• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class wraps target description classes used by the various code
11 // generation TableGen backends.  This makes it easier to access the data and
12 // provides a single place that needs to check it for validity.  All of these
13 // classes throw exceptions on error conditions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "CodeGenTarget.h"
18 #include "CodeGenIntrinsics.h"
19 #include "Record.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/Support/CommandLine.h"
23 #include <algorithm>
24 using namespace llvm;
25 
26 static cl::opt<unsigned>
27 AsmParserNum("asmparsernum", cl::init(0),
28              cl::desc("Make -gen-asm-parser emit assembly parser #N"));
29 
30 static cl::opt<unsigned>
31 AsmWriterNum("asmwriternum", cl::init(0),
32              cl::desc("Make -gen-asm-writer emit assembly writer #N"));
33 
34 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
35 /// record corresponds to.
getValueType(Record * Rec)36 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
37   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
38 }
39 
getName(MVT::SimpleValueType T)40 std::string llvm::getName(MVT::SimpleValueType T) {
41   switch (T) {
42   case MVT::Other:   return "UNKNOWN";
43   case MVT::iPTR:    return "TLI.getPointerTy()";
44   case MVT::iPTRAny: return "TLI.getPointerTy()";
45   default: return getEnumName(T);
46   }
47 }
48 
getEnumName(MVT::SimpleValueType T)49 std::string llvm::getEnumName(MVT::SimpleValueType T) {
50   switch (T) {
51   case MVT::Other:    return "MVT::Other";
52   case MVT::i1:       return "MVT::i1";
53   case MVT::i8:       return "MVT::i8";
54   case MVT::i16:      return "MVT::i16";
55   case MVT::i32:      return "MVT::i32";
56   case MVT::i64:      return "MVT::i64";
57   case MVT::i128:     return "MVT::i128";
58   case MVT::iAny:     return "MVT::iAny";
59   case MVT::fAny:     return "MVT::fAny";
60   case MVT::vAny:     return "MVT::vAny";
61   case MVT::f32:      return "MVT::f32";
62   case MVT::f64:      return "MVT::f64";
63   case MVT::f80:      return "MVT::f80";
64   case MVT::f128:     return "MVT::f128";
65   case MVT::ppcf128:  return "MVT::ppcf128";
66   case MVT::x86mmx:   return "MVT::x86mmx";
67   case MVT::Glue:     return "MVT::Glue";
68   case MVT::isVoid:   return "MVT::isVoid";
69   case MVT::v2i8:     return "MVT::v2i8";
70   case MVT::v4i8:     return "MVT::v4i8";
71   case MVT::v8i8:     return "MVT::v8i8";
72   case MVT::v16i8:    return "MVT::v16i8";
73   case MVT::v32i8:    return "MVT::v32i8";
74   case MVT::v2i16:    return "MVT::v2i16";
75   case MVT::v4i16:    return "MVT::v4i16";
76   case MVT::v8i16:    return "MVT::v8i16";
77   case MVT::v16i16:   return "MVT::v16i16";
78   case MVT::v2i32:    return "MVT::v2i32";
79   case MVT::v4i32:    return "MVT::v4i32";
80   case MVT::v8i32:    return "MVT::v8i32";
81   case MVT::v1i64:    return "MVT::v1i64";
82   case MVT::v2i64:    return "MVT::v2i64";
83   case MVT::v4i64:    return "MVT::v4i64";
84   case MVT::v8i64:    return "MVT::v8i64";
85   case MVT::v2f32:    return "MVT::v2f32";
86   case MVT::v4f32:    return "MVT::v4f32";
87   case MVT::v8f32:    return "MVT::v8f32";
88   case MVT::v2f64:    return "MVT::v2f64";
89   case MVT::v4f64:    return "MVT::v4f64";
90   case MVT::Metadata: return "MVT::Metadata";
91   case MVT::iPTR:     return "MVT::iPTR";
92   case MVT::iPTRAny:  return "MVT::iPTRAny";
93   case MVT::untyped:  return "MVT::untyped";
94   default: assert(0 && "ILLEGAL VALUE TYPE!"); return "";
95   }
96 }
97 
98 /// getQualifiedName - Return the name of the specified record, with a
99 /// namespace qualifier if the record contains one.
