• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2009 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "Dalvik.h"
18 #include "libdex/DexOpcodes.h"
19 
20 #include "../../CompilerInternals.h"
21 #include "ArmLIR.h"
22 #include "Codegen.h"
23 #include <sys/mman.h>           /* for protection change */
24 
25 #define MAX_ASSEMBLER_RETRIES 10
26 
27 /*
28  * opcode: ArmOpcode enum
29  * skeleton: pre-designated bit-pattern for this opcode
30  * k0: key to applying ds/de
31  * ds: dest start bit position
32  * de: dest end bit position
33  * k1: key to applying s1s/s1e
34  * s1s: src1 start bit position
35  * s1e: src1 end bit position
36  * k2: key to applying s2s/s2e
37  * s2s: src2 start bit position
38  * s2e: src2 end bit position
39  * operands: number of operands (for sanity check purposes)
40  * name: mnemonic name
41  * fmt: for pretty-printing
42  */
43 #define ENCODING_MAP(opcode, skeleton, k0, ds, de, k1, s1s, s1e, k2, s2s, s2e, \
44                      k3, k3s, k3e, flags, name, fmt, size) \
45         {skeleton, {{k0, ds, de}, {k1, s1s, s1e}, {k2, s2s, s2e}, \
46                     {k3, k3s, k3e}}, opcode, flags, name, fmt, size}
47 
48 /* Instruction dump string format keys: !pf, where "!" is the start
49  * of the key, "p" is which numeric operand to use and "f" is the
50  * print format.
51  *
52  * [p]ositions:
53  *     0 -> operands[0] (dest)
54  *     1 -> operands[1] (src1)
55  *     2 -> operands[2] (src2)
56  *     3 -> operands[3] (extra)
57  *
58  * [f]ormats:
59  *     h -> 4-digit hex
60  *     d -> decimal
61  *     E -> decimal*4
62  *     F -> decimal*2
63  *     c -> branch condition (beq, bne, etc.)
64  *     t -> pc-relative target
65  *     u -> 1st half of bl[x] target
66  *     v -> 2nd half ob bl[x] target
67  *     R -> register list
68  *     s -> single precision floating point register
69  *     S -> double precision floating point register
70  *     m -> Thumb2 modified immediate
71  *     n -> complimented Thumb2 modified immediate
72  *     M -> Thumb2 16-bit zero-extended immediate
73  *     b -> 4-digit binary
74  *     B -> dmb option string (sy, st, ish, ishst, nsh, hshst)
75  *     H -> operand shift
76  *
77  *  [!] escape.  To insert "!", use "!!"
78  */
79 /* NOTE: must be kept in sync with enum ArmOpcode from ArmLIR.h */
80 ArmEncodingMap EncodingMap[kArmLast] = {
81     ENCODING_MAP(kArm16BitData,    0x0000,
82                  kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
83                  kFmtUnused, -1, -1, IS_UNARY_OP, "data", "0x!0h(!0d)", 1),
84     ENCODING_MAP(kThumbAdcRR,        0x4140,
85                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
86                  kFmtUnused, -1, -1,
87                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES | USES_CCODES,
88                  "adcs", "r!0d, r!1d", 1),
89     ENCODING_MAP(kThumbAddRRI3,      0x1c00,
90                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
91                  kFmtUnused, -1, -1,
92                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
93                  "adds", "r!0d, r!1d, #!2d", 1),
94     ENCODING_MAP(kThumbAddRI8,       0x3000,
95                  kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
96                  kFmtUnused, -1, -1,
97                  IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES,
98                  "adds", "r!0d, r!0d, #!1d", 1),
99     ENCODING_MAP(kThumbAddRRR,       0x1800,
100                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
101                  kFmtUnused, -1, -1,
102                  IS_TERTIARY_OP | REG_DEF0_USE12 | SETS_CCODES,
103                  "adds", "r!0d, r!1d, r!2d", 1),
104     ENCODING_MAP(kThumbAddRRLH,     0x4440,
105                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
106                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01,
107                  "add", "r!0d, r!1d", 1),
108     ENCODING_MAP(kThumbAddRRHL,     0x4480,
109                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
110                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01,
111                  "add", "r!0d, r!1d", 1),
112     ENCODING_MAP(kThumbAddRRHH,     0x44c0,
113                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
114                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01,
115                  "add", "r!0d, r!1d", 1),
116     ENCODING_MAP(kThumbAddPcRel,    0xa000,
117                  kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
118                  kFmtUnused, -1, -1, IS_TERTIARY_OP | IS_BRANCH,
119                  "add", "r!0d, pc, #!1E", 1),
120     ENCODING_MAP(kThumbAddSpRel,    0xa800,
121                  kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0,
122                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF_SP | REG_USE_SP,
123                  "add", "r!0d, sp, #!2E", 1),
124     ENCODING_MAP(kThumbAddSpI7,      0xb000,
125                  kFmtBitBlt, 6, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
126                  kFmtUnused, -1, -1, IS_UNARY_OP | REG_DEF_SP | REG_USE_SP,
127                  "add", "sp, #!0d*4", 1),
128     ENCODING_MAP(kThumbAndRR,        0x4000,
129                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
130                  kFmtUnused, -1, -1,
131                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
132                  "ands", "r!0d, r!1d", 1),
133     ENCODING_MAP(kThumbAsrRRI5,      0x1000,
134                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
135                  kFmtUnused, -1, -1,
136                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
137                  "asrs", "r!0d, r!1d, #!2d", 1),
138     ENCODING_MAP(kThumbAsrRR,        0x4100,
139                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
140                  kFmtUnused, -1, -1,
141                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
142                  "asrs", "r!0d, r!1d", 1),
143     ENCODING_MAP(kThumbBCond,        0xd000,
144                  kFmtBitBlt, 7, 0, kFmtBitBlt, 11, 8, kFmtUnused, -1, -1,
145                  kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | USES_CCODES,
146                  "b!1c", "!0t", 1),
147     ENCODING_MAP(kThumbBUncond,      0xe000,
148                  kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
149                  kFmtUnused, -1, -1, NO_OPERAND | IS_BRANCH,
150                  "b", "!0t", 1),
151     ENCODING_MAP(kThumbBicRR,        0x4380,
152                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
153                  kFmtUnused, -1, -1,
154                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
155                  "bics", "r!0d, r!1d", 1),
156     ENCODING_MAP(kThumbBkpt,          0xbe00,
157                  kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
158                  kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH,
159                  "bkpt", "!0d", 1),
160     ENCODING_MAP(kThumbBlx1,         0xf000,
161                  kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
162                  kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_DEF_LR,
163                  "blx_1", "!0u", 1),
164     ENCODING_MAP(kThumbBlx2,         0xe800,
165                  kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
166                  kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_DEF_LR,
167                  "blx_2", "!0v", 1),
168     ENCODING_MAP(kThumbBl1,          0xf000,
169                  kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
170                  kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR,
171                  "bl_1", "!0u", 1),
172     ENCODING_MAP(kThumbBl2,          0xf800,
173                  kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
174                  kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR,
175                  "bl_2", "!0v", 1),
176     ENCODING_MAP(kThumbBlxR,         0x4780,
177                  kFmtBitBlt, 6, 3, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
178                  kFmtUnused, -1, -1,
179                  IS_UNARY_OP | REG_USE0 | IS_BRANCH | REG_DEF_LR,
180                  "blx", "r!0d", 1),
181     ENCODING_MAP(kThumbBx,            0x4700,
182                  kFmtBitBlt, 6, 3, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
183                  kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH,
184                  "bx", "r!0d", 1),
185     ENCODING_MAP(kThumbCmnRR,        0x42c0,
186                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
187                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
188                  "cmn", "r!0d, r!1d", 1),
189     ENCODING_MAP(kThumbCmpRI8,       0x2800,
190                  kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
191                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | SETS_CCODES,
192                  "cmp", "r!0d, #!1d", 1),
193     ENCODING_MAP(kThumbCmpRR,        0x4280,
194                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
195                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
196                  "cmp", "r!0d, r!1d", 1),
197     ENCODING_MAP(kThumbCmpLH,        0x4540,
198                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
199                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
200                  "cmp", "r!0d, r!1d", 1),
201     ENCODING_MAP(kThumbCmpHL,        0x4580,
202                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
203                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
204                  "cmp", "r!0d, r!1d", 1),
205     ENCODING_MAP(kThumbCmpHH,        0x45c0,
206                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
207                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES,
208                  "cmp", "r!0d, r!1d", 1),
209     ENCODING_MAP(kThumbEorRR,        0x4040,
210                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
211                  kFmtUnused, -1, -1,
212                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
213                  "eors", "r!0d, r!1d", 1),
214     ENCODING_MAP(kThumbLdmia,         0xc800,
215                  kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
216                  kFmtUnused, -1, -1,
217                  IS_BINARY_OP | REG_DEF0_USE0 | REG_DEF_LIST1 | IS_LOAD,
218                  "ldmia", "r!0d!!, <!1R>", 1),
219     ENCODING_MAP(kThumbLdrRRI5,      0x6800,
220                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
221                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
222                  "ldr", "r!0d, [r!1d, #!2E]", 1),
223     ENCODING_MAP(kThumbLdrRRR,       0x5800,
224                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
225                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
226                  "ldr", "r!0d, [r!1d, r!2d]", 1),
227     ENCODING_MAP(kThumbLdrPcRel,    0x4800,
228                  kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
229                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0 | REG_USE_PC
230                  | IS_LOAD, "ldr", "r!0d, [pc, #!1E]", 1),
231     ENCODING_MAP(kThumbLdrSpRel,    0x9800,
232                  kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0,
233                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0 | REG_USE_SP
234                  | IS_LOAD, "ldr", "r!0d, [sp, #!2E]", 1),
235     ENCODING_MAP(kThumbLdrbRRI5,     0x7800,
236                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
237                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
238                  "ldrb", "r!0d, [r!1d, #2d]", 1),
239     ENCODING_MAP(kThumbLdrbRRR,      0x5c00,
240                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
241                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
242                  "ldrb", "r!0d, [r!1d, r!2d]", 1),
243     ENCODING_MAP(kThumbLdrhRRI5,     0x8800,
244                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
245                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
246                  "ldrh", "r!0d, [r!1d, #!2F]", 1),
247     ENCODING_MAP(kThumbLdrhRRR,      0x5a00,
248                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
249                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
250                  "ldrh", "r!0d, [r!1d, r!2d]", 1),
251     ENCODING_MAP(kThumbLdrsbRRR,     0x5600,
252                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
253                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
254                  "ldrsb", "r!0d, [r!1d, r!2d]", 1),
255     ENCODING_MAP(kThumbLdrshRRR,     0x5e00,
256                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
257                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD,
258                  "ldrsh", "r!0d, [r!1d, r!2d]", 1),
259     ENCODING_MAP(kThumbLslRRI5,      0x0000,
260                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
261                  kFmtUnused, -1, -1,
262                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
263                  "lsls", "r!0d, r!1d, #!2d", 1),
264     ENCODING_MAP(kThumbLslRR,        0x4080,
265                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
266                  kFmtUnused, -1, -1,
267                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
268                  "lsls", "r!0d, r!1d", 1),
269     ENCODING_MAP(kThumbLsrRRI5,      0x0800,
270                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
271                  kFmtUnused, -1, -1,
272                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
273                  "lsrs", "r!0d, r!1d, #!2d", 1),
274     ENCODING_MAP(kThumbLsrRR,        0x40c0,
275                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
276                  kFmtUnused, -1, -1,
277                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
278                  "lsrs", "r!0d, r!1d", 1),
279     ENCODING_MAP(kThumbMovImm,       0x2000,
280                  kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
281                  kFmtUnused, -1, -1,
282                  IS_BINARY_OP | REG_DEF0 | SETS_CCODES,
283                  "movs", "r!0d, #!1d", 1),
284     ENCODING_MAP(kThumbMovRR,        0x1c00,
285                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
286                  kFmtUnused, -1, -1,
287                  IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES,
288                  "movs", "r!0d, r!1d", 1),
289     ENCODING_MAP(kThumbMovRR_H2H,    0x46c0,
290                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
291                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
292                  "mov", "r!0d, r!1d", 1),
293     ENCODING_MAP(kThumbMovRR_H2L,    0x4640,
294                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
295                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
296                  "mov", "r!0d, r!1d", 1),
297     ENCODING_MAP(kThumbMovRR_L2H,    0x4680,
298                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
299                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
300                  "mov", "r!0d, r!1d", 1),
301     ENCODING_MAP(kThumbMul,           0x4340,
302                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
303                  kFmtUnused, -1, -1,
304                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
305                  "muls", "r!0d, r!1d", 1),
306     ENCODING_MAP(kThumbMvn,           0x43c0,
307                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
308                  kFmtUnused, -1, -1,
309                  IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES,
310                  "mvns", "r!0d, r!1d", 1),
311     ENCODING_MAP(kThumbNeg,           0x4240,
312                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
313                  kFmtUnused, -1, -1,
314                  IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES,
315                  "negs", "r!0d, r!1d", 1),
316     ENCODING_MAP(kThumbOrr,           0x4300,
317                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
318                  kFmtUnused, -1, -1,
319                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
320                  "orrs", "r!0d, r!1d", 1),
321     ENCODING_MAP(kThumbPop,           0xbc00,
322                  kFmtBitBlt, 8, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
323                  kFmtUnused, -1, -1,
324                  IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_DEF_LIST0
325                  | IS_LOAD, "pop", "<!0R>", 1),
326     ENCODING_MAP(kThumbPush,          0xb400,
327                  kFmtBitBlt, 8, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
328                  kFmtUnused, -1, -1,
329                  IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_USE_LIST0
330                  | IS_STORE, "push", "<!0R>", 1),
331     ENCODING_MAP(kThumbRorRR,        0x41c0,
332                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
333                  kFmtUnused, -1, -1,
334                  IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES,
335                  "rors", "r!0d, r!1d", 1),
336     ENCODING_MAP(kThumbSbc,           0x4180,
337                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
338                  kFmtUnused, -1, -1,
339                  IS_BINARY_OP | REG_DEF0_USE01 | USES_CCODES | SETS_CCODES,
340                  "sbcs", "r!0d, r!1d", 1),
341     ENCODING_MAP(kThumbStmia,         0xc000,
342                  kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
343                  kFmtUnused, -1, -1,
344                  IS_BINARY_OP | REG_DEF0 | REG_USE0 | REG_USE_LIST1 | IS_STORE,
345                  "stmia", "r!0d!!, <!1R>", 1),
346     ENCODING_MAP(kThumbStrRRI5,      0x6000,
347                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
348                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
349                  "str", "r!0d, [r!1d, #!2E]", 1),
350     ENCODING_MAP(kThumbStrRRR,       0x5000,
351                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
352                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE,
353                  "str", "r!0d, [r!1d, r!2d]", 1),
354     ENCODING_MAP(kThumbStrSpRel,    0x9000,
355                  kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0,
356                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE0 | REG_USE_SP
357                  | IS_STORE, "str", "r!0d, [sp, #!2E]", 1),
358     ENCODING_MAP(kThumbStrbRRI5,     0x7000,
359                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
