TheCall will be freed by the smart pointer here, but that's fine, since
148     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
149   case Builtin::BI__builtin_prefetch:
150     if (SemaBuiltinPrefetch(TheCall))
151       return ExprError();
152     break;
153   case Builtin::BI__builtin_object_size:
154     if (SemaBuiltinObjectSize(TheCall))
155       return ExprError();
156     break;
157   case Builtin::BI__builtin_longjmp:
158     if (SemaBuiltinLongjmp(TheCall))
159       return ExprError();
160     break;
161 
162   case Builtin::BI__builtin_classify_type:
163     if (checkArgCount(*this, TheCall, 1)) return true;
164     TheCall->setType(Context.IntTy);
165     break;
166   case Builtin::BI__builtin_constant_p:
167     if (checkArgCount(*this, TheCall, 1)) return true;
168     TheCall->setType(Context.IntTy);
169     break;
170   case Builtin::BI__sync_fetch_and_add:
171   case Builtin::BI__sync_fetch_and_sub:
172   case Builtin::BI__sync_fetch_and_or:
173   case Builtin::BI__sync_fetch_and_and:
174   case Builtin::BI__sync_fetch_and_xor:
175   case Builtin::BI__sync_add_and_fetch:
176   case Builtin::BI__sync_sub_and_fetch:
177   case Builtin::BI__sync_and_and_fetch:
178   case Builtin::BI__sync_or_and_fetch:
179   case Builtin::BI__sync_xor_and_fetch:
180   case Builtin::BI__sync_val_compare_and_swap:
181   case Builtin::BI__sync_bool_compare_and_swap:
182   case Builtin::BI__sync_lock_test_and_set:
183   case Builtin::BI__sync_lock_release:
184   case Builtin::BI__sync_swap:
185     return SemaBuiltinAtomicOverloaded(move(TheCallResult));
186   }
187 
188   // Since the target specific builtins for each arch overlap, only check those
189   // of the arch we are compiling for.
190   if (BuiltinID >= Builtin::FirstTSBuiltin) {
191     switch (Context.Target.getTriple().getArch()) {
192       case llvm::Triple::arm:
193       case llvm::Triple::thumb:
194         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
195           return ExprError();
196         break;
197       default:
198         break;
199     }
200   }
201 
202   return move(TheCallResult);
203 }
204 
205 // Get the valid immediate range for the specified NEON type code.
RFT(unsigned t,bool shift=false)206 static unsigned RFT(unsigned t, bool shift = false) {
207   bool quad = t & 0x10;
208 
209   switch (t & 0x7) {
210     case 0: // i8
211       return shift ? 7 : (8 << (int)quad) - 1;
212     case 1: // i16
213       return shift ? 15 : (4 << (int)quad) - 1;
214     case 2: // i32
215       return shift ? 31 : (2 << (int)quad) - 1;
216     case 3: // i64
217       return shift ? 63 : (1 << (int)quad) - 1;
218     case 4: // f32
219       assert(!shift && "cannot shift float types!");
220       return (2 << (int)quad) - 1;
221     case 5: // poly8
222       return shift ? 7 : (8 << (int)quad) - 1;
223     case 6: // poly16
224       return shift ? 15 : (4 << (int)quad) - 1;
225     case 7: // float16
226       assert(!shift && "cannot shift float types!");
227       return (4 << (int)quad) - 1;
228   }
229   return 0;
230 }
231 
CheckARMBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)232 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
233   llvm::APSInt Result;
234 
235   unsigned mask = 0;
236   unsigned TV = 0;
237   switch (BuiltinID) {
238 #define GET_NEON_OVERLOAD_CHECK
239 #include "clang/Basic/arm_neon.inc"
240 #undef GET_NEON_OVERLOAD_CHECK
241   }
242 
243   // For NEON intrinsics which are overloaded on vector element type, validate
244   // the immediate which specifies which variant to emit.
245   if (mask) {
246     unsigned ArgNo = TheCall->getNumArgs()-1;
247     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
248       return true;
249 
250     TV = Result.getLimitedValue(32);
251     if ((TV > 31) || (mask & (1 << TV)) == 0)
252       return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
253         << TheCall->getArg(ArgNo)->getSourceRange();
254   }
255 
256   // For NEON intrinsics which take an immediate value as part of the
257   // instruction, range check them here.
258   unsigned i = 0, l = 0, u = 0;
259   switch (BuiltinID) {
260   default: return false;
261   case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
262   case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
263   case ARM::BI__builtin_arm_vcvtr_f:
264   case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
265 #define GET_NEON_IMMEDIATE_CHECK
266 #include "clang/Basic/arm_neon.inc"
267 #undef GET_NEON_IMMEDIATE_CHECK
268   };
269 
270   // Check that the immediate argument is actually a constant.
271   if (SemaBuiltinConstantArg(TheCall, i, Result))
272     return true;
273 
274   // Range check against the upper/lower values for this isntruction.
275   unsigned Val = Result.getZExtValue();
276   if (Val < l || Val > (u + l))
277     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
278       << l << u+l << TheCall->getArg(i)->getSourceRange();
279 
280   // FIXME: VFP Intrinsics should error if VFP not present.
281   return false;
282 }
283 
284 /// CheckFunctionCall - Check a direct function call for various correctness
285 /// and safety properties not strictly enforced by the C type system.
CheckFunctionCall(FunctionDecl * FDecl,CallExpr * TheCall)286 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
287   // Get the IdentifierInfo* for the called function.
288   IdentifierInfo *FnInfo = FDecl->getIdentifier();
289 
290   // None of the checks below are needed for functions that don't have
291   // simple names (e.g., C++ conversion functions).
292   if (!FnInfo)
293     return false;
294 
295   // FIXME: This mechanism should be abstracted to be less fragile and
296   // more efficient. For example, just map function ids to custom
297   // handlers.
298 
299   // Printf and scanf checking.
300   for (specific_attr_iterator<FormatAttr>
301          i = FDecl->specific_attr_begin<FormatAttr>(),
302          e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
303 
304     const FormatAttr *Format = *i;
305     const bool b = Format->getType() == "scanf";
306     if (b || CheckablePrintfAttr(Format, TheCall)) {
307       bool HasVAListArg = Format->getFirstArg() == 0;
308       CheckPrintfScanfArguments(TheCall, HasVAListArg,
309                                 Format->getFormatIdx() - 1,
310                                 HasVAListArg ? 0 : Format->getFirstArg() - 1,
311                                 !b);
312     }
313   }
314 
315   for (specific_attr_iterator<NonNullAttr>
316          i = FDecl->specific_attr_begin<NonNullAttr>(),
317          e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
318     CheckNonNullArguments(*i, TheCall->getArgs(),
319                           TheCall->getCallee()->getLocStart());
320   }
321 
322   // Memset/memcpy/memmove handling
323   int CMF = -1;
324   switch (FDecl->getBuiltinID()) {
325   case Builtin::BI__builtin_memset:
326   case Builtin::BI__builtin___memset_chk:
327   case Builtin::BImemset:
328     CMF = CMF_Memset;
329     break;
330 
331   case Builtin::BI__builtin_memcpy:
332   case Builtin::BI__builtin___memcpy_chk:
333   case Builtin::BImemcpy:
334     CMF = CMF_Memcpy;
335     break;
336 
337   case Builtin::BI__builtin_memmove:
338   case Builtin::BI__builtin___memmove_chk:
339   case Builtin::BImemmove:
340     CMF = CMF_Memmove;
341     break;
342 
343   default:
344     if (FDecl->getLinkage() == ExternalLinkage &&
345         (!getLangOptions().CPlusPlus || FDecl->isExternC())) {
346       if (FnInfo->isStr("memset"))
347         CMF = CMF_Memset;
348       else if (FnInfo->isStr("memcpy"))
349         CMF = CMF_Memcpy;
350       else if (FnInfo->isStr("memmove"))
351         CMF = CMF_Memmove;
352     }
353     break;
354   }
355 
356   if (CMF != -1)
357     CheckMemsetcpymoveArguments(TheCall, CheckedMemoryFunction(CMF), FnInfo);
358 
359   return false;
360 }
361 
CheckBlockCall(NamedDecl * NDecl,CallExpr * TheCall)362 bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
363   // Printf checking.
364   const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
365   if (!Format)
366     return false;
367 
368   const VarDecl *V = dyn_cast<VarDecl>(NDecl);
369   if (!V)
370     return false;
371 
372   QualType Ty = V->getType();
373   if (!Ty->isBlockPointerType())
374     return false;
375 
376   const bool b = Format->getType() == "scanf";
377   if (!b && !CheckablePrintfAttr(Format, TheCall))
378     return false;
379 
380   bool HasVAListArg = Format->getFirstArg() == 0;
381   CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
382                             HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
383 
384   return false;
385 }
386 
387 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
388 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
389 /// type of its first argument.  The main ActOnCallExpr routines have already
390 /// promoted the types of arguments because all of these calls are prototyped as
391 /// void(...).
392 ///
393 /// This function goes through and does final semantic checking for these
394 /// builtins,
395 ExprResult
SemaBuiltinAtomicOverloaded(ExprResult TheCallResult)396 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
397   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
398   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
399   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
400 
401   // Ensure that we have at least one argument to do type inference from.
402   if (TheCall->getNumArgs() < 1) {
403     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
404       << 0 << 1 << TheCall->getNumArgs()
405       << TheCall->getCallee()->getSourceRange();
406     return ExprError();
407   }
408 
409   // Inspect the first argument of the atomic builtin.  This should always be
410   // a pointer type, whose element is an integral scalar or pointer type.
411   // Because it is a pointer type, we don't have to worry about any implicit
412   // casts here.
413   // FIXME: We don't allow floating point scalars as input.
414   Expr *FirstArg = TheCall->getArg(0);
415   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
416   if (!pointerType) {
417     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
418       << FirstArg->getType() << FirstArg->getSourceRange();
419     return ExprError();
420   }
421 
422   QualType ValType = pointerType->getPointeeType();
423   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
424       !ValType->isBlockPointerType()) {
425     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
426       << FirstArg->getType() << FirstArg->getSourceRange();
427     return ExprError();
428   }
429 
430   switch (ValType.getObjCLifetime()) {
431   case Qualifiers::OCL_None:
432   case Qualifiers::OCL_ExplicitNone:
433     // okay
434     break;
435 
436   case Qualifiers::OCL_Weak:
437   case Qualifiers::OCL_Strong:
438   case Qualifiers::OCL_Autoreleasing:
439     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
440       << ValType << FirstArg->getSourceRange();
441     return ExprError();
442   }
443 
444   // The majority of builtins return a value, but a few have special return
445   // types, so allow them to override appropriately below.
446   QualType ResultType = ValType;
447 
448   // We need to figure out which concrete builtin this maps onto.  For example,
449   // __sync_fetch_and_add with a 2 byte object turns into
450   // __sync_fetch_and_add_2.
451 #define BUILTIN_ROW(x) \
452   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
453     Builtin::BI##x##_8, Builtin::BI##x##_16 }
454 
455   static const unsigned BuiltinIndices[][5] = {
456     BUILTIN_ROW(__sync_fetch_and_add),
457     BUILTIN_ROW(__sync_fetch_and_sub),
458     BUILTIN_ROW(__sync_fetch_and_or),
459     BUILTIN_ROW(__sync_fetch_and_and),
460     BUILTIN_ROW(__sync_fetch_and_xor),
461 
462     BUILTIN_ROW(__sync_add_and_fetch),
463     BUILTIN_ROW(__sync_sub_and_fetch),
464     BUILTIN_ROW(__sync_and_and_fetch),
465     BUILTIN_ROW(__sync_or_and_fetch),
466     BUILTIN_ROW(__sync_xor_and_fetch),
467 
468     BUILTIN_ROW(__sync_val_compare_and_swap),
469     BUILTIN_ROW(__sync_bool_compare_and_swap),
470     BUILTIN_ROW(__sync_lock_test_and_set),
471     BUILTIN_ROW(__sync_lock_release),
472     BUILTIN_ROW(__sync_swap)
473   };
474 #undef BUILTIN_ROW
475 
476   // Determine the index of the size.
477   unsigned SizeIndex;
478   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
479   case 1: SizeIndex = 0; break;
480   case 2: SizeIndex = 1; break;
481   case 4: SizeIndex = 2; break;
482   case 8: SizeIndex = 3; break;
483   case 16: SizeIndex = 4; break;
484   default:
485     Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
486       << FirstArg->getType() << FirstArg->getSourceRange();
487     return ExprError();
488   }
489 
490   // Each of these builtins has one pointer argument, followed by some number of
491   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
492   // that we ignore.  Find out which row of BuiltinIndices to read from as well
493   // as the number of fixed args.
494   unsigned BuiltinID = FDecl->getBuiltinID();
495   unsigned BuiltinIndex, NumFixed = 1;
496   switch (BuiltinID) {
497   default: assert(0 && "Unknown overloaded atomic builtin!");
498   case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
499   case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
500   case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
501   case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
502   case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
503 
504   case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
505   case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
506   case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
507   case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
508   case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
509 
510   case Builtin::BI__sync_val_compare_and_swap:
511     BuiltinIndex = 10;
512     NumFixed = 2;
513     break;
514   case Builtin::BI__sync_bool_compare_and_swap:
515     BuiltinIndex = 11;
516     NumFixed = 2;
517     ResultType = Context.BoolTy;
518     break;
519   case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
520   case Builtin::BI__sync_lock_release:
521     BuiltinIndex = 13;
522     NumFixed = 0;
523     ResultType = Context.VoidTy;
524     break;
525   case Builtin::BI__sync_swap: BuiltinIndex = 14; break;
526   }
527 
528   // Now that we know how many fixed arguments we expect, first check that we
529   // have at least that many.
530   if (TheCall->getNumArgs() < 1+NumFixed) {
531     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
532       << 0 << 1+NumFixed << TheCall->getNumArgs()
533       << TheCall->getCallee()->getSourceRange();
534     return ExprError();
535   }
536 
537   // Get the decl for the concrete builtin from this, we can tell what the
538   // concrete integer type we should convert to is.
539   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
540   const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
541   IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
542   FunctionDecl *NewBuiltinDecl =
543     cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
544                                            TUScope, false, DRE->getLocStart()));
545 
546   // The first argument --- the pointer --- has a fixed type; we
547   // deduce the types of the rest of the arguments accordingly.  Walk
548   // the remaining arguments, converting them to the deduced value type.
549   for (unsigned i = 0; i != NumFixed; ++i) {
550     ExprResult Arg = TheCall->getArg(i+1);
551 
552     // If the argument is an implicit cast, then there was a promotion due to
553     // "...", just remove it now.
554     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg.get())) {
555       Arg = ICE->getSubExpr();
556       ICE->setSubExpr(0);
557       TheCall->setArg(i+1, Arg.get());
558     }
559 
560     // GCC does an implicit conversion to the pointer or integer ValType.  This
561     // can fail in some cases (1i -> int**), check for this error case now.
562     CastKind Kind = CK_Invalid;
563     ExprValueKind VK = VK_RValue;
564     CXXCastPath BasePath;
565     Arg = CheckCastTypes(Arg.get()->getLocStart(), Arg.get()->getSourceRange(),
566                          ValType, Arg.take(), Kind, VK, BasePath);
567     if (Arg.isInvalid())
568       return ExprError();
569 
570     // Okay, we have something that *can* be converted to the right type.  Check
571     // to see if there is a potentially weird extension going on here.  This can
572     // happen when you do an atomic operation on something like an char* and
573     // pass in 42.  The 42 gets converted to char.  This is even more strange
574     // for things like 45.123 -> char, etc.
575     // FIXME: Do this check.
576     Arg = ImpCastExprToType(Arg.take(), ValType, Kind, VK, &BasePath);
577     TheCall->setArg(i+1, Arg.get());
578   }
579 
580   // Switch the DeclRefExpr to refer to the new decl.
581   DRE->setDecl(NewBuiltinDecl);
582   DRE->setType(NewBuiltinDecl->getType());
583 
584   // Set the callee in the CallExpr.
585   // FIXME: This leaks the original parens and implicit casts.
586   ExprResult PromotedCall = UsualUnaryConversions(DRE);
587   if (PromotedCall.isInvalid())
588     return ExprError();
589   TheCall->setCallee(PromotedCall.take());
590 
591   // Change the result type of the call to match the original value type. This
592   // is arbitrary, but the codegen for these builtins ins design to handle it
593   // gracefully.
594   TheCall->setType(ResultType);
595 
596   return move(TheCallResult);
597 }
598 
599 
600 /// CheckObjCString - Checks that the argument to the builtin
601 /// CFString constructor is correct
602 /// Note: It might also make sense to do the UTF-16 conversion here (would
603 /// simplify the backend).
