• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- X86MCTargetDesc.cpp - X86 Target Descriptions -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides X86 specific target descriptions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86MCTargetDesc.h"
15 #include "X86MCAsmInfo.h"
16 #include "llvm/MC/MachineLocation.h"
17 #include "llvm/MC/MCInstrInfo.h"
18 #include "llvm/MC/MCRegisterInfo.h"
19 #include "llvm/MC/MCSubtargetInfo.h"
20 #include "llvm/Target/TargetRegistry.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/Support/Host.h"
23 
24 #define GET_REGINFO_MC_DESC
25 #include "X86GenRegisterInfo.inc"
26 
27 #define GET_INSTRINFO_MC_DESC
28 #include "X86GenInstrInfo.inc"
29 
30 #define GET_SUBTARGETINFO_MC_DESC
31 #include "X86GenSubtargetInfo.inc"
32 
33 using namespace llvm;
34 
35 
ParseX86Triple(StringRef TT)36 std::string X86_MC::ParseX86Triple(StringRef TT) {
37   Triple TheTriple(TT);
38   if (TheTriple.getArch() == Triple::x86_64)
39     return "+64bit-mode";
40   return "-64bit-mode";
41 }
42 
43 /// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
44 /// specified arguments.  If we can't run cpuid on the host, return true.
GetCpuIDAndInfo(unsigned value,unsigned * rEAX,unsigned * rEBX,unsigned * rECX,unsigned * rEDX)45 bool X86_MC::GetCpuIDAndInfo(unsigned value, unsigned *rEAX,
46                              unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
47 #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
48   #if defined(__GNUC__)
49     // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
50     asm ("movq\t%%rbx, %%rsi\n\t"
51          "cpuid\n\t"
52          "xchgq\t%%rbx, %%rsi\n\t"
53          : "=a" (*rEAX),
54            "=S" (*rEBX),
55            "=c" (*rECX),
56            "=d" (*rEDX)
57          :  "a" (value));
58     return false;
59   #elif defined(_MSC_VER)
60     int registers[4];
61     __cpuid(registers, value);
62     *rEAX = registers[0];
63     *rEBX = registers[1];
64     *rECX = registers[2];
65     *rEDX = registers[3];
66     return false;
67   #endif
68 #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
69   #if defined(__GNUC__)
70     asm ("movl\t%%ebx, %%esi\n\t"
71          "cpuid\n\t"
72          "xchgl\t%%ebx, %%esi\n\t"
73          : "=a" (*rEAX),
74            "=S" (*rEBX),
75            "=c" (*rECX),
76            "=d" (*rEDX)
77          :  "a" (value));
78     return false;
79   #elif defined(_MSC_VER)
80     __asm {
81       mov   eax,value
82       cpuid
83       mov   esi,rEAX
84       mov   dword ptr [esi],eax
85       mov   esi,rEBX
86       mov   dword ptr [esi],ebx
87       mov   esi,rECX
88       mov   dword ptr [esi],ecx
89       mov   esi,rEDX
90       mov   dword ptr [esi],edx
91     }
92     return false;
93   #endif
94 #endif
95   return true;
96 }
97 
DetectFamilyModel(unsigned EAX,unsigned & Family,unsigned & Model)98 void X86_MC::DetectFamilyModel(unsigned EAX, unsigned &Family,
99                                unsigned &Model) {
100   Family = (EAX >> 8) & 0xf; // Bits 8 - 11
101   Model  = (EAX >> 4) & 0xf; // Bits 4 - 7
102   if (Family == 6 || Family == 0xf) {
103     if (Family == 0xf)
104       // Examine extended family ID if family ID is F.
105       Family += (EAX >> 20) & 0xff;    // Bits 20 - 27
106     // Examine extended model ID if family ID is 6 or F.
107     Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
108   }
109 }
110 
getDwarfRegFlavour(StringRef TT,bool isEH)111 unsigned X86_MC::getDwarfRegFlavour(StringRef TT, bool isEH) {
112   Triple TheTriple(TT);
113   if (TheTriple.getArch() == Triple::x86_64)
114     return DWARFFlavour::X86_64;
115 
116   if (TheTriple.isOSDarwin())
117     return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
118   if (TheTriple.getOS() == Triple::MinGW32 ||
119       TheTriple.getOS() == Triple::Cygwin)
120     // Unsupported by now, just quick fallback
121     return DWARFFlavour::X86_32_Generic;
122   return DWARFFlavour::X86_32_Generic;
123 }
124 
125 /// getX86RegNum - This function maps LLVM register identifiers to their X86
126 /// specific numbering, which is used in various places encoding instructions.
