1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 // This file implements C++ template argument deduction.
10 //
11 //===----------------------------------------------------------------------===/
12
13 #include "clang/Sema/Sema.h"
14 #include "clang/Sema/DeclSpec.h"
15 #include "clang/Sema/Template.h"
16 #include "clang/Sema/TemplateDeduction.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "TreeTransform.h"
25 #include <algorithm>
26
27 namespace clang {
28 using namespace sema;
29
30 /// \brief Various flags that control template argument deduction.
31 ///
32 /// These flags can be bitwise-OR'd together.
33 enum TemplateDeductionFlags {
34 /// \brief No template argument deduction flags, which indicates the
35 /// strictest results for template argument deduction (as used for, e.g.,
36 /// matching class template partial specializations).
37 TDF_None = 0,
38 /// \brief Within template argument deduction from a function call, we are
39 /// matching with a parameter type for which the original parameter was
40 /// a reference.
41 TDF_ParamWithReferenceType = 0x1,
42 /// \brief Within template argument deduction from a function call, we
43 /// are matching in a case where we ignore cv-qualifiers.
44 TDF_IgnoreQualifiers = 0x02,
45 /// \brief Within template argument deduction from a function call,
46 /// we are matching in a case where we can perform template argument
47 /// deduction from a template-id of a derived class of the argument type.
48 TDF_DerivedClass = 0x04,
49 /// \brief Allow non-dependent types to differ, e.g., when performing
50 /// template argument deduction from a function call where conversions
51 /// may apply.
52 TDF_SkipNonDependent = 0x08,
53 /// \brief Whether we are performing template argument deduction for
54 /// parameters and arguments in a top-level template argument
55 TDF_TopLevelParameterTypeList = 0x10
56 };
57 }
58
59 using namespace clang;
60
61 /// \brief Compare two APSInts, extending and switching the sign as
62 /// necessary to compare their values regardless of underlying type.
hasSameExtendedValue(llvm::APSInt X,llvm::APSInt Y)63 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
64 if (Y.getBitWidth() > X.getBitWidth())
65 X = X.extend(Y.getBitWidth());
66 else if (Y.getBitWidth() < X.getBitWidth())
67 Y = Y.extend(X.getBitWidth());
68
69 // If there is a signedness mismatch, correct it.
70 if (X.isSigned() != Y.isSigned()) {
71 // If the signed value is negative, then the values cannot be the same.
72 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
73 return false;
74
75 Y.setIsSigned(true);
76 X.setIsSigned(true);
77 }
78
79 return X == Y;
80 }
81
82 static Sema::TemplateDeductionResult
83 DeduceTemplateArguments(Sema &S,
84 TemplateParameterList *TemplateParams,
85 const TemplateArgument &Param,
86 TemplateArgument Arg,
87 TemplateDeductionInfo &Info,
88 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced);
89
90 /// \brief Whether template argument deduction for two reference parameters
91 /// resulted in the argument type, parameter type, or neither type being more
92 /// qualified than the other.
93 enum DeductionQualifierComparison {
94 NeitherMoreQualified = 0,
95 ParamMoreQualified,
96 ArgMoreQualified
97 };
98
99 /// \brief Stores the result of comparing two reference parameters while
100 /// performing template argument deduction for partial ordering of function
101 /// templates.
102 struct RefParamPartialOrderingComparison {
103 /// \brief Whether the parameter type is an rvalue reference type.
104 bool ParamIsRvalueRef;
105 /// \brief Whether the argument type is an rvalue reference type.
106 bool ArgIsRvalueRef;
107
108 /// \brief Whether the parameter or argument (or neither) is more qualified.
109 DeductionQualifierComparison Qualifiers;
110 };
111
112
113
114 static Sema::TemplateDeductionResult
115 DeduceTemplateArguments(Sema &S,
116 TemplateParameterList *TemplateParams,
117 QualType Param,
118 QualType Arg,
119 TemplateDeductionInfo &Info,
120 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
121 unsigned TDF,
122 bool PartialOrdering = false,
123 llvm::SmallVectorImpl<RefParamPartialOrderingComparison> *
124 RefParamComparisons = 0);
125
126 static Sema::TemplateDeductionResult
127 DeduceTemplateArguments(Sema &S,
128 TemplateParameterList *TemplateParams,
129 const TemplateArgument *Params, unsigned NumParams,
130 const TemplateArgument *Args, unsigned NumArgs,
131 TemplateDeductionInfo &Info,
132 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
133 bool NumberOfArgumentsMustMatch = true);
134
135 /// \brief If the given expression is of a form that permits the deduction
136 /// of a non-type template parameter, return the declaration of that
137 /// non-type template parameter.
getDeducedParameterFromExpr(Expr * E)138 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
139 if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
140 E = IC->getSubExpr();
141
142 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
143 return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
144
145 return 0;
146 }
147
148 /// \brief Determine whether two declaration pointers refer to the same
149 /// declaration.
isSameDeclaration(Decl * X,Decl * Y)150 static bool isSameDeclaration(Decl *X, Decl *Y) {
151 if (!X || !Y)
152 return !X && !Y;
153
154 if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
155 X = NX->getUnderlyingDecl();
156 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
157 Y = NY->getUnderlyingDecl();
158
159 return X->getCanonicalDecl() == Y->getCanonicalDecl();
160 }
161
162 /// \brief Verify that the given, deduced template arguments are compatible.
163 ///
164 /// \returns The deduced template argument, or a NULL template argument if
165 /// the deduced template arguments were incompatible.
166 static DeducedTemplateArgument
checkDeducedTemplateArguments(ASTContext & Context,const DeducedTemplateArgument & X,const DeducedTemplateArgument & Y)167 checkDeducedTemplateArguments(ASTContext &Context,
168 const DeducedTemplateArgument &X,
169 const DeducedTemplateArgument &Y) {
170 // We have no deduction for one or both of the arguments; they're compatible.
171 if (X.isNull())
172 return Y;
173 if (Y.isNull())
174 return X;
175
176 switch (X.getKind()) {
177 case TemplateArgument::Null:
178 llvm_unreachable("Non-deduced template arguments handled above");
179
180 case TemplateArgument::Type:
181 // If two template type arguments have the same type, they're compatible.
182 if (Y.getKind() == TemplateArgument::Type &&
183 Context.hasSameType(X.getAsType(), Y.getAsType()))
184 return X;
185
186 return DeducedTemplateArgument();
187
188 case TemplateArgument::Integral:
189 // If we deduced a constant in one case and either a dependent expression or
190 // declaration in another case, keep the integral constant.
191 // If both are integral constants with the same value, keep that value.
192 if (Y.getKind() == TemplateArgument::Expression ||
193 Y.getKind() == TemplateArgument::Declaration ||
194 (Y.getKind() == TemplateArgument::Integral &&
195 hasSameExtendedValue(*X.getAsIntegral(), *Y.getAsIntegral())))
196 return DeducedTemplateArgument(X,
197 X.wasDeducedFromArrayBound() &&
198 Y.wasDeducedFromArrayBound());
199
200 // All other combinations are incompatible.
201 return DeducedTemplateArgument();
202
203 case TemplateArgument::Template:
204 if (Y.getKind() == TemplateArgument::Template &&
205 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
206 return X;
207
208 // All other combinations are incompatible.
209 return DeducedTemplateArgument();
210
211 case TemplateArgument::TemplateExpansion:
212 if (Y.getKind() == TemplateArgument::TemplateExpansion &&
213 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
214 Y.getAsTemplateOrTemplatePattern()))
215 return X;
216
217 // All other combinations are incompatible.
218 return DeducedTemplateArgument();
219
220 case TemplateArgument::Expression:
221 // If we deduced a dependent expression in one case and either an integral
222 // constant or a declaration in another case, keep the integral constant
223 // or declaration.
224 if (Y.getKind() == TemplateArgument::Integral ||
225 Y.getKind() == TemplateArgument::Declaration)
226 return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
227 Y.wasDeducedFromArrayBound());
228
229 if (Y.getKind() == TemplateArgument::Expression) {
230 // Compare the expressions for equality
231 llvm::FoldingSetNodeID ID1, ID2;
232 X.getAsExpr()->Profile(ID1, Context, true);
233 Y.getAsExpr()->Profile(ID2, Context, true);
234 if (ID1 == ID2)
235 return X;
236 }
237
238 // All other combinations are incompatible.
239 return DeducedTemplateArgument();
240
241 case TemplateArgument::Declaration:
242 // If we deduced a declaration and a dependent expression, keep the
243 // declaration.
244 if (Y.getKind() == TemplateArgument::Expression)
245 return X;
246
247 // If we deduced a declaration and an integral constant, keep the
248 // integral constant.
249 if (Y.getKind() == TemplateArgument::Integral)
250 return Y;
251
252 // If we deduced two declarations, make sure they they refer to the
253 // same declaration.
254 if (Y.getKind() == TemplateArgument::Declaration &&
255 isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
256 return X;
257
258 // All other combinations are incompatible.
259 return DeducedTemplateArgument();
260
261 case TemplateArgument::Pack:
262 if (Y.getKind() != TemplateArgument::Pack ||
263 X.pack_size() != Y.pack_size())
264 return DeducedTemplateArgument();
265
266 for (TemplateArgument::pack_iterator XA = X.pack_begin(),
267 XAEnd = X.pack_end(),
268 YA = Y.pack_begin();
269 XA != XAEnd; ++XA, ++YA) {
270 if (checkDeducedTemplateArguments(Context,
271 DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
272 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
273 .isNull())
274 return DeducedTemplateArgument();
275 }
276
277 return X;
278 }
279
280 return DeducedTemplateArgument();
281 }
282
283 /// \brief Deduce the value of the given non-type template parameter
284 /// from the given constant.
285 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,llvm::APSInt Value,QualType ValueType,bool DeducedFromArrayBound,TemplateDeductionInfo & Info,llvm::SmallVectorImpl<DeducedTemplateArgument> & Deduced)286 DeduceNonTypeTemplateArgument(Sema &S,
287 NonTypeTemplateParmDecl *NTTP,
288 llvm::APSInt Value, QualType ValueType,
289 bool DeducedFromArrayBound,
290 TemplateDeductionInfo &Info,
291 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
292 assert(NTTP->getDepth() == 0 &&
293 "Cannot deduce non-type template argument with depth > 0");
294
295 DeducedTemplateArgument NewDeduced(Value, ValueType, DeducedFromArrayBound);
296 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
297 Deduced[NTTP->getIndex()],
298 NewDeduced);
299 if (Result.isNull()) {
300 Info.Param = NTTP;
301 Info.FirstArg = Deduced[NTTP->getIndex()];
302 Info.SecondArg = NewDeduced;
303 return Sema::TDK_Inconsistent;
304 }
305
306 Deduced[NTTP->getIndex()] = Result;
307 return Sema::TDK_Success;
308 }
309
310 /// \brief Deduce the value of the given non-type template parameter
311 /// from the given type- or value-dependent expression.
312 ///
313 /// \returns true if deduction succeeded, false otherwise.
314 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,Expr * Value,TemplateDeductionInfo & Info,llvm::SmallVectorImpl<DeducedTemplateArgument> & Deduced)315 DeduceNonTypeTemplateArgument(Sema &S,
316 NonTypeTemplateParmDecl *NTTP,
317 Expr *Value,
318 TemplateDeductionInfo &Info,
319 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
320 assert(NTTP->getDepth() == 0 &&
321 "Cannot deduce non-type template argument with depth > 0");
322 assert((Value->isTypeDependent() || Value->isValueDependent()) &&
323 "Expression template argument must be type- or value-dependent.");
324
325 DeducedTemplateArgument NewDeduced(Value);
326 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
327 Deduced[NTTP->getIndex()],
328 NewDeduced);
329
330 if (Result.isNull()) {
331 Info.Param = NTTP;
332 Info.FirstArg = Deduced[NTTP->getIndex()];
333 Info.SecondArg = NewDeduced;
334 return Sema::TDK_Inconsistent;
335 }
336
337 Deduced[NTTP->getIndex()] = Result;
338 return Sema::TDK_Success;
339 }
340
341 /// \brief Deduce the value of the given non-type template parameter
342 /// from the given declaration.
343 ///
344 /// \returns true if deduction succeeded, false otherwise.
345 static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema & S,NonTypeTemplateParmDecl * NTTP,Decl * D,TemplateDeductionInfo & Info,llvm::SmallVectorImpl<DeducedTemplateArgument> & Deduced)346 DeduceNonTypeTemplateArgument(Sema &S,
347 NonTypeTemplateParmDecl *NTTP,
348 Decl *D,
349 TemplateDeductionInfo &Info,
350 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
351 assert(NTTP->getDepth() == 0 &&
352 "Cannot deduce non-type template argument with depth > 0");
353
354 DeducedTemplateArgument NewDeduced(D? D->getCanonicalDecl() : 0);
355 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
356 Deduced[NTTP->getIndex()],
357 NewDeduced);
358 if (Result.isNull()) {
359 Info.Param = NTTP;
360 Info.FirstArg = Deduced[NTTP->getIndex()];
361 Info.SecondArg = NewDeduced;
362 return Sema::TDK_Inconsistent;
363 }
364
365 Deduced[NTTP->getIndex()] = Result;
366 return Sema::TDK_Success;
367 }
368
369 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,TemplateName Param,TemplateName Arg,TemplateDeductionInfo & Info,llvm::SmallVectorImpl<DeducedTemplateArgument> & Deduced)370 DeduceTemplateArguments(Sema &S,
371 TemplateParameterList *TemplateParams,
372 TemplateName Param,
373 TemplateName Arg,
374 TemplateDeductionInfo &Info,
375 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
376 TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
377 if (!ParamDecl) {
378 // The parameter type is dependent and is not a template template parameter,
379 // so there is nothing that we can deduce.
380 return Sema::TDK_Success;
381 }
382
383 if (TemplateTemplateParmDecl *TempParam
384 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
385 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
386 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
387 Deduced[TempParam->getIndex()],
388 NewDeduced);
389 if (Result.isNull()) {
390 Info.Param = TempParam;
391 Info.FirstArg = Deduced[TempParam->getIndex()];
392 Info.SecondArg = NewDeduced;
393 return Sema::TDK_Inconsistent;
394 }
395
396 Deduced[TempParam->getIndex()] = Result;
397 return Sema::TDK_Success;
398 }
399
400 // Verify that the two template names are equivalent.
401 if (S.Context.hasSameTemplateName(Param, Arg))
402 return Sema::TDK_Success;
403
404 // Mismatch of non-dependent template parameter to argument.
405 Info.FirstArg = TemplateArgument(Param);
406 Info.SecondArg = TemplateArgument(Arg);
407 return Sema::TDK_NonDeducedMismatch;
408 }
409
410 /// \brief Deduce the template arguments by comparing the template parameter
411 /// type (which is a template-id) with the template argument type.
412 ///
413 /// \param S the Sema
414 ///
415 /// \param TemplateParams the template parameters that we are deducing
416 ///
417 /// \param Param the parameter type
418 ///
419 /// \param Arg the argument type
420 ///
421 /// \param Info information about the template argument deduction itself
422 ///
423 /// \param Deduced the deduced template arguments
424 ///
425 /// \returns the result of template argument deduction so far. Note that a
426 /// "success" result means that template argument deduction has not yet failed,
427 /// but it may still fail, later, for other reasons.
428 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateSpecializationType * Param,QualType Arg,TemplateDeductionInfo & Info,llvm::SmallVectorImpl<DeducedTemplateArgument> & Deduced)429 DeduceTemplateArguments(Sema &S,
430 TemplateParameterList *TemplateParams,
431 const TemplateSpecializationType *Param,
432 QualType Arg,
433 TemplateDeductionInfo &Info,
434 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
435 assert(Arg.isCanonical() && "Argument type must be canonical");
436
437 // Check whether the template argument is a dependent template-id.
438 if (const TemplateSpecializationType *SpecArg
439 = dyn_cast<TemplateSpecializationType>(Arg)) {
440 // Perform template argument deduction for the template name.
441 if (Sema::TemplateDeductionResult Result
442 = DeduceTemplateArguments(S, TemplateParams,
443 Param->getTemplateName(),
444 SpecArg->getTemplateName(),
445 Info, Deduced))
446 return Result;
447
448
449 // Perform template argument deduction on each template
450 // argument. Ignore any missing/extra arguments, since they could be
451 // filled in by default arguments.
452 return DeduceTemplateArguments(S, TemplateParams,
453 Param->getArgs(), Param->getNumArgs(),
454 SpecArg->getArgs(), SpecArg->getNumArgs(),
455 Info, Deduced,
456 /*NumberOfArgumentsMustMatch=*/false);
457 }
458
459 // If the argument type is a class template specialization, we
460 // perform template argument deduction using its template
461 // arguments.
462 const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
463 if (!RecordArg)
464 return Sema::TDK_NonDeducedMismatch;
465
466 ClassTemplateSpecializationDecl *SpecArg
467 = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
468 if (!SpecArg)
469 return Sema::TDK_NonDeducedMismatch;
470
471 // Perform template argument deduction for the template name.
472 if (Sema::TemplateDeductionResult Result
473 = DeduceTemplateArguments(S,
474 TemplateParams,
475 Param->getTemplateName(),
476 TemplateName(SpecArg->getSpecializedTemplate()),
477 Info, Deduced))
478 return Result;
479
480 // Perform template argument deduction for the template arguments.
481 return DeduceTemplateArguments(S, TemplateParams,
482 Param->getArgs(), Param->getNumArgs(),
483 SpecArg->getTemplateArgs().data(),
484 SpecArg->getTemplateArgs().size(),
485 Info, Deduced);
486 }
487
488 /// \brief Determines whether the given type is an opaque type that
489 /// might be more qualified when instantiated.
IsPossiblyOpaquelyQualifiedType(QualType T)490 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
491 switch (T->getTypeClass()) {
492 case Type::TypeOfExpr:
493 case Type::TypeOf:
494 case Type::DependentName:
495 case Type::Decltype:
496 case Type::UnresolvedUsing:
497 case Type::TemplateTypeParm:
498 return true;
499
500 case Type::ConstantArray:
501 case Type::IncompleteArray:
502 case Type::VariableArray:
503 case Type::DependentSizedArray:
504 return IsPossiblyOpaquelyQualifiedType(
505 cast<ArrayType>(T)->getElementType());
506
507 default:
508 return false;
509 }
510 }
511
512 /// \brief Retrieve the depth and index of a template parameter.
513 static std::pair<unsigned, unsigned>
getDepthAndIndex(NamedDecl * ND)514 getDepthAndIndex(NamedDecl *ND) {
515 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
516 return std::make_pair(TTP->getDepth(), TTP->getIndex());
517
518 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
519 return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
520
521 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
522 return std::make_pair(TTP->getDepth(), TTP->getIndex());
523 }
524
525 /// \brief Retrieve the depth and index of an unexpanded parameter pack.
526 static std::pair<unsigned, unsigned>
getDepthAndIndex(UnexpandedParameterPack UPP)527 getDepthAndIndex(UnexpandedParameterPack UPP) {
528 if (const TemplateTypeParmType *TTP
529 = UPP.first.dyn_cast<const TemplateTypeParmType *>())
530 return std::make_pair(TTP->getDepth(), TTP->getIndex());
531
532 return getDepthAndIndex(UPP.first.get<NamedDecl *>());
533 }
534
535 /// \brief Helper function to build a TemplateParameter when we don't
536 /// know its type statically.
makeTemplateParameter(Decl * D)537 static TemplateParameter makeTemplateParameter(Decl *D) {
538 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
539 return TemplateParameter(TTP);
540 else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
541 return TemplateParameter(NTTP);
542
543 return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
544 }
545
546 /// \brief Prepare to perform template argument deduction for all of the
547 /// arguments in a set of argument packs.
PrepareArgumentPackDeduction(Sema & S,llvm::SmallVectorImpl<DeducedTemplateArgument> & Deduced,const llvm::SmallVectorImpl<unsigned> & PackIndices,llvm::SmallVectorImpl<DeducedTemplateArgument> & SavedPacks,llvm::SmallVectorImpl<llvm::SmallVector<DeducedTemplateArgument,4>> & NewlyDeducedPacks)548 static void PrepareArgumentPackDeduction(Sema &S,
549 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
550 const llvm::SmallVectorImpl<unsigned> &PackIndices,
551 llvm::SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
552 llvm::SmallVectorImpl<
553 llvm::SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) {
554 // Save the deduced template arguments for each parameter pack expanded
555 // by this pack expansion, then clear out the deduction.
