• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===------ CXXInheritance.h - C++ Inheritance ------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides routines that help analyzing C++ inheritance hierarchies.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_AST_CXXINHERITANCE_H
15 #define LLVM_CLANG_AST_CXXINHERITANCE_H
16 
17 #include "clang/AST/DeclarationName.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/Type.h"
21 #include "clang/AST/TypeOrdering.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include <list>
26 #include <map>
27 #include <cassert>
28 
29 namespace clang {
30 
31 class CXXBaseSpecifier;
32 class CXXMethodDecl;
33 class CXXRecordDecl;
34 class NamedDecl;
35 
36 /// \brief Represents an element in a path from a derived class to a
37 /// base class.
38 ///
39 /// Each step in the path references the link from a
40 /// derived class to one of its direct base classes, along with a
41 /// base "number" that identifies which base subobject of the
42 /// original derived class we are referencing.
43 struct CXXBasePathElement {
44   /// \brief The base specifier that states the link from a derived
45   /// class to a base class, which will be followed by this base
46   /// path element.
47   const CXXBaseSpecifier *Base;
48 
49   /// \brief The record decl of the class that the base is a base of.
50   const CXXRecordDecl *Class;
51 
52   /// \brief Identifies which base class subobject (of type
53   /// \c Base->getType()) this base path element refers to.
54   ///
55   /// This value is only valid if \c !Base->isVirtual(), because there
56   /// is no base numbering for the zero or one virtual bases of a
57   /// given type.
58   int SubobjectNumber;
59 };
60 
61 /// \brief Represents a path from a specific derived class
62 /// (which is not represented as part of the path) to a particular
63 /// (direct or indirect) base class subobject.
64 ///
65 /// Individual elements in the path are described by the \c CXXBasePathElement
66 /// structure, which captures both the link from a derived class to one of its
67 /// direct bases and identification describing which base class
68 /// subobject is being used.
69 class CXXBasePath : public llvm::SmallVector<CXXBasePathElement, 4> {
70 public:
CXXBasePath()71   CXXBasePath() : Access(AS_public) {}
72 
73   /// \brief The access along this inheritance path.  This is only
74   /// calculated when recording paths.  AS_none is a special value
75   /// used to indicate a path which permits no legal access.
76   AccessSpecifier Access;
77 
78   /// \brief The set of declarations found inside this base class
79   /// subobject.
80   DeclContext::lookup_result Decls;
81 
clear()82   void clear() {
83     llvm::SmallVectorImpl<CXXBasePathElement>::clear();
84     Access = AS_public;
85   }
86 };
87 
88 /// BasePaths - Represents the set of paths from a derived class to
89 /// one of its (direct or indirect) bases. For example, given the
90 /// following class hierarchy:
91 ///
92 /// @code
93 /// class A { };
94 /// class B : public A { };
95 /// class C : public A { };
96 /// class D : public B, public C{ };
97 /// @endcode
98 ///
99 /// There are two potential BasePaths to represent paths from D to a
100 /// base subobject of type A. One path is (D,0) -> (B,0) -> (A,0)
101 /// and another is (D,0)->(C,0)->(A,1). These two paths actually
102 /// refer to two different base class subobjects of the same type,
103 /// so the BasePaths object refers to an ambiguous path. On the
104 /// other hand, consider the following class hierarchy:
105 ///
106 /// @code
107 /// class A { };
108 /// class B : public virtual A { };
109 /// class C : public virtual A { };
110 /// class D : public B, public C{ };
111 /// @endcode
112 ///
113 /// Here, there are two potential BasePaths again, (D, 0) -> (B, 0)
114 /// -> (A,v) and (D, 0) -> (C, 0) -> (A, v), but since both of them
115 /// refer to the same base class subobject of type A (the virtual
116 /// one), there is no ambiguity.
117 class CXXBasePaths {
118   /// \brief The type from which this search originated.
119   CXXRecordDecl *Origin;
120 
121   /// Paths - The actual set of paths that can be taken from the
122   /// derived class to the same base class.
123   std::list<CXXBasePath> Paths;
124 
125   /// ClassSubobjects - Records the class subobjects for each class
126   /// type that we've seen. The first element in the pair says
127   /// whether we found a path to a virtual base for that class type,
128   /// while the element contains the number of non-virtual base
129   /// class subobjects for that class type. The key of the map is
130   /// the cv-unqualified canonical type of the base class subobject.
131   std::map<QualType, std::pair<bool, unsigned>, QualTypeOrdering>
132     ClassSubobjects;
133 
134   /// FindAmbiguities - Whether Sema::IsDerivedFrom should try find
135   /// ambiguous paths while it is looking for a path from a derived
136   /// type to a base type.
137   bool FindAmbiguities;
138 
139   /// RecordPaths - Whether Sema::IsDerivedFrom should record paths
140   /// while it is determining whether there are paths from a derived
141   /// type to a base type.
142   bool RecordPaths;
143 
144   /// DetectVirtual - Whether Sema::IsDerivedFrom should abort the search
145   /// if it finds a path that goes across a virtual base. The virtual class
146   /// is also recorded.