CheckObjCString(Expr * Arg)604 bool Sema::CheckObjCString(Expr *Arg) {
605   Arg = Arg->IgnoreParenCasts();
606   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
607 
608   if (!Literal || Literal->isWide()) {
609     Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
610       << Arg->getSourceRange();
611     return true;
612   }
613 
614   if (Literal->containsNonAsciiOrNull()) {
615     llvm::StringRef String = Literal->getString();
616     unsigned NumBytes = String.size();
617     llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
618     const UTF8 *FromPtr = (UTF8 *)String.data();
619     UTF16 *ToPtr = &ToBuf[0];
620 
621     ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
622                                                  &ToPtr, ToPtr + NumBytes,
623                                                  strictConversion);
624     // Check for conversion failure.
625     if (Result != conversionOK)
626       Diag(Arg->getLocStart(),
627            diag::warn_cfstring_truncated) << Arg->getSourceRange();
628   }
629   return false;
630 }
631 
632 /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
633 /// Emit an error and return true on failure, return false on success.
SemaBuiltinVAStart(CallExpr * TheCall)634 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
635   Expr *Fn = TheCall->getCallee();
636   if (TheCall->getNumArgs() > 2) {
637     Diag(TheCall->getArg(2)->getLocStart(),
638          diag::err_typecheck_call_too_many_args)
639       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
640       << Fn->getSourceRange()
641       << SourceRange(TheCall->getArg(2)->getLocStart(),
642                      (*(TheCall->arg_end()-1))->getLocEnd());
643     return true;
644   }
645 
646   if (TheCall->getNumArgs() < 2) {
647     return Diag(TheCall->getLocEnd(),
648       diag::err_typecheck_call_too_few_args_at_least)
649       << 0 /*function call*/ << 2 << TheCall->getNumArgs();
650   }
651 
652   // Determine whether the current function is variadic or not.
653   BlockScopeInfo *CurBlock = getCurBlock();
654   bool isVariadic;
655   if (CurBlock)
656     isVariadic = CurBlock->TheDecl->isVariadic();
657   else if (FunctionDecl *FD = getCurFunctionDecl())
658     isVariadic = FD->isVariadic();
659   else
660     isVariadic = getCurMethodDecl()->isVariadic();
661 
662   if (!isVariadic) {
663     Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
664     return true;
665   }
666 
667   // Verify that the second argument to the builtin is the last argument of the
668   // current function or method.
669   bool SecondArgIsLastNamedArgument = false;
670   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
671 
672   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
673     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
674       // FIXME: This isn't correct for methods (results in bogus warning).
675       // Get the last formal in the current function.
676       const ParmVarDecl *LastArg;
677       if (CurBlock)
678         LastArg = *(CurBlock->TheDecl->param_end()-1);
679       else if (FunctionDecl *FD = getCurFunctionDecl())
680         LastArg = *(FD->param_end()-1);
681       else
682         LastArg = *(getCurMethodDecl()->param_end()-1);
683       SecondArgIsLastNamedArgument = PV == LastArg;
684     }
685   }
686 
687   if (!SecondArgIsLastNamedArgument)
688     Diag(TheCall->getArg(1)->getLocStart(),
689          diag::warn_second_parameter_of_va_start_not_last_named_argument);
690   return false;
691 }
692 
693 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
694 /// friends.  This is declared to take (...), so we have to check everything.
SemaBuiltinUnorderedCompare(CallExpr * TheCall)695 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
696   if (TheCall->getNumArgs() < 2)
697     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
698       << 0 << 2 << TheCall->getNumArgs()/*function call*/;
699   if (TheCall->getNumArgs() > 2)
700     return Diag(TheCall->getArg(2)->getLocStart(),
701                 diag::err_typecheck_call_too_many_args)
702       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
703       << SourceRange(TheCall->getArg(2)->getLocStart(),
704                      (*(TheCall->arg_end()-1))->getLocEnd());
705 
706   ExprResult OrigArg0 = TheCall->getArg(0);
707   ExprResult OrigArg1 = TheCall->getArg(1);
708 
709   // Do standard promotions between the two arguments, returning their common
710   // type.
711   QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
712   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
713     return true;
714 
715   // Make sure any conversions are pushed back into the call; this is
716   // type safe since unordered compare builtins are declared as "_Bool
717   // foo(...)".
718   TheCall->setArg(0, OrigArg0.get());
719   TheCall->setArg(1, OrigArg1.get());
720 
721   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
722     return false;
723 
724   // If the common type isn't a real floating type, then the arguments were
725   // invalid for this operation.
726   if (!Res->isRealFloatingType())
727     return Diag(OrigArg0.get()->getLocStart(),
728                 diag::err_typecheck_call_invalid_ordered_compare)
729       << OrigArg0.get()->getType() << OrigArg1.get()->getType()
730       << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
731 
732   return false;
733 }
734 
735 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
736 /// __builtin_isnan and friends.  This is declared to take (...), so we have
737 /// to check everything. We expect the last argument to be a floating point
738 /// value.
SemaBuiltinFPClassification(CallExpr * TheCall,unsigned NumArgs)739 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
740   if (TheCall->getNumArgs() < NumArgs)
741     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
742       << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
743   if (TheCall->getNumArgs() > NumArgs)
744     return Diag(TheCall->getArg(NumArgs)->getLocStart(),
745                 diag::err_typecheck_call_too_many_args)
746       << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
747       << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
748                      (*(TheCall->arg_end()-1))->getLocEnd());
749 
750   Expr *OrigArg = TheCall->getArg(NumArgs-1);
751 
752   if (OrigArg->isTypeDependent())
753     return false;
754 
755   // This operation requires a non-_Complex floating-point number.
756   if (!OrigArg->getType()->isRealFloatingType())
757     return Diag(OrigArg->getLocStart(),
758                 diag::err_typecheck_call_invalid_unary_fp)
759       << OrigArg->getType() << OrigArg->getSourceRange();
760 
761   // If this is an implicit conversion from float -> double, remove it.
762   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
763     Expr *CastArg = Cast->getSubExpr();
764     if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
765       assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
766              "promotion from float to double is the only expected cast here");
767       Cast->setSubExpr(0);
768       TheCall->setArg(NumArgs-1, CastArg);
769       OrigArg = CastArg;
770     }
771   }
772 
773   return false;
774 }
775 
776 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
777 // This is declared to take (...), so we have to check everything.
SemaBuiltinShuffleVector(CallExpr * TheCall)778 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
779   if (TheCall->getNumArgs() < 2)
780     return ExprError(Diag(TheCall->getLocEnd(),
781                           diag::err_typecheck_call_too_few_args_at_least)
782       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
783       << TheCall->getSourceRange());
784 
785   // Determine which of the following types of shufflevector we're checking:
786   // 1) unary, vector mask: (lhs, mask)
787   // 2) binary, vector mask: (lhs, rhs, mask)
788   // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
789   QualType resType = TheCall->getArg(0)->getType();
790   unsigned numElements = 0;
791 
792   if (!TheCall->getArg(0)->isTypeDependent() &&
793       !TheCall->getArg(1)->isTypeDependent()) {
794     QualType LHSType = TheCall->getArg(0)->getType();
795     QualType RHSType = TheCall->getArg(1)->getType();
796 
797     if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
798       Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
799         << SourceRange(TheCall->getArg(0)->getLocStart(),
800                        TheCall->getArg(1)->getLocEnd());
801       return ExprError();
802     }
803 
804     numElements = LHSType->getAs<VectorType>()->getNumElements();
805     unsigned numResElements = TheCall->getNumArgs() - 2;
806 
807     // Check to see if we have a call with 2 vector arguments, the unary shuffle
808     // with mask.  If so, verify that RHS is an integer vector type with the
809     // same number of elts as lhs.
810     if (TheCall->getNumArgs() == 2) {
811       if (!RHSType->hasIntegerRepresentation() ||
812           RHSType->getAs<VectorType>()->getNumElements() != numElements)
813         Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
814           << SourceRange(TheCall->getArg(1)->getLocStart(),
815                          TheCall->getArg(1)->getLocEnd());
816       numResElements = numElements;
817     }
818     else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
819       Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
820         << SourceRange(TheCall->getArg(0)->getLocStart(),
821                        TheCall->getArg(1)->getLocEnd());
822       return ExprError();
823     } else if (numElements != numResElements) {
824       QualType eltType = LHSType->getAs<VectorType>()->getElementType();
825       resType = Context.getVectorType(eltType, numResElements,
826                                       VectorType::GenericVector);
827     }
828   }
829 
830   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
831     if (TheCall->getArg(i)->isTypeDependent() ||
832         TheCall->getArg(i)->isValueDependent())
833       continue;
834 
835     llvm::APSInt Result(32);
836     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
837       return ExprError(Diag(TheCall->getLocStart(),
838                   diag::err_shufflevector_nonconstant_argument)
839                 << TheCall->getArg(i)->getSourceRange());
840 
841     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
842       return ExprError(Diag(TheCall->getLocStart(),
843                   diag::err_shufflevector_argument_too_large)
844                << TheCall->getArg(i)->getSourceRange());
845   }
846 
847   llvm::SmallVector<Expr*, 32> exprs;
848 
849   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
850     exprs.push_back(TheCall->getArg(i));
851     TheCall->setArg(i, 0);
852   }
853 
854   return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
855                                             exprs.size(), resType,
856                                             TheCall->getCallee()->getLocStart(),
857                                             TheCall->getRParenLoc()));
858 }
859 
860 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
861 // This is declared to take (const void*, ...) and can take two
862 // optional constant int args.
SemaBuiltinPrefetch(CallExpr * TheCall)863 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
864   unsigned NumArgs = TheCall->getNumArgs();
865 
866   if (NumArgs > 3)
867     return Diag(TheCall->getLocEnd(),
868              diag::err_typecheck_call_too_many_args_at_most)
869              << 0 /*function call*/ << 3 << NumArgs
870              << TheCall->getSourceRange();
871 
872   // Argument 0 is checked for us and the remaining arguments must be
873   // constant integers.
874   for (unsigned i = 1; i != NumArgs; ++i) {
875     Expr *Arg = TheCall->getArg(i);
876 
877     llvm::APSInt Result;
878     if (SemaBuiltinConstantArg(TheCall, i, Result))
879       return true;
880 
881     // FIXME: gcc issues a warning and rewrites these to 0. These
882     // seems especially odd for the third argument since the default
883     // is 3.
884     if (i == 1) {
885       if (Result.getLimitedValue() > 1)
886         return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
887              << "0" << "1" << Arg->getSourceRange();
888     } else {
889       if (Result.getLimitedValue() > 3)
890         return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
891             << "0" << "3" << Arg->getSourceRange();
892     }
893   }
894 
895   return false;
896 }
897 
898 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
899 /// TheCall is a constant expression.
SemaBuiltinConstantArg(CallExpr * TheCall,int ArgNum,llvm::APSInt & Result)900 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
901                                   llvm::APSInt &Result) {
902   Expr *Arg = TheCall->getArg(ArgNum);
903   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
904   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
905 
906   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
907 
908   if (!Arg->isIntegerConstantExpr(Result, Context))
909     return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
910                 << FDecl->getDeclName() <<  Arg->getSourceRange();
911 
912   return false;
913 }
914 
915 /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
916 /// int type). This simply type checks that type is one of the defined
917 /// constants (0-3).
918 // For compatibility check 0-3, llvm only handles 0 and 2.
SemaBuiltinObjectSize(CallExpr * TheCall)919 bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
920   llvm::APSInt Result;
921 
922   // Check constant-ness first.
923   if (SemaBuiltinConstantArg(TheCall, 1, Result))
924     return true;
925 
926   Expr *Arg = TheCall->getArg(1);
927   if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
928     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
929              << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
930   }
931 
932   return false;
933 }
934 
935 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
936 /// This checks that val is a constant 1.
SemaBuiltinLongjmp(CallExpr * TheCall)937 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
938   Expr *Arg = TheCall->getArg(1);
939   llvm::APSInt Result;
940 
941   // TODO: This is less than ideal. Overload this to take a value.
942   if (SemaBuiltinConstantArg(TheCall, 1, Result))
943     return true;
944 
945   if (Result != 1)
946     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
947              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
948 
949   return false;
950 }
951 
952 // Handle i > 1 ? "x" : "y", recursively.
SemaCheckStringLiteral(const Expr * E,const CallExpr * TheCall,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,bool isPrintf)953 bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
954                                   bool HasVAListArg,
955                                   unsigned format_idx, unsigned firstDataArg,
956                                   bool isPrintf) {
957  tryAgain:
958   if (E->isTypeDependent() || E->isValueDependent())
959     return false;
960 
961   E = E->IgnoreParens();
962 
963   switch (E->getStmtClass()) {
964   case Stmt::BinaryConditionalOperatorClass:
965   case Stmt::ConditionalOperatorClass: {
966     const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
967     return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
968                                   format_idx, firstDataArg, isPrintf)
969         && SemaCheckStringLiteral(C->getFalseExpr(), TheCall, HasVAListArg,
970                                   format_idx, firstDataArg, isPrintf);
971   }
972 
973   case Stmt::IntegerLiteralClass:
974     // Technically -Wformat-nonliteral does not warn about this case.
975     // The behavior of printf and friends in this case is implementation
976     // dependent.  Ideally if the format string cannot be null then
977     // it should have a 'nonnull' attribute in the function prototype.
978     return true;
979 
980   case Stmt::ImplicitCastExprClass: {
981     E = cast<ImplicitCastExpr>(E)->getSubExpr();
982     goto tryAgain;
983   }
984 
985   case Stmt::OpaqueValueExprClass:
986     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
987       E = src;
988       goto tryAgain;
989     }
990     return false;
991 
992   case Stmt::PredefinedExprClass:
993     // While __func__, etc., are technically not string literals, they
994     // cannot contain format specifiers and thus are not a security
995     // liability.
996     return true;
997 
998   case Stmt::DeclRefExprClass: {
999     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1000 
1001     // As an exception, do not flag errors for variables binding to
1002     // const string literals.
1003     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1004       bool isConstant = false;
1005       QualType T = DR->getType();
1006 
1007       if (const ArrayType *AT = Context.getAsArrayType(T)) {
1008         isConstant = AT->getElementType().isConstant(Context);
1009       } else if (const PointerType *PT = T->getAs<PointerType>()) {
1010         isConstant = T.isConstant(Context) &&
1011                      PT->getPointeeType().isConstant(Context);
1012       }
1013 
1014       if (isConstant) {
1015         if (const Expr *Init = VD->getAnyInitializer())
1016           return SemaCheckStringLiteral(Init, TheCall,
1017                                         HasVAListArg, format_idx, firstDataArg,
1018                                         isPrintf);
1019       }
1020 
1021       // For vprintf* functions (i.e., HasVAListArg==true), we add a
1022       // special check to see if the format string is a function parameter
1023       // of the function calling the printf function.  If the function
1024       // has an attribute indicating it is a printf-like function, then we
1025       // should suppress warnings concerning non-literals being used in a call
1026       // to a vprintf function.  For example:
1027       //
1028       // void
1029       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1030       //      va_list ap;
1031       //      va_start(ap, fmt);
1032       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1033       //      ...
1034       //
1035       //
1036       //  FIXME: We don't have full attribute support yet, so just check to see
1037       //    if the argument is a DeclRefExpr that references a parameter.  We'll
1038       //    add proper support for checking the attribute later.
1039       if (HasVAListArg)
1040         if (isa<ParmVarDecl>(VD))
1041           return true;
1042     }
1043 
1044     return false;
1045   }
1046 
1047   case Stmt::CallExprClass: {
1048     const CallExpr *CE = cast<CallExpr>(E);
1049     if (const ImplicitCastExpr *ICE
1050           = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1051       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1052         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1053           if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1054             unsigned ArgIndex = FA->getFormatIdx();
1055             const Expr *Arg = CE->getArg(ArgIndex - 1);
1056 
1057             return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1058                                           format_idx, firstDataArg, isPrintf);
1059           }
1060         }
1061       }
1062     }
1063 
1064     return false;
1065   }
1066   case Stmt::ObjCStringLiteralClass:
1067   case Stmt::StringLiteralClass: {
1068     const StringLiteral *StrE = NULL;
1069 
1070     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1071       StrE = ObjCFExpr->getString();
1072     else
1073       StrE = cast<StringLiteral>(E);
1074 
1075     if (StrE) {
1076       CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1077                         firstDataArg, isPrintf);
1078       return true;
1079     }
1080 
1081     return false;
1082   }
1083 
1084   default:
1085     return false;
1086   }
1087 }
1088 
1089 void
CheckNonNullArguments(const NonNullAttr * NonNull,const Expr * const * ExprArgs,SourceLocation CallSiteLoc)1090 Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1091                             const Expr * const *ExprArgs,
1092                             SourceLocation CallSiteLoc) {
1093   for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1094                                   e = NonNull->args_end();
1095        i != e; ++i) {
1096     const Expr *ArgExpr = ExprArgs[*i];
1097     if (ArgExpr->isNullPointerConstant(Context,
1098                                        Expr::NPC_ValueDependentIsNotNull))
1099       Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1100   }
1101 }
1102 
1103 /// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1104 /// functions) for correct use of format strings.