556 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
557 // Save the previously-deduced argument pack, then clear it out so that we
558 // can deduce a new argument pack.
559 SavedPacks[I] = Deduced[PackIndices[I]];
560 Deduced[PackIndices[I]] = TemplateArgument();
561
562 // If the template arugment pack was explicitly specified, add that to
563 // the set of deduced arguments.
564 const TemplateArgument *ExplicitArgs;
565 unsigned NumExplicitArgs;
566 if (NamedDecl *PartiallySubstitutedPack
567 = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
568 &ExplicitArgs,
569 &NumExplicitArgs)) {
570 if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
571 NewlyDeducedPacks[I].append(ExplicitArgs,
572 ExplicitArgs + NumExplicitArgs);
573 }
574 }
575 }
576
577 /// \brief Finish template argument deduction for a set of argument packs,
578 /// producing the argument packs and checking for consistency with prior
579 /// deductions.
580 static Sema::TemplateDeductionResult
FinishArgumentPackDeduction(Sema & S,TemplateParameterList * TemplateParams,bool HasAnyArguments,llvm::SmallVectorImpl<DeducedTemplateArgument> & Deduced,const llvm::SmallVectorImpl<unsigned> & PackIndices,llvm::SmallVectorImpl<DeducedTemplateArgument> & SavedPacks,llvm::SmallVectorImpl<llvm::SmallVector<DeducedTemplateArgument,4>> & NewlyDeducedPacks,TemplateDeductionInfo & Info)581 FinishArgumentPackDeduction(Sema &S,
582 TemplateParameterList *TemplateParams,
583 bool HasAnyArguments,
584 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
585 const llvm::SmallVectorImpl<unsigned> &PackIndices,
586 llvm::SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
587 llvm::SmallVectorImpl<
588 llvm::SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks,
589 TemplateDeductionInfo &Info) {
590 // Build argument packs for each of the parameter packs expanded by this
591 // pack expansion.
592 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
593 if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
594 // We were not able to deduce anything for this parameter pack,
595 // so just restore the saved argument pack.
596 Deduced[PackIndices[I]] = SavedPacks[I];
597 continue;
598 }
599
600 DeducedTemplateArgument NewPack;
601
602 if (NewlyDeducedPacks[I].empty()) {
603 // If we deduced an empty argument pack, create it now.
604 NewPack = DeducedTemplateArgument(TemplateArgument(0, 0));
605 } else {
606 TemplateArgument *ArgumentPack
607 = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
608 std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
609 ArgumentPack);
610 NewPack
611 = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
612 NewlyDeducedPacks[I].size()),
613 NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
614 }
615
616 DeducedTemplateArgument Result
617 = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
618 if (Result.isNull()) {
619 Info.Param
620 = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
621 Info.FirstArg = SavedPacks[I];
622 Info.SecondArg = NewPack;
623 return Sema::TDK_Inconsistent;
624 }
625
626 Deduced[PackIndices[I]] = Result;
627 }
628
629 return Sema::TDK_Success;
630 }
631
632 /// \brief Deduce the template arguments by comparing the list of parameter
633 /// types to the list of argument types, as in the parameter-type-lists of
634 /// function types (C++ [temp.deduct.type]p10).
635 ///
636 /// \param S The semantic analysis object within which we are deducing
637 ///
638 /// \param TemplateParams The template parameters that we are deducing
639 ///
640 /// \param Params The list of parameter types
641 ///
642 /// \param NumParams The number of types in \c Params
643 ///
644 /// \param Args The list of argument types
645 ///
646 /// \param NumArgs The number of types in \c Args
647 ///
648 /// \param Info information about the template argument deduction itself
649 ///
650 /// \param Deduced the deduced template arguments
651 ///
652 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
653 /// how template argument deduction is performed.
654 ///
655 /// \param PartialOrdering If true, we are performing template argument
656 /// deduction for during partial ordering for a call
657 /// (C++0x [temp.deduct.partial]).
658 ///
659 /// \param RefParamComparisons If we're performing template argument deduction
660 /// in the context of partial ordering, the set of qualifier comparisons.
661 ///
662 /// \returns the result of template argument deduction so far. Note that a
663 /// "success" result means that template argument deduction has not yet failed,
664 /// but it may still fail, later, for other reasons.
665 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const QualType * Params,unsigned NumParams,const QualType * Args,unsigned NumArgs,TemplateDeductionInfo & Info,llvm::SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering=false,llvm::SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons=0)666 DeduceTemplateArguments(Sema &S,
667 TemplateParameterList *TemplateParams,
668 const QualType *Params, unsigned NumParams,
669 const QualType *Args, unsigned NumArgs,
670 TemplateDeductionInfo &Info,
671 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
672 unsigned TDF,
673 bool PartialOrdering = false,
674 llvm::SmallVectorImpl<RefParamPartialOrderingComparison> *
675 RefParamComparisons = 0) {
676 // Fast-path check to see if we have too many/too few arguments.
677 if (NumParams != NumArgs &&
678 !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
679 !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
680 return Sema::TDK_NonDeducedMismatch;
681
682 // C++0x [temp.deduct.type]p10:
683 // Similarly, if P has a form that contains (T), then each parameter type
684 // Pi of the respective parameter-type- list of P is compared with the
685 // corresponding parameter type Ai of the corresponding parameter-type-list
686 // of A. [...]
687 unsigned ArgIdx = 0, ParamIdx = 0;
688 for (; ParamIdx != NumParams; ++ParamIdx) {
689 // Check argument types.
690 const PackExpansionType *Expansion
691 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
692 if (!Expansion) {
693 // Simple case: compare the parameter and argument types at this point.
694
695 // Make sure we have an argument.
696 if (ArgIdx >= NumArgs)
697 return Sema::TDK_NonDeducedMismatch;
698
699 if (isa<PackExpansionType>(Args[ArgIdx])) {
700 // C++0x [temp.deduct.type]p22:
701 // If the original function parameter associated with A is a function
702 // parameter pack and the function parameter associated with P is not
703 // a function parameter pack, then template argument deduction fails.
704 return Sema::TDK_NonDeducedMismatch;
705 }
706
707 if (Sema::TemplateDeductionResult Result
708 = DeduceTemplateArguments(S, TemplateParams,
709 Params[ParamIdx],
710 Args[ArgIdx],
711 Info, Deduced, TDF,
712 PartialOrdering,
713 RefParamComparisons))
714 return Result;
715
716 ++ArgIdx;
717 continue;
718 }
719
720 // C++0x [temp.deduct.type]p5:
721 // The non-deduced contexts are:
722 // - A function parameter pack that does not occur at the end of the
723 // parameter-declaration-clause.
724 if (ParamIdx + 1 < NumParams)
725 return Sema::TDK_Success;
726
727 // C++0x [temp.deduct.type]p10:
728 // If the parameter-declaration corresponding to Pi is a function
729 // parameter pack, then the type of its declarator- id is compared with
730 // each remaining parameter type in the parameter-type-list of A. Each
731 // comparison deduces template arguments for subsequent positions in the
732 // template parameter packs expanded by the function parameter pack.
733
734 // Compute the set of template parameter indices that correspond to
735 // parameter packs expanded by the pack expansion.
736 llvm::SmallVector<unsigned, 2> PackIndices;
737 QualType Pattern = Expansion->getPattern();
738 {
739 llvm::BitVector SawIndices(TemplateParams->size());
740 llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
741 S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
742 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
743 unsigned Depth, Index;
744 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
745 if (Depth == 0 && !SawIndices[Index]) {
746 SawIndices[Index] = true;
747 PackIndices.push_back(Index);
748 }
749 }
750 }
751 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
752
753 // Keep track of the deduced template arguments for each parameter pack
754 // expanded by this pack expansion (the outer index) and for each
755 // template argument (the inner SmallVectors).
756 llvm::SmallVector<llvm::SmallVector<DeducedTemplateArgument, 4>, 2>
757 NewlyDeducedPacks(PackIndices.size());
758 llvm::SmallVector<DeducedTemplateArgument, 2>
759 SavedPacks(PackIndices.size());
760 PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
761 NewlyDeducedPacks);
762
763 bool HasAnyArguments = false;
764 for (; ArgIdx < NumArgs; ++ArgIdx) {
765 HasAnyArguments = true;
766
767 // Deduce template arguments from the pattern.
768 if (Sema::TemplateDeductionResult Result
769 = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
770 Info, Deduced, TDF, PartialOrdering,
771 RefParamComparisons))
772 return Result;
773
774 // Capture the deduced template arguments for each parameter pack expanded
775 // by this pack expansion, add them to the list of arguments we've deduced
776 // for that pack, then clear out the deduced argument.
777 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
778 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
779 if (!DeducedArg.isNull()) {
780 NewlyDeducedPacks[I].push_back(DeducedArg);
781 DeducedArg = DeducedTemplateArgument();
782 }
783 }
784 }
785
786 // Build argument packs for each of the parameter packs expanded by this
787 // pack expansion.
788 if (Sema::TemplateDeductionResult Result
789 = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
790 Deduced, PackIndices, SavedPacks,
791 NewlyDeducedPacks, Info))
792 return Result;
793 }
794
795 // Make sure we don't have any extra arguments.
796 if (ArgIdx < NumArgs)
797 return Sema::TDK_NonDeducedMismatch;
798
799 return Sema::TDK_Success;
800 }
801
802 /// \brief Determine whether the parameter has qualifiers that are either
803 /// inconsistent with or a superset of the argument's qualifiers.
hasInconsistentOrSupersetQualifiersOf(QualType ParamType,QualType ArgType)804 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
805 QualType ArgType) {
806 Qualifiers ParamQs = ParamType.getQualifiers();
807 Qualifiers ArgQs = ArgType.getQualifiers();
808
809 if (ParamQs == ArgQs)
810 return false;
811
812 // Mismatched (but not missing) Objective-C GC attributes.
813 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
814 ParamQs.hasObjCGCAttr())
815 return true;
816
817 // Mismatched (but not missing) address spaces.
818 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
819 ParamQs.hasAddressSpace())
820 return true;
821
822 // Mismatched (but not missing) Objective-C lifetime qualifiers.
823 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
824 ParamQs.hasObjCLifetime())
825 return true;
826
827 // CVR qualifier superset.
828 return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
829 ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
830 == ParamQs.getCVRQualifiers());
831 }
832
833 /// \brief Deduce the template arguments by comparing the parameter type and
834 /// the argument type (C++ [temp.deduct.type]).
835 ///
836 /// \param S the semantic analysis object within which we are deducing
837 ///
838 /// \param TemplateParams the template parameters that we are deducing
839 ///
840 /// \param ParamIn the parameter type
841 ///
842 /// \param ArgIn the argument type
843 ///
844 /// \param Info information about the template argument deduction itself
845 ///
846 /// \param Deduced the deduced template arguments
847 ///
848 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
849 /// how template argument deduction is performed.
850 ///
851 /// \param PartialOrdering Whether we're performing template argument deduction
852 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
853 ///
854 /// \param RefParamComparisons If we're performing template argument deduction
855 /// in the context of partial ordering, the set of qualifier comparisons.
856 ///
857 /// \returns the result of template argument deduction so far. Note that a
858 /// "success" result means that template argument deduction has not yet failed,
859 /// but it may still fail, later, for other reasons.
860 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,QualType ParamIn,QualType ArgIn,TemplateDeductionInfo & Info,llvm::SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering,llvm::SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons)861 DeduceTemplateArguments(Sema &S,
862 TemplateParameterList *TemplateParams,
863 QualType ParamIn, QualType ArgIn,
864 TemplateDeductionInfo &Info,
865 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
866 unsigned TDF,
867 bool PartialOrdering,
868 llvm::SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
869 // We only want to look at the canonical types, since typedefs and
870 // sugar are not part of template argument deduction.
871 QualType Param = S.Context.getCanonicalType(ParamIn);
872 QualType Arg = S.Context.getCanonicalType(ArgIn);
873
874 // If the argument type is a pack expansion, look at its pattern.
875 // This isn't explicitly called out
876 if (const PackExpansionType *ArgExpansion
877 = dyn_cast<PackExpansionType>(Arg))
878 Arg = ArgExpansion->getPattern();
879
880 if (PartialOrdering) {
881 // C++0x [temp.deduct.partial]p5:
882 // Before the partial ordering is done, certain transformations are
883 // performed on the types used for partial ordering:
884 // - If P is a reference type, P is replaced by the type referred to.
885 const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
886 if (ParamRef)
887 Param = ParamRef->getPointeeType();
888
889 // - If A is a reference type, A is replaced by the type referred to.
890 const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
891 if (ArgRef)
892 Arg = ArgRef->getPointeeType();
893
894 if (RefParamComparisons && ParamRef && ArgRef) {
895 // C++0x [temp.deduct.partial]p6:
896 // If both P and A were reference types (before being replaced with the
897 // type referred to above), determine which of the two types (if any) is
898 // more cv-qualified than the other; otherwise the types are considered
899 // to be equally cv-qualified for partial ordering purposes. The result
900 // of this determination will be used below.
901 //
902 // We save this information for later, using it only when deduction
903 // succeeds in both directions.
904 RefParamPartialOrderingComparison Comparison;
905 Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
906 Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
907 Comparison.Qualifiers = NeitherMoreQualified;
908
909 Qualifiers ParamQuals = Param.getQualifiers();
910 Qualifiers ArgQuals = Arg.getQualifiers();
911 if (ParamQuals.isStrictSupersetOf(ArgQuals))
912 Comparison.Qualifiers = ParamMoreQualified;
913 else if (ArgQuals.isStrictSupersetOf(ParamQuals))
914 Comparison.Qualifiers = ArgMoreQualified;
915 RefParamComparisons->push_back(Comparison);
916 }
917
918 // C++0x [temp.deduct.partial]p7:
919 // Remove any top-level cv-qualifiers:
920 // - If P is a cv-qualified type, P is replaced by the cv-unqualified
921 // version of P.
922 Param = Param.getUnqualifiedType();
923 // - If A is a cv-qualified type, A is replaced by the cv-unqualified
924 // version of A.
925 Arg = Arg.getUnqualifiedType();
926 } else {
927 // C++0x [temp.deduct.call]p4 bullet 1:
928 // - If the original P is a reference type, the deduced A (i.e., the type
929 // referred to by the reference) can be more cv-qualified than the
930 // transformed A.
931 if (TDF & TDF_ParamWithReferenceType) {
932 Qualifiers Quals;
933 QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
934 Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
935 Arg.getCVRQualifiers());
936 Param = S.Context.getQualifiedType(UnqualParam, Quals);
937 }
938
939 if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
940 // C++0x [temp.deduct.type]p10:
941 // If P and A are function types that originated from deduction when
942 // taking the address of a function template (14.8.2.2) or when deducing
943 // template arguments from a function declaration (14.8.2.6) and Pi and
944 // Ai are parameters of the top-level parameter-type-list of P and A,
945 // respectively, Pi is adjusted if it is an rvalue reference to a
946 // cv-unqualified template parameter and Ai is an lvalue reference, in
947 // which case the type of Pi is changed to be the template parameter
948 // type (i.e., T&& is changed to simply T). [ Note: As a result, when
949 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
950 // deduced as X&. - end note ]
951 TDF &= ~TDF_TopLevelParameterTypeList;
952
953 if (const RValueReferenceType *ParamRef
954 = Param->getAs<RValueReferenceType>()) {
955 if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
956 !ParamRef->getPointeeType().getQualifiers())
957 if (Arg->isLValueReferenceType())
958 Param = ParamRef->getPointeeType();
959 }
960 }
961 }
962
963 // If the parameter type is not dependent, there is nothing to deduce.
964 if (!Param->isDependentType()) {
965 if (!(TDF & TDF_SkipNonDependent) && Param != Arg)
966 return Sema::TDK_NonDeducedMismatch;
967
968 return Sema::TDK_Success;
969 }
970
971 // C++ [temp.deduct.type]p9:
972 // A template type argument T, a template template argument TT or a
973 // template non-type argument i can be deduced if P and A have one of
974 // the following forms:
975 //
976 // T
977 // cv-list T
978 if (const TemplateTypeParmType *TemplateTypeParm
979 = Param->getAs<TemplateTypeParmType>()) {
980 unsigned Index = TemplateTypeParm->getIndex();
981 bool RecanonicalizeArg = false;
982
983 // If the argument type is an array type, move the qualifiers up to the
984 // top level, so they can be matched with the qualifiers on the parameter.
985 if (isa<ArrayType>(Arg)) {
986 Qualifiers Quals;
987 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
988 if (Quals) {
989 Arg = S.Context.getQualifiedType(Arg, Quals);
990 RecanonicalizeArg = true;
991 }
992 }
993
994 // The argument type can not be less qualified than the parameter
995 // type.
996 if (!(TDF & TDF_IgnoreQualifiers) &&
997 hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
998 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
999 Info.FirstArg = TemplateArgument(Param);
1000 Info.SecondArg = TemplateArgument(Arg);
1001 return Sema::TDK_Underqualified;
1002 }
1003
1004 assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
1005 assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1006 QualType DeducedType = Arg;
1007
1008 // Remove any qualifiers on the parameter from the deduced type.
1009 // We checked the qualifiers for consistency above.
1010 Qualifiers DeducedQs = DeducedType.getQualifiers();
1011 Qualifiers ParamQs = Param.getQualifiers();
1012 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1013 if (ParamQs.hasObjCGCAttr())
1014 DeducedQs.removeObjCGCAttr();
1015 if (ParamQs.hasAddressSpace())
1016 DeducedQs.removeAddressSpace();
1017 if (ParamQs.hasObjCLifetime())
1018 DeducedQs.removeObjCLifetime();
1019
1020 // Objective-C ARC:
1021 // If template deduction would produce an argument type with lifetime type
1022 // but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1023 if (S.getLangOptions().ObjCAutoRefCount &&
1024 DeducedType->isObjCLifetimeType() &&
1025 !DeducedQs.hasObjCLifetime())
1026 DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1027
1028 DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1029 DeducedQs);
1030
1031 if (RecanonicalizeArg)
1032 DeducedType = S.Context.getCanonicalType(DeducedType);
1033
1034 DeducedTemplateArgument NewDeduced(DeducedType);
1035 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1036 Deduced[Index],
1037 NewDeduced);
1038 if (Result.isNull()) {
1039 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1040 Info.FirstArg = Deduced[Index];
1041 Info.SecondArg = NewDeduced;
1042 return Sema::TDK_Inconsistent;
1043 }
1044
1045 Deduced[Index] = Result;
1046 return Sema::TDK_Success;
1047 }
1048
1049 // Set up the template argument deduction information for a failure.
1050 Info.FirstArg = TemplateArgument(ParamIn);
1051 Info.SecondArg = TemplateArgument(ArgIn);
1052
1053 // If the parameter is an already-substituted template parameter
1054 // pack, do nothing: we don't know which of its arguments to look
1055 // at, so we have to wait until all of the parameter packs in this
1056 // expansion have arguments.
1057 if (isa<SubstTemplateTypeParmPackType>(Param))
1058 return Sema::TDK_Success;
1059
1060 // Check the cv-qualifiers on the parameter and argument types.
1061 if (!(TDF & TDF_IgnoreQualifiers)) {
1062 if (TDF & TDF_ParamWithReferenceType) {
1063 if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1064 return Sema::TDK_NonDeducedMismatch;
1065 } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1066 if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1067 return Sema::TDK_NonDeducedMismatch;
1068 }
1069 }
1070
1071 switch (Param->getTypeClass()) {
1072 // Non-canonical types cannot appear here.
1073 #define NON_CANONICAL_TYPE(Class, Base) \
1074 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1075 #define TYPE(Class, Base)
1076 #include "clang/AST/TypeNodes.def"
1077
1078 case Type::TemplateTypeParm:
1079 case Type::SubstTemplateTypeParmPack:
1080 llvm_unreachable("Type nodes handled above");
1081
1082 // These types cannot be used in templates or cannot be dependent, so
1083 // deduction always fails.