147   bool DetectVirtual;
148 
149   /// ScratchPath - A BasePath that is used by Sema::lookupInBases
150   /// to help build the set of paths.
151   CXXBasePath ScratchPath;
152 
153   /// DetectedVirtual - The base class that is virtual.
154   const RecordType *DetectedVirtual;
155 
156   /// \brief Array of the declarations that have been found. This
157   /// array is constructed only if needed, e.g., to iterate over the
158   /// results within LookupResult.
159   NamedDecl **DeclsFound;
160   unsigned NumDeclsFound;
161 
162   friend class CXXRecordDecl;
163 
164   void ComputeDeclsFound();
165 
166   bool lookupInBases(ASTContext &Context,
167                      const CXXRecordDecl *Record,
168                      CXXRecordDecl::BaseMatchesCallback *BaseMatches,
169                      void *UserData);
170 public:
171   typedef std::list<CXXBasePath>::iterator paths_iterator;
172   typedef std::list<CXXBasePath>::const_iterator const_paths_iterator;
173   typedef NamedDecl **decl_iterator;
174 
175   /// BasePaths - Construct a new BasePaths structure to record the
176   /// paths for a derived-to-base search.
177   explicit CXXBasePaths(bool FindAmbiguities = true,
178                         bool RecordPaths = true,
179                         bool DetectVirtual = true)
FindAmbiguities(FindAmbiguities)180     : FindAmbiguities(FindAmbiguities), RecordPaths(RecordPaths),
181       DetectVirtual(DetectVirtual), DetectedVirtual(0), DeclsFound(0),
182       NumDeclsFound(0) { }
183 
~CXXBasePaths()184   ~CXXBasePaths() { delete [] DeclsFound; }
185 
begin()186   paths_iterator begin() { return Paths.begin(); }
end()187   paths_iterator end()   { return Paths.end(); }
begin()188   const_paths_iterator begin() const { return Paths.begin(); }
end()189   const_paths_iterator end()   const { return Paths.end(); }
190 
front()191   CXXBasePath&       front()       { return Paths.front(); }
front()192   const CXXBasePath& front() const { return Paths.front(); }
193 
194   decl_iterator found_decls_begin();
195   decl_iterator found_decls_end();
196 
197   /// \brief Determine whether the path from the most-derived type to the
198   /// given base type is ambiguous (i.e., it refers to multiple subobjects of
199   /// the same base type).
200   bool isAmbiguous(CanQualType BaseType);
201 
202   /// \brief Whether we are finding multiple paths to detect ambiguities.
isFindingAmbiguities()203   bool isFindingAmbiguities() const { return FindAmbiguities; }
204 
205   /// \brief Whether we are recording paths.
isRecordingPaths()206   bool isRecordingPaths() const { return RecordPaths; }
207 
208   /// \brief Specify whether we should be recording paths or not.
setRecordingPaths(bool RP)209   void setRecordingPaths(bool RP) { RecordPaths = RP; }
210 
211   /// \brief Whether we are detecting virtual bases.
isDetectingVirtual()212   bool isDetectingVirtual() const { return DetectVirtual; }
213 
214   /// \brief The virtual base discovered on the path (if we are merely
215   /// detecting virtuals).
getDetectedVirtual()216   const RecordType* getDetectedVirtual() const {
217     return DetectedVirtual;
218   }
219 
220   /// \brief Retrieve the type from which this base-paths search
221   /// began
getOrigin()222   CXXRecordDecl *getOrigin() const { return Origin; }
setOrigin(CXXRecordDecl * Rec)223   void setOrigin(CXXRecordDecl *Rec) { Origin = Rec; }
224 
225   /// \brief Clear the base-paths results.
226   void clear();
227 
228   /// \brief Swap this data structure's contents with another CXXBasePaths
229   /// object.
230   void swap(CXXBasePaths &Other);
231 };
232 
233 /// \brief Uniquely identifies a virtual method within a class
234 /// hierarchy by the method itself and a class subobject number.
235 struct UniqueVirtualMethod {
UniqueVirtualMethodUniqueVirtualMethod236   UniqueVirtualMethod() : Method(0), Subobject(0), InVirtualSubobject(0) { }
237 
UniqueVirtualMethodUniqueVirtualMethod238   UniqueVirtualMethod(CXXMethodDecl *Method, unsigned Subobject,
239                       const CXXRecordDecl *InVirtualSubobject)
240     : Method(Method), Subobject(Subobject),
241       InVirtualSubobject(InVirtualSubobject) { }
242 
243   /// \brief The overriding virtual method.
244   CXXMethodDecl *Method;
245 
246   /// \brief The subobject in which the overriding virtual method
247   /// resides.
248   unsigned Subobject;
249 
250   /// \brief The virtual base class subobject of which this overridden
251   /// virtual method is a part. Note that this records the closest
252   /// derived virtual base class subobject.