1105 void
CheckPrintfScanfArguments(const CallExpr * TheCall,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,bool isPrintf)1106 Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1107                                 unsigned format_idx, unsigned firstDataArg,
1108                                 bool isPrintf) {
1109 
1110   const Expr *Fn = TheCall->getCallee();
1111 
1112   // The way the format attribute works in GCC, the implicit this argument
1113   // of member functions is counted. However, it doesn't appear in our own
1114   // lists, so decrement format_idx in that case.
1115   if (isa<CXXMemberCallExpr>(TheCall)) {
1116     const CXXMethodDecl *method_decl =
1117       dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1118     if (method_decl && method_decl->isInstance()) {
1119       // Catch a format attribute mistakenly referring to the object argument.
1120       if (format_idx == 0)
1121         return;
1122       --format_idx;
1123       if(firstDataArg != 0)
1124         --firstDataArg;
1125     }
1126   }
1127 
1128   // CHECK: printf/scanf-like function is called with no format string.
1129   if (format_idx >= TheCall->getNumArgs()) {
1130     Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1131       << Fn->getSourceRange();
1132     return;
1133   }
1134 
1135   const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1136 
1137   // CHECK: format string is not a string literal.
1138   //
1139   // Dynamically generated format strings are difficult to
1140   // automatically vet at compile time.  Requiring that format strings
1141   // are string literals: (1) permits the checking of format strings by
1142   // the compiler and thereby (2) can practically remove the source of
1143   // many format string exploits.
1144 
1145   // Format string can be either ObjC string (e.g. @"%d") or
1146   // C string (e.g. "%d")
1147   // ObjC string uses the same format specifiers as C string, so we can use
1148   // the same format string checking logic for both ObjC and C strings.
1149   if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1150                              firstDataArg, isPrintf))
1151     return;  // Literal format string found, check done!
1152 
1153   // If there are no arguments specified, warn with -Wformat-security, otherwise
1154   // warn only with -Wformat-nonliteral.
1155   if (TheCall->getNumArgs() == format_idx+1)
1156     Diag(TheCall->getArg(format_idx)->getLocStart(),
1157          diag::warn_format_nonliteral_noargs)
1158       << OrigFormatExpr->getSourceRange();
1159   else
1160     Diag(TheCall->getArg(format_idx)->getLocStart(),
1161          diag::warn_format_nonliteral)
1162            << OrigFormatExpr->getSourceRange();
1163 }
1164 
1165 namespace {
1166 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1167 protected:
1168   Sema &S;
1169   const StringLiteral *FExpr;
1170   const Expr *OrigFormatExpr;
1171   const unsigned FirstDataArg;
1172   const unsigned NumDataArgs;
1173   const bool IsObjCLiteral;
1174   const char *Beg; // Start of format string.
1175   const bool HasVAListArg;
1176   const CallExpr *TheCall;
1177   unsigned FormatIdx;
1178   llvm::BitVector CoveredArgs;
1179   bool usesPositionalArgs;
1180   bool atFirstArg;
1181 public:
CheckFormatHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,bool isObjCLiteral,const char * beg,bool hasVAListArg,const CallExpr * theCall,unsigned formatIdx)1182   CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1183                      const Expr *origFormatExpr, unsigned firstDataArg,
1184                      unsigned numDataArgs, bool isObjCLiteral,
1185                      const char *beg, bool hasVAListArg,
1186                      const CallExpr *theCall, unsigned formatIdx)
1187     : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1188       FirstDataArg(firstDataArg),
1189       NumDataArgs(numDataArgs),
1190       IsObjCLiteral(isObjCLiteral), Beg(beg),
1191       HasVAListArg(hasVAListArg),
1192       TheCall(theCall), FormatIdx(formatIdx),
1193       usesPositionalArgs(false), atFirstArg(true) {
1194         CoveredArgs.resize(numDataArgs);
1195         CoveredArgs.reset();
1196       }
1197 
1198   void DoneProcessing();
1199 
1200   void HandleIncompleteSpecifier(const char *startSpecifier,
1201                                  unsigned specifierLen);
1202 
1203   virtual void HandleInvalidPosition(const char *startSpecifier,
1204                                      unsigned specifierLen,
1205                                      analyze_format_string::PositionContext p);
1206 
1207   virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1208 
1209   void HandleNullChar(const char *nullCharacter);
1210 
1211 protected:
1212   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1213                                         const char *startSpec,
1214                                         unsigned specifierLen,
1215                                         const char *csStart, unsigned csLen);
1216 
1217   SourceRange getFormatStringRange();
1218   CharSourceRange getSpecifierRange(const char *startSpecifier,
1219                                     unsigned specifierLen);
1220   SourceLocation getLocationOfByte(const char *x);
1221 
1222   const Expr *getDataArg(unsigned i) const;
1223 
1224   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1225                     const analyze_format_string::ConversionSpecifier &CS,
1226                     const char *startSpecifier, unsigned specifierLen,
1227                     unsigned argIndex);
1228 };
1229 }
1230 
getFormatStringRange()1231 SourceRange CheckFormatHandler::getFormatStringRange() {
1232   return OrigFormatExpr->getSourceRange();
1233 }
1234 
1235 CharSourceRange CheckFormatHandler::
getSpecifierRange(const char * startSpecifier,unsigned specifierLen)1236 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1237   SourceLocation Start = getLocationOfByte(startSpecifier);
1238   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1239 
1240   // Advance the end SourceLocation by one due to half-open ranges.
1241   End = End.getFileLocWithOffset(1);
1242 
1243   return CharSourceRange::getCharRange(Start, End);
1244 }
1245 
getLocationOfByte(const char * x)1246 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1247   return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1248 }
1249 
HandleIncompleteSpecifier(const char * startSpecifier,unsigned specifierLen)1250 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1251                                                    unsigned specifierLen){
1252   SourceLocation Loc = getLocationOfByte(startSpecifier);
1253   S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1254     << getSpecifierRange(startSpecifier, specifierLen);
1255 }
1256 
1257 void
HandleInvalidPosition(const char * startPos,unsigned posLen,analyze_format_string::PositionContext p)1258 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1259                                      analyze_format_string::PositionContext p) {
1260   SourceLocation Loc = getLocationOfByte(startPos);
1261   S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1262     << (unsigned) p << getSpecifierRange(startPos, posLen);
1263 }
1264 
HandleZeroPosition(const char * startPos,unsigned posLen)1265 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1266                                             unsigned posLen) {
1267   SourceLocation Loc = getLocationOfByte(startPos);
1268   S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1269     << getSpecifierRange(startPos, posLen);
1270 }
1271 
HandleNullChar(const char * nullCharacter)1272 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1273   if (!IsObjCLiteral) {
1274     // The presence of a null character is likely an error.
1275     S.Diag(getLocationOfByte(nullCharacter),
1276            diag::warn_printf_format_string_contains_null_char)
1277       << getFormatStringRange();
1278   }
1279 }
1280 
getDataArg(unsigned i) const1281 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1282   return TheCall->getArg(FirstDataArg + i);
1283 }
1284 
DoneProcessing()1285 void CheckFormatHandler::DoneProcessing() {
1286     // Does the number of data arguments exceed the number of
1287     // format conversions in the format string?
1288   if (!HasVAListArg) {
1289       // Find any arguments that weren't covered.
1290     CoveredArgs.flip();
1291     signed notCoveredArg = CoveredArgs.find_first();
1292     if (notCoveredArg >= 0) {
1293       assert((unsigned)notCoveredArg < NumDataArgs);
1294       S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1295              diag::warn_printf_data_arg_not_used)
1296       << getFormatStringRange();
1297     }
1298   }
1299 }
1300 
1301 bool
HandleInvalidConversionSpecifier(unsigned argIndex,SourceLocation Loc,const char * startSpec,unsigned specifierLen,const char * csStart,unsigned csLen)1302 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1303                                                      SourceLocation Loc,
1304                                                      const char *startSpec,
1305                                                      unsigned specifierLen,
1306                                                      const char *csStart,
1307                                                      unsigned csLen) {
1308 
1309   bool keepGoing = true;
1310   if (argIndex < NumDataArgs) {
1311     // Consider the argument coverered, even though the specifier doesn't
1312     // make sense.
1313     CoveredArgs.set(argIndex);
1314   }
1315   else {
1316     // If argIndex exceeds the number of data arguments we
1317     // don't issue a warning because that is just a cascade of warnings (and
1318     // they may have intended '%%' anyway). We don't want to continue processing
1319     // the format string after this point, however, as we will like just get
1320     // gibberish when trying to match arguments.
1321     keepGoing = false;
1322   }
1323 
1324   S.Diag(Loc, diag::warn_format_invalid_conversion)
1325     << llvm::StringRef(csStart, csLen)
1326     << getSpecifierRange(startSpec, specifierLen);
1327 
1328   return keepGoing;
1329 }
1330 
1331 bool
CheckNumArgs(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned argIndex)1332 CheckFormatHandler::CheckNumArgs(
1333   const analyze_format_string::FormatSpecifier &FS,
1334   const analyze_format_string::ConversionSpecifier &CS,
1335   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1336 
1337   if (argIndex >= NumDataArgs) {
1338     if (FS.usesPositionalArg())  {
1339       S.Diag(getLocationOfByte(CS.getStart()),
1340              diag::warn_printf_positional_arg_exceeds_data_args)
1341       << (argIndex+1) << NumDataArgs
1342       << getSpecifierRange(startSpecifier, specifierLen);
1343     }
1344     else {
1345       S.Diag(getLocationOfByte(CS.getStart()),
1346              diag::warn_printf_insufficient_data_args)
1347       << getSpecifierRange(startSpecifier, specifierLen);
1348     }
1349 
1350     return false;
1351   }
1352   return true;
1353 }
1354 
1355 //===--- CHECK: Printf format string checking ------------------------------===//
1356 
1357 namespace {
1358 class CheckPrintfHandler : public CheckFormatHandler {
1359 public:
CheckPrintfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,bool isObjCLiteral,const char * beg,bool hasVAListArg,const CallExpr * theCall,unsigned formatIdx)1360   CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1361                      const Expr *origFormatExpr, unsigned firstDataArg,
1362                      unsigned numDataArgs, bool isObjCLiteral,
1363                      const char *beg, bool hasVAListArg,
1364                      const CallExpr *theCall, unsigned formatIdx)
1365   : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1366                        numDataArgs, isObjCLiteral, beg, hasVAListArg,
1367                        theCall, formatIdx) {}
1368 
1369 
1370   bool HandleInvalidPrintfConversionSpecifier(
1371                                       const analyze_printf::PrintfSpecifier &FS,
1372                                       const char *startSpecifier,
1373                                       unsigned specifierLen);
1374 
1375   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1376                              const char *startSpecifier,
1377                              unsigned specifierLen);
1378 
1379   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1380                     const char *startSpecifier, unsigned specifierLen);
1381   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1382                            const analyze_printf::OptionalAmount &Amt,
1383                            unsigned type,
1384                            const char *startSpecifier, unsigned specifierLen);
1385   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1386                   const analyze_printf::OptionalFlag &flag,
1387                   const char *startSpecifier, unsigned specifierLen);
1388   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1389                          const analyze_printf::OptionalFlag &ignoredFlag,
1390                          const analyze_printf::OptionalFlag &flag,
1391                          const char *startSpecifier, unsigned specifierLen);
1392 };
1393 }
1394 
HandleInvalidPrintfConversionSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)1395 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1396                                       const analyze_printf::PrintfSpecifier &FS,
1397                                       const char *startSpecifier,
1398                                       unsigned specifierLen) {
1399   const analyze_printf::PrintfConversionSpecifier &CS =
1400     FS.getConversionSpecifier();
1401 
1402   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1403                                           getLocationOfByte(CS.getStart()),
1404                                           startSpecifier, specifierLen,
1405                                           CS.getStart(), CS.getLength());
1406 }
1407 
HandleAmount(const analyze_format_string::OptionalAmount & Amt,unsigned k,const char * startSpecifier,unsigned specifierLen)1408 bool CheckPrintfHandler::HandleAmount(
1409                                const analyze_format_string::OptionalAmount &Amt,
1410                                unsigned k, const char *startSpecifier,
1411                                unsigned specifierLen) {
1412 
1413   if (Amt.hasDataArgument()) {
1414     if (!HasVAListArg) {
1415       unsigned argIndex = Amt.getArgIndex();
1416       if (argIndex >= NumDataArgs) {
1417         S.Diag(getLocationOfByte(Amt.getStart()),
1418                diag::warn_printf_asterisk_missing_arg)
1419           << k << getSpecifierRange(startSpecifier, specifierLen);
1420         // Don't do any more checking.  We will just emit
1421         // spurious errors.
1422         return false;
1423       }
1424 
1425       // Type check the data argument.  It should be an 'int'.
1426       // Although not in conformance with C99, we also allow the argument to be
1427       // an 'unsigned int' as that is a reasonably safe case.  GCC also
1428       // doesn't emit a warning for that case.
1429       CoveredArgs.set(argIndex);
1430       const Expr *Arg = getDataArg(argIndex);
1431       QualType T = Arg->getType();
1432 
1433       const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1434       assert(ATR.isValid());
1435 
1436       if (!ATR.matchesType(S.Context, T)) {
1437         S.Diag(getLocationOfByte(Amt.getStart()),
1438                diag::warn_printf_asterisk_wrong_type)
1439           << k
1440           << ATR.getRepresentativeType(S.Context) << T
1441           << getSpecifierRange(startSpecifier, specifierLen)
1442           << Arg->getSourceRange();
1443         // Don't do any more checking.  We will just emit
1444         // spurious errors.
1445         return false;
1446       }
1447     }
1448   }
1449   return true;
1450 }
1451 
HandleInvalidAmount(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalAmount & Amt,unsigned type,const char * startSpecifier,unsigned specifierLen)1452 void CheckPrintfHandler::HandleInvalidAmount(
1453                                       const analyze_printf::PrintfSpecifier &FS,
1454                                       const analyze_printf::OptionalAmount &Amt,
1455                                       unsigned type,
1456                                       const char *startSpecifier,
1457                                       unsigned specifierLen) {
1458   const analyze_printf::PrintfConversionSpecifier &CS =
1459     FS.getConversionSpecifier();
1460   switch (Amt.getHowSpecified()) {
1461   case analyze_printf::OptionalAmount::Constant:
1462     S.Diag(getLocationOfByte(Amt.getStart()),
1463         diag::warn_printf_nonsensical_optional_amount)
1464       << type
1465       << CS.toString()
1466       << getSpecifierRange(startSpecifier, specifierLen)
1467       << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1468           Amt.getConstantLength()));
1469     break;
1470 
1471   default:
1472     S.Diag(getLocationOfByte(Amt.getStart()),
1473         diag::warn_printf_nonsensical_optional_amount)
1474       << type
1475       << CS.toString()
1476       << getSpecifierRange(startSpecifier, specifierLen);
1477     break;
1478   }
1479 }
1480 
HandleFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)1481 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1482                                     const analyze_printf::OptionalFlag &flag,
1483                                     const char *startSpecifier,
1484                                     unsigned specifierLen) {
1485   // Warn about pointless flag with a fixit removal.
1486   const analyze_printf::PrintfConversionSpecifier &CS =
1487     FS.getConversionSpecifier();
1488   S.Diag(getLocationOfByte(flag.getPosition()),
1489       diag::warn_printf_nonsensical_flag)
1490     << flag.toString() << CS.toString()
1491     << getSpecifierRange(startSpecifier, specifierLen)
1492     << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1493 }
1494 
HandleIgnoredFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & ignoredFlag,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)1495 void CheckPrintfHandler::HandleIgnoredFlag(
1496                                 const analyze_printf::PrintfSpecifier &FS,
1497                                 const analyze_printf::OptionalFlag &ignoredFlag,
1498                                 const analyze_printf::OptionalFlag &flag,
1499                                 const char *startSpecifier,
1500                                 unsigned specifierLen) {
1501   // Warn about ignored flag with a fixit removal.