getX86RegNum(unsigned RegNo)127 unsigned X86_MC::getX86RegNum(unsigned RegNo) {
128   switch(RegNo) {
129   case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
130   case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
131   case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
132   case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
133   case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
134     return N86::ESP;
135   case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
136     return N86::EBP;
137   case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
138     return N86::ESI;
139   case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
140     return N86::EDI;
141 
142   case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
143     return N86::EAX;
144   case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
145     return N86::ECX;
146   case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
147     return N86::EDX;
148   case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
149     return N86::EBX;
150   case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
151     return N86::ESP;
152   case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
153     return N86::EBP;
154   case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
155     return N86::ESI;
156   case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
157     return N86::EDI;
158 
159   case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
160   case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
161     return RegNo-X86::ST0;
162 
163   case X86::XMM0: case X86::XMM8:
164   case X86::YMM0: case X86::YMM8: case X86::MM0:
165     return 0;
166   case X86::XMM1: case X86::XMM9:
167   case X86::YMM1: case X86::YMM9: case X86::MM1:
168     return 1;
169   case X86::XMM2: case X86::XMM10:
170   case X86::YMM2: case X86::YMM10: case X86::MM2:
171     return 2;
172   case X86::XMM3: case X86::XMM11:
173   case X86::YMM3: case X86::YMM11: case X86::MM3:
174     return 3;
175   case X86::XMM4: case X86::XMM12:
176   case X86::YMM4: case X86::YMM12: case X86::MM4:
177     return 4;
178   case X86::XMM5: case X86::XMM13:
179   case X86::YMM5: case X86::YMM13: case X86::MM5:
180     return 5;
181   case X86::XMM6: case X86::XMM14:
182   case X86::YMM6: case X86::YMM14: case X86::MM6:
183     return 6;
184   case X86::XMM7: case X86::XMM15:
185   case X86::YMM7: case X86::YMM15: case X86::MM7:
186     return 7;
187 
188   case X86::ES: return 0;
189   case X86::CS: return 1;
190   case X86::SS: return 2;
191   case X86::DS: return 3;
192   case X86::FS: return 4;
193   case X86::GS: return 5;
194 
195   case X86::CR0: case X86::CR8 : case X86::DR0: return 0;
196   case X86::CR1: case X86::CR9 : case X86::DR1: return 1;
197   case X86::CR2: case X86::CR10: case X86::DR2: return 2;
198   case X86::CR3: case X86::CR11: case X86::DR3: return 3;
199   case X86::CR4: case X86::CR12: case X86::DR4: return 4;
200   case X86::CR5: case X86::CR13: case X86::DR5: return 5;
201   case X86::CR6: case X86::CR14: case X86::DR6: return 6;
202   case X86::CR7: case X86::CR15: case X86::DR7: return 7;
203 
204   // Pseudo index registers are equivalent to a "none"
205   // scaled index (See Intel Manual 2A, table 2-3)
206   case X86::EIZ:
207   case X86::RIZ:
208     return 4;
209 
210   default:
211     assert((int(RegNo) > 0) && "Unknown physical register!");
212     return 0;
213   }
214 }
215 
InitLLVM2SEHRegisterMapping(MCRegisterInfo * MRI)216 void X86_MC::InitLLVM2SEHRegisterMapping(MCRegisterInfo *MRI) {
217   // FIXME: TableGen these.
218   for (unsigned Reg = X86::NoRegister+1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
219     int SEH = X86_MC::getX86RegNum(Reg);
220     switch (Reg) {
221     case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
222     case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
223     case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
224     case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
225     case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
226     case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
227     case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
228     case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
229     case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
230     case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
231     case X86::YMM8:  case X86::YMM9:  case X86::YMM10: case X86::YMM11:
232     case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
233       SEH += 8;
234       break;
235     }
236     MRI->mapLLVMRegToSEHReg(Reg, SEH);
237   }
238 }
239 
createX86MCSubtargetInfo(StringRef TT,StringRef CPU,StringRef FS)240 MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(StringRef TT, StringRef CPU,
241                                                   StringRef FS) {
242   std::string ArchFS = X86_MC::ParseX86Triple(TT);
243   if (!FS.empty()) {
244     if (!ArchFS.empty())
245       ArchFS = ArchFS + "," + FS.str();
246     else
247       ArchFS = FS;
248   }
249 
250   std::string CPUName = CPU;
251   if (CPUName.empty()) {
252 #if defined (__x86_64__) || defined(__i386__)
253     CPUName = sys::getHostCPUName();
254 #else
255     CPUName = "generic";
256 #endif
257   }
258 
259   MCSubtargetInfo *X = new MCSubtargetInfo();
260   InitX86MCSubtargetInfo(X, TT, CPUName, ArchFS);
261   return X;
262 }
263 
264 // Force static initialization.
LLVMInitializeX86MCSubtargetInfo()265 extern "C" void LLVMInitializeX86MCSubtargetInfo() {
266   TargetRegistry::RegisterMCSubtargetInfo(TheX86_32Target,
267                                           X86_MC::createX86MCSubtargetInfo);
268   TargetRegistry::RegisterMCSubtargetInfo(TheX86_64Target,
269                                           X86_MC::createX86MCSubtargetInfo);
270 }
271 
createX86MCInstrInfo()272 static MCInstrInfo *createX86MCInstrInfo() {
273   MCInstrInfo *X = new MCInstrInfo();
274   InitX86MCInstrInfo(X);
275   return X;
276 }
277 
LLVMInitializeX86MCInstrInfo()278 extern "C" void LLVMInitializeX86MCInstrInfo() {
279   TargetRegistry::RegisterMCInstrInfo(TheX86_32Target, createX86MCInstrInfo);
280   TargetRegistry::RegisterMCInstrInfo(TheX86_64Target, createX86MCInstrInfo);
281 }
282 
createX86MCRegisterInfo(StringRef TT)283 static MCRegisterInfo *createX86MCRegisterInfo(StringRef TT) {
284   Triple TheTriple(TT);
285   unsigned RA = (TheTriple.getArch() == Triple::x86_64)
286     ? X86::RIP     // Should have dwarf #16.
