1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements extra semantic analysis beyond what is enforced
11 // by the C type system.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Sema/Sema.h"
16 #include "clang/Sema/SemaInternal.h"
17 #include "clang/Sema/ScopeInfo.h"
18 #include "clang/Analysis/Analyses/FormatString.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/EvaluatedExprVisitor.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/StmtObjC.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "clang/Basic/TargetBuiltins.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "clang/Basic/ConvertUTF.h"
36 #include <limits>
37 using namespace clang;
38 using namespace sema;
39
getLocationOfStringLiteralByte(const StringLiteral * SL,unsigned ByteNo) const40 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
41 unsigned ByteNo) const {
42 return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
43 PP.getLangOptions(), PP.getTargetInfo());
44 }
45
46
47 /// CheckablePrintfAttr - does a function call have a "printf" attribute
48 /// and arguments that merit checking?
CheckablePrintfAttr(const FormatAttr * Format,CallExpr * TheCall)49 bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
50 if (Format->getType() == "printf") return true;
51 if (Format->getType() == "printf0") {
52 // printf0 allows null "format" string; if so don't check format/args
53 unsigned format_idx = Format->getFormatIdx() - 1;
54 // Does the index refer to the implicit object argument?
55 if (isa<CXXMemberCallExpr>(TheCall)) {
56 if (format_idx == 0)
57 return false;
58 --format_idx;
59 }
60 if (format_idx < TheCall->getNumArgs()) {
61 Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
62 if (!Format->isNullPointerConstant(Context,
63 Expr::NPC_ValueDependentIsNull))
64 return true;
65 }
66 }
67 return false;
68 }
69
70 /// Checks that a call expression's argument count is the desired number.
71 /// This is useful when doing custom type-checking. Returns true on error.
checkArgCount(Sema & S,CallExpr * call,unsigned desiredArgCount)72 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
73 unsigned argCount = call->getNumArgs();
74 if (argCount == desiredArgCount) return false;
75
76 if (argCount < desiredArgCount)
77 return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
78 << 0 /*function call*/ << desiredArgCount << argCount
79 << call->getSourceRange();
80
81 // Highlight all the excess arguments.
82 SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
83 call->getArg(argCount - 1)->getLocEnd());
84
85 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
86 << 0 /*function call*/ << desiredArgCount << argCount
87 << call->getArg(1)->getSourceRange();
88 }
89
90 ExprResult
CheckBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)91 Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
92 ExprResult TheCallResult(Owned(TheCall));
93
94 // Find out if any arguments are required to be integer constant expressions.
95 unsigned ICEArguments = 0;
96 ASTContext::GetBuiltinTypeError Error;
97 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
98 if (Error != ASTContext::GE_None)
99 ICEArguments = 0; // Don't diagnose previously diagnosed errors.
100
101 // If any arguments are required to be ICE's, check and diagnose.
102 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
103 // Skip arguments not required to be ICE's.
104 if ((ICEArguments & (1 << ArgNo)) == 0) continue;
105
106 llvm::APSInt Result;
107 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
108 return true;
109 ICEArguments &= ~(1 << ArgNo);
110 }
111
112 switch (BuiltinID) {
113 case Builtin::BI__builtin___CFStringMakeConstantString:
114 assert(TheCall->getNumArgs() == 1 &&
115 "Wrong # arguments to builtin CFStringMakeConstantString");
116 if (CheckObjCString(TheCall->getArg(0)))
117 return ExprError();
118 break;
119 case Builtin::BI__builtin_stdarg_start:
120 case Builtin::BI__builtin_va_start:
121 if (SemaBuiltinVAStart(TheCall))
122 return ExprError();
123 break;
124 case Builtin::BI__builtin_isgreater:
125 case Builtin::BI__builtin_isgreaterequal:
126 case Builtin::BI__builtin_isless:
127 case Builtin::BI__builtin_islessequal:
128 case Builtin::BI__builtin_islessgreater:
129 case Builtin::BI__builtin_isunordered:
130 if (SemaBuiltinUnorderedCompare(TheCall))
131 return ExprError();
132 break;
133 case Builtin::BI__builtin_fpclassify:
134 if (SemaBuiltinFPClassification(TheCall, 6))
135 return ExprError();
136 break;
137 case Builtin::BI__builtin_isfinite:
138 case Builtin::BI__builtin_isinf:
139 case Builtin::BI__builtin_isinf_sign:
140 case Builtin::BI__builtin_isnan:
141 case Builtin::BI__builtin_isnormal:
142 if (SemaBuiltinFPClassification(TheCall, 1))
143 return ExprError();
144 break;
145 case Builtin::BI__builtin_shufflevector:
146 return SemaBuiltinShuffleVector(TheCall);
147 // TheCall will be freed by the smart pointer here, but that's fine, since
148 // SemaBuiltinShuffleVector guts it, but then doesn't release it.
149 case Builtin::BI__builtin_prefetch:
150 if (SemaBuiltinPrefetch(TheCall))
151 return ExprError();
152 break;
153 case Builtin::BI__builtin_object_size:
154 if (SemaBuiltinObjectSize(TheCall))
155 return ExprError();
156 break;
157 case Builtin::BI__builtin_longjmp:
158 if (SemaBuiltinLongjmp(TheCall))
159 return ExprError();
160 break;
161
162 case Builtin::BI__builtin_classify_type:
163 if (checkArgCount(*this, TheCall, 1)) return true;
164 TheCall->setType(Context.IntTy);
165 break;
166 case Builtin::BI__builtin_constant_p:
167 if (checkArgCount(*this, TheCall, 1)) return true;
168 TheCall->setType(Context.IntTy);
169 break;
170 case Builtin::BI__sync_fetch_and_add:
171 case Builtin::BI__sync_fetch_and_sub:
172 case Builtin::BI__sync_fetch_and_or:
173 case Builtin::BI__sync_fetch_and_and:
174 case Builtin::BI__sync_fetch_and_xor:
175 case Builtin::BI__sync_add_and_fetch:
176 case Builtin::BI__sync_sub_and_fetch:
177 case Builtin::BI__sync_and_and_fetch:
178 case Builtin::BI__sync_or_and_fetch:
179 case Builtin::BI__sync_xor_and_fetch:
180 case Builtin::BI__sync_val_compare_and_swap:
181 case Builtin::BI__sync_bool_compare_and_swap:
182 case Builtin::BI__sync_lock_test_and_set:
183 case Builtin::BI__sync_lock_release:
184 case Builtin::BI__sync_swap:
185 return SemaBuiltinAtomicOverloaded(move(TheCallResult));
186 }
187
188 // Since the target specific builtins for each arch overlap, only check those
189 // of the arch we are compiling for.
190 if (BuiltinID >= Builtin::FirstTSBuiltin) {
191 switch (Context.Target.getTriple().getArch()) {
192 case llvm::Triple::arm:
193 case llvm::Triple::thumb:
194 if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
195 return ExprError();
196 break;
197 default:
198 break;
199 }
200 }
201
202 return move(TheCallResult);
203 }
204
205 // Get the valid immediate range for the specified NEON type code.
RFT(unsigned t,bool shift=false)206 static unsigned RFT(unsigned t, bool shift = false) {
207 bool quad = t & 0x10;
208
209 switch (t & 0x7) {
210 case 0: // i8
211 return shift ? 7 : (8 << (int)quad) - 1;
212 case 1: // i16
213 return shift ? 15 : (4 << (int)quad) - 1;
214 case 2: // i32
215 return shift ? 31 : (2 << (int)quad) - 1;
216 case 3: // i64
217 return shift ? 63 : (1 << (int)quad) - 1;
218 case 4: // f32
219 assert(!shift && "cannot shift float types!");
220 return (2 << (int)quad) - 1;
221 case 5: // poly8
222 return shift ? 7 : (8 << (int)quad) - 1;
223 case 6: // poly16
224 return shift ? 15 : (4 << (int)quad) - 1;
225 case 7: // float16
226 assert(!shift && "cannot shift float types!");
227 return (4 << (int)quad) - 1;
228 }
229 return 0;
230 }
231
CheckARMBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)232 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
233 llvm::APSInt Result;
234
235 unsigned mask = 0;
236 unsigned TV = 0;
237 switch (BuiltinID) {
238 #define GET_NEON_OVERLOAD_CHECK
239 #include "clang/Basic/arm_neon.inc"
240 #undef GET_NEON_OVERLOAD_CHECK
241 }
242
243 // For NEON intrinsics which are overloaded on vector element type, validate
244 // the immediate which specifies which variant to emit.
245 if (mask) {
246 unsigned ArgNo = TheCall->getNumArgs()-1;
247 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
248 return true;
249
250 TV = Result.getLimitedValue(32);
251 if ((TV > 31) || (mask & (1 << TV)) == 0)
252 return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
253 << TheCall->getArg(ArgNo)->getSourceRange();
254 }
255
256 // For NEON intrinsics which take an immediate value as part of the
257 // instruction, range check them here.
258 unsigned i = 0, l = 0, u = 0;
259 switch (BuiltinID) {
260 default: return false;
261 case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
262 case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
263 case ARM::BI__builtin_arm_vcvtr_f:
264 case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
265 #define GET_NEON_IMMEDIATE_CHECK
266 #include "clang/Basic/arm_neon.inc"
267 #undef GET_NEON_IMMEDIATE_CHECK
268 };
269
270 // Check that the immediate argument is actually a constant.
271 if (SemaBuiltinConstantArg(TheCall, i, Result))
272 return true;
273
274 // Range check against the upper/lower values for this isntruction.
275 unsigned Val = Result.getZExtValue();
276 if (Val < l || Val > (u + l))
277 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
278 << l << u+l << TheCall->getArg(i)->getSourceRange();
279
280 // FIXME: VFP Intrinsics should error if VFP not present.
281 return false;
282 }
283
284 /// CheckFunctionCall - Check a direct function call for various correctness
285 /// and safety properties not strictly enforced by the C type system.
CheckFunctionCall(FunctionDecl * FDecl,CallExpr * TheCall)286 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
287 // Get the IdentifierInfo* for the called function.
288 IdentifierInfo *FnInfo = FDecl->getIdentifier();
289
290 // None of the checks below are needed for functions that don't have
291 // simple names (e.g., C++ conversion functions).
292 if (!FnInfo)
293 return false;
294
295 // FIXME: This mechanism should be abstracted to be less fragile and
296 // more efficient. For example, just map function ids to custom
297 // handlers.
298
299 // Printf and scanf checking.
300 for (specific_attr_iterator<FormatAttr>
301 i = FDecl->specific_attr_begin<FormatAttr>(),
302 e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
303
304 const FormatAttr *Format = *i;
305 const bool b = Format->getType() == "scanf";
306 if (b || CheckablePrintfAttr(Format, TheCall)) {
307 bool HasVAListArg = Format->getFirstArg() == 0;
308 CheckPrintfScanfArguments(TheCall, HasVAListArg,
309 Format->getFormatIdx() - 1,
310 HasVAListArg ? 0 : Format->getFirstArg() - 1,
311 !b);
312 }
313 }
314
315 for (specific_attr_iterator<NonNullAttr>
316 i = FDecl->specific_attr_begin<NonNullAttr>(),
317 e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
318 CheckNonNullArguments(*i, TheCall->getArgs(),
319 TheCall->getCallee()->getLocStart());
320 }
321
322 // Memset/memcpy/memmove handling
323 int CMF = -1;
324 switch (FDecl->getBuiltinID()) {
325 case Builtin::BI__builtin_memset:
326 case Builtin::BI__builtin___memset_chk:
327 case Builtin::BImemset:
328 CMF = CMF_Memset;
329 break;
330
331 case Builtin::BI__builtin_memcpy:
332 case Builtin::BI__builtin___memcpy_chk:
333 case Builtin::BImemcpy:
334 CMF = CMF_Memcpy;
335 break;
336
337 case Builtin::BI__builtin_memmove:
338 case Builtin::BI__builtin___memmove_chk:
339 case Builtin::BImemmove:
340 CMF = CMF_Memmove;
341 break;
342
343 default:
344 if (FDecl->getLinkage() == ExternalLinkage &&
345 (!getLangOptions().CPlusPlus || FDecl->isExternC())) {
346 if (FnInfo->isStr("memset"))
347 CMF = CMF_Memset;
348 else if (FnInfo->isStr("memcpy"))
349 CMF = CMF_Memcpy;
350 else if (FnInfo->isStr("memmove"))
351 CMF = CMF_Memmove;
352 }
353 break;
354 }
355
356 if (CMF != -1)
357 CheckMemsetcpymoveArguments(TheCall, CheckedMemoryFunction(CMF), FnInfo);
358
359 return false;
360 }
361
CheckBlockCall(NamedDecl * NDecl,CallExpr * TheCall)362 bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
363 // Printf checking.
364 const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
365 if (!Format)
366 return false;
367
368 const VarDecl *V = dyn_cast<VarDecl>(NDecl);
369 if (!V)
370 return false;
371
372 QualType Ty = V->getType();
373 if (!Ty->isBlockPointerType())
374 return false;
375
376 const bool b = Format->getType() == "scanf";
377 if (!b && !CheckablePrintfAttr(Format, TheCall))
378 return false;
379
380 bool HasVAListArg = Format->getFirstArg() == 0;
381 CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
382 HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
383
384 return false;
385 }
386
387 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
388 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
389 /// type of its first argument. The main ActOnCallExpr routines have already
390 /// promoted the types of arguments because all of these calls are prototyped as
391 /// void(...).
392 ///
393 /// This function goes through and does final semantic checking for these
394 /// builtins,
395 ExprResult
SemaBuiltinAtomicOverloaded(ExprResult TheCallResult)396 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
397 CallExpr *TheCall = (CallExpr *)TheCallResult.get();
398 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
399 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
400
401 // Ensure that we have at least one argument to do type inference from.
402 if (TheCall->getNumArgs() < 1) {
403 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
404 << 0 << 1 << TheCall->getNumArgs()
405 << TheCall->getCallee()->getSourceRange();
406 return ExprError();
407 }
408
409 // Inspect the first argument of the atomic builtin. This should always be
410 // a pointer type, whose element is an integral scalar or pointer type.
411 // Because it is a pointer type, we don't have to worry about any implicit
412 // casts here.
413 // FIXME: We don't allow floating point scalars as input.
414 Expr *FirstArg = TheCall->getArg(0);
415 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
416 if (!pointerType) {
417 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
418 << FirstArg->getType() << FirstArg->getSourceRange();
419 return ExprError();
420 }
421
422 QualType ValType = pointerType->getPointeeType();
423 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
424 !ValType->isBlockPointerType()) {
425 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
426 << FirstArg->getType() << FirstArg->getSourceRange();
427 return ExprError();
428 }
429
430 switch (ValType.getObjCLifetime()) {
431 case Qualifiers::OCL_None:
432 case Qualifiers::OCL_ExplicitNone:
433 // okay
434 break;
435
436 case Qualifiers::OCL_Weak:
437 case Qualifiers::OCL_Strong:
438 case Qualifiers::OCL_Autoreleasing:
439 Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
440 << ValType << FirstArg->getSourceRange();
441 return ExprError();
442 }
443
444 // The majority of builtins return a value, but a few have special return
445 // types, so allow them to override appropriately below.
446 QualType ResultType = ValType;
447
448 // We need to figure out which concrete builtin this maps onto. For example,
449 // __sync_fetch_and_add with a 2 byte object turns into
450 // __sync_fetch_and_add_2.
451 #define BUILTIN_ROW(x) \
452 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
453 Builtin::BI##x##_8, Builtin::BI##x##_16 }
454
455 static const unsigned BuiltinIndices[][5] = {
456 BUILTIN_ROW(__sync_fetch_and_add),
457 BUILTIN_ROW(__sync_fetch_and_sub),
458 BUILTIN_ROW(__sync_fetch_and_or),
459 BUILTIN_ROW(__sync_fetch_and_and),
460 BUILTIN_ROW(__sync_fetch_and_xor),
461
462 BUILTIN_ROW(__sync_add_and_fetch),
463 BUILTIN_ROW(__sync_sub_and_fetch),
464 BUILTIN_ROW(__sync_and_and_fetch),
465 BUILTIN_ROW(__sync_or_and_fetch),
466 BUILTIN_ROW(__sync_xor_and_fetch),
467
468 BUILTIN_ROW(__sync_val_compare_and_swap),
469 BUILTIN_ROW(__sync_bool_compare_and_swap),
470 BUILTIN_ROW(__sync_lock_test_and_set),
471 BUILTIN_ROW(__sync_lock_release),
472 BUILTIN_ROW(__sync_swap)
473 };
474 #undef BUILTIN_ROW
475
476 // Determine the index of the size.
477 unsigned SizeIndex;
478 switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
479 case 1: SizeIndex = 0; break;
480 case 2: SizeIndex = 1; break;
481 case 4: SizeIndex = 2; break;
482 case 8: SizeIndex = 3; break;
483 case 16: SizeIndex = 4; break;
484 default:
485 Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
486 << FirstArg->getType() << FirstArg->getSourceRange();
487 return ExprError();
488 }
489
490 // Each of these builtins has one pointer argument, followed by some number of
491 // values (0, 1 or 2) followed by a potentially empty varags list of stuff
492 // that we ignore. Find out which row of BuiltinIndices to read from as well
493 // as the number of fixed args.