100 ///
getQualifiedName(const Record * R)101 std::string llvm::getQualifiedName(const Record *R) {
102   std::string Namespace;
103   if (R->getValue("Namespace"))
104      Namespace = R->getValueAsString("Namespace");
105   if (Namespace.empty()) return R->getName();
106   return Namespace + "::" + R->getName();
107 }
108 
109 
110 /// getTarget - Return the current instance of the Target class.
111 ///
CodeGenTarget(RecordKeeper & records)112 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
113   : Records(records), RegBank(0) {
114   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
115   if (Targets.size() == 0)
116     throw std::string("ERROR: No 'Target' subclasses defined!");
117   if (Targets.size() != 1)
118     throw std::string("ERROR: Multiple subclasses of Target defined!");
119   TargetRec = Targets[0];
120 }
121 
122 
getName() const123 const std::string &CodeGenTarget::getName() const {
124   return TargetRec->getName();
125 }
126 
getInstNamespace() const127 std::string CodeGenTarget::getInstNamespace() const {
128   for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) {
129     // Make sure not to pick up "TargetOpcode" by accidentally getting
130     // the namespace off the PHI instruction or something.
131     if ((*i)->Namespace != "TargetOpcode")
132       return (*i)->Namespace;
133   }
134 
135   return "";
136 }
137 
getInstructionSet() const138 Record *CodeGenTarget::getInstructionSet() const {
139   return TargetRec->getValueAsDef("InstructionSet");
140 }
141 
142 
143 /// getAsmParser - Return the AssemblyParser definition for this target.
144 ///
getAsmParser() const145 Record *CodeGenTarget::getAsmParser() const {
146   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
147   if (AsmParserNum >= LI.size())
148     throw "Target does not have an AsmParser #" + utostr(AsmParserNum) + "!";
149   return LI[AsmParserNum];
150 }
151 
152 /// getAsmWriter - Return the AssemblyWriter definition for this target.
153 ///
getAsmWriter() const154 Record *CodeGenTarget::getAsmWriter() const {
155   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
156   if (AsmWriterNum >= LI.size())
157     throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!";
158   return LI[AsmWriterNum];
159 }
160 
getRegBank() const161 CodeGenRegBank &CodeGenTarget::getRegBank() const {
162   if (!RegBank)
163     RegBank = new CodeGenRegBank(Records);
164   return *RegBank;
165 }
166 
ReadRegAltNameIndices() const167 void CodeGenTarget::ReadRegAltNameIndices() const {
168   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
169   std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
170 }
171 
172 /// getRegisterByName - If there is a register with the specific AsmName,
173 /// return it.
getRegisterByName(StringRef Name) const174 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
175   const std::vector<CodeGenRegister*> &Regs = getRegBank().getRegisters();
176   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
177     if (Regs[i]->TheDef->getValueAsString("AsmName") == Name)
178       return Regs[i];
179 
180   return 0;
181 }
182 
183 std::vector<MVT::SimpleValueType> CodeGenTarget::
getRegisterVTs(Record * R) const184 getRegisterVTs(Record *R) const {
185   const CodeGenRegister *Reg = getRegBank().getReg(R);
186   std::vector<MVT::SimpleValueType> Result;
187   const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses();
188   for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
189     const CodeGenRegisterClass &RC = RCs[i];
190     if (RC.contains(Reg)) {
191       const std::vector<MVT::SimpleValueType> &InVTs = RC.getValueTypes();
192       Result.insert(Result.end(), InVTs.begin(), InVTs.end());
193     }
194   }
195 
196   // Remove duplicates.
