1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements C++ semantic analysis for scope specifiers.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Lookup.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/NestedNameSpecifier.h"
20 #include "clang/Basic/PartialDiagnostic.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "TypeLocBuilder.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/Support/raw_ostream.h"
25 using namespace clang;
26
27 /// \brief Find the current instantiation that associated with the given type.
getCurrentInstantiationOf(QualType T,DeclContext * CurContext)28 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
29 DeclContext *CurContext) {
30 if (T.isNull())
31 return 0;
32
33 const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
34 if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
35 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
36 if (!T->isDependentType())
37 return Record;
38
39 // This may be a member of a class template or class template partial
40 // specialization. If it's part of the current semantic context, then it's
41 // an injected-class-name;
42 for (; !CurContext->isFileContext(); CurContext = CurContext->getParent())
43 if (CurContext->Equals(Record))
44 return Record;
45
46 return 0;
47 } else if (isa<InjectedClassNameType>(Ty))
48 return cast<InjectedClassNameType>(Ty)->getDecl();
49 else
50 return 0;
51 }
52
53 /// \brief Compute the DeclContext that is associated with the given type.
54 ///
55 /// \param T the type for which we are attempting to find a DeclContext.
56 ///
57 /// \returns the declaration context represented by the type T,
58 /// or NULL if the declaration context cannot be computed (e.g., because it is
59 /// dependent and not the current instantiation).
computeDeclContext(QualType T)60 DeclContext *Sema::computeDeclContext(QualType T) {
61 if (!T->isDependentType())
62 if (const TagType *Tag = T->getAs<TagType>())
63 return Tag->getDecl();
64
65 return ::getCurrentInstantiationOf(T, CurContext);
66 }
67
68 /// \brief Compute the DeclContext that is associated with the given
69 /// scope specifier.
70 ///
71 /// \param SS the C++ scope specifier as it appears in the source
72 ///
73 /// \param EnteringContext when true, we will be entering the context of
74 /// this scope specifier, so we can retrieve the declaration context of a
75 /// class template or class template partial specialization even if it is
76 /// not the current instantiation.
77 ///
78 /// \returns the declaration context represented by the scope specifier @p SS,
79 /// or NULL if the declaration context cannot be computed (e.g., because it is
80 /// dependent and not the current instantiation).
computeDeclContext(const CXXScopeSpec & SS,bool EnteringContext)81 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
82 bool EnteringContext) {
83 if (!SS.isSet() || SS.isInvalid())
84 return 0;
85
86 NestedNameSpecifier *NNS
87 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
88 if (NNS->isDependent()) {
89 // If this nested-name-specifier refers to the current
90 // instantiation, return its DeclContext.
91 if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
92 return Record;
93
94 if (EnteringContext) {
95 const Type *NNSType = NNS->getAsType();
96 if (!NNSType) {
97 return 0;
98 }
99
100 // Look through type alias templates, per C++0x [temp.dep.type]p1.
101 NNSType = Context.getCanonicalType(NNSType);
102 if (const TemplateSpecializationType *SpecType
103 = NNSType->getAs<TemplateSpecializationType>()) {
104 // We are entering the context of the nested name specifier, so try to
105 // match the nested name specifier to either a primary class template
106 // or a class template partial specialization.
107 if (ClassTemplateDecl *ClassTemplate
108 = dyn_cast_or_null<ClassTemplateDecl>(
109 SpecType->getTemplateName().getAsTemplateDecl())) {
110 QualType ContextType
111 = Context.getCanonicalType(QualType(SpecType, 0));
112
113 // If the type of the nested name specifier is the same as the
114 // injected class name of the named class template, we're entering
115 // into that class template definition.
116 QualType Injected
117 = ClassTemplate->getInjectedClassNameSpecialization();
118 if (Context.hasSameType(Injected, ContextType))
119 return ClassTemplate->getTemplatedDecl();
120
121 // If the type of the nested name specifier is the same as the
122 // type of one of the class template's class template partial
123 // specializations, we're entering into the definition of that
124 // class template partial specialization.