494 unsigned BuiltinID = FDecl->getBuiltinID();
495 unsigned BuiltinIndex, NumFixed = 1;
496 switch (BuiltinID) {
497 default: assert(0 && "Unknown overloaded atomic builtin!");
498 case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
499 case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
500 case Builtin::BI__sync_fetch_and_or: BuiltinIndex = 2; break;
501 case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
502 case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
503
504 case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
505 case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
506 case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
507 case Builtin::BI__sync_or_and_fetch: BuiltinIndex = 8; break;
508 case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
509
510 case Builtin::BI__sync_val_compare_and_swap:
511 BuiltinIndex = 10;
512 NumFixed = 2;
513 break;
514 case Builtin::BI__sync_bool_compare_and_swap:
515 BuiltinIndex = 11;
516 NumFixed = 2;
517 ResultType = Context.BoolTy;
518 break;
519 case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
520 case Builtin::BI__sync_lock_release:
521 BuiltinIndex = 13;
522 NumFixed = 0;
523 ResultType = Context.VoidTy;
524 break;
525 case Builtin::BI__sync_swap: BuiltinIndex = 14; break;
526 }
527
528 // Now that we know how many fixed arguments we expect, first check that we
529 // have at least that many.
530 if (TheCall->getNumArgs() < 1+NumFixed) {
531 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
532 << 0 << 1+NumFixed << TheCall->getNumArgs()
533 << TheCall->getCallee()->getSourceRange();
534 return ExprError();
535 }
536
537 // Get the decl for the concrete builtin from this, we can tell what the
538 // concrete integer type we should convert to is.
539 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
540 const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
541 IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
542 FunctionDecl *NewBuiltinDecl =
543 cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
544 TUScope, false, DRE->getLocStart()));
545
546 // The first argument --- the pointer --- has a fixed type; we
547 // deduce the types of the rest of the arguments accordingly. Walk
548 // the remaining arguments, converting them to the deduced value type.
549 for (unsigned i = 0; i != NumFixed; ++i) {
550 ExprResult Arg = TheCall->getArg(i+1);
551
552 // If the argument is an implicit cast, then there was a promotion due to
553 // "...", just remove it now.
554 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg.get())) {
555 Arg = ICE->getSubExpr();
556 ICE->setSubExpr(0);
557 TheCall->setArg(i+1, Arg.get());
558 }
559
560 // GCC does an implicit conversion to the pointer or integer ValType. This
561 // can fail in some cases (1i -> int**), check for this error case now.
562 CastKind Kind = CK_Invalid;
563 ExprValueKind VK = VK_RValue;
564 CXXCastPath BasePath;
565 Arg = CheckCastTypes(Arg.get()->getLocStart(), Arg.get()->getSourceRange(),
566 ValType, Arg.take(), Kind, VK, BasePath);
567 if (Arg.isInvalid())
568 return ExprError();
569
570 // Okay, we have something that *can* be converted to the right type. Check
571 // to see if there is a potentially weird extension going on here. This can
572 // happen when you do an atomic operation on something like an char* and
573 // pass in 42. The 42 gets converted to char. This is even more strange
574 // for things like 45.123 -> char, etc.
575 // FIXME: Do this check.
576 Arg = ImpCastExprToType(Arg.take(), ValType, Kind, VK, &BasePath);
577 TheCall->setArg(i+1, Arg.get());
578 }
579
580 // Switch the DeclRefExpr to refer to the new decl.
581 DRE->setDecl(NewBuiltinDecl);
582 DRE->setType(NewBuiltinDecl->getType());
583
584 // Set the callee in the CallExpr.
585 // FIXME: This leaks the original parens and implicit casts.
586 ExprResult PromotedCall = UsualUnaryConversions(DRE);
587 if (PromotedCall.isInvalid())
588 return ExprError();
589 TheCall->setCallee(PromotedCall.take());
590
591 // Change the result type of the call to match the original value type. This
592 // is arbitrary, but the codegen for these builtins ins design to handle it
593 // gracefully.
594 TheCall->setType(ResultType);
595
596 return move(TheCallResult);
597 }
598
599
600 /// CheckObjCString - Checks that the argument to the builtin
601 /// CFString constructor is correct
602 /// Note: It might also make sense to do the UTF-16 conversion here (would
603 /// simplify the backend).
CheckObjCString(Expr * Arg)604 bool Sema::CheckObjCString(Expr *Arg) {
605 Arg = Arg->IgnoreParenCasts();
606 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
607
608 if (!Literal || Literal->isWide()) {
609 Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
610 << Arg->getSourceRange();
611 return true;
612 }
613
614 if (Literal->containsNonAsciiOrNull()) {
615 llvm::StringRef String = Literal->getString();
616 unsigned NumBytes = String.size();
617 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
618 const UTF8 *FromPtr = (UTF8 *)String.data();
619 UTF16 *ToPtr = &ToBuf[0];
620
621 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
622 &ToPtr, ToPtr + NumBytes,
623 strictConversion);
624 // Check for conversion failure.
625 if (Result != conversionOK)
626 Diag(Arg->getLocStart(),
627 diag::warn_cfstring_truncated) << Arg->getSourceRange();
628 }
629 return false;
630 }
631
632 /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
633 /// Emit an error and return true on failure, return false on success.
SemaBuiltinVAStart(CallExpr * TheCall)634 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
635 Expr *Fn = TheCall->getCallee();
636 if (TheCall->getNumArgs() > 2) {
637 Diag(TheCall->getArg(2)->getLocStart(),
638 diag::err_typecheck_call_too_many_args)
639 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
640 << Fn->getSourceRange()
641 << SourceRange(TheCall->getArg(2)->getLocStart(),
642 (*(TheCall->arg_end()-1))->getLocEnd());
643 return true;
644 }
645
646 if (TheCall->getNumArgs() < 2) {
647 return Diag(TheCall->getLocEnd(),
648 diag::err_typecheck_call_too_few_args_at_least)
649 << 0 /*function call*/ << 2 << TheCall->getNumArgs();
650 }
651
652 // Determine whether the current function is variadic or not.
653 BlockScopeInfo *CurBlock = getCurBlock();
654 bool isVariadic;
655 if (CurBlock)
656 isVariadic = CurBlock->TheDecl->isVariadic();
657 else if (FunctionDecl *FD = getCurFunctionDecl())
658 isVariadic = FD->isVariadic();
659 else
660 isVariadic = getCurMethodDecl()->isVariadic();
661
662 if (!isVariadic) {
663 Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
664 return true;
665 }
666
667 // Verify that the second argument to the builtin is the last argument of the
668 // current function or method.
669 bool SecondArgIsLastNamedArgument = false;
670 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
671
672 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
673 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
674 // FIXME: This isn't correct for methods (results in bogus warning).
675 // Get the last formal in the current function.
676 const ParmVarDecl *LastArg;
677 if (CurBlock)
678 LastArg = *(CurBlock->TheDecl->param_end()-1);
679 else if (FunctionDecl *FD = getCurFunctionDecl())
680 LastArg = *(FD->param_end()-1);
681 else
682 LastArg = *(getCurMethodDecl()->param_end()-1);
683 SecondArgIsLastNamedArgument = PV == LastArg;
684 }
685 }
686
687 if (!SecondArgIsLastNamedArgument)
688 Diag(TheCall->getArg(1)->getLocStart(),
689 diag::warn_second_parameter_of_va_start_not_last_named_argument);
690 return false;
691 }
692
693 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
694 /// friends. This is declared to take (...), so we have to check everything.
SemaBuiltinUnorderedCompare(CallExpr * TheCall)695 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
696 if (TheCall->getNumArgs() < 2)
697 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
698 << 0 << 2 << TheCall->getNumArgs()/*function call*/;
699 if (TheCall->getNumArgs() > 2)
700 return Diag(TheCall->getArg(2)->getLocStart(),
701 diag::err_typecheck_call_too_many_args)
702 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
703 << SourceRange(TheCall->getArg(2)->getLocStart(),
704 (*(TheCall->arg_end()-1))->getLocEnd());
705
706 ExprResult OrigArg0 = TheCall->getArg(0);
707 ExprResult OrigArg1 = TheCall->getArg(1);
708
709 // Do standard promotions between the two arguments, returning their common
710 // type.
711 QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
712 if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
713 return true;
714
715 // Make sure any conversions are pushed back into the call; this is
716 // type safe since unordered compare builtins are declared as "_Bool
717 // foo(...)".
718 TheCall->setArg(0, OrigArg0.get());
719 TheCall->setArg(1, OrigArg1.get());
720
721 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
722 return false;
723
724 // If the common type isn't a real floating type, then the arguments were
725 // invalid for this operation.
726 if (!Res->isRealFloatingType())
727 return Diag(OrigArg0.get()->getLocStart(),
728 diag::err_typecheck_call_invalid_ordered_compare)
729 << OrigArg0.get()->getType() << OrigArg1.get()->getType()
730 << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
731
732 return false;
733 }
734
735 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
736 /// __builtin_isnan and friends. This is declared to take (...), so we have
737 /// to check everything. We expect the last argument to be a floating point
738 /// value.
SemaBuiltinFPClassification(CallExpr * TheCall,unsigned NumArgs)739 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
740 if (TheCall->getNumArgs() < NumArgs)
741 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
742 << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
743 if (TheCall->getNumArgs() > NumArgs)
744 return Diag(TheCall->getArg(NumArgs)->getLocStart(),
745 diag::err_typecheck_call_too_many_args)
746 << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
747 << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
748 (*(TheCall->arg_end()-1))->getLocEnd());
749
750 Expr *OrigArg = TheCall->getArg(NumArgs-1);
751
752 if (OrigArg->isTypeDependent())
753 return false;
754
755 // This operation requires a non-_Complex floating-point number.
756 if (!OrigArg->getType()->isRealFloatingType())
757 return Diag(OrigArg->getLocStart(),
758 diag::err_typecheck_call_invalid_unary_fp)
759 << OrigArg->getType() << OrigArg->getSourceRange();
760
761 // If this is an implicit conversion from float -> double, remove it.
762 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
763 Expr *CastArg = Cast->getSubExpr();
764 if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
765 assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
766 "promotion from float to double is the only expected cast here");
767 Cast->setSubExpr(0);
768 TheCall->setArg(NumArgs-1, CastArg);
769 OrigArg = CastArg;
770 }
771 }
772
773 return false;
774 }
775
776 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
777 // This is declared to take (...), so we have to check everything.
SemaBuiltinShuffleVector(CallExpr * TheCall)778 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
779 if (TheCall->getNumArgs() < 2)
780 return ExprError(Diag(TheCall->getLocEnd(),
781 diag::err_typecheck_call_too_few_args_at_least)
782 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
783 << TheCall->getSourceRange());
784
785 // Determine which of the following types of shufflevector we're checking:
786 // 1) unary, vector mask: (lhs, mask)
787 // 2) binary, vector mask: (lhs, rhs, mask)
788 // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
789 QualType resType = TheCall->getArg(0)->getType();
790 unsigned numElements = 0;
791
792 if (!TheCall->getArg(0)->isTypeDependent() &&
793 !TheCall->getArg(1)->isTypeDependent()) {
794 QualType LHSType = TheCall->getArg(0)->getType();
795 QualType RHSType = TheCall->getArg(1)->getType();
796
797 if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
798 Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
799 << SourceRange(TheCall->getArg(0)->getLocStart(),
800 TheCall->getArg(1)->getLocEnd());
801 return ExprError();
802 }
803
804 numElements = LHSType->getAs<VectorType>()->getNumElements();
805 unsigned numResElements = TheCall->getNumArgs() - 2;
806
807 // Check to see if we have a call with 2 vector arguments, the unary shuffle
808 // with mask. If so, verify that RHS is an integer vector type with the
809 // same number of elts as lhs.
810 if (TheCall->getNumArgs() == 2) {
811 if (!RHSType->hasIntegerRepresentation() ||
812 RHSType->getAs<VectorType>()->getNumElements() != numElements)
813 Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
814 << SourceRange(TheCall->getArg(1)->getLocStart(),
815 TheCall->getArg(1)->getLocEnd());
816 numResElements = numElements;
817 }
818 else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
819 Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
820 << SourceRange(TheCall->getArg(0)->getLocStart(),
821 TheCall->getArg(1)->getLocEnd());
822 return ExprError();
823 } else if (numElements != numResElements) {
824 QualType eltType = LHSType->getAs<VectorType>()->getElementType();
825 resType = Context.getVectorType(eltType, numResElements,
826 VectorType::GenericVector);
827 }
828 }
829
830 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
831 if (TheCall->getArg(i)->isTypeDependent() ||
832 TheCall->getArg(i)->isValueDependent())
833 continue;
834
835 llvm::APSInt Result(32);
836 if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
837 return ExprError(Diag(TheCall->getLocStart(),
838 diag::err_shufflevector_nonconstant_argument)
839 << TheCall->getArg(i)->getSourceRange());
840
841 if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
842 return ExprError(Diag(TheCall->getLocStart(),
843 diag::err_shufflevector_argument_too_large)
844 << TheCall->getArg(i)->getSourceRange());
845 }
846
847 llvm::SmallVector<Expr*, 32> exprs;
848
849 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
850 exprs.push_back(TheCall->getArg(i));
851 TheCall->setArg(i, 0);
852 }
853
854 return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
855 exprs.size(), resType,
856 TheCall->getCallee()->getLocStart(),
857 TheCall->getRParenLoc()));
858 }
859
860 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
861 // This is declared to take (const void*, ...) and can take two
862 // optional constant int args.
SemaBuiltinPrefetch(CallExpr * TheCall)863 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
864 unsigned NumArgs = TheCall->getNumArgs();
865
866 if (NumArgs > 3)
867 return Diag(TheCall->getLocEnd(),
868 diag::err_typecheck_call_too_many_args_at_most)
869 << 0 /*function call*/ << 3 << NumArgs
870 << TheCall->getSourceRange();
871
872 // Argument 0 is checked for us and the remaining arguments must be
873 // constant integers.
874 for (unsigned i = 1; i != NumArgs; ++i) {
875 Expr *Arg = TheCall->getArg(i);
876
877 llvm::APSInt Result;
878 if (SemaBuiltinConstantArg(TheCall, i, Result))
879 return true;
880
881 // FIXME: gcc issues a warning and rewrites these to 0. These
882 // seems especially odd for the third argument since the default
883 // is 3.
884 if (i == 1) {
885 if (Result.getLimitedValue() > 1)
886 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
887 << "0" << "1" << Arg->getSourceRange();
888 } else {
889 if (Result.getLimitedValue() > 3)
890 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
891 << "0" << "3" << Arg->getSourceRange();
892 }
893 }
894
895 return false;
896 }
897
898 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
899 /// TheCall is a constant expression.
SemaBuiltinConstantArg(CallExpr * TheCall,int ArgNum,llvm::APSInt & Result)900 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
901 llvm::APSInt &Result) {
902 Expr *Arg = TheCall->getArg(ArgNum);
903 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
904 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
905
906 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
907
908 if (!Arg->isIntegerConstantExpr(Result, Context))
909 return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
910 << FDecl->getDeclName() << Arg->getSourceRange();
911
912 return false;
913 }
914
915 /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
916 /// int type). This simply type checks that type is one of the defined
917 /// constants (0-3).
918 // For compatibility check 0-3, llvm only handles 0 and 2.
SemaBuiltinObjectSize(CallExpr * TheCall)919 bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
920 llvm::APSInt Result;
921
922 // Check constant-ness first.
923 if (SemaBuiltinConstantArg(TheCall, 1, Result))
924 return true;
925
926 Expr *Arg = TheCall->getArg(1);
927 if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
928 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
929 << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
930 }
931
932 return false;
933 }
934
935 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
936 /// This checks that val is a constant 1.
SemaBuiltinLongjmp(CallExpr * TheCall)937 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
938 Expr *Arg = TheCall->getArg(1);
939 llvm::APSInt Result;
940
941 // TODO: This is less than ideal. Overload this to take a value.
942 if (SemaBuiltinConstantArg(TheCall, 1, Result))
943 return true;
944
945 if (Result != 1)
946 return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
947 << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
948
949 return false;
950 }
951
952 // Handle i > 1 ? "x" : "y", recursively.
SemaCheckStringLiteral(const Expr * E,const CallExpr * TheCall,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,bool isPrintf)953 bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
954 bool HasVAListArg,
955 unsigned format_idx, unsigned firstDataArg,
956 bool isPrintf) {
957 tryAgain:
958 if (E->isTypeDependent() || E->isValueDependent())
959 return false;
960
961 E = E->IgnoreParens();
962
963 switch (E->getStmtClass()) {
964 case Stmt::BinaryConditionalOperatorClass:
965 case Stmt::ConditionalOperatorClass: {
966 const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
967 return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
968 format_idx, firstDataArg, isPrintf)
969 && SemaCheckStringLiteral(C->getFalseExpr(), TheCall, HasVAListArg,
970 format_idx, firstDataArg, isPrintf);
971 }
972
973 case Stmt::IntegerLiteralClass:
974 // Technically -Wformat-nonliteral does not warn about this case.