1502   S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1503       diag::warn_printf_ignored_flag)
1504     << ignoredFlag.toString() << flag.toString()
1505     << getSpecifierRange(startSpecifier, specifierLen)
1506     << FixItHint::CreateRemoval(getSpecifierRange(
1507         ignoredFlag.getPosition(), 1));
1508 }
1509 
1510 bool
HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)1511 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1512                                             &FS,
1513                                           const char *startSpecifier,
1514                                           unsigned specifierLen) {
1515 
1516   using namespace analyze_format_string;
1517   using namespace analyze_printf;
1518   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1519 
1520   if (FS.consumesDataArgument()) {
1521     if (atFirstArg) {
1522         atFirstArg = false;
1523         usesPositionalArgs = FS.usesPositionalArg();
1524     }
1525     else if (usesPositionalArgs != FS.usesPositionalArg()) {
1526       // Cannot mix-and-match positional and non-positional arguments.
1527       S.Diag(getLocationOfByte(CS.getStart()),
1528              diag::warn_format_mix_positional_nonpositional_args)
1529         << getSpecifierRange(startSpecifier, specifierLen);
1530       return false;
1531     }
1532   }
1533 
1534   // First check if the field width, precision, and conversion specifier
1535   // have matching data arguments.
1536   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1537                     startSpecifier, specifierLen)) {
1538     return false;
1539   }
1540 
1541   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1542                     startSpecifier, specifierLen)) {
1543     return false;
1544   }
1545 
1546   if (!CS.consumesDataArgument()) {
1547     // FIXME: Technically specifying a precision or field width here
1548     // makes no sense.  Worth issuing a warning at some point.
1549     return true;
1550   }
1551 
1552   // Consume the argument.
1553   unsigned argIndex = FS.getArgIndex();
1554   if (argIndex < NumDataArgs) {
1555     // The check to see if the argIndex is valid will come later.
1556     // We set the bit here because we may exit early from this
1557     // function if we encounter some other error.
1558     CoveredArgs.set(argIndex);
1559   }
1560 
1561   // Check for using an Objective-C specific conversion specifier
1562   // in a non-ObjC literal.
1563   if (!IsObjCLiteral && CS.isObjCArg()) {
1564     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1565                                                   specifierLen);
1566   }
1567 
1568   // Check for invalid use of field width
1569   if (!FS.hasValidFieldWidth()) {
1570     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1571         startSpecifier, specifierLen);
1572   }
1573 
1574   // Check for invalid use of precision
1575   if (!FS.hasValidPrecision()) {
1576     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1577         startSpecifier, specifierLen);
1578   }
1579 
1580   // Check each flag does not conflict with any other component.
1581   if (!FS.hasValidThousandsGroupingPrefix())
1582     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
1583   if (!FS.hasValidLeadingZeros())
1584     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1585   if (!FS.hasValidPlusPrefix())
1586     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1587   if (!FS.hasValidSpacePrefix())
1588     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1589   if (!FS.hasValidAlternativeForm())
1590     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1591   if (!FS.hasValidLeftJustified())
1592     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1593 
1594   // Check that flags are not ignored by another flag
1595   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1596     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1597         startSpecifier, specifierLen);
1598   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1599     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1600             startSpecifier, specifierLen);
1601 
1602   // Check the length modifier is valid with the given conversion specifier.
1603   const LengthModifier &LM = FS.getLengthModifier();
1604   if (!FS.hasValidLengthModifier())
1605     S.Diag(getLocationOfByte(LM.getStart()),
1606         diag::warn_format_nonsensical_length)
1607       << LM.toString() << CS.toString()
1608       << getSpecifierRange(startSpecifier, specifierLen)
1609       << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1610           LM.getLength()));
1611 
1612   // Are we using '%n'?
1613   if (CS.getKind() == ConversionSpecifier::nArg) {
1614     // Issue a warning about this being a possible security issue.
1615     S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1616       << getSpecifierRange(startSpecifier, specifierLen);
1617     // Continue checking the other format specifiers.
1618     return true;
1619   }
1620 
1621   // The remaining checks depend on the data arguments.
1622   if (HasVAListArg)
1623     return true;
1624 
1625   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1626     return false;
1627 
1628   // Now type check the data expression that matches the
1629   // format specifier.
1630   const Expr *Ex = getDataArg(argIndex);
1631   const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1632   if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1633     // Check if we didn't match because of an implicit cast from a 'char'
1634     // or 'short' to an 'int'.  This is done because printf is a varargs
1635     // function.
1636     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1637       if (ICE->getType() == S.Context.IntTy) {
1638         // All further checking is done on the subexpression.
1639         Ex = ICE->getSubExpr();
1640         if (ATR.matchesType(S.Context, Ex->getType()))
1641           return true;
1642       }
1643 
1644     // We may be able to offer a FixItHint if it is a supported type.
1645     PrintfSpecifier fixedFS = FS;
1646     bool success = fixedFS.fixType(Ex->getType());
1647 
1648     if (success) {
1649       // Get the fix string from the fixed format specifier
1650       llvm::SmallString<128> buf;
1651       llvm::raw_svector_ostream os(buf);
1652       fixedFS.toString(os);
1653 
1654       // FIXME: getRepresentativeType() perhaps should return a string
1655       // instead of a QualType to better handle when the representative
1656       // type is 'wint_t' (which is defined in the system headers).
1657       S.Diag(getLocationOfByte(CS.getStart()),
1658           diag::warn_printf_conversion_argument_type_mismatch)
1659         << ATR.getRepresentativeType(S.Context) << Ex->getType()
1660         << getSpecifierRange(startSpecifier, specifierLen)
1661         << Ex->getSourceRange()
1662         << FixItHint::CreateReplacement(
1663             getSpecifierRange(startSpecifier, specifierLen),
1664             os.str());
1665     }
1666     else {
1667       S.Diag(getLocationOfByte(CS.getStart()),
1668              diag::warn_printf_conversion_argument_type_mismatch)
1669         << ATR.getRepresentativeType(S.Context) << Ex->getType()
1670         << getSpecifierRange(startSpecifier, specifierLen)
1671         << Ex->getSourceRange();
1672     }
1673   }
1674 
1675   return true;
1676 }
1677 
1678 //===--- CHECK: Scanf format string checking ------------------------------===//
1679 
1680 namespace {
1681 class CheckScanfHandler : public CheckFormatHandler {
1682 public:
CheckScanfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,bool isObjCLiteral,const char * beg,bool hasVAListArg,const CallExpr * theCall,unsigned formatIdx)1683   CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1684                     const Expr *origFormatExpr, unsigned firstDataArg,
1685                     unsigned numDataArgs, bool isObjCLiteral,
1686                     const char *beg, bool hasVAListArg,
1687                     const CallExpr *theCall, unsigned formatIdx)
1688   : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1689                        numDataArgs, isObjCLiteral, beg, hasVAListArg,
1690                        theCall, formatIdx) {}
1691 
1692   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1693                             const char *startSpecifier,
1694                             unsigned specifierLen);
1695 
1696   bool HandleInvalidScanfConversionSpecifier(
1697           const analyze_scanf::ScanfSpecifier &FS,
1698           const char *startSpecifier,
1699           unsigned specifierLen);
1700 
1701   void HandleIncompleteScanList(const char *start, const char *end);
1702 };
1703 }
1704 
HandleIncompleteScanList(const char * start,const char * end)1705 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1706                                                  const char *end) {
1707   S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1708     << getSpecifierRange(start, end - start);
1709 }
1710 
HandleInvalidScanfConversionSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)1711 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1712                                         const analyze_scanf::ScanfSpecifier &FS,
1713                                         const char *startSpecifier,
1714                                         unsigned specifierLen) {
1715 
1716   const analyze_scanf::ScanfConversionSpecifier &CS =
1717     FS.getConversionSpecifier();
1718 
1719   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1720                                           getLocationOfByte(CS.getStart()),
1721                                           startSpecifier, specifierLen,
1722                                           CS.getStart(), CS.getLength());
1723 }
1724 
HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)1725 bool CheckScanfHandler::HandleScanfSpecifier(
1726                                        const analyze_scanf::ScanfSpecifier &FS,
1727                                        const char *startSpecifier,
1728                                        unsigned specifierLen) {
1729 
1730   using namespace analyze_scanf;
1731   using namespace analyze_format_string;
1732 
1733   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1734 
1735   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1736   // be used to decide if we are using positional arguments consistently.
1737   if (FS.consumesDataArgument()) {
1738     if (atFirstArg) {
1739       atFirstArg = false;
1740       usesPositionalArgs = FS.usesPositionalArg();
1741     }
1742     else if (usesPositionalArgs != FS.usesPositionalArg()) {
1743       // Cannot mix-and-match positional and non-positional arguments.
1744       S.Diag(getLocationOfByte(CS.getStart()),
1745              diag::warn_format_mix_positional_nonpositional_args)
1746         << getSpecifierRange(startSpecifier, specifierLen);
1747       return false;
1748     }
1749   }
1750 
1751   // Check if the field with is non-zero.
1752   const OptionalAmount &Amt = FS.getFieldWidth();
1753   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1754     if (Amt.getConstantAmount() == 0) {
1755       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1756                                                    Amt.getConstantLength());
1757       S.Diag(getLocationOfByte(Amt.getStart()),
1758              diag::warn_scanf_nonzero_width)
1759         << R << FixItHint::CreateRemoval(R);
1760     }
1761   }
1762 
1763   if (!FS.consumesDataArgument()) {
1764     // FIXME: Technically specifying a precision or field width here
1765     // makes no sense.  Worth issuing a warning at some point.
1766     return true;
1767   }
1768 
1769   // Consume the argument.
1770   unsigned argIndex = FS.getArgIndex();
1771   if (argIndex < NumDataArgs) {
1772       // The check to see if the argIndex is valid will come later.
1773       // We set the bit here because we may exit early from this
1774       // function if we encounter some other error.
1775     CoveredArgs.set(argIndex);
1776   }
1777 
1778   // Check the length modifier is valid with the given conversion specifier.
1779   const LengthModifier &LM = FS.getLengthModifier();
1780   if (!FS.hasValidLengthModifier()) {
1781     S.Diag(getLocationOfByte(LM.getStart()),
1782            diag::warn_format_nonsensical_length)
1783       << LM.toString() << CS.toString()
1784       << getSpecifierRange(startSpecifier, specifierLen)
1785       << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1786                                                     LM.getLength()));
1787   }
1788 
1789   // The remaining checks depend on the data arguments.
1790   if (HasVAListArg)
1791     return true;
1792 
1793   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1794     return false;
1795 
1796   // FIXME: Check that the argument type matches the format specifier.
1797 
1798   return true;
1799 }
1800 
CheckFormatString(const StringLiteral * FExpr,const Expr * OrigFormatExpr,const CallExpr * TheCall,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,bool isPrintf)1801 void Sema::CheckFormatString(const StringLiteral *FExpr,
1802                              const Expr *OrigFormatExpr,
1803                              const CallExpr *TheCall, bool HasVAListArg,
1804                              unsigned format_idx, unsigned firstDataArg,
1805                              bool isPrintf) {
1806 
1807   // CHECK: is the format string a wide literal?
1808   if (FExpr->isWide()) {
1809     Diag(FExpr->getLocStart(),
1810          diag::warn_format_string_is_wide_literal)
1811     << OrigFormatExpr->getSourceRange();
1812     return;
1813   }
1814 
1815   // Str - The format string.  NOTE: this is NOT null-terminated!
1816   llvm::StringRef StrRef = FExpr->getString();
1817   const char *Str = StrRef.data();
1818   unsigned StrLen = StrRef.size();
1819 
1820   // CHECK: empty format string?
1821   if (StrLen == 0) {
1822     Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1823     << OrigFormatExpr->getSourceRange();
1824     return;
1825   }
1826 
1827   if (isPrintf) {
1828     CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1829                          TheCall->getNumArgs() - firstDataArg,
1830                          isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1831                          HasVAListArg, TheCall, format_idx);
1832 
1833     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1834       H.DoneProcessing();
1835   }
1836   else {
1837     CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1838                         TheCall->getNumArgs() - firstDataArg,
1839                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1840                         HasVAListArg, TheCall, format_idx);
1841 
1842     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1843       H.DoneProcessing();
1844   }
1845 }
1846 
1847 //===--- CHECK: Standard memory functions ---------------------------------===//
1848 
1849 /// \brief Determine whether the given type is a dynamic class type (e.g.,
1850 /// whether it has a vtable).
isDynamicClassType(QualType T)1851 static bool isDynamicClassType(QualType T) {
1852   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
1853     if (CXXRecordDecl *Definition = Record->getDefinition())
1854       if (Definition->isDynamicClass())
1855         return true;
1856 
1857   return false;
1858 }
1859 
1860 /// \brief If E is a sizeof expression, returns its argument expression,
1861 /// otherwise returns NULL.
getSizeOfExprArg(const Expr * E)1862 static const Expr *getSizeOfExprArg(const Expr* E) {
1863   if (const UnaryExprOrTypeTraitExpr *SizeOf =
1864       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
1865     if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
1866       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
1867 
1868   return 0;
1869 }
1870 
1871 /// \brief If E is a sizeof expression, returns its argument type.
getSizeOfArgType(const Expr * E)1872 static QualType getSizeOfArgType(const Expr* E) {
1873   if (const UnaryExprOrTypeTraitExpr *SizeOf =
1874       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
1875     if (SizeOf->getKind() == clang::UETT_SizeOf)
1876       return SizeOf->getTypeOfArgument();
1877 
1878   return QualType();
1879 }
1880 
1881 /// \brief Check for dangerous or invalid arguments to memset().
1882 ///
1883 /// This issues warnings on known problematic, dangerous or unspecified
1884 /// arguments to the standard 'memset', 'memcpy', and 'memmove' function calls.
1885 ///
1886 /// \param Call The call expression to diagnose.
CheckMemsetcpymoveArguments(const CallExpr * Call,CheckedMemoryFunction CMF,IdentifierInfo * FnName)1887 void Sema::CheckMemsetcpymoveArguments(const CallExpr *Call,
1888                                        CheckedMemoryFunction CMF,
1889                                        IdentifierInfo *FnName) {
1890   // It is possible to have a non-standard definition of memset.  Validate
1891   // we have enough arguments, and if not, abort further checking.
1892   if (Call->getNumArgs() < 3)
1893     return;
1894 
1895   unsigned LastArg = (CMF == CMF_Memset? 1 : 2);
1896   const Expr *LenExpr = Call->getArg(2)->IgnoreParenImpCasts();
1897 
1898   // We have special checking when the length is a sizeof expression.
1899   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
1900   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
1901   llvm::FoldingSetNodeID SizeOfArgID;
1902 
1903   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
1904     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
1905     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
1906 
1907     QualType DestTy = Dest->getType();
1908     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
1909       QualType PointeeTy = DestPtrTy->getPointeeType();
1910 
1911       // Never warn about void type pointers. This can be used to suppress
1912       // false positives.
1913       if (PointeeTy->isVoidType())
1914         continue;
1915 
1916       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
1917       // actually comparing the expressions for equality. Because computing the
1918       // expression IDs can be expensive, we only do this if the diagnostic is
1919       // enabled.
1920       if (SizeOfArg &&
1921           Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
1922                                    SizeOfArg->getExprLoc())) {
1923         // We only compute IDs for expressions if the warning is enabled, and
1924         // cache the sizeof arg's ID.
1925         if (SizeOfArgID == llvm::FoldingSetNodeID())
1926           SizeOfArg->Profile(SizeOfArgID, Context, true);
1927         llvm::FoldingSetNodeID DestID;
1928         Dest->Profile(DestID, Context, true);
1929         if (DestID == SizeOfArgID) {
1930           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
1931           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
1932             if (UnaryOp->getOpcode() == UO_AddrOf)
1933               ActionIdx = 1; // If its an address-of operator, just remove it.
1934           if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
1935             ActionIdx = 2; // If the pointee's size is sizeof(char),
1936                            // suggest an explicit length.
1937           DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
1938                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
1939                                 << FnName << ArgIdx << ActionIdx
1940                                 << Dest->getSourceRange()
1941                                 << SizeOfArg->getSourceRange());
1942           break;
1943         }
1944       }
1945 
1946       // Also check for cases where the sizeof argument is the exact same
1947       // type as the memory argument, and where it points to a user-defined
1948       // record type.
1949       if (SizeOfArgTy != QualType()) {
1950         if (PointeeTy->isRecordType() &&
1951             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
1952           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
1953                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
1954                                 << FnName << SizeOfArgTy << ArgIdx
1955                                 << PointeeTy << Dest->getSourceRange()
1956                                 << LenExpr->getSourceRange());
1957           break;
1958         }
1959       }
1960 
1961       unsigned DiagID;
1962 
1963       // Always complain about dynamic classes.