125 if (ClassTemplatePartialSpecializationDecl *PartialSpec
126 = ClassTemplate->findPartialSpecialization(ContextType))
127 return PartialSpec;
128 }
129 } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
130 // The nested name specifier refers to a member of a class template.
131 return RecordT->getDecl();
132 }
133 }
134
135 return 0;
136 }
137
138 switch (NNS->getKind()) {
139 case NestedNameSpecifier::Identifier:
140 assert(false && "Dependent nested-name-specifier has no DeclContext");
141 break;
142
143 case NestedNameSpecifier::Namespace:
144 return NNS->getAsNamespace();
145
146 case NestedNameSpecifier::NamespaceAlias:
147 return NNS->getAsNamespaceAlias()->getNamespace();
148
149 case NestedNameSpecifier::TypeSpec:
150 case NestedNameSpecifier::TypeSpecWithTemplate: {
151 const TagType *Tag = NNS->getAsType()->getAs<TagType>();
152 assert(Tag && "Non-tag type in nested-name-specifier");
153 return Tag->getDecl();
154 } break;
155
156 case NestedNameSpecifier::Global:
157 return Context.getTranslationUnitDecl();
158 }
159
160 // Required to silence a GCC warning.
161 return 0;
162 }
163
isDependentScopeSpecifier(const CXXScopeSpec & SS)164 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
165 if (!SS.isSet() || SS.isInvalid())
166 return false;
167
168 NestedNameSpecifier *NNS
169 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
170 return NNS->isDependent();
171 }
172
173 // \brief Determine whether this C++ scope specifier refers to an
174 // unknown specialization, i.e., a dependent type that is not the
175 // current instantiation.
isUnknownSpecialization(const CXXScopeSpec & SS)176 bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
177 if (!isDependentScopeSpecifier(SS))
178 return false;
179
180 NestedNameSpecifier *NNS
181 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182 return getCurrentInstantiationOf(NNS) == 0;
183 }
184
185 /// \brief If the given nested name specifier refers to the current
186 /// instantiation, return the declaration that corresponds to that
187 /// current instantiation (C++0x [temp.dep.type]p1).
188 ///
189 /// \param NNS a dependent nested name specifier.
getCurrentInstantiationOf(NestedNameSpecifier * NNS)190 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
191 assert(getLangOptions().CPlusPlus && "Only callable in C++");
192 assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
193
194 if (!NNS->getAsType())
195 return 0;
196
197 QualType T = QualType(NNS->getAsType(), 0);
198 return ::getCurrentInstantiationOf(T, CurContext);
199 }
200
201 /// \brief Require that the context specified by SS be complete.
202 ///
203 /// If SS refers to a type, this routine checks whether the type is
204 /// complete enough (or can be made complete enough) for name lookup
205 /// into the DeclContext. A type that is not yet completed can be
206 /// considered "complete enough" if it is a class/struct/union/enum
207 /// that is currently being defined. Or, if we have a type that names
208 /// a class template specialization that is not a complete type, we
209 /// will attempt to instantiate that class template.
RequireCompleteDeclContext(CXXScopeSpec & SS,DeclContext * DC)210 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
211 DeclContext *DC) {
212 assert(DC != 0 && "given null context");
213
214 if (TagDecl *tag = dyn_cast<TagDecl>(DC)) {
215 // If this is a dependent type, then we consider it complete.
216 if (tag->isDependentContext())
217 return false;
218
219 // If we're currently defining this type, then lookup into the
220 // type is okay: don't complain that it isn't complete yet.
221 QualType type = Context.getTypeDeclType(tag);
222 const TagType *tagType = type->getAs<TagType>();
223 if (tagType && tagType->isBeingDefined())
224 return false;
225
226 SourceLocation loc = SS.getLastQualifierNameLoc();
227 if (loc.isInvalid()) loc = SS.getRange().getBegin();
228
229 // The type must be complete.