975 // The behavior of printf and friends in this case is implementation
976 // dependent. Ideally if the format string cannot be null then
977 // it should have a 'nonnull' attribute in the function prototype.
978 return true;
979
980 case Stmt::ImplicitCastExprClass: {
981 E = cast<ImplicitCastExpr>(E)->getSubExpr();
982 goto tryAgain;
983 }
984
985 case Stmt::OpaqueValueExprClass:
986 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
987 E = src;
988 goto tryAgain;
989 }
990 return false;
991
992 case Stmt::PredefinedExprClass:
993 // While __func__, etc., are technically not string literals, they
994 // cannot contain format specifiers and thus are not a security
995 // liability.
996 return true;
997
998 case Stmt::DeclRefExprClass: {
999 const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1000
1001 // As an exception, do not flag errors for variables binding to
1002 // const string literals.
1003 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1004 bool isConstant = false;
1005 QualType T = DR->getType();
1006
1007 if (const ArrayType *AT = Context.getAsArrayType(T)) {
1008 isConstant = AT->getElementType().isConstant(Context);
1009 } else if (const PointerType *PT = T->getAs<PointerType>()) {
1010 isConstant = T.isConstant(Context) &&
1011 PT->getPointeeType().isConstant(Context);
1012 }
1013
1014 if (isConstant) {
1015 if (const Expr *Init = VD->getAnyInitializer())
1016 return SemaCheckStringLiteral(Init, TheCall,
1017 HasVAListArg, format_idx, firstDataArg,
1018 isPrintf);
1019 }
1020
1021 // For vprintf* functions (i.e., HasVAListArg==true), we add a
1022 // special check to see if the format string is a function parameter
1023 // of the function calling the printf function. If the function
1024 // has an attribute indicating it is a printf-like function, then we
1025 // should suppress warnings concerning non-literals being used in a call
1026 // to a vprintf function. For example:
1027 //
1028 // void
1029 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1030 // va_list ap;
1031 // va_start(ap, fmt);
1032 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
1033 // ...
1034 //
1035 //
1036 // FIXME: We don't have full attribute support yet, so just check to see
1037 // if the argument is a DeclRefExpr that references a parameter. We'll
1038 // add proper support for checking the attribute later.
1039 if (HasVAListArg)
1040 if (isa<ParmVarDecl>(VD))
1041 return true;
1042 }
1043
1044 return false;
1045 }
1046
1047 case Stmt::CallExprClass: {
1048 const CallExpr *CE = cast<CallExpr>(E);
1049 if (const ImplicitCastExpr *ICE
1050 = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1051 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1052 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1053 if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1054 unsigned ArgIndex = FA->getFormatIdx();
1055 const Expr *Arg = CE->getArg(ArgIndex - 1);
1056
1057 return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1058 format_idx, firstDataArg, isPrintf);
1059 }
1060 }
1061 }
1062 }
1063
1064 return false;
1065 }
1066 case Stmt::ObjCStringLiteralClass:
1067 case Stmt::StringLiteralClass: {
1068 const StringLiteral *StrE = NULL;
1069
1070 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1071 StrE = ObjCFExpr->getString();
1072 else
1073 StrE = cast<StringLiteral>(E);
1074
1075 if (StrE) {
1076 CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1077 firstDataArg, isPrintf);
1078 return true;
1079 }
1080
1081 return false;
1082 }
1083
1084 default:
1085 return false;
1086 }
1087 }
1088
1089 void
CheckNonNullArguments(const NonNullAttr * NonNull,const Expr * const * ExprArgs,SourceLocation CallSiteLoc)1090 Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1091 const Expr * const *ExprArgs,
1092 SourceLocation CallSiteLoc) {
1093 for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1094 e = NonNull->args_end();
1095 i != e; ++i) {
1096 const Expr *ArgExpr = ExprArgs[*i];
1097 if (ArgExpr->isNullPointerConstant(Context,
1098 Expr::NPC_ValueDependentIsNotNull))
1099 Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1100 }
1101 }
1102
1103 /// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1104 /// functions) for correct use of format strings.
1105 void
CheckPrintfScanfArguments(const CallExpr * TheCall,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,bool isPrintf)1106 Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1107 unsigned format_idx, unsigned firstDataArg,
1108 bool isPrintf) {
1109
1110 const Expr *Fn = TheCall->getCallee();
1111
1112 // The way the format attribute works in GCC, the implicit this argument
1113 // of member functions is counted. However, it doesn't appear in our own
1114 // lists, so decrement format_idx in that case.
1115 if (isa<CXXMemberCallExpr>(TheCall)) {
1116 const CXXMethodDecl *method_decl =
1117 dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1118 if (method_decl && method_decl->isInstance()) {
1119 // Catch a format attribute mistakenly referring to the object argument.
1120 if (format_idx == 0)
1121 return;
1122 --format_idx;
1123 if(firstDataArg != 0)
1124 --firstDataArg;
1125 }
1126 }
1127
1128 // CHECK: printf/scanf-like function is called with no format string.
1129 if (format_idx >= TheCall->getNumArgs()) {
1130 Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1131 << Fn->getSourceRange();
1132 return;
1133 }
1134
1135 const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1136
1137 // CHECK: format string is not a string literal.
1138 //
1139 // Dynamically generated format strings are difficult to
1140 // automatically vet at compile time. Requiring that format strings
1141 // are string literals: (1) permits the checking of format strings by
1142 // the compiler and thereby (2) can practically remove the source of
1143 // many format string exploits.
1144
1145 // Format string can be either ObjC string (e.g. @"%d") or
1146 // C string (e.g. "%d")
1147 // ObjC string uses the same format specifiers as C string, so we can use
1148 // the same format string checking logic for both ObjC and C strings.
1149 if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1150 firstDataArg, isPrintf))
1151 return; // Literal format string found, check done!
1152
1153 // If there are no arguments specified, warn with -Wformat-security, otherwise
1154 // warn only with -Wformat-nonliteral.
1155 if (TheCall->getNumArgs() == format_idx+1)
1156 Diag(TheCall->getArg(format_idx)->getLocStart(),
1157 diag::warn_format_nonliteral_noargs)
1158 << OrigFormatExpr->getSourceRange();
1159 else
1160 Diag(TheCall->getArg(format_idx)->getLocStart(),
1161 diag::warn_format_nonliteral)
1162 << OrigFormatExpr->getSourceRange();
1163 }
1164
1165 namespace {
1166 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1167 protected:
1168 Sema &S;
1169 const StringLiteral *FExpr;
1170 const Expr *OrigFormatExpr;
1171 const unsigned FirstDataArg;
1172 const unsigned NumDataArgs;
1173 const bool IsObjCLiteral;
1174 const char *Beg; // Start of format string.
1175 const bool HasVAListArg;
1176 const CallExpr *TheCall;
1177 unsigned FormatIdx;
1178 llvm::BitVector CoveredArgs;
1179 bool usesPositionalArgs;
1180 bool atFirstArg;
1181 public:
CheckFormatHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,bool isObjCLiteral,const char * beg,bool hasVAListArg,const CallExpr * theCall,unsigned formatIdx)1182 CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1183 const Expr *origFormatExpr, unsigned firstDataArg,
1184 unsigned numDataArgs, bool isObjCLiteral,
1185 const char *beg, bool hasVAListArg,
1186 const CallExpr *theCall, unsigned formatIdx)
1187 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1188 FirstDataArg(firstDataArg),
1189 NumDataArgs(numDataArgs),
1190 IsObjCLiteral(isObjCLiteral), Beg(beg),
1191 HasVAListArg(hasVAListArg),
1192 TheCall(theCall), FormatIdx(formatIdx),
1193 usesPositionalArgs(false), atFirstArg(true) {
1194 CoveredArgs.resize(numDataArgs);
1195 CoveredArgs.reset();
1196 }
1197
1198 void DoneProcessing();
1199
1200 void HandleIncompleteSpecifier(const char *startSpecifier,
1201 unsigned specifierLen);
1202
1203 virtual void HandleInvalidPosition(const char *startSpecifier,
1204 unsigned specifierLen,
1205 analyze_format_string::PositionContext p);
1206
1207 virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1208
1209 void HandleNullChar(const char *nullCharacter);
1210
1211 protected:
1212 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1213 const char *startSpec,
1214 unsigned specifierLen,
1215 const char *csStart, unsigned csLen);
1216
1217 SourceRange getFormatStringRange();
1218 CharSourceRange getSpecifierRange(const char *startSpecifier,
1219 unsigned specifierLen);
1220 SourceLocation getLocationOfByte(const char *x);
1221
1222 const Expr *getDataArg(unsigned i) const;
1223
1224 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1225 const analyze_format_string::ConversionSpecifier &CS,
1226 const char *startSpecifier, unsigned specifierLen,
1227 unsigned argIndex);
1228 };
1229 }
1230
getFormatStringRange()1231 SourceRange CheckFormatHandler::getFormatStringRange() {
1232 return OrigFormatExpr->getSourceRange();
1233 }
1234
1235 CharSourceRange CheckFormatHandler::
getSpecifierRange(const char * startSpecifier,unsigned specifierLen)1236 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1237 SourceLocation Start = getLocationOfByte(startSpecifier);
1238 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
1239
1240 // Advance the end SourceLocation by one due to half-open ranges.
1241 End = End.getFileLocWithOffset(1);
1242
1243 return CharSourceRange::getCharRange(Start, End);
1244 }
1245
getLocationOfByte(const char * x)1246 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1247 return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1248 }
1249
HandleIncompleteSpecifier(const char * startSpecifier,unsigned specifierLen)1250 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1251 unsigned specifierLen){
1252 SourceLocation Loc = getLocationOfByte(startSpecifier);
1253 S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1254 << getSpecifierRange(startSpecifier, specifierLen);
1255 }
1256
1257 void
HandleInvalidPosition(const char * startPos,unsigned posLen,analyze_format_string::PositionContext p)1258 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1259 analyze_format_string::PositionContext p) {
1260 SourceLocation Loc = getLocationOfByte(startPos);
1261 S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1262 << (unsigned) p << getSpecifierRange(startPos, posLen);
1263 }
1264
HandleZeroPosition(const char * startPos,unsigned posLen)1265 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1266 unsigned posLen) {
1267 SourceLocation Loc = getLocationOfByte(startPos);
1268 S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1269 << getSpecifierRange(startPos, posLen);
1270 }
1271
HandleNullChar(const char * nullCharacter)1272 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1273 if (!IsObjCLiteral) {
1274 // The presence of a null character is likely an error.
1275 S.Diag(getLocationOfByte(nullCharacter),
1276 diag::warn_printf_format_string_contains_null_char)
1277 << getFormatStringRange();
1278 }
1279 }
1280
getDataArg(unsigned i) const1281 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1282 return TheCall->getArg(FirstDataArg + i);
1283 }
1284
DoneProcessing()1285 void CheckFormatHandler::DoneProcessing() {
1286 // Does the number of data arguments exceed the number of
1287 // format conversions in the format string?
1288 if (!HasVAListArg) {
1289 // Find any arguments that weren't covered.
1290 CoveredArgs.flip();
1291 signed notCoveredArg = CoveredArgs.find_first();
1292 if (notCoveredArg >= 0) {
1293 assert((unsigned)notCoveredArg < NumDataArgs);
1294 S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1295 diag::warn_printf_data_arg_not_used)
1296 << getFormatStringRange();
1297 }
1298 }
1299 }
1300
1301 bool
HandleInvalidConversionSpecifier(unsigned argIndex,SourceLocation Loc,const char * startSpec,unsigned specifierLen,const char * csStart,unsigned csLen)1302 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1303 SourceLocation Loc,
1304 const char *startSpec,
1305 unsigned specifierLen,
1306 const char *csStart,
1307 unsigned csLen) {
1308
1309 bool keepGoing = true;
1310 if (argIndex < NumDataArgs) {
1311 // Consider the argument coverered, even though the specifier doesn't
1312 // make sense.
1313 CoveredArgs.set(argIndex);
1314 }
1315 else {
1316 // If argIndex exceeds the number of data arguments we
1317 // don't issue a warning because that is just a cascade of warnings (and
1318 // they may have intended '%%' anyway). We don't want to continue processing
1319 // the format string after this point, however, as we will like just get
1320 // gibberish when trying to match arguments.
1321 keepGoing = false;
1322 }
1323
1324 S.Diag(Loc, diag::warn_format_invalid_conversion)
1325 << llvm::StringRef(csStart, csLen)
1326 << getSpecifierRange(startSpec, specifierLen);
1327
1328 return keepGoing;
1329 }
1330
1331 bool
CheckNumArgs(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned argIndex)1332 CheckFormatHandler::CheckNumArgs(
1333 const analyze_format_string::FormatSpecifier &FS,
1334 const analyze_format_string::ConversionSpecifier &CS,
1335 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1336
1337 if (argIndex >= NumDataArgs) {
1338 if (FS.usesPositionalArg()) {
1339 S.Diag(getLocationOfByte(CS.getStart()),
1340 diag::warn_printf_positional_arg_exceeds_data_args)
1341 << (argIndex+1) << NumDataArgs
1342 << getSpecifierRange(startSpecifier, specifierLen);
1343 }
1344 else {
1345 S.Diag(getLocationOfByte(CS.getStart()),
1346 diag::warn_printf_insufficient_data_args)
1347 << getSpecifierRange(startSpecifier, specifierLen);
1348 }
1349
1350 return false;
1351 }
1352 return true;
1353 }
1354
1355 //===--- CHECK: Printf format string checking ------------------------------===//
1356
1357 namespace {
1358 class CheckPrintfHandler : public CheckFormatHandler {
1359 public:
CheckPrintfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,bool isObjCLiteral,const char * beg,bool hasVAListArg,const CallExpr * theCall,unsigned formatIdx)1360 CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1361 const Expr *origFormatExpr, unsigned firstDataArg,
1362 unsigned numDataArgs, bool isObjCLiteral,
1363 const char *beg, bool hasVAListArg,
1364 const CallExpr *theCall, unsigned formatIdx)
1365 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1366 numDataArgs, isObjCLiteral, beg, hasVAListArg,
1367 theCall, formatIdx) {}
1368
1369
1370 bool HandleInvalidPrintfConversionSpecifier(
1371 const analyze_printf::PrintfSpecifier &FS,
1372 const char *startSpecifier,
1373 unsigned specifierLen);
1374
1375 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1376 const char *startSpecifier,
1377 unsigned specifierLen);
1378
1379 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1380 const char *startSpecifier, unsigned specifierLen);
1381 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1382 const analyze_printf::OptionalAmount &Amt,
1383 unsigned type,
1384 const char *startSpecifier, unsigned specifierLen);
1385 void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1386 const analyze_printf::OptionalFlag &flag,
1387 const char *startSpecifier, unsigned specifierLen);
1388 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1389 const analyze_printf::OptionalFlag &ignoredFlag,
1390 const analyze_printf::OptionalFlag &flag,
1391 const char *startSpecifier, unsigned specifierLen);
1392 };
1393 }
1394
HandleInvalidPrintfConversionSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)1395 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1396 const analyze_printf::PrintfSpecifier &FS,
1397 const char *startSpecifier,
1398 unsigned specifierLen) {
1399 const analyze_printf::PrintfConversionSpecifier &CS =
1400 FS.getConversionSpecifier();
1401
1402 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1403 getLocationOfByte(CS.getStart()),
1404 startSpecifier, specifierLen,
1405 CS.getStart(), CS.getLength());
1406 }
1407
HandleAmount(const analyze_format_string::OptionalAmount & Amt,unsigned k,const char * startSpecifier,unsigned specifierLen)1408 bool CheckPrintfHandler::HandleAmount(
1409 const analyze_format_string::OptionalAmount &Amt,
1410 unsigned k, const char *startSpecifier,
1411 unsigned specifierLen) {
1412
1413 if (Amt.hasDataArgument()) {
1414 if (!HasVAListArg) {
1415 unsigned argIndex = Amt.getArgIndex();
1416 if (argIndex >= NumDataArgs) {
1417 S.Diag(getLocationOfByte(Amt.getStart()),
1418 diag::warn_printf_asterisk_missing_arg)
1419 << k << getSpecifierRange(startSpecifier, specifierLen);
1420 // Don't do any more checking. We will just emit
1421 // spurious errors.
1422 return false;
1423 }
1424
1425 // Type check the data argument. It should be an 'int'.
1426 // Although not in conformance with C99, we also allow the argument to be
1427 // an 'unsigned int' as that is a reasonably safe case. GCC also
1428 // doesn't emit a warning for that case.
1429 CoveredArgs.set(argIndex);
1430 const Expr *Arg = getDataArg(argIndex);
1431 QualType T = Arg->getType();
1432
1433 const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1434 assert(ATR.isValid());
1435
1436 if (!ATR.matchesType(S.Context, T)) {
1437 S.Diag(getLocationOfByte(Amt.getStart()),
1438 diag::warn_printf_asterisk_wrong_type)
1439 << k
1440 << ATR.getRepresentativeType(S.Context) << T
1441 << getSpecifierRange(startSpecifier, specifierLen)
1442 << Arg->getSourceRange();
1443 // Don't do any more checking. We will just emit
1444 // spurious errors.