1964       if (isDynamicClassType(PointeeTy))
1965         DiagID = diag::warn_dyn_class_memaccess;
1966       else if (PointeeTy.hasNonTrivialObjCLifetime() && CMF != CMF_Memset)
1967         DiagID = diag::warn_arc_object_memaccess;
1968       else
1969         continue;
1970 
1971       DiagRuntimeBehavior(
1972         Dest->getExprLoc(), Dest,
1973         PDiag(DiagID)
1974           << ArgIdx << FnName << PointeeTy
1975           << Call->getCallee()->getSourceRange());
1976 
1977       DiagRuntimeBehavior(
1978         Dest->getExprLoc(), Dest,
1979         PDiag(diag::note_bad_memaccess_silence)
1980           << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
1981       break;
1982     }
1983   }
1984 }
1985 
1986 //===--- CHECK: Return Address of Stack Variable --------------------------===//
1987 
1988 static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
1989 static Expr *EvalAddr(Expr* E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
1990 
1991 /// CheckReturnStackAddr - Check if a return statement returns the address
1992 ///   of a stack variable.
1993 void
CheckReturnStackAddr(Expr * RetValExp,QualType lhsType,SourceLocation ReturnLoc)1994 Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1995                            SourceLocation ReturnLoc) {
1996 
1997   Expr *stackE = 0;
1998   llvm::SmallVector<DeclRefExpr *, 8> refVars;
1999 
2000   // Perform checking for returned stack addresses, local blocks,
2001   // label addresses or references to temporaries.
2002   if (lhsType->isPointerType() ||
2003       (!getLangOptions().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
2004     stackE = EvalAddr(RetValExp, refVars);
2005   } else if (lhsType->isReferenceType()) {
2006     stackE = EvalVal(RetValExp, refVars);
2007   }
2008 
2009   if (stackE == 0)
2010     return; // Nothing suspicious was found.
2011 
2012   SourceLocation diagLoc;
2013   SourceRange diagRange;
2014   if (refVars.empty()) {
2015     diagLoc = stackE->getLocStart();
2016     diagRange = stackE->getSourceRange();
2017   } else {
2018     // We followed through a reference variable. 'stackE' contains the
2019     // problematic expression but we will warn at the return statement pointing
2020     // at the reference variable. We will later display the "trail" of
2021     // reference variables using notes.
2022     diagLoc = refVars[0]->getLocStart();
2023     diagRange = refVars[0]->getSourceRange();
2024   }
2025 
2026   if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
2027     Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
2028                                              : diag::warn_ret_stack_addr)
2029      << DR->getDecl()->getDeclName() << diagRange;
2030   } else if (isa<BlockExpr>(stackE)) { // local block.
2031     Diag(diagLoc, diag::err_ret_local_block) << diagRange;
2032   } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
2033     Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
2034   } else { // local temporary.
2035     Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
2036                                              : diag::warn_ret_local_temp_addr)
2037      << diagRange;
2038   }
2039 
2040   // Display the "trail" of reference variables that we followed until we
2041   // found the problematic expression using notes.
2042   for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
2043     VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
2044     // If this var binds to another reference var, show the range of the next
2045     // var, otherwise the var binds to the problematic expression, in which case
2046     // show the range of the expression.
2047     SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
2048                                   : stackE->getSourceRange();
2049     Diag(VD->getLocation(), diag::note_ref_var_local_bind)
2050       << VD->getDeclName() << range;
2051   }
2052 }
2053 
2054 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
2055 ///  check if the expression in a return statement evaluates to an address
2056 ///  to a location on the stack, a local block, an address of a label, or a
2057 ///  reference to local temporary. The recursion is used to traverse the
2058 ///  AST of the return expression, with recursion backtracking when we
2059 ///  encounter a subexpression that (1) clearly does not lead to one of the
2060 ///  above problematic expressions (2) is something we cannot determine leads to
2061 ///  a problematic expression based on such local checking.
2062 ///
2063 ///  Both EvalAddr and EvalVal follow through reference variables to evaluate
2064 ///  the expression that they point to. Such variables are added to the
2065 ///  'refVars' vector so that we know what the reference variable "trail" was.
2066 ///
2067 ///  EvalAddr processes expressions that are pointers that are used as
2068 ///  references (and not L-values).  EvalVal handles all other values.
2069 ///  At the base case of the recursion is a check for the above problematic
2070 ///  expressions.
2071 ///
2072 ///  This implementation handles:
2073 ///
2074 ///   * pointer-to-pointer casts
2075 ///   * implicit conversions from array references to pointers
2076 ///   * taking the address of fields
2077 ///   * arbitrary interplay between "&" and "*" operators
2078 ///   * pointer arithmetic from an address of a stack variable
2079 ///   * taking the address of an array element where the array is on the stack
EvalAddr(Expr * E,llvm::SmallVectorImpl<DeclRefExpr * > & refVars)2080 static Expr *EvalAddr(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
2081   if (E->isTypeDependent())
2082       return NULL;
2083 
2084   // We should only be called for evaluating pointer expressions.
2085   assert((E->getType()->isAnyPointerType() ||
2086           E->getType()->isBlockPointerType() ||
2087           E->getType()->isObjCQualifiedIdType()) &&
2088          "EvalAddr only works on pointers");
2089 
2090   E = E->IgnoreParens();
2091 
2092   // Our "symbolic interpreter" is just a dispatch off the currently
2093   // viewed AST node.  We then recursively traverse the AST by calling
2094   // EvalAddr and EvalVal appropriately.
2095   switch (E->getStmtClass()) {
2096   case Stmt::DeclRefExprClass: {
2097     DeclRefExpr *DR = cast<DeclRefExpr>(E);
2098 
2099     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2100       // If this is a reference variable, follow through to the expression that
2101       // it points to.
2102       if (V->hasLocalStorage() &&
2103           V->getType()->isReferenceType() && V->hasInit()) {
2104         // Add the reference variable to the "trail".
2105         refVars.push_back(DR);
2106         return EvalAddr(V->getInit(), refVars);
2107       }
2108 
2109     return NULL;
2110   }
2111 
2112   case Stmt::UnaryOperatorClass: {
2113     // The only unary operator that make sense to handle here
2114     // is AddrOf.  All others don't make sense as pointers.
2115     UnaryOperator *U = cast<UnaryOperator>(E);
2116 
2117     if (U->getOpcode() == UO_AddrOf)
2118       return EvalVal(U->getSubExpr(), refVars);
2119     else
2120       return NULL;
2121   }
2122 
2123   case Stmt::BinaryOperatorClass: {
2124     // Handle pointer arithmetic.  All other binary operators are not valid
2125     // in this context.
2126     BinaryOperator *B = cast<BinaryOperator>(E);
2127     BinaryOperatorKind op = B->getOpcode();
2128 
2129     if (op != BO_Add && op != BO_Sub)
2130       return NULL;
2131 
2132     Expr *Base = B->getLHS();
2133 
2134     // Determine which argument is the real pointer base.  It could be
2135     // the RHS argument instead of the LHS.
2136     if (!Base->getType()->isPointerType()) Base = B->getRHS();
2137 
2138     assert (Base->getType()->isPointerType());
2139     return EvalAddr(Base, refVars);
2140   }
2141 
2142   // For conditional operators we need to see if either the LHS or RHS are
2143   // valid DeclRefExpr*s.  If one of them is valid, we return it.
2144   case Stmt::ConditionalOperatorClass: {
2145     ConditionalOperator *C = cast<ConditionalOperator>(E);
2146 
2147     // Handle the GNU extension for missing LHS.
2148     if (Expr *lhsExpr = C->getLHS()) {
2149     // In C++, we can have a throw-expression, which has 'void' type.
2150       if (!lhsExpr->getType()->isVoidType())
2151         if (Expr* LHS = EvalAddr(lhsExpr, refVars))
2152           return LHS;
2153     }
2154 
2155     // In C++, we can have a throw-expression, which has 'void' type.
2156     if (C->getRHS()->getType()->isVoidType())
2157       return NULL;
2158 
2159     return EvalAddr(C->getRHS(), refVars);
2160   }
2161 
2162   case Stmt::BlockExprClass:
2163     if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
2164       return E; // local block.
2165     return NULL;
2166 
2167   case Stmt::AddrLabelExprClass:
2168     return E; // address of label.
2169 
2170   // For casts, we need to handle conversions from arrays to
2171   // pointer values, and pointer-to-pointer conversions.
2172   case Stmt::ImplicitCastExprClass:
2173   case Stmt::CStyleCastExprClass:
2174   case Stmt::CXXFunctionalCastExprClass:
2175   case Stmt::ObjCBridgedCastExprClass: {
2176     Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2177     QualType T = SubExpr->getType();
2178 
2179     if (SubExpr->getType()->isPointerType() ||
2180         SubExpr->getType()->isBlockPointerType() ||
2181         SubExpr->getType()->isObjCQualifiedIdType())
2182       return EvalAddr(SubExpr, refVars);
2183     else if (T->isArrayType())
2184       return EvalVal(SubExpr, refVars);
2185     else
2186       return 0;
2187   }
2188 
2189   // C++ casts.  For dynamic casts, static casts, and const casts, we
2190   // are always converting from a pointer-to-pointer, so we just blow
2191   // through the cast.  In the case the dynamic cast doesn't fail (and
2192   // return NULL), we take the conservative route and report cases
2193   // where we return the address of a stack variable.  For Reinterpre
2194   // FIXME: The comment about is wrong; we're not always converting
2195   // from pointer to pointer. I'm guessing that this code should also
2196   // handle references to objects.
2197   case Stmt::CXXStaticCastExprClass:
2198   case Stmt::CXXDynamicCastExprClass:
2199   case Stmt::CXXConstCastExprClass:
2200   case Stmt::CXXReinterpretCastExprClass: {
2201       Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
2202       if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
2203         return EvalAddr(S, refVars);
2204       else
2205         return NULL;
2206   }
2207 
2208   case Stmt::MaterializeTemporaryExprClass:
2209     if (Expr *Result = EvalAddr(
2210                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2211                                 refVars))
2212       return Result;
2213 
2214     return E;
2215 
2216   // Everything else: we simply don't reason about them.
2217   default:
2218     return NULL;
2219   }
2220 }
2221 
2222 
2223 ///  EvalVal - This function is complements EvalAddr in the mutual recursion.
2224 ///   See the comments for EvalAddr for more details.
EvalVal(Expr * E,llvm::SmallVectorImpl<DeclRefExpr * > & refVars)2225 static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
2226 do {
2227   // We should only be called for evaluating non-pointer expressions, or
2228   // expressions with a pointer type that are not used as references but instead
2229   // are l-values (e.g., DeclRefExpr with a pointer type).
2230 
2231   // Our "symbolic interpreter" is just a dispatch off the currently
2232   // viewed AST node.  We then recursively traverse the AST by calling
2233   // EvalAddr and EvalVal appropriately.
2234 
2235   E = E->IgnoreParens();
2236   switch (E->getStmtClass()) {
2237   case Stmt::ImplicitCastExprClass: {
2238     ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2239     if (IE->getValueKind() == VK_LValue) {
2240       E = IE->getSubExpr();
2241       continue;
2242     }
2243     return NULL;
2244   }
2245 
2246   case Stmt::DeclRefExprClass: {
2247     // When we hit a DeclRefExpr we are looking at code that refers to a
2248     // variable's name. If it's not a reference variable we check if it has
2249     // local storage within the function, and if so, return the expression.
2250     DeclRefExpr *DR = cast<DeclRefExpr>(E);
2251 
2252     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2253       if (V->hasLocalStorage()) {
2254         if (!V->getType()->isReferenceType())
2255           return DR;
2256 
2257         // Reference variable, follow through to the expression that
2258         // it points to.
2259         if (V->hasInit()) {
2260           // Add the reference variable to the "trail".
2261           refVars.push_back(DR);
2262           return EvalVal(V->getInit(), refVars);
2263         }
2264       }
2265 
2266     return NULL;
2267   }
2268 
2269   case Stmt::UnaryOperatorClass: {
2270     // The only unary operator that make sense to handle here
2271     // is Deref.  All others don't resolve to a "name."  This includes
2272     // handling all sorts of rvalues passed to a unary operator.
2273     UnaryOperator *U = cast<UnaryOperator>(E);
2274 
2275     if (U->getOpcode() == UO_Deref)
2276       return EvalAddr(U->getSubExpr(), refVars);
2277 
2278     return NULL;
2279   }
2280 
2281   case Stmt::ArraySubscriptExprClass: {
2282     // Array subscripts are potential references to data on the stack.  We
2283     // retrieve the DeclRefExpr* for the array variable if it indeed
2284     // has local storage.
2285     return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
2286   }
2287 
2288   case Stmt::ConditionalOperatorClass: {
2289     // For conditional operators we need to see if either the LHS or RHS are
2290     // non-NULL Expr's.  If one is non-NULL, we return it.
2291     ConditionalOperator *C = cast<ConditionalOperator>(E);
2292 
2293     // Handle the GNU extension for missing LHS.
2294     if (Expr *lhsExpr = C->getLHS())
2295       if (Expr *LHS = EvalVal(lhsExpr, refVars))
2296         return LHS;
2297 
2298     return EvalVal(C->getRHS(), refVars);
2299   }
2300 
2301   // Accesses to members are potential references to data on the stack.
2302   case Stmt::MemberExprClass: {
2303     MemberExpr *M = cast<MemberExpr>(E);
2304 
2305     // Check for indirect access.  We only want direct field accesses.
2306     if (M->isArrow())
2307       return NULL;
2308 
2309     // Check whether the member type is itself a reference, in which case
2310     // we're not going to refer to the member, but to what the member refers to.
2311     if (M->getMemberDecl()->getType()->isReferenceType())
2312       return NULL;
2313 
2314     return EvalVal(M->getBase(), refVars);
2315   }
2316 
2317   case Stmt::MaterializeTemporaryExprClass:
2318     if (Expr *Result = EvalVal(
2319                           cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2320                                refVars))
2321       return Result;
2322 
2323     return E;
2324 
2325   default:
2326     // Check that we don't return or take the address of a reference to a
2327     // temporary. This is only useful in C++.
2328     if (!E->isTypeDependent() && E->isRValue())
2329       return E;
2330 
2331     // Everything else: we simply don't reason about them.
2332     return NULL;
2333   }
2334 } while (true);
2335 }
2336 
2337 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2338 
2339 /// Check for comparisons of floating point operands using != and ==.
2340 /// Issue a warning if these are no self-comparisons, as they are not likely
2341 /// to do what the programmer intended.
CheckFloatComparison(SourceLocation loc,Expr * lex,Expr * rex)2342 void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2343   bool EmitWarning = true;
2344 
2345   Expr* LeftExprSansParen = lex->IgnoreParenImpCasts();
2346   Expr* RightExprSansParen = rex->IgnoreParenImpCasts();
2347 
2348   // Special case: check for x == x (which is OK).
2349   // Do not emit warnings for such cases.
2350   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2351     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2352       if (DRL->getDecl() == DRR->getDecl())
2353         EmitWarning = false;
2354 
2355 
2356   // Special case: check for comparisons against literals that can be exactly
2357   //  represented by APFloat.  In such cases, do not emit a warning.  This
2358   //  is a heuristic: often comparison against such literals are used to
2359   //  detect if a value in a variable has not changed.  This clearly can
2360   //  lead to false negatives.
2361   if (EmitWarning) {
2362     if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2363       if (FLL->isExact())
2364         EmitWarning = false;
2365     } else
2366       if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2367         if (FLR->isExact())
2368           EmitWarning = false;
2369     }
2370   }
2371 
2372   // Check for comparisons with builtin types.
2373   if (EmitWarning)
2374     if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2375       if (CL->isBuiltinCall(Context))
2376         EmitWarning = false;
2377 
2378   if (EmitWarning)
2379     if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2380       if (CR->isBuiltinCall(Context))
2381         EmitWarning = false;
2382 
2383   // Emit the diagnostic.
2384   if (EmitWarning)
2385     Diag(loc, diag::warn_floatingpoint_eq)
2386       << lex->getSourceRange() << rex->getSourceRange();
2387 }
2388 
2389 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2390 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2391 
2392 namespace {
2393 
2394 /// Structure recording the 'active' range of an integer-valued
2395 /// expression.
2396 struct IntRange {
2397   /// The number of bits active in the int.
2398   unsigned Width;
2399 
2400   /// True if the int is known not to have negative values.