230 if (RequireCompleteType(loc, type,
231 PDiag(diag::err_incomplete_nested_name_spec)
232 << SS.getRange())) {
233 SS.SetInvalid(SS.getRange());
234 return true;
235 }
236
237 // Fixed enum types are complete, but they aren't valid as scopes
238 // until we see a definition, so awkwardly pull out this special
239 // case.
240 if (const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType)) {
241 if (!enumType->getDecl()->isDefinition()) {
242 Diag(loc, diag::err_incomplete_nested_name_spec)
243 << type << SS.getRange();
244 SS.SetInvalid(SS.getRange());
245 return true;
246 }
247 }
248 }
249
250 return false;
251 }
252
ActOnCXXGlobalScopeSpecifier(Scope * S,SourceLocation CCLoc,CXXScopeSpec & SS)253 bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
254 CXXScopeSpec &SS) {
255 SS.MakeGlobal(Context, CCLoc);
256 return false;
257 }
258
259 /// \brief Determines whether the given declaration is an valid acceptable
260 /// result for name lookup of a nested-name-specifier.
isAcceptableNestedNameSpecifier(NamedDecl * SD)261 bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
262 if (!SD)
263 return false;
264
265 // Namespace and namespace aliases are fine.
266 if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
267 return true;
268
269 if (!isa<TypeDecl>(SD))
270 return false;
271
272 // Determine whether we have a class (or, in C++0x, an enum) or
273 // a typedef thereof. If so, build the nested-name-specifier.
274 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
275 if (T->isDependentType())
276 return true;
277 else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
278 if (TD->getUnderlyingType()->isRecordType() ||
279 (Context.getLangOptions().CPlusPlus0x &&
280 TD->getUnderlyingType()->isEnumeralType()))
281 return true;
282 } else if (isa<RecordDecl>(SD) ||
283 (Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD)))
284 return true;
285
286 return false;
287 }
288
289 /// \brief If the given nested-name-specifier begins with a bare identifier
290 /// (e.g., Base::), perform name lookup for that identifier as a
291 /// nested-name-specifier within the given scope, and return the result of that
292 /// name lookup.
FindFirstQualifierInScope(Scope * S,NestedNameSpecifier * NNS)293 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
294 if (!S || !NNS)
295 return 0;
296
297 while (NNS->getPrefix())
298 NNS = NNS->getPrefix();
299
300 if (NNS->getKind() != NestedNameSpecifier::Identifier)
301 return 0;
302
303 LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
304 LookupNestedNameSpecifierName);
305 LookupName(Found, S);
306 assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
307
308 if (!Found.isSingleResult())
309 return 0;
310
311 NamedDecl *Result = Found.getFoundDecl();
312 if (isAcceptableNestedNameSpecifier(Result))
313 return Result;
314
315 return 0;
316 }
317
isNonTypeNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation IdLoc,IdentifierInfo & II,ParsedType ObjectTypePtr)318 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
319 SourceLocation IdLoc,
320 IdentifierInfo &II,
321 ParsedType ObjectTypePtr) {
322 QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
323 LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
324
325 // Determine where to perform name lookup
326 DeclContext *LookupCtx = 0;
327 bool isDependent = false;
328 if (!ObjectType.isNull()) {
329 // This nested-name-specifier occurs in a member access expression, e.g.,
330 // x->B::f, and we are looking into the type of the object.
331 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
332 LookupCtx = computeDeclContext(ObjectType);
333 isDependent = ObjectType->isDependentType();
334 } else if (SS.isSet()) {
335 // This nested-name-specifier occurs after another nested-name-specifier,
336 // so long into the context associated with the prior nested-name-specifier.
337 LookupCtx = computeDeclContext(SS, false);
338 isDependent = isDependentScopeSpecifier(SS);
339 Found.setContextRange(SS.getRange());
340 }
341
342 if (LookupCtx) {
343 // Perform "qualified" name lookup into the declaration context we
344 // computed, which is either the type of the base of a member access
345 // expression or the declaration context associated with a prior
346 // nested-name-specifier.
347
348 // The declaration context must be complete.