1445 return false;
1446 }
1447 }
1448 }
1449 return true;
1450 }
1451
HandleInvalidAmount(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalAmount & Amt,unsigned type,const char * startSpecifier,unsigned specifierLen)1452 void CheckPrintfHandler::HandleInvalidAmount(
1453 const analyze_printf::PrintfSpecifier &FS,
1454 const analyze_printf::OptionalAmount &Amt,
1455 unsigned type,
1456 const char *startSpecifier,
1457 unsigned specifierLen) {
1458 const analyze_printf::PrintfConversionSpecifier &CS =
1459 FS.getConversionSpecifier();
1460 switch (Amt.getHowSpecified()) {
1461 case analyze_printf::OptionalAmount::Constant:
1462 S.Diag(getLocationOfByte(Amt.getStart()),
1463 diag::warn_printf_nonsensical_optional_amount)
1464 << type
1465 << CS.toString()
1466 << getSpecifierRange(startSpecifier, specifierLen)
1467 << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1468 Amt.getConstantLength()));
1469 break;
1470
1471 default:
1472 S.Diag(getLocationOfByte(Amt.getStart()),
1473 diag::warn_printf_nonsensical_optional_amount)
1474 << type
1475 << CS.toString()
1476 << getSpecifierRange(startSpecifier, specifierLen);
1477 break;
1478 }
1479 }
1480
HandleFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)1481 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1482 const analyze_printf::OptionalFlag &flag,
1483 const char *startSpecifier,
1484 unsigned specifierLen) {
1485 // Warn about pointless flag with a fixit removal.
1486 const analyze_printf::PrintfConversionSpecifier &CS =
1487 FS.getConversionSpecifier();
1488 S.Diag(getLocationOfByte(flag.getPosition()),
1489 diag::warn_printf_nonsensical_flag)
1490 << flag.toString() << CS.toString()
1491 << getSpecifierRange(startSpecifier, specifierLen)
1492 << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1493 }
1494
HandleIgnoredFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & ignoredFlag,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)1495 void CheckPrintfHandler::HandleIgnoredFlag(
1496 const analyze_printf::PrintfSpecifier &FS,
1497 const analyze_printf::OptionalFlag &ignoredFlag,
1498 const analyze_printf::OptionalFlag &flag,
1499 const char *startSpecifier,
1500 unsigned specifierLen) {
1501 // Warn about ignored flag with a fixit removal.
1502 S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1503 diag::warn_printf_ignored_flag)
1504 << ignoredFlag.toString() << flag.toString()
1505 << getSpecifierRange(startSpecifier, specifierLen)
1506 << FixItHint::CreateRemoval(getSpecifierRange(
1507 ignoredFlag.getPosition(), 1));
1508 }
1509
1510 bool
HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)1511 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1512 &FS,
1513 const char *startSpecifier,
1514 unsigned specifierLen) {
1515
1516 using namespace analyze_format_string;
1517 using namespace analyze_printf;
1518 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1519
1520 if (FS.consumesDataArgument()) {
1521 if (atFirstArg) {
1522 atFirstArg = false;
1523 usesPositionalArgs = FS.usesPositionalArg();
1524 }
1525 else if (usesPositionalArgs != FS.usesPositionalArg()) {
1526 // Cannot mix-and-match positional and non-positional arguments.
1527 S.Diag(getLocationOfByte(CS.getStart()),
1528 diag::warn_format_mix_positional_nonpositional_args)
1529 << getSpecifierRange(startSpecifier, specifierLen);
1530 return false;
1531 }
1532 }
1533
1534 // First check if the field width, precision, and conversion specifier
1535 // have matching data arguments.
1536 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1537 startSpecifier, specifierLen)) {
1538 return false;
1539 }
1540
1541 if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1542 startSpecifier, specifierLen)) {
1543 return false;
1544 }
1545
1546 if (!CS.consumesDataArgument()) {
1547 // FIXME: Technically specifying a precision or field width here
1548 // makes no sense. Worth issuing a warning at some point.
1549 return true;
1550 }
1551
1552 // Consume the argument.
1553 unsigned argIndex = FS.getArgIndex();
1554 if (argIndex < NumDataArgs) {
1555 // The check to see if the argIndex is valid will come later.
1556 // We set the bit here because we may exit early from this
1557 // function if we encounter some other error.
1558 CoveredArgs.set(argIndex);
1559 }
1560
1561 // Check for using an Objective-C specific conversion specifier
1562 // in a non-ObjC literal.
1563 if (!IsObjCLiteral && CS.isObjCArg()) {
1564 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1565 specifierLen);
1566 }
1567
1568 // Check for invalid use of field width
1569 if (!FS.hasValidFieldWidth()) {
1570 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1571 startSpecifier, specifierLen);
1572 }
1573
1574 // Check for invalid use of precision
1575 if (!FS.hasValidPrecision()) {
1576 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1577 startSpecifier, specifierLen);
1578 }
1579
1580 // Check each flag does not conflict with any other component.
1581 if (!FS.hasValidThousandsGroupingPrefix())
1582 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
1583 if (!FS.hasValidLeadingZeros())
1584 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1585 if (!FS.hasValidPlusPrefix())
1586 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1587 if (!FS.hasValidSpacePrefix())
1588 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1589 if (!FS.hasValidAlternativeForm())
1590 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1591 if (!FS.hasValidLeftJustified())
1592 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1593
1594 // Check that flags are not ignored by another flag
1595 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1596 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1597 startSpecifier, specifierLen);
1598 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1599 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1600 startSpecifier, specifierLen);
1601
1602 // Check the length modifier is valid with the given conversion specifier.
1603 const LengthModifier &LM = FS.getLengthModifier();
1604 if (!FS.hasValidLengthModifier())
1605 S.Diag(getLocationOfByte(LM.getStart()),
1606 diag::warn_format_nonsensical_length)
1607 << LM.toString() << CS.toString()
1608 << getSpecifierRange(startSpecifier, specifierLen)
1609 << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1610 LM.getLength()));
1611
1612 // Are we using '%n'?
1613 if (CS.getKind() == ConversionSpecifier::nArg) {
1614 // Issue a warning about this being a possible security issue.
1615 S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1616 << getSpecifierRange(startSpecifier, specifierLen);
1617 // Continue checking the other format specifiers.
1618 return true;
1619 }
1620
1621 // The remaining checks depend on the data arguments.
1622 if (HasVAListArg)
1623 return true;
1624
1625 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1626 return false;
1627
1628 // Now type check the data expression that matches the
1629 // format specifier.
1630 const Expr *Ex = getDataArg(argIndex);
1631 const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1632 if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1633 // Check if we didn't match because of an implicit cast from a 'char'
1634 // or 'short' to an 'int'. This is done because printf is a varargs
1635 // function.
1636 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1637 if (ICE->getType() == S.Context.IntTy) {
1638 // All further checking is done on the subexpression.
1639 Ex = ICE->getSubExpr();
1640 if (ATR.matchesType(S.Context, Ex->getType()))
1641 return true;
1642 }
1643
1644 // We may be able to offer a FixItHint if it is a supported type.
1645 PrintfSpecifier fixedFS = FS;
1646 bool success = fixedFS.fixType(Ex->getType());
1647
1648 if (success) {
1649 // Get the fix string from the fixed format specifier
1650 llvm::SmallString<128> buf;
1651 llvm::raw_svector_ostream os(buf);
1652 fixedFS.toString(os);
1653
1654 // FIXME: getRepresentativeType() perhaps should return a string
1655 // instead of a QualType to better handle when the representative
1656 // type is 'wint_t' (which is defined in the system headers).
1657 S.Diag(getLocationOfByte(CS.getStart()),
1658 diag::warn_printf_conversion_argument_type_mismatch)
1659 << ATR.getRepresentativeType(S.Context) << Ex->getType()
1660 << getSpecifierRange(startSpecifier, specifierLen)
1661 << Ex->getSourceRange()
1662 << FixItHint::CreateReplacement(
1663 getSpecifierRange(startSpecifier, specifierLen),
1664 os.str());
1665 }
1666 else {
1667 S.Diag(getLocationOfByte(CS.getStart()),
1668 diag::warn_printf_conversion_argument_type_mismatch)
1669 << ATR.getRepresentativeType(S.Context) << Ex->getType()
1670 << getSpecifierRange(startSpecifier, specifierLen)
1671 << Ex->getSourceRange();
1672 }
1673 }
1674
1675 return true;
1676 }
1677
1678 //===--- CHECK: Scanf format string checking ------------------------------===//
1679
1680 namespace {
1681 class CheckScanfHandler : public CheckFormatHandler {
1682 public:
CheckScanfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,bool isObjCLiteral,const char * beg,bool hasVAListArg,const CallExpr * theCall,unsigned formatIdx)1683 CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1684 const Expr *origFormatExpr, unsigned firstDataArg,
1685 unsigned numDataArgs, bool isObjCLiteral,
1686 const char *beg, bool hasVAListArg,
1687 const CallExpr *theCall, unsigned formatIdx)
1688 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1689 numDataArgs, isObjCLiteral, beg, hasVAListArg,
1690 theCall, formatIdx) {}
1691
1692 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1693 const char *startSpecifier,
1694 unsigned specifierLen);
1695
1696 bool HandleInvalidScanfConversionSpecifier(
1697 const analyze_scanf::ScanfSpecifier &FS,
1698 const char *startSpecifier,
1699 unsigned specifierLen);
1700
1701 void HandleIncompleteScanList(const char *start, const char *end);
1702 };
1703 }
1704
HandleIncompleteScanList(const char * start,const char * end)1705 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1706 const char *end) {
1707 S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1708 << getSpecifierRange(start, end - start);
1709 }
1710
HandleInvalidScanfConversionSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)1711 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1712 const analyze_scanf::ScanfSpecifier &FS,
1713 const char *startSpecifier,
1714 unsigned specifierLen) {
1715
1716 const analyze_scanf::ScanfConversionSpecifier &CS =
1717 FS.getConversionSpecifier();
1718
1719 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1720 getLocationOfByte(CS.getStart()),
1721 startSpecifier, specifierLen,
1722 CS.getStart(), CS.getLength());
1723 }
1724
HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)1725 bool CheckScanfHandler::HandleScanfSpecifier(
1726 const analyze_scanf::ScanfSpecifier &FS,
1727 const char *startSpecifier,
1728 unsigned specifierLen) {
1729
1730 using namespace analyze_scanf;
1731 using namespace analyze_format_string;
1732
1733 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1734
1735 // Handle case where '%' and '*' don't consume an argument. These shouldn't
1736 // be used to decide if we are using positional arguments consistently.
1737 if (FS.consumesDataArgument()) {
1738 if (atFirstArg) {
1739 atFirstArg = false;
1740 usesPositionalArgs = FS.usesPositionalArg();
1741 }
1742 else if (usesPositionalArgs != FS.usesPositionalArg()) {
1743 // Cannot mix-and-match positional and non-positional arguments.
1744 S.Diag(getLocationOfByte(CS.getStart()),
1745 diag::warn_format_mix_positional_nonpositional_args)
1746 << getSpecifierRange(startSpecifier, specifierLen);
1747 return false;
1748 }
1749 }
1750
1751 // Check if the field with is non-zero.
1752 const OptionalAmount &Amt = FS.getFieldWidth();
1753 if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1754 if (Amt.getConstantAmount() == 0) {
1755 const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1756 Amt.getConstantLength());
1757 S.Diag(getLocationOfByte(Amt.getStart()),
1758 diag::warn_scanf_nonzero_width)
1759 << R << FixItHint::CreateRemoval(R);
1760 }
1761 }
1762
1763 if (!FS.consumesDataArgument()) {
1764 // FIXME: Technically specifying a precision or field width here
1765 // makes no sense. Worth issuing a warning at some point.
1766 return true;
1767 }
1768
1769 // Consume the argument.
1770 unsigned argIndex = FS.getArgIndex();
1771 if (argIndex < NumDataArgs) {
1772 // The check to see if the argIndex is valid will come later.
1773 // We set the bit here because we may exit early from this
1774 // function if we encounter some other error.
1775 CoveredArgs.set(argIndex);
1776 }
1777
1778 // Check the length modifier is valid with the given conversion specifier.
1779 const LengthModifier &LM = FS.getLengthModifier();
1780 if (!FS.hasValidLengthModifier()) {
1781 S.Diag(getLocationOfByte(LM.getStart()),
1782 diag::warn_format_nonsensical_length)
1783 << LM.toString() << CS.toString()
1784 << getSpecifierRange(startSpecifier, specifierLen)
1785 << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1786 LM.getLength()));
1787 }
1788
1789 // The remaining checks depend on the data arguments.
1790 if (HasVAListArg)
1791 return true;
1792
1793 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1794 return false;
1795
1796 // FIXME: Check that the argument type matches the format specifier.
1797
1798 return true;
1799 }
1800
CheckFormatString(const StringLiteral * FExpr,const Expr * OrigFormatExpr,const CallExpr * TheCall,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,bool isPrintf)1801 void Sema::CheckFormatString(const StringLiteral *FExpr,
1802 const Expr *OrigFormatExpr,
1803 const CallExpr *TheCall, bool HasVAListArg,
1804 unsigned format_idx, unsigned firstDataArg,
1805 bool isPrintf) {
1806
1807 // CHECK: is the format string a wide literal?
1808 if (FExpr->isWide()) {
1809 Diag(FExpr->getLocStart(),
1810 diag::warn_format_string_is_wide_literal)
1811 << OrigFormatExpr->getSourceRange();
1812 return;
1813 }
1814
1815 // Str - The format string. NOTE: this is NOT null-terminated!
1816 llvm::StringRef StrRef = FExpr->getString();
1817 const char *Str = StrRef.data();
1818 unsigned StrLen = StrRef.size();
1819
1820 // CHECK: empty format string?
1821 if (StrLen == 0) {
1822 Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1823 << OrigFormatExpr->getSourceRange();
1824 return;
1825 }
1826
1827 if (isPrintf) {
1828 CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1829 TheCall->getNumArgs() - firstDataArg,
1830 isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1831 HasVAListArg, TheCall, format_idx);
1832
1833 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1834 H.DoneProcessing();
1835 }
1836 else {
1837 CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1838 TheCall->getNumArgs() - firstDataArg,
1839 isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1840 HasVAListArg, TheCall, format_idx);
1841
1842 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1843 H.DoneProcessing();
1844 }
1845 }
1846
1847 //===--- CHECK: Standard memory functions ---------------------------------===//
1848
1849 /// \brief Determine whether the given type is a dynamic class type (e.g.,
1850 /// whether it has a vtable).
isDynamicClassType(QualType T)1851 static bool isDynamicClassType(QualType T) {
1852 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
1853 if (CXXRecordDecl *Definition = Record->getDefinition())
1854 if (Definition->isDynamicClass())
1855 return true;
1856
1857 return false;
1858 }
1859
1860 /// \brief If E is a sizeof expression, returns its argument expression,
1861 /// otherwise returns NULL.
getSizeOfExprArg(const Expr * E)1862 static const Expr *getSizeOfExprArg(const Expr* E) {
1863 if (const UnaryExprOrTypeTraitExpr *SizeOf =
1864 dyn_cast<UnaryExprOrTypeTraitExpr>(E))
1865 if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
1866 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
1867
1868 return 0;
1869 }
1870
1871 /// \brief If E is a sizeof expression, returns its argument type.
getSizeOfArgType(const Expr * E)1872 static QualType getSizeOfArgType(const Expr* E) {
1873 if (const UnaryExprOrTypeTraitExpr *SizeOf =
1874 dyn_cast<UnaryExprOrTypeTraitExpr>(E))
1875 if (SizeOf->getKind() == clang::UETT_SizeOf)
1876 return SizeOf->getTypeOfArgument();
1877
1878 return QualType();
1879 }
1880
1881 /// \brief Check for dangerous or invalid arguments to memset().
1882 ///
1883 /// This issues warnings on known problematic, dangerous or unspecified
1884 /// arguments to the standard 'memset', 'memcpy', and 'memmove' function calls.
1885 ///
1886 /// \param Call The call expression to diagnose.
CheckMemsetcpymoveArguments(const CallExpr * Call,CheckedMemoryFunction CMF,IdentifierInfo * FnName)1887 void Sema::CheckMemsetcpymoveArguments(const CallExpr *Call,
1888 CheckedMemoryFunction CMF,
1889 IdentifierInfo *FnName) {
1890 // It is possible to have a non-standard definition of memset. Validate
1891 // we have enough arguments, and if not, abort further checking.
1892 if (Call->getNumArgs() < 3)
1893 return;
1894
1895 unsigned LastArg = (CMF == CMF_Memset? 1 : 2);
1896 const Expr *LenExpr = Call->getArg(2)->IgnoreParenImpCasts();
1897
1898 // We have special checking when the length is a sizeof expression.
1899 QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
1900 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
1901 llvm::FoldingSetNodeID SizeOfArgID;
1902
1903 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
1904 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
1905 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
1906
1907 QualType DestTy = Dest->getType();
1908 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
1909 QualType PointeeTy = DestPtrTy->getPointeeType();
1910
1911 // Never warn about void type pointers. This can be used to suppress
1912 // false positives.
1913 if (PointeeTy->isVoidType())
1914 continue;
1915
1916 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
1917 // actually comparing the expressions for equality. Because computing the
1918 // expression IDs can be expensive, we only do this if the diagnostic is
1919 // enabled.