360                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
361                  "strb", "r!0d, [r!1d, #!2d]", 1),
362     ENCODING_MAP(kThumbStrbRRR,      0x5400,
363                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
364                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE,
365                  "strb", "r!0d, [r!1d, r!2d]", 1),
366     ENCODING_MAP(kThumbStrhRRI5,     0x8000,
367                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6,
368                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
369                  "strh", "r!0d, [r!1d, #!2F]", 1),
370     ENCODING_MAP(kThumbStrhRRR,      0x5200,
371                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
372                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE,
373                  "strh", "r!0d, [r!1d, r!2d]", 1),
374     ENCODING_MAP(kThumbSubRRI3,      0x1e00,
375                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
376                  kFmtUnused, -1, -1,
377                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
378                  "subs", "r!0d, r!1d, #!2d]", 1),
379     ENCODING_MAP(kThumbSubRI8,       0x3800,
380                  kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1,
381                  kFmtUnused, -1, -1,
382                  IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES,
383                  "subs", "r!0d, #!1d", 1),
384     ENCODING_MAP(kThumbSubRRR,       0x1a00,
385                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6,
386                  kFmtUnused, -1, -1,
387                  IS_TERTIARY_OP | REG_DEF0_USE12 | SETS_CCODES,
388                  "subs", "r!0d, r!1d, r!2d", 1),
389     ENCODING_MAP(kThumbSubSpI7,      0xb080,
390                  kFmtBitBlt, 6, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
391                  kFmtUnused, -1, -1,
392                  IS_UNARY_OP | REG_DEF_SP | REG_USE_SP,
393                  "sub", "sp, #!0d", 1),
394     ENCODING_MAP(kThumbSwi,           0xdf00,
395                  kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,                       kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH,
396                  "swi", "!0d", 1),
397     ENCODING_MAP(kThumbTst,           0x4200,
398                  kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1,
399                  kFmtUnused, -1, -1, IS_UNARY_OP | REG_USE01 | SETS_CCODES,
400                  "tst", "r!0d, r!1d", 1),
401     ENCODING_MAP(kThumb2Vldrs,       0xed900a00,
402                  kFmtSfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
403                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
404                  "vldr", "!0s, [r!1d, #!2E]", 2),
405     ENCODING_MAP(kThumb2Vldrd,       0xed900b00,
406                  kFmtDfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
407                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
408                  "vldr", "!0S, [r!1d, #!2E]", 2),
409     ENCODING_MAP(kThumb2Vmuls,        0xee200a00,
410                  kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0,
411                  kFmtUnused, -1, -1,
412                  IS_TERTIARY_OP | REG_DEF0_USE12,
413                  "vmuls", "!0s, !1s, !2s", 2),
414     ENCODING_MAP(kThumb2Vmuld,        0xee200b00,
415                  kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0,
416                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
417                  "vmuld", "!0S, !1S, !2S", 2),
418     ENCODING_MAP(kThumb2Vstrs,       0xed800a00,
419                  kFmtSfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
420                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
421                  "vstr", "!0s, [r!1d, #!2E]", 2),
422     ENCODING_MAP(kThumb2Vstrd,       0xed800b00,
423                  kFmtDfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
424                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
425                  "vstr", "!0S, [r!1d, #!2E]", 2),
426     ENCODING_MAP(kThumb2Vsubs,        0xee300a40,
427                  kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0,
428                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
429                  "vsub", "!0s, !1s, !2s", 2),
430     ENCODING_MAP(kThumb2Vsubd,        0xee300b40,
431                  kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0,
432                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
433                  "vsub", "!0S, !1S, !2S", 2),
434     ENCODING_MAP(kThumb2Vadds,        0xee300a00,
435                  kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0,
436                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
437                  "vadd", "!0s, !1s, !2s", 2),
438     ENCODING_MAP(kThumb2Vaddd,        0xee300b00,
439                  kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0,
440                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
441                  "vadd", "!0S, !1S, !2S", 2),
442     ENCODING_MAP(kThumb2Vdivs,        0xee800a00,
443                  kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0,
444                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
445                  "vdivs", "!0s, !1s, !2s", 2),
446     ENCODING_MAP(kThumb2Vdivd,        0xee800b00,
447                  kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0,
448                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
449                  "vdivd", "!0S, !1S, !2S", 2),
450     ENCODING_MAP(kThumb2VcvtIF,       0xeeb80ac0,
451                  kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
452                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
453                  "vcvt.f32", "!0s, !1s", 2),
454     ENCODING_MAP(kThumb2VcvtID,       0xeeb80bc0,
455                  kFmtDfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
456                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
457                  "vcvt.f64", "!0S, !1s", 2),
458     ENCODING_MAP(kThumb2VcvtFI,       0xeebd0ac0,
459                  kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
460                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
461                  "vcvt.s32.f32 ", "!0s, !1s", 2),
462     ENCODING_MAP(kThumb2VcvtDI,       0xeebd0bc0,
463                  kFmtSfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
464                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
465                  "vcvt.s32.f64 ", "!0s, !1S", 2),
466     ENCODING_MAP(kThumb2VcvtFd,       0xeeb70ac0,
467                  kFmtDfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
468                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
469                  "vcvt.f64.f32 ", "!0S, !1s", 2),
470     ENCODING_MAP(kThumb2VcvtDF,       0xeeb70bc0,
471                  kFmtSfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
472                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
473                  "vcvt.f32.f64 ", "!0s, !1S", 2),
474     ENCODING_MAP(kThumb2Vsqrts,       0xeeb10ac0,
475                  kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
476                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
477                  "vsqrt.f32 ", "!0s, !1s", 2),
478     ENCODING_MAP(kThumb2Vsqrtd,       0xeeb10bc0,
479                  kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
480                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
481                  "vsqrt.f64 ", "!0S, !1S", 2),
482     ENCODING_MAP(kThumb2MovImmShift, 0xf04f0000, /* no setflags encoding */
483                  kFmtBitBlt, 11, 8, kFmtModImm, -1, -1, kFmtUnused, -1, -1,
484                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
485                  "mov", "r!0d, #!1m", 2),
486     ENCODING_MAP(kThumb2MovImm16,       0xf2400000,
487                  kFmtBitBlt, 11, 8, kFmtImm16, -1, -1, kFmtUnused, -1, -1,
488                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
489                  "mov", "r!0d, #!1M", 2),
490     ENCODING_MAP(kThumb2StrRRI12,       0xf8c00000,
491                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
492                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
493                  "str", "r!0d, [r!1d, #!2d]", 2),
494     ENCODING_MAP(kThumb2LdrRRI12,       0xf8d00000,
495                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
496                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
497                  "ldr", "r!0d, [r!1d, #!2d]", 2),
498     ENCODING_MAP(kThumb2StrRRI8Predec,       0xf8400c00,
499                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 8, 0,
500                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
501                  "str", "r!0d, [r!1d, #-!2d]", 2),
502     ENCODING_MAP(kThumb2LdrRRI8Predec,       0xf8500c00,
503                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 8, 0,
504                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
505                  "ldr", "r!0d, [r!1d, #-!2d]", 2),
506     ENCODING_MAP(kThumb2Cbnz,       0xb900, /* Note: does not affect flags */
507                  kFmtBitBlt, 2, 0, kFmtImm6, -1, -1, kFmtUnused, -1, -1,
508                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | IS_BRANCH,
509                  "cbnz", "r!0d,!1t", 1),
510     ENCODING_MAP(kThumb2Cbz,       0xb100, /* Note: does not affect flags */
511                  kFmtBitBlt, 2, 0, kFmtImm6, -1, -1, kFmtUnused, -1, -1,
512                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | IS_BRANCH,
513                  "cbz", "r!0d,!1t", 1),
514     ENCODING_MAP(kThumb2AddRRI12,       0xf2000000,
515                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtImm12, -1, -1,
516                  kFmtUnused, -1, -1,
517                  IS_TERTIARY_OP | REG_DEF0_USE1,/* Note: doesn't affect flags */
518                  "add", "r!0d,r!1d,#!2d", 2),
519     ENCODING_MAP(kThumb2MovRR,       0xea4f0000, /* no setflags encoding */
520                  kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtUnused, -1, -1,
521                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
522                  "mov", "r!0d, r!1d", 2),
523     ENCODING_MAP(kThumb2Vmovs,       0xeeb00a40,
524                  kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
525                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
526                  "vmov.f32 ", " !0s, !1s", 2),
527     ENCODING_MAP(kThumb2Vmovd,       0xeeb00b40,
528                  kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
529                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
530                  "vmov.f64 ", " !0S, !1S", 2),
531     ENCODING_MAP(kThumb2Ldmia,         0xe8900000,
532                  kFmtBitBlt, 19, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
533                  kFmtUnused, -1, -1,
534                  IS_BINARY_OP | REG_DEF0_USE0 | REG_DEF_LIST1 | IS_LOAD,
535                  "ldmia", "r!0d!!, <!1R>", 2),
536     ENCODING_MAP(kThumb2Stmia,         0xe8800000,
537                  kFmtBitBlt, 19, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
538                  kFmtUnused, -1, -1,
539                  IS_BINARY_OP | REG_DEF0_USE0 | REG_USE_LIST1 | IS_STORE,
540                  "stmia", "r!0d!!, <!1R>", 2),
541     ENCODING_MAP(kThumb2AddRRR,  0xeb100000, /* setflags encoding */
542                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
543                  kFmtShift, -1, -1,
544                  IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES,
545                  "adds", "r!0d, r!1d, r!2d!3H", 2),
546     ENCODING_MAP(kThumb2SubRRR,       0xebb00000, /* setflags enconding */
547                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
548                  kFmtShift, -1, -1,
549                  IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES,
550                  "subs", "r!0d, r!1d, r!2d!3H", 2),
551     ENCODING_MAP(kThumb2SbcRRR,       0xeb700000, /* setflags encoding */
552                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
553                  kFmtShift, -1, -1,
554                  IS_QUAD_OP | REG_DEF0_USE12 | USES_CCODES | SETS_CCODES,
555                  "sbcs", "r!0d, r!1d, r!2d!3H", 2),
556     ENCODING_MAP(kThumb2CmpRR,       0xebb00f00,
557                  kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1,
558                  kFmtUnused, -1, -1,
559                  IS_TERTIARY_OP | REG_USE01 | SETS_CCODES,
560                  "cmp", "r!0d, r!1d", 2),
561     ENCODING_MAP(kThumb2SubRRI12,       0xf2a00000,
562                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtImm12, -1, -1,
563                  kFmtUnused, -1, -1,
564                  IS_TERTIARY_OP | REG_DEF0_USE1,/* Note: doesn't affect flags */
565                  "sub", "r!0d,r!1d,#!2d", 2),
566     ENCODING_MAP(kThumb2MvnImmShift,  0xf06f0000, /* no setflags encoding */
567                  kFmtBitBlt, 11, 8, kFmtModImm, -1, -1, kFmtUnused, -1, -1,
568                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
569                  "mvn", "r!0d, #!1n", 2),
570     ENCODING_MAP(kThumb2Sel,       0xfaa0f080,
571                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
572                  kFmtUnused, -1, -1,
573                  IS_TERTIARY_OP | REG_DEF0_USE12 | USES_CCODES,
574                  "sel", "r!0d, r!1d, r!2d", 2),
575     ENCODING_MAP(kThumb2Ubfx,       0xf3c00000,
576                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtLsb, -1, -1,
577                  kFmtBWidth, 4, 0, IS_QUAD_OP | REG_DEF0_USE1,
578                  "ubfx", "r!0d, r!1d, #!2d, #!3d", 2),
579     ENCODING_MAP(kThumb2Sbfx,       0xf3400000,
580                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtLsb, -1, -1,
581                  kFmtBWidth, 4, 0, IS_QUAD_OP | REG_DEF0_USE1,
582                  "sbfx", "r!0d, r!1d, #!2d, #!3d", 2),
583     ENCODING_MAP(kThumb2LdrRRR,    0xf8500000,
584                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
585                  kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
586                  "ldr", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
587     ENCODING_MAP(kThumb2LdrhRRR,    0xf8300000,
588                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
589                  kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
590                  "ldrh", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
591     ENCODING_MAP(kThumb2LdrshRRR,    0xf9300000,
592                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
593                  kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
594                  "ldrsh", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
595     ENCODING_MAP(kThumb2LdrbRRR,    0xf8100000,
596                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
597                  kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
598                  "ldrb", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
599     ENCODING_MAP(kThumb2LdrsbRRR,    0xf9100000,
600                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
601                  kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD,
602                  "ldrsb", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
603     ENCODING_MAP(kThumb2StrRRR,    0xf8400000,
604                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
605                  kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE,
606                  "str", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
607     ENCODING_MAP(kThumb2StrhRRR,    0xf8200000,
608                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
609                  kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE,
610                  "strh", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
611     ENCODING_MAP(kThumb2StrbRRR,    0xf8000000,
612                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
613                  kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE,
614                  "strb", "r!0d, [r!1d, r!2d, LSL #!3d]", 2),
615     ENCODING_MAP(kThumb2LdrhRRI12,       0xf8b00000,
616                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
617                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
618                  "ldrh", "r!0d, [r!1d, #!2d]", 2),
619     ENCODING_MAP(kThumb2LdrshRRI12,       0xf9b00000,
620                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
621                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
622                  "ldrsh", "r!0d, [r!1d, #!2d]", 2),
623     ENCODING_MAP(kThumb2LdrbRRI12,       0xf8900000,
624                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
625                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
626                  "ldrb", "r!0d, [r!1d, #!2d]", 2),
627     ENCODING_MAP(kThumb2LdrsbRRI12,       0xf9900000,
628                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
629                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
630                  "ldrsb", "r!0d, [r!1d, #!2d]", 2),
631     ENCODING_MAP(kThumb2StrhRRI12,       0xf8a00000,
632                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
633                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
634                  "strh", "r!0d, [r!1d, #!2d]", 2),
635     ENCODING_MAP(kThumb2StrbRRI12,       0xf8800000,
636                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0,
637                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE,
638                  "strb", "r!0d, [r!1d, #!2d]", 2),
639     ENCODING_MAP(kThumb2Pop,           0xe8bd0000,
640                  kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
641                  kFmtUnused, -1, -1,
642                  IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_DEF_LIST0
643                  | IS_LOAD, "pop", "<!0R>", 2),
644     ENCODING_MAP(kThumb2Push,          0xe92d0000,
645                  kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
646                  kFmtUnused, -1, -1,
647                  IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_USE_LIST0
648                  | IS_STORE, "push", "<!0R>", 2),
649     ENCODING_MAP(kThumb2CmpRI8, 0xf1b00f00,
650                  kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, kFmtUnused, -1, -1,
651                  kFmtUnused, -1, -1,
652                  IS_BINARY_OP | REG_USE0 | SETS_CCODES,
653                  "cmp", "r!0d, #!1m", 2),
654     ENCODING_MAP(kThumb2AdcRRR,  0xeb500000, /* setflags encoding */
655                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
656                  kFmtShift, -1, -1,
657                  IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES,