349 if (!LookupCtx->isDependentContext() &&
350 RequireCompleteDeclContext(SS, LookupCtx))
351 return false;
352
353 LookupQualifiedName(Found, LookupCtx);
354 } else if (isDependent) {
355 return false;
356 } else {
357 LookupName(Found, S);
358 }
359 Found.suppressDiagnostics();
360
361 if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
362 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
363
364 return false;
365 }
366
367 /// \brief Build a new nested-name-specifier for "identifier::", as described
368 /// by ActOnCXXNestedNameSpecifier.
369 ///
370 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
371 /// that it contains an extra parameter \p ScopeLookupResult, which provides
372 /// the result of name lookup within the scope of the nested-name-specifier
373 /// that was computed at template definition time.
374 ///
375 /// If ErrorRecoveryLookup is true, then this call is used to improve error
376 /// recovery. This means that it should not emit diagnostics, it should
377 /// just return true on failure. It also means it should only return a valid
378 /// scope if it *knows* that the result is correct. It should not return in a
379 /// dependent context, for example. Nor will it extend \p SS with the scope
380 /// specifier.
BuildCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,QualType ObjectType,bool EnteringContext,CXXScopeSpec & SS,NamedDecl * ScopeLookupResult,bool ErrorRecoveryLookup)381 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
382 IdentifierInfo &Identifier,
383 SourceLocation IdentifierLoc,
384 SourceLocation CCLoc,
385 QualType ObjectType,
386 bool EnteringContext,
387 CXXScopeSpec &SS,
388 NamedDecl *ScopeLookupResult,
389 bool ErrorRecoveryLookup) {
390 LookupResult Found(*this, &Identifier, IdentifierLoc,
391 LookupNestedNameSpecifierName);
392
393 // Determine where to perform name lookup
394 DeclContext *LookupCtx = 0;
395 bool isDependent = false;
396 if (!ObjectType.isNull()) {
397 // This nested-name-specifier occurs in a member access expression, e.g.,
398 // x->B::f, and we are looking into the type of the object.
399 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
400 LookupCtx = computeDeclContext(ObjectType);
401 isDependent = ObjectType->isDependentType();
402 } else if (SS.isSet()) {
403 // This nested-name-specifier occurs after another nested-name-specifier,
404 // so look into the context associated with the prior nested-name-specifier.
405 LookupCtx = computeDeclContext(SS, EnteringContext);
406 isDependent = isDependentScopeSpecifier(SS);
407 Found.setContextRange(SS.getRange());
408 }
409
410
411 bool ObjectTypeSearchedInScope = false;
412 if (LookupCtx) {
413 // Perform "qualified" name lookup into the declaration context we
414 // computed, which is either the type of the base of a member access
415 // expression or the declaration context associated with a prior
416 // nested-name-specifier.
417
418 // The declaration context must be complete.
419 if (!LookupCtx->isDependentContext() &&
420 RequireCompleteDeclContext(SS, LookupCtx))
421 return true;
422
423 LookupQualifiedName(Found, LookupCtx);
424
425 if (!ObjectType.isNull() && Found.empty()) {
426 // C++ [basic.lookup.classref]p4:
427 // If the id-expression in a class member access is a qualified-id of
428 // the form
429 //
430 // class-name-or-namespace-name::...
431 //
432 // the class-name-or-namespace-name following the . or -> operator is
433 // looked up both in the context of the entire postfix-expression and in
434 // the scope of the class of the object expression. If the name is found
435 // only in the scope of the class of the object expression, the name
436 // shall refer to a class-name. If the name is found only in the
437 // context of the entire postfix-expression, the name shall refer to a
438 // class-name or namespace-name. [...]
439 //
440 // Qualified name lookup into a class will not find a namespace-name,
441 // so we do not need to diagnose that case specifically. However,
442 // this qualified name lookup may find nothing. In that case, perform
443 // unqualified name lookup in the given scope (if available) or
444 // reconstruct the result from when name lookup was performed at template
445 // definition time.