1920 if (SizeOfArg &&
1921 Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
1922 SizeOfArg->getExprLoc())) {
1923 // We only compute IDs for expressions if the warning is enabled, and
1924 // cache the sizeof arg's ID.
1925 if (SizeOfArgID == llvm::FoldingSetNodeID())
1926 SizeOfArg->Profile(SizeOfArgID, Context, true);
1927 llvm::FoldingSetNodeID DestID;
1928 Dest->Profile(DestID, Context, true);
1929 if (DestID == SizeOfArgID) {
1930 unsigned ActionIdx = 0; // Default is to suggest dereferencing.
1931 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
1932 if (UnaryOp->getOpcode() == UO_AddrOf)
1933 ActionIdx = 1; // If its an address-of operator, just remove it.
1934 if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
1935 ActionIdx = 2; // If the pointee's size is sizeof(char),
1936 // suggest an explicit length.
1937 DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
1938 PDiag(diag::warn_sizeof_pointer_expr_memaccess)
1939 << FnName << ArgIdx << ActionIdx
1940 << Dest->getSourceRange()
1941 << SizeOfArg->getSourceRange());
1942 break;
1943 }
1944 }
1945
1946 // Also check for cases where the sizeof argument is the exact same
1947 // type as the memory argument, and where it points to a user-defined
1948 // record type.
1949 if (SizeOfArgTy != QualType()) {
1950 if (PointeeTy->isRecordType() &&
1951 Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
1952 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
1953 PDiag(diag::warn_sizeof_pointer_type_memaccess)
1954 << FnName << SizeOfArgTy << ArgIdx
1955 << PointeeTy << Dest->getSourceRange()
1956 << LenExpr->getSourceRange());
1957 break;
1958 }
1959 }
1960
1961 unsigned DiagID;
1962
1963 // Always complain about dynamic classes.
1964 if (isDynamicClassType(PointeeTy))
1965 DiagID = diag::warn_dyn_class_memaccess;
1966 else if (PointeeTy.hasNonTrivialObjCLifetime() && CMF != CMF_Memset)
1967 DiagID = diag::warn_arc_object_memaccess;
1968 else
1969 continue;
1970
1971 DiagRuntimeBehavior(
1972 Dest->getExprLoc(), Dest,
1973 PDiag(DiagID)
1974 << ArgIdx << FnName << PointeeTy
1975 << Call->getCallee()->getSourceRange());
1976
1977 DiagRuntimeBehavior(
1978 Dest->getExprLoc(), Dest,
1979 PDiag(diag::note_bad_memaccess_silence)
1980 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
1981 break;
1982 }
1983 }
1984 }
1985
1986 //===--- CHECK: Return Address of Stack Variable --------------------------===//
1987
1988 static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
1989 static Expr *EvalAddr(Expr* E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
1990
1991 /// CheckReturnStackAddr - Check if a return statement returns the address
1992 /// of a stack variable.
1993 void
CheckReturnStackAddr(Expr * RetValExp,QualType lhsType,SourceLocation ReturnLoc)1994 Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1995 SourceLocation ReturnLoc) {
1996
1997 Expr *stackE = 0;
1998 llvm::SmallVector<DeclRefExpr *, 8> refVars;
1999
2000 // Perform checking for returned stack addresses, local blocks,
2001 // label addresses or references to temporaries.
2002 if (lhsType->isPointerType() ||
2003 (!getLangOptions().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
2004 stackE = EvalAddr(RetValExp, refVars);
2005 } else if (lhsType->isReferenceType()) {
2006 stackE = EvalVal(RetValExp, refVars);
2007 }
2008
2009 if (stackE == 0)
2010 return; // Nothing suspicious was found.
2011
2012 SourceLocation diagLoc;
2013 SourceRange diagRange;
2014 if (refVars.empty()) {
2015 diagLoc = stackE->getLocStart();
2016 diagRange = stackE->getSourceRange();
2017 } else {
2018 // We followed through a reference variable. 'stackE' contains the
2019 // problematic expression but we will warn at the return statement pointing
2020 // at the reference variable. We will later display the "trail" of
2021 // reference variables using notes.
2022 diagLoc = refVars[0]->getLocStart();
2023 diagRange = refVars[0]->getSourceRange();
2024 }
2025
2026 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
2027 Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
2028 : diag::warn_ret_stack_addr)
2029 << DR->getDecl()->getDeclName() << diagRange;
2030 } else if (isa<BlockExpr>(stackE)) { // local block.
2031 Diag(diagLoc, diag::err_ret_local_block) << diagRange;
2032 } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
2033 Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
2034 } else { // local temporary.
2035 Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
2036 : diag::warn_ret_local_temp_addr)
2037 << diagRange;
2038 }
2039
2040 // Display the "trail" of reference variables that we followed until we
2041 // found the problematic expression using notes.
2042 for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
2043 VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
2044 // If this var binds to another reference var, show the range of the next
2045 // var, otherwise the var binds to the problematic expression, in which case
2046 // show the range of the expression.
2047 SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
2048 : stackE->getSourceRange();
2049 Diag(VD->getLocation(), diag::note_ref_var_local_bind)
2050 << VD->getDeclName() << range;
2051 }
2052 }
2053
2054 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
2055 /// check if the expression in a return statement evaluates to an address
2056 /// to a location on the stack, a local block, an address of a label, or a
2057 /// reference to local temporary. The recursion is used to traverse the
2058 /// AST of the return expression, with recursion backtracking when we
2059 /// encounter a subexpression that (1) clearly does not lead to one of the
2060 /// above problematic expressions (2) is something we cannot determine leads to
2061 /// a problematic expression based on such local checking.
2062 ///
2063 /// Both EvalAddr and EvalVal follow through reference variables to evaluate
2064 /// the expression that they point to. Such variables are added to the
2065 /// 'refVars' vector so that we know what the reference variable "trail" was.
2066 ///
2067 /// EvalAddr processes expressions that are pointers that are used as
2068 /// references (and not L-values). EvalVal handles all other values.
2069 /// At the base case of the recursion is a check for the above problematic
2070 /// expressions.
2071 ///
2072 /// This implementation handles:
2073 ///
2074 /// * pointer-to-pointer casts
2075 /// * implicit conversions from array references to pointers
2076 /// * taking the address of fields
2077 /// * arbitrary interplay between "&" and "*" operators
2078 /// * pointer arithmetic from an address of a stack variable
2079 /// * taking the address of an array element where the array is on the stack
EvalAddr(Expr * E,llvm::SmallVectorImpl<DeclRefExpr * > & refVars)2080 static Expr *EvalAddr(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
2081 if (E->isTypeDependent())
2082 return NULL;
2083
2084 // We should only be called for evaluating pointer expressions.
2085 assert((E->getType()->isAnyPointerType() ||
2086 E->getType()->isBlockPointerType() ||
2087 E->getType()->isObjCQualifiedIdType()) &&
2088 "EvalAddr only works on pointers");
2089
2090 E = E->IgnoreParens();
2091
2092 // Our "symbolic interpreter" is just a dispatch off the currently
2093 // viewed AST node. We then recursively traverse the AST by calling
2094 // EvalAddr and EvalVal appropriately.
2095 switch (E->getStmtClass()) {
2096 case Stmt::DeclRefExprClass: {
2097 DeclRefExpr *DR = cast<DeclRefExpr>(E);
2098
2099 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2100 // If this is a reference variable, follow through to the expression that
2101 // it points to.
2102 if (V->hasLocalStorage() &&
2103 V->getType()->isReferenceType() && V->hasInit()) {
2104 // Add the reference variable to the "trail".
2105 refVars.push_back(DR);
2106 return EvalAddr(V->getInit(), refVars);
2107 }
2108
2109 return NULL;
2110 }
2111
2112 case Stmt::UnaryOperatorClass: {
2113 // The only unary operator that make sense to handle here
2114 // is AddrOf. All others don't make sense as pointers.
2115 UnaryOperator *U = cast<UnaryOperator>(E);
2116
2117 if (U->getOpcode() == UO_AddrOf)
2118 return EvalVal(U->getSubExpr(), refVars);
2119 else
2120 return NULL;
2121 }
2122
2123 case Stmt::BinaryOperatorClass: {
2124 // Handle pointer arithmetic. All other binary operators are not valid
2125 // in this context.
2126 BinaryOperator *B = cast<BinaryOperator>(E);
2127 BinaryOperatorKind op = B->getOpcode();
2128
2129 if (op != BO_Add && op != BO_Sub)
2130 return NULL;
2131
2132 Expr *Base = B->getLHS();
2133
2134 // Determine which argument is the real pointer base. It could be
2135 // the RHS argument instead of the LHS.
2136 if (!Base->getType()->isPointerType()) Base = B->getRHS();
2137
2138 assert (Base->getType()->isPointerType());
2139 return EvalAddr(Base, refVars);
2140 }
2141
2142 // For conditional operators we need to see if either the LHS or RHS are
2143 // valid DeclRefExpr*s. If one of them is valid, we return it.
2144 case Stmt::ConditionalOperatorClass: {
2145 ConditionalOperator *C = cast<ConditionalOperator>(E);
2146
2147 // Handle the GNU extension for missing LHS.
2148 if (Expr *lhsExpr = C->getLHS()) {
2149 // In C++, we can have a throw-expression, which has 'void' type.
2150 if (!lhsExpr->getType()->isVoidType())
2151 if (Expr* LHS = EvalAddr(lhsExpr, refVars))
2152 return LHS;
2153 }
2154
2155 // In C++, we can have a throw-expression, which has 'void' type.
2156 if (C->getRHS()->getType()->isVoidType())
2157 return NULL;
2158
2159 return EvalAddr(C->getRHS(), refVars);
2160 }
2161
2162 case Stmt::BlockExprClass:
2163 if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
2164 return E; // local block.
2165 return NULL;
2166
2167 case Stmt::AddrLabelExprClass:
2168 return E; // address of label.
2169
2170 // For casts, we need to handle conversions from arrays to
2171 // pointer values, and pointer-to-pointer conversions.
2172 case Stmt::ImplicitCastExprClass:
2173 case Stmt::CStyleCastExprClass:
2174 case Stmt::CXXFunctionalCastExprClass:
2175 case Stmt::ObjCBridgedCastExprClass: {
2176 Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2177 QualType T = SubExpr->getType();
2178
2179 if (SubExpr->getType()->isPointerType() ||
2180 SubExpr->getType()->isBlockPointerType() ||
2181 SubExpr->getType()->isObjCQualifiedIdType())
2182 return EvalAddr(SubExpr, refVars);
2183 else if (T->isArrayType())
2184 return EvalVal(SubExpr, refVars);
2185 else
2186 return 0;
2187 }
2188
2189 // C++ casts. For dynamic casts, static casts, and const casts, we
2190 // are always converting from a pointer-to-pointer, so we just blow
2191 // through the cast. In the case the dynamic cast doesn't fail (and
2192 // return NULL), we take the conservative route and report cases
2193 // where we return the address of a stack variable. For Reinterpre
2194 // FIXME: The comment about is wrong; we're not always converting
2195 // from pointer to pointer. I'm guessing that this code should also
2196 // handle references to objects.
2197 case Stmt::CXXStaticCastExprClass:
2198 case Stmt::CXXDynamicCastExprClass:
2199 case Stmt::CXXConstCastExprClass:
2200 case Stmt::CXXReinterpretCastExprClass: {
2201 Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
2202 if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
2203 return EvalAddr(S, refVars);
2204 else
2205 return NULL;
2206 }
2207
2208 case Stmt::MaterializeTemporaryExprClass:
2209 if (Expr *Result = EvalAddr(
2210 cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2211 refVars))
2212 return Result;
2213
2214 return E;
2215
2216 // Everything else: we simply don't reason about them.
2217 default:
2218 return NULL;
2219 }
2220 }
2221
2222
2223 /// EvalVal - This function is complements EvalAddr in the mutual recursion.
2224 /// See the comments for EvalAddr for more details.
EvalVal(Expr * E,llvm::SmallVectorImpl<DeclRefExpr * > & refVars)2225 static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
2226 do {
2227 // We should only be called for evaluating non-pointer expressions, or
2228 // expressions with a pointer type that are not used as references but instead
2229 // are l-values (e.g., DeclRefExpr with a pointer type).
2230
2231 // Our "symbolic interpreter" is just a dispatch off the currently
2232 // viewed AST node. We then recursively traverse the AST by calling
2233 // EvalAddr and EvalVal appropriately.
2234
2235 E = E->IgnoreParens();
2236 switch (E->getStmtClass()) {
2237 case Stmt::ImplicitCastExprClass: {
2238 ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2239 if (IE->getValueKind() == VK_LValue) {
2240 E = IE->getSubExpr();
2241 continue;
2242 }
2243 return NULL;
2244 }
2245
2246 case Stmt::DeclRefExprClass: {
2247 // When we hit a DeclRefExpr we are looking at code that refers to a
2248 // variable's name. If it's not a reference variable we check if it has
2249 // local storage within the function, and if so, return the expression.
2250 DeclRefExpr *DR = cast<DeclRefExpr>(E);
2251
2252 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2253 if (V->hasLocalStorage()) {
2254 if (!V->getType()->isReferenceType())
2255 return DR;
2256
2257 // Reference variable, follow through to the expression that
2258 // it points to.
2259 if (V->hasInit()) {
2260 // Add the reference variable to the "trail".
2261 refVars.push_back(DR);
2262 return EvalVal(V->getInit(), refVars);
2263 }
2264 }
2265
2266 return NULL;
2267 }
2268
2269 case Stmt::UnaryOperatorClass: {
2270 // The only unary operator that make sense to handle here
2271 // is Deref. All others don't resolve to a "name." This includes
2272 // handling all sorts of rvalues passed to a unary operator.
2273 UnaryOperator *U = cast<UnaryOperator>(E);
2274
2275 if (U->getOpcode() == UO_Deref)
2276 return EvalAddr(U->getSubExpr(), refVars);
2277
2278 return NULL;
2279 }
2280
2281 case Stmt::ArraySubscriptExprClass: {
2282 // Array subscripts are potential references to data on the stack. We
2283 // retrieve the DeclRefExpr* for the array variable if it indeed
2284 // has local storage.
2285 return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
2286 }
2287
2288 case Stmt::ConditionalOperatorClass: {
2289 // For conditional operators we need to see if either the LHS or RHS are
2290 // non-NULL Expr's. If one is non-NULL, we return it.
2291 ConditionalOperator *C = cast<ConditionalOperator>(E);
2292
2293 // Handle the GNU extension for missing LHS.
2294 if (Expr *lhsExpr = C->getLHS())
2295 if (Expr *LHS = EvalVal(lhsExpr, refVars))
2296 return LHS;
2297
2298 return EvalVal(C->getRHS(), refVars);
2299 }
2300
2301 // Accesses to members are potential references to data on the stack.
2302 case Stmt::MemberExprClass: {
2303 MemberExpr *M = cast<MemberExpr>(E);
2304
2305 // Check for indirect access. We only want direct field accesses.
2306 if (M->isArrow())
2307 return NULL;
2308
2309 // Check whether the member type is itself a reference, in which case
2310 // we're not going to refer to the member, but to what the member refers to.
2311 if (M->getMemberDecl()->getType()->isReferenceType())
2312 return NULL;
2313
2314 return EvalVal(M->getBase(), refVars);
2315 }
2316
2317 case Stmt::MaterializeTemporaryExprClass:
2318 if (Expr *Result = EvalVal(
2319 cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2320 refVars))
2321 return Result;
2322
2323 return E;
2324
2325 default:
2326 // Check that we don't return or take the address of a reference to a
2327 // temporary. This is only useful in C++.
2328 if (!E->isTypeDependent() && E->isRValue())
2329 return E;
2330
2331 // Everything else: we simply don't reason about them.
2332 return NULL;
2333 }
2334 } while (true);
2335 }
2336
2337 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2338
2339 /// Check for comparisons of floating point operands using != and ==.
2340 /// Issue a warning if these are no self-comparisons, as they are not likely
2341 /// to do what the programmer intended.
CheckFloatComparison(SourceLocation loc,Expr * lex,Expr * rex)2342 void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2343 bool EmitWarning = true;
2344
2345 Expr* LeftExprSansParen = lex->IgnoreParenImpCasts();
2346 Expr* RightExprSansParen = rex->IgnoreParenImpCasts();
2347
2348 // Special case: check for x == x (which is OK).
2349 // Do not emit warnings for such cases.
2350 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2351 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2352 if (DRL->getDecl() == DRR->getDecl())
2353 EmitWarning = false;
2354
2355
2356 // Special case: check for comparisons against literals that can be exactly
2357 // represented by APFloat. In such cases, do not emit a warning. This
2358 // is a heuristic: often comparison against such literals are used to
2359 // detect if a value in a variable has not changed. This clearly can
2360 // lead to false negatives.
2361 if (EmitWarning) {
2362 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2363 if (FLL->isExact())
2364 EmitWarning = false;
2365 } else
2366 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2367 if (FLR->isExact())
2368 EmitWarning = false;
2369 }
2370 }
2371
2372 // Check for comparisons with builtin types.