287     : X86::EIP;    // Should have dwarf #8.
288 
289   MCRegisterInfo *X = new MCRegisterInfo();
290   InitX86MCRegisterInfo(X, RA,
291                         X86_MC::getDwarfRegFlavour(TT, false),
292                         X86_MC::getDwarfRegFlavour(TT, true));
293   X86_MC::InitLLVM2SEHRegisterMapping(X);
294   return X;
295 }
296 
LLVMInitializeX86MCRegisterInfo()297 extern "C" void LLVMInitializeX86MCRegisterInfo() {
298   TargetRegistry::RegisterMCRegInfo(TheX86_32Target, createX86MCRegisterInfo);
299   TargetRegistry::RegisterMCRegInfo(TheX86_64Target, createX86MCRegisterInfo);
300 }
301 
302 
createX86MCAsmInfo(const Target & T,StringRef TT)303 static MCAsmInfo *createX86MCAsmInfo(const Target &T, StringRef TT) {
304   Triple TheTriple(TT);
305   bool is64Bit = TheTriple.getArch() == Triple::x86_64;
306 
307   MCAsmInfo *MAI;
308   if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) {
309     if (is64Bit)
310       MAI = new X86_64MCAsmInfoDarwin(TheTriple);
311     else
312       MAI = new X86MCAsmInfoDarwin(TheTriple);
313   } else if (TheTriple.isOSWindows()) {
314     MAI = new X86MCAsmInfoCOFF(TheTriple);
315   } else {
316     MAI = new X86ELFMCAsmInfo(TheTriple);
317   }
318 
319   // Initialize initial frame state.
320   // Calculate amount of bytes used for return address storing
321   int stackGrowth = is64Bit ? -8 : -4;
322 
323   // Initial state of the frame pointer is esp+stackGrowth.
324   MachineLocation Dst(MachineLocation::VirtualFP);
325   MachineLocation Src(is64Bit ? X86::RSP : X86::ESP, stackGrowth);
326   MAI->addInitialFrameState(0, Dst, Src);
327 
328   // Add return address to move list
329   MachineLocation CSDst(is64Bit ? X86::RSP : X86::ESP, stackGrowth);
330   MachineLocation CSSrc(is64Bit ? X86::RIP : X86::EIP);
331   MAI->addInitialFrameState(0, CSDst, CSSrc);
332 
333   return MAI;
334 }
335 
LLVMInitializeX86MCAsmInfo()336 extern "C" void LLVMInitializeX86MCAsmInfo() {
337   // Register the target asm info.
338   RegisterMCAsmInfoFn A(TheX86_32Target, createX86MCAsmInfo);
339   RegisterMCAsmInfoFn B(TheX86_64Target, createX86MCAsmInfo);
340 }
341 
createX86MCCodeGenInfo(StringRef TT,Reloc::Model RM)342 MCCodeGenInfo *createX86MCCodeGenInfo(StringRef TT, Reloc::Model RM) {
343   MCCodeGenInfo *X = new MCCodeGenInfo();
344 
345   Triple T(TT);
346   bool is64Bit = T.getArch() == Triple::x86_64;
347 
348   if (RM == Reloc::Default) {
349     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
350     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
351     // use static relocation model by default.
352     if (T.isOSDarwin()) {
353       if (is64Bit)
354         RM = Reloc::PIC_;
355       else
356         RM = Reloc::DynamicNoPIC;
357     } else if (T.isOSWindows() && is64Bit)
358       RM = Reloc::PIC_;
359     else
360       RM = Reloc::Static;
361   }
362 
363   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
364   // is defined as a model for code which may be used in static or dynamic
365   // executables but not necessarily a shared library. On X86-32 we just
366   // compile in -static mode, in x86-64 we use PIC.
367   if (RM == Reloc::DynamicNoPIC) {
368     if (is64Bit)
369       RM = Reloc::PIC_;
370     else if (!T.isOSDarwin())
371       RM = Reloc::Static;
372   }
373 
374   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
375   // the Mach-O file format doesn't support it.
376   if (RM == Reloc::Static && T.isOSDarwin() && is64Bit)
377     RM = Reloc::PIC_;
378 
379   X->InitMCCodeGenInfo(RM);
380   return X;
381 }
382 
LLVMInitializeX86MCCodeGenInfo()383 extern "C" void LLVMInitializeX86MCCodeGenInfo() {
384   // Register the target asm info.
385   RegisterMCCodeGenInfoFn A(TheX86_32Target, createX86MCCodeGenInfo);
386   RegisterMCCodeGenInfoFn B(TheX86_64Target, createX86MCCodeGenInfo);
387 }
388