197   array_pod_sort(Result.begin(), Result.end());
198   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
199   return Result;
200 }
201 
202 
ReadLegalValueTypes() const203 void CodeGenTarget::ReadLegalValueTypes() const {
204   const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses();
205   for (unsigned i = 0, e = RCs.size(); i != e; ++i)
206     for (unsigned ri = 0, re = RCs[i].VTs.size(); ri != re; ++ri)
207       LegalValueTypes.push_back(RCs[i].VTs[ri]);
208 
209   // Remove duplicates.
210   std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
211   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
212                                     LegalValueTypes.end()),
213                         LegalValueTypes.end());
214 }
215 
216 
ReadInstructions() const217 void CodeGenTarget::ReadInstructions() const {
218   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
219   if (Insts.size() <= 2)
220     throw std::string("No 'Instruction' subclasses defined!");
221 
222   // Parse the instructions defined in the .td file.
223   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
224     Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]);
225 }
226 
227 static const CodeGenInstruction *
GetInstByName(const char * Name,const DenseMap<const Record *,CodeGenInstruction * > & Insts,RecordKeeper & Records)228 GetInstByName(const char *Name,
229               const DenseMap<const Record*, CodeGenInstruction*> &Insts,
230               RecordKeeper &Records) {
231   const Record *Rec = Records.getDef(Name);
232 
233   DenseMap<const Record*, CodeGenInstruction*>::const_iterator
234     I = Insts.find(Rec);
235   if (Rec == 0 || I == Insts.end())
236     throw std::string("Could not find '") + Name + "' instruction!";
237   return I->second;
238 }
239 
240 namespace {
241 /// SortInstByName - Sorting predicate to sort instructions by name.
242 ///
243 struct SortInstByName {
operator ()__anonfbcd2cbc0111::SortInstByName244   bool operator()(const CodeGenInstruction *Rec1,
245                   const CodeGenInstruction *Rec2) const {
246     return Rec1->TheDef->getName() < Rec2->TheDef->getName();
247   }
248 };
249 }
250 
251 /// getInstructionsByEnumValue - Return all of the instructions defined by the
252 /// target, ordered by their enum value.
ComputeInstrsByEnum() const253 void CodeGenTarget::ComputeInstrsByEnum() const {
254   // The ordering here must match the ordering in TargetOpcodes.h.
255   const char *const FixedInstrs[] = {
256     "PHI",
257     "INLINEASM",
258     "PROLOG_LABEL",
259     "EH_LABEL",
260     "GC_LABEL",
261     "KILL",
262     "EXTRACT_SUBREG",
263     "INSERT_SUBREG",
264     "IMPLICIT_DEF",
265     "SUBREG_TO_REG",
266     "COPY_TO_REGCLASS",
267     "DBG_VALUE",
268     "REG_SEQUENCE",
269     "COPY",
270     0
271   };
272   const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions();
273   for (const char *const *p = FixedInstrs; *p; ++p) {
274     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
275     assert(Instr && "Missing target independent instruction");
276     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
277     InstrsByEnum.push_back(Instr);
278   }
279   unsigned EndOfPredefines = InstrsByEnum.size();
280 
281   for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator
282        I = Insts.begin(), E = Insts.end(); I != E; ++I) {
283     const CodeGenInstruction *CGI = I->second;
284     if (CGI->Namespace != "TargetOpcode")
285       InstrsByEnum.push_back(CGI);
286   }
287 
288   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
289 
290   // All of the instructions are now in random order based on the map iteration.
291   // Sort them by name.