2373 if (EmitWarning)
2374 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2375 if (CL->isBuiltinCall(Context))
2376 EmitWarning = false;
2377
2378 if (EmitWarning)
2379 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2380 if (CR->isBuiltinCall(Context))
2381 EmitWarning = false;
2382
2383 // Emit the diagnostic.
2384 if (EmitWarning)
2385 Diag(loc, diag::warn_floatingpoint_eq)
2386 << lex->getSourceRange() << rex->getSourceRange();
2387 }
2388
2389 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2390 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2391
2392 namespace {
2393
2394 /// Structure recording the 'active' range of an integer-valued
2395 /// expression.
2396 struct IntRange {
2397 /// The number of bits active in the int.
2398 unsigned Width;
2399
2400 /// True if the int is known not to have negative values.
2401 bool NonNegative;
2402
IntRange__anon12adead60411::IntRange2403 IntRange(unsigned Width, bool NonNegative)
2404 : Width(Width), NonNegative(NonNegative)
2405 {}
2406
2407 /// Returns the range of the bool type.
forBoolType__anon12adead60411::IntRange2408 static IntRange forBoolType() {
2409 return IntRange(1, true);
2410 }
2411
2412 /// Returns the range of an opaque value of the given integral type.
forValueOfType__anon12adead60411::IntRange2413 static IntRange forValueOfType(ASTContext &C, QualType T) {
2414 return forValueOfCanonicalType(C,
2415 T->getCanonicalTypeInternal().getTypePtr());
2416 }
2417
2418 /// Returns the range of an opaque value of a canonical integral type.
forValueOfCanonicalType__anon12adead60411::IntRange2419 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
2420 assert(T->isCanonicalUnqualified());
2421
2422 if (const VectorType *VT = dyn_cast<VectorType>(T))
2423 T = VT->getElementType().getTypePtr();
2424 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2425 T = CT->getElementType().getTypePtr();
2426
2427 // For enum types, use the known bit width of the enumerators.
2428 if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2429 EnumDecl *Enum = ET->getDecl();
2430 if (!Enum->isDefinition())
2431 return IntRange(C.getIntWidth(QualType(T, 0)), false);
2432
2433 unsigned NumPositive = Enum->getNumPositiveBits();
2434 unsigned NumNegative = Enum->getNumNegativeBits();
2435
2436 return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2437 }
2438
2439 const BuiltinType *BT = cast<BuiltinType>(T);
2440 assert(BT->isInteger());
2441
2442 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2443 }
2444
2445 /// Returns the "target" range of a canonical integral type, i.e.
2446 /// the range of values expressible in the type.
2447 ///
2448 /// This matches forValueOfCanonicalType except that enums have the
2449 /// full range of their type, not the range of their enumerators.
forTargetOfCanonicalType__anon12adead60411::IntRange2450 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
2451 assert(T->isCanonicalUnqualified());
2452
2453 if (const VectorType *VT = dyn_cast<VectorType>(T))
2454 T = VT->getElementType().getTypePtr();
2455 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2456 T = CT->getElementType().getTypePtr();
2457 if (const EnumType *ET = dyn_cast<EnumType>(T))
2458 T = ET->getDecl()->getIntegerType().getTypePtr();
2459
2460 const BuiltinType *BT = cast<BuiltinType>(T);
2461 assert(BT->isInteger());
2462
2463 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2464 }
2465
2466 /// Returns the supremum of two ranges: i.e. their conservative merge.
join__anon12adead60411::IntRange2467 static IntRange join(IntRange L, IntRange R) {
2468 return IntRange(std::max(L.Width, R.Width),
2469 L.NonNegative && R.NonNegative);
2470 }
2471
2472 /// Returns the infinum of two ranges: i.e. their aggressive merge.
meet__anon12adead60411::IntRange2473 static IntRange meet(IntRange L, IntRange R) {
2474 return IntRange(std::min(L.Width, R.Width),
2475 L.NonNegative || R.NonNegative);
2476 }
2477 };
2478
GetValueRange(ASTContext & C,llvm::APSInt & value,unsigned MaxWidth)2479 IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2480 if (value.isSigned() && value.isNegative())
2481 return IntRange(value.getMinSignedBits(), false);
2482
2483 if (value.getBitWidth() > MaxWidth)
2484 value = value.trunc(MaxWidth);
2485
2486 // isNonNegative() just checks the sign bit without considering
2487 // signedness.
2488 return IntRange(value.getActiveBits(), true);
2489 }
2490
GetValueRange(ASTContext & C,APValue & result,QualType Ty,unsigned MaxWidth)2491 IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2492 unsigned MaxWidth) {
2493 if (result.isInt())
2494 return GetValueRange(C, result.getInt(), MaxWidth);
2495
2496 if (result.isVector()) {
2497 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2498 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2499 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2500 R = IntRange::join(R, El);
2501 }
2502 return R;
2503 }
2504
2505 if (result.isComplexInt()) {
2506 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2507 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2508 return IntRange::join(R, I);
2509 }
2510
2511 // This can happen with lossless casts to intptr_t of "based" lvalues.
2512 // Assume it might use arbitrary bits.
2513 // FIXME: The only reason we need to pass the type in here is to get
2514 // the sign right on this one case. It would be nice if APValue
2515 // preserved this.
2516 assert(result.isLValue());
2517 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
2518 }
2519
2520 /// Pseudo-evaluate the given integer expression, estimating the
2521 /// range of values it might take.
2522 ///
2523 /// \param MaxWidth - the width to which the value will be truncated
GetExprRange(ASTContext & C,Expr * E,unsigned MaxWidth)2524 IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2525 E = E->IgnoreParens();
2526
2527 // Try a full evaluation first.
2528 Expr::EvalResult result;
2529 if (E->Evaluate(result, C))
2530 return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2531
2532 // I think we only want to look through implicit casts here; if the
2533 // user has an explicit widening cast, we should treat the value as
2534 // being of the new, wider type.
2535 if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2536 if (CE->getCastKind() == CK_NoOp)
2537 return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2538
2539 IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
2540
2541 bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2542
2543 // Assume that non-integer casts can span the full range of the type.
2544 if (!isIntegerCast)
2545 return OutputTypeRange;
2546
2547 IntRange SubRange
2548 = GetExprRange(C, CE->getSubExpr(),
2549 std::min(MaxWidth, OutputTypeRange.Width));
2550
2551 // Bail out if the subexpr's range is as wide as the cast type.
2552 if (SubRange.Width >= OutputTypeRange.Width)
2553 return OutputTypeRange;
2554
2555 // Otherwise, we take the smaller width, and we're non-negative if
2556 // either the output type or the subexpr is.
2557 return IntRange(SubRange.Width,
2558 SubRange.NonNegative || OutputTypeRange.NonNegative);
2559 }
2560
2561 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2562 // If we can fold the condition, just take that operand.
2563 bool CondResult;
2564 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2565 return GetExprRange(C, CondResult ? CO->getTrueExpr()
2566 : CO->getFalseExpr(),
2567 MaxWidth);
2568
2569 // Otherwise, conservatively merge.
2570 IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2571 IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2572 return IntRange::join(L, R);
2573 }
2574
2575 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2576 switch (BO->getOpcode()) {
2577
2578 // Boolean-valued operations are single-bit and positive.
2579 case BO_LAnd:
2580 case BO_LOr:
2581 case BO_LT:
2582 case BO_GT:
2583 case BO_LE:
2584 case BO_GE:
2585 case BO_EQ:
2586 case BO_NE:
2587 return IntRange::forBoolType();
2588
2589 // The type of the assignments is the type of the LHS, so the RHS
2590 // is not necessarily the same type.
2591 case BO_MulAssign:
2592 case BO_DivAssign:
2593 case BO_RemAssign:
2594 case BO_AddAssign:
2595 case BO_SubAssign:
2596 case BO_XorAssign:
2597 case BO_OrAssign:
2598 // TODO: bitfields?
2599 return IntRange::forValueOfType(C, E->getType());
2600
2601 // Simple assignments just pass through the RHS, which will have
2602 // been coerced to the LHS type.
2603 case BO_Assign:
2604 // TODO: bitfields?
2605 return GetExprRange(C, BO->getRHS(), MaxWidth);
2606
2607 // Operations with opaque sources are black-listed.
2608 case BO_PtrMemD:
2609 case BO_PtrMemI:
2610 return IntRange::forValueOfType(C, E->getType());
2611
2612 // Bitwise-and uses the *infinum* of the two source ranges.
2613 case BO_And:
2614 case BO_AndAssign:
2615 return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2616 GetExprRange(C, BO->getRHS(), MaxWidth));
2617
2618 // Left shift gets black-listed based on a judgement call.
2619 case BO_Shl:
2620 // ...except that we want to treat '1 << (blah)' as logically
2621 // positive. It's an important idiom.
2622 if (IntegerLiteral *I
2623 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2624 if (I->getValue() == 1) {
2625 IntRange R = IntRange::forValueOfType(C, E->getType());
2626 return IntRange(R.Width, /*NonNegative*/ true);
2627 }
2628 }
2629 // fallthrough
2630
2631 case BO_ShlAssign:
2632 return IntRange::forValueOfType(C, E->getType());
2633
2634 // Right shift by a constant can narrow its left argument.
2635 case BO_Shr:
2636 case BO_ShrAssign: {
2637 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2638
2639 // If the shift amount is a positive constant, drop the width by
2640 // that much.
2641 llvm::APSInt shift;
2642 if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2643 shift.isNonNegative()) {
2644 unsigned zext = shift.getZExtValue();
2645 if (zext >= L.Width)
2646 L.Width = (L.NonNegative ? 0 : 1);
2647 else
2648 L.Width -= zext;
2649 }
2650
2651 return L;
2652 }
2653
2654 // Comma acts as its right operand.
2655 case BO_Comma:
2656 return GetExprRange(C, BO->getRHS(), MaxWidth);
2657
2658 // Black-list pointer subtractions.
2659 case BO_Sub:
2660 if (BO->getLHS()->getType()->isPointerType())
2661 return IntRange::forValueOfType(C, E->getType());
2662 break;
2663
2664 // The width of a division result is mostly determined by the size
2665 // of the LHS.
2666 case BO_Div: {
2667 // Don't 'pre-truncate' the operands.
2668 unsigned opWidth = C.getIntWidth(E->getType());
2669 IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
2670
2671 // If the divisor is constant, use that.
2672 llvm::APSInt divisor;
2673 if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
2674 unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
2675 if (log2 >= L.Width)
2676 L.Width = (L.NonNegative ? 0 : 1);
2677 else
2678 L.Width = std::min(L.Width - log2, MaxWidth);
2679 return L;
2680 }
2681
2682 // Otherwise, just use the LHS's width.
2683 IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
2684 return IntRange(L.Width, L.NonNegative && R.NonNegative);
2685 }
2686
2687 // The result of a remainder can't be larger than the result of
2688 // either side.
2689 case BO_Rem: {
2690 // Don't 'pre-truncate' the operands.
2691 unsigned opWidth = C.getIntWidth(E->getType());
2692 IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
2693 IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
2694
2695 IntRange meet = IntRange::meet(L, R);
2696 meet.Width = std::min(meet.Width, MaxWidth);
2697 return meet;
2698 }
2699
2700 // The default behavior is okay for these.
2701 case BO_Mul:
2702 case BO_Add:
2703 case BO_Xor:
2704 case BO_Or:
2705 break;
2706 }
2707
2708 // The default case is to treat the operation as if it were closed
2709 // on the narrowest type that encompasses both operands.
2710 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2711 IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2712 return IntRange::join(L, R);
2713 }
2714
2715 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2716 switch (UO->getOpcode()) {
2717 // Boolean-valued operations are white-listed.
2718 case UO_LNot:
2719 return IntRange::forBoolType();
2720
2721 // Operations with opaque sources are black-listed.
2722 case UO_Deref:
2723 case UO_AddrOf: // should be impossible
2724 return IntRange::forValueOfType(C, E->getType());
2725
2726 default:
2727 return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2728 }
2729 }
2730
2731 if (dyn_cast<OffsetOfExpr>(E)) {
2732 IntRange::forValueOfType(C, E->getType());
2733 }
2734
2735 FieldDecl *BitField = E->getBitField();
2736 if (BitField) {
2737 llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2738 unsigned BitWidth = BitWidthAP.getZExtValue();
2739
2740 return IntRange(BitWidth,
2741 BitField->getType()->isUnsignedIntegerOrEnumerationType());
2742 }
2743
2744 return IntRange::forValueOfType(C, E->getType());
2745 }
2746
GetExprRange(ASTContext & C,Expr * E)2747 IntRange GetExprRange(ASTContext &C, Expr *E) {
2748 return GetExprRange(C, E, C.getIntWidth(E->getType()));
2749 }
2750
2751 /// Checks whether the given value, which currently has the given
2752 /// source semantics, has the same value when coerced through the
2753 /// target semantics.
IsSameFloatAfterCast(const llvm::APFloat & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)2754 bool IsSameFloatAfterCast(const llvm::APFloat &value,
2755 const llvm::fltSemantics &Src,
2756 const llvm::fltSemantics &Tgt) {
2757 llvm::APFloat truncated = value;
2758
2759 bool ignored;
2760 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2761 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2762
2763 return truncated.bitwiseIsEqual(value);
2764 }
2765
2766 /// Checks whether the given value, which currently has the given
2767 /// source semantics, has the same value when coerced through the
2768 /// target semantics.
2769 ///
2770 /// The value might be a vector of floats (or a complex number).
IsSameFloatAfterCast(const APValue & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)2771 bool IsSameFloatAfterCast(const APValue &value,
2772 const llvm::fltSemantics &Src,
2773 const llvm::fltSemantics &Tgt) {
2774 if (value.isFloat())
2775 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2776
2777 if (value.isVector()) {
2778 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2779 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2780 return false;
2781 return true;
2782 }
2783
2784 assert(value.isComplexFloat());
2785 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2786 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2787 }
2788
2789 void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
2790
IsZero(Sema & S,Expr * E)2791 static bool IsZero(Sema &S, Expr *E) {
2792 // Suppress cases where we are comparing against an enum constant.
2793 if (const DeclRefExpr *DR =
2794 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
2795 if (isa<EnumConstantDecl>(DR->getDecl()))
2796 return false;
2797
2798 // Suppress cases where the '0' value is expanded from a macro.
2799 if (E->getLocStart().isMacroID())
2800 return false;
2801
2802 llvm::APSInt Value;
2803 return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2804 }
2805
HasEnumType(Expr * E)2806 static bool HasEnumType(Expr *E) {
2807 // Strip off implicit integral promotions.
2808 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2809 if (ICE->getCastKind() != CK_IntegralCast &&
2810 ICE->getCastKind() != CK_NoOp)
2811 break;
2812 E = ICE->getSubExpr();
2813 }
2814
2815 return E->getType()->isEnumeralType();
2816 }
2817
CheckTrivialUnsignedComparison(Sema & S,BinaryOperator * E)2818 void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2819 BinaryOperatorKind op = E->getOpcode();
2820 if (E->isValueDependent())
2821 return;
2822
2823 if (op == BO_LT && IsZero(S, E->getRHS())) {
2824 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2825 << "< 0" << "false" << HasEnumType(E->getLHS())
2826 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2827 } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2828 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2829 << ">= 0" << "true" << HasEnumType(E->getLHS())
2830 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2831 } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2832 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2833 << "0 >" << "false" << HasEnumType(E->getRHS())
2834 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2835 } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2836 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2837 << "0 <=" << "true" << HasEnumType(E->getRHS())
2838 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2839 }
2840 }
2841
2842 /// Analyze the operands of the given comparison. Implements the
2843 /// fallback case from AnalyzeComparison.
AnalyzeImpConvsInComparison(Sema & S,BinaryOperator * E)2844 void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2845 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2846 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2847 }
2848
2849 /// \brief Implements -Wsign-compare.
2850 ///
2851 /// \param lex the left-hand expression
2852 /// \param rex the right-hand expression
2853 /// \param OpLoc the location of the joining operator
2854 /// \param BinOpc binary opcode or 0
AnalyzeComparison(Sema & S,BinaryOperator * E)2855 void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2856 // The type the comparison is being performed in.
2857 QualType T = E->getLHS()->getType();
2858 assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2859 && "comparison with mismatched types");
2860
2861 // We don't do anything special if this isn't an unsigned integral
2862 // comparison: we're only interested in integral comparisons, and
2863 // signed comparisons only happen in cases we don't care to warn about.
2864 //
2865 // We also don't care about value-dependent expressions or expressions
2866 // whose result is a constant.
2867 if (!T->hasUnsignedIntegerRepresentation()
2868 || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
2869 return AnalyzeImpConvsInComparison(S, E);
2870
2871 Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2872 Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2873
2874 // Check to see if one of the (unmodified) operands is of different
2875 // signedness.
2876 Expr *signedOperand, *unsignedOperand;
2877 if (lex->getType()->hasSignedIntegerRepresentation()) {
2878 assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2879 "unsigned comparison between two signed integer expressions?");
2880 signedOperand = lex;
2881 unsignedOperand = rex;
2882 } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2883 signedOperand = rex;
2884 unsignedOperand = lex;
2885 } else {
2886 CheckTrivialUnsignedComparison(S, E);
2887 return AnalyzeImpConvsInComparison(S, E);
2888 }
2889
2890 // Otherwise, calculate the effective range of the signed operand.