658                  "adcs", "r!0d, r!1d, r!2d!3H", 2),
659     ENCODING_MAP(kThumb2AndRRR,  0xea000000,
660                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
661                  kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12,
662                  "and", "r!0d, r!1d, r!2d!3H", 2),
663     ENCODING_MAP(kThumb2BicRRR,  0xea200000,
664                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
665                  kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12,
666                  "bic", "r!0d, r!1d, r!2d!3H", 2),
667     ENCODING_MAP(kThumb2CmnRR,  0xeb000000,
668                  kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1,
669                  kFmtUnused, -1, -1,
670                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
671                  "cmn", "r!0d, r!1d, shift !2d", 2),
672     ENCODING_MAP(kThumb2EorRRR,  0xea800000,
673                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
674                  kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12,
675                  "eor", "r!0d, r!1d, r!2d!3H", 2),
676     ENCODING_MAP(kThumb2MulRRR,  0xfb00f000,
677                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
678                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
679                  "mul", "r!0d, r!1d, r!2d", 2),
680     ENCODING_MAP(kThumb2MnvRR,  0xea6f0000,
681                  kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift, -1, -1,
682                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
683                  "mvn", "r!0d, r!1d, shift !2d", 2),
684     ENCODING_MAP(kThumb2RsubRRI8,       0xf1d00000,
685                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
686                  kFmtUnused, -1, -1,
687                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
688                  "rsb", "r!0d,r!1d,#!2m", 2),
689     ENCODING_MAP(kThumb2NegRR,       0xf1d00000, /* instance of rsub */
690                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtUnused, -1, -1,
691                  kFmtUnused, -1, -1,
692                  IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES,
693                  "neg", "r!0d,r!1d", 2),
694     ENCODING_MAP(kThumb2OrrRRR,  0xea400000,
695                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
696                  kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12,
697                  "orr", "r!0d, r!1d, r!2d!3H", 2),
698     ENCODING_MAP(kThumb2TstRR,       0xea100f00,
699                  kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1,
700                  kFmtUnused, -1, -1,
701                  IS_TERTIARY_OP | REG_USE01 | SETS_CCODES,
702                  "tst", "r!0d, r!1d, shift !2d", 2),
703     ENCODING_MAP(kThumb2LslRRR,  0xfa00f000,
704                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
705                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
706                  "lsl", "r!0d, r!1d, r!2d", 2),
707     ENCODING_MAP(kThumb2LsrRRR,  0xfa20f000,
708                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
709                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
710                  "lsr", "r!0d, r!1d, r!2d", 2),
711     ENCODING_MAP(kThumb2AsrRRR,  0xfa40f000,
712                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
713                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
714                  "asr", "r!0d, r!1d, r!2d", 2),
715     ENCODING_MAP(kThumb2RorRRR,  0xfa60f000,
716                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
717                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
718                  "ror", "r!0d, r!1d, r!2d", 2),
719     ENCODING_MAP(kThumb2LslRRI5,  0xea4f0000,
720                  kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1,
721                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
722                  "lsl", "r!0d, r!1d, #!2d", 2),
723     ENCODING_MAP(kThumb2LsrRRI5,  0xea4f0010,
724                  kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1,
725                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
726                  "lsr", "r!0d, r!1d, #!2d", 2),
727     ENCODING_MAP(kThumb2AsrRRI5,  0xea4f0020,
728                  kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1,
729                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
730                  "asr", "r!0d, r!1d, #!2d", 2),
731     ENCODING_MAP(kThumb2RorRRI5,  0xea4f0030,
732                  kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1,
733                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
734                  "ror", "r!0d, r!1d, #!2d", 2),
735     ENCODING_MAP(kThumb2BicRRI8,  0xf0200000,
736                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
737                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
738                  "bic", "r!0d, r!1d, #!2m", 2),
739     ENCODING_MAP(kThumb2AndRRI8,  0xf0000000,
740                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
741                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
742                  "and", "r!0d, r!1d, #!2m", 2),
743     ENCODING_MAP(kThumb2OrrRRI8,  0xf0400000,
744                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
745                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
746                  "orr", "r!0d, r!1d, #!2m", 2),
747     ENCODING_MAP(kThumb2EorRRI8,  0xf0800000,
748                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
749                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
750                  "eor", "r!0d, r!1d, #!2m", 2),
751     ENCODING_MAP(kThumb2AddRRI8,  0xf1100000,
752                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
753                  kFmtUnused, -1, -1,
754                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
755                  "adds", "r!0d, r!1d, #!2m", 2),
756     ENCODING_MAP(kThumb2AdcRRI8,  0xf1500000,
757                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
758                  kFmtUnused, -1, -1,
759                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES | USES_CCODES,
760                  "adcs", "r!0d, r!1d, #!2m", 2),
761     ENCODING_MAP(kThumb2SubRRI8,  0xf1b00000,
762                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
763                  kFmtUnused, -1, -1,
764                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES,
765                  "subs", "r!0d, r!1d, #!2m", 2),
766     ENCODING_MAP(kThumb2SbcRRI8,  0xf1700000,
767                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1,
768                  kFmtUnused, -1, -1,
769                  IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES | USES_CCODES,
770                  "sbcs", "r!0d, r!1d, #!2m", 2),
771     ENCODING_MAP(kThumb2It,  0xbf00,
772                  kFmtBitBlt, 7, 4, kFmtBitBlt, 3, 0, kFmtModImm, -1, -1,
773                  kFmtUnused, -1, -1, IS_BINARY_OP | IS_IT | USES_CCODES,
774                  "it:!1b", "!0c", 1),
775     ENCODING_MAP(kThumb2Fmstat,  0xeef1fa10,
776                  kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
777                  kFmtUnused, -1, -1, NO_OPERAND | SETS_CCODES,
778                  "fmstat", "", 2),
779     ENCODING_MAP(kThumb2Vcmpd,        0xeeb40b40,
780                  kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
781                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01,
782                  "vcmp.f64", "!0S, !1S", 2),
783     ENCODING_MAP(kThumb2Vcmps,        0xeeb40a40,
784                  kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
785                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01,
786                  "vcmp.f32", "!0s, !1s", 2),
787     ENCODING_MAP(kThumb2LdrPcRel12,       0xf8df0000,
788                  kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 0, kFmtUnused, -1, -1,
789                  kFmtUnused, -1, -1,
790                  IS_TERTIARY_OP | REG_DEF0 | REG_USE_PC | IS_LOAD,
791                  "ldr", "r!0d, [r15pc, #!1d]", 2),
792     ENCODING_MAP(kThumb2BCond,        0xf0008000,
793                  kFmtBrOffset, -1, -1, kFmtBitBlt, 25, 22, kFmtUnused, -1, -1,
794                  kFmtUnused, -1, -1,
795                  IS_BINARY_OP | IS_BRANCH | USES_CCODES,
796                  "b!1c", "!0t", 2),
797     ENCODING_MAP(kThumb2Vmovd_RR,       0xeeb00b40,
798                  kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
799                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
800                  "vmov.f64", "!0S, !1S", 2),
801     ENCODING_MAP(kThumb2Vmovs_RR,       0xeeb00a40,
802                  kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
803                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
804                  "vmov.f32", "!0s, !1s", 2),
805     ENCODING_MAP(kThumb2Fmrs,       0xee100a10,
806                  kFmtBitBlt, 15, 12, kFmtSfp, 7, 16, kFmtUnused, -1, -1,
807                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
808                  "fmrs", "r!0d, !1s", 2),
809     ENCODING_MAP(kThumb2Fmsr,       0xee000a10,
810                  kFmtSfp, 7, 16, kFmtBitBlt, 15, 12, kFmtUnused, -1, -1,
811                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
812                  "fmsr", "!0s, r!1d", 2),
813     ENCODING_MAP(kThumb2Fmrrd,       0xec500b10,
814                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtDfp, 5, 0,
815                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF01_USE2,
816                  "fmrrd", "r!0d, r!1d, !2S", 2),
817     ENCODING_MAP(kThumb2Fmdrr,       0xec400b10,
818                  kFmtDfp, 5, 0, kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16,
819                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
820                  "fmdrr", "!0S, r!1d, r!2d", 2),
821     ENCODING_MAP(kThumb2Vabsd,       0xeeb00bc0,
822                  kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
823                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
824                  "vabs.f64", "!0S, !1S", 2),
825     ENCODING_MAP(kThumb2Vabss,       0xeeb00ac0,
826                  kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
827                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
828                  "vabs.f32", "!0s, !1s", 2),
829     ENCODING_MAP(kThumb2Vnegd,       0xeeb10b40,
830                  kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1,
831                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
832                  "vneg.f64", "!0S, !1S", 2),
833     ENCODING_MAP(kThumb2Vnegs,       0xeeb10a40,
834                  kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1,
835                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
836                  "vneg.f32", "!0s, !1s", 2),
837     ENCODING_MAP(kThumb2Vmovs_IMM8,       0xeeb00a00,
838                  kFmtSfp, 22, 12, kFmtFPImm, 16, 0, kFmtUnused, -1, -1,
839                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
840                  "vmov.f32", "!0s, #0x!1h", 2),
841     ENCODING_MAP(kThumb2Vmovd_IMM8,       0xeeb00b00,
842                  kFmtDfp, 22, 12, kFmtFPImm, 16, 0, kFmtUnused, -1, -1,
843                  kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
844                  "vmov.f64", "!0S, #0x!1h", 2),
845     ENCODING_MAP(kThumb2Mla,  0xfb000000,
846                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0,
847                  kFmtBitBlt, 15, 12,
848                  IS_QUAD_OP | REG_DEF0 | REG_USE1 | REG_USE2 | REG_USE3,
849                  "mla", "r!0d, r!1d, r!2d, r!3d", 2),
850     ENCODING_MAP(kThumb2Umull,  0xfba00000,
851                  kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16,
852                  kFmtBitBlt, 3, 0,
853                  IS_QUAD_OP | REG_DEF0 | REG_DEF1 | REG_USE2 | REG_USE3,
854                  "umull", "r!0d, r!1d, r!2d, r!3d", 2),
855     ENCODING_MAP(kThumb2Ldrex,       0xe8500f00,
856                  kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0,
857                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD,
858                  "ldrex", "r!0d, [r!1d, #!2E]", 2),
859     ENCODING_MAP(kThumb2Strex,       0xe8400000,
860                  kFmtBitBlt, 11, 8, kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16,
861                  kFmtBitBlt, 7, 0, IS_QUAD_OP | REG_DEF0_USE12 | IS_STORE,
862                  "strex", "r!0d,r!1d, [r!2d, #!2E]", 2),
863     ENCODING_MAP(kThumb2Clrex,       0xf3bf8f2f,
864                  kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
865                  kFmtUnused, -1, -1, NO_OPERAND,
866                  "clrex", "", 2),
867     ENCODING_MAP(kThumb2Bfi,         0xf3600000,
868                  kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtShift5, -1, -1,
869                  kFmtBitBlt, 4, 0, IS_QUAD_OP | REG_DEF0_USE1,
870                  "bfi", "r!0d,r!1d,#!2d,#!3d", 2),
871     ENCODING_MAP(kThumb2Bfc,         0xf36f0000,
872                  kFmtBitBlt, 11, 8, kFmtShift5, -1, -1, kFmtBitBlt, 4, 0,
873                  kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0,
874                  "bfc", "r!0d,#!1d,#!2d", 2),
875     ENCODING_MAP(kThumb2Dmb,         0xf3bf8f50,
876                  kFmtBitBlt, 3, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
877                  kFmtUnused, -1, -1, IS_UNARY_OP,
878                  "dmb","#!0B",2),
879     ENCODING_MAP(kThumb2LdrPcReln12,       0xf85f0000,
880                  kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 0, kFmtUnused, -1, -1,
881                  kFmtUnused, -1, -1,
882                  IS_BINARY_OP | REG_DEF0 | REG_USE_PC | IS_LOAD,
883                  "ldr", "r!0d, [r15pc, -#!1d]", 2),
884     ENCODING_MAP(kThumbUndefined,       0xde00,
885                  kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
886                  kFmtUnused, -1, -1, NO_OPERAND,
887                  "undefined", "", 1),
888 };
889 
890 /*
891  * The fake NOP of moving r0 to r0 actually will incur data stalls if r0 is
892  * not ready. Since r5FP is not updated often, it is less likely to
893  * generate unnecessary stall cycles.
894  */
895 #define PADDING_MOV_R5_R5               0x1C2D
896 
897 /* Track the number of times that the code cache is patched */
898 #if defined(WITH_JIT_TUNING)
899 #define UPDATE_CODE_CACHE_PATCHES()    (gDvmJit.codeCachePatches++)
900 #else
901 #define UPDATE_CODE_CACHE_PATCHES()
902 #endif
903 
904 /* Write the numbers in the constant and class pool to the output stream */
installLiteralPools(CompilationUnit * cUnit)905 static void installLiteralPools(CompilationUnit *cUnit)
906 {
907     int *dataPtr = (int *) ((char *) cUnit->baseAddr + cUnit->dataOffset);
908     /* Install number of class pointer literals */
909     *dataPtr++ = cUnit->numClassPointers;
910     ArmLIR *dataLIR = (ArmLIR *) cUnit->classPointerList;
911     while (dataLIR) {
912         /*
913          * Install the callsiteinfo pointers into the cells for now. They will
914          * be converted into real pointers in dvmJitInstallClassObjectPointers.
915          */
916         *dataPtr++ = dataLIR->operands[0];
917         dataLIR = NEXT_LIR(dataLIR);
918     }
919     dataLIR = (ArmLIR *) cUnit->literalList;
920     while (dataLIR) {
921         *dataPtr++ = dataLIR->operands[0];
922         dataLIR = NEXT_LIR(dataLIR);
923     }
924 }
925 
926 /*
927  * Assemble the LIR into binary instruction format.  Note that we may
928  * discover that pc-relative displacements may not fit the selected
929  * instruction.  In those cases we will try to substitute a new code
930  * sequence or request that the trace be shortened and retried.
931  */
assembleInstructions(CompilationUnit * cUnit,intptr_t startAddr)932 static AssemblerStatus assembleInstructions(CompilationUnit *cUnit,
933                                             intptr_t startAddr)
934 {
935     short *bufferAddr = (short *) cUnit->codeBuffer;
936     ArmLIR *lir;
937 
938     for (lir = (ArmLIR *) cUnit->firstLIRInsn; lir; lir = NEXT_LIR(lir)) {
939         if (lir->opcode < 0) {
940             if ((lir->opcode == kArmPseudoPseudoAlign4) &&
941                 /* 1 means padding is needed */
942                 (lir->operands[0] == 1)) {
943                 *bufferAddr++ = PADDING_MOV_R5_R5;
944             }
945             continue;
946         }
947 
948         if (lir->flags.isNop) {
949             continue;
950         }
951 
952         if (lir->opcode == kThumbLdrPcRel ||
953             lir->opcode == kThumb2LdrPcRel12 ||
954             lir->opcode == kThumbAddPcRel ||
955             ((lir->opcode == kThumb2Vldrs) && (lir->operands[1] == r15pc))) {
956             ArmLIR *lirTarget = (ArmLIR *) lir->generic.target;
957             intptr_t pc = (lir->generic.offset + 4) & ~3;
958             intptr_t target = lirTarget->generic.offset;
959             int delta = target - pc;
960             if (delta & 0x3) {
961                 LOGE("PC-rel distance is not multiples of 4: %d", delta);
962                 dvmCompilerAbort(cUnit);
963             }
964             if ((lir->opcode == kThumb2LdrPcRel12) && (delta > 4091)) {
965                 if (cUnit->printMe) {
966                     LOGD("kThumb2LdrPcRel12@%x: delta=%d", lir->generic.offset,
967                          delta);
968                     dvmCompilerCodegenDump(cUnit);
969                 }
970                 return kRetryHalve;
971             } else if (delta > 1020) {
972                 if (cUnit->printMe) {
973                     LOGD("kThumbLdrPcRel@%x: delta=%d", lir->generic.offset,
974                          delta);
975                     dvmCompilerCodegenDump(cUnit);
976                 }
977                 return kRetryHalve;
978             }
979             if (lir->opcode == kThumb2Vldrs) {
980                 lir->operands[2] = delta >> 2;
981             } else {
982                 lir->operands[1] = (lir->opcode == kThumb2LdrPcRel12) ?
983                                     delta : delta >> 2;
984             }
985         } else if (lir->opcode == kThumb2Cbnz || lir->opcode == kThumb2Cbz) {
986             ArmLIR *targetLIR = (ArmLIR *) lir->generic.target;
987             intptr_t pc = lir->generic.offset + 4;
988             intptr_t target = targetLIR->generic.offset;
989             int delta = target - pc;
990             if (delta > 126 || delta < 0) {
991                 /* Convert to cmp rx,#0 / b[eq/ne] tgt pair */
992                 ArmLIR *newInst =
993                     (ArmLIR *)dvmCompilerNew(sizeof(ArmLIR), true);
994                 /* Make new branch instruction and insert after */
995                 newInst->opcode = kThumbBCond;
996                 newInst->operands[0] = 0;
997                 newInst->operands[1] = (lir->opcode == kThumb2Cbz) ?