292   std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(),
293             SortInstByName());
294 }
295 
296 
297 /// isLittleEndianEncoding - Return whether this target encodes its instruction
298 /// in little-endian format, i.e. bits laid out in the order [0..n]
299 ///
isLittleEndianEncoding() const300 bool CodeGenTarget::isLittleEndianEncoding() const {
301   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
302 }
303 
304 //===----------------------------------------------------------------------===//
305 // ComplexPattern implementation
306 //
ComplexPattern(Record * R)307 ComplexPattern::ComplexPattern(Record *R) {
308   Ty          = ::getValueType(R->getValueAsDef("Ty"));
309   NumOperands = R->getValueAsInt("NumOperands");
310   SelectFunc  = R->getValueAsString("SelectFunc");
311   RootNodes   = R->getValueAsListOfDefs("RootNodes");
312 
313   // Parse the properties.
314   Properties = 0;
315   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
316   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
317     if (PropList[i]->getName() == "SDNPHasChain") {
318       Properties |= 1 << SDNPHasChain;
319     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
320       Properties |= 1 << SDNPOptInGlue;
321     } else if (PropList[i]->getName() == "SDNPMayStore") {
322       Properties |= 1 << SDNPMayStore;
323     } else if (PropList[i]->getName() == "SDNPMayLoad") {
324       Properties |= 1 << SDNPMayLoad;
325     } else if (PropList[i]->getName() == "SDNPSideEffect") {
326       Properties |= 1 << SDNPSideEffect;
327     } else if (PropList[i]->getName() == "SDNPMemOperand") {
328       Properties |= 1 << SDNPMemOperand;
329     } else if (PropList[i]->getName() == "SDNPVariadic") {
330       Properties |= 1 << SDNPVariadic;
331     } else if (PropList[i]->getName() == "SDNPWantRoot") {
332       Properties |= 1 << SDNPWantRoot;
333     } else if (PropList[i]->getName() == "SDNPWantParent") {
334       Properties |= 1 << SDNPWantParent;
335     } else {
336       errs() << "Unsupported SD Node property '" << PropList[i]->getName()
337              << "' on ComplexPattern '" << R->getName() << "'!\n";
338       exit(1);
339     }
340 }
341 
342 //===----------------------------------------------------------------------===//
343 // CodeGenIntrinsic Implementation
344 //===----------------------------------------------------------------------===//
345 
LoadIntrinsics(const RecordKeeper & RC,bool TargetOnly)346 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
347                                                    bool TargetOnly) {
348   std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
349 
350   std::vector<CodeGenIntrinsic> Result;
351 
352   for (unsigned i = 0, e = I.size(); i != e; ++i) {
353     bool isTarget = I[i]->getValueAsBit("isTarget");
354     if (isTarget == TargetOnly)
355       Result.push_back(CodeGenIntrinsic(I[i]));
356   }
357   return Result;
358 }
359 
CodeGenIntrinsic(Record * R)360 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
361   TheDef = R;
362   std::string DefName = R->getName();
363   ModRef = ReadWriteMem;
364   isOverloaded = false;
365   isCommutative = false;
366   canThrow = false;
367 
368   if (DefName.size() <= 4 ||
369       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
370     throw "Intrinsic '" + DefName + "' does not start with 'int_'!";
371 
372   EnumName = std::string(DefName.begin()+4, DefName.end());
373 
374   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
375     GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
376 
377   TargetPrefix = R->getValueAsString("TargetPrefix");
378   Name = R->getValueAsString("LLVMName");
379 
380   if (Name == "") {
381     // If an explicit name isn't specified, derive one from the DefName.
382     Name = "llvm.";
383 
384     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
385       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
386   } else {
387     // Verify it starts with "llvm.".
388     if (Name.size() <= 5 ||
389         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
390       throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!";
391   }
392 
393   // If TargetPrefix is specified, make sure that Name starts with
394   // "llvm.<targetprefix>.".
395   if (!TargetPrefix.empty()) {
396     if (Name.size() < 6+TargetPrefix.size() ||
397         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
398         != (TargetPrefix + "."))
399       throw "Intrinsic '" + DefName + "' does not start with 'llvm." +
400         TargetPrefix + ".'!";
401   }
402 
403   // Parse the list of return types.