1084 case Type::Builtin:
1085 case Type::VariableArray:
1086 case Type::Vector:
1087 case Type::FunctionNoProto:
1088 case Type::Record:
1089 case Type::Enum:
1090 case Type::ObjCObject:
1091 case Type::ObjCInterface:
1092 case Type::ObjCObjectPointer:
1093 return Sema::TDK_NonDeducedMismatch;
1094
1095 // _Complex T [placeholder extension]
1096 case Type::Complex:
1097 if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1098 return DeduceTemplateArguments(S, TemplateParams,
1099 cast<ComplexType>(Param)->getElementType(),
1100 ComplexArg->getElementType(),
1101 Info, Deduced, TDF);
1102
1103 return Sema::TDK_NonDeducedMismatch;
1104
1105 // T *
1106 case Type::Pointer: {
1107 QualType PointeeType;
1108 if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1109 PointeeType = PointerArg->getPointeeType();
1110 } else if (const ObjCObjectPointerType *PointerArg
1111 = Arg->getAs<ObjCObjectPointerType>()) {
1112 PointeeType = PointerArg->getPointeeType();
1113 } else {
1114 return Sema::TDK_NonDeducedMismatch;
1115 }
1116
1117 unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1118 return DeduceTemplateArguments(S, TemplateParams,
1119 cast<PointerType>(Param)->getPointeeType(),
1120 PointeeType,
1121 Info, Deduced, SubTDF);
1122 }
1123
1124 // T &
1125 case Type::LValueReference: {
1126 const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
1127 if (!ReferenceArg)
1128 return Sema::TDK_NonDeducedMismatch;
1129
1130 return DeduceTemplateArguments(S, TemplateParams,
1131 cast<LValueReferenceType>(Param)->getPointeeType(),
1132 ReferenceArg->getPointeeType(),
1133 Info, Deduced, 0);
1134 }
1135
1136 // T && [C++0x]
1137 case Type::RValueReference: {
1138 const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
1139 if (!ReferenceArg)
1140 return Sema::TDK_NonDeducedMismatch;
1141
1142 return DeduceTemplateArguments(S, TemplateParams,
1143 cast<RValueReferenceType>(Param)->getPointeeType(),
1144 ReferenceArg->getPointeeType(),
1145 Info, Deduced, 0);
1146 }
1147
1148 // T [] (implied, but not stated explicitly)
1149 case Type::IncompleteArray: {
1150 const IncompleteArrayType *IncompleteArrayArg =
1151 S.Context.getAsIncompleteArrayType(Arg);
1152 if (!IncompleteArrayArg)
1153 return Sema::TDK_NonDeducedMismatch;
1154
1155 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1156 return DeduceTemplateArguments(S, TemplateParams,
1157 S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1158 IncompleteArrayArg->getElementType(),
1159 Info, Deduced, SubTDF);
1160 }
1161
1162 // T [integer-constant]
1163 case Type::ConstantArray: {
1164 const ConstantArrayType *ConstantArrayArg =
1165 S.Context.getAsConstantArrayType(Arg);
1166 if (!ConstantArrayArg)
1167 return Sema::TDK_NonDeducedMismatch;
1168
1169 const ConstantArrayType *ConstantArrayParm =
1170 S.Context.getAsConstantArrayType(Param);
1171 if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1172 return Sema::TDK_NonDeducedMismatch;
1173
1174 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1175 return DeduceTemplateArguments(S, TemplateParams,
1176 ConstantArrayParm->getElementType(),
1177 ConstantArrayArg->getElementType(),
1178 Info, Deduced, SubTDF);
1179 }
1180
1181 // type [i]
1182 case Type::DependentSizedArray: {
1183 const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1184 if (!ArrayArg)
1185 return Sema::TDK_NonDeducedMismatch;
1186
1187 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1188
1189 // Check the element type of the arrays
1190 const DependentSizedArrayType *DependentArrayParm
1191 = S.Context.getAsDependentSizedArrayType(Param);
1192 if (Sema::TemplateDeductionResult Result
1193 = DeduceTemplateArguments(S, TemplateParams,
1194 DependentArrayParm->getElementType(),
1195 ArrayArg->getElementType(),
1196 Info, Deduced, SubTDF))
1197 return Result;
1198
1199 // Determine the array bound is something we can deduce.
1200 NonTypeTemplateParmDecl *NTTP
1201 = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
1202 if (!NTTP)
1203 return Sema::TDK_Success;
1204
1205 // We can perform template argument deduction for the given non-type
1206 // template parameter.
1207 assert(NTTP->getDepth() == 0 &&
1208 "Cannot deduce non-type template argument at depth > 0");
1209 if (const ConstantArrayType *ConstantArrayArg
1210 = dyn_cast<ConstantArrayType>(ArrayArg)) {
1211 llvm::APSInt Size(ConstantArrayArg->getSize());
1212 return DeduceNonTypeTemplateArgument(S, NTTP, Size,
1213 S.Context.getSizeType(),
1214 /*ArrayBound=*/true,
1215 Info, Deduced);
1216 }
1217 if (const DependentSizedArrayType *DependentArrayArg
1218 = dyn_cast<DependentSizedArrayType>(ArrayArg))
1219 if (DependentArrayArg->getSizeExpr())
1220 return DeduceNonTypeTemplateArgument(S, NTTP,
1221 DependentArrayArg->getSizeExpr(),
1222 Info, Deduced);
1223
1224 // Incomplete type does not match a dependently-sized array type
1225 return Sema::TDK_NonDeducedMismatch;
1226 }
1227
1228 // type(*)(T)
1229 // T(*)()
1230 // T(*)(T)
1231 case Type::FunctionProto: {
1232 unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1233 const FunctionProtoType *FunctionProtoArg =
1234 dyn_cast<FunctionProtoType>(Arg);
1235 if (!FunctionProtoArg)
1236 return Sema::TDK_NonDeducedMismatch;
1237
1238 const FunctionProtoType *FunctionProtoParam =
1239 cast<FunctionProtoType>(Param);
1240
1241 if (FunctionProtoParam->getTypeQuals()
1242 != FunctionProtoArg->getTypeQuals() ||
1243 FunctionProtoParam->getRefQualifier()
1244 != FunctionProtoArg->getRefQualifier() ||
1245 FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1246 return Sema::TDK_NonDeducedMismatch;
1247
1248 // Check return types.
1249 if (Sema::TemplateDeductionResult Result
1250 = DeduceTemplateArguments(S, TemplateParams,
1251 FunctionProtoParam->getResultType(),
1252 FunctionProtoArg->getResultType(),
1253 Info, Deduced, 0))
1254 return Result;
1255
1256 return DeduceTemplateArguments(S, TemplateParams,
1257 FunctionProtoParam->arg_type_begin(),
1258 FunctionProtoParam->getNumArgs(),
1259 FunctionProtoArg->arg_type_begin(),
1260 FunctionProtoArg->getNumArgs(),
1261 Info, Deduced, SubTDF);
1262 }
1263
1264 case Type::InjectedClassName: {
1265 // Treat a template's injected-class-name as if the template
1266 // specialization type had been used.
1267 Param = cast<InjectedClassNameType>(Param)
1268 ->getInjectedSpecializationType();
1269 assert(isa<TemplateSpecializationType>(Param) &&
1270 "injected class name is not a template specialization type");
1271 // fall through
1272 }
1273
1274 // template-name<T> (where template-name refers to a class template)
1275 // template-name<i>
1276 // TT<T>
1277 // TT<i>
1278 // TT<>
1279 case Type::TemplateSpecialization: {
1280 const TemplateSpecializationType *SpecParam
1281 = cast<TemplateSpecializationType>(Param);
1282
1283 // Try to deduce template arguments from the template-id.
1284 Sema::TemplateDeductionResult Result
1285 = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
1286 Info, Deduced);
1287
1288 if (Result && (TDF & TDF_DerivedClass)) {
1289 // C++ [temp.deduct.call]p3b3:
1290 // If P is a class, and P has the form template-id, then A can be a
1291 // derived class of the deduced A. Likewise, if P is a pointer to a
1292 // class of the form template-id, A can be a pointer to a derived
1293 // class pointed to by the deduced A.
1294 //
1295 // More importantly:
1296 // These alternatives are considered only if type deduction would
1297 // otherwise fail.
1298 if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
1299 // We cannot inspect base classes as part of deduction when the type
1300 // is incomplete, so either instantiate any templates necessary to
1301 // complete the type, or skip over it if it cannot be completed.
1302 if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
1303 return Result;
1304
1305 // Use data recursion to crawl through the list of base classes.
1306 // Visited contains the set of nodes we have already visited, while
1307 // ToVisit is our stack of records that we still need to visit.
1308 llvm::SmallPtrSet<const RecordType *, 8> Visited;
1309 llvm::SmallVector<const RecordType *, 8> ToVisit;
1310 ToVisit.push_back(RecordT);
1311 bool Successful = false;
1312 llvm::SmallVectorImpl<DeducedTemplateArgument> DeducedOrig(0);
1313 DeducedOrig = Deduced;
1314 while (!ToVisit.empty()) {
1315 // Retrieve the next class in the inheritance hierarchy.
1316 const RecordType *NextT = ToVisit.back();
1317 ToVisit.pop_back();
1318
1319 // If we have already seen this type, skip it.
1320 if (!Visited.insert(NextT))
1321 continue;
1322
1323 // If this is a base class, try to perform template argument
1324 // deduction from it.
1325 if (NextT != RecordT) {
1326 Sema::TemplateDeductionResult BaseResult
1327 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
1328 QualType(NextT, 0), Info, Deduced);
1329
1330 // If template argument deduction for this base was successful,
1331 // note that we had some success. Otherwise, ignore any deductions
1332 // from this base class.
1333 if (BaseResult == Sema::TDK_Success) {
1334 Successful = true;
1335 DeducedOrig = Deduced;
1336 }
1337 else
1338 Deduced = DeducedOrig;
1339 }
1340
1341 // Visit base classes
1342 CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1343 for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
1344 BaseEnd = Next->bases_end();
1345 Base != BaseEnd; ++Base) {
1346 assert(Base->getType()->isRecordType() &&
1347 "Base class that isn't a record?");
1348 ToVisit.push_back(Base->getType()->getAs<RecordType>());
1349 }
1350 }
1351
1352 if (Successful)
1353 return Sema::TDK_Success;
1354 }
1355
1356 }
1357
1358 return Result;
1359 }
1360
1361 // T type::*
1362 // T T::*
1363 // T (type::*)()
1364 // type (T::*)()
1365 // type (type::*)(T)
1366 // type (T::*)(T)
1367 // T (type::*)(T)
1368 // T (T::*)()
1369 // T (T::*)(T)
1370 case Type::MemberPointer: {
1371 const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1372 const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1373 if (!MemPtrArg)
1374 return Sema::TDK_NonDeducedMismatch;
1375
1376 if (Sema::TemplateDeductionResult Result
1377 = DeduceTemplateArguments(S, TemplateParams,
1378 MemPtrParam->getPointeeType(),
1379 MemPtrArg->getPointeeType(),
1380 Info, Deduced,
1381 TDF & TDF_IgnoreQualifiers))
1382 return Result;
1383
1384 return DeduceTemplateArguments(S, TemplateParams,
1385 QualType(MemPtrParam->getClass(), 0),
1386 QualType(MemPtrArg->getClass(), 0),
1387 Info, Deduced, 0);
1388 }
1389
1390 // (clang extension)
1391 //
1392 // type(^)(T)
1393 // T(^)()
1394 // T(^)(T)
1395 case Type::BlockPointer: {
1396 const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1397 const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1398
1399 if (!BlockPtrArg)
1400 return Sema::TDK_NonDeducedMismatch;
1401
1402 return DeduceTemplateArguments(S, TemplateParams,
1403 BlockPtrParam->getPointeeType(),
1404 BlockPtrArg->getPointeeType(), Info,
1405 Deduced, 0);
1406 }
1407
1408 // (clang extension)
1409 //
1410 // T __attribute__(((ext_vector_type(<integral constant>))))
1411 case Type::ExtVector: {
1412 const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1413 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1414 // Make sure that the vectors have the same number of elements.
1415 if (VectorParam->getNumElements() != VectorArg->getNumElements())
1416 return Sema::TDK_NonDeducedMismatch;
1417
1418 // Perform deduction on the element types.
1419 return DeduceTemplateArguments(S, TemplateParams,
1420 VectorParam->getElementType(),
1421 VectorArg->getElementType(),
1422 Info, Deduced,
1423 TDF);
1424 }
1425
1426 if (const DependentSizedExtVectorType *VectorArg
1427 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1428 // We can't check the number of elements, since the argument has a
1429 // dependent number of elements. This can only occur during partial
1430 // ordering.
1431
1432 // Perform deduction on the element types.
1433 return DeduceTemplateArguments(S, TemplateParams,
1434 VectorParam->getElementType(),
1435 VectorArg->getElementType(),
1436 Info, Deduced,
1437 TDF);
1438 }
1439
1440 return Sema::TDK_NonDeducedMismatch;
1441 }
1442
1443 // (clang extension)
1444 //
1445 // T __attribute__(((ext_vector_type(N))))
1446 case Type::DependentSizedExtVector: {
1447 const DependentSizedExtVectorType *VectorParam
1448 = cast<DependentSizedExtVectorType>(Param);
1449
1450 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1451 // Perform deduction on the element types.
1452 if (Sema::TemplateDeductionResult Result
1453 = DeduceTemplateArguments(S, TemplateParams,
1454 VectorParam->getElementType(),
1455 VectorArg->getElementType(),
1456 Info, Deduced,
1457 TDF))
1458 return Result;
1459
1460 // Perform deduction on the vector size, if we can.
1461 NonTypeTemplateParmDecl *NTTP
1462 = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1463 if (!NTTP)
1464 return Sema::TDK_Success;
1465
1466 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1467 ArgSize = VectorArg->getNumElements();
1468 return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
1469 false, Info, Deduced);
1470 }
1471
1472 if (const DependentSizedExtVectorType *VectorArg
1473 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1474 // Perform deduction on the element types.
1475 if (Sema::TemplateDeductionResult Result
1476 = DeduceTemplateArguments(S, TemplateParams,
1477 VectorParam->getElementType(),
1478 VectorArg->getElementType(),
1479 Info, Deduced,
1480 TDF))
1481 return Result;
1482
1483 // Perform deduction on the vector size, if we can.
1484 NonTypeTemplateParmDecl *NTTP
1485 = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1486 if (!NTTP)
1487 return Sema::TDK_Success;
1488
1489 return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
1490 Info, Deduced);
1491 }
1492
1493 return Sema::TDK_NonDeducedMismatch;
1494 }
1495
1496 case Type::TypeOfExpr:
1497 case Type::TypeOf:
1498 case Type::DependentName:
1499 case Type::UnresolvedUsing:
1500 case Type::Decltype:
1501 case Type::UnaryTransform:
1502 case Type::Auto:
1503 case Type::DependentTemplateSpecialization:
1504 case Type::PackExpansion:
1505 // No template argument deduction for these types
1506 return Sema::TDK_Success;
1507 }
1508
1509 return Sema::TDK_Success;
1510 }
1511
1512 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument & Param,TemplateArgument Arg,TemplateDeductionInfo & Info,llvm::SmallVectorImpl<DeducedTemplateArgument> & Deduced)1513 DeduceTemplateArguments(Sema &S,
1514 TemplateParameterList *TemplateParams,
1515 const TemplateArgument &Param,
1516 TemplateArgument Arg,
1517 TemplateDeductionInfo &Info,
1518 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1519 // If the template argument is a pack expansion, perform template argument
1520 // deduction against the pattern of that expansion. This only occurs during
1521 // partial ordering.
1522 if (Arg.isPackExpansion())
1523 Arg = Arg.getPackExpansionPattern();
1524
1525 switch (Param.getKind()) {
1526 case TemplateArgument::Null:
1527 assert(false && "Null template argument in parameter list");
1528 break;
1529
1530 case TemplateArgument::Type:
1531 if (Arg.getKind() == TemplateArgument::Type)
1532 return DeduceTemplateArguments(S, TemplateParams, Param.getAsType(),
1533 Arg.getAsType(), Info, Deduced, 0);
1534 Info.FirstArg = Param;
1535 Info.SecondArg = Arg;
1536 return Sema::TDK_NonDeducedMismatch;
1537
1538 case TemplateArgument::Template:
1539 if (Arg.getKind() == TemplateArgument::Template)
1540 return DeduceTemplateArguments(S, TemplateParams,
1541 Param.getAsTemplate(),
1542 Arg.getAsTemplate(), Info, Deduced);
1543 Info.FirstArg = Param;
1544 Info.SecondArg = Arg;
1545 return Sema::TDK_NonDeducedMismatch;
1546
1547 case TemplateArgument::TemplateExpansion:
1548 llvm_unreachable("caller should handle pack expansions");
1549 break;
1550
1551 case TemplateArgument::Declaration:
1552 if (Arg.getKind() == TemplateArgument::Declaration &&
1553 Param.getAsDecl()->getCanonicalDecl() ==
1554 Arg.getAsDecl()->getCanonicalDecl())
1555 return Sema::TDK_Success;
1556
1557 Info.FirstArg = Param;
1558 Info.SecondArg = Arg;
1559 return Sema::TDK_NonDeducedMismatch;
1560
1561 case TemplateArgument::Integral:
1562 if (Arg.getKind() == TemplateArgument::Integral) {
1563 if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
1564 return Sema::TDK_Success;
1565
1566 Info.FirstArg = Param;
1567 Info.SecondArg = Arg;
1568 return Sema::TDK_NonDeducedMismatch;
1569 }
1570
1571 if (Arg.getKind() == TemplateArgument::Expression) {
1572 Info.FirstArg = Param;
1573 Info.SecondArg = Arg;
1574 return Sema::TDK_NonDeducedMismatch;
1575 }
1576
1577 Info.FirstArg = Param;
1578 Info.SecondArg = Arg;
1579 return Sema::TDK_NonDeducedMismatch;
1580
1581 case TemplateArgument::Expression: {
1582 if (NonTypeTemplateParmDecl *NTTP
1583 = getDeducedParameterFromExpr(Param.getAsExpr())) {
1584 if (Arg.getKind() == TemplateArgument::Integral)
1585 return DeduceNonTypeTemplateArgument(S, NTTP,
1586 *Arg.getAsIntegral(),
1587 Arg.getIntegralType(),
1588 /*ArrayBound=*/false,
1589 Info, Deduced);
1590 if (Arg.getKind() == TemplateArgument::Expression)
1591 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
1592 Info, Deduced);
1593 if (Arg.getKind() == TemplateArgument::Declaration)
1594 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
1595 Info, Deduced);
1596
1597 Info.FirstArg = Param;
1598 Info.SecondArg = Arg;
1599 return Sema::TDK_NonDeducedMismatch;
1600 }
1601
1602 // Can't deduce anything, but that's okay.
1603 return Sema::TDK_Success;
1604 }
1605 case TemplateArgument::Pack:
1606 llvm_unreachable("Argument packs should be expanded by the caller!");
1607 }
1608
1609 return Sema::TDK_Success;
1610 }
1611
1612 /// \brief Determine whether there is a template argument to be used for
1613 /// deduction.
1614 ///
1615 /// This routine "expands" argument packs in-place, overriding its input
1616 /// parameters so that \c Args[ArgIdx] will be the available template argument.
1617 ///
1618 /// \returns true if there is another template argument (which will be at
1619 /// \c Args[ArgIdx]), false otherwise.
hasTemplateArgumentForDeduction(const TemplateArgument * & Args,unsigned & ArgIdx,unsigned & NumArgs)1620 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1621 unsigned &ArgIdx,
1622 unsigned &NumArgs) {
1623 if (ArgIdx == NumArgs)
1624 return false;
1625
1626 const TemplateArgument &Arg = Args[ArgIdx];
1627 if (Arg.getKind() != TemplateArgument::Pack)
1628 return true;
1629
1630 assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1631 Args = Arg.pack_begin();
1632 NumArgs = Arg.pack_size();
1633 ArgIdx = 0;
1634 return ArgIdx < NumArgs;
1635 }
1636
1637 /// \brief Determine whether the given set of template arguments has a pack
1638 /// expansion that is not the last template argument.
hasPackExpansionBeforeEnd(const TemplateArgument * Args,unsigned NumArgs)1639 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
1640 unsigned NumArgs) {
1641 unsigned ArgIdx = 0;
1642 while (ArgIdx < NumArgs) {
1643 const TemplateArgument &Arg = Args[ArgIdx];
1644
1645 // Unwrap argument packs.