998                                         kArmCondEq : kArmCondNe;
999                 newInst->generic.target = lir->generic.target;
1000                 dvmCompilerSetupResourceMasks(newInst);
1001                 dvmCompilerInsertLIRAfter((LIR *)lir, (LIR *)newInst);
1002                 /* Convert the cb[n]z to a cmp rx, #0 ] */
1003                 lir->opcode = kThumbCmpRI8;
1004                 /* operand[0] is src1 in both cb[n]z & CmpRI8 */
1005                 lir->operands[1] = 0;
1006                 lir->generic.target = 0;
1007                 dvmCompilerSetupResourceMasks(lir);
1008                 if (cUnit->printMe) {
1009                     LOGD("kThumb2Cbnz/kThumb2Cbz@%x: delta=%d",
1010                          lir->generic.offset, delta);
1011                     dvmCompilerCodegenDump(cUnit);
1012                 }
1013                 return kRetryAll;
1014             } else {
1015                 lir->operands[1] = delta >> 1;
1016             }
1017         } else if (lir->opcode == kThumbBCond ||
1018                    lir->opcode == kThumb2BCond) {
1019             ArmLIR *targetLIR = (ArmLIR *) lir->generic.target;
1020             intptr_t pc = lir->generic.offset + 4;
1021             intptr_t target = targetLIR->generic.offset;
1022             int delta = target - pc;
1023             if ((lir->opcode == kThumbBCond) && (delta > 254 || delta < -256)) {
1024                 if (cUnit->printMe) {
1025                     LOGD("kThumbBCond@%x: delta=%d", lir->generic.offset,
1026                          delta);
1027                     dvmCompilerCodegenDump(cUnit);
1028                 }
1029                 return kRetryHalve;
1030             }
1031             lir->operands[0] = delta >> 1;
1032         } else if (lir->opcode == kThumbBUncond) {
1033             ArmLIR *targetLIR = (ArmLIR *) lir->generic.target;
1034             intptr_t pc = lir->generic.offset + 4;
1035             intptr_t target = targetLIR->generic.offset;
1036             int delta = target - pc;
1037             if (delta > 2046 || delta < -2048) {
1038                 LOGE("Unconditional branch distance out of range: %d", delta);
1039                 dvmCompilerAbort(cUnit);
1040             }
1041             lir->operands[0] = delta >> 1;
1042         } else if (lir->opcode == kThumbBlx1) {
1043             assert(NEXT_LIR(lir)->opcode == kThumbBlx2);
1044             /* curPC is Thumb */
1045             intptr_t curPC = (startAddr + lir->generic.offset + 4) & ~3;
1046             intptr_t target = lir->operands[1];
1047 
1048             /* Match bit[1] in target with base */
1049             if (curPC & 0x2) {
1050                 target |= 0x2;
1051             }
1052             int delta = target - curPC;
1053             assert((delta >= -(1<<22)) && (delta <= ((1<<22)-2)));
1054 
1055             lir->operands[0] = (delta >> 12) & 0x7ff;
1056             NEXT_LIR(lir)->operands[0] = (delta>> 1) & 0x7ff;
1057         } else if (lir->opcode == kThumbBl1) {
1058             assert(NEXT_LIR(lir)->opcode == kThumbBl2);
1059             /* Both curPC and target are Thumb */
1060             intptr_t curPC = startAddr + lir->generic.offset + 4;
1061             intptr_t target = lir->operands[1];
1062 
1063             int delta = target - curPC;
1064             assert((delta >= -(1<<22)) && (delta <= ((1<<22)-2)));
1065 
1066             lir->operands[0] = (delta >> 12) & 0x7ff;
1067             NEXT_LIR(lir)->operands[0] = (delta>> 1) & 0x7ff;
1068         }
1069 
1070         ArmEncodingMap *encoder = &EncodingMap[lir->opcode];
1071         u4 bits = encoder->skeleton;
1072         int i;
1073         for (i = 0; i < 4; i++) {
1074             u4 operand;
1075             u4 value;
1076             operand = lir->operands[i];
1077             switch(encoder->fieldLoc[i].kind) {
1078                 case kFmtUnused:
1079                     break;
1080                 case kFmtFPImm:
1081                     value = ((operand & 0xF0) >> 4) << encoder->fieldLoc[i].end;
1082                     value |= (operand & 0x0F) << encoder->fieldLoc[i].start;
1083                     bits |= value;
1084                     break;
1085                 case kFmtBrOffset:
1086                     value = ((operand  & 0x80000) >> 19) << 26;
1087                     value |= ((operand & 0x40000) >> 18) << 11;
1088                     value |= ((operand & 0x20000) >> 17) << 13;
1089                     value |= ((operand & 0x1f800) >> 11) << 16;
1090                     value |= (operand  & 0x007ff);
1091                     bits |= value;
1092                     break;
1093                 case kFmtShift5:
1094                     value = ((operand & 0x1c) >> 2) << 12;
1095                     value |= (operand & 0x03) << 6;
1096                     bits |= value;
1097                     break;
1098                 case kFmtShift:
1099                     value = ((operand & 0x70) >> 4) << 12;
1100                     value |= (operand & 0x0f) << 4;
1101                     bits |= value;
1102                     break;
1103                 case kFmtBWidth:
1104                     value = operand - 1;
1105                     bits |= value;
1106                     break;
1107                 case kFmtLsb:
1108                     value = ((operand & 0x1c) >> 2) << 12;
1109                     value |= (operand & 0x03) << 6;
1110                     bits |= value;
1111                     break;
1112                 case kFmtImm6:
1113                     value = ((operand & 0x20) >> 5) << 9;
1114                     value |= (operand & 0x1f) << 3;
1115                     bits |= value;
1116                     break;
1117                 case kFmtBitBlt:
1118                     value = (operand << encoder->fieldLoc[i].start) &
1119                             ((1 << (encoder->fieldLoc[i].end + 1)) - 1);
1120                     bits |= value;
1121                     break;
1122                 case kFmtDfp: {
1123                     assert(DOUBLEREG(operand));
1124                     assert((operand & 0x1) == 0);
1125                     int regName = (operand & FP_REG_MASK) >> 1;
1126                     /* Snag the 1-bit slice and position it */
1127                     value = ((regName & 0x10) >> 4) <<
1128                             encoder->fieldLoc[i].end;
1129                     /* Extract and position the 4-bit slice */
1130                     value |= (regName & 0x0f) <<
1131                             encoder->fieldLoc[i].start;
1132                     bits |= value;
1133                     break;
1134                 }
1135                 case kFmtSfp:
1136                     assert(SINGLEREG(operand));
1137                     /* Snag the 1-bit slice and position it */
1138                     value = (operand & 0x1) <<
1139                             encoder->fieldLoc[i].end;
1140                     /* Extract and position the 4-bit slice */
1141                     value |= ((operand & 0x1e) >> 1) <<
1142                             encoder->fieldLoc[i].start;
1143                     bits |= value;
1144                     break;
1145                 case kFmtImm12:
1146                 case kFmtModImm:
1147                     value = ((operand & 0x800) >> 11) << 26;
1148                     value |= ((operand & 0x700) >> 8) << 12;
1149                     value |= operand & 0x0ff;
1150                     bits |= value;
1151                     break;
1152                 case kFmtImm16:
1153                     value = ((operand & 0x0800) >> 11) << 26;
1154                     value |= ((operand & 0xf000) >> 12) << 16;
1155                     value |= ((operand & 0x0700) >> 8) << 12;
1156                     value |= operand & 0x0ff;
1157                     bits |= value;
1158                     break;
1159                 default:
1160                     assert(0);
1161             }
1162         }
1163         if (encoder->size == 2) {
1164             *bufferAddr++ = (bits >> 16) & 0xffff;
1165         }
1166         *bufferAddr++ = bits & 0xffff;
1167     }
1168     return kSuccess;
1169 }
1170 
assignLiteralOffsetCommon(LIR * lir,int offset)1171 static int assignLiteralOffsetCommon(LIR *lir, int offset)
1172 {
1173     for (;lir != NULL; lir = lir->next) {
1174         lir->offset = offset;
1175         offset += 4;
1176     }
1177     return offset;
1178 }
1179 
1180 /* Determine the offset of each literal field */
assignLiteralOffset(CompilationUnit * cUnit,int offset)1181 static int assignLiteralOffset(CompilationUnit *cUnit, int offset)
1182 {
1183     /* Reserved for the size field of class pointer pool */
1184     offset += 4;
1185     offset = assignLiteralOffsetCommon(cUnit->classPointerList, offset);
1186     offset = assignLiteralOffsetCommon(cUnit->literalList, offset);
1187     return offset;
1188 }
1189 
1190 /*
1191  * Translation layout in the code cache.  Note that the codeAddress pointer
1192  * in JitTable will point directly to the code body (field codeAddress).  The
1193  * chain cell offset codeAddress - 2, and the address of the trace profile
1194  * counter is at codeAddress - 6.
1195  *
1196  *      +----------------------------+
1197  *      | Trace Profile Counter addr |  -> 4 bytes (PROF_COUNTER_ADDR_SIZE)
1198  *      +----------------------------+
1199  *   +--| Offset to chain cell counts|  -> 2 bytes (CHAIN_CELL_OFFSET_SIZE)
1200  *   |  +----------------------------+
1201  *   |  | Trace profile code         |  <- entry point when profiling
1202  *   |  .  -   -   -   -   -   -   - .
1203  *   |  | Code body                  |  <- entry point when not profiling
1204  *   |  .                            .
1205  *   |  |                            |
1206  *   |  +----------------------------+
1207  *   |  | Chaining Cells             |  -> 12/16 bytes, 4 byte aligned
1208  *   |  .                            .
1209  *   |  .                            .
1210  *   |  |                            |
1211  *   |  +----------------------------+
1212  *   |  | Gap for large switch stmt  |  -> # cases >= MAX_CHAINED_SWITCH_CASES
1213  *   |  +----------------------------+
1214  *   +->| Chaining cell counts       |  -> 8 bytes, chain cell counts by type
1215  *      +----------------------------+
1216  *      | Trace description          |  -> variable sized
1217  *      .                            .
1218  *      |                            |
1219  *      +----------------------------+
1220  *      | # Class pointer pool size  |  -> 4 bytes
1221  *      +----------------------------+
1222  *      | Class pointer pool         |  -> 4-byte aligned, variable size
1223  *      .                            .
1224  *      .                            .
1225  *      |                            |
1226  *      +----------------------------+
1227  *      | Literal pool               |  -> 4-byte aligned, variable size
1228  *      .                            .
1229  *      .                            .
1230  *      |                            |
1231  *      +----------------------------+
1232  *
1233  */
1234 
1235 #define PROF_COUNTER_ADDR_SIZE 4
1236 #define CHAIN_CELL_OFFSET_SIZE 2
1237 
1238 /*
1239  * Utility functions to navigate various parts in a trace. If we change the
1240  * layout/offset in the future, we just modify these functions and we don't need
1241  * to propagate the changes to all the use cases.
1242  */
getTraceBase(const JitEntry * p)1243 static inline char *getTraceBase(const JitEntry *p)
1244 {
1245     return (char*)p->codeAddress -
1246         (PROF_COUNTER_ADDR_SIZE + CHAIN_CELL_OFFSET_SIZE +
1247          (p->u.info.instructionSet == DALVIK_JIT_ARM ? 0 : 1));
1248 }
1249 
1250 /* Handy function to retrieve the profile count */
getProfileCount(const JitEntry * entry)1251 static inline JitTraceCounter_t getProfileCount(const JitEntry *entry)
1252 {
1253     if (entry->dPC == 0 || entry->codeAddress == 0 ||
1254         entry->codeAddress == dvmCompilerGetInterpretTemplate())
1255         return 0;
1256 
1257     JitTraceCounter_t **p = (JitTraceCounter_t **) getTraceBase(entry);
1258 
1259     return **p;
1260 }
1261 
1262 /* Handy function to reset the profile count */
resetProfileCount(const JitEntry * entry)1263 static inline void resetProfileCount(const JitEntry *entry)
1264 {
1265     if (entry->dPC == 0 || entry->codeAddress == 0 ||
1266         entry->codeAddress == dvmCompilerGetInterpretTemplate())
1267         return;
1268 
1269     JitTraceCounter_t **p = (JitTraceCounter_t **) getTraceBase(entry);
1270 
1271     **p = 0;
1272 }
1273 
1274 /* Get the pointer of the chain cell count */
getChainCellCountsPointer(const char * base)1275 static inline ChainCellCounts* getChainCellCountsPointer(const char *base)
1276 {
1277     /* 4 is the size of the profile count */
1278     u2 *chainCellOffsetP = (u2 *) (base + PROF_COUNTER_ADDR_SIZE);
1279     u2 chainCellOffset = *chainCellOffsetP;
1280     return (ChainCellCounts *) ((char *) chainCellOffsetP + chainCellOffset);
1281 }
1282 
1283 /* Get the size of all chaining cells */
getChainCellSize(const ChainCellCounts * pChainCellCounts)1284 static inline u4 getChainCellSize(const ChainCellCounts* pChainCellCounts)
1285 {
1286     int cellSize = 0;
1287     int i;
1288 
1289     /* Get total count of chain cells */
1290     for (i = 0; i < kChainingCellGap; i++) {
1291         if (i != kChainingCellInvokePredicted) {
1292             cellSize += pChainCellCounts->u.count[i] *
1293                         (CHAIN_CELL_NORMAL_SIZE >> 2);
1294         } else {
1295             cellSize += pChainCellCounts->u.count[i] *
1296                 (CHAIN_CELL_PREDICTED_SIZE >> 2);
1297         }
1298     }
1299     return cellSize;
1300 }
1301 
1302 /* Get the starting pointer of the trace description section */
getTraceDescriptionPointer(const char * base)1303 static JitTraceDescription* getTraceDescriptionPointer(const char *base)
1304 {
1305     ChainCellCounts* pCellCounts = getChainCellCountsPointer(base);
1306     return (JitTraceDescription*) ((char*)pCellCounts + sizeof(*pCellCounts));
1307 }
1308 
1309 /* Get the size of a trace description */
getTraceDescriptionSize(const JitTraceDescription * desc)1310 static int getTraceDescriptionSize(const JitTraceDescription *desc)
1311 {
1312     int runCount;
1313     /* Trace end is always of non-meta type (ie isCode == true) */
1314     for (runCount = 0; ; runCount++) {
1315         if (desc->trace[runCount].isCode &&
1316             desc->trace[runCount].info.frag.runEnd)
1317            break;
1318     }
1319     return sizeof(JitTraceDescription) + ((runCount+1) * sizeof(JitTraceRun));
1320 }
1321 
1322 #if defined(SIGNATURE_BREAKPOINT)
1323 /* Inspect the assembled instruction stream to find potential matches */
matchSignatureBreakpoint(const CompilationUnit * cUnit,unsigned int size)1324 static void matchSignatureBreakpoint(const CompilationUnit *cUnit,
1325                                      unsigned int size)
1326 {
1327     unsigned int i, j;
1328     u4 *ptr = (u4 *) cUnit->codeBuffer;
1329 
1330     for (i = 0; i < size - gDvmJit.signatureBreakpointSize + 1; i++) {
1331         if (ptr[i] == gDvmJit.signatureBreakpoint[0]) {
1332             for (j = 1; j < gDvmJit.signatureBreakpointSize; j++) {
1333                 if (ptr[i+j] != gDvmJit.signatureBreakpoint[j]) {
1334                     break;
1335                 }
1336             }
1337             if (j == gDvmJit.signatureBreakpointSize) {
1338                 LOGD("Signature match starting from offset %#x (%d words)",
1339                      i*4, gDvmJit.signatureBreakpointSize);
1340                 int descSize = getTraceDescriptionSize(cUnit->traceDesc);
1341                 JitTraceDescription *newCopy =
1342                     (JitTraceDescription *) malloc(descSize);
1343                 memcpy(newCopy, cUnit->traceDesc, descSize);
1344                 dvmCompilerWorkEnqueue(NULL, kWorkOrderTraceDebug, newCopy);
1345                 break;
1346             }
1347         }
1348     }
1349 }
1350 #endif
1351 
1352 /*
1353  * Go over each instruction in the list and calculate the offset from the top
1354  * before sending them off to the assembler. If out-of-range branch distance is
1355  * seen rearrange the instructions a bit to correct it.
1356  */
dvmCompilerAssembleLIR(CompilationUnit * cUnit,JitTranslationInfo * info)1357 void dvmCompilerAssembleLIR(CompilationUnit *cUnit, JitTranslationInfo *info)
1358 {
1359     ArmLIR *armLIR;
1360     int offset = 0;
1361     int i;
1362     ChainCellCounts chainCellCounts;
1363     int descSize = (cUnit->jitMode == kJitMethod) ?
1364         0 : getTraceDescriptionSize(cUnit->traceDesc);
1365     int chainingCellGap = 0;
1366 
1367     info->instructionSet = cUnit->instructionSet;
1368 
1369     /* Beginning offset needs to allow space for chain cell offset */
1370     for (armLIR = (ArmLIR *) cUnit->firstLIRInsn;
1371          armLIR;
1372          armLIR = NEXT_LIR(armLIR)) {
1373         armLIR->generic.offset = offset;
1374         if (armLIR->opcode >= 0 && !armLIR->flags.isNop) {
1375             armLIR->flags.size = EncodingMap[armLIR->opcode].size * 2;
1376             offset += armLIR->flags.size;
1377         } else if (armLIR->opcode == kArmPseudoPseudoAlign4) {
1378             if (offset & 0x2) {
1379                 offset += 2;
1380                 armLIR->operands[0] = 1;
1381             } else {
1382                 armLIR->operands[0] = 0;
1383             }
1384         }
1385         /* Pseudo opcodes don't consume space */
1386     }
1387 
1388     /* Const values have to be word aligned */
1389     offset = (offset + 3) & ~3;
1390 
1391     u4 chainCellOffset = offset;
1392     ArmLIR *chainCellOffsetLIR = NULL;
1393 
1394     if (cUnit->jitMode != kJitMethod) {
1395         /*
1396          * Get the gap (# of u4) between the offset of chaining cell count and
1397          * the bottom of real chaining cells. If the translation has chaining
1398          * cells, the gap is guaranteed to be multiples of 4.
1399          */
1400         chainingCellGap = (offset - cUnit->chainingCellBottom->offset) >> 2;
1401 
1402         /* Add space for chain cell counts & trace description */
1403         chainCellOffsetLIR = (ArmLIR *) cUnit->chainCellOffsetLIR;
1404         assert(chainCellOffsetLIR);
1405         assert(chainCellOffset < 0x10000);
1406         assert(chainCellOffsetLIR->opcode == kArm16BitData &&
1407                chainCellOffsetLIR->operands[0] == CHAIN_CELL_OFFSET_TAG);
1408 
1409         /*
1410          * Adjust the CHAIN_CELL_OFFSET_TAG LIR's offset to remove the
1411          * space occupied by the pointer to the trace profiling counter.
1412          */
1413         chainCellOffsetLIR->operands[0] = chainCellOffset - 4;
1414 
1415         offset += sizeof(chainCellCounts) + descSize;
1416 
1417         assert((offset & 0x3) == 0);  /* Should still be word aligned */
1418     }
1419 
1420     /* Set up offsets for literals */
1421     cUnit->dataOffset = offset;
1422 
1423     /*
1424      * Assign each class pointer/constant an offset from the beginning of the
1425      * compilation unit.
1426      */
1427     offset = assignLiteralOffset(cUnit, offset);
1428 
1429     cUnit->totalSize = offset;
1430 
1431     if (gDvmJit.codeCacheByteUsed + cUnit->totalSize > gDvmJit.codeCacheSize) {
1432         gDvmJit.codeCacheFull = true;
1433         info->discardResult = true;
1434         return;
1435     }
1436 
1437     /* Allocate enough space for the code block */
1438     cUnit->codeBuffer = (unsigned char *)dvmCompilerNew(chainCellOffset, true);
1439     if (cUnit->codeBuffer == NULL) {
1440         LOGE("Code buffer allocation failure");
1441         info->discardResult = true;
1442         return;
1443     }
1444 
1445     /*
1446      * Attempt to assemble the trace.  Note that assembleInstructions
1447      * may rewrite the code sequence and request a retry.