2401   bool NonNegative;
2402 
IntRange__anon12adead60411::IntRange2403   IntRange(unsigned Width, bool NonNegative)
2404     : Width(Width), NonNegative(NonNegative)
2405   {}
2406 
2407   /// Returns the range of the bool type.
forBoolType__anon12adead60411::IntRange2408   static IntRange forBoolType() {
2409     return IntRange(1, true);
2410   }
2411 
2412   /// Returns the range of an opaque value of the given integral type.
forValueOfType__anon12adead60411::IntRange2413   static IntRange forValueOfType(ASTContext &C, QualType T) {
2414     return forValueOfCanonicalType(C,
2415                           T->getCanonicalTypeInternal().getTypePtr());
2416   }
2417 
2418   /// Returns the range of an opaque value of a canonical integral type.
forValueOfCanonicalType__anon12adead60411::IntRange2419   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
2420     assert(T->isCanonicalUnqualified());
2421 
2422     if (const VectorType *VT = dyn_cast<VectorType>(T))
2423       T = VT->getElementType().getTypePtr();
2424     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2425       T = CT->getElementType().getTypePtr();
2426 
2427     // For enum types, use the known bit width of the enumerators.
2428     if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2429       EnumDecl *Enum = ET->getDecl();
2430       if (!Enum->isDefinition())
2431         return IntRange(C.getIntWidth(QualType(T, 0)), false);
2432 
2433       unsigned NumPositive = Enum->getNumPositiveBits();
2434       unsigned NumNegative = Enum->getNumNegativeBits();
2435 
2436       return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2437     }
2438 
2439     const BuiltinType *BT = cast<BuiltinType>(T);
2440     assert(BT->isInteger());
2441 
2442     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2443   }
2444 
2445   /// Returns the "target" range of a canonical integral type, i.e.
2446   /// the range of values expressible in the type.
2447   ///
2448   /// This matches forValueOfCanonicalType except that enums have the
2449   /// full range of their type, not the range of their enumerators.
forTargetOfCanonicalType__anon12adead60411::IntRange2450   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
2451     assert(T->isCanonicalUnqualified());
2452 
2453     if (const VectorType *VT = dyn_cast<VectorType>(T))
2454       T = VT->getElementType().getTypePtr();
2455     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2456       T = CT->getElementType().getTypePtr();
2457     if (const EnumType *ET = dyn_cast<EnumType>(T))
2458       T = ET->getDecl()->getIntegerType().getTypePtr();
2459 
2460     const BuiltinType *BT = cast<BuiltinType>(T);
2461     assert(BT->isInteger());
2462 
2463     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2464   }
2465 
2466   /// Returns the supremum of two ranges: i.e. their conservative merge.
join__anon12adead60411::IntRange2467   static IntRange join(IntRange L, IntRange R) {
2468     return IntRange(std::max(L.Width, R.Width),
2469                     L.NonNegative && R.NonNegative);
2470   }
2471 
2472   /// Returns the infinum of two ranges: i.e. their aggressive merge.
meet__anon12adead60411::IntRange2473   static IntRange meet(IntRange L, IntRange R) {
2474     return IntRange(std::min(L.Width, R.Width),
2475                     L.NonNegative || R.NonNegative);
2476   }
2477 };
2478 
GetValueRange(ASTContext & C,llvm::APSInt & value,unsigned MaxWidth)2479 IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2480   if (value.isSigned() && value.isNegative())
2481     return IntRange(value.getMinSignedBits(), false);
2482 
2483   if (value.getBitWidth() > MaxWidth)
2484     value = value.trunc(MaxWidth);
2485 
2486   // isNonNegative() just checks the sign bit without considering
2487   // signedness.
2488   return IntRange(value.getActiveBits(), true);
2489 }
2490 
GetValueRange(ASTContext & C,APValue & result,QualType Ty,unsigned MaxWidth)2491 IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2492                        unsigned MaxWidth) {
2493   if (result.isInt())
2494     return GetValueRange(C, result.getInt(), MaxWidth);
2495 
2496   if (result.isVector()) {
2497     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2498     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2499       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2500       R = IntRange::join(R, El);
2501     }
2502     return R;
2503   }
2504 
2505   if (result.isComplexInt()) {
2506     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2507     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2508     return IntRange::join(R, I);
2509   }
2510 
2511   // This can happen with lossless casts to intptr_t of "based" lvalues.
2512   // Assume it might use arbitrary bits.
2513   // FIXME: The only reason we need to pass the type in here is to get
2514   // the sign right on this one case.  It would be nice if APValue
2515   // preserved this.
2516   assert(result.isLValue());
2517   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
2518 }
2519 
2520 /// Pseudo-evaluate the given integer expression, estimating the
2521 /// range of values it might take.
2522 ///
2523 /// \param MaxWidth - the width to which the value will be truncated
GetExprRange(ASTContext & C,Expr * E,unsigned MaxWidth)2524 IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2525   E = E->IgnoreParens();
2526 
2527   // Try a full evaluation first.
2528   Expr::EvalResult result;
2529   if (E->Evaluate(result, C))
2530     return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2531 
2532   // I think we only want to look through implicit casts here; if the
2533   // user has an explicit widening cast, we should treat the value as
2534   // being of the new, wider type.
2535   if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2536     if (CE->getCastKind() == CK_NoOp)
2537       return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2538 
2539     IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
2540 
2541     bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2542 
2543     // Assume that non-integer casts can span the full range of the type.
2544     if (!isIntegerCast)
2545       return OutputTypeRange;
2546 
2547     IntRange SubRange
2548       = GetExprRange(C, CE->getSubExpr(),
2549                      std::min(MaxWidth, OutputTypeRange.Width));
2550 
2551     // Bail out if the subexpr's range is as wide as the cast type.
2552     if (SubRange.Width >= OutputTypeRange.Width)
2553       return OutputTypeRange;
2554 
2555     // Otherwise, we take the smaller width, and we're non-negative if
2556     // either the output type or the subexpr is.
2557     return IntRange(SubRange.Width,
2558                     SubRange.NonNegative || OutputTypeRange.NonNegative);
2559   }
2560 
2561   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2562     // If we can fold the condition, just take that operand.
2563     bool CondResult;
2564     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2565       return GetExprRange(C, CondResult ? CO->getTrueExpr()
2566                                         : CO->getFalseExpr(),
2567                           MaxWidth);
2568 
2569     // Otherwise, conservatively merge.
2570     IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2571     IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2572     return IntRange::join(L, R);
2573   }
2574 
2575   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2576     switch (BO->getOpcode()) {
2577 
2578     // Boolean-valued operations are single-bit and positive.
2579     case BO_LAnd:
2580     case BO_LOr:
2581     case BO_LT:
2582     case BO_GT:
2583     case BO_LE:
2584     case BO_GE:
2585     case BO_EQ:
2586     case BO_NE:
2587       return IntRange::forBoolType();
2588 
2589     // The type of the assignments is the type of the LHS, so the RHS
2590     // is not necessarily the same type.
2591     case BO_MulAssign:
2592     case BO_DivAssign:
2593     case BO_RemAssign:
2594     case BO_AddAssign:
2595     case BO_SubAssign:
2596     case BO_XorAssign:
2597     case BO_OrAssign:
2598       // TODO: bitfields?
2599       return IntRange::forValueOfType(C, E->getType());
2600 
2601     // Simple assignments just pass through the RHS, which will have
2602     // been coerced to the LHS type.
2603     case BO_Assign:
2604       // TODO: bitfields?
2605       return GetExprRange(C, BO->getRHS(), MaxWidth);
2606 
2607     // Operations with opaque sources are black-listed.
2608     case BO_PtrMemD:
2609     case BO_PtrMemI:
2610       return IntRange::forValueOfType(C, E->getType());
2611 
2612     // Bitwise-and uses the *infinum* of the two source ranges.
2613     case BO_And:
2614     case BO_AndAssign:
2615       return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2616                             GetExprRange(C, BO->getRHS(), MaxWidth));
2617 
2618     // Left shift gets black-listed based on a judgement call.
2619     case BO_Shl:
2620       // ...except that we want to treat '1 << (blah)' as logically
2621       // positive.  It's an important idiom.
2622       if (IntegerLiteral *I
2623             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2624         if (I->getValue() == 1) {
2625           IntRange R = IntRange::forValueOfType(C, E->getType());
2626           return IntRange(R.Width, /*NonNegative*/ true);
2627         }
2628       }
2629       // fallthrough
2630 
2631     case BO_ShlAssign:
2632       return IntRange::forValueOfType(C, E->getType());
2633 
2634     // Right shift by a constant can narrow its left argument.
2635     case BO_Shr:
2636     case BO_ShrAssign: {
2637       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2638 
2639       // If the shift amount is a positive constant, drop the width by
2640       // that much.
2641       llvm::APSInt shift;
2642       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2643           shift.isNonNegative()) {
2644         unsigned zext = shift.getZExtValue();
2645         if (zext >= L.Width)
2646           L.Width = (L.NonNegative ? 0 : 1);
2647         else
2648           L.Width -= zext;
2649       }
2650 
2651       return L;
2652     }
2653 
2654     // Comma acts as its right operand.
2655     case BO_Comma:
2656       return GetExprRange(C, BO->getRHS(), MaxWidth);
2657 
2658     // Black-list pointer subtractions.
2659     case BO_Sub:
2660       if (BO->getLHS()->getType()->isPointerType())
2661         return IntRange::forValueOfType(C, E->getType());
2662       break;
2663 
2664     // The width of a division result is mostly determined by the size
2665     // of the LHS.
2666     case BO_Div: {
2667       // Don't 'pre-truncate' the operands.
2668       unsigned opWidth = C.getIntWidth(E->getType());
2669       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
2670 
2671       // If the divisor is constant, use that.
2672       llvm::APSInt divisor;
2673       if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
2674         unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
2675         if (log2 >= L.Width)
2676           L.Width = (L.NonNegative ? 0 : 1);
2677         else
2678           L.Width = std::min(L.Width - log2, MaxWidth);
2679         return L;
2680       }
2681 
2682       // Otherwise, just use the LHS's width.
2683       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
2684       return IntRange(L.Width, L.NonNegative && R.NonNegative);
2685     }
2686 
2687     // The result of a remainder can't be larger than the result of
2688     // either side.
2689     case BO_Rem: {
2690       // Don't 'pre-truncate' the operands.
2691       unsigned opWidth = C.getIntWidth(E->getType());
2692       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
2693       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
2694 
2695       IntRange meet = IntRange::meet(L, R);
2696       meet.Width = std::min(meet.Width, MaxWidth);
2697       return meet;
2698     }
2699 
2700     // The default behavior is okay for these.
2701     case BO_Mul:
2702     case BO_Add:
2703     case BO_Xor:
2704     case BO_Or:
2705       break;
2706     }
2707 
2708     // The default case is to treat the operation as if it were closed
2709     // on the narrowest type that encompasses both operands.
2710     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2711     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2712     return IntRange::join(L, R);
2713   }
2714 
2715   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2716     switch (UO->getOpcode()) {
2717     // Boolean-valued operations are white-listed.
2718     case UO_LNot:
2719       return IntRange::forBoolType();
2720 
2721     // Operations with opaque sources are black-listed.
2722     case UO_Deref:
2723     case UO_AddrOf: // should be impossible
2724       return IntRange::forValueOfType(C, E->getType());
2725 
2726     default:
2727       return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2728     }
2729   }
2730 
2731   if (dyn_cast<OffsetOfExpr>(E)) {
2732     IntRange::forValueOfType(C, E->getType());
2733   }
2734 
2735   FieldDecl *BitField = E->getBitField();
2736   if (BitField) {
2737     llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2738     unsigned BitWidth = BitWidthAP.getZExtValue();
2739 
2740     return IntRange(BitWidth,
2741                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
2742   }
2743 
2744   return IntRange::forValueOfType(C, E->getType());
2745 }
2746 
GetExprRange(ASTContext & C,Expr * E)2747 IntRange GetExprRange(ASTContext &C, Expr *E) {
2748   return GetExprRange(C, E, C.getIntWidth(E->getType()));
2749 }
2750 
2751 /// Checks whether the given value, which currently has the given
2752 /// source semantics, has the same value when coerced through the
2753 /// target semantics.
IsSameFloatAfterCast(const llvm::APFloat & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)2754 bool IsSameFloatAfterCast(const llvm::APFloat &value,
2755                           const llvm::fltSemantics &Src,
2756                           const llvm::fltSemantics &Tgt) {
2757   llvm::APFloat truncated = value;
2758 
2759   bool ignored;
2760   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2761   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2762 
2763   return truncated.bitwiseIsEqual(value);
2764 }
2765 
2766 /// Checks whether the given value, which currently has the given
2767 /// source semantics, has the same value when coerced through the
2768 /// target semantics.
2769 ///
2770 /// The value might be a vector of floats (or a complex number).
IsSameFloatAfterCast(const APValue & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)2771 bool IsSameFloatAfterCast(const APValue &value,
2772                           const llvm::fltSemantics &Src,
2773                           const llvm::fltSemantics &Tgt) {
2774   if (value.isFloat())
2775     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2776 
2777   if (value.isVector()) {
2778     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2779       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2780         return false;
2781     return true;
2782   }
2783 
2784   assert(value.isComplexFloat());
2785   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2786           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2787 }
2788 
2789 void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
2790 
IsZero(Sema & S,Expr * E)2791 static bool IsZero(Sema &S, Expr *E) {
2792   // Suppress cases where we are comparing against an enum constant.
2793   if (const DeclRefExpr *DR =
2794       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
2795     if (isa<EnumConstantDecl>(DR->getDecl()))
2796       return false;
2797 
2798   // Suppress cases where the '0' value is expanded from a macro.
2799   if (E->getLocStart().isMacroID())
2800     return false;
2801 
2802   llvm::APSInt Value;
2803   return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2804 }
2805 
HasEnumType(Expr * E)2806 static bool HasEnumType(Expr *E) {
2807   // Strip off implicit integral promotions.
2808   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2809     if (ICE->getCastKind() != CK_IntegralCast &&
2810         ICE->getCastKind() != CK_NoOp)
2811       break;
2812     E = ICE->getSubExpr();
2813   }
2814 
2815   return E->getType()->isEnumeralType();
2816 }
2817 
CheckTrivialUnsignedComparison(Sema & S,BinaryOperator * E)2818 void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2819   BinaryOperatorKind op = E->getOpcode();
2820   if (E->isValueDependent())
2821     return;
2822 
2823   if (op == BO_LT && IsZero(S, E->getRHS())) {
2824     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2825       << "< 0" << "false" << HasEnumType(E->getLHS())
2826       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2827   } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2828     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2829       << ">= 0" << "true" << HasEnumType(E->getLHS())
2830       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2831   } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2832     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2833       << "0 >" << "false" << HasEnumType(E->getRHS())
2834       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2835   } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2836     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2837       << "0 <=" << "true" << HasEnumType(E->getRHS())
2838       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2839   }
2840 }
2841 
2842 /// Analyze the operands of the given comparison.  Implements the
2843 /// fallback case from AnalyzeComparison.
AnalyzeImpConvsInComparison(Sema & S,BinaryOperator * E)2844 void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2845   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2846   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2847 }
2848 
2849 /// \brief Implements -Wsign-compare.
2850 ///
2851 /// \param lex the left-hand expression
2852 /// \param rex the right-hand expression
2853 /// \param OpLoc the location of the joining operator
2854 /// \param BinOpc binary opcode or 0
AnalyzeComparison(Sema & S,BinaryOperator * E)2855 void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2856   // The type the comparison is being performed in.
2857   QualType T = E->getLHS()->getType();
2858   assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2859          && "comparison with mismatched types");
2860 
2861   // We don't do anything special if this isn't an unsigned integral
2862   // comparison:  we're only interested in integral comparisons, and
2863   // signed comparisons only happen in cases we don't care to warn about.
2864   //
2865   // We also don't care about value-dependent expressions or expressions
2866   // whose result is a constant.
2867   if (!T->hasUnsignedIntegerRepresentation()
2868       || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
2869     return AnalyzeImpConvsInComparison(S, E);
2870 
2871   Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2872   Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2873 
2874   // Check to see if one of the (unmodified) operands is of different
2875   // signedness.
2876   Expr *signedOperand, *unsignedOperand;
2877   if (lex->getType()->hasSignedIntegerRepresentation()) {
2878     assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2879            "unsigned comparison between two signed integer expressions?");
2880     signedOperand = lex;
2881     unsignedOperand = rex;
2882   } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2883     signedOperand = rex;
2884     unsignedOperand = lex;
2885   } else {
2886     CheckTrivialUnsignedComparison(S, E);
2887     return AnalyzeImpConvsInComparison(S, E);
2888   }
2889 
2890   // Otherwise, calculate the effective range of the signed operand.
2891   IntRange signedRange = GetExprRange(S.Context, signedOperand);
2892 
2893   // Go ahead and analyze implicit conversions in the operands.  Note
2894   // that we skip the implicit conversions on both sides.
2895   AnalyzeImplicitConversions(S, lex, E->getOperatorLoc());
2896   AnalyzeImplicitConversions(S, rex, E->getOperatorLoc());
2897 
2898   // If the signed range is non-negative, -Wsign-compare won't fire,
2899   // but we should still check for comparisons which are always true
2900   // or false.