1646 if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
1647 Args = Arg.pack_begin();
1648 NumArgs = Arg.pack_size();
1649 ArgIdx = 0;
1650 continue;
1651 }
1652
1653 ++ArgIdx;
1654 if (ArgIdx == NumArgs)
1655 return false;
1656
1657 if (Arg.isPackExpansion())
1658 return true;
1659 }
1660
1661 return false;
1662 }
1663
1664 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument * Params,unsigned NumParams,const TemplateArgument * Args,unsigned NumArgs,TemplateDeductionInfo & Info,llvm::SmallVectorImpl<DeducedTemplateArgument> & Deduced,bool NumberOfArgumentsMustMatch)1665 DeduceTemplateArguments(Sema &S,
1666 TemplateParameterList *TemplateParams,
1667 const TemplateArgument *Params, unsigned NumParams,
1668 const TemplateArgument *Args, unsigned NumArgs,
1669 TemplateDeductionInfo &Info,
1670 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1671 bool NumberOfArgumentsMustMatch) {
1672 // C++0x [temp.deduct.type]p9:
1673 // If the template argument list of P contains a pack expansion that is not
1674 // the last template argument, the entire template argument list is a
1675 // non-deduced context.
1676 if (hasPackExpansionBeforeEnd(Params, NumParams))
1677 return Sema::TDK_Success;
1678
1679 // C++0x [temp.deduct.type]p9:
1680 // If P has a form that contains <T> or <i>, then each argument Pi of the
1681 // respective template argument list P is compared with the corresponding
1682 // argument Ai of the corresponding template argument list of A.
1683 unsigned ArgIdx = 0, ParamIdx = 0;
1684 for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1685 ++ParamIdx) {
1686 if (!Params[ParamIdx].isPackExpansion()) {
1687 // The simple case: deduce template arguments by matching Pi and Ai.
1688
1689 // Check whether we have enough arguments.
1690 if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1691 return NumberOfArgumentsMustMatch? Sema::TDK_NonDeducedMismatch
1692 : Sema::TDK_Success;
1693
1694 if (Args[ArgIdx].isPackExpansion()) {
1695 // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
1696 // but applied to pack expansions that are template arguments.
1697 return Sema::TDK_NonDeducedMismatch;
1698 }
1699
1700 // Perform deduction for this Pi/Ai pair.
1701 if (Sema::TemplateDeductionResult Result
1702 = DeduceTemplateArguments(S, TemplateParams,
1703 Params[ParamIdx], Args[ArgIdx],
1704 Info, Deduced))
1705 return Result;
1706
1707 // Move to the next argument.
1708 ++ArgIdx;
1709 continue;
1710 }
1711
1712 // The parameter is a pack expansion.
1713
1714 // C++0x [temp.deduct.type]p9:
1715 // If Pi is a pack expansion, then the pattern of Pi is compared with
1716 // each remaining argument in the template argument list of A. Each
1717 // comparison deduces template arguments for subsequent positions in the
1718 // template parameter packs expanded by Pi.
1719 TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1720
1721 // Compute the set of template parameter indices that correspond to
1722 // parameter packs expanded by the pack expansion.
1723 llvm::SmallVector<unsigned, 2> PackIndices;
1724 {
1725 llvm::BitVector SawIndices(TemplateParams->size());
1726 llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
1727 S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
1728 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
1729 unsigned Depth, Index;
1730 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
1731 if (Depth == 0 && !SawIndices[Index]) {
1732 SawIndices[Index] = true;
1733 PackIndices.push_back(Index);
1734 }
1735 }
1736 }
1737 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
1738
1739 // FIXME: If there are no remaining arguments, we can bail out early
1740 // and set any deduced parameter packs to an empty argument pack.
1741 // The latter part of this is a (minor) correctness issue.
1742
1743 // Save the deduced template arguments for each parameter pack expanded
1744 // by this pack expansion, then clear out the deduction.
1745 llvm::SmallVector<DeducedTemplateArgument, 2>
1746 SavedPacks(PackIndices.size());
1747 llvm::SmallVector<llvm::SmallVector<DeducedTemplateArgument, 4>, 2>
1748 NewlyDeducedPacks(PackIndices.size());
1749 PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
1750 NewlyDeducedPacks);
1751
1752 // Keep track of the deduced template arguments for each parameter pack
1753 // expanded by this pack expansion (the outer index) and for each
1754 // template argument (the inner SmallVectors).
1755 bool HasAnyArguments = false;
1756 while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
1757 HasAnyArguments = true;
1758
1759 // Deduce template arguments from the pattern.
1760 if (Sema::TemplateDeductionResult Result
1761 = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1762 Info, Deduced))
1763 return Result;
1764
1765 // Capture the deduced template arguments for each parameter pack expanded
1766 // by this pack expansion, add them to the list of arguments we've deduced
1767 // for that pack, then clear out the deduced argument.
1768 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1769 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
1770 if (!DeducedArg.isNull()) {
1771 NewlyDeducedPacks[I].push_back(DeducedArg);
1772 DeducedArg = DeducedTemplateArgument();
1773 }
1774 }
1775
1776 ++ArgIdx;
1777 }
1778
1779 // Build argument packs for each of the parameter packs expanded by this
1780 // pack expansion.
1781 if (Sema::TemplateDeductionResult Result
1782 = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
1783 Deduced, PackIndices, SavedPacks,
1784 NewlyDeducedPacks, Info))
1785 return Result;
1786 }
1787
1788 // If there is an argument remaining, then we had too many arguments.
1789 if (NumberOfArgumentsMustMatch &&
1790 hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1791 return Sema::TDK_NonDeducedMismatch;
1792
1793 return Sema::TDK_Success;
1794 }
1795
1796 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgumentList & ParamList,const TemplateArgumentList & ArgList,TemplateDeductionInfo & Info,llvm::SmallVectorImpl<DeducedTemplateArgument> & Deduced)1797 DeduceTemplateArguments(Sema &S,
1798 TemplateParameterList *TemplateParams,
1799 const TemplateArgumentList &ParamList,
1800 const TemplateArgumentList &ArgList,
1801 TemplateDeductionInfo &Info,
1802 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1803 return DeduceTemplateArguments(S, TemplateParams,
1804 ParamList.data(), ParamList.size(),
1805 ArgList.data(), ArgList.size(),
1806 Info, Deduced);
1807 }
1808
1809 /// \brief Determine whether two template arguments are the same.
isSameTemplateArg(ASTContext & Context,const TemplateArgument & X,const TemplateArgument & Y)1810 static bool isSameTemplateArg(ASTContext &Context,
1811 const TemplateArgument &X,
1812 const TemplateArgument &Y) {
1813 if (X.getKind() != Y.getKind())
1814 return false;
1815
1816 switch (X.getKind()) {
1817 case TemplateArgument::Null:
1818 assert(false && "Comparing NULL template argument");
1819 break;
1820
1821 case TemplateArgument::Type:
1822 return Context.getCanonicalType(X.getAsType()) ==
1823 Context.getCanonicalType(Y.getAsType());
1824
1825 case TemplateArgument::Declaration:
1826 return X.getAsDecl()->getCanonicalDecl() ==
1827 Y.getAsDecl()->getCanonicalDecl();
1828
1829 case TemplateArgument::Template:
1830 case TemplateArgument::TemplateExpansion:
1831 return Context.getCanonicalTemplateName(
1832 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
1833 Context.getCanonicalTemplateName(
1834 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
1835
1836 case TemplateArgument::Integral:
1837 return *X.getAsIntegral() == *Y.getAsIntegral();
1838
1839 case TemplateArgument::Expression: {
1840 llvm::FoldingSetNodeID XID, YID;
1841 X.getAsExpr()->Profile(XID, Context, true);
1842 Y.getAsExpr()->Profile(YID, Context, true);
1843 return XID == YID;
1844 }
1845
1846 case TemplateArgument::Pack:
1847 if (X.pack_size() != Y.pack_size())
1848 return false;
1849
1850 for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1851 XPEnd = X.pack_end(),
1852 YP = Y.pack_begin();
1853 XP != XPEnd; ++XP, ++YP)
1854 if (!isSameTemplateArg(Context, *XP, *YP))
1855 return false;
1856
1857 return true;
1858 }
1859
1860 return false;
1861 }
1862
1863 /// \brief Allocate a TemplateArgumentLoc where all locations have
1864 /// been initialized to the given location.
1865 ///
1866 /// \param S The semantic analysis object.
1867 ///
1868 /// \param The template argument we are producing template argument
1869 /// location information for.
1870 ///
1871 /// \param NTTPType For a declaration template argument, the type of
1872 /// the non-type template parameter that corresponds to this template
1873 /// argument.
1874 ///
1875 /// \param Loc The source location to use for the resulting template
1876 /// argument.
1877 static TemplateArgumentLoc
getTrivialTemplateArgumentLoc(Sema & S,const TemplateArgument & Arg,QualType NTTPType,SourceLocation Loc)1878 getTrivialTemplateArgumentLoc(Sema &S,
1879 const TemplateArgument &Arg,
1880 QualType NTTPType,
1881 SourceLocation Loc) {
1882 switch (Arg.getKind()) {
1883 case TemplateArgument::Null:
1884 llvm_unreachable("Can't get a NULL template argument here");
1885 break;
1886
1887 case TemplateArgument::Type:
1888 return TemplateArgumentLoc(Arg,
1889 S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
1890
1891 case TemplateArgument::Declaration: {
1892 Expr *E
1893 = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
1894 .takeAs<Expr>();
1895 return TemplateArgumentLoc(TemplateArgument(E), E);
1896 }
1897
1898 case TemplateArgument::Integral: {
1899 Expr *E
1900 = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
1901 return TemplateArgumentLoc(TemplateArgument(E), E);
1902 }
1903
1904 case TemplateArgument::Template:
1905 case TemplateArgument::TemplateExpansion: {
1906 NestedNameSpecifierLocBuilder Builder;
1907 TemplateName Template = Arg.getAsTemplate();
1908 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
1909 Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
1910 else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
1911 Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
1912
1913 if (Arg.getKind() == TemplateArgument::Template)
1914 return TemplateArgumentLoc(Arg,
1915 Builder.getWithLocInContext(S.Context),
1916 Loc);
1917
1918
1919 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
1920 Loc, Loc);
1921 }
1922
1923 case TemplateArgument::Expression:
1924 return TemplateArgumentLoc(Arg, Arg.getAsExpr());
1925
1926 case TemplateArgument::Pack:
1927 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
1928 }
1929
1930 return TemplateArgumentLoc();
1931 }
1932
1933
1934 /// \brief Convert the given deduced template argument and add it to the set of
1935 /// fully-converted template arguments.
ConvertDeducedTemplateArgument(Sema & S,NamedDecl * Param,DeducedTemplateArgument Arg,NamedDecl * Template,QualType NTTPType,unsigned ArgumentPackIndex,TemplateDeductionInfo & Info,bool InFunctionTemplate,llvm::SmallVectorImpl<TemplateArgument> & Output)1936 static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
1937 DeducedTemplateArgument Arg,
1938 NamedDecl *Template,
1939 QualType NTTPType,
1940 unsigned ArgumentPackIndex,
1941 TemplateDeductionInfo &Info,
1942 bool InFunctionTemplate,
1943 llvm::SmallVectorImpl<TemplateArgument> &Output) {
1944 if (Arg.getKind() == TemplateArgument::Pack) {
1945 // This is a template argument pack, so check each of its arguments against
1946 // the template parameter.
1947 llvm::SmallVector<TemplateArgument, 2> PackedArgsBuilder;
1948 for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
1949 PAEnd = Arg.pack_end();
1950 PA != PAEnd; ++PA) {
1951 // When converting the deduced template argument, append it to the
1952 // general output list. We need to do this so that the template argument
1953 // checking logic has all of the prior template arguments available.
1954 DeducedTemplateArgument InnerArg(*PA);
1955 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
1956 if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
1957 NTTPType, PackedArgsBuilder.size(),
1958 Info, InFunctionTemplate, Output))
1959 return true;
1960
1961 // Move the converted template argument into our argument pack.
1962 PackedArgsBuilder.push_back(Output.back());
1963 Output.pop_back();
1964 }
1965
1966 // Create the resulting argument pack.
1967 Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
1968 PackedArgsBuilder.data(),
1969 PackedArgsBuilder.size()));
1970 return false;
1971 }
1972
1973 // Convert the deduced template argument into a template
1974 // argument that we can check, almost as if the user had written
1975 // the template argument explicitly.
1976 TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
1977 Info.getLocation());
1978
1979 // Check the template argument, converting it as necessary.
1980 return S.CheckTemplateArgument(Param, ArgLoc,
1981 Template,
1982 Template->getLocation(),
1983 Template->getSourceRange().getEnd(),
1984 ArgumentPackIndex,
1985 Output,
1986 InFunctionTemplate
1987 ? (Arg.wasDeducedFromArrayBound()
1988 ? Sema::CTAK_DeducedFromArrayBound
1989 : Sema::CTAK_Deduced)
1990 : Sema::CTAK_Specified);
1991 }
1992
1993 /// Complete template argument deduction for a class template partial
1994 /// specialization.
1995 static Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(Sema & S,ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,llvm::SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info)1996 FinishTemplateArgumentDeduction(Sema &S,
1997 ClassTemplatePartialSpecializationDecl *Partial,
1998 const TemplateArgumentList &TemplateArgs,
1999 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2000 TemplateDeductionInfo &Info) {
2001 // Trap errors.
2002 Sema::SFINAETrap Trap(S);
2003
2004 Sema::ContextRAII SavedContext(S, Partial);
2005
2006 // C++ [temp.deduct.type]p2:
2007 // [...] or if any template argument remains neither deduced nor
2008 // explicitly specified, template argument deduction fails.
2009 llvm::SmallVector<TemplateArgument, 4> Builder;
2010 TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2011 for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2012 NamedDecl *Param = PartialParams->getParam(I);
2013 if (Deduced[I].isNull()) {
2014 Info.Param = makeTemplateParameter(Param);
2015 return Sema::TDK_Incomplete;
2016 }
2017
2018 // We have deduced this argument, so it still needs to be
2019 // checked and converted.
2020
2021 // First, for a non-type template parameter type that is
2022 // initialized by a declaration, we need the type of the
2023 // corresponding non-type template parameter.
2024 QualType NTTPType;
2025 if (NonTypeTemplateParmDecl *NTTP
2026 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2027 NTTPType = NTTP->getType();
2028 if (NTTPType->isDependentType()) {
2029 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2030 Builder.data(), Builder.size());
2031 NTTPType = S.SubstType(NTTPType,
2032 MultiLevelTemplateArgumentList(TemplateArgs),
2033 NTTP->getLocation(),
2034 NTTP->getDeclName());
2035 if (NTTPType.isNull()) {
2036 Info.Param = makeTemplateParameter(Param);
2037 // FIXME: These template arguments are temporary. Free them!
2038 Info.reset(TemplateArgumentList::CreateCopy(S.Context,
2039 Builder.data(),
2040 Builder.size()));
2041 return Sema::TDK_SubstitutionFailure;
2042 }
2043 }
2044 }
2045
2046 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
2047 Partial, NTTPType, 0, Info, false,
2048 Builder)) {
2049 Info.Param = makeTemplateParameter(Param);
2050 // FIXME: These template arguments are temporary. Free them!
2051 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2052 Builder.size()));
2053 return Sema::TDK_SubstitutionFailure;
2054 }
2055 }
2056
2057 // Form the template argument list from the deduced template arguments.
2058 TemplateArgumentList *DeducedArgumentList
2059 = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2060 Builder.size());
2061
2062 Info.reset(DeducedArgumentList);
2063
2064 // Substitute the deduced template arguments into the template
2065 // arguments of the class template partial specialization, and
2066 // verify that the instantiated template arguments are both valid
2067 // and are equivalent to the template arguments originally provided
2068 // to the class template.
2069 LocalInstantiationScope InstScope(S);
2070 ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
2071 const TemplateArgumentLoc *PartialTemplateArgs
2072 = Partial->getTemplateArgsAsWritten();
2073
2074 // Note that we don't provide the langle and rangle locations.
2075 TemplateArgumentListInfo InstArgs;
2076
2077 if (S.Subst(PartialTemplateArgs,
2078 Partial->getNumTemplateArgsAsWritten(),
2079 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2080 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2081 if (ParamIdx >= Partial->getTemplateParameters()->size())
2082 ParamIdx = Partial->getTemplateParameters()->size() - 1;
2083
2084 Decl *Param
2085 = const_cast<NamedDecl *>(
2086 Partial->getTemplateParameters()->getParam(ParamIdx));
2087 Info.Param = makeTemplateParameter(Param);
2088 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2089 return Sema::TDK_SubstitutionFailure;
2090 }
2091
2092 llvm::SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2093 if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
2094 InstArgs, false, ConvertedInstArgs))
2095 return Sema::TDK_SubstitutionFailure;
2096
2097 TemplateParameterList *TemplateParams
2098 = ClassTemplate->getTemplateParameters();
2099 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2100 TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2101 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2102 Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2103 Info.FirstArg = TemplateArgs[I];
2104 Info.SecondArg = InstArg;
2105 return Sema::TDK_NonDeducedMismatch;
2106 }
2107 }
2108
2109 if (Trap.hasErrorOccurred())
2110 return Sema::TDK_SubstitutionFailure;
2111
2112 return Sema::TDK_Success;
2113 }
2114
2115 /// \brief Perform template argument deduction to determine whether
2116 /// the given template arguments match the given class template
2117 /// partial specialization per C++ [temp.class.spec.match].
2118 Sema::TemplateDeductionResult
DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,TemplateDeductionInfo & Info)2119 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2120 const TemplateArgumentList &TemplateArgs,
2121 TemplateDeductionInfo &Info) {
2122 // C++ [temp.class.spec.match]p2:
2123 // A partial specialization matches a given actual template
2124 // argument list if the template arguments of the partial
2125 // specialization can be deduced from the actual template argument
2126 // list (14.8.2).
2127 SFINAETrap Trap(*this);
2128 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2129 Deduced.resize(Partial->getTemplateParameters()->size());
2130 if (TemplateDeductionResult Result
2131 = ::DeduceTemplateArguments(*this,
2132 Partial->getTemplateParameters(),
2133 Partial->getTemplateArgs(),
2134 TemplateArgs, Info, Deduced))
2135 return Result;
2136
2137 InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
2138 Deduced.data(), Deduced.size(), Info);
2139 if (Inst)
2140 return TDK_InstantiationDepth;
2141
2142 if (Trap.hasErrorOccurred())
2143 return Sema::TDK_SubstitutionFailure;
2144
2145 return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2146 Deduced, Info);
2147 }
2148
2149 /// \brief Determine whether the given type T is a simple-template-id type.
isSimpleTemplateIdType(QualType T)2150 static bool isSimpleTemplateIdType(QualType T) {
2151 if (const TemplateSpecializationType *Spec
2152 = T->getAs<TemplateSpecializationType>())
2153 return Spec->getTemplateName().getAsTemplateDecl() != 0;
2154
2155 return false;
2156 }
2157
2158 /// \brief Substitute the explicitly-provided template arguments into the
2159 /// given function template according to C++ [temp.arg.explicit].
2160 ///
2161 /// \param FunctionTemplate the function template into which the explicit
2162 /// template arguments will be substituted.
2163 ///
2164 /// \param ExplicitTemplateArguments the explicitly-specified template
2165 /// arguments.
2166 ///
2167 /// \param Deduced the deduced template arguments, which will be populated
2168 /// with the converted and checked explicit template arguments.
2169 ///
2170 /// \param ParamTypes will be populated with the instantiated function
2171 /// parameters.
2172 ///
2173 /// \param FunctionType if non-NULL, the result type of the function template
2174 /// will also be instantiated and the pointed-to value will be updated with
2175 /// the instantiated function type.
2176 ///
2177 /// \param Info if substitution fails for any reason, this object will be
2178 /// populated with more information about the failure.
2179 ///
2180 /// \returns TDK_Success if substitution was successful, or some failure
2181 /// condition.