1448      */
1449     cUnit->assemblerStatus = assembleInstructions(cUnit,
1450           (intptr_t) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed);
1451 
1452     switch(cUnit->assemblerStatus) {
1453         case kSuccess:
1454             break;
1455         case kRetryAll:
1456             if (cUnit->assemblerRetries < MAX_ASSEMBLER_RETRIES) {
1457                 if (cUnit->jitMode != kJitMethod) {
1458                     /* Restore pristine chain cell marker on retry */
1459                     chainCellOffsetLIR->operands[0] = CHAIN_CELL_OFFSET_TAG;
1460                 }
1461                 return;
1462             }
1463             /* Too many retries - reset and try cutting the trace in half */
1464             cUnit->assemblerRetries = 0;
1465             cUnit->assemblerStatus = kRetryHalve;
1466             return;
1467         case kRetryHalve:
1468             return;
1469         default:
1470              LOGE("Unexpected assembler status: %d", cUnit->assemblerStatus);
1471              dvmAbort();
1472     }
1473 
1474 #if defined(SIGNATURE_BREAKPOINT)
1475     if (info->discardResult == false && gDvmJit.signatureBreakpoint != NULL &&
1476         chainCellOffset/4 >= gDvmJit.signatureBreakpointSize) {
1477         matchSignatureBreakpoint(cUnit, chainCellOffset/4);
1478     }
1479 #endif
1480 
1481     /* Don't go all the way if the goal is just to get the verbose output */
1482     if (info->discardResult) return;
1483 
1484     /*
1485      * The cache might disappear - acquire lock and check version
1486      * Continue holding lock until translation cache update is complete.
1487      * These actions are required here in the compiler thread because
1488      * it is unaffected by suspend requests and doesn't know if a
1489      * translation cache flush is in progress.
1490      */
1491     dvmLockMutex(&gDvmJit.compilerLock);
1492     if (info->cacheVersion != gDvmJit.cacheVersion) {
1493         /* Cache changed - discard current translation */
1494         info->discardResult = true;
1495         info->codeAddress = NULL;
1496         dvmUnlockMutex(&gDvmJit.compilerLock);
1497         return;
1498     }
1499 
1500     cUnit->baseAddr = (char *) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed;
1501     gDvmJit.codeCacheByteUsed += offset;
1502 
1503     UNPROTECT_CODE_CACHE(cUnit->baseAddr, offset);
1504 
1505     /* Install the code block */
1506     memcpy((char*)cUnit->baseAddr, cUnit->codeBuffer, chainCellOffset);
1507     gDvmJit.numCompilations++;
1508 
1509     if (cUnit->jitMode != kJitMethod) {
1510         /* Install the chaining cell counts */
1511         for (i=0; i< kChainingCellGap; i++) {
1512             chainCellCounts.u.count[i] = cUnit->numChainingCells[i];
1513         }
1514 
1515         /* Set the gap number in the chaining cell count structure */
1516         chainCellCounts.u.count[kChainingCellGap] = chainingCellGap;
1517 
1518         memcpy((char*)cUnit->baseAddr + chainCellOffset, &chainCellCounts,
1519                sizeof(chainCellCounts));
1520 
1521         /* Install the trace description */
1522         memcpy((char*) cUnit->baseAddr + chainCellOffset +
1523                        sizeof(chainCellCounts),
1524                cUnit->traceDesc, descSize);
1525     }
1526 
1527     /* Write the literals directly into the code cache */
1528     installLiteralPools(cUnit);
1529 
1530     /* Flush dcache and invalidate the icache to maintain coherence */
1531     dvmCompilerCacheFlush((long)cUnit->baseAddr,
1532                           (long)((char *) cUnit->baseAddr + offset), 0);
1533     UPDATE_CODE_CACHE_PATCHES();
1534 
1535     PROTECT_CODE_CACHE(cUnit->baseAddr, offset);
1536 
1537     /* Translation cache update complete - release lock */
1538     dvmUnlockMutex(&gDvmJit.compilerLock);
1539 
1540     /* Record code entry point and instruction set */
1541     info->codeAddress = (char*)cUnit->baseAddr + cUnit->headerSize;
1542     /* If applicable, mark low bit to denote thumb */
1543     if (info->instructionSet != DALVIK_JIT_ARM)
1544         info->codeAddress = (char*)info->codeAddress + 1;
1545     /* transfer the size of the profiling code */
1546     info->profileCodeSize = cUnit->profileCodeSize;
1547 }
1548 
1549 /*
1550  * Returns the skeleton bit pattern associated with an opcode.  All
1551  * variable fields are zeroed.
1552  */
getSkeleton(ArmOpcode op)1553 static u4 getSkeleton(ArmOpcode op)
1554 {
1555     return EncodingMap[op].skeleton;
1556 }
1557 
assembleChainingBranch(int branchOffset,bool thumbTarget)1558 static u4 assembleChainingBranch(int branchOffset, bool thumbTarget)
1559 {
1560     u4 thumb1, thumb2;
1561 
1562     if (!thumbTarget) {
1563         thumb1 =  (getSkeleton(kThumbBlx1) | ((branchOffset>>12) & 0x7ff));
1564         thumb2 =  (getSkeleton(kThumbBlx2) | ((branchOffset>> 1) & 0x7ff));
1565     } else if ((branchOffset < -2048) | (branchOffset > 2046)) {
1566         thumb1 =  (getSkeleton(kThumbBl1) | ((branchOffset>>12) & 0x7ff));
1567         thumb2 =  (getSkeleton(kThumbBl2) | ((branchOffset>> 1) & 0x7ff));
1568     } else {
1569         thumb1 =  (getSkeleton(kThumbBUncond) | ((branchOffset>> 1) & 0x7ff));
1570         thumb2 =  getSkeleton(kThumbOrr);  /* nop -> or r0, r0 */
1571     }
1572 
1573     return thumb2<<16 | thumb1;
1574 }
1575 
1576 /*
1577  * Perform translation chain operation.
1578  * For ARM, we'll use a pair of thumb instructions to generate
1579  * an unconditional chaining branch of up to 4MB in distance.
1580  * Use a BL, because the generic "interpret" translation needs
1581  * the link register to find the dalvik pc of teh target.
1582  *     111HHooooooooooo
1583  * Where HH is 10 for the 1st inst, and 11 for the second and
1584  * the "o" field is each instruction's 11-bit contribution to the
1585  * 22-bit branch offset.
1586  * If the target is nearby, use a single-instruction bl.
1587  * If one or more threads is suspended, don't chain.
1588  */
dvmJitChain(void * tgtAddr,u4 * branchAddr)1589 void* dvmJitChain(void* tgtAddr, u4* branchAddr)
1590 {
1591     int baseAddr = (u4) branchAddr + 4;
1592     int branchOffset = (int) tgtAddr - baseAddr;
1593     u4 newInst;
1594     bool thumbTarget;
1595 
1596     /*
1597      * Only chain translations when there is no urge to ask all threads to
1598      * suspend themselves via the interpreter.
1599      */
1600     if ((gDvmJit.pProfTable != NULL) && (gDvm.sumThreadSuspendCount == 0) &&
1601         (gDvmJit.codeCacheFull == false)) {
1602         assert((branchOffset >= -(1<<22)) && (branchOffset <= ((1<<22)-2)));
1603 
1604         gDvmJit.translationChains++;
1605 
1606         COMPILER_TRACE_CHAINING(
1607             LOGD("Jit Runtime: chaining %#x to %#x",
1608                  (int) branchAddr, (int) tgtAddr & -2));
1609 
1610         /*
1611          * NOTE: normally, all translations are Thumb[2] mode, with
1612          * a single exception: the default TEMPLATE_INTERPRET
1613          * pseudo-translation.  If the need ever arises to
1614          * mix Arm & Thumb[2] translations, the following code should be
1615          * generalized.
1616          */
1617         thumbTarget = (tgtAddr != dvmCompilerGetInterpretTemplate());
1618 
1619         newInst = assembleChainingBranch(branchOffset, thumbTarget);
1620 
1621         /*
1622          * The second half-word instruction of the chaining cell must
1623          * either be a nop (which represents initial state), or is the
1624          * same exact branch halfword that we are trying to install.
1625          */
1626         assert( ((*branchAddr >> 16) == getSkeleton(kThumbOrr)) ||
1627                 ((*branchAddr >> 16) == (newInst >> 16)));
1628 
1629         UNPROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr));
1630 
1631         *branchAddr = newInst;
1632         dvmCompilerCacheFlush((long)branchAddr, (long)branchAddr + 4, 0);
1633         UPDATE_CODE_CACHE_PATCHES();
1634 
1635         PROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr));
1636 
1637         gDvmJit.hasNewChain = true;
1638     }
1639 
1640     return tgtAddr;
1641 }
1642 
1643 #if !defined(WITH_SELF_VERIFICATION)
1644 /*
1645  * Attempt to enqueue a work order to patch an inline cache for a predicted
1646  * chaining cell for virtual/interface calls.
1647  */
inlineCachePatchEnqueue(PredictedChainingCell * cellAddr,PredictedChainingCell * newContent)1648 static void inlineCachePatchEnqueue(PredictedChainingCell *cellAddr,
1649                                     PredictedChainingCell *newContent)
1650 {
1651     /*
1652      * Make sure only one thread gets here since updating the cell (ie fast
1653      * path and queueing the request (ie the queued path) have to be done
1654      * in an atomic fashion.
1655      */
1656     dvmLockMutex(&gDvmJit.compilerICPatchLock);
1657 
1658     /* Fast path for uninitialized chaining cell */
1659     if (cellAddr->clazz == NULL &&
1660         cellAddr->branch == PREDICTED_CHAIN_BX_PAIR_INIT) {
1661 
1662         UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
1663 
1664         cellAddr->method = newContent->method;
1665         cellAddr->branch = newContent->branch;
1666         /*
1667          * The update order matters - make sure clazz is updated last since it
1668          * will bring the uninitialized chaining cell to life.
1669          */
1670         android_atomic_release_store((int32_t)newContent->clazz,
1671             (volatile int32_t *)(void *)&cellAddr->clazz);
1672         dvmCompilerCacheFlush((intptr_t) cellAddr, (intptr_t) (cellAddr+1), 0);
1673         UPDATE_CODE_CACHE_PATCHES();
1674 
1675         PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
1676 
1677 #if defined(WITH_JIT_TUNING)
1678         gDvmJit.icPatchInit++;
1679 #endif
1680     /* Check if this is a frequently missed clazz */
1681     } else if (cellAddr->stagedClazz != newContent->clazz) {
1682         /* Not proven to be frequent yet - build up the filter cache */
1683         UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
1684 
1685         cellAddr->stagedClazz = newContent->clazz;
1686 
1687         UPDATE_CODE_CACHE_PATCHES();
1688         PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
1689 
1690 #if defined(WITH_JIT_TUNING)
1691         gDvmJit.icPatchRejected++;
1692 #endif
1693     /*
1694      * Different classes but same method implementation - it is safe to just
1695      * patch the class value without the need to stop the world.
1696      */
1697     } else if (cellAddr->method == newContent->method) {
1698         UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
1699 
1700         cellAddr->clazz = newContent->clazz;
1701         /* No need to flush the cache here since the branch is not patched */
1702         UPDATE_CODE_CACHE_PATCHES();
1703 
1704         PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
1705 
1706 #if defined(WITH_JIT_TUNING)
1707         gDvmJit.icPatchLockFree++;
1708 #endif
1709     /*
1710      * Cannot patch the chaining cell inline - queue it until the next safe
1711      * point.
1712      */
1713     } else if (gDvmJit.compilerICPatchIndex < COMPILER_IC_PATCH_QUEUE_SIZE) {
1714         int index = gDvmJit.compilerICPatchIndex++;
1715         const ClassObject *clazz = newContent->clazz;
1716 
1717         gDvmJit.compilerICPatchQueue[index].cellAddr = cellAddr;
1718         gDvmJit.compilerICPatchQueue[index].cellContent = *newContent;
1719         gDvmJit.compilerICPatchQueue[index].classDescriptor = clazz->descriptor;
1720         gDvmJit.compilerICPatchQueue[index].classLoader = clazz->classLoader;
1721         /* For verification purpose only */
1722         gDvmJit.compilerICPatchQueue[index].serialNumber = clazz->serialNumber;
1723 #if defined(WITH_JIT_TUNING)
1724         gDvmJit.icPatchQueued++;
1725 #endif
1726     } else {
1727     /* Queue is full - just drop this patch request */
1728 #if defined(WITH_JIT_TUNING)
1729         gDvmJit.icPatchDropped++;
1730 #endif
1731     }
1732 
1733     dvmUnlockMutex(&gDvmJit.compilerICPatchLock);
1734 }
1735 #endif
1736 
1737 /*
1738  * This method is called from the invoke templates for virtual and interface
1739  * methods to speculatively setup a chain to the callee. The templates are
1740  * written in assembly and have setup method, cell, and clazz at r0, r2, and
1741  * r3 respectively, so there is a unused argument in the list. Upon return one
1742  * of the following three results may happen:
1743  *   1) Chain is not setup because the callee is native. Reset the rechain
1744  *      count to a big number so that it will take a long time before the next
1745  *      rechain attempt to happen.
1746  *   2) Chain is not setup because the callee has not been created yet. Reset
1747  *      the rechain count to a small number and retry in the near future.
1748  *   3) Enqueue the new content for the chaining cell which will be appled in
1749  *      next safe point.
1750  */
dvmJitToPatchPredictedChain(const Method * method,Thread * self,PredictedChainingCell * cell,const ClassObject * clazz)1751 const Method *dvmJitToPatchPredictedChain(const Method *method,
1752                                           Thread *self,
1753                                           PredictedChainingCell *cell,
1754                                           const ClassObject *clazz)
1755 {
1756     int newRechainCount = PREDICTED_CHAIN_COUNTER_RECHAIN;
1757 #if defined(WITH_SELF_VERIFICATION)
1758     newRechainCount = PREDICTED_CHAIN_COUNTER_AVOID;
1759     goto done;
1760 #else
1761     PredictedChainingCell newCell;
1762     int baseAddr, branchOffset, tgtAddr;
1763     if (dvmIsNativeMethod(method)) {
1764         UNPROTECT_CODE_CACHE(cell, sizeof(*cell));
1765 
1766         /*
1767          * Put a non-zero/bogus value in the clazz field so that it won't
1768          * trigger immediate patching and will continue to fail to match with
1769          * a real clazz pointer.
1770          */
1771         cell->clazz = (ClassObject *) PREDICTED_CHAIN_FAKE_CLAZZ;
1772 
1773         UPDATE_CODE_CACHE_PATCHES();
1774         PROTECT_CODE_CACHE(cell, sizeof(*cell));
1775         goto done;
1776     }
1777     tgtAddr = (int) dvmJitGetTraceAddr(method->insns);
1778 
1779     /*
1780      * Compilation not made yet for the callee. Reset the counter to a small
1781      * value and come back to check soon.
1782      */
1783     if ((tgtAddr == 0) ||
1784         ((void*)tgtAddr == dvmCompilerGetInterpretTemplate())) {
1785         COMPILER_TRACE_CHAINING(
1786             LOGD("Jit Runtime: predicted chain %p to method %s%s delayed",
1787                  cell, method->clazz->descriptor, method->name));
1788         goto done;
1789     }
1790 
1791     if (cell->clazz == NULL) {
1792         newRechainCount = self->icRechainCount;
1793     }
1794 
1795     baseAddr = (int) cell + 4;   // PC is cur_addr + 4
1796     branchOffset = tgtAddr - baseAddr;
1797 
1798     newCell.branch = assembleChainingBranch(branchOffset, true);
1799     newCell.clazz = clazz;
1800     newCell.method = method;
1801     newCell.stagedClazz = NULL;
1802 
1803     /*
1804      * Enter the work order to the queue and the chaining cell will be patched
1805      * the next time a safe point is entered.
1806      *
1807      * If the enqueuing fails reset the rechain count to a normal value so that
1808      * it won't get indefinitely delayed.
1809      */
1810     inlineCachePatchEnqueue(cell, &newCell);
1811 #endif
1812 done:
1813     self->icRechainCount = newRechainCount;
1814     return method;
1815 }
1816 
1817 /*
1818  * Patch the inline cache content based on the content passed from the work
1819  * order.
1820  */
dvmCompilerPatchInlineCache(void)1821 void dvmCompilerPatchInlineCache(void)
1822 {
1823     int i;
1824     PredictedChainingCell *minAddr, *maxAddr;
1825 
1826     /* Nothing to be done */
1827     if (gDvmJit.compilerICPatchIndex == 0) return;
1828 
1829     /*
1830      * Since all threads are already stopped we don't really need to acquire
1831      * the lock. But race condition can be easily introduced in the future w/o
1832      * paying attention so we still acquire the lock here.