2901   if (signedRange.NonNegative)
2902     return CheckTrivialUnsignedComparison(S, E);
2903 
2904   // For (in)equality comparisons, if the unsigned operand is a
2905   // constant which cannot collide with a overflowed signed operand,
2906   // then reinterpreting the signed operand as unsigned will not
2907   // change the result of the comparison.
2908   if (E->isEqualityOp()) {
2909     unsigned comparisonWidth = S.Context.getIntWidth(T);
2910     IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2911 
2912     // We should never be unable to prove that the unsigned operand is
2913     // non-negative.
2914     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2915 
2916     if (unsignedRange.Width < comparisonWidth)
2917       return;
2918   }
2919 
2920   S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2921     << lex->getType() << rex->getType()
2922     << lex->getSourceRange() << rex->getSourceRange();
2923 }
2924 
2925 /// Analyzes an attempt to assign the given value to a bitfield.
2926 ///
2927 /// Returns true if there was something fishy about the attempt.
AnalyzeBitFieldAssignment(Sema & S,FieldDecl * Bitfield,Expr * Init,SourceLocation InitLoc)2928 bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
2929                                SourceLocation InitLoc) {
2930   assert(Bitfield->isBitField());
2931   if (Bitfield->isInvalidDecl())
2932     return false;
2933 
2934   // White-list bool bitfields.
2935   if (Bitfield->getType()->isBooleanType())
2936     return false;
2937 
2938   // Ignore value- or type-dependent expressions.
2939   if (Bitfield->getBitWidth()->isValueDependent() ||
2940       Bitfield->getBitWidth()->isTypeDependent() ||
2941       Init->isValueDependent() ||
2942       Init->isTypeDependent())
2943     return false;
2944 
2945   Expr *OriginalInit = Init->IgnoreParenImpCasts();
2946 
2947   llvm::APSInt Width(32);
2948   Expr::EvalResult InitValue;
2949   if (!Bitfield->getBitWidth()->isIntegerConstantExpr(Width, S.Context) ||
2950       !OriginalInit->Evaluate(InitValue, S.Context) ||
2951       !InitValue.Val.isInt())
2952     return false;
2953 
2954   const llvm::APSInt &Value = InitValue.Val.getInt();
2955   unsigned OriginalWidth = Value.getBitWidth();
2956   unsigned FieldWidth = Width.getZExtValue();
2957 
2958   if (OriginalWidth <= FieldWidth)
2959     return false;
2960 
2961   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
2962 
2963   // It's fairly common to write values into signed bitfields
2964   // that, if sign-extended, would end up becoming a different
2965   // value.  We don't want to warn about that.
2966   if (Value.isSigned() && Value.isNegative())
2967     TruncatedValue = TruncatedValue.sext(OriginalWidth);
2968   else
2969     TruncatedValue = TruncatedValue.zext(OriginalWidth);
2970 
2971   if (Value == TruncatedValue)
2972     return false;
2973 
2974   std::string PrettyValue = Value.toString(10);
2975   std::string PrettyTrunc = TruncatedValue.toString(10);
2976 
2977   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
2978     << PrettyValue << PrettyTrunc << OriginalInit->getType()
2979     << Init->getSourceRange();
2980 
2981   return true;
2982 }
2983 
2984 /// Analyze the given simple or compound assignment for warning-worthy
2985 /// operations.
AnalyzeAssignment(Sema & S,BinaryOperator * E)2986 void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
2987   // Just recurse on the LHS.
2988   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2989 
2990   // We want to recurse on the RHS as normal unless we're assigning to
2991   // a bitfield.
2992   if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
2993     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
2994                                   E->getOperatorLoc())) {
2995       // Recurse, ignoring any implicit conversions on the RHS.
2996       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
2997                                         E->getOperatorLoc());
2998     }
2999   }
3000 
3001   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3002 }
3003 
3004 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType SourceType,QualType T,SourceLocation CContext,unsigned diag)3005 void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
3006                      SourceLocation CContext, unsigned diag) {
3007   S.Diag(E->getExprLoc(), diag)
3008     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
3009 }
3010 
3011 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext,unsigned diag)3012 void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
3013                      unsigned diag) {
3014   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag);
3015 }
3016 
3017 /// Diagnose an implicit cast from a literal expression. Also attemps to supply
3018 /// fixit hints when the cast wouldn't lose information to simply write the
3019 /// expression with the expected type.
DiagnoseFloatingLiteralImpCast(Sema & S,FloatingLiteral * FL,QualType T,SourceLocation CContext)3020 void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
3021                                     SourceLocation CContext) {
3022   // Emit the primary warning first, then try to emit a fixit hint note if
3023   // reasonable.
3024   S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
3025     << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
3026 
3027   const llvm::APFloat &Value = FL->getValue();
3028 
3029   // Don't attempt to fix PPC double double literals.
3030   if (&Value.getSemantics() == &llvm::APFloat::PPCDoubleDouble)
3031     return;
3032 
3033   // Try to convert this exactly to an integer.
3034   bool isExact = false;
3035   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
3036                             T->hasUnsignedIntegerRepresentation());
3037   if (Value.convertToInteger(IntegerValue,
3038                              llvm::APFloat::rmTowardZero, &isExact)
3039       != llvm::APFloat::opOK || !isExact)
3040     return;
3041 
3042   std::string LiteralValue = IntegerValue.toString(10);
3043   S.Diag(FL->getExprLoc(), diag::note_fix_integral_float_as_integer)
3044     << FixItHint::CreateReplacement(FL->getSourceRange(), LiteralValue);
3045 }
3046 
PrettyPrintInRange(const llvm::APSInt & Value,IntRange Range)3047 std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
3048   if (!Range.Width) return "0";
3049 
3050   llvm::APSInt ValueInRange = Value;
3051   ValueInRange.setIsSigned(!Range.NonNegative);
3052   ValueInRange = ValueInRange.trunc(Range.Width);
3053   return ValueInRange.toString(10);
3054 }
3055 
isFromSystemMacro(Sema & S,SourceLocation loc)3056 static bool isFromSystemMacro(Sema &S, SourceLocation loc) {
3057   SourceManager &smgr = S.Context.getSourceManager();
3058   return loc.isMacroID() && smgr.isInSystemHeader(smgr.getSpellingLoc(loc));
3059 }
3060 
CheckImplicitConversion(Sema & S,Expr * E,QualType T,SourceLocation CC,bool * ICContext=0)3061 void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
3062                              SourceLocation CC, bool *ICContext = 0) {
3063   if (E->isTypeDependent() || E->isValueDependent()) return;
3064 
3065   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
3066   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
3067   if (Source == Target) return;
3068   if (Target->isDependentType()) return;
3069 
3070   // If the conversion context location is invalid don't complain.
3071   // We also don't want to emit a warning if the issue occurs from the
3072   // instantiation of a system macro.  The problem is that 'getSpellingLoc()'
3073   // is slow, so we delay this check as long as possible.  Once we detect
3074   // we are in that scenario, we just return.
3075   if (CC.isInvalid())
3076     return;
3077 
3078   // Never diagnose implicit casts to bool.
3079   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
3080     return;
3081 
3082   // Strip vector types.
3083   if (isa<VectorType>(Source)) {
3084     if (!isa<VectorType>(Target)) {
3085       if (isFromSystemMacro(S, CC))
3086         return;
3087       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
3088     }
3089 
3090     // If the vector cast is cast between two vectors of the same size, it is
3091     // a bitcast, not a conversion.
3092     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
3093       return;
3094 
3095     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
3096     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
3097   }
3098 
3099   // Strip complex types.
3100   if (isa<ComplexType>(Source)) {
3101     if (!isa<ComplexType>(Target)) {
3102       if (isFromSystemMacro(S, CC))
3103         return;
3104 
3105       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
3106     }
3107 
3108     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
3109     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
3110   }
3111 
3112   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
3113   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
3114 
3115   // If the source is floating point...
3116   if (SourceBT && SourceBT->isFloatingPoint()) {
3117     // ...and the target is floating point...
3118     if (TargetBT && TargetBT->isFloatingPoint()) {
3119       // ...then warn if we're dropping FP rank.
3120 
3121       // Builtin FP kinds are ordered by increasing FP rank.
3122       if (SourceBT->getKind() > TargetBT->getKind()) {
3123         // Don't warn about float constants that are precisely
3124         // representable in the target type.
3125         Expr::EvalResult result;
3126         if (E->Evaluate(result, S.Context)) {
3127           // Value might be a float, a float vector, or a float complex.
3128           if (IsSameFloatAfterCast(result.Val,
3129                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
3130                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
3131             return;
3132         }
3133 
3134         if (isFromSystemMacro(S, CC))
3135           return;
3136 
3137         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
3138       }
3139       return;
3140     }
3141 
3142     // If the target is integral, always warn.
3143     if ((TargetBT && TargetBT->isInteger())) {
3144       if (isFromSystemMacro(S, CC))
3145         return;
3146 
3147       Expr *InnerE = E->IgnoreParenImpCasts();
3148       if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
3149         DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
3150       } else {
3151         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
3152       }
3153     }
3154 
3155     return;
3156   }
3157 
3158   if (!Source->isIntegerType() || !Target->isIntegerType())
3159     return;
3160 
3161   if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
3162            == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
3163     S.Diag(E->getExprLoc(), diag::warn_impcast_null_pointer_to_integer)
3164         << E->getSourceRange() << clang::SourceRange(CC);
3165     return;
3166   }
3167 
3168   IntRange SourceRange = GetExprRange(S.Context, E);
3169   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
3170 
3171   if (SourceRange.Width > TargetRange.Width) {
3172     // If the source is a constant, use a default-on diagnostic.
3173     // TODO: this should happen for bitfield stores, too.
3174     llvm::APSInt Value(32);
3175     if (E->isIntegerConstantExpr(Value, S.Context)) {
3176       if (isFromSystemMacro(S, CC))
3177         return;
3178 
3179       std::string PrettySourceValue = Value.toString(10);
3180       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
3181 
3182       S.Diag(E->getExprLoc(), diag::warn_impcast_integer_precision_constant)
3183         << PrettySourceValue << PrettyTargetValue
3184         << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC);
3185       return;
3186     }
3187 
3188     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
3189     if (isFromSystemMacro(S, CC))
3190       return;
3191 
3192     if (SourceRange.Width == 64 && TargetRange.Width == 32)
3193       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
3194     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
3195   }
3196 
3197   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
3198       (!TargetRange.NonNegative && SourceRange.NonNegative &&
3199        SourceRange.Width == TargetRange.Width)) {
3200 
3201     if (isFromSystemMacro(S, CC))
3202       return;
3203 
3204     unsigned DiagID = diag::warn_impcast_integer_sign;
3205 
3206     // Traditionally, gcc has warned about this under -Wsign-compare.
3207     // We also want to warn about it in -Wconversion.
3208     // So if -Wconversion is off, use a completely identical diagnostic
3209     // in the sign-compare group.
3210     // The conditional-checking code will
3211     if (ICContext) {
3212       DiagID = diag::warn_impcast_integer_sign_conditional;
3213       *ICContext = true;
3214     }
3215 
3216     return DiagnoseImpCast(S, E, T, CC, DiagID);
3217   }
3218 
3219   // Diagnose conversions between different enumeration types.
3220   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
3221   // type, to give us better diagnostics.
3222   QualType SourceType = E->getType();
3223   if (!S.getLangOptions().CPlusPlus) {
3224     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3225       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
3226         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
3227         SourceType = S.Context.getTypeDeclType(Enum);
3228         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
3229       }
3230   }
3231 
3232   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
3233     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
3234       if ((SourceEnum->getDecl()->getIdentifier() ||
3235            SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3236           (TargetEnum->getDecl()->getIdentifier() ||
3237            TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3238           SourceEnum != TargetEnum) {
3239         if (isFromSystemMacro(S, CC))
3240           return;
3241 
3242         return DiagnoseImpCast(S, E, SourceType, T, CC,
3243                                diag::warn_impcast_different_enum_types);
3244       }
3245 
3246   return;
3247 }
3248 
3249 void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
3250 
CheckConditionalOperand(Sema & S,Expr * E,QualType T,SourceLocation CC,bool & ICContext)3251 void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
3252                              SourceLocation CC, bool &ICContext) {
3253   E = E->IgnoreParenImpCasts();
3254 
3255   if (isa<ConditionalOperator>(E))
3256     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
3257 
3258   AnalyzeImplicitConversions(S, E, CC);
3259   if (E->getType() != T)
3260     return CheckImplicitConversion(S, E, T, CC, &ICContext);
3261   return;
3262 }
3263 
CheckConditionalOperator(Sema & S,ConditionalOperator * E,QualType T)3264 void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
3265   SourceLocation CC = E->getQuestionLoc();
3266 
3267   AnalyzeImplicitConversions(S, E->getCond(), CC);
3268 
3269   bool Suspicious = false;
3270   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
3271   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
3272 
3273   // If -Wconversion would have warned about either of the candidates
3274   // for a signedness conversion to the context type...
3275   if (!Suspicious) return;
3276 
3277   // ...but it's currently ignored...
3278   if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
3279                                  CC))
3280     return;
3281 
3282   // ...and -Wsign-compare isn't...
3283   if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional, CC))
3284     return;
3285 
3286   // ...then check whether it would have warned about either of the
3287   // candidates for a signedness conversion to the condition type.
3288   if (E->getType() != T) {
3289     Suspicious = false;
3290     CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
3291                             E->getType(), CC, &Suspicious);
3292     if (!Suspicious)
3293       CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
3294                               E->getType(), CC, &Suspicious);
3295     if (!Suspicious)
3296       return;
3297   }
3298 
3299   // If so, emit a diagnostic under -Wsign-compare.
3300   Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
3301   Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
3302   S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
3303     << lex->getType() << rex->getType()
3304     << lex->getSourceRange() << rex->getSourceRange();
3305 }
3306 
3307 /// AnalyzeImplicitConversions - Find and report any interesting
3308 /// implicit conversions in the given expression.  There are a couple
3309 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
AnalyzeImplicitConversions(Sema & S,Expr * OrigE,SourceLocation CC)3310 void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
3311   QualType T = OrigE->getType();
3312   Expr *E = OrigE->IgnoreParenImpCasts();
3313 
3314   // For conditional operators, we analyze the arguments as if they
3315   // were being fed directly into the output.
3316   if (isa<ConditionalOperator>(E)) {
3317     ConditionalOperator *CO = cast<ConditionalOperator>(E);
3318     CheckConditionalOperator(S, CO, T);
3319     return;
3320   }
3321 
3322   // Go ahead and check any implicit conversions we might have skipped.
3323   // The non-canonical typecheck is just an optimization;
3324   // CheckImplicitConversion will filter out dead implicit conversions.
3325   if (E->getType() != T)
3326     CheckImplicitConversion(S, E, T, CC);
3327 
3328   // Now continue drilling into this expression.
3329 
3330   // Skip past explicit casts.
3331   if (isa<ExplicitCastExpr>(E)) {
3332     E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
3333     return AnalyzeImplicitConversions(S, E, CC);
3334   }
3335 
3336   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3337     // Do a somewhat different check with comparison operators.
3338     if (BO->isComparisonOp())
3339       return AnalyzeComparison(S, BO);
3340 
3341     // And with assignments and compound assignments.
3342     if (BO->isAssignmentOp())
3343       return AnalyzeAssignment(S, BO);
3344   }
3345 
3346   // These break the otherwise-useful invariant below.  Fortunately,
3347   // we don't really need to recurse into them, because any internal
3348   // expressions should have been analyzed already when they were
3349   // built into statements.
3350   if (isa<StmtExpr>(E)) return;
3351 
3352   // Don't descend into unevaluated contexts.
3353   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
3354 
3355   // Now just recurse over the expression's children.
3356   CC = E->getExprLoc();
3357   for (Stmt::child_range I = E->children(); I; ++I)
3358     AnalyzeImplicitConversions(S, cast<Expr>(*I), CC);
3359 }
3360 
3361 } // end anonymous namespace
3362 
3363 /// Diagnoses "dangerous" implicit conversions within the given
3364 /// expression (which is a full expression).  Implements -Wconversion
3365 /// and -Wsign-compare.
3366 ///
3367 /// \param CC the "context" location of the implicit conversion, i.e.
3368 ///   the most location of the syntactic entity requiring the implicit
3369 ///   conversion
CheckImplicitConversions(Expr * E,SourceLocation CC)3370 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
3371   // Don't diagnose in unevaluated contexts.
3372   if (ExprEvalContexts.back().Context == Sema::Unevaluated)
3373     return;
3374 
3375   // Don't diagnose for value- or type-dependent expressions.