2182 Sema::TemplateDeductionResult
SubstituteExplicitTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo & ExplicitTemplateArgs,llvm::SmallVectorImpl<DeducedTemplateArgument> & Deduced,llvm::SmallVectorImpl<QualType> & ParamTypes,QualType * FunctionType,TemplateDeductionInfo & Info)2183 Sema::SubstituteExplicitTemplateArguments(
2184 FunctionTemplateDecl *FunctionTemplate,
2185 TemplateArgumentListInfo &ExplicitTemplateArgs,
2186 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2187 llvm::SmallVectorImpl<QualType> &ParamTypes,
2188 QualType *FunctionType,
2189 TemplateDeductionInfo &Info) {
2190 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2191 TemplateParameterList *TemplateParams
2192 = FunctionTemplate->getTemplateParameters();
2193
2194 if (ExplicitTemplateArgs.size() == 0) {
2195 // No arguments to substitute; just copy over the parameter types and
2196 // fill in the function type.
2197 for (FunctionDecl::param_iterator P = Function->param_begin(),
2198 PEnd = Function->param_end();
2199 P != PEnd;
2200 ++P)
2201 ParamTypes.push_back((*P)->getType());
2202
2203 if (FunctionType)
2204 *FunctionType = Function->getType();
2205 return TDK_Success;
2206 }
2207
2208 // Substitution of the explicit template arguments into a function template
2209 /// is a SFINAE context. Trap any errors that might occur.
2210 SFINAETrap Trap(*this);
2211
2212 // C++ [temp.arg.explicit]p3:
2213 // Template arguments that are present shall be specified in the
2214 // declaration order of their corresponding template-parameters. The
2215 // template argument list shall not specify more template-arguments than
2216 // there are corresponding template-parameters.
2217 llvm::SmallVector<TemplateArgument, 4> Builder;
2218
2219 // Enter a new template instantiation context where we check the
2220 // explicitly-specified template arguments against this function template,
2221 // and then substitute them into the function parameter types.
2222 InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2223 FunctionTemplate, Deduced.data(), Deduced.size(),
2224 ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
2225 Info);
2226 if (Inst)
2227 return TDK_InstantiationDepth;
2228
2229 if (CheckTemplateArgumentList(FunctionTemplate,
2230 SourceLocation(),
2231 ExplicitTemplateArgs,
2232 true,
2233 Builder) || Trap.hasErrorOccurred()) {
2234 unsigned Index = Builder.size();
2235 if (Index >= TemplateParams->size())
2236 Index = TemplateParams->size() - 1;
2237 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
2238 return TDK_InvalidExplicitArguments;
2239 }
2240
2241 // Form the template argument list from the explicitly-specified
2242 // template arguments.
2243 TemplateArgumentList *ExplicitArgumentList
2244 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2245 Info.reset(ExplicitArgumentList);
2246
2247 // Template argument deduction and the final substitution should be
2248 // done in the context of the templated declaration. Explicit
2249 // argument substitution, on the other hand, needs to happen in the
2250 // calling context.
2251 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2252
2253 // If we deduced template arguments for a template parameter pack,
2254 // note that the template argument pack is partially substituted and record
2255 // the explicit template arguments. They'll be used as part of deduction
2256 // for this template parameter pack.
2257 for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
2258 const TemplateArgument &Arg = Builder[I];
2259 if (Arg.getKind() == TemplateArgument::Pack) {
2260 CurrentInstantiationScope->SetPartiallySubstitutedPack(
2261 TemplateParams->getParam(I),
2262 Arg.pack_begin(),
2263 Arg.pack_size());
2264 break;
2265 }
2266 }
2267
2268 // Instantiate the types of each of the function parameters given the
2269 // explicitly-specified template arguments.
2270 if (SubstParmTypes(Function->getLocation(),
2271 Function->param_begin(), Function->getNumParams(),
2272 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2273 ParamTypes))
2274 return TDK_SubstitutionFailure;
2275
2276 // If the caller wants a full function type back, instantiate the return
2277 // type and form that function type.
2278 if (FunctionType) {
2279 // FIXME: exception-specifications?
2280 const FunctionProtoType *Proto
2281 = Function->getType()->getAs<FunctionProtoType>();
2282 assert(Proto && "Function template does not have a prototype?");
2283
2284 QualType ResultType
2285 = SubstType(Proto->getResultType(),
2286 MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2287 Function->getTypeSpecStartLoc(),
2288 Function->getDeclName());
2289 if (ResultType.isNull() || Trap.hasErrorOccurred())
2290 return TDK_SubstitutionFailure;
2291
2292 *FunctionType = BuildFunctionType(ResultType,
2293 ParamTypes.data(), ParamTypes.size(),
2294 Proto->isVariadic(),
2295 Proto->getTypeQuals(),
2296 Proto->getRefQualifier(),
2297 Function->getLocation(),
2298 Function->getDeclName(),
2299 Proto->getExtInfo());
2300 if (FunctionType->isNull() || Trap.hasErrorOccurred())
2301 return TDK_SubstitutionFailure;
2302 }
2303
2304 // C++ [temp.arg.explicit]p2:
2305 // Trailing template arguments that can be deduced (14.8.2) may be
2306 // omitted from the list of explicit template-arguments. If all of the
2307 // template arguments can be deduced, they may all be omitted; in this
2308 // case, the empty template argument list <> itself may also be omitted.
2309 //
2310 // Take all of the explicitly-specified arguments and put them into
2311 // the set of deduced template arguments. Explicitly-specified
2312 // parameter packs, however, will be set to NULL since the deduction
2313 // mechanisms handle explicitly-specified argument packs directly.
2314 Deduced.reserve(TemplateParams->size());
2315 for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
2316 const TemplateArgument &Arg = ExplicitArgumentList->get(I);
2317 if (Arg.getKind() == TemplateArgument::Pack)
2318 Deduced.push_back(DeducedTemplateArgument());
2319 else
2320 Deduced.push_back(Arg);
2321 }
2322
2323 return TDK_Success;
2324 }
2325
2326 /// \brief Check whether the deduced argument type for a call to a function
2327 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
2328 static bool
CheckOriginalCallArgDeduction(Sema & S,Sema::OriginalCallArg OriginalArg,QualType DeducedA)2329 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
2330 QualType DeducedA) {
2331 ASTContext &Context = S.Context;
2332
2333 QualType A = OriginalArg.OriginalArgType;
2334 QualType OriginalParamType = OriginalArg.OriginalParamType;
2335
2336 // Check for type equality (top-level cv-qualifiers are ignored).
2337 if (Context.hasSameUnqualifiedType(A, DeducedA))
2338 return false;
2339
2340 // Strip off references on the argument types; they aren't needed for
2341 // the following checks.
2342 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
2343 DeducedA = DeducedARef->getPointeeType();
2344 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2345 A = ARef->getPointeeType();
2346
2347 // C++ [temp.deduct.call]p4:
2348 // [...] However, there are three cases that allow a difference:
2349 // - If the original P is a reference type, the deduced A (i.e., the
2350 // type referred to by the reference) can be more cv-qualified than
2351 // the transformed A.
2352 if (const ReferenceType *OriginalParamRef
2353 = OriginalParamType->getAs<ReferenceType>()) {
2354 // We don't want to keep the reference around any more.
2355 OriginalParamType = OriginalParamRef->getPointeeType();
2356
2357 Qualifiers AQuals = A.getQualifiers();
2358 Qualifiers DeducedAQuals = DeducedA.getQualifiers();
2359 if (AQuals == DeducedAQuals) {
2360 // Qualifiers match; there's nothing to do.
2361 } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
2362 return true;
2363 } else {
2364 // Qualifiers are compatible, so have the argument type adopt the
2365 // deduced argument type's qualifiers as if we had performed the
2366 // qualification conversion.
2367 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
2368 }
2369 }
2370
2371 // - The transformed A can be another pointer or pointer to member
2372 // type that can be converted to the deduced A via a qualification
2373 // conversion.
2374 //
2375 // Also allow conversions which merely strip [[noreturn]] from function types
2376 // (recursively) as an extension.
2377 // FIXME: Currently, this doesn't place nicely with qualfication conversions.
2378 bool ObjCLifetimeConversion = false;
2379 QualType ResultTy;
2380 if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
2381 (S.IsQualificationConversion(A, DeducedA, false,
2382 ObjCLifetimeConversion) ||
2383 S.IsNoReturnConversion(A, DeducedA, ResultTy)))
2384 return false;
2385
2386
2387 // - If P is a class and P has the form simple-template-id, then the
2388 // transformed A can be a derived class of the deduced A. [...]
2389 // [...] Likewise, if P is a pointer to a class of the form
2390 // simple-template-id, the transformed A can be a pointer to a
2391 // derived class pointed to by the deduced A.
2392 if (const PointerType *OriginalParamPtr
2393 = OriginalParamType->getAs<PointerType>()) {
2394 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
2395 if (const PointerType *APtr = A->getAs<PointerType>()) {
2396 if (A->getPointeeType()->isRecordType()) {
2397 OriginalParamType = OriginalParamPtr->getPointeeType();
2398 DeducedA = DeducedAPtr->getPointeeType();
2399 A = APtr->getPointeeType();
2400 }
2401 }
2402 }
2403 }
2404
2405 if (Context.hasSameUnqualifiedType(A, DeducedA))
2406 return false;
2407
2408 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
2409 S.IsDerivedFrom(A, DeducedA))
2410 return false;
2411
2412 return true;
2413 }
2414
2415 /// \brief Finish template argument deduction for a function template,
2416 /// checking the deduced template arguments for completeness and forming
2417 /// the function template specialization.
2418 ///
2419 /// \param OriginalCallArgs If non-NULL, the original call arguments against
2420 /// which the deduced argument types should be compared.
2421 Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(FunctionTemplateDecl * FunctionTemplate,llvm::SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned NumExplicitlySpecified,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,llvm::SmallVectorImpl<OriginalCallArg> const * OriginalCallArgs)2422 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
2423 llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2424 unsigned NumExplicitlySpecified,
2425 FunctionDecl *&Specialization,
2426 TemplateDeductionInfo &Info,
2427 llvm::SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
2428 TemplateParameterList *TemplateParams
2429 = FunctionTemplate->getTemplateParameters();
2430
2431 // Template argument deduction for function templates in a SFINAE context.
2432 // Trap any errors that might occur.
2433 SFINAETrap Trap(*this);
2434
2435 // Enter a new template instantiation context while we instantiate the
2436 // actual function declaration.
2437 InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2438 FunctionTemplate, Deduced.data(), Deduced.size(),
2439 ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
2440 Info);
2441 if (Inst)
2442 return TDK_InstantiationDepth;
2443
2444 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2445
2446 // C++ [temp.deduct.type]p2:
2447 // [...] or if any template argument remains neither deduced nor
2448 // explicitly specified, template argument deduction fails.
2449 llvm::SmallVector<TemplateArgument, 4> Builder;
2450 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2451 NamedDecl *Param = TemplateParams->getParam(I);
2452
2453 if (!Deduced[I].isNull()) {
2454 if (I < NumExplicitlySpecified) {
2455 // We have already fully type-checked and converted this
2456 // argument, because it was explicitly-specified. Just record the
2457 // presence of this argument.
2458 Builder.push_back(Deduced[I]);
2459 continue;
2460 }
2461
2462 // We have deduced this argument, so it still needs to be
2463 // checked and converted.
2464
2465 // First, for a non-type template parameter type that is
2466 // initialized by a declaration, we need the type of the
2467 // corresponding non-type template parameter.
2468 QualType NTTPType;
2469 if (NonTypeTemplateParmDecl *NTTP
2470 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2471 NTTPType = NTTP->getType();
2472 if (NTTPType->isDependentType()) {
2473 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2474 Builder.data(), Builder.size());
2475 NTTPType = SubstType(NTTPType,
2476 MultiLevelTemplateArgumentList(TemplateArgs),
2477 NTTP->getLocation(),
2478 NTTP->getDeclName());
2479 if (NTTPType.isNull()) {
2480 Info.Param = makeTemplateParameter(Param);
2481 // FIXME: These template arguments are temporary. Free them!
2482 Info.reset(TemplateArgumentList::CreateCopy(Context,
2483 Builder.data(),
2484 Builder.size()));
2485 return TDK_SubstitutionFailure;
2486 }
2487 }
2488 }
2489
2490 if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
2491 FunctionTemplate, NTTPType, 0, Info,
2492 true, Builder)) {
2493 Info.Param = makeTemplateParameter(Param);
2494 // FIXME: These template arguments are temporary. Free them!
2495 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2496 Builder.size()));
2497 return TDK_SubstitutionFailure;
2498 }
2499
2500 continue;
2501 }
2502
2503 // C++0x [temp.arg.explicit]p3:
2504 // A trailing template parameter pack (14.5.3) not otherwise deduced will
2505 // be deduced to an empty sequence of template arguments.
2506 // FIXME: Where did the word "trailing" come from?
2507 if (Param->isTemplateParameterPack()) {
2508 // We may have had explicitly-specified template arguments for this
2509 // template parameter pack. If so, our empty deduction extends the
2510 // explicitly-specified set (C++0x [temp.arg.explicit]p9).
2511 const TemplateArgument *ExplicitArgs;
2512 unsigned NumExplicitArgs;
2513 if (CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
2514 &NumExplicitArgs)
2515 == Param)
2516 Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
2517 else
2518 Builder.push_back(TemplateArgument(0, 0));
2519
2520 continue;
2521 }
2522
2523 // Substitute into the default template argument, if available.
2524 TemplateArgumentLoc DefArg
2525 = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
2526 FunctionTemplate->getLocation(),
2527 FunctionTemplate->getSourceRange().getEnd(),
2528 Param,
2529 Builder);
2530
2531 // If there was no default argument, deduction is incomplete.
2532 if (DefArg.getArgument().isNull()) {
2533 Info.Param = makeTemplateParameter(
2534 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2535 return TDK_Incomplete;
2536 }
2537
2538 // Check whether we can actually use the default argument.
2539 if (CheckTemplateArgument(Param, DefArg,
2540 FunctionTemplate,
2541 FunctionTemplate->getLocation(),
2542 FunctionTemplate->getSourceRange().getEnd(),
2543 0, Builder,
2544 CTAK_Specified)) {
2545 Info.Param = makeTemplateParameter(
2546 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2547 // FIXME: These template arguments are temporary. Free them!
2548 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2549 Builder.size()));
2550 return TDK_SubstitutionFailure;
2551 }
2552
2553 // If we get here, we successfully used the default template argument.
2554 }
2555
2556 // Form the template argument list from the deduced template arguments.
2557 TemplateArgumentList *DeducedArgumentList
2558 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2559 Info.reset(DeducedArgumentList);
2560
2561 // Substitute the deduced template arguments into the function template
2562 // declaration to produce the function template specialization.
2563 DeclContext *Owner = FunctionTemplate->getDeclContext();
2564 if (FunctionTemplate->getFriendObjectKind())
2565 Owner = FunctionTemplate->getLexicalDeclContext();
2566 Specialization = cast_or_null<FunctionDecl>(
2567 SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
2568 MultiLevelTemplateArgumentList(*DeducedArgumentList)));
2569 if (!Specialization)
2570 return TDK_SubstitutionFailure;
2571
2572 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
2573 FunctionTemplate->getCanonicalDecl());
2574
2575 // If the template argument list is owned by the function template
2576 // specialization, release it.
2577 if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
2578 !Trap.hasErrorOccurred())
2579 Info.take();
2580
2581 if (OriginalCallArgs) {
2582 // C++ [temp.deduct.call]p4:
2583 // In general, the deduction process attempts to find template argument
2584 // values that will make the deduced A identical to A (after the type A
2585 // is transformed as described above). [...]
2586 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
2587 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
2588 unsigned ParamIdx = OriginalArg.ArgIdx;
2589
2590 if (ParamIdx >= Specialization->getNumParams())
2591 continue;
2592
2593 QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
2594 if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
2595 return Sema::TDK_SubstitutionFailure;
2596 }
2597 }
2598
2599 // There may have been an error that did not prevent us from constructing a
2600 // declaration. Mark the declaration invalid and return with a substitution
2601 // failure.
2602 if (Trap.hasErrorOccurred()) {
2603 Specialization->setInvalidDecl(true);
2604 return TDK_SubstitutionFailure;
2605 }
2606
2607 // If we suppressed any diagnostics while performing template argument
2608 // deduction, and if we haven't already instantiated this declaration,
2609 // keep track of these diagnostics. They'll be emitted if this specialization
2610 // is actually used.
2611 if (Info.diag_begin() != Info.diag_end()) {
2612 llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
2613 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
2614 if (Pos == SuppressedDiagnostics.end())
2615 SuppressedDiagnostics[Specialization->getCanonicalDecl()]
2616 .append(Info.diag_begin(), Info.diag_end());
2617 }
2618
2619 return TDK_Success;
2620 }
2621
2622 /// Gets the type of a function for template-argument-deducton
2623 /// purposes when it's considered as part of an overload set.
GetTypeOfFunction(ASTContext & Context,const OverloadExpr::FindResult & R,FunctionDecl * Fn)2624 static QualType GetTypeOfFunction(ASTContext &Context,
2625 const OverloadExpr::FindResult &R,
2626 FunctionDecl *Fn) {
2627 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
2628 if (Method->isInstance()) {
2629 // An instance method that's referenced in a form that doesn't
2630 // look like a member pointer is just invalid.
2631 if (!R.HasFormOfMemberPointer) return QualType();
2632
2633 return Context.getMemberPointerType(Fn->getType(),
2634 Context.getTypeDeclType(Method->getParent()).getTypePtr());
2635 }
2636
2637 if (!R.IsAddressOfOperand) return Fn->getType();
2638 return Context.getPointerType(Fn->getType());
2639 }
2640
2641 /// Apply the deduction rules for overload sets.
2642 ///
2643 /// \return the null type if this argument should be treated as an
2644 /// undeduced context
2645 static QualType
ResolveOverloadForDeduction(Sema & S,TemplateParameterList * TemplateParams,Expr * Arg,QualType ParamType,bool ParamWasReference)2646 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
2647 Expr *Arg, QualType ParamType,
2648 bool ParamWasReference) {
2649
2650 OverloadExpr::FindResult R = OverloadExpr::find(Arg);
2651
2652 OverloadExpr *Ovl = R.Expression;
2653
2654 // C++0x [temp.deduct.call]p4
2655 unsigned TDF = 0;
2656 if (ParamWasReference)
2657 TDF |= TDF_ParamWithReferenceType;
2658 if (R.IsAddressOfOperand)
2659 TDF |= TDF_IgnoreQualifiers;
2660
2661 // If there were explicit template arguments, we can only find
2662 // something via C++ [temp.arg.explicit]p3, i.e. if the arguments
2663 // unambiguously name a full specialization.
2664 if (Ovl->hasExplicitTemplateArgs()) {
2665 // But we can still look for an explicit specialization.
2666 if (FunctionDecl *ExplicitSpec
2667 = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
2668 return GetTypeOfFunction(S.Context, R, ExplicitSpec);
2669 return QualType();
2670 }
2671
2672 // C++0x [temp.deduct.call]p6:
2673 // When P is a function type, pointer to function type, or pointer
2674 // to member function type:
2675
2676 if (!ParamType->isFunctionType() &&
2677 !ParamType->isFunctionPointerType() &&
2678 !ParamType->isMemberFunctionPointerType())
2679 return QualType();
2680
2681 QualType Match;
2682 for (UnresolvedSetIterator I = Ovl->decls_begin(),
2683 E = Ovl->decls_end(); I != E; ++I) {
2684 NamedDecl *D = (*I)->getUnderlyingDecl();
2685
2686 // - If the argument is an overload set containing one or more
2687 // function templates, the parameter is treated as a
2688 // non-deduced context.
2689 if (isa<FunctionTemplateDecl>(D))
2690 return QualType();
2691
2692 FunctionDecl *Fn = cast<FunctionDecl>(D);
2693 QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
2694 if (ArgType.isNull()) continue;
2695
2696 // Function-to-pointer conversion.
2697 if (!ParamWasReference && ParamType->isPointerType() &&
2698 ArgType->isFunctionType())
2699 ArgType = S.Context.getPointerType(ArgType);
2700
2701 // - If the argument is an overload set (not containing function
2702 // templates), trial argument deduction is attempted using each
2703 // of the members of the set. If deduction succeeds for only one
2704 // of the overload set members, that member is used as the
2705 // argument value for the deduction. If deduction succeeds for
2706 // more than one member of the overload set the parameter is
2707 // treated as a non-deduced context.