1833      */
1834     dvmLockMutex(&gDvmJit.compilerICPatchLock);
1835 
1836     UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
1837 
1838     //LOGD("Number of IC patch work orders: %d", gDvmJit.compilerICPatchIndex);
1839 
1840     /* Initialize the min/max address range */
1841     minAddr = (PredictedChainingCell *)
1842         ((char *) gDvmJit.codeCache + gDvmJit.codeCacheSize);
1843     maxAddr = (PredictedChainingCell *) gDvmJit.codeCache;
1844 
1845     for (i = 0; i < gDvmJit.compilerICPatchIndex; i++) {
1846         ICPatchWorkOrder *workOrder = &gDvmJit.compilerICPatchQueue[i];
1847         PredictedChainingCell *cellAddr = workOrder->cellAddr;
1848         PredictedChainingCell *cellContent = &workOrder->cellContent;
1849         ClassObject *clazz = dvmFindClassNoInit(workOrder->classDescriptor,
1850                                                 workOrder->classLoader);
1851 
1852         assert(clazz->serialNumber == workOrder->serialNumber);
1853 
1854         /* Use the newly resolved clazz pointer */
1855         cellContent->clazz = clazz;
1856 
1857         COMPILER_TRACE_CHAINING(
1858             LOGD("Jit Runtime: predicted chain %p from %s to %s (%s) "
1859                  "patched",
1860                  cellAddr,
1861                  cellAddr->clazz->descriptor,
1862                  cellContent->clazz->descriptor,
1863                  cellContent->method->name));
1864 
1865         /* Patch the chaining cell */
1866         *cellAddr = *cellContent;
1867         minAddr = (cellAddr < minAddr) ? cellAddr : minAddr;
1868         maxAddr = (cellAddr > maxAddr) ? cellAddr : maxAddr;
1869     }
1870 
1871     /* Then synchronize the I/D cache */
1872     dvmCompilerCacheFlush((long) minAddr, (long) (maxAddr+1), 0);
1873     UPDATE_CODE_CACHE_PATCHES();
1874 
1875     PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
1876 
1877     gDvmJit.compilerICPatchIndex = 0;
1878     dvmUnlockMutex(&gDvmJit.compilerICPatchLock);
1879 }
1880 
1881 /*
1882  * Unchain a trace given the starting address of the translation
1883  * in the code cache.  Refer to the diagram in dvmCompilerAssembleLIR.
1884  * Returns the address following the last cell unchained.  Note that
1885  * the incoming codeAddr is a thumb code address, and therefore has
1886  * the low bit set.
1887  */
unchainSingle(JitEntry * trace)1888 static u4* unchainSingle(JitEntry *trace)
1889 {
1890     const char *base = getTraceBase(trace);
1891     ChainCellCounts *pChainCellCounts = getChainCellCountsPointer(base);
1892     int cellSize = getChainCellSize(pChainCellCounts);
1893     u4* pChainCells;
1894     u4 newInst;
1895     int i,j;
1896     PredictedChainingCell *predChainCell;
1897 
1898     if (cellSize == 0)
1899         return (u4 *) pChainCellCounts;
1900 
1901     /* Locate the beginning of the chain cell region */
1902     pChainCells = ((u4 *) pChainCellCounts) - cellSize -
1903                   pChainCellCounts->u.count[kChainingCellGap];
1904 
1905     /* The cells are sorted in order - walk through them and reset */
1906     for (i = 0; i < kChainingCellGap; i++) {
1907         int elemSize = CHAIN_CELL_NORMAL_SIZE >> 2;  /* In 32-bit words */
1908         if (i == kChainingCellInvokePredicted) {
1909             elemSize = CHAIN_CELL_PREDICTED_SIZE >> 2;
1910         }
1911 
1912         for (j = 0; j < pChainCellCounts->u.count[i]; j++) {
1913             switch(i) {
1914                 case kChainingCellNormal:
1915                 case kChainingCellHot:
1916                 case kChainingCellInvokeSingleton:
1917                 case kChainingCellBackwardBranch:
1918                     /*
1919                      * Replace the 1st half-word of the cell with an
1920                      * unconditional branch, leaving the 2nd half-word
1921                      * untouched.  This avoids problems with a thread
1922                      * that is suspended between the two halves when
1923                      * this unchaining takes place.
1924                      */
1925                     newInst = *pChainCells;
1926                     newInst &= 0xFFFF0000;
1927                     newInst |= getSkeleton(kThumbBUncond); /* b offset is 0 */
1928                     *pChainCells = newInst;
1929                     break;
1930                 case kChainingCellInvokePredicted:
1931                     predChainCell = (PredictedChainingCell *) pChainCells;
1932                     /*
1933                      * There could be a race on another mutator thread to use
1934                      * this particular predicted cell and the check has passed
1935                      * the clazz comparison. So we cannot safely wipe the
1936                      * method and branch but it is safe to clear the clazz,
1937                      * which serves as the key.
1938                      */
1939                     predChainCell->clazz = PREDICTED_CHAIN_CLAZZ_INIT;
1940                     break;
1941                 default:
1942                     LOGE("Unexpected chaining type: %d", i);
1943                     dvmAbort();  // dvmAbort OK here - can't safely recover
1944             }
1945             COMPILER_TRACE_CHAINING(
1946                 LOGD("Jit Runtime: unchaining %#x", (int)pChainCells));
1947             pChainCells += elemSize;  /* Advance by a fixed number of words */
1948         }
1949     }
1950     return pChainCells;
1951 }
1952 
1953 /* Unchain all translation in the cache. */
dvmJitUnchainAll()1954 void dvmJitUnchainAll()
1955 {
1956     u4* lowAddress = NULL;
1957     u4* highAddress = NULL;
1958     unsigned int i;
1959     if (gDvmJit.pJitEntryTable != NULL) {
1960         COMPILER_TRACE_CHAINING(LOGD("Jit Runtime: unchaining all"));
1961         dvmLockMutex(&gDvmJit.tableLock);
1962 
1963         UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
1964 
1965         for (i = 0; i < gDvmJit.jitTableSize; i++) {
1966             if (gDvmJit.pJitEntryTable[i].dPC &&
1967                 !gDvmJit.pJitEntryTable[i].u.info.isMethodEntry &&
1968                 gDvmJit.pJitEntryTable[i].codeAddress &&
1969                 (gDvmJit.pJitEntryTable[i].codeAddress !=
1970                  dvmCompilerGetInterpretTemplate())) {
1971                 u4* lastAddress;
1972                 lastAddress = unchainSingle(&gDvmJit.pJitEntryTable[i]);
1973                 if (lowAddress == NULL ||
1974                       (u4*)gDvmJit.pJitEntryTable[i].codeAddress <
1975                       lowAddress)
1976                     lowAddress = lastAddress;
1977                 if (lastAddress > highAddress)
1978                     highAddress = lastAddress;
1979             }
1980         }
1981         dvmCompilerCacheFlush((long)lowAddress, (long)highAddress, 0);
1982         UPDATE_CODE_CACHE_PATCHES();
1983 
1984         PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
1985 
1986         dvmUnlockMutex(&gDvmJit.tableLock);
1987         gDvmJit.translationChains = 0;
1988     }
1989     gDvmJit.hasNewChain = false;
1990 }
1991 
1992 typedef struct jitProfileAddrToLine {
1993     u4 lineNum;
1994     u4 bytecodeOffset;
1995 } jitProfileAddrToLine;
1996 
1997 
1998 /* Callback function to track the bytecode offset/line number relationiship */
addrToLineCb(void * cnxt,u4 bytecodeOffset,u4 lineNum)1999 static int addrToLineCb (void *cnxt, u4 bytecodeOffset, u4 lineNum)
2000 {
2001     jitProfileAddrToLine *addrToLine = (jitProfileAddrToLine *) cnxt;
2002 
2003     /* Best match so far for this offset */
2004     if (addrToLine->bytecodeOffset >= bytecodeOffset) {
2005         addrToLine->lineNum = lineNum;
2006     }
2007     return 0;
2008 }
2009 
2010 /* Dumps profile info for a single trace */
dumpTraceProfile(JitEntry * p,bool silent,bool reset,unsigned long sum)2011 static int dumpTraceProfile(JitEntry *p, bool silent, bool reset,
2012                             unsigned long sum)
2013 {
2014     int idx;
2015 
2016     if (p->codeAddress == NULL) {
2017         if (!silent)
2018             LOGD("TRACEPROFILE NULL");
2019         return 0;
2020     }
2021     if (p->codeAddress == dvmCompilerGetInterpretTemplate()) {
2022         if (!silent)
2023             LOGD("TRACEPROFILE INTERPRET_ONLY");
2024         return 0;
2025     }
2026     JitTraceCounter_t count = getProfileCount(p);
2027     if (reset) {
2028         resetProfileCount(p);
2029     }
2030     if (silent) {
2031         return count;
2032     }
2033     JitTraceDescription *desc = getTraceDescriptionPointer(getTraceBase(p));
2034     const Method *method = desc->method;
2035     char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype);
2036     jitProfileAddrToLine addrToLine = {0, desc->trace[0].info.frag.startOffset};
2037 
2038     /*
2039      * We may end up decoding the debug information for the same method
2040      * multiple times, but the tradeoff is we don't need to allocate extra
2041      * space to store the addr/line mapping. Since this is a debugging feature
2042      * and done infrequently so the slower but simpler mechanism should work
2043      * just fine.
2044      */
2045     dexDecodeDebugInfo(method->clazz->pDvmDex->pDexFile,
2046                        dvmGetMethodCode(method),
2047                        method->clazz->descriptor,
2048                        method->prototype.protoIdx,
2049                        method->accessFlags,
2050                        addrToLineCb, NULL, &addrToLine);
2051 
2052     LOGD("TRACEPROFILE 0x%08x % 10d %5.2f%% [%#x(+%d), %d] %s%s;%s",
2053          (int) getTraceBase(p),
2054          count,
2055          ((float ) count) / sum * 100.0,
2056          desc->trace[0].info.frag.startOffset,
2057          desc->trace[0].info.frag.numInsts,
2058          addrToLine.lineNum,
2059          method->clazz->descriptor, method->name, methodDesc);
2060     free(methodDesc);
2061 
2062     /* Find the last fragment (ie runEnd is set) */
2063     for (idx = 0;
2064          desc->trace[idx].isCode && !desc->trace[idx].info.frag.runEnd;
2065          idx++) {
2066     }
2067 
2068     /*
2069      * runEnd must comes with a JitCodeDesc frag. If isCode is false it must
2070      * be a meta info field (only used by callsite info for now).
2071      */
2072     if (!desc->trace[idx].isCode) {
2073         const Method *method = (const Method *)
2074             desc->trace[idx+JIT_TRACE_CUR_METHOD-1].info.meta;
2075         char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype);
2076         /* Print the callee info in the trace */
2077         LOGD("    -> %s%s;%s", method->clazz->descriptor, method->name,
2078              methodDesc);
2079     }
2080 
2081     return count;
2082 }
2083 
2084 /* Create a copy of the trace descriptor of an existing compilation */
dvmCopyTraceDescriptor(const u2 * pc,const JitEntry * knownEntry)2085 JitTraceDescription *dvmCopyTraceDescriptor(const u2 *pc,
2086                                             const JitEntry *knownEntry)
2087 {
2088     const JitEntry *jitEntry = knownEntry ? knownEntry
2089                                           : dvmJitFindEntry(pc, false);
2090     if ((jitEntry == NULL) || (jitEntry->codeAddress == 0))
2091         return NULL;
2092 
2093     JitTraceDescription *desc =
2094         getTraceDescriptionPointer(getTraceBase(jitEntry));
2095 
2096     /* Now make a copy and return */
2097     int descSize = getTraceDescriptionSize(desc);
2098     JitTraceDescription *newCopy = (JitTraceDescription *) malloc(descSize);
2099     memcpy(newCopy, desc, descSize);
2100     return newCopy;
2101 }
2102 
2103 /* qsort callback function */
sortTraceProfileCount(const void * entry1,const void * entry2)2104 static int sortTraceProfileCount(const void *entry1, const void *entry2)
2105 {
2106     const JitEntry *jitEntry1 = (const JitEntry *)entry1;
2107     const JitEntry *jitEntry2 = (const JitEntry *)entry2;
2108 
2109     JitTraceCounter_t count1 = getProfileCount(jitEntry1);
2110     JitTraceCounter_t count2 = getProfileCount(jitEntry2);
2111     return (count1 == count2) ? 0 : ((count1 > count2) ? -1 : 1);
2112 }
2113 
2114 /* Sort the trace profile counts and dump them */
dvmCompilerSortAndPrintTraceProfiles()2115 void dvmCompilerSortAndPrintTraceProfiles()
2116 {
2117     JitEntry *sortedEntries;
2118     int numTraces = 0;
2119     unsigned long sum = 0;
2120     unsigned int i;
2121 
2122     /* Make sure that the table is not changing */
2123     dvmLockMutex(&gDvmJit.tableLock);
2124 
2125     /* Sort the entries by descending order */
2126     sortedEntries = (JitEntry *)malloc(sizeof(JitEntry) * gDvmJit.jitTableSize);
2127     if (sortedEntries == NULL)
2128         goto done;
2129     memcpy(sortedEntries, gDvmJit.pJitEntryTable,
2130            sizeof(JitEntry) * gDvmJit.jitTableSize);
2131     qsort(sortedEntries, gDvmJit.jitTableSize, sizeof(JitEntry),
2132           sortTraceProfileCount);
2133 
2134     /* Analyze the sorted entries */
2135     for (i=0; i < gDvmJit.jitTableSize; i++) {
2136         if (sortedEntries[i].dPC != 0) {
2137             sum += dumpTraceProfile(&sortedEntries[i],
2138                                        true /* silent */,
2139                                        false /* reset */,
2140                                        0);
2141             numTraces++;
2142         }
2143     }
2144     if (numTraces == 0)
2145         numTraces = 1;
2146     if (sum == 0) {
2147         sum = 1;
2148     }
2149 
2150     LOGD("JIT: Average execution count -> %d",(int)(sum / numTraces));
2151 
2152     /* Dump the sorted entries. The count of each trace will be reset to 0. */
2153     for (i=0; i < gDvmJit.jitTableSize; i++) {
2154         if (sortedEntries[i].dPC != 0) {
2155             dumpTraceProfile(&sortedEntries[i],
2156                              false /* silent */,
2157                              true /* reset */,
2158                              sum);
2159         }
2160     }
2161 
2162     for (i=0; i < gDvmJit.jitTableSize && i < 10; i++) {
2163         /* Stip interpreter stubs */
2164         if (sortedEntries[i].codeAddress == dvmCompilerGetInterpretTemplate()) {
2165             continue;
2166         }
2167         JitTraceDescription* desc =
2168             dvmCopyTraceDescriptor(NULL, &sortedEntries[i]);
2169         if (desc) {
2170             dvmCompilerWorkEnqueue(sortedEntries[i].dPC,
2171                                    kWorkOrderTraceDebug, desc);
2172         }
2173     }
2174 
2175     free(sortedEntries);
2176 done:
2177     dvmUnlockMutex(&gDvmJit.tableLock);
2178     return;
2179 }
2180 
findClassPointersSingleTrace(char * base,void (* callback)(void *))2181 static void findClassPointersSingleTrace(char *base, void (*callback)(void *))
2182 {
2183     unsigned int chainTypeIdx, chainIdx;
2184     ChainCellCounts *pChainCellCounts = getChainCellCountsPointer(base);
2185     int cellSize = getChainCellSize(pChainCellCounts);
2186     /* Scan the chaining cells */
2187     if (cellSize) {
2188         /* Locate the beginning of the chain cell region */
2189         u4 *pChainCells = ((u4 *) pChainCellCounts) - cellSize -
2190             pChainCellCounts->u.count[kChainingCellGap];
2191         /* The cells are sorted in order - walk through them */
2192         for (chainTypeIdx = 0; chainTypeIdx < kChainingCellGap;
2193              chainTypeIdx++) {
2194             if (chainTypeIdx != kChainingCellInvokePredicted) {
2195                 /* In 32-bit words */
2196                 pChainCells += (CHAIN_CELL_NORMAL_SIZE >> 2) *
2197                     pChainCellCounts->u.count[chainTypeIdx];
2198                 continue;
2199             }
2200             for (chainIdx = 0;
2201                  chainIdx < pChainCellCounts->u.count[chainTypeIdx];
2202                  chainIdx++) {
2203                 PredictedChainingCell *cell =
2204                     (PredictedChainingCell *) pChainCells;
2205                 /*
2206                  * Report the cell if it contains a sane class
2207                  * pointer.