446 if (S)
447 LookupName(Found, S);
448 else if (ScopeLookupResult)
449 Found.addDecl(ScopeLookupResult);
450
451 ObjectTypeSearchedInScope = true;
452 }
453 } else if (!isDependent) {
454 // Perform unqualified name lookup in the current scope.
455 LookupName(Found, S);
456 }
457
458 // If we performed lookup into a dependent context and did not find anything,
459 // that's fine: just build a dependent nested-name-specifier.
460 if (Found.empty() && isDependent &&
461 !(LookupCtx && LookupCtx->isRecord() &&
462 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
463 !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
464 // Don't speculate if we're just trying to improve error recovery.
465 if (ErrorRecoveryLookup)
466 return true;
467
468 // We were not able to compute the declaration context for a dependent
469 // base object type or prior nested-name-specifier, so this
470 // nested-name-specifier refers to an unknown specialization. Just build
471 // a dependent nested-name-specifier.
472 SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
473 return false;
474 }
475
476 // FIXME: Deal with ambiguities cleanly.
477
478 if (Found.empty() && !ErrorRecoveryLookup) {
479 // We haven't found anything, and we're not recovering from a
480 // different kind of error, so look for typos.
481 DeclarationName Name = Found.getLookupName();
482 TypoCorrection Corrected;
483 Found.clear();
484 if ((Corrected = CorrectTypo(Found.getLookupNameInfo(),
485 Found.getLookupKind(), S, &SS, LookupCtx,
486 EnteringContext, CTC_NoKeywords)) &&
487 isAcceptableNestedNameSpecifier(Corrected.getCorrectionDecl())) {
488 std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
489 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
490 if (LookupCtx)
491 Diag(Found.getNameLoc(), diag::err_no_member_suggest)
492 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
493 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
494 else
495 Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
496 << Name << CorrectedQuotedStr
497 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
498
499 if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
500 Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr;
501 Found.addDecl(ND);
502 }
503 Found.setLookupName(Corrected.getCorrection());
504 } else {
505 Found.setLookupName(&Identifier);
506 }
507 }
508
509 NamedDecl *SD = Found.getAsSingle<NamedDecl>();
510 if (isAcceptableNestedNameSpecifier(SD)) {
511 if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
512 // C++ [basic.lookup.classref]p4:
513 // [...] If the name is found in both contexts, the
514 // class-name-or-namespace-name shall refer to the same entity.
515 //
516 // We already found the name in the scope of the object. Now, look
517 // into the current scope (the scope of the postfix-expression) to
518 // see if we can find the same name there. As above, if there is no
519 // scope, reconstruct the result from the template instantiation itself.
520 NamedDecl *OuterDecl;
521 if (S) {
522 LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
523 LookupNestedNameSpecifierName);
524 LookupName(FoundOuter, S);
525 OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
526 } else
527 OuterDecl = ScopeLookupResult;
528
529 if (isAcceptableNestedNameSpecifier(OuterDecl) &&
530 OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
531 (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
532 !Context.hasSameType(
533 Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
534 Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
535 if (ErrorRecoveryLookup)
536 return true;
537
538 Diag(IdentifierLoc,
539 diag::err_nested_name_member_ref_lookup_ambiguous)
540 << &Identifier;
541 Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
542 << ObjectType;
543 Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
544
545 // Fall through so that we'll pick the name we found in the object
546 // type, since that's probably what the user wanted anyway.
547 }
548 }
549
550 // If we're just performing this lookup for error-recovery purposes,
551 // don't extend the nested-name-specifier. Just return now.