2708
2709 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
2710 // Type deduction is done independently for each P/A pair, and
2711 // the deduced template argument values are then combined.
2712 // So we do not reject deductions which were made elsewhere.
2713 llvm::SmallVector<DeducedTemplateArgument, 8>
2714 Deduced(TemplateParams->size());
2715 TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
2716 Sema::TemplateDeductionResult Result
2717 = DeduceTemplateArguments(S, TemplateParams,
2718 ParamType, ArgType,
2719 Info, Deduced, TDF);
2720 if (Result) continue;
2721 if (!Match.isNull()) return QualType();
2722 Match = ArgType;
2723 }
2724
2725 return Match;
2726 }
2727
2728 /// \brief Perform the adjustments to the parameter and argument types
2729 /// described in C++ [temp.deduct.call].
2730 ///
2731 /// \returns true if the caller should not attempt to perform any template
2732 /// argument deduction based on this P/A pair.
AdjustFunctionParmAndArgTypesForDeduction(Sema & S,TemplateParameterList * TemplateParams,QualType & ParamType,QualType & ArgType,Expr * Arg,unsigned & TDF)2733 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
2734 TemplateParameterList *TemplateParams,
2735 QualType &ParamType,
2736 QualType &ArgType,
2737 Expr *Arg,
2738 unsigned &TDF) {
2739 // C++0x [temp.deduct.call]p3:
2740 // If P is a cv-qualified type, the top level cv-qualifiers of P's type
2741 // are ignored for type deduction.
2742 if (ParamType.hasQualifiers())
2743 ParamType = ParamType.getUnqualifiedType();
2744 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
2745 if (ParamRefType) {
2746 QualType PointeeType = ParamRefType->getPointeeType();
2747
2748 // If the argument has incomplete array type, try to complete it's type.
2749 if (ArgType->isIncompleteArrayType() &&
2750 !S.RequireCompleteExprType(Arg, S.PDiag(),
2751 std::make_pair(SourceLocation(), S.PDiag())))
2752 ArgType = Arg->getType();
2753
2754 // [C++0x] If P is an rvalue reference to a cv-unqualified
2755 // template parameter and the argument is an lvalue, the type
2756 // "lvalue reference to A" is used in place of A for type
2757 // deduction.
2758 if (isa<RValueReferenceType>(ParamType)) {
2759 if (!PointeeType.getQualifiers() &&
2760 isa<TemplateTypeParmType>(PointeeType) &&
2761 Arg->Classify(S.Context).isLValue() &&
2762 Arg->getType() != S.Context.OverloadTy &&
2763 Arg->getType() != S.Context.BoundMemberTy)
2764 ArgType = S.Context.getLValueReferenceType(ArgType);
2765 }
2766
2767 // [...] If P is a reference type, the type referred to by P is used
2768 // for type deduction.
2769 ParamType = PointeeType;
2770 }
2771
2772 // Overload sets usually make this parameter an undeduced
2773 // context, but there are sometimes special circumstances.
2774 if (ArgType == S.Context.OverloadTy) {
2775 ArgType = ResolveOverloadForDeduction(S, TemplateParams,
2776 Arg, ParamType,
2777 ParamRefType != 0);
2778 if (ArgType.isNull())
2779 return true;
2780 }
2781
2782 if (ParamRefType) {
2783 // C++0x [temp.deduct.call]p3:
2784 // [...] If P is of the form T&&, where T is a template parameter, and
2785 // the argument is an lvalue, the type A& is used in place of A for
2786 // type deduction.
2787 if (ParamRefType->isRValueReferenceType() &&
2788 ParamRefType->getAs<TemplateTypeParmType>() &&
2789 Arg->isLValue())
2790 ArgType = S.Context.getLValueReferenceType(ArgType);
2791 } else {
2792 // C++ [temp.deduct.call]p2:
2793 // If P is not a reference type:
2794 // - If A is an array type, the pointer type produced by the
2795 // array-to-pointer standard conversion (4.2) is used in place of
2796 // A for type deduction; otherwise,
2797 if (ArgType->isArrayType())
2798 ArgType = S.Context.getArrayDecayedType(ArgType);
2799 // - If A is a function type, the pointer type produced by the
2800 // function-to-pointer standard conversion (4.3) is used in place
2801 // of A for type deduction; otherwise,
2802 else if (ArgType->isFunctionType())
2803 ArgType = S.Context.getPointerType(ArgType);
2804 else {
2805 // - If A is a cv-qualified type, the top level cv-qualifiers of A's
2806 // type are ignored for type deduction.
2807 ArgType = ArgType.getUnqualifiedType();
2808 }
2809 }
2810
2811 // C++0x [temp.deduct.call]p4:
2812 // In general, the deduction process attempts to find template argument
2813 // values that will make the deduced A identical to A (after the type A
2814 // is transformed as described above). [...]
2815 TDF = TDF_SkipNonDependent;
2816
2817 // - If the original P is a reference type, the deduced A (i.e., the
2818 // type referred to by the reference) can be more cv-qualified than
2819 // the transformed A.
2820 if (ParamRefType)
2821 TDF |= TDF_ParamWithReferenceType;
2822 // - The transformed A can be another pointer or pointer to member
2823 // type that can be converted to the deduced A via a qualification
2824 // conversion (4.4).
2825 if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
2826 ArgType->isObjCObjectPointerType())
2827 TDF |= TDF_IgnoreQualifiers;
2828 // - If P is a class and P has the form simple-template-id, then the
2829 // transformed A can be a derived class of the deduced A. Likewise,
2830 // if P is a pointer to a class of the form simple-template-id, the
2831 // transformed A can be a pointer to a derived class pointed to by
2832 // the deduced A.
2833 if (isSimpleTemplateIdType(ParamType) ||
2834 (isa<PointerType>(ParamType) &&
2835 isSimpleTemplateIdType(
2836 ParamType->getAs<PointerType>()->getPointeeType())))
2837 TDF |= TDF_DerivedClass;
2838
2839 return false;
2840 }
2841
2842 static bool hasDeducibleTemplateParameters(Sema &S,
2843 FunctionTemplateDecl *FunctionTemplate,
2844 QualType T);
2845
2846 /// \brief Perform template argument deduction from a function call
2847 /// (C++ [temp.deduct.call]).
2848 ///
2849 /// \param FunctionTemplate the function template for which we are performing
2850 /// template argument deduction.
2851 ///
2852 /// \param ExplicitTemplateArguments the explicit template arguments provided
2853 /// for this call.
2854 ///
2855 /// \param Args the function call arguments
2856 ///
2857 /// \param NumArgs the number of arguments in Args
2858 ///
2859 /// \param Name the name of the function being called. This is only significant
2860 /// when the function template is a conversion function template, in which
2861 /// case this routine will also perform template argument deduction based on
2862 /// the function to which
2863 ///
2864 /// \param Specialization if template argument deduction was successful,
2865 /// this will be set to the function template specialization produced by
2866 /// template argument deduction.
2867 ///
2868 /// \param Info the argument will be updated to provide additional information
2869 /// about template argument deduction.
2870 ///
2871 /// \returns the result of template argument deduction.
2872 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,Expr ** Args,unsigned NumArgs,FunctionDecl * & Specialization,TemplateDeductionInfo & Info)2873 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2874 TemplateArgumentListInfo *ExplicitTemplateArgs,
2875 Expr **Args, unsigned NumArgs,
2876 FunctionDecl *&Specialization,
2877 TemplateDeductionInfo &Info) {
2878 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2879
2880 // C++ [temp.deduct.call]p1:
2881 // Template argument deduction is done by comparing each function template
2882 // parameter type (call it P) with the type of the corresponding argument
2883 // of the call (call it A) as described below.
2884 unsigned CheckArgs = NumArgs;
2885 if (NumArgs < Function->getMinRequiredArguments())
2886 return TDK_TooFewArguments;
2887 else if (NumArgs > Function->getNumParams()) {
2888 const FunctionProtoType *Proto
2889 = Function->getType()->getAs<FunctionProtoType>();
2890 if (Proto->isTemplateVariadic())
2891 /* Do nothing */;
2892 else if (Proto->isVariadic())
2893 CheckArgs = Function->getNumParams();
2894 else
2895 return TDK_TooManyArguments;
2896 }
2897
2898 // The types of the parameters from which we will perform template argument
2899 // deduction.
2900 LocalInstantiationScope InstScope(*this);
2901 TemplateParameterList *TemplateParams
2902 = FunctionTemplate->getTemplateParameters();
2903 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2904 llvm::SmallVector<QualType, 4> ParamTypes;
2905 unsigned NumExplicitlySpecified = 0;
2906 if (ExplicitTemplateArgs) {
2907 TemplateDeductionResult Result =
2908 SubstituteExplicitTemplateArguments(FunctionTemplate,
2909 *ExplicitTemplateArgs,
2910 Deduced,
2911 ParamTypes,
2912 0,
2913 Info);
2914 if (Result)
2915 return Result;
2916
2917 NumExplicitlySpecified = Deduced.size();
2918 } else {
2919 // Just fill in the parameter types from the function declaration.
2920 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
2921 ParamTypes.push_back(Function->getParamDecl(I)->getType());
2922 }
2923
2924 // Deduce template arguments from the function parameters.
2925 Deduced.resize(TemplateParams->size());
2926 unsigned ArgIdx = 0;
2927 llvm::SmallVector<OriginalCallArg, 4> OriginalCallArgs;
2928 for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
2929 ParamIdx != NumParams; ++ParamIdx) {
2930 QualType OrigParamType = ParamTypes[ParamIdx];
2931 QualType ParamType = OrigParamType;
2932
2933 const PackExpansionType *ParamExpansion
2934 = dyn_cast<PackExpansionType>(ParamType);
2935 if (!ParamExpansion) {
2936 // Simple case: matching a function parameter to a function argument.
2937 if (ArgIdx >= CheckArgs)
2938 break;
2939
2940 Expr *Arg = Args[ArgIdx++];
2941 QualType ArgType = Arg->getType();
2942
2943 unsigned TDF = 0;
2944 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
2945 ParamType, ArgType, Arg,
2946 TDF))
2947 continue;
2948
2949 // Keep track of the argument type and corresponding parameter index,
2950 // so we can check for compatibility between the deduced A and A.
2951 if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
2952 OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
2953 ArgType));
2954
2955 if (TemplateDeductionResult Result
2956 = ::DeduceTemplateArguments(*this, TemplateParams,
2957 ParamType, ArgType, Info, Deduced,
2958 TDF))
2959 return Result;
2960
2961 continue;
2962 }
2963
2964 // C++0x [temp.deduct.call]p1:
2965 // For a function parameter pack that occurs at the end of the
2966 // parameter-declaration-list, the type A of each remaining argument of
2967 // the call is compared with the type P of the declarator-id of the
2968 // function parameter pack. Each comparison deduces template arguments
2969 // for subsequent positions in the template parameter packs expanded by
2970 // the function parameter pack. For a function parameter pack that does
2971 // not occur at the end of the parameter-declaration-list, the type of
2972 // the parameter pack is a non-deduced context.
2973 if (ParamIdx + 1 < NumParams)
2974 break;
2975
2976 QualType ParamPattern = ParamExpansion->getPattern();
2977 llvm::SmallVector<unsigned, 2> PackIndices;
2978 {
2979 llvm::BitVector SawIndices(TemplateParams->size());
2980 llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2981 collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
2982 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
2983 unsigned Depth, Index;
2984 llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
2985 if (Depth == 0 && !SawIndices[Index]) {
2986 SawIndices[Index] = true;
2987 PackIndices.push_back(Index);
2988 }
2989 }
2990 }
2991 assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
2992
2993 // Keep track of the deduced template arguments for each parameter pack
2994 // expanded by this pack expansion (the outer index) and for each
2995 // template argument (the inner SmallVectors).
2996 llvm::SmallVector<llvm::SmallVector<DeducedTemplateArgument, 4>, 2>
2997 NewlyDeducedPacks(PackIndices.size());
2998 llvm::SmallVector<DeducedTemplateArgument, 2>
2999 SavedPacks(PackIndices.size());
3000 PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
3001 NewlyDeducedPacks);
3002 bool HasAnyArguments = false;
3003 for (; ArgIdx < NumArgs; ++ArgIdx) {
3004 HasAnyArguments = true;
3005
3006 QualType OrigParamType = ParamPattern;
3007 ParamType = OrigParamType;
3008 Expr *Arg = Args[ArgIdx];
3009 QualType ArgType = Arg->getType();
3010
3011 unsigned TDF = 0;
3012 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3013 ParamType, ArgType, Arg,
3014 TDF)) {
3015 // We can't actually perform any deduction for this argument, so stop
3016 // deduction at this point.
3017 ++ArgIdx;
3018 break;
3019 }
3020
3021 // Keep track of the argument type and corresponding argument index,
3022 // so we can check for compatibility between the deduced A and A.
3023 if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3024 OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
3025 ArgType));
3026
3027 if (TemplateDeductionResult Result
3028 = ::DeduceTemplateArguments(*this, TemplateParams,
3029 ParamType, ArgType, Info, Deduced,
3030 TDF))
3031 return Result;
3032
3033 // Capture the deduced template arguments for each parameter pack expanded
3034 // by this pack expansion, add them to the list of arguments we've deduced
3035 // for that pack, then clear out the deduced argument.
3036 for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
3037 DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
3038 if (!DeducedArg.isNull()) {
3039 NewlyDeducedPacks[I].push_back(DeducedArg);
3040 DeducedArg = DeducedTemplateArgument();
3041 }
3042 }
3043 }
3044
3045 // Build argument packs for each of the parameter packs expanded by this
3046 // pack expansion.
3047 if (Sema::TemplateDeductionResult Result
3048 = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
3049 Deduced, PackIndices, SavedPacks,
3050 NewlyDeducedPacks, Info))
3051 return Result;
3052
3053 // After we've matching against a parameter pack, we're done.
3054 break;
3055 }
3056
3057 return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3058 NumExplicitlySpecified,
3059 Specialization, Info, &OriginalCallArgs);
3060 }
3061
3062 /// \brief Deduce template arguments when taking the address of a function
3063 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
3064 /// a template.
3065 ///
3066 /// \param FunctionTemplate the function template for which we are performing
3067 /// template argument deduction.
3068 ///
3069 /// \param ExplicitTemplateArguments the explicitly-specified template
3070 /// arguments.
3071 ///
3072 /// \param ArgFunctionType the function type that will be used as the
3073 /// "argument" type (A) when performing template argument deduction from the
3074 /// function template's function type. This type may be NULL, if there is no
3075 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
3076 ///
3077 /// \param Specialization if template argument deduction was successful,
3078 /// this will be set to the function template specialization produced by
3079 /// template argument deduction.
3080 ///
3081 /// \param Info the argument will be updated to provide additional information
3082 /// about template argument deduction.
3083 ///
3084 /// \returns the result of template argument deduction.
3085 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ArgFunctionType,FunctionDecl * & Specialization,TemplateDeductionInfo & Info)3086 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3087 TemplateArgumentListInfo *ExplicitTemplateArgs,
3088 QualType ArgFunctionType,
3089 FunctionDecl *&Specialization,
3090 TemplateDeductionInfo &Info) {
3091 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3092 TemplateParameterList *TemplateParams
3093 = FunctionTemplate->getTemplateParameters();
3094 QualType FunctionType = Function->getType();
3095
3096 // Substitute any explicit template arguments.
3097 LocalInstantiationScope InstScope(*this);
3098 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
3099 unsigned NumExplicitlySpecified = 0;
3100 llvm::SmallVector<QualType, 4> ParamTypes;
3101 if (ExplicitTemplateArgs) {
3102 if (TemplateDeductionResult Result
3103 = SubstituteExplicitTemplateArguments(FunctionTemplate,
3104 *ExplicitTemplateArgs,
3105 Deduced, ParamTypes,
3106 &FunctionType, Info))
3107 return Result;
3108
3109 NumExplicitlySpecified = Deduced.size();
3110 }
3111
3112 // Template argument deduction for function templates in a SFINAE context.
3113 // Trap any errors that might occur.
3114 SFINAETrap Trap(*this);
3115
3116 Deduced.resize(TemplateParams->size());
3117
3118 if (!ArgFunctionType.isNull()) {
3119 // Deduce template arguments from the function type.
3120 if (TemplateDeductionResult Result
3121 = ::DeduceTemplateArguments(*this, TemplateParams,
3122 FunctionType, ArgFunctionType, Info,
3123 Deduced, TDF_TopLevelParameterTypeList))
3124 return Result;
3125 }
3126
3127 if (TemplateDeductionResult Result
3128 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3129 NumExplicitlySpecified,
3130 Specialization, Info))
3131 return Result;
3132
3133 // If the requested function type does not match the actual type of the
3134 // specialization, template argument deduction fails.
3135 if (!ArgFunctionType.isNull() &&
3136 !Context.hasSameType(ArgFunctionType, Specialization->getType()))
3137 return TDK_NonDeducedMismatch;
3138
3139 return TDK_Success;
3140 }
3141
3142 /// \brief Deduce template arguments for a templated conversion
3143 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
3144 /// conversion function template specialization.
3145 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,QualType ToType,CXXConversionDecl * & Specialization,TemplateDeductionInfo & Info)3146 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3147 QualType ToType,
3148 CXXConversionDecl *&Specialization,
3149 TemplateDeductionInfo &Info) {
3150 CXXConversionDecl *Conv
3151 = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
3152 QualType FromType = Conv->getConversionType();
3153
3154 // Canonicalize the types for deduction.
3155 QualType P = Context.getCanonicalType(FromType);
3156 QualType A = Context.getCanonicalType(ToType);
3157
3158 // C++0x [temp.deduct.conv]p2:
3159 // If P is a reference type, the type referred to by P is used for
3160 // type deduction.
3161 if (const ReferenceType *PRef = P->getAs<ReferenceType>())
3162 P = PRef->getPointeeType();
3163
3164 // C++0x [temp.deduct.conv]p4:
3165 // [...] If A is a reference type, the type referred to by A is used
3166 // for type deduction.
3167 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3168 A = ARef->getPointeeType().getUnqualifiedType();
3169 // C++ [temp.deduct.conv]p3:
3170 //
3171 // If A is not a reference type:
3172 else {
3173 assert(!A->isReferenceType() && "Reference types were handled above");
3174
3175 // - If P is an array type, the pointer type produced by the
3176 // array-to-pointer standard conversion (4.2) is used in place
3177 // of P for type deduction; otherwise,
3178 if (P->isArrayType())
3179 P = Context.getArrayDecayedType(P);
3180 // - If P is a function type, the pointer type produced by the
3181 // function-to-pointer standard conversion (4.3) is used in
3182 // place of P for type deduction; otherwise,
3183 else if (P->isFunctionType())
3184 P = Context.getPointerType(P);
3185 // - If P is a cv-qualified type, the top level cv-qualifiers of
3186 // P's type are ignored for type deduction.
3187 else
3188 P = P.getUnqualifiedType();
3189
3190 // C++0x [temp.deduct.conv]p4:
3191 // If A is a cv-qualified type, the top level cv-qualifiers of A's
3192 // type are ignored for type deduction. If A is a reference type, the type
3193 // referred to by A is used for type deduction.
3194 A = A.getUnqualifiedType();
3195 }
3196
3197 // Template argument deduction for function templates in a SFINAE context.
3198 // Trap any errors that might occur.
3199 SFINAETrap Trap(*this);
3200
3201 // C++ [temp.deduct.conv]p1:
3202 // Template argument deduction is done by comparing the return
3203 // type of the template conversion function (call it P) with the
3204 // type that is required as the result of the conversion (call it
3205 // A) as described in 14.8.2.4.
3206 TemplateParameterList *TemplateParams
3207 = FunctionTemplate->getTemplateParameters();
3208 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
3209 Deduced.resize(TemplateParams->size());
3210
3211 // C++0x [temp.deduct.conv]p4:
3212 // In general, the deduction process attempts to find template
3213 // argument values that will make the deduced A identical to
3214 // A. However, there are two cases that allow a difference:
3215 unsigned TDF = 0;
3216 // - If the original A is a reference type, A can be more
3217 // cv-qualified than the deduced A (i.e., the type referred to
3218 // by the reference)
3219 if (ToType->isReferenceType())
3220 TDF |= TDF_ParamWithReferenceType;
3221 // - The deduced A can be another pointer or pointer to member
3222 // type that can be converted to A via a qualification
3223 // conversion.