2208                  */
2209                 if (cell->clazz != NULL &&
2210                     cell->clazz !=
2211                       (ClassObject *) PREDICTED_CHAIN_FAKE_CLAZZ) {
2212                     callback(&cell->clazz);
2213                 }
2214                 pChainCells += CHAIN_CELL_PREDICTED_SIZE >> 2;
2215             }
2216         }
2217     }
2218 
2219     /* Scan the class pointer pool */
2220     JitTraceDescription *desc = getTraceDescriptionPointer(base);
2221     int descSize = getTraceDescriptionSize(desc);
2222     int *classPointerP = (int *) ((char *) desc + descSize);
2223     int numClassPointers = *classPointerP++;
2224     for (; numClassPointers; numClassPointers--, classPointerP++) {
2225         callback(classPointerP);
2226     }
2227 }
2228 
2229 /*
2230  * Scan class pointers in each translation and pass its address to the callback
2231  * function. Currently such a pointers can be found in the pointer pool and the
2232  * clazz field in the predicted chaining cells.
2233  */
dvmJitScanAllClassPointers(void (* callback)(void *))2234 void dvmJitScanAllClassPointers(void (*callback)(void *))
2235 {
2236     UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
2237 
2238     /* Handle the inflight compilation first */
2239     if (gDvmJit.inflightBaseAddr)
2240         findClassPointersSingleTrace((char *) gDvmJit.inflightBaseAddr,
2241                                      callback);
2242 
2243     if (gDvmJit.pJitEntryTable != NULL) {
2244         unsigned int traceIdx;
2245         dvmLockMutex(&gDvmJit.tableLock);
2246         for (traceIdx = 0; traceIdx < gDvmJit.jitTableSize; traceIdx++) {
2247             const JitEntry *entry = &gDvmJit.pJitEntryTable[traceIdx];
2248             if (entry->dPC &&
2249                 !entry->u.info.isMethodEntry &&
2250                 entry->codeAddress &&
2251                 (entry->codeAddress != dvmCompilerGetInterpretTemplate())) {
2252                 char *base = getTraceBase(entry);
2253                 findClassPointersSingleTrace(base, callback);
2254             }
2255         }
2256         dvmUnlockMutex(&gDvmJit.tableLock);
2257     }
2258     UPDATE_CODE_CACHE_PATCHES();
2259 
2260     PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
2261 }
2262 
2263 /*
2264  * Provide the final touch on the class object pointer pool to install the
2265  * actual pointers. The thread has to be in the running state.
2266  */
dvmJitInstallClassObjectPointers(CompilationUnit * cUnit,char * codeAddress)2267 void dvmJitInstallClassObjectPointers(CompilationUnit *cUnit, char *codeAddress)
2268 {
2269     char *base = codeAddress - cUnit->headerSize -
2270                  (cUnit->instructionSet == DALVIK_JIT_ARM ? 0 : 1);
2271 
2272     /* Scan the class pointer pool */
2273     JitTraceDescription *desc = getTraceDescriptionPointer(base);
2274     int descSize = getTraceDescriptionSize(desc);
2275     intptr_t *classPointerP = (int *) ((char *) desc + descSize);
2276     int numClassPointers = *(int *)classPointerP++;
2277     intptr_t *startClassPointerP = classPointerP;
2278 
2279     /*
2280      * Change the thread state to VM_RUNNING so that GC won't be happening
2281      * when the assembler looks up the class pointers. May suspend the current
2282      * thread if there is a pending request before the state is actually
2283      * changed to RUNNING.
2284      */
2285     dvmChangeStatus(gDvmJit.compilerThread, THREAD_RUNNING);
2286 
2287     /*
2288      * Unprotecting the code cache will need to acquire the code cache
2289      * protection lock first. Doing so after the state change may increase the
2290      * time spent in the RUNNING state (which may delay the next GC request
2291      * should there be contention on codeCacheProtectionLock). In practice
2292      * this is probably not going to happen often since a GC is just served.
2293      * More importantly, acquiring the lock before the state change will
2294      * cause deadlock (b/4192964).
2295      */
2296     UNPROTECT_CODE_CACHE(startClassPointerP,
2297                          numClassPointers * sizeof(intptr_t));
2298 #if defined(WITH_JIT_TUNING)
2299     u8 startTime = dvmGetRelativeTimeUsec();
2300 #endif
2301     for (;numClassPointers; numClassPointers--) {
2302         CallsiteInfo *callsiteInfo = (CallsiteInfo *) *classPointerP;
2303         ClassObject *clazz = dvmFindClassNoInit(
2304             callsiteInfo->classDescriptor, callsiteInfo->classLoader);
2305         assert(!strcmp(clazz->descriptor, callsiteInfo->classDescriptor));
2306         *classPointerP++ = (intptr_t) clazz;
2307     }
2308 
2309     /*
2310      * Register the base address so that if GC kicks in after the thread state
2311      * has been changed to VMWAIT and before the compiled code is registered
2312      * in the JIT table, its content can be patched if class objects are
2313      * moved.
2314      */
2315     gDvmJit.inflightBaseAddr = base;
2316 
2317 #if defined(WITH_JIT_TUNING)
2318     u8 blockTime = dvmGetRelativeTimeUsec() - startTime;
2319     gDvmJit.compilerThreadBlockGCTime += blockTime;
2320     if (blockTime > gDvmJit.maxCompilerThreadBlockGCTime)
2321         gDvmJit.maxCompilerThreadBlockGCTime = blockTime;
2322     gDvmJit.numCompilerThreadBlockGC++;
2323 #endif
2324     UPDATE_CODE_CACHE_PATCHES();
2325 
2326     PROTECT_CODE_CACHE(startClassPointerP, numClassPointers * sizeof(intptr_t));
2327 
2328     /* Change the thread state back to VMWAIT */
2329     dvmChangeStatus(gDvmJit.compilerThread, THREAD_VMWAIT);
2330 }
2331 
2332 #if defined(WITH_SELF_VERIFICATION)
2333 /*
2334  * The following are used to keep compiled loads and stores from modifying
2335  * memory during self verification mode.
2336  *
2337  * Stores do not modify memory. Instead, the address and value pair are stored
2338  * into heapSpace. Addresses within heapSpace are unique. For accesses smaller
2339  * than a word, the word containing the address is loaded first before being
2340  * updated.
2341  *
2342  * Loads check heapSpace first and return data from there if an entry exists.
2343  * Otherwise, data is loaded from memory as usual.
2344  */
2345 
2346 /* Used to specify sizes of memory operations */
2347 enum {
2348     kSVByte,
2349     kSVSignedByte,
2350     kSVHalfword,
2351     kSVSignedHalfword,
2352     kSVWord,
2353     kSVDoubleword,
2354     kSVVariable,
2355 };
2356 
2357 /* Load the value of a decoded register from the stack */
selfVerificationMemRegLoad(int * sp,int reg)2358 static int selfVerificationMemRegLoad(int* sp, int reg)
2359 {
2360     return *(sp + reg);
2361 }
2362 
2363 /* Load the value of a decoded doubleword register from the stack */
selfVerificationMemRegLoadDouble(int * sp,int reg)2364 static s8 selfVerificationMemRegLoadDouble(int* sp, int reg)
2365 {
2366     return *((s8*)(sp + reg));
2367 }
2368 
2369 /* Store the value of a decoded register out to the stack */
selfVerificationMemRegStore(int * sp,int data,int reg)2370 static void selfVerificationMemRegStore(int* sp, int data, int reg)
2371 {
2372     *(sp + reg) = data;
2373 }
2374 
2375 /* Store the value of a decoded doubleword register out to the stack */
selfVerificationMemRegStoreDouble(int * sp,s8 data,int reg)2376 static void selfVerificationMemRegStoreDouble(int* sp, s8 data, int reg)
2377 {
2378     *((s8*)(sp + reg)) = data;
2379 }
2380 
2381 /*
2382  * Load the specified size of data from the specified address, checking
2383  * heapSpace first if Self Verification mode wrote to it previously, and
2384  * falling back to actual memory otherwise.
2385  */
selfVerificationLoad(int addr,int size)2386 static int selfVerificationLoad(int addr, int size)
2387 {
2388     Thread *self = dvmThreadSelf();
2389     ShadowSpace *shadowSpace = self->shadowSpace;
2390     ShadowHeap *heapSpacePtr;
2391 
2392     int data;
2393     int maskedAddr = addr & 0xFFFFFFFC;
2394     int alignment = addr & 0x3;
2395 
2396     for (heapSpacePtr = shadowSpace->heapSpace;
2397          heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
2398         if (heapSpacePtr->addr == maskedAddr) {
2399             addr = ((unsigned int) &(heapSpacePtr->data)) | alignment;
2400             break;
2401         }
2402     }
2403 
2404     switch (size) {
2405         case kSVByte:
2406             data = *((u1*) addr);
2407             break;
2408         case kSVSignedByte:
2409             data = *((s1*) addr);
2410             break;
2411         case kSVHalfword:
2412             data = *((u2*) addr);
2413             break;
2414         case kSVSignedHalfword:
2415             data = *((s2*) addr);
2416             break;
2417         case kSVWord:
2418             data = *((u4*) addr);
2419             break;
2420         default:
2421             LOGE("*** ERROR: BAD SIZE IN selfVerificationLoad: %d", size);
2422             data = 0;
2423             dvmAbort();
2424     }
2425 
2426     //LOGD("*** HEAP LOAD: Addr: %#x Data: %#x Size: %d", addr, data, size);
2427     return data;
2428 }
2429 
2430 /* Like selfVerificationLoad, but specifically for doublewords */
selfVerificationLoadDoubleword(int addr)2431 static s8 selfVerificationLoadDoubleword(int addr)
2432 {
2433     Thread *self = dvmThreadSelf();
2434     ShadowSpace* shadowSpace = self->shadowSpace;
2435     ShadowHeap* heapSpacePtr;
2436 
2437     int addr2 = addr+4;
2438     unsigned int data = *((unsigned int*) addr);
2439     unsigned int data2 = *((unsigned int*) addr2);
2440 
2441     for (heapSpacePtr = shadowSpace->heapSpace;
2442          heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
2443         if (heapSpacePtr->addr == addr) {
2444             data = heapSpacePtr->data;
2445         } else if (heapSpacePtr->addr == addr2) {
2446             data2 = heapSpacePtr->data;
2447         }
2448     }
2449 
2450     //LOGD("*** HEAP LOAD DOUBLEWORD: Addr: %#x Data: %#x Data2: %#x",
2451     //    addr, data, data2);
2452     return (((s8) data2) << 32) | data;
2453 }
2454 
2455 /*
2456  * Handles a store of a specified size of data to a specified address.
2457  * This gets logged as an addr/data pair in heapSpace instead of modifying
2458  * memory.  Addresses in heapSpace are unique, and accesses smaller than a
2459  * word pull the entire word from memory first before updating.
2460  */
selfVerificationStore(int addr,int data,int size)2461 static void selfVerificationStore(int addr, int data, int size)
2462 {
2463     Thread *self = dvmThreadSelf();
2464     ShadowSpace *shadowSpace = self->shadowSpace;
2465     ShadowHeap *heapSpacePtr;
2466 
2467     int maskedAddr = addr & 0xFFFFFFFC;
2468     int alignment = addr & 0x3;
2469 
2470     //LOGD("*** HEAP STORE: Addr: %#x Data: %#x Size: %d", addr, data, size);
2471 
2472     for (heapSpacePtr = shadowSpace->heapSpace;
2473          heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
2474         if (heapSpacePtr->addr == maskedAddr) break;
2475     }
2476 
2477     if (heapSpacePtr == shadowSpace->heapSpaceTail) {
2478         heapSpacePtr->addr = maskedAddr;
2479         heapSpacePtr->data = *((unsigned int*) maskedAddr);
2480         shadowSpace->heapSpaceTail++;
2481     }
2482 
2483     addr = ((unsigned int) &(heapSpacePtr->data)) | alignment;
2484     switch (size) {
2485         case kSVByte:
2486             *((u1*) addr) = data;
2487             break;
2488         case kSVSignedByte:
2489             *((s1*) addr) = data;
2490             break;
2491         case kSVHalfword:
2492             *((u2*) addr) = data;
2493             break;
2494         case kSVSignedHalfword:
2495             *((s2*) addr) = data;
2496             break;
2497         case kSVWord:
2498             *((u4*) addr) = data;
2499             break;
2500         default:
2501             LOGE("*** ERROR: BAD SIZE IN selfVerificationSave: %d", size);
2502             dvmAbort();
2503     }
2504 }
2505 
2506 /* Like selfVerificationStore, but specifically for doublewords */
selfVerificationStoreDoubleword(int addr,s8 double_data)2507 static void selfVerificationStoreDoubleword(int addr, s8 double_data)
2508 {
2509     Thread *self = dvmThreadSelf();
2510     ShadowSpace *shadowSpace = self->shadowSpace;
2511     ShadowHeap *heapSpacePtr;
2512 
2513     int addr2 = addr+4;
2514     int data = double_data;
2515     int data2 = double_data >> 32;
2516     bool store1 = false, store2 = false;
2517 
2518     //LOGD("*** HEAP STORE DOUBLEWORD: Addr: %#x Data: %#x, Data2: %#x",
2519     //    addr, data, data2);
2520 
2521     for (heapSpacePtr = shadowSpace->heapSpace;
2522          heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
2523         if (heapSpacePtr->addr == addr) {
2524             heapSpacePtr->data = data;
2525             store1 = true;
2526         } else if (heapSpacePtr->addr == addr2) {
2527             heapSpacePtr->data = data2;
2528             store2 = true;
2529         }
2530     }
2531 
2532     if (!store1) {
2533         shadowSpace->heapSpaceTail->addr = addr;
2534         shadowSpace->heapSpaceTail->data = data;
2535         shadowSpace->heapSpaceTail++;
2536     }
2537     if (!store2) {
2538         shadowSpace->heapSpaceTail->addr = addr2;
2539         shadowSpace->heapSpaceTail->data = data2;
2540         shadowSpace->heapSpaceTail++;
2541     }
2542 }
2543 
2544 /*
2545  * Decodes the memory instruction at the address specified in the link
2546  * register. All registers (r0-r12,lr) and fp registers (d0-d15) are stored
2547  * consecutively on the stack beginning at the specified stack pointer.
2548  * Calls the proper Self Verification handler for the memory instruction and
2549  * updates the link register to point past the decoded memory instruction.