2891 IntRange signedRange = GetExprRange(S.Context, signedOperand);
2892
2893 // Go ahead and analyze implicit conversions in the operands. Note
2894 // that we skip the implicit conversions on both sides.
2895 AnalyzeImplicitConversions(S, lex, E->getOperatorLoc());
2896 AnalyzeImplicitConversions(S, rex, E->getOperatorLoc());
2897
2898 // If the signed range is non-negative, -Wsign-compare won't fire,
2899 // but we should still check for comparisons which are always true
2900 // or false.
2901 if (signedRange.NonNegative)
2902 return CheckTrivialUnsignedComparison(S, E);
2903
2904 // For (in)equality comparisons, if the unsigned operand is a
2905 // constant which cannot collide with a overflowed signed operand,
2906 // then reinterpreting the signed operand as unsigned will not
2907 // change the result of the comparison.
2908 if (E->isEqualityOp()) {
2909 unsigned comparisonWidth = S.Context.getIntWidth(T);
2910 IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2911
2912 // We should never be unable to prove that the unsigned operand is
2913 // non-negative.
2914 assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2915
2916 if (unsignedRange.Width < comparisonWidth)
2917 return;
2918 }
2919
2920 S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2921 << lex->getType() << rex->getType()
2922 << lex->getSourceRange() << rex->getSourceRange();
2923 }
2924
2925 /// Analyzes an attempt to assign the given value to a bitfield.
2926 ///
2927 /// Returns true if there was something fishy about the attempt.
AnalyzeBitFieldAssignment(Sema & S,FieldDecl * Bitfield,Expr * Init,SourceLocation InitLoc)2928 bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
2929 SourceLocation InitLoc) {
2930 assert(Bitfield->isBitField());
2931 if (Bitfield->isInvalidDecl())
2932 return false;
2933
2934 // White-list bool bitfields.
2935 if (Bitfield->getType()->isBooleanType())
2936 return false;
2937
2938 // Ignore value- or type-dependent expressions.
2939 if (Bitfield->getBitWidth()->isValueDependent() ||
2940 Bitfield->getBitWidth()->isTypeDependent() ||
2941 Init->isValueDependent() ||
2942 Init->isTypeDependent())
2943 return false;
2944
2945 Expr *OriginalInit = Init->IgnoreParenImpCasts();
2946
2947 llvm::APSInt Width(32);
2948 Expr::EvalResult InitValue;
2949 if (!Bitfield->getBitWidth()->isIntegerConstantExpr(Width, S.Context) ||
2950 !OriginalInit->Evaluate(InitValue, S.Context) ||
2951 !InitValue.Val.isInt())
2952 return false;
2953
2954 const llvm::APSInt &Value = InitValue.Val.getInt();
2955 unsigned OriginalWidth = Value.getBitWidth();
2956 unsigned FieldWidth = Width.getZExtValue();
2957
2958 if (OriginalWidth <= FieldWidth)
2959 return false;
2960
2961 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
2962
2963 // It's fairly common to write values into signed bitfields
2964 // that, if sign-extended, would end up becoming a different
2965 // value. We don't want to warn about that.
2966 if (Value.isSigned() && Value.isNegative())
2967 TruncatedValue = TruncatedValue.sext(OriginalWidth);
2968 else
2969 TruncatedValue = TruncatedValue.zext(OriginalWidth);
2970
2971 if (Value == TruncatedValue)
2972 return false;
2973
2974 std::string PrettyValue = Value.toString(10);
2975 std::string PrettyTrunc = TruncatedValue.toString(10);
2976
2977 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
2978 << PrettyValue << PrettyTrunc << OriginalInit->getType()
2979 << Init->getSourceRange();
2980
2981 return true;
2982 }
2983
2984 /// Analyze the given simple or compound assignment for warning-worthy
2985 /// operations.
AnalyzeAssignment(Sema & S,BinaryOperator * E)2986 void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
2987 // Just recurse on the LHS.
2988 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2989
2990 // We want to recurse on the RHS as normal unless we're assigning to
2991 // a bitfield.
2992 if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
2993 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
2994 E->getOperatorLoc())) {
2995 // Recurse, ignoring any implicit conversions on the RHS.
2996 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
2997 E->getOperatorLoc());
2998 }
2999 }
3000
3001 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3002 }
3003
3004 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType SourceType,QualType T,SourceLocation CContext,unsigned diag)3005 void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
3006 SourceLocation CContext, unsigned diag) {
3007 S.Diag(E->getExprLoc(), diag)
3008 << SourceType << T << E->getSourceRange() << SourceRange(CContext);
3009 }
3010
3011 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext,unsigned diag)3012 void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
3013 unsigned diag) {
3014 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag);
3015 }
3016
3017 /// Diagnose an implicit cast from a literal expression. Also attemps to supply
3018 /// fixit hints when the cast wouldn't lose information to simply write the
3019 /// expression with the expected type.
DiagnoseFloatingLiteralImpCast(Sema & S,FloatingLiteral * FL,QualType T,SourceLocation CContext)3020 void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
3021 SourceLocation CContext) {
3022 // Emit the primary warning first, then try to emit a fixit hint note if
3023 // reasonable.
3024 S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
3025 << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
3026
3027 const llvm::APFloat &Value = FL->getValue();
3028
3029 // Don't attempt to fix PPC double double literals.
3030 if (&Value.getSemantics() == &llvm::APFloat::PPCDoubleDouble)
3031 return;
3032
3033 // Try to convert this exactly to an integer.
3034 bool isExact = false;
3035 llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
3036 T->hasUnsignedIntegerRepresentation());
3037 if (Value.convertToInteger(IntegerValue,
3038 llvm::APFloat::rmTowardZero, &isExact)
3039 != llvm::APFloat::opOK || !isExact)
3040 return;
3041
3042 std::string LiteralValue = IntegerValue.toString(10);
3043 S.Diag(FL->getExprLoc(), diag::note_fix_integral_float_as_integer)
3044 << FixItHint::CreateReplacement(FL->getSourceRange(), LiteralValue);
3045 }
3046
PrettyPrintInRange(const llvm::APSInt & Value,IntRange Range)3047 std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
3048 if (!Range.Width) return "0";
3049
3050 llvm::APSInt ValueInRange = Value;
3051 ValueInRange.setIsSigned(!Range.NonNegative);
3052 ValueInRange = ValueInRange.trunc(Range.Width);
3053 return ValueInRange.toString(10);
3054 }
3055
isFromSystemMacro(Sema & S,SourceLocation loc)3056 static bool isFromSystemMacro(Sema &S, SourceLocation loc) {
3057 SourceManager &smgr = S.Context.getSourceManager();
3058 return loc.isMacroID() && smgr.isInSystemHeader(smgr.getSpellingLoc(loc));
3059 }
3060
CheckImplicitConversion(Sema & S,Expr * E,QualType T,SourceLocation CC,bool * ICContext=0)3061 void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
3062 SourceLocation CC, bool *ICContext = 0) {
3063 if (E->isTypeDependent() || E->isValueDependent()) return;
3064
3065 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
3066 const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
3067 if (Source == Target) return;
3068 if (Target->isDependentType()) return;
3069
3070 // If the conversion context location is invalid don't complain.
3071 // We also don't want to emit a warning if the issue occurs from the
3072 // instantiation of a system macro. The problem is that 'getSpellingLoc()'
3073 // is slow, so we delay this check as long as possible. Once we detect
3074 // we are in that scenario, we just return.
3075 if (CC.isInvalid())
3076 return;
3077
3078 // Never diagnose implicit casts to bool.
3079 if (Target->isSpecificBuiltinType(BuiltinType::Bool))
3080 return;
3081
3082 // Strip vector types.
3083 if (isa<VectorType>(Source)) {
3084 if (!isa<VectorType>(Target)) {
3085 if (isFromSystemMacro(S, CC))
3086 return;
3087 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
3088 }
3089
3090 // If the vector cast is cast between two vectors of the same size, it is
3091 // a bitcast, not a conversion.
3092 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
3093 return;
3094
3095 Source = cast<VectorType>(Source)->getElementType().getTypePtr();
3096 Target = cast<VectorType>(Target)->getElementType().getTypePtr();
3097 }
3098
3099 // Strip complex types.
3100 if (isa<ComplexType>(Source)) {
3101 if (!isa<ComplexType>(Target)) {
3102 if (isFromSystemMacro(S, CC))
3103 return;
3104
3105 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
3106 }
3107
3108 Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
3109 Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
3110 }
3111
3112 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
3113 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
3114
3115 // If the source is floating point...
3116 if (SourceBT && SourceBT->isFloatingPoint()) {
3117 // ...and the target is floating point...
3118 if (TargetBT && TargetBT->isFloatingPoint()) {
3119 // ...then warn if we're dropping FP rank.
3120
3121 // Builtin FP kinds are ordered by increasing FP rank.
3122 if (SourceBT->getKind() > TargetBT->getKind()) {
3123 // Don't warn about float constants that are precisely
3124 // representable in the target type.
3125 Expr::EvalResult result;
3126 if (E->Evaluate(result, S.Context)) {
3127 // Value might be a float, a float vector, or a float complex.
3128 if (IsSameFloatAfterCast(result.Val,
3129 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
3130 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
3131 return;
3132 }
3133
3134 if (isFromSystemMacro(S, CC))
3135 return;
3136
3137 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
3138 }
3139 return;
3140 }
3141
3142 // If the target is integral, always warn.
3143 if ((TargetBT && TargetBT->isInteger())) {
3144 if (isFromSystemMacro(S, CC))
3145 return;
3146
3147 Expr *InnerE = E->IgnoreParenImpCasts();
3148 if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
3149 DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
3150 } else {
3151 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
3152 }
3153 }
3154
3155 return;
3156 }
3157
3158 if (!Source->isIntegerType() || !Target->isIntegerType())
3159 return;
3160
3161 if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
3162 == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
3163 S.Diag(E->getExprLoc(), diag::warn_impcast_null_pointer_to_integer)
3164 << E->getSourceRange() << clang::SourceRange(CC);
3165 return;
3166 }
3167
3168 IntRange SourceRange = GetExprRange(S.Context, E);
3169 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
3170
3171 if (SourceRange.Width > TargetRange.Width) {
3172 // If the source is a constant, use a default-on diagnostic.
3173 // TODO: this should happen for bitfield stores, too.
3174 llvm::APSInt Value(32);
3175 if (E->isIntegerConstantExpr(Value, S.Context)) {
3176 if (isFromSystemMacro(S, CC))
3177 return;
3178
3179 std::string PrettySourceValue = Value.toString(10);
3180 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
3181
3182 S.Diag(E->getExprLoc(), diag::warn_impcast_integer_precision_constant)
3183 << PrettySourceValue << PrettyTargetValue
3184 << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC);
3185 return;
3186 }
3187
3188 // People want to build with -Wshorten-64-to-32 and not -Wconversion.
3189 if (isFromSystemMacro(S, CC))
3190 return;
3191
3192 if (SourceRange.Width == 64 && TargetRange.Width == 32)
3193 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
3194 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
3195 }
3196
3197 if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
3198 (!TargetRange.NonNegative && SourceRange.NonNegative &&
3199 SourceRange.Width == TargetRange.Width)) {
3200
3201 if (isFromSystemMacro(S, CC))
3202 return;
3203
3204 unsigned DiagID = diag::warn_impcast_integer_sign;
3205
3206 // Traditionally, gcc has warned about this under -Wsign-compare.
3207 // We also want to warn about it in -Wconversion.
3208 // So if -Wconversion is off, use a completely identical diagnostic
3209 // in the sign-compare group.
3210 // The conditional-checking code will
3211 if (ICContext) {
3212 DiagID = diag::warn_impcast_integer_sign_conditional;
3213 *ICContext = true;
3214 }
3215
3216 return DiagnoseImpCast(S, E, T, CC, DiagID);
3217 }
3218
3219 // Diagnose conversions between different enumeration types.
3220 // In C, we pretend that the type of an EnumConstantDecl is its enumeration
3221 // type, to give us better diagnostics.
3222 QualType SourceType = E->getType();
3223 if (!S.getLangOptions().CPlusPlus) {
3224 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3225 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
3226 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
3227 SourceType = S.Context.getTypeDeclType(Enum);
3228 Source = S.Context.getCanonicalType(SourceType).getTypePtr();
3229 }
3230 }
3231
3232 if (const EnumType *SourceEnum = Source->getAs<EnumType>())
3233 if (const EnumType *TargetEnum = Target->getAs<EnumType>())
3234 if ((SourceEnum->getDecl()->getIdentifier() ||
3235 SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3236 (TargetEnum->getDecl()->getIdentifier() ||
3237 TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3238 SourceEnum != TargetEnum) {
3239 if (isFromSystemMacro(S, CC))
3240 return;
3241
3242 return DiagnoseImpCast(S, E, SourceType, T, CC,
3243 diag::warn_impcast_different_enum_types);
3244 }
3245
3246 return;
3247 }
3248
3249 void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
3250
CheckConditionalOperand(Sema & S,Expr * E,QualType T,SourceLocation CC,bool & ICContext)3251 void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
3252 SourceLocation CC, bool &ICContext) {
3253 E = E->IgnoreParenImpCasts();
3254
3255 if (isa<ConditionalOperator>(E))
3256 return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
3257
3258 AnalyzeImplicitConversions(S, E, CC);
3259 if (E->getType() != T)
3260 return CheckImplicitConversion(S, E, T, CC, &ICContext);
3261 return;
3262 }
3263
CheckConditionalOperator(Sema & S,ConditionalOperator * E,QualType T)3264 void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
3265 SourceLocation CC = E->getQuestionLoc();
3266
3267 AnalyzeImplicitConversions(S, E->getCond(), CC);
3268
3269 bool Suspicious = false;
3270 CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
3271 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
3272
3273 // If -Wconversion would have warned about either of the candidates
3274 // for a signedness conversion to the context type...
3275 if (!Suspicious) return;
3276
3277 // ...but it's currently ignored...
3278 if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
3279 CC))
3280 return;
3281
3282 // ...and -Wsign-compare isn't...
3283 if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional, CC))
3284 return;
3285
3286 // ...then check whether it would have warned about either of the
3287 // candidates for a signedness conversion to the condition type.
3288 if (E->getType() != T) {
3289 Suspicious = false;
3290 CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
3291 E->getType(), CC, &Suspicious);
3292 if (!Suspicious)
3293 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
3294 E->getType(), CC, &Suspicious);
3295 if (!Suspicious)
3296 return;
3297 }
3298
3299 // If so, emit a diagnostic under -Wsign-compare.
3300 Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
3301 Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
3302 S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
3303 << lex->getType() << rex->getType()
3304 << lex->getSourceRange() << rex->getSourceRange();
3305 }
3306
3307 /// AnalyzeImplicitConversions - Find and report any interesting
3308 /// implicit conversions in the given expression. There are a couple
3309 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
AnalyzeImplicitConversions(Sema & S,Expr * OrigE,SourceLocation CC)3310 void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
3311 QualType T = OrigE->getType();
3312 Expr *E = OrigE->IgnoreParenImpCasts();
3313
3314 // For conditional operators, we analyze the arguments as if they
3315 // were being fed directly into the output.
3316 if (isa<ConditionalOperator>(E)) {
3317 ConditionalOperator *CO = cast<ConditionalOperator>(E);
3318 CheckConditionalOperator(S, CO, T);
3319 return;
3320 }
3321
3322 // Go ahead and check any implicit conversions we might have skipped.
3323 // The non-canonical typecheck is just an optimization;
3324 // CheckImplicitConversion will filter out dead implicit conversions.
3325 if (E->getType() != T)
3326 CheckImplicitConversion(S, E, T, CC);
3327
3328 // Now continue drilling into this expression.
3329
3330 // Skip past explicit casts.
3331 if (isa<ExplicitCastExpr>(E)) {
3332 E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
3333 return AnalyzeImplicitConversions(S, E, CC);
3334 }
3335
3336 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3337 // Do a somewhat different check with comparison operators.
3338 if (BO->isComparisonOp())
3339 return AnalyzeComparison(S, BO);
3340
3341 // And with assignments and compound assignments.
3342 if (BO->isAssignmentOp())
3343 return AnalyzeAssignment(S, BO);
3344 }
3345
3346 // These break the otherwise-useful invariant below. Fortunately,
3347 // we don't really need to recurse into them, because any internal
3348 // expressions should have been analyzed already when they were
3349 // built into statements.
3350 if (isa<StmtExpr>(E)) return;
3351
3352 // Don't descend into unevaluated contexts.
3353 if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
3354
3355 // Now just recurse over the expression's children.
3356 CC = E->getExprLoc();
3357 for (Stmt::child_range I = E->children(); I; ++I)
3358 AnalyzeImplicitConversions(S, cast<Expr>(*I), CC);
3359 }
3360
3361 } // end anonymous namespace
3362
3363 /// Diagnoses "dangerous" implicit conversions within the given
3364 /// expression (which is a full expression). Implements -Wconversion
3365 /// and -Wsign-compare.
3366 ///
3367 /// \param CC the "context" location of the implicit conversion, i.e.