3224 //
3225 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
3226 // both P and A are pointers or member pointers. In this case, we
3227 // just ignore cv-qualifiers completely).
3228 if ((P->isPointerType() && A->isPointerType()) ||
3229 (P->isMemberPointerType() && P->isMemberPointerType()))
3230 TDF |= TDF_IgnoreQualifiers;
3231 if (TemplateDeductionResult Result
3232 = ::DeduceTemplateArguments(*this, TemplateParams,
3233 P, A, Info, Deduced, TDF))
3234 return Result;
3235
3236 // Finish template argument deduction.
3237 LocalInstantiationScope InstScope(*this);
3238 FunctionDecl *Spec = 0;
3239 TemplateDeductionResult Result
3240 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
3241 Info);
3242 Specialization = cast_or_null<CXXConversionDecl>(Spec);
3243 return Result;
3244 }
3245
3246 /// \brief Deduce template arguments for a function template when there is
3247 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
3248 ///
3249 /// \param FunctionTemplate the function template for which we are performing
3250 /// template argument deduction.
3251 ///
3252 /// \param ExplicitTemplateArguments the explicitly-specified template
3253 /// arguments.
3254 ///
3255 /// \param Specialization if template argument deduction was successful,
3256 /// this will be set to the function template specialization produced by
3257 /// template argument deduction.
3258 ///
3259 /// \param Info the argument will be updated to provide additional information
3260 /// about template argument deduction.
3261 ///
3262 /// \returns the result of template argument deduction.
3263 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,FunctionDecl * & Specialization,TemplateDeductionInfo & Info)3264 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3265 TemplateArgumentListInfo *ExplicitTemplateArgs,
3266 FunctionDecl *&Specialization,
3267 TemplateDeductionInfo &Info) {
3268 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3269 QualType(), Specialization, Info);
3270 }
3271
3272 namespace {
3273 /// Substitute the 'auto' type specifier within a type for a given replacement
3274 /// type.
3275 class SubstituteAutoTransform :
3276 public TreeTransform<SubstituteAutoTransform> {
3277 QualType Replacement;
3278 public:
SubstituteAutoTransform(Sema & SemaRef,QualType Replacement)3279 SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
3280 TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
3281 }
TransformAutoType(TypeLocBuilder & TLB,AutoTypeLoc TL)3282 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
3283 // If we're building the type pattern to deduce against, don't wrap the
3284 // substituted type in an AutoType. Certain template deduction rules
3285 // apply only when a template type parameter appears directly (and not if
3286 // the parameter is found through desugaring). For instance:
3287 // auto &&lref = lvalue;
3288 // must transform into "rvalue reference to T" not "rvalue reference to
3289 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
3290 if (isa<TemplateTypeParmType>(Replacement)) {
3291 QualType Result = Replacement;
3292 TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
3293 NewTL.setNameLoc(TL.getNameLoc());
3294 return Result;
3295 } else {
3296 QualType Result = RebuildAutoType(Replacement);
3297 AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
3298 NewTL.setNameLoc(TL.getNameLoc());
3299 return Result;
3300 }
3301 }
3302 };
3303 }
3304
3305 /// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6)
3306 ///
3307 /// \param Type the type pattern using the auto type-specifier.
3308 ///
3309 /// \param Init the initializer for the variable whose type is to be deduced.
3310 ///
3311 /// \param Result if type deduction was successful, this will be set to the
3312 /// deduced type. This may still contain undeduced autos if the type is
3313 /// dependent. This will be set to null if deduction succeeded, but auto
3314 /// substitution failed; the appropriate diagnostic will already have been
3315 /// produced in that case.
3316 ///
3317 /// \returns true if deduction succeeded, false if it failed.
3318 bool
DeduceAutoType(TypeSourceInfo * Type,Expr * Init,TypeSourceInfo * & Result)3319 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *Init,
3320 TypeSourceInfo *&Result) {
3321 if (Init->isTypeDependent()) {
3322 Result = Type;
3323 return true;
3324 }
3325
3326 SourceLocation Loc = Init->getExprLoc();
3327
3328 LocalInstantiationScope InstScope(*this);
3329
3330 // Build template<class TemplParam> void Func(FuncParam);
3331 TemplateTypeParmDecl *TemplParam =
3332 TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
3333 false, false);
3334 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
3335 NamedDecl *TemplParamPtr = TemplParam;
3336 FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
3337 Loc);
3338
3339 TypeSourceInfo *FuncParamInfo =
3340 SubstituteAutoTransform(*this, TemplArg).TransformType(Type);
3341 assert(FuncParamInfo && "substituting template parameter for 'auto' failed");
3342 QualType FuncParam = FuncParamInfo->getType();
3343
3344 // Deduce type of TemplParam in Func(Init)
3345 llvm::SmallVector<DeducedTemplateArgument, 1> Deduced;
3346 Deduced.resize(1);
3347 QualType InitType = Init->getType();
3348 unsigned TDF = 0;
3349 if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
3350 FuncParam, InitType, Init,
3351 TDF))
3352 return false;
3353
3354 TemplateDeductionInfo Info(Context, Loc);
3355 if (::DeduceTemplateArguments(*this, &TemplateParams,
3356 FuncParam, InitType, Info, Deduced,
3357 TDF))
3358 return false;
3359
3360 QualType DeducedType = Deduced[0].getAsType();
3361 if (DeducedType.isNull())
3362 return false;
3363
3364 Result = SubstituteAutoTransform(*this, DeducedType).TransformType(Type);
3365
3366 // Check that the deduced argument type is compatible with the original
3367 // argument type per C++ [temp.deduct.call]p4.
3368 if (Result &&
3369 CheckOriginalCallArgDeduction(*this,
3370 Sema::OriginalCallArg(FuncParam,0,InitType),
3371 Result->getType())) {
3372 Result = 0;
3373 return false;
3374 }
3375
3376 return true;
3377 }
3378
3379 static void
3380 MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
3381 bool OnlyDeduced,
3382 unsigned Level,
3383 llvm::SmallVectorImpl<bool> &Deduced);
3384
3385 /// \brief If this is a non-static member function,
MaybeAddImplicitObjectParameterType(ASTContext & Context,CXXMethodDecl * Method,llvm::SmallVectorImpl<QualType> & ArgTypes)3386 static void MaybeAddImplicitObjectParameterType(ASTContext &Context,
3387 CXXMethodDecl *Method,
3388 llvm::SmallVectorImpl<QualType> &ArgTypes) {
3389 if (Method->isStatic())
3390 return;
3391
3392 // C++ [over.match.funcs]p4:
3393 //
3394 // For non-static member functions, the type of the implicit
3395 // object parameter is
3396 // - "lvalue reference to cv X" for functions declared without a
3397 // ref-qualifier or with the & ref-qualifier
3398 // - "rvalue reference to cv X" for functions declared with the
3399 // && ref-qualifier
3400 //
3401 // FIXME: We don't have ref-qualifiers yet, so we don't do that part.
3402 QualType ArgTy = Context.getTypeDeclType(Method->getParent());
3403 ArgTy = Context.getQualifiedType(ArgTy,
3404 Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
3405 ArgTy = Context.getLValueReferenceType(ArgTy);
3406 ArgTypes.push_back(ArgTy);
3407 }
3408
3409 /// \brief Determine whether the function template \p FT1 is at least as
3410 /// specialized as \p FT2.
isAtLeastAsSpecializedAs(Sema & S,SourceLocation Loc,FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments,llvm::SmallVectorImpl<RefParamPartialOrderingComparison> * RefParamComparisons)3411 static bool isAtLeastAsSpecializedAs(Sema &S,
3412 SourceLocation Loc,
3413 FunctionTemplateDecl *FT1,
3414 FunctionTemplateDecl *FT2,
3415 TemplatePartialOrderingContext TPOC,
3416 unsigned NumCallArguments,
3417 llvm::SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
3418 FunctionDecl *FD1 = FT1->getTemplatedDecl();
3419 FunctionDecl *FD2 = FT2->getTemplatedDecl();
3420 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
3421 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
3422
3423 assert(Proto1 && Proto2 && "Function templates must have prototypes");
3424 TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
3425 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
3426 Deduced.resize(TemplateParams->size());
3427
3428 // C++0x [temp.deduct.partial]p3:
3429 // The types used to determine the ordering depend on the context in which
3430 // the partial ordering is done:
3431 TemplateDeductionInfo Info(S.Context, Loc);
3432 CXXMethodDecl *Method1 = 0;
3433 CXXMethodDecl *Method2 = 0;
3434 bool IsNonStatic2 = false;
3435 bool IsNonStatic1 = false;
3436 unsigned Skip2 = 0;
3437 switch (TPOC) {
3438 case TPOC_Call: {
3439 // - In the context of a function call, the function parameter types are
3440 // used.
3441 Method1 = dyn_cast<CXXMethodDecl>(FD1);
3442 Method2 = dyn_cast<CXXMethodDecl>(FD2);
3443 IsNonStatic1 = Method1 && !Method1->isStatic();
3444 IsNonStatic2 = Method2 && !Method2->isStatic();
3445
3446 // C++0x [temp.func.order]p3:
3447 // [...] If only one of the function templates is a non-static
3448 // member, that function template is considered to have a new
3449 // first parameter inserted in its function parameter list. The
3450 // new parameter is of type "reference to cv A," where cv are
3451 // the cv-qualifiers of the function template (if any) and A is
3452 // the class of which the function template is a member.
3453 //
3454 // C++98/03 doesn't have this provision, so instead we drop the
3455 // first argument of the free function or static member, which
3456 // seems to match existing practice.
3457 llvm::SmallVector<QualType, 4> Args1;
3458 unsigned Skip1 = !S.getLangOptions().CPlusPlus0x &&
3459 IsNonStatic2 && !IsNonStatic1;
3460 if (S.getLangOptions().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2)
3461 MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1);
3462 Args1.insert(Args1.end(),
3463 Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
3464
3465 llvm::SmallVector<QualType, 4> Args2;
3466 Skip2 = !S.getLangOptions().CPlusPlus0x &&
3467 IsNonStatic1 && !IsNonStatic2;
3468 if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
3469 MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2);
3470 Args2.insert(Args2.end(),
3471 Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
3472
3473 // C++ [temp.func.order]p5:
3474 // The presence of unused ellipsis and default arguments has no effect on
3475 // the partial ordering of function templates.
3476 if (Args1.size() > NumCallArguments)
3477 Args1.resize(NumCallArguments);
3478 if (Args2.size() > NumCallArguments)
3479 Args2.resize(NumCallArguments);
3480 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
3481 Args1.data(), Args1.size(), Info, Deduced,
3482 TDF_None, /*PartialOrdering=*/true,
3483 RefParamComparisons))
3484 return false;
3485
3486 break;
3487 }
3488
3489 case TPOC_Conversion:
3490 // - In the context of a call to a conversion operator, the return types
3491 // of the conversion function templates are used.
3492 if (DeduceTemplateArguments(S, TemplateParams, Proto2->getResultType(),
3493 Proto1->getResultType(), Info, Deduced,
3494 TDF_None, /*PartialOrdering=*/true,
3495 RefParamComparisons))
3496 return false;
3497 break;
3498
3499 case TPOC_Other:
3500 // - In other contexts (14.6.6.2) the function template's function type
3501 // is used.
3502 if (DeduceTemplateArguments(S, TemplateParams, FD2->getType(),
3503 FD1->getType(), Info, Deduced, TDF_None,
3504 /*PartialOrdering=*/true, RefParamComparisons))
3505 return false;
3506 break;
3507 }
3508
3509 // C++0x [temp.deduct.partial]p11:
3510 // In most cases, all template parameters must have values in order for
3511 // deduction to succeed, but for partial ordering purposes a template
3512 // parameter may remain without a value provided it is not used in the
3513 // types being used for partial ordering. [ Note: a template parameter used
3514 // in a non-deduced context is considered used. -end note]
3515 unsigned ArgIdx = 0, NumArgs = Deduced.size();
3516 for (; ArgIdx != NumArgs; ++ArgIdx)
3517 if (Deduced[ArgIdx].isNull())
3518 break;
3519
3520 if (ArgIdx == NumArgs) {
3521 // All template arguments were deduced. FT1 is at least as specialized
3522 // as FT2.
3523 return true;
3524 }
3525
3526 // Figure out which template parameters were used.
3527 llvm::SmallVector<bool, 4> UsedParameters;
3528 UsedParameters.resize(TemplateParams->size());
3529 switch (TPOC) {
3530 case TPOC_Call: {
3531 unsigned NumParams = std::min(NumCallArguments,
3532 std::min(Proto1->getNumArgs(),
3533 Proto2->getNumArgs()));
3534 if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
3535 ::MarkUsedTemplateParameters(S, Method2->getThisType(S.Context), false,
3536 TemplateParams->getDepth(), UsedParameters);
3537 for (unsigned I = Skip2; I < NumParams; ++I)
3538 ::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false,
3539 TemplateParams->getDepth(),
3540 UsedParameters);
3541 break;
3542 }
3543
3544 case TPOC_Conversion:
3545 ::MarkUsedTemplateParameters(S, Proto2->getResultType(), false,
3546 TemplateParams->getDepth(),
3547 UsedParameters);
3548 break;
3549
3550 case TPOC_Other:
3551 ::MarkUsedTemplateParameters(S, FD2->getType(), false,
3552 TemplateParams->getDepth(),
3553 UsedParameters);
3554 break;
3555 }
3556
3557 for (; ArgIdx != NumArgs; ++ArgIdx)
3558 // If this argument had no value deduced but was used in one of the types
3559 // used for partial ordering, then deduction fails.
3560 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
3561 return false;
3562
3563 return true;
3564 }
3565
3566 /// \brief Determine whether this a function template whose parameter-type-list
3567 /// ends with a function parameter pack.
isVariadicFunctionTemplate(FunctionTemplateDecl * FunTmpl)3568 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
3569 FunctionDecl *Function = FunTmpl->getTemplatedDecl();
3570 unsigned NumParams = Function->getNumParams();
3571 if (NumParams == 0)
3572 return false;
3573
3574 ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
3575 if (!Last->isParameterPack())
3576 return false;
3577
3578 // Make sure that no previous parameter is a parameter pack.
3579 while (--NumParams > 0) {
3580 if (Function->getParamDecl(NumParams - 1)->isParameterPack())
3581 return false;
3582 }
3583
3584 return true;
3585 }
3586
3587 /// \brief Returns the more specialized function template according
3588 /// to the rules of function template partial ordering (C++ [temp.func.order]).
3589 ///
3590 /// \param FT1 the first function template
3591 ///
3592 /// \param FT2 the second function template
3593 ///
3594 /// \param TPOC the context in which we are performing partial ordering of
3595 /// function templates.
3596 ///
3597 /// \param NumCallArguments The number of arguments in a call, used only
3598 /// when \c TPOC is \c TPOC_Call.
3599 ///
3600 /// \returns the more specialized function template. If neither
3601 /// template is more specialized, returns NULL.
3602 FunctionTemplateDecl *
getMoreSpecializedTemplate(FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,SourceLocation Loc,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments)3603 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
3604 FunctionTemplateDecl *FT2,
3605 SourceLocation Loc,
3606 TemplatePartialOrderingContext TPOC,
3607 unsigned NumCallArguments) {
3608 llvm::SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
3609 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
3610 NumCallArguments, 0);
3611 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
3612 NumCallArguments,
3613 &RefParamComparisons);
3614
3615 if (Better1 != Better2) // We have a clear winner
3616 return Better1? FT1 : FT2;
3617
3618 if (!Better1 && !Better2) // Neither is better than the other
3619 return 0;
3620
3621 // C++0x [temp.deduct.partial]p10:
3622 // If for each type being considered a given template is at least as
3623 // specialized for all types and more specialized for some set of types and
3624 // the other template is not more specialized for any types or is not at
3625 // least as specialized for any types, then the given template is more
3626 // specialized than the other template. Otherwise, neither template is more
3627 // specialized than the other.
3628 Better1 = false;
3629 Better2 = false;
3630 for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
3631 // C++0x [temp.deduct.partial]p9:
3632 // If, for a given type, deduction succeeds in both directions (i.e., the
3633 // types are identical after the transformations above) and both P and A
3634 // were reference types (before being replaced with the type referred to
3635 // above):
3636
3637 // -- if the type from the argument template was an lvalue reference
3638 // and the type from the parameter template was not, the argument
3639 // type is considered to be more specialized than the other;
3640 // otherwise,
3641 if (!RefParamComparisons[I].ArgIsRvalueRef &&
3642 RefParamComparisons[I].ParamIsRvalueRef) {
3643 Better2 = true;
3644 if (Better1)
3645 return 0;
3646 continue;
3647 } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
3648 RefParamComparisons[I].ArgIsRvalueRef) {
3649 Better1 = true;
3650 if (Better2)
3651 return 0;
3652 continue;
3653 }
3654
3655 // -- if the type from the argument template is more cv-qualified than
3656 // the type from the parameter template (as described above), the
3657 // argument type is considered to be more specialized than the
3658 // other; otherwise,
3659 switch (RefParamComparisons[I].Qualifiers) {
3660 case NeitherMoreQualified:
3661 break;
3662
3663 case ParamMoreQualified:
3664 Better1 = true;
3665 if (Better2)
3666 return 0;
3667 continue;
3668
3669 case ArgMoreQualified:
3670 Better2 = true;
3671 if (Better1)
3672 return 0;
3673 continue;
3674 }
3675
3676 // -- neither type is more specialized than the other.
3677 }
3678
3679 assert(!(Better1 && Better2) && "Should have broken out in the loop above");
3680 if (Better1)
3681 return FT1;
3682 else if (Better2)
3683 return FT2;
3684
3685 // FIXME: This mimics what GCC implements, but doesn't match up with the
3686 // proposed resolution for core issue 692. This area needs to be sorted out,
3687 // but for now we attempt to maintain compatibility.
3688 bool Variadic1 = isVariadicFunctionTemplate(FT1);
3689 bool Variadic2 = isVariadicFunctionTemplate(FT2);
3690 if (Variadic1 != Variadic2)
3691 return Variadic1? FT2 : FT1;
3692
3693 return 0;
3694 }
3695
3696 /// \brief Determine if the two templates are equivalent.
isSameTemplate(TemplateDecl * T1,TemplateDecl * T2)3697 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
3698 if (T1 == T2)
3699 return true;
3700
3701 if (!T1 || !T2)
3702 return false;
3703
3704 return T1->getCanonicalDecl() == T2->getCanonicalDecl();
3705 }
3706
3707 /// \brief Retrieve the most specialized of the given function template
3708 /// specializations.
3709 ///
3710 /// \param SpecBegin the start iterator of the function template
3711 /// specializations that we will be comparing.
3712 ///
3713 /// \param SpecEnd the end iterator of the function template
3714 /// specializations, paired with \p SpecBegin.
3715 ///
3716 /// \param TPOC the partial ordering context to use to compare the function
3717 /// template specializations.
3718 ///
3719 /// \param NumCallArguments The number of arguments in a call, used only
3720 /// when \c TPOC is \c TPOC_Call.
3721 ///
3722 /// \param Loc the location where the ambiguity or no-specializations
3723 /// diagnostic should occur.
3724 ///
3725 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
3726 /// no matching candidates.
3727 ///
3728 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
3729 /// occurs.
3730 ///
3731 /// \param CandidateDiag partial diagnostic used for each function template
3732 /// specialization that is a candidate in the ambiguous ordering. One parameter
3733 /// in this diagnostic should be unbound, which will correspond to the string
3734 /// describing the template arguments for the function template specialization.
3735 ///
3736 /// \param Index if non-NULL and the result of this function is non-nULL,
3737 /// receives the index corresponding to the resulting function template
3738 /// specialization.
3739 ///
3740 /// \returns the most specialized function template specialization, if
3741 /// found. Otherwise, returns SpecEnd.
3742 ///
3743 /// \todo FIXME: Consider passing in the "also-ran" candidates that failed
3744 /// template argument deduction.