404   std::vector<MVT::SimpleValueType> OverloadedVTs;
405   ListInit *TypeList = R->getValueAsListInit("RetTypes");
406   for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
407     Record *TyEl = TypeList->getElementAsRecord(i);
408     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
409     MVT::SimpleValueType VT;
410     if (TyEl->isSubClassOf("LLVMMatchType")) {
411       unsigned MatchTy = TyEl->getValueAsInt("Number");
412       assert(MatchTy < OverloadedVTs.size() &&
413              "Invalid matching number!");
414       VT = OverloadedVTs[MatchTy];
415       // It only makes sense to use the extended and truncated vector element
416       // variants with iAny types; otherwise, if the intrinsic is not
417       // overloaded, all the types can be specified directly.
418       assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
419                !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
420               VT == MVT::iAny || VT == MVT::vAny) &&
421              "Expected iAny or vAny type");
422     } else {
423       VT = getValueType(TyEl->getValueAsDef("VT"));
424     }
425     if (EVT(VT).isOverloaded()) {
426       OverloadedVTs.push_back(VT);
427       isOverloaded = true;
428     }
429 
430     // Reject invalid types.
431     if (VT == MVT::isVoid)
432       throw "Intrinsic '" + DefName + " has void in result type list!";
433 
434     IS.RetVTs.push_back(VT);
435     IS.RetTypeDefs.push_back(TyEl);
436   }
437 
438   // Parse the list of parameter types.
439   TypeList = R->getValueAsListInit("ParamTypes");
440   for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
441     Record *TyEl = TypeList->getElementAsRecord(i);
442     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
443     MVT::SimpleValueType VT;
444     if (TyEl->isSubClassOf("LLVMMatchType")) {
445       unsigned MatchTy = TyEl->getValueAsInt("Number");
446       assert(MatchTy < OverloadedVTs.size() &&
447              "Invalid matching number!");
448       VT = OverloadedVTs[MatchTy];
449       // It only makes sense to use the extended and truncated vector element
450       // variants with iAny types; otherwise, if the intrinsic is not
451       // overloaded, all the types can be specified directly.
452       assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
453                !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
454               VT == MVT::iAny || VT == MVT::vAny) &&
455              "Expected iAny or vAny type");
456     } else
457       VT = getValueType(TyEl->getValueAsDef("VT"));
458 
459     if (EVT(VT).isOverloaded()) {
460       OverloadedVTs.push_back(VT);
461       isOverloaded = true;
462     }
463 
464     // Reject invalid types.
465     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
466       throw "Intrinsic '" + DefName + " has void in result type list!";
467 
468     IS.ParamVTs.push_back(VT);
469     IS.ParamTypeDefs.push_back(TyEl);
470   }
471 
472   // Parse the intrinsic properties.
473   ListInit *PropList = R->getValueAsListInit("Properties");
474   for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
475     Record *Property = PropList->getElementAsRecord(i);
476     assert(Property->isSubClassOf("IntrinsicProperty") &&
477            "Expected a property!");
478 
479     if (Property->getName() == "IntrNoMem")
480       ModRef = NoMem;
481     else if (Property->getName() == "IntrReadArgMem")
482       ModRef = ReadArgMem;
483     else if (Property->getName() == "IntrReadMem")
484       ModRef = ReadMem;
485     else if (Property->getName() == "IntrReadWriteArgMem")
486       ModRef = ReadWriteArgMem;
487     else if (Property->getName() == "Commutative")
488       isCommutative = true;
489     else if (Property->getName() == "Throws")
490       canThrow = true;
491     else if (Property->isSubClassOf("NoCapture")) {
492       unsigned ArgNo = Property->getValueAsInt("ArgNo");
493       ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
494     } else
495       assert(0 && "Unknown property!");
496   }
497 
498   // Sort the argument attributes for later benefit.
499   std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
500 }
501