3368 /// the most location of the syntactic entity requiring the implicit
3369 /// conversion
CheckImplicitConversions(Expr * E,SourceLocation CC)3370 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
3371 // Don't diagnose in unevaluated contexts.
3372 if (ExprEvalContexts.back().Context == Sema::Unevaluated)
3373 return;
3374
3375 // Don't diagnose for value- or type-dependent expressions.
3376 if (E->isTypeDependent() || E->isValueDependent())
3377 return;
3378
3379 // This is not the right CC for (e.g.) a variable initialization.
3380 AnalyzeImplicitConversions(*this, E, CC);
3381 }
3382
CheckBitFieldInitialization(SourceLocation InitLoc,FieldDecl * BitField,Expr * Init)3383 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
3384 FieldDecl *BitField,
3385 Expr *Init) {
3386 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
3387 }
3388
3389 /// CheckParmsForFunctionDef - Check that the parameters of the given
3390 /// function are appropriate for the definition of a function. This
3391 /// takes care of any checks that cannot be performed on the
3392 /// declaration itself, e.g., that the types of each of the function
3393 /// parameters are complete.
CheckParmsForFunctionDef(ParmVarDecl ** P,ParmVarDecl ** PEnd,bool CheckParameterNames)3394 bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
3395 bool CheckParameterNames) {
3396 bool HasInvalidParm = false;
3397 for (; P != PEnd; ++P) {
3398 ParmVarDecl *Param = *P;
3399
3400 // C99 6.7.5.3p4: the parameters in a parameter type list in a
3401 // function declarator that is part of a function definition of
3402 // that function shall not have incomplete type.
3403 //
3404 // This is also C++ [dcl.fct]p6.
3405 if (!Param->isInvalidDecl() &&
3406 RequireCompleteType(Param->getLocation(), Param->getType(),
3407 diag::err_typecheck_decl_incomplete_type)) {
3408 Param->setInvalidDecl();
3409 HasInvalidParm = true;
3410 }
3411
3412 // C99 6.9.1p5: If the declarator includes a parameter type list, the
3413 // declaration of each parameter shall include an identifier.
3414 if (CheckParameterNames &&
3415 Param->getIdentifier() == 0 &&
3416 !Param->isImplicit() &&
3417 !getLangOptions().CPlusPlus)
3418 Diag(Param->getLocation(), diag::err_parameter_name_omitted);
3419
3420 // C99 6.7.5.3p12:
3421 // If the function declarator is not part of a definition of that
3422 // function, parameters may have incomplete type and may use the [*]
3423 // notation in their sequences of declarator specifiers to specify
3424 // variable length array types.
3425 QualType PType = Param->getOriginalType();
3426 if (const ArrayType *AT = Context.getAsArrayType(PType)) {
3427 if (AT->getSizeModifier() == ArrayType::Star) {
3428 // FIXME: This diagnosic should point the the '[*]' if source-location
3429 // information is added for it.
3430 Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
3431 }
3432 }
3433 }
3434
3435 return HasInvalidParm;
3436 }
3437
3438 /// CheckCastAlign - Implements -Wcast-align, which warns when a
3439 /// pointer cast increases the alignment requirements.
CheckCastAlign(Expr * Op,QualType T,SourceRange TRange)3440 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
3441 // This is actually a lot of work to potentially be doing on every
3442 // cast; don't do it if we're ignoring -Wcast_align (as is the default).
3443 if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
3444 TRange.getBegin())
3445 == Diagnostic::Ignored)
3446 return;
3447
3448 // Ignore dependent types.
3449 if (T->isDependentType() || Op->getType()->isDependentType())
3450 return;
3451
3452 // Require that the destination be a pointer type.
3453 const PointerType *DestPtr = T->getAs<PointerType>();
3454 if (!DestPtr) return;
3455
3456 // If the destination has alignment 1, we're done.
3457 QualType DestPointee = DestPtr->getPointeeType();
3458 if (DestPointee->isIncompleteType()) return;
3459 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
3460 if (DestAlign.isOne()) return;
3461
3462 // Require that the source be a pointer type.
3463 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
3464 if (!SrcPtr) return;
3465 QualType SrcPointee = SrcPtr->getPointeeType();
3466
3467 // Whitelist casts from cv void*. We already implicitly
3468 // whitelisted casts to cv void*, since they have alignment 1.
3469 // Also whitelist casts involving incomplete types, which implicitly
3470 // includes 'void'.
3471 if (SrcPointee->isIncompleteType()) return;
3472
3473 CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
3474 if (SrcAlign >= DestAlign) return;
3475
3476 Diag(TRange.getBegin(), diag::warn_cast_align)
3477 << Op->getType() << T
3478 << static_cast<unsigned>(SrcAlign.getQuantity())
3479 << static_cast<unsigned>(DestAlign.getQuantity())
3480 << TRange << Op->getSourceRange();
3481 }
3482
CheckArrayAccess_Check(Sema & S,const clang::ArraySubscriptExpr * E)3483 static void CheckArrayAccess_Check(Sema &S,
3484 const clang::ArraySubscriptExpr *E) {
3485 const Expr *BaseExpr = E->getBase()->IgnoreParenImpCasts();
3486 const ConstantArrayType *ArrayTy =
3487 S.Context.getAsConstantArrayType(BaseExpr->getType());
3488 if (!ArrayTy)
3489 return;
3490
3491 const Expr *IndexExpr = E->getIdx();
3492 if (IndexExpr->isValueDependent())
3493 return;
3494 llvm::APSInt index;
3495 if (!IndexExpr->isIntegerConstantExpr(index, S.Context))
3496 return;
3497
3498 if (index.isUnsigned() || !index.isNegative()) {
3499 llvm::APInt size = ArrayTy->getSize();
3500 if (!size.isStrictlyPositive())
3501 return;
3502 if (size.getBitWidth() > index.getBitWidth())
3503 index = index.sext(size.getBitWidth());
3504 else if (size.getBitWidth() < index.getBitWidth())
3505 size = size.sext(index.getBitWidth());
3506
3507 if (index.slt(size))
3508 return;
3509
3510 S.DiagRuntimeBehavior(E->getBase()->getLocStart(), BaseExpr,
3511 S.PDiag(diag::warn_array_index_exceeds_bounds)
3512 << index.toString(10, true)
3513 << size.toString(10, true)
3514 << IndexExpr->getSourceRange());
3515 } else {
3516 S.DiagRuntimeBehavior(E->getBase()->getLocStart(), BaseExpr,
3517 S.PDiag(diag::warn_array_index_precedes_bounds)
3518 << index.toString(10, true)
3519 << IndexExpr->getSourceRange());
3520 }
3521
3522 const NamedDecl *ND = NULL;
3523 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
3524 ND = dyn_cast<NamedDecl>(DRE->getDecl());
3525 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
3526 ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
3527 if (ND)
3528 S.DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
3529 S.PDiag(diag::note_array_index_out_of_bounds)
3530 << ND->getDeclName());
3531 }
3532
CheckArrayAccess(const Expr * expr)3533 void Sema::CheckArrayAccess(const Expr *expr) {
3534 while (true) {
3535 expr = expr->IgnoreParens();
3536 switch (expr->getStmtClass()) {
3537 case Stmt::ArraySubscriptExprClass:
3538 CheckArrayAccess_Check(*this, cast<ArraySubscriptExpr>(expr));
3539 return;
3540 case Stmt::ConditionalOperatorClass: {
3541 const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
3542 if (const Expr *lhs = cond->getLHS())
3543 CheckArrayAccess(lhs);
3544 if (const Expr *rhs = cond->getRHS())
3545 CheckArrayAccess(rhs);
3546 return;
3547 }
3548 default:
3549 return;
3550 }
3551 }
3552 }
3553
3554 //===--- CHECK: Objective-C retain cycles ----------------------------------//
3555
3556 namespace {
3557 struct RetainCycleOwner {
RetainCycleOwner__anon12adead60511::RetainCycleOwner3558 RetainCycleOwner() : Variable(0), Indirect(false) {}
3559 VarDecl *Variable;
3560 SourceRange Range;
3561 SourceLocation Loc;
3562 bool Indirect;
3563
setLocsFrom__anon12adead60511::RetainCycleOwner3564 void setLocsFrom(Expr *e) {
3565 Loc = e->getExprLoc();
3566 Range = e->getSourceRange();
3567 }
3568 };
3569 }
3570
3571 /// Consider whether capturing the given variable can possibly lead to
3572 /// a retain cycle.
considerVariable(VarDecl * var,Expr * ref,RetainCycleOwner & owner)3573 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
3574 // In ARC, it's captured strongly iff the variable has __strong
3575 // lifetime. In MRR, it's captured strongly if the variable is
3576 // __block and has an appropriate type.
3577 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
3578 return false;
3579
3580 owner.Variable = var;
3581 owner.setLocsFrom(ref);
3582 return true;
3583 }
3584
findRetainCycleOwner(Expr * e,RetainCycleOwner & owner)3585 static bool findRetainCycleOwner(Expr *e, RetainCycleOwner &owner) {
3586 while (true) {
3587 e = e->IgnoreParens();
3588 if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
3589 switch (cast->getCastKind()) {
3590 case CK_BitCast:
3591 case CK_LValueBitCast:
3592 case CK_LValueToRValue:
3593 case CK_ObjCReclaimReturnedObject:
3594 e = cast->getSubExpr();
3595 continue;
3596
3597 case CK_GetObjCProperty: {
3598 // Bail out if this isn't a strong explicit property.
3599 const ObjCPropertyRefExpr *pre = cast->getSubExpr()->getObjCProperty();
3600 if (pre->isImplicitProperty()) return false;
3601 ObjCPropertyDecl *property = pre->getExplicitProperty();
3602 if (!(property->getPropertyAttributes() &
3603 (ObjCPropertyDecl::OBJC_PR_retain |
3604 ObjCPropertyDecl::OBJC_PR_copy |
3605 ObjCPropertyDecl::OBJC_PR_strong)) &&
3606 !(property->getPropertyIvarDecl() &&
3607 property->getPropertyIvarDecl()->getType()
3608 .getObjCLifetime() == Qualifiers::OCL_Strong))
3609 return false;
3610
3611 owner.Indirect = true;
3612 e = const_cast<Expr*>(pre->getBase());
3613 continue;
3614 }
3615
3616 default:
3617 return false;
3618 }
3619 }
3620
3621 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
3622 ObjCIvarDecl *ivar = ref->getDecl();
3623 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
3624 return false;
3625
3626 // Try to find a retain cycle in the base.
3627 if (!findRetainCycleOwner(ref->getBase(), owner))
3628 return false;
3629
3630 if (ref->isFreeIvar()) owner.setLocsFrom(ref);
3631 owner.Indirect = true;
3632 return true;
3633 }
3634
3635 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
3636 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
3637 if (!var) return false;
3638 return considerVariable(var, ref, owner);
3639 }
3640
3641 if (BlockDeclRefExpr *ref = dyn_cast<BlockDeclRefExpr>(e)) {
3642 owner.Variable = ref->getDecl();
3643 owner.setLocsFrom(ref);
3644 return true;
3645 }
3646
3647 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
3648 if (member->isArrow()) return false;
3649
3650 // Don't count this as an indirect ownership.
3651 e = member->getBase();
3652 continue;
3653 }
3654
3655 // Array ivars?
3656
3657 return false;
3658 }
3659 }
3660
3661 namespace {
3662 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
FindCaptureVisitor__anon12adead60611::FindCaptureVisitor3663 FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
3664 : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
3665 Variable(variable), Capturer(0) {}
3666
3667 VarDecl *Variable;
3668 Expr *Capturer;
3669
VisitDeclRefExpr__anon12adead60611::FindCaptureVisitor3670 void VisitDeclRefExpr(DeclRefExpr *ref) {
3671 if (ref->getDecl() == Variable && !Capturer)
3672 Capturer = ref;
3673 }
3674
VisitBlockDeclRefExpr__anon12adead60611::FindCaptureVisitor3675 void VisitBlockDeclRefExpr(BlockDeclRefExpr *ref) {
3676 if (ref->getDecl() == Variable && !Capturer)
3677 Capturer = ref;
3678 }
3679
VisitObjCIvarRefExpr__anon12adead60611::FindCaptureVisitor3680 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
3681 if (Capturer) return;
3682 Visit(ref->getBase());
3683 if (Capturer && ref->isFreeIvar())
3684 Capturer = ref;
3685 }
3686
VisitBlockExpr__anon12adead60611::FindCaptureVisitor3687 void VisitBlockExpr(BlockExpr *block) {
3688 // Look inside nested blocks
3689 if (block->getBlockDecl()->capturesVariable(Variable))
3690 Visit(block->getBlockDecl()->getBody());
3691 }
3692 };
3693 }
3694
3695 /// Check whether the given argument is a block which captures a
3696 /// variable.
findCapturingExpr(Sema & S,Expr * e,RetainCycleOwner & owner)3697 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
3698 assert(owner.Variable && owner.Loc.isValid());
3699
3700 e = e->IgnoreParenCasts();
3701 BlockExpr *block = dyn_cast<BlockExpr>(e);
3702 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
3703 return 0;
3704
3705 FindCaptureVisitor visitor(S.Context, owner.Variable);
3706 visitor.Visit(block->getBlockDecl()->getBody());
3707 return visitor.Capturer;
3708 }
3709
diagnoseRetainCycle(Sema & S,Expr * capturer,RetainCycleOwner & owner)3710 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
3711 RetainCycleOwner &owner) {
3712 assert(capturer);
3713 assert(owner.Variable && owner.Loc.isValid());
3714
3715 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
3716 << owner.Variable << capturer->getSourceRange();
3717 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
3718 << owner.Indirect << owner.Range;
3719 }
3720
3721 /// Check for a keyword selector that starts with the word 'add' or
3722 /// 'set'.
isSetterLikeSelector(Selector sel)3723 static bool isSetterLikeSelector(Selector sel) {
3724 if (sel.isUnarySelector()) return false;
3725
3726 llvm::StringRef str = sel.getNameForSlot(0);
3727 while (!str.empty() && str.front() == '_') str = str.substr(1);
3728 if (str.startswith("set") || str.startswith("add"))
3729 str = str.substr(3);
3730 else
3731 return false;
3732
3733 if (str.empty()) return true;
3734 return !islower(str.front());
3735 }
3736
3737 /// Check a message send to see if it's likely to cause a retain cycle.
checkRetainCycles(ObjCMessageExpr * msg)3738 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
3739 // Only check instance methods whose selector looks like a setter.
3740 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
3741 return;
3742
3743 // Try to find a variable that the receiver is strongly owned by.
3744 RetainCycleOwner owner;
3745 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
3746 if (!findRetainCycleOwner(msg->getInstanceReceiver(), owner))
3747 return;
3748 } else {
3749 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
3750 owner.Variable = getCurMethodDecl()->getSelfDecl();
3751 owner.Loc = msg->getSuperLoc();
3752 owner.Range = msg->getSuperLoc();
3753 }
3754
3755 // Check whether the receiver is captured by any of the arguments.
3756 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
3757 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
3758 return diagnoseRetainCycle(*this, capturer, owner);
3759 }
3760
3761 /// Check a property assign to see if it's likely to cause a retain cycle.
checkRetainCycles(Expr * receiver,Expr * argument)3762 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
3763 RetainCycleOwner owner;
3764 if (!findRetainCycleOwner(receiver, owner))
3765 return;
3766
3767 if (Expr *capturer = findCapturingExpr(*this, argument, owner))
3768 diagnoseRetainCycle(*this, capturer, owner);
3769 }
3770
checkUnsafeAssigns(SourceLocation Loc,QualType LHS,Expr * RHS)3771 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
3772 QualType LHS, Expr *RHS) {
3773 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
3774 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
3775 return false;
3776 // strip off any implicit cast added to get to the one arc-specific
3777 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
3778 if (cast->getCastKind() == CK_ObjCConsumeObject) {
3779 Diag(Loc, diag::warn_arc_retained_assign)
3780 << (LT == Qualifiers::OCL_ExplicitNone)
3781 << RHS->getSourceRange();
3782 return true;
3783 }
3784 RHS = cast->getSubExpr();
3785 }
3786 return false;
3787 }
3788
checkUnsafeExprAssigns(SourceLocation Loc,Expr * LHS,Expr * RHS)3789 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
3790 Expr *LHS, Expr *RHS) {
3791 QualType LHSType = LHS->getType();
3792 if (checkUnsafeAssigns(Loc, LHSType, RHS))
3793 return;
3794 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
3795 // FIXME. Check for other life times.
3796 if (LT != Qualifiers::OCL_None)
3797 return;
3798
3799 if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(LHS)) {
3800 if (PRE->isImplicitProperty())
3801 return;
3802 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
3803 if (!PD)
3804 return;
3805
3806 unsigned Attributes = PD->getPropertyAttributes();
3807 if (Attributes & ObjCPropertyDecl::OBJC_PR_assign)
3808 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
3809 if (cast->getCastKind() == CK_ObjCConsumeObject) {
3810 Diag(Loc, diag::warn_arc_retained_property_assign)
3811 << RHS->getSourceRange();
3812 return;
3813 }
3814 RHS = cast->getSubExpr();
3815 }
3816 }
3817 }
3818