3745 UnresolvedSetIterator
getMostSpecialized(UnresolvedSetIterator SpecBegin,UnresolvedSetIterator SpecEnd,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments,SourceLocation Loc,const PartialDiagnostic & NoneDiag,const PartialDiagnostic & AmbigDiag,const PartialDiagnostic & CandidateDiag,bool Complain)3746 Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
3747 UnresolvedSetIterator SpecEnd,
3748 TemplatePartialOrderingContext TPOC,
3749 unsigned NumCallArguments,
3750 SourceLocation Loc,
3751 const PartialDiagnostic &NoneDiag,
3752 const PartialDiagnostic &AmbigDiag,
3753 const PartialDiagnostic &CandidateDiag,
3754 bool Complain) {
3755 if (SpecBegin == SpecEnd) {
3756 if (Complain)
3757 Diag(Loc, NoneDiag);
3758 return SpecEnd;
3759 }
3760
3761 if (SpecBegin + 1 == SpecEnd)
3762 return SpecBegin;
3763
3764 // Find the function template that is better than all of the templates it
3765 // has been compared to.
3766 UnresolvedSetIterator Best = SpecBegin;
3767 FunctionTemplateDecl *BestTemplate
3768 = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
3769 assert(BestTemplate && "Not a function template specialization?");
3770 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
3771 FunctionTemplateDecl *Challenger
3772 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
3773 assert(Challenger && "Not a function template specialization?");
3774 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
3775 Loc, TPOC, NumCallArguments),
3776 Challenger)) {
3777 Best = I;
3778 BestTemplate = Challenger;
3779 }
3780 }
3781
3782 // Make sure that the "best" function template is more specialized than all
3783 // of the others.
3784 bool Ambiguous = false;
3785 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
3786 FunctionTemplateDecl *Challenger
3787 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
3788 if (I != Best &&
3789 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
3790 Loc, TPOC, NumCallArguments),
3791 BestTemplate)) {
3792 Ambiguous = true;
3793 break;
3794 }
3795 }
3796
3797 if (!Ambiguous) {
3798 // We found an answer. Return it.
3799 return Best;
3800 }
3801
3802 // Diagnose the ambiguity.
3803 if (Complain)
3804 Diag(Loc, AmbigDiag);
3805
3806 if (Complain)
3807 // FIXME: Can we order the candidates in some sane way?
3808 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I)
3809 Diag((*I)->getLocation(), CandidateDiag)
3810 << getTemplateArgumentBindingsText(
3811 cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
3812 *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
3813
3814 return SpecEnd;
3815 }
3816
3817 /// \brief Returns the more specialized class template partial specialization
3818 /// according to the rules of partial ordering of class template partial
3819 /// specializations (C++ [temp.class.order]).
3820 ///
3821 /// \param PS1 the first class template partial specialization
3822 ///
3823 /// \param PS2 the second class template partial specialization
3824 ///
3825 /// \returns the more specialized class template partial specialization. If
3826 /// neither partial specialization is more specialized, returns NULL.
3827 ClassTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(ClassTemplatePartialSpecializationDecl * PS1,ClassTemplatePartialSpecializationDecl * PS2,SourceLocation Loc)3828 Sema::getMoreSpecializedPartialSpecialization(
3829 ClassTemplatePartialSpecializationDecl *PS1,
3830 ClassTemplatePartialSpecializationDecl *PS2,
3831 SourceLocation Loc) {
3832 // C++ [temp.class.order]p1:
3833 // For two class template partial specializations, the first is at least as
3834 // specialized as the second if, given the following rewrite to two
3835 // function templates, the first function template is at least as
3836 // specialized as the second according to the ordering rules for function
3837 // templates (14.6.6.2):
3838 // - the first function template has the same template parameters as the
3839 // first partial specialization and has a single function parameter
3840 // whose type is a class template specialization with the template
3841 // arguments of the first partial specialization, and
3842 // - the second function template has the same template parameters as the
3843 // second partial specialization and has a single function parameter
3844 // whose type is a class template specialization with the template
3845 // arguments of the second partial specialization.
3846 //
3847 // Rather than synthesize function templates, we merely perform the
3848 // equivalent partial ordering by performing deduction directly on
3849 // the template arguments of the class template partial
3850 // specializations. This computation is slightly simpler than the
3851 // general problem of function template partial ordering, because
3852 // class template partial specializations are more constrained. We
3853 // know that every template parameter is deducible from the class
3854 // template partial specialization's template arguments, for
3855 // example.
3856 llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
3857 TemplateDeductionInfo Info(Context, Loc);
3858
3859 QualType PT1 = PS1->getInjectedSpecializationType();
3860 QualType PT2 = PS2->getInjectedSpecializationType();
3861
3862 // Determine whether PS1 is at least as specialized as PS2
3863 Deduced.resize(PS2->getTemplateParameters()->size());
3864 bool Better1 = !::DeduceTemplateArguments(*this, PS2->getTemplateParameters(),
3865 PT2, PT1, Info, Deduced, TDF_None,
3866 /*PartialOrdering=*/true,
3867 /*RefParamComparisons=*/0);
3868 if (Better1) {
3869 InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
3870 Deduced.data(), Deduced.size(), Info);
3871 Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
3872 PS1->getTemplateArgs(),
3873 Deduced, Info);
3874 }
3875
3876 // Determine whether PS2 is at least as specialized as PS1
3877 Deduced.clear();
3878 Deduced.resize(PS1->getTemplateParameters()->size());
3879 bool Better2 = !::DeduceTemplateArguments(*this, PS1->getTemplateParameters(),
3880 PT1, PT2, Info, Deduced, TDF_None,
3881 /*PartialOrdering=*/true,
3882 /*RefParamComparisons=*/0);
3883 if (Better2) {
3884 InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
3885 Deduced.data(), Deduced.size(), Info);
3886 Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
3887 PS2->getTemplateArgs(),
3888 Deduced, Info);
3889 }
3890
3891 if (Better1 == Better2)
3892 return 0;
3893
3894 return Better1? PS1 : PS2;
3895 }
3896
3897 static void
3898 MarkUsedTemplateParameters(Sema &SemaRef,
3899 const TemplateArgument &TemplateArg,
3900 bool OnlyDeduced,
3901 unsigned Depth,
3902 llvm::SmallVectorImpl<bool> &Used);
3903
3904 /// \brief Mark the template parameters that are used by the given
3905 /// expression.
3906 static void
MarkUsedTemplateParameters(Sema & SemaRef,const Expr * E,bool OnlyDeduced,unsigned Depth,llvm::SmallVectorImpl<bool> & Used)3907 MarkUsedTemplateParameters(Sema &SemaRef,
3908 const Expr *E,
3909 bool OnlyDeduced,
3910 unsigned Depth,
3911 llvm::SmallVectorImpl<bool> &Used) {
3912 // We can deduce from a pack expansion.
3913 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
3914 E = Expansion->getPattern();
3915
3916 // Skip through any implicit casts we added while type-checking.
3917 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3918 E = ICE->getSubExpr();
3919
3920 // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
3921 // find other occurrences of template parameters.
3922 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3923 if (!DRE)
3924 return;
3925
3926 const NonTypeTemplateParmDecl *NTTP
3927 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
3928 if (!NTTP)
3929 return;
3930
3931 if (NTTP->getDepth() == Depth)
3932 Used[NTTP->getIndex()] = true;
3933 }
3934
3935 /// \brief Mark the template parameters that are used by the given
3936 /// nested name specifier.
3937 static void
MarkUsedTemplateParameters(Sema & SemaRef,NestedNameSpecifier * NNS,bool OnlyDeduced,unsigned Depth,llvm::SmallVectorImpl<bool> & Used)3938 MarkUsedTemplateParameters(Sema &SemaRef,
3939 NestedNameSpecifier *NNS,
3940 bool OnlyDeduced,
3941 unsigned Depth,
3942 llvm::SmallVectorImpl<bool> &Used) {
3943 if (!NNS)
3944 return;
3945
3946 MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth,
3947 Used);
3948 MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0),
3949 OnlyDeduced, Depth, Used);
3950 }
3951
3952 /// \brief Mark the template parameters that are used by the given
3953 /// template name.
3954 static void
MarkUsedTemplateParameters(Sema & SemaRef,TemplateName Name,bool OnlyDeduced,unsigned Depth,llvm::SmallVectorImpl<bool> & Used)3955 MarkUsedTemplateParameters(Sema &SemaRef,
3956 TemplateName Name,
3957 bool OnlyDeduced,
3958 unsigned Depth,
3959 llvm::SmallVectorImpl<bool> &Used) {
3960 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3961 if (TemplateTemplateParmDecl *TTP
3962 = dyn_cast<TemplateTemplateParmDecl>(Template)) {
3963 if (TTP->getDepth() == Depth)
3964 Used[TTP->getIndex()] = true;
3965 }
3966 return;
3967 }
3968
3969 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
3970 MarkUsedTemplateParameters(SemaRef, QTN->getQualifier(), OnlyDeduced,
3971 Depth, Used);
3972 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
3973 MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced,
3974 Depth, Used);
3975 }
3976
3977 /// \brief Mark the template parameters that are used by the given
3978 /// type.
3979 static void
MarkUsedTemplateParameters(Sema & SemaRef,QualType T,bool OnlyDeduced,unsigned Depth,llvm::SmallVectorImpl<bool> & Used)3980 MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
3981 bool OnlyDeduced,
3982 unsigned Depth,
3983 llvm::SmallVectorImpl<bool> &Used) {
3984 if (T.isNull())
3985 return;
3986
3987 // Non-dependent types have nothing deducible
3988 if (!T->isDependentType())
3989 return;
3990
3991 T = SemaRef.Context.getCanonicalType(T);
3992 switch (T->getTypeClass()) {
3993 case Type::Pointer:
3994 MarkUsedTemplateParameters(SemaRef,
3995 cast<PointerType>(T)->getPointeeType(),
3996 OnlyDeduced,
3997 Depth,
3998 Used);
3999 break;
4000
4001 case Type::BlockPointer:
4002 MarkUsedTemplateParameters(SemaRef,
4003 cast<BlockPointerType>(T)->getPointeeType(),
4004 OnlyDeduced,
4005 Depth,
4006 Used);
4007 break;
4008
4009 case Type::LValueReference:
4010 case Type::RValueReference:
4011 MarkUsedTemplateParameters(SemaRef,
4012 cast<ReferenceType>(T)->getPointeeType(),
4013 OnlyDeduced,
4014 Depth,
4015 Used);
4016 break;
4017
4018 case Type::MemberPointer: {
4019 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
4020 MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced,
4021 Depth, Used);
4022 MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
4023 OnlyDeduced, Depth, Used);
4024 break;
4025 }
4026
4027 case Type::DependentSizedArray:
4028 MarkUsedTemplateParameters(SemaRef,
4029 cast<DependentSizedArrayType>(T)->getSizeExpr(),
4030 OnlyDeduced, Depth, Used);
4031 // Fall through to check the element type
4032
4033 case Type::ConstantArray:
4034 case Type::IncompleteArray:
4035 MarkUsedTemplateParameters(SemaRef,
4036 cast<ArrayType>(T)->getElementType(),
4037 OnlyDeduced, Depth, Used);
4038 break;
4039
4040 case Type::Vector:
4041 case Type::ExtVector:
4042 MarkUsedTemplateParameters(SemaRef,
4043 cast<VectorType>(T)->getElementType(),
4044 OnlyDeduced, Depth, Used);
4045 break;
4046
4047 case Type::DependentSizedExtVector: {
4048 const DependentSizedExtVectorType *VecType
4049 = cast<DependentSizedExtVectorType>(T);
4050 MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced,
4051 Depth, Used);
4052 MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced,
4053 Depth, Used);
4054 break;
4055 }
4056
4057 case Type::FunctionProto: {
4058 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
4059 MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced,
4060 Depth, Used);
4061 for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
4062 MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced,
4063 Depth, Used);
4064 break;
4065 }
4066
4067 case Type::TemplateTypeParm: {
4068 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
4069 if (TTP->getDepth() == Depth)
4070 Used[TTP->getIndex()] = true;
4071 break;
4072 }
4073
4074 case Type::SubstTemplateTypeParmPack: {
4075 const SubstTemplateTypeParmPackType *Subst
4076 = cast<SubstTemplateTypeParmPackType>(T);
4077 MarkUsedTemplateParameters(SemaRef,
4078 QualType(Subst->getReplacedParameter(), 0),
4079 OnlyDeduced, Depth, Used);
4080 MarkUsedTemplateParameters(SemaRef, Subst->getArgumentPack(),
4081 OnlyDeduced, Depth, Used);
4082 break;
4083 }
4084
4085 case Type::InjectedClassName:
4086 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
4087 // fall through
4088
4089 case Type::TemplateSpecialization: {
4090 const TemplateSpecializationType *Spec
4091 = cast<TemplateSpecializationType>(T);
4092 MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced,
4093 Depth, Used);
4094
4095 // C++0x [temp.deduct.type]p9:
4096 // If the template argument list of P contains a pack expansion that is not
4097 // the last template argument, the entire template argument list is a
4098 // non-deduced context.
4099 if (OnlyDeduced &&
4100 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4101 break;
4102
4103 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4104 MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
4105 Used);
4106 break;
4107 }
4108
4109 case Type::Complex:
4110 if (!OnlyDeduced)
4111 MarkUsedTemplateParameters(SemaRef,
4112 cast<ComplexType>(T)->getElementType(),
4113 OnlyDeduced, Depth, Used);
4114 break;
4115
4116 case Type::DependentName:
4117 if (!OnlyDeduced)
4118 MarkUsedTemplateParameters(SemaRef,
4119 cast<DependentNameType>(T)->getQualifier(),
4120 OnlyDeduced, Depth, Used);
4121 break;
4122
4123 case Type::DependentTemplateSpecialization: {
4124 const DependentTemplateSpecializationType *Spec
4125 = cast<DependentTemplateSpecializationType>(T);
4126 if (!OnlyDeduced)
4127 MarkUsedTemplateParameters(SemaRef, Spec->getQualifier(),
4128 OnlyDeduced, Depth, Used);
4129
4130 // C++0x [temp.deduct.type]p9:
4131 // If the template argument list of P contains a pack expansion that is not
4132 // the last template argument, the entire template argument list is a
4133 // non-deduced context.
4134 if (OnlyDeduced &&
4135 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4136 break;
4137
4138 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4139 MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
4140 Used);
4141 break;
4142 }
4143
4144 case Type::TypeOf:
4145 if (!OnlyDeduced)
4146 MarkUsedTemplateParameters(SemaRef,
4147 cast<TypeOfType>(T)->getUnderlyingType(),
4148 OnlyDeduced, Depth, Used);
4149 break;
4150
4151 case Type::TypeOfExpr:
4152 if (!OnlyDeduced)
4153 MarkUsedTemplateParameters(SemaRef,
4154 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
4155 OnlyDeduced, Depth, Used);
4156 break;
4157
4158 case Type::Decltype:
4159 if (!OnlyDeduced)
4160 MarkUsedTemplateParameters(SemaRef,
4161 cast<DecltypeType>(T)->getUnderlyingExpr(),
4162 OnlyDeduced, Depth, Used);
4163 break;
4164
4165 case Type::UnaryTransform:
4166 if (!OnlyDeduced)
4167 MarkUsedTemplateParameters(SemaRef,
4168 cast<UnaryTransformType>(T)->getUnderlyingType(),
4169 OnlyDeduced, Depth, Used);
4170 break;
4171
4172 case Type::PackExpansion:
4173 MarkUsedTemplateParameters(SemaRef,
4174 cast<PackExpansionType>(T)->getPattern(),
4175 OnlyDeduced, Depth, Used);
4176 break;
4177
4178 case Type::Auto:
4179 MarkUsedTemplateParameters(SemaRef,
4180 cast<AutoType>(T)->getDeducedType(),
4181 OnlyDeduced, Depth, Used);
4182
4183 // None of these types have any template parameters in them.
4184 case Type::Builtin:
4185 case Type::VariableArray:
4186 case Type::FunctionNoProto:
4187 case Type::Record:
4188 case Type::Enum:
4189 case Type::ObjCInterface:
4190 case Type::ObjCObject:
4191 case Type::ObjCObjectPointer:
4192 case Type::UnresolvedUsing:
4193 #define TYPE(Class, Base)
4194 #define ABSTRACT_TYPE(Class, Base)
4195 #define DEPENDENT_TYPE(Class, Base)
4196 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4197 #include "clang/AST/TypeNodes.def"
4198 break;
4199 }
4200 }
4201
4202 /// \brief Mark the template parameters that are used by this
4203 /// template argument.
4204 static void
MarkUsedTemplateParameters(Sema & SemaRef,const TemplateArgument & TemplateArg,bool OnlyDeduced,unsigned Depth,llvm::SmallVectorImpl<bool> & Used)4205 MarkUsedTemplateParameters(Sema &SemaRef,
4206 const TemplateArgument &TemplateArg,
4207 bool OnlyDeduced,
4208 unsigned Depth,
4209 llvm::SmallVectorImpl<bool> &Used) {
4210 switch (TemplateArg.getKind()) {
4211 case TemplateArgument::Null:
4212 case TemplateArgument::Integral:
4213 case TemplateArgument::Declaration:
4214 break;
4215
4216 case TemplateArgument::Type:
4217 MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced,
4218 Depth, Used);
4219 break;
4220
4221 case TemplateArgument::Template:
4222 case TemplateArgument::TemplateExpansion:
4223 MarkUsedTemplateParameters(SemaRef,
4224 TemplateArg.getAsTemplateOrTemplatePattern(),
4225 OnlyDeduced, Depth, Used);
4226 break;
4227
4228 case TemplateArgument::Expression:
4229 MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced,
4230 Depth, Used);
4231 break;
4232
4233 case TemplateArgument::Pack:
4234 for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
4235 PEnd = TemplateArg.pack_end();
4236 P != PEnd; ++P)
4237 MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used);
4238 break;
4239 }
4240 }
4241
4242 /// \brief Mark the template parameters can be deduced by the given
4243 /// template argument list.
4244 ///
4245 /// \param TemplateArgs the template argument list from which template
4246 /// parameters will be deduced.
4247 ///
4248 /// \param Deduced a bit vector whose elements will be set to \c true
4249 /// to indicate when the corresponding template parameter will be
4250 /// deduced.
4251 void
MarkUsedTemplateParameters(const TemplateArgumentList & TemplateArgs,bool OnlyDeduced,unsigned Depth,llvm::SmallVectorImpl<bool> & Used)4252 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
4253 bool OnlyDeduced, unsigned Depth,
4254 llvm::SmallVectorImpl<bool> &Used) {
4255 // C++0x [temp.deduct.type]p9:
4256 // If the template argument list of P contains a pack expansion that is not
4257 // the last template argument, the entire template argument list is a
4258 // non-deduced context.
4259 if (OnlyDeduced &&
4260 hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
4261 return;
4262
4263 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4264 ::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced,
4265 Depth, Used);
4266 }
4267
4268 /// \brief Marks all of the template parameters that will be deduced by a
4269 /// call to the given function template.
4270 void
MarkDeducedTemplateParameters(FunctionTemplateDecl * FunctionTemplate,llvm::SmallVectorImpl<bool> & Deduced)4271 Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate,
4272 llvm::SmallVectorImpl<bool> &Deduced) {
4273 TemplateParameterList *TemplateParams
4274 = FunctionTemplate->getTemplateParameters();
4275 Deduced.clear();
4276 Deduced.resize(TemplateParams->size());
4277
4278 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4279 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
4280 ::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(),
4281 true, TemplateParams->getDepth(), Deduced);
4282 }
4283
hasDeducibleTemplateParameters(Sema & S,FunctionTemplateDecl * FunctionTemplate,QualType T)4284 bool hasDeducibleTemplateParameters(Sema &S,
4285 FunctionTemplateDecl *FunctionTemplate,
4286 QualType T) {
4287 if (!T->isDependentType())
4288 return false;
4289
4290 TemplateParameterList *TemplateParams
4291 = FunctionTemplate->getTemplateParameters();
4292 llvm::SmallVector<bool, 4> Deduced;
4293 Deduced.resize(TemplateParams->size());
4294 ::MarkUsedTemplateParameters(S, T, true, TemplateParams->getDepth(),
4295 Deduced);
4296
4297 for (unsigned I = 0, N = Deduced.size(); I != N; ++I)
4298 if (Deduced[I])
4299 return true;
4300
4301 return false;
4302 }
4303