253   const CXXRecordDecl *InVirtualSubobject;
254 
255   friend bool operator==(const UniqueVirtualMethod &X,
256                          const UniqueVirtualMethod &Y) {
257     return X.Method == Y.Method && X.Subobject == Y.Subobject &&
258       X.InVirtualSubobject == Y.InVirtualSubobject;
259   }
260 
261   friend bool operator!=(const UniqueVirtualMethod &X,
262                          const UniqueVirtualMethod &Y) {
263     return !(X == Y);
264   }
265 };
266 
267 /// \brief The set of methods that override a given virtual method in
268 /// each subobject where it occurs.
269 ///
270 /// The first part of the pair is the subobject in which the
271 /// overridden virtual function occurs, while the second part of the
272 /// pair is the virtual method that overrides it (including the
273 /// subobject in which that virtual function occurs).
274 class OverridingMethods {
275   llvm::DenseMap<unsigned, llvm::SmallVector<UniqueVirtualMethod, 4> >
276     Overrides;
277 
278 public:
279   // Iterate over the set of subobjects that have overriding methods.
280   typedef llvm::DenseMap<unsigned, llvm::SmallVector<UniqueVirtualMethod, 4> >
281             ::iterator iterator;
282   typedef llvm::DenseMap<unsigned, llvm::SmallVector<UniqueVirtualMethod, 4> >
283             ::const_iterator const_iterator;
begin()284   iterator begin() { return Overrides.begin(); }
begin()285   const_iterator begin() const { return Overrides.begin(); }
end()286   iterator end() { return Overrides.end(); }
end()287   const_iterator end() const { return Overrides.end(); }
size()288   unsigned size() const { return Overrides.size(); }
289 
290   // Iterate over the set of overriding virtual methods in a given
291   // subobject.
292   typedef llvm::SmallVector<UniqueVirtualMethod, 4>::iterator
293     overriding_iterator;
294   typedef llvm::SmallVector<UniqueVirtualMethod, 4>::const_iterator
295     overriding_const_iterator;
296 
297   // Add a new overriding method for a particular subobject.
298   void add(unsigned OverriddenSubobject, UniqueVirtualMethod Overriding);
299 
300   // Add all of the overriding methods from "other" into overrides for
301   // this method. Used when merging the overrides from multiple base
302   // class subobjects.
303   void add(const OverridingMethods &Other);
304 
305   // Replace all overriding virtual methods in all subobjects with the
306   // given virtual method.
307   void replaceAll(UniqueVirtualMethod Overriding);
308 };
309 
310 /// \brief A mapping from each virtual member function to its set of
311 /// final overriders.
312 ///
313 /// Within a class hierarchy for a given derived class, each virtual
314 /// member function in that hierarchy has one or more "final
315 /// overriders" (C++ [class.virtual]p2). A final overrider for a
316 /// virtual function "f" is the virtual function that will actually be
317 /// invoked when dispatching a call to "f" through the
318 /// vtable. Well-formed classes have a single final overrider for each
319 /// virtual function; in abstract classes, the final overrider for at
320 /// least one virtual function is a pure virtual function. Due to
321 /// multiple, virtual inheritance, it is possible for a class to have
322 /// more than one final overrider. Athough this is an error (per C++
323 /// [class.virtual]p2), it is not considered an error here: the final
324 /// overrider map can represent multiple final overriders for a
325 /// method, and it is up to the client to determine whether they are
326 /// problem. For example, the following class \c D has two final
327 /// overriders for the virtual function \c A::f(), one in \c C and one
328 /// in \c D:
329 ///
330 /// \code
331 ///   struct A { virtual void f(); };
332 ///   struct B : virtual A { virtual void f(); };
333 ///   struct C : virtual A { virtual void f(); };
334 ///   struct D : B, C { };
335 /// \endcode
336 ///
337 /// This data structure contaings a mapping from every virtual
338 /// function *that does not override an existing virtual function* and
339 /// in every subobject where that virtual function occurs to the set
340 /// of virtual functions that override it. Thus, the same virtual
341 /// function \c A::f can actually occur in multiple subobjects of type
342 /// \c A due to multiple inheritance, and may be overriden by
343 /// different virtual functions in each, as in the following example:
344 ///
345 /// \code
346 ///   struct A { virtual void f(); };
347 ///   struct B : A { virtual void f(); };
348 ///   struct C : A { virtual void f(); };
349 ///   struct D : B, C { };
350 /// \endcode
351 ///
352 /// Unlike in the previous example, where the virtual functions \c
353 /// B::f and \c C::f both overrode \c A::f in the same subobject of
354 /// type \c A, in this example the two virtual functions both override
355 /// \c A::f but in *different* subobjects of type A. This is
356 /// represented by numbering the subobjects in which the overridden
357 /// and the overriding virtual member functions are located. Subobject
358 /// 0 represents the virtua base class subobject of that type, while
359 /// subobject numbers greater than 0 refer to non-virtual base class
360 /// subobjects of that type.
361 class CXXFinalOverriderMap
362   : public llvm::DenseMap<const CXXMethodDecl *, OverridingMethods> { };
363 
364 /// \brief A set of all the primary bases for a class.
365 class CXXIndirectPrimaryBaseSet
366   : public llvm::SmallSet<const CXXRecordDecl*, 32> { };
367 
368 } // end namespace clang
369 
370 #endif
371