2550  */
dvmSelfVerificationMemOpDecode(int lr,int * sp)2551 void dvmSelfVerificationMemOpDecode(int lr, int* sp)
2552 {
2553     enum {
2554         kMemOpLdrPcRel = 0x09, // ldr(3)  [01001] rd[10..8] imm_8[7..0]
2555         kMemOpRRR      = 0x0A, // Full opcode is 7 bits
2556         kMemOp2Single  = 0x0A, // Used for Vstrs and Vldrs
2557         kMemOpRRR2     = 0x0B, // Full opcode is 7 bits
2558         kMemOp2Double  = 0x0B, // Used for Vstrd and Vldrd
2559         kMemOpStrRRI5  = 0x0C, // str(1)  [01100] imm_5[10..6] rn[5..3] rd[2..0]
2560         kMemOpLdrRRI5  = 0x0D, // ldr(1)  [01101] imm_5[10..6] rn[5..3] rd[2..0]
2561         kMemOpStrbRRI5 = 0x0E, // strb(1) [01110] imm_5[10..6] rn[5..3] rd[2..0]
2562         kMemOpLdrbRRI5 = 0x0F, // ldrb(1) [01111] imm_5[10..6] rn[5..3] rd[2..0]
2563         kMemOpStrhRRI5 = 0x10, // strh(1) [10000] imm_5[10..6] rn[5..3] rd[2..0]
2564         kMemOpLdrhRRI5 = 0x11, // ldrh(1) [10001] imm_5[10..6] rn[5..3] rd[2..0]
2565         kMemOpLdrSpRel = 0x13, // ldr(4)  [10011] rd[10..8] imm_8[7..0]
2566         kMemOpStmia    = 0x18, // stmia   [11000] rn[10..8] reglist [7..0]
2567         kMemOpLdmia    = 0x19, // ldmia   [11001] rn[10..8] reglist [7..0]
2568         kMemOpStrRRR   = 0x28, // str(2)  [0101000] rm[8..6] rn[5..3] rd[2..0]
2569         kMemOpStrhRRR  = 0x29, // strh(2) [0101001] rm[8..6] rn[5..3] rd[2..0]
2570         kMemOpStrbRRR  = 0x2A, // strb(2) [0101010] rm[8..6] rn[5..3] rd[2..0]
2571         kMemOpLdrsbRRR = 0x2B, // ldrsb   [0101011] rm[8..6] rn[5..3] rd[2..0]
2572         kMemOpLdrRRR   = 0x2C, // ldr(2)  [0101100] rm[8..6] rn[5..3] rd[2..0]
2573         kMemOpLdrhRRR  = 0x2D, // ldrh(2) [0101101] rm[8..6] rn[5..3] rd[2..0]
2574         kMemOpLdrbRRR  = 0x2E, // ldrb(2) [0101110] rm[8..6] rn[5..3] rd[2..0]
2575         kMemOpLdrshRRR = 0x2F, // ldrsh   [0101111] rm[8..6] rn[5..3] rd[2..0]
2576         kMemOp2Stmia   = 0xE88, // stmia  [111010001000[ rn[19..16] mask[15..0]
2577         kMemOp2Ldmia   = 0xE89, // ldmia  [111010001001[ rn[19..16] mask[15..0]
2578         kMemOp2Stmia2  = 0xE8A, // stmia  [111010001010[ rn[19..16] mask[15..0]
2579         kMemOp2Ldmia2  = 0xE8B, // ldmia  [111010001011[ rn[19..16] mask[15..0]
2580         kMemOp2Vstr    = 0xED8, // Used for Vstrs and Vstrd
2581         kMemOp2Vldr    = 0xED9, // Used for Vldrs and Vldrd
2582         kMemOp2Vstr2   = 0xEDC, // Used for Vstrs and Vstrd
2583         kMemOp2Vldr2   = 0xEDD, // Used for Vstrs and Vstrd
2584         kMemOp2StrbRRR = 0xF80, /* str rt,[rn,rm,LSL #imm] [111110000000]
2585                                 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
2586         kMemOp2LdrbRRR = 0xF81, /* ldrb rt,[rn,rm,LSL #imm] [111110000001]
2587                                 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
2588         kMemOp2StrhRRR = 0xF82, /* str rt,[rn,rm,LSL #imm] [111110000010]
2589                                 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
2590         kMemOp2LdrhRRR = 0xF83, /* ldrh rt,[rn,rm,LSL #imm] [111110000011]
2591                                 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
2592         kMemOp2StrRRR  = 0xF84, /* str rt,[rn,rm,LSL #imm] [111110000100]
2593                                 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
2594         kMemOp2LdrRRR  = 0xF85, /* ldr rt,[rn,rm,LSL #imm] [111110000101]
2595                                 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
2596         kMemOp2StrbRRI12 = 0xF88, /* strb rt,[rn,#imm12] [111110001000]
2597                                        rt[15..12] rn[19..16] imm12[11..0] */
2598         kMemOp2LdrbRRI12 = 0xF89, /* ldrb rt,[rn,#imm12] [111110001001]
2599                                        rt[15..12] rn[19..16] imm12[11..0] */
2600         kMemOp2StrhRRI12 = 0xF8A, /* strh rt,[rn,#imm12] [111110001010]
2601                                        rt[15..12] rn[19..16] imm12[11..0] */
2602         kMemOp2LdrhRRI12 = 0xF8B, /* ldrh rt,[rn,#imm12] [111110001011]
2603                                        rt[15..12] rn[19..16] imm12[11..0] */
2604         kMemOp2StrRRI12 = 0xF8C, /* str(Imm,T3) rd,[rn,#imm12] [111110001100]
2605                                        rn[19..16] rt[15..12] imm12[11..0] */
2606         kMemOp2LdrRRI12 = 0xF8D, /* ldr(Imm,T3) rd,[rn,#imm12] [111110001101]
2607                                        rn[19..16] rt[15..12] imm12[11..0] */
2608         kMemOp2LdrsbRRR = 0xF91, /* ldrsb rt,[rn,rm,LSL #imm] [111110010001]
2609                                 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
2610         kMemOp2LdrshRRR = 0xF93, /* ldrsh rt,[rn,rm,LSL #imm] [111110010011]
2611                                 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
2612         kMemOp2LdrsbRRI12 = 0xF99, /* ldrsb rt,[rn,#imm12] [111110011001]
2613                                        rt[15..12] rn[19..16] imm12[11..0] */
2614         kMemOp2LdrshRRI12 = 0xF9B, /* ldrsh rt,[rn,#imm12] [111110011011]
2615                                        rt[15..12] rn[19..16] imm12[11..0] */
2616         kMemOp2        = 0xE000, // top 3 bits set indicates Thumb2
2617     };
2618 
2619     int addr, offset, data;
2620     long long double_data;
2621     int size = kSVWord;
2622     bool store = false;
2623     unsigned int *lr_masked = (unsigned int *) (lr & 0xFFFFFFFE);
2624     unsigned int insn = *lr_masked;
2625 
2626     int old_lr;
2627     old_lr = selfVerificationMemRegLoad(sp, 13);
2628 
2629     if ((insn & kMemOp2) == kMemOp2) {
2630         insn = (insn << 16) | (insn >> 16);
2631         //LOGD("*** THUMB2 - Addr: %#x Insn: %#x", lr, insn);
2632 
2633         int opcode12 = (insn >> 20) & 0xFFF;
2634         int opcode4 = (insn >> 8) & 0xF;
2635         int imm2 = (insn >> 4) & 0x3;
2636         int imm8 = insn & 0xFF;
2637         int imm12 = insn & 0xFFF;
2638         int rd = (insn >> 12) & 0xF;
2639         int rm = insn & 0xF;
2640         int rn = (insn >> 16) & 0xF;
2641         int rt = (insn >> 12) & 0xF;
2642         bool wBack = true;
2643 
2644         // Update the link register
2645         selfVerificationMemRegStore(sp, old_lr+4, 13);
2646 
2647         // Determine whether the mem op is a store or load
2648         switch (opcode12) {
2649             case kMemOp2Stmia:
2650             case kMemOp2Stmia2:
2651             case kMemOp2Vstr:
2652             case kMemOp2Vstr2:
2653             case kMemOp2StrbRRR:
2654             case kMemOp2StrhRRR:
2655             case kMemOp2StrRRR:
2656             case kMemOp2StrbRRI12:
2657             case kMemOp2StrhRRI12:
2658             case kMemOp2StrRRI12:
2659                 store = true;
2660         }
2661 
2662         // Determine the size of the mem access
2663         switch (opcode12) {
2664             case kMemOp2StrbRRR:
2665             case kMemOp2LdrbRRR:
2666             case kMemOp2StrbRRI12:
2667             case kMemOp2LdrbRRI12:
2668                 size = kSVByte;
2669                 break;
2670             case kMemOp2LdrsbRRR:
2671             case kMemOp2LdrsbRRI12:
2672                 size = kSVSignedByte;
2673                 break;
2674             case kMemOp2StrhRRR:
2675             case kMemOp2LdrhRRR:
2676             case kMemOp2StrhRRI12:
2677             case kMemOp2LdrhRRI12:
2678                 size = kSVHalfword;
2679                 break;
2680             case kMemOp2LdrshRRR:
2681             case kMemOp2LdrshRRI12:
2682                 size = kSVSignedHalfword;
2683                 break;
2684             case kMemOp2Vstr:
2685             case kMemOp2Vstr2:
2686             case kMemOp2Vldr:
2687             case kMemOp2Vldr2:
2688                 if (opcode4 == kMemOp2Double) size = kSVDoubleword;
2689                 break;
2690             case kMemOp2Stmia:
2691             case kMemOp2Ldmia:
2692             case kMemOp2Stmia2:
2693             case kMemOp2Ldmia2:
2694                 size = kSVVariable;
2695                 break;
2696         }
2697 
2698         // Load the value of the address
2699         addr = selfVerificationMemRegLoad(sp, rn);
2700 
2701         // Figure out the offset
2702         switch (opcode12) {
2703             case kMemOp2Vstr:
2704             case kMemOp2Vstr2:
2705             case kMemOp2Vldr:
2706             case kMemOp2Vldr2:
2707                 offset = imm8 << 2;
2708                 if (opcode4 == kMemOp2Single) {
2709                     rt = rd << 1;
2710                     if (insn & 0x400000) rt |= 0x1;
2711                 } else if (opcode4 == kMemOp2Double) {
2712                     if (insn & 0x400000) rt |= 0x10;
2713                     rt = rt << 1;
2714                 } else {
2715                     LOGE("*** ERROR: UNRECOGNIZED VECTOR MEM OP: %x", opcode4);
2716                     dvmAbort();
2717                 }
2718                 rt += 14;
2719                 break;
2720             case kMemOp2StrbRRR:
2721             case kMemOp2LdrbRRR:
2722             case kMemOp2StrhRRR:
2723             case kMemOp2LdrhRRR:
2724             case kMemOp2StrRRR:
2725             case kMemOp2LdrRRR:
2726             case kMemOp2LdrsbRRR:
2727             case kMemOp2LdrshRRR:
2728                 offset = selfVerificationMemRegLoad(sp, rm) << imm2;
2729                 break;
2730             case kMemOp2StrbRRI12:
2731             case kMemOp2LdrbRRI12:
2732             case kMemOp2StrhRRI12:
2733             case kMemOp2LdrhRRI12:
2734             case kMemOp2StrRRI12:
2735             case kMemOp2LdrRRI12:
2736             case kMemOp2LdrsbRRI12:
2737             case kMemOp2LdrshRRI12:
2738                 offset = imm12;
2739                 break;
2740             case kMemOp2Stmia:
2741             case kMemOp2Ldmia:
2742                 wBack = false;
2743             case kMemOp2Stmia2:
2744             case kMemOp2Ldmia2:
2745                 offset = 0;
2746                 break;
2747             default:
2748                 LOGE("*** ERROR: UNRECOGNIZED THUMB2 MEM OP: %x", opcode12);
2749                 offset = 0;
2750                 dvmAbort();
2751         }
2752 
2753         // Handle the decoded mem op accordingly
2754         if (store) {
2755             if (size == kSVVariable) {
2756                 LOGD("*** THUMB2 STMIA CURRENTLY UNUSED (AND UNTESTED)");
2757                 int i;
2758                 int regList = insn & 0xFFFF;
2759                 for (i = 0; i < 16; i++) {
2760                     if (regList & 0x1) {
2761                         data = selfVerificationMemRegLoad(sp, i);
2762                         selfVerificationStore(addr, data, kSVWord);
2763                         addr += 4;
2764                     }
2765                     regList = regList >> 1;
2766                 }
2767                 if (wBack) selfVerificationMemRegStore(sp, addr, rn);
2768             } else if (size == kSVDoubleword) {
2769                 double_data = selfVerificationMemRegLoadDouble(sp, rt);
2770                 selfVerificationStoreDoubleword(addr+offset, double_data);
2771             } else {
2772                 data = selfVerificationMemRegLoad(sp, rt);
2773                 selfVerificationStore(addr+offset, data, size);
2774             }
2775         } else {
2776             if (size == kSVVariable) {
2777                 LOGD("*** THUMB2 LDMIA CURRENTLY UNUSED (AND UNTESTED)");
2778                 int i;
2779                 int regList = insn & 0xFFFF;
2780                 for (i = 0; i < 16; i++) {
2781                     if (regList & 0x1) {
2782                         data = selfVerificationLoad(addr, kSVWord);
2783                         selfVerificationMemRegStore(sp, data, i);
2784                         addr += 4;
2785                     }
2786                     regList = regList >> 1;
2787                 }
2788                 if (wBack) selfVerificationMemRegStore(sp, addr, rn);
2789             } else if (size == kSVDoubleword) {
2790                 double_data = selfVerificationLoadDoubleword(addr+offset);
2791                 selfVerificationMemRegStoreDouble(sp, double_data, rt);
2792             } else {
2793                 data = selfVerificationLoad(addr+offset, size);
2794                 selfVerificationMemRegStore(sp, data, rt);
2795             }
2796         }
2797     } else {
2798         //LOGD("*** THUMB - Addr: %#x Insn: %#x", lr, insn);
2799 
2800         // Update the link register
2801         selfVerificationMemRegStore(sp, old_lr+2, 13);
2802 
2803         int opcode5 = (insn >> 11) & 0x1F;
2804         int opcode7 = (insn >> 9) & 0x7F;
2805         int imm = (insn >> 6) & 0x1F;
2806         int rd = (insn >> 8) & 0x7;
2807         int rm = (insn >> 6) & 0x7;
2808         int rn = (insn >> 3) & 0x7;
2809         int rt = insn & 0x7;
2810 
2811         // Determine whether the mem op is a store or load
2812         switch (opcode5) {
2813             case kMemOpRRR:
2814                 switch (opcode7) {
2815                     case kMemOpStrRRR:
2816                     case kMemOpStrhRRR:
2817                     case kMemOpStrbRRR:
2818                         store = true;
2819                 }
2820                 break;
2821             case kMemOpStrRRI5:
2822             case kMemOpStrbRRI5:
2823             case kMemOpStrhRRI5:
2824             case kMemOpStmia:
2825                 store = true;
2826         }
2827 
2828         // Determine the size of the mem access
2829         switch (opcode5) {
2830             case kMemOpRRR:
2831             case kMemOpRRR2:
2832                 switch (opcode7) {
2833                     case kMemOpStrbRRR:
2834                     case kMemOpLdrbRRR:
2835                         size = kSVByte;
2836                         break;
2837                     case kMemOpLdrsbRRR:
2838                         size = kSVSignedByte;
2839                         break;
2840                     case kMemOpStrhRRR:
2841                     case kMemOpLdrhRRR:
2842                         size = kSVHalfword;
2843                         break;
2844                     case kMemOpLdrshRRR:
2845                         size = kSVSignedHalfword;
2846                         break;
2847                 }
2848                 break;
2849             case kMemOpStrbRRI5:
2850             case kMemOpLdrbRRI5:
2851                 size = kSVByte;
2852                 break;
2853             case kMemOpStrhRRI5:
2854             case kMemOpLdrhRRI5:
2855                 size = kSVHalfword;
2856                 break;
2857             case kMemOpStmia:
2858             case kMemOpLdmia:
2859                 size = kSVVariable;
2860                 break;
2861         }
2862 
2863         // Load the value of the address
2864         if (opcode5 == kMemOpLdrPcRel)
2865             addr = selfVerificationMemRegLoad(sp, 4);
2866         else if (opcode5 == kMemOpStmia || opcode5 == kMemOpLdmia)
2867             addr = selfVerificationMemRegLoad(sp, rd);
2868         else
2869             addr = selfVerificationMemRegLoad(sp, rn);
2870 
2871         // Figure out the offset
2872         switch (opcode5) {
2873             case kMemOpLdrPcRel:
2874                 offset = (insn & 0xFF) << 2;
2875                 rt = rd;
2876                 break;
2877             case kMemOpRRR:
2878             case kMemOpRRR2:
2879                 offset = selfVerificationMemRegLoad(sp, rm);
2880                 break;
2881             case kMemOpStrRRI5:
2882             case kMemOpLdrRRI5:
2883                 offset = imm << 2;
2884                 break;
2885             case kMemOpStrhRRI5:
2886             case kMemOpLdrhRRI5:
2887                 offset = imm << 1;
2888                 break;
2889             case kMemOpStrbRRI5:
2890             case kMemOpLdrbRRI5:
2891                 offset = imm;
2892                 break;
2893             case kMemOpStmia:
2894             case kMemOpLdmia:
2895                 offset = 0;
2896                 break;
2897             default:
2898                 LOGE("*** ERROR: UNRECOGNIZED THUMB MEM OP: %x", opcode5);
2899                 offset = 0;
2900                 dvmAbort();
2901         }
2902 
2903         // Handle the decoded mem op accordingly
2904         if (store) {
2905             if (size == kSVVariable) {
2906                 int i;
2907                 int regList = insn & 0xFF;
2908                 for (i = 0; i < 8; i++) {
2909                     if (regList & 0x1) {
2910                         data = selfVerificationMemRegLoad(sp, i);
2911                         selfVerificationStore(addr, data, kSVWord);
2912                         addr += 4;
2913                     }
2914                     regList = regList >> 1;
2915                 }
2916                 selfVerificationMemRegStore(sp, addr, rd);
2917             } else {
2918                 data = selfVerificationMemRegLoad(sp, rt);
2919                 selfVerificationStore(addr+offset, data, size);
2920             }
2921         } else {
2922             if (size == kSVVariable) {
2923                 bool wBack = true;
2924                 int i;
2925                 int regList = insn & 0xFF;
2926                 for (i = 0; i < 8; i++) {
2927                     if (regList & 0x1) {
2928                         if (i == rd) wBack = false;
2929                         data = selfVerificationLoad(addr, kSVWord);
2930                         selfVerificationMemRegStore(sp, data, i);
2931                         addr += 4;
2932                     }
2933                     regList = regList >> 1;
2934                 }
2935                 if (wBack) selfVerificationMemRegStore(sp, addr, rd);
2936             } else {
2937                 data = selfVerificationLoad(addr+offset, size);
2938                 selfVerificationMemRegStore(sp, data, rt);
2939             }
2940         }
2941     }
2942 }
2943 #endif
2944