552 if (ErrorRecoveryLookup)
553 return false;
554
555 if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
556 SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
557 return false;
558 }
559
560 if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
561 SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
562 return false;
563 }
564
565 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
566 TypeLocBuilder TLB;
567 if (isa<InjectedClassNameType>(T)) {
568 InjectedClassNameTypeLoc InjectedTL
569 = TLB.push<InjectedClassNameTypeLoc>(T);
570 InjectedTL.setNameLoc(IdentifierLoc);
571 } else if (isa<RecordType>(T)) {
572 RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
573 RecordTL.setNameLoc(IdentifierLoc);
574 } else if (isa<TypedefType>(T)) {
575 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
576 TypedefTL.setNameLoc(IdentifierLoc);
577 } else if (isa<EnumType>(T)) {
578 EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
579 EnumTL.setNameLoc(IdentifierLoc);
580 } else if (isa<TemplateTypeParmType>(T)) {
581 TemplateTypeParmTypeLoc TemplateTypeTL
582 = TLB.push<TemplateTypeParmTypeLoc>(T);
583 TemplateTypeTL.setNameLoc(IdentifierLoc);
584 } else if (isa<UnresolvedUsingType>(T)) {
585 UnresolvedUsingTypeLoc UnresolvedTL
586 = TLB.push<UnresolvedUsingTypeLoc>(T);
587 UnresolvedTL.setNameLoc(IdentifierLoc);
588 } else if (isa<SubstTemplateTypeParmType>(T)) {
589 SubstTemplateTypeParmTypeLoc TL
590 = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
591 TL.setNameLoc(IdentifierLoc);
592 } else if (isa<SubstTemplateTypeParmPackType>(T)) {
593 SubstTemplateTypeParmPackTypeLoc TL
594 = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
595 TL.setNameLoc(IdentifierLoc);
596 } else {
597 llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
598 }
599
600 SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
601 CCLoc);
602 return false;
603 }
604
605 // Otherwise, we have an error case. If we don't want diagnostics, just
606 // return an error now.
607 if (ErrorRecoveryLookup)
608 return true;
609
610 // If we didn't find anything during our lookup, try again with
611 // ordinary name lookup, which can help us produce better error
612 // messages.
613 if (Found.empty()) {
614 Found.clear(LookupOrdinaryName);
615 LookupName(Found, S);
616 }
617
618 unsigned DiagID;
619 if (!Found.empty())
620 DiagID = diag::err_expected_class_or_namespace;
621 else if (SS.isSet()) {
622 Diag(IdentifierLoc, diag::err_no_member)
623 << &Identifier << LookupCtx << SS.getRange();
624 return true;
625 } else
626 DiagID = diag::err_undeclared_var_use;
627
628 if (SS.isSet())
629 Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
630 else
631 Diag(IdentifierLoc, DiagID) << &Identifier;
632
633 return true;
634 }
635
ActOnCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,ParsedType ObjectType,bool EnteringContext,CXXScopeSpec & SS)636 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
637 IdentifierInfo &Identifier,
638 SourceLocation IdentifierLoc,
639 SourceLocation CCLoc,
640 ParsedType ObjectType,
641 bool EnteringContext,
642 CXXScopeSpec &SS) {
643 if (SS.isInvalid())
644 return true;
645
646 return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
647 GetTypeFromParser(ObjectType),
648 EnteringContext, SS,
649 /*ScopeLookupResult=*/0, false);
650 }
651
652 /// IsInvalidUnlessNestedName - This method is used for error recovery
653 /// purposes to determine whether the specified identifier is only valid as
654 /// a nested name specifier, for example a namespace name. It is
655 /// conservatively correct to always return false from this method.
656 ///
657 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
IsInvalidUnlessNestedName(Scope * S,CXXScopeSpec & SS,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation ColonLoc,ParsedType ObjectType,bool EnteringContext)658 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
659 IdentifierInfo &Identifier,
660 SourceLocation IdentifierLoc,
661 SourceLocation ColonLoc,
662 ParsedType ObjectType,
663 bool EnteringContext) {
664 if (SS.isInvalid())
665 return false;
666
667 return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
668 GetTypeFromParser(ObjectType),
669 EnteringContext, SS,
670 /*ScopeLookupResult=*/0, true);
671 }
672
ActOnCXXNestedNameSpecifier(Scope * S,SourceLocation TemplateLoc,CXXScopeSpec & SS,TemplateTy Template,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,SourceLocation CCLoc,bool EnteringContext)673 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
674