3376   if (E->isTypeDependent() || E->isValueDependent())
3377     return;
3378 
3379   // This is not the right CC for (e.g.) a variable initialization.
3380   AnalyzeImplicitConversions(*this, E, CC);
3381 }
3382 
CheckBitFieldInitialization(SourceLocation InitLoc,FieldDecl * BitField,Expr * Init)3383 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
3384                                        FieldDecl *BitField,
3385                                        Expr *Init) {
3386   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
3387 }
3388 
3389 /// CheckParmsForFunctionDef - Check that the parameters of the given
3390 /// function are appropriate for the definition of a function. This
3391 /// takes care of any checks that cannot be performed on the
3392 /// declaration itself, e.g., that the types of each of the function
3393 /// parameters are complete.
CheckParmsForFunctionDef(ParmVarDecl ** P,ParmVarDecl ** PEnd,bool CheckParameterNames)3394 bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
3395                                     bool CheckParameterNames) {
3396   bool HasInvalidParm = false;
3397   for (; P != PEnd; ++P) {
3398     ParmVarDecl *Param = *P;
3399 
3400     // C99 6.7.5.3p4: the parameters in a parameter type list in a
3401     // function declarator that is part of a function definition of
3402     // that function shall not have incomplete type.
3403     //
3404     // This is also C++ [dcl.fct]p6.
3405     if (!Param->isInvalidDecl() &&
3406         RequireCompleteType(Param->getLocation(), Param->getType(),
3407                                diag::err_typecheck_decl_incomplete_type)) {
3408       Param->setInvalidDecl();
3409       HasInvalidParm = true;
3410     }
3411 
3412     // C99 6.9.1p5: If the declarator includes a parameter type list, the
3413     // declaration of each parameter shall include an identifier.
3414     if (CheckParameterNames &&
3415         Param->getIdentifier() == 0 &&
3416         !Param->isImplicit() &&
3417         !getLangOptions().CPlusPlus)
3418       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
3419 
3420     // C99 6.7.5.3p12:
3421     //   If the function declarator is not part of a definition of that
3422     //   function, parameters may have incomplete type and may use the [*]
3423     //   notation in their sequences of declarator specifiers to specify
3424     //   variable length array types.
3425     QualType PType = Param->getOriginalType();
3426     if (const ArrayType *AT = Context.getAsArrayType(PType)) {
3427       if (AT->getSizeModifier() == ArrayType::Star) {
3428         // FIXME: This diagnosic should point the the '[*]' if source-location
3429         // information is added for it.
3430         Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
3431       }
3432     }
3433   }
3434 
3435   return HasInvalidParm;
3436 }
3437 
3438 /// CheckCastAlign - Implements -Wcast-align, which warns when a
3439 /// pointer cast increases the alignment requirements.
CheckCastAlign(Expr * Op,QualType T,SourceRange TRange)3440 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
3441   // This is actually a lot of work to potentially be doing on every
3442   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
3443   if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
3444                                           TRange.getBegin())
3445         == Diagnostic::Ignored)
3446     return;
3447 
3448   // Ignore dependent types.
3449   if (T->isDependentType() || Op->getType()->isDependentType())
3450     return;
3451 
3452   // Require that the destination be a pointer type.
3453   const PointerType *DestPtr = T->getAs<PointerType>();
3454   if (!DestPtr) return;
3455 
3456   // If the destination has alignment 1, we're done.
3457   QualType DestPointee = DestPtr->getPointeeType();
3458   if (DestPointee->isIncompleteType()) return;
3459   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
3460   if (DestAlign.isOne()) return;
3461 
3462   // Require that the source be a pointer type.
3463   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
3464   if (!SrcPtr) return;
3465   QualType SrcPointee = SrcPtr->getPointeeType();
3466 
3467   // Whitelist casts from cv void*.  We already implicitly
3468   // whitelisted casts to cv void*, since they have alignment 1.
3469   // Also whitelist casts involving incomplete types, which implicitly
3470   // includes 'void'.
3471   if (SrcPointee->isIncompleteType()) return;
3472 
3473   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
3474   if (SrcAlign >= DestAlign) return;
3475 
3476   Diag(TRange.getBegin(), diag::warn_cast_align)
3477     << Op->getType() << T
3478     << static_cast<unsigned>(SrcAlign.getQuantity())
3479     << static_cast<unsigned>(DestAlign.getQuantity())
3480     << TRange << Op->getSourceRange();
3481 }
3482 
CheckArrayAccess_Check(Sema & S,const clang::ArraySubscriptExpr * E)3483 static void CheckArrayAccess_Check(Sema &S,
3484                                    const clang::ArraySubscriptExpr *E) {
3485   const Expr *BaseExpr = E->getBase()->IgnoreParenImpCasts();
3486   const ConstantArrayType *ArrayTy =
3487     S.Context.getAsConstantArrayType(BaseExpr->getType());
3488   if (!ArrayTy)
3489     return;
3490 
3491   const Expr *IndexExpr = E->getIdx();
3492   if (IndexExpr->isValueDependent())
3493     return;
3494   llvm::APSInt index;
3495   if (!IndexExpr->isIntegerConstantExpr(index, S.Context))
3496     return;
3497 
3498   if (index.isUnsigned() || !index.isNegative()) {
3499     llvm::APInt size = ArrayTy->getSize();
3500     if (!size.isStrictlyPositive())
3501       return;
3502     if (size.getBitWidth() > index.getBitWidth())
3503       index = index.sext(size.getBitWidth());
3504     else if (size.getBitWidth() < index.getBitWidth())
3505       size = size.sext(index.getBitWidth());
3506 
3507     if (index.slt(size))
3508       return;
3509 
3510     S.DiagRuntimeBehavior(E->getBase()->getLocStart(), BaseExpr,
3511                           S.PDiag(diag::warn_array_index_exceeds_bounds)
3512                             << index.toString(10, true)
3513                             << size.toString(10, true)
3514                             << IndexExpr->getSourceRange());
3515   } else {
3516     S.DiagRuntimeBehavior(E->getBase()->getLocStart(), BaseExpr,
3517                           S.PDiag(diag::warn_array_index_precedes_bounds)
3518                             << index.toString(10, true)
3519                             << IndexExpr->getSourceRange());
3520   }
3521 
3522   const NamedDecl *ND = NULL;
3523   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
3524     ND = dyn_cast<NamedDecl>(DRE->getDecl());
3525   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
3526     ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
3527   if (ND)
3528     S.DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
3529                           S.PDiag(diag::note_array_index_out_of_bounds)
3530                             << ND->getDeclName());
3531 }
3532 
CheckArrayAccess(const Expr * expr)3533 void Sema::CheckArrayAccess(const Expr *expr) {
3534   while (true) {
3535     expr = expr->IgnoreParens();
3536     switch (expr->getStmtClass()) {
3537       case Stmt::ArraySubscriptExprClass:
3538         CheckArrayAccess_Check(*this, cast<ArraySubscriptExpr>(expr));
3539         return;
3540       case Stmt::ConditionalOperatorClass: {
3541         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
3542         if (const Expr *lhs = cond->getLHS())
3543           CheckArrayAccess(lhs);
3544         if (const Expr *rhs = cond->getRHS())
3545           CheckArrayAccess(rhs);
3546         return;
3547       }
3548       default:
3549         return;
3550     }
3551   }
3552 }
3553 
3554 //===--- CHECK: Objective-C retain cycles ----------------------------------//
3555 
3556 namespace {
3557   struct RetainCycleOwner {
RetainCycleOwner__anon12adead60511::RetainCycleOwner3558     RetainCycleOwner() : Variable(0), Indirect(false) {}
3559     VarDecl *Variable;
3560     SourceRange Range;
3561     SourceLocation Loc;
3562     bool Indirect;
3563 
setLocsFrom__anon12adead60511::RetainCycleOwner3564     void setLocsFrom(Expr *e) {
3565       Loc = e->getExprLoc();
3566       Range = e->getSourceRange();
3567     }
3568   };
3569 }
3570 
3571 /// Consider whether capturing the given variable can possibly lead to
3572 /// a retain cycle.
considerVariable(VarDecl * var,Expr * ref,RetainCycleOwner & owner)3573 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
3574   // In ARC, it's captured strongly iff the variable has __strong
3575   // lifetime.  In MRR, it's captured strongly if the variable is
3576   // __block and has an appropriate type.
3577   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
3578     return false;
3579 
3580   owner.Variable = var;
3581   owner.setLocsFrom(ref);
3582   return true;
3583 }
3584 
findRetainCycleOwner(Expr * e,RetainCycleOwner & owner)3585 static bool findRetainCycleOwner(Expr *e, RetainCycleOwner &owner) {
3586   while (true) {
3587     e = e->IgnoreParens();
3588     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
3589       switch (cast->getCastKind()) {
3590       case CK_BitCast:
3591       case CK_LValueBitCast:
3592       case CK_LValueToRValue:
3593       case CK_ObjCReclaimReturnedObject:
3594         e = cast->getSubExpr();
3595         continue;
3596 
3597       case CK_GetObjCProperty: {
3598         // Bail out if this isn't a strong explicit property.
3599         const ObjCPropertyRefExpr *pre = cast->getSubExpr()->getObjCProperty();
3600         if (pre->isImplicitProperty()) return false;
3601         ObjCPropertyDecl *property = pre->getExplicitProperty();
3602         if (!(property->getPropertyAttributes() &
3603               (ObjCPropertyDecl::OBJC_PR_retain |
3604                ObjCPropertyDecl::OBJC_PR_copy |
3605                ObjCPropertyDecl::OBJC_PR_strong)) &&
3606             !(property->getPropertyIvarDecl() &&
3607               property->getPropertyIvarDecl()->getType()
3608                 .getObjCLifetime() == Qualifiers::OCL_Strong))
3609           return false;
3610 
3611         owner.Indirect = true;
3612         e = const_cast<Expr*>(pre->getBase());
3613         continue;
3614       }
3615 
3616       default:
3617         return false;
3618       }
3619     }
3620 
3621     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
3622       ObjCIvarDecl *ivar = ref->getDecl();
3623       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
3624         return false;
3625 
3626       // Try to find a retain cycle in the base.
3627       if (!findRetainCycleOwner(ref->getBase(), owner))
3628         return false;
3629 
3630       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
3631       owner.Indirect = true;
3632       return true;
3633     }
3634 
3635     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
3636       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
3637       if (!var) return false;
3638       return considerVariable(var, ref, owner);
3639     }
3640 
3641     if (BlockDeclRefExpr *ref = dyn_cast<BlockDeclRefExpr>(e)) {
3642       owner.Variable = ref->getDecl();
3643       owner.setLocsFrom(ref);
3644       return true;
3645     }
3646 
3647     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
3648       if (member->isArrow()) return false;
3649 
3650       // Don't count this as an indirect ownership.
3651       e = member->getBase();
3652       continue;
3653     }
3654 
3655     // Array ivars?
3656 
3657     return false;
3658   }
3659 }
3660 
3661 namespace {
3662   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
FindCaptureVisitor__anon12adead60611::FindCaptureVisitor3663     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
3664       : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
3665         Variable(variable), Capturer(0) {}
3666 
3667     VarDecl *Variable;
3668     Expr *Capturer;
3669 
VisitDeclRefExpr__anon12adead60611::FindCaptureVisitor3670     void VisitDeclRefExpr(DeclRefExpr *ref) {
3671       if (ref->getDecl() == Variable && !Capturer)
3672         Capturer = ref;
3673     }
3674 
VisitBlockDeclRefExpr__anon12adead60611::FindCaptureVisitor3675     void VisitBlockDeclRefExpr(BlockDeclRefExpr *ref) {
3676       if (ref->getDecl() == Variable && !Capturer)
3677         Capturer = ref;
3678     }
3679 
VisitObjCIvarRefExpr__anon12adead60611::FindCaptureVisitor3680     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
3681       if (Capturer) return;
3682       Visit(ref->getBase());
3683       if (Capturer && ref->isFreeIvar())
3684         Capturer = ref;
3685     }
3686 
VisitBlockExpr__anon12adead60611::FindCaptureVisitor3687     void VisitBlockExpr(BlockExpr *block) {
3688       // Look inside nested blocks
3689       if (block->getBlockDecl()->capturesVariable(Variable))
3690         Visit(block->getBlockDecl()->getBody());
3691     }
3692   };
3693 }
3694 
3695 /// Check whether the given argument is a block which captures a
3696 /// variable.
findCapturingExpr(Sema & S,Expr * e,RetainCycleOwner & owner)3697 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
3698   assert(owner.Variable && owner.Loc.isValid());
3699 
3700   e = e->IgnoreParenCasts();
3701   BlockExpr *block = dyn_cast<BlockExpr>(e);
3702   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
3703     return 0;
3704 
3705   FindCaptureVisitor visitor(S.Context, owner.Variable);
3706   visitor.Visit(block->getBlockDecl()->getBody());
3707   return visitor.Capturer;
3708 }
3709 
diagnoseRetainCycle(Sema & S,Expr * capturer,RetainCycleOwner & owner)3710 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
3711                                 RetainCycleOwner &owner) {
3712   assert(capturer);
3713   assert(owner.Variable && owner.Loc.isValid());
3714 
3715   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
3716     << owner.Variable << capturer->getSourceRange();
3717   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
3718     << owner.Indirect << owner.Range;
3719 }
3720 
3721 /// Check for a keyword selector that starts with the word 'add' or
3722 /// 'set'.
isSetterLikeSelector(Selector sel)3723 static bool isSetterLikeSelector(Selector sel) {
3724   if (sel.isUnarySelector()) return false;
3725 
3726   llvm::StringRef str = sel.getNameForSlot(0);
3727   while (!str.empty() && str.front() == '_') str = str.substr(1);
3728   if (str.startswith("set") || str.startswith("add"))
3729     str = str.substr(3);
3730   else
3731     return false;
3732 
3733   if (str.empty()) return true;
3734   return !islower(str.front());
3735 }
3736 
3737 /// Check a message send to see if it's likely to cause a retain cycle.
checkRetainCycles(ObjCMessageExpr * msg)3738 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
3739   // Only check instance methods whose selector looks like a setter.
3740   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
3741     return;
3742 
3743   // Try to find a variable that the receiver is strongly owned by.
3744   RetainCycleOwner owner;
3745   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
3746     if (!findRetainCycleOwner(msg->getInstanceReceiver(), owner))
3747       return;
3748   } else {
3749     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
3750     owner.Variable = getCurMethodDecl()->getSelfDecl();
3751     owner.Loc = msg->getSuperLoc();
3752     owner.Range = msg->getSuperLoc();
3753   }
3754 
3755   // Check whether the receiver is captured by any of the arguments.
3756   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
3757     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
3758       return diagnoseRetainCycle(*this, capturer, owner);
3759 }
3760 
3761 /// Check a property assign to see if it's likely to cause a retain cycle.
checkRetainCycles(Expr * receiver,Expr * argument)3762 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
3763   RetainCycleOwner owner;
3764   if (!findRetainCycleOwner(receiver, owner))
3765     return;
3766 
3767   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
3768     diagnoseRetainCycle(*this, capturer, owner);
3769 }
3770 
checkUnsafeAssigns(SourceLocation Loc,QualType LHS,Expr * RHS)3771 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
3772                               QualType LHS, Expr *RHS) {
3773   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
3774   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
3775     return false;
3776   // strip off any implicit cast added to get to the one arc-specific
3777   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
3778     if (cast->getCastKind() == CK_ObjCConsumeObject) {
3779       Diag(Loc, diag::warn_arc_retained_assign)
3780         << (LT == Qualifiers::OCL_ExplicitNone)
3781         << RHS->getSourceRange();
3782       return true;
3783     }
3784     RHS = cast->getSubExpr();
3785   }
3786   return false;
3787 }
3788 
checkUnsafeExprAssigns(SourceLocation Loc,Expr * LHS,Expr * RHS)3789 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
3790                               Expr *LHS, Expr *RHS) {
3791   QualType LHSType = LHS->getType();
3792   if (checkUnsafeAssigns(Loc, LHSType, RHS))
3793     return;
3794   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
3795   // FIXME. Check for other life times.
3796   if (LT != Qualifiers::OCL_None)
3797     return;
3798 
3799   if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(LHS)) {
3800     if (PRE->isImplicitProperty())
3801       return;
3802     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
3803     if (!PD)
3804       return;
3805 
3806     unsigned Attributes = PD->getPropertyAttributes();
3807     if (Attributes & ObjCPropertyDecl::OBJC_PR_assign)
3808       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
3809         if (cast->getCastKind() == CK_ObjCConsumeObject) {
3810           Diag(Loc, diag::warn_arc_retained_property_assign)
3811           << RHS->getSourceRange();
3812           return;
3813         }
3814         RHS = cast->getSubExpr();
3815       }
3816   }
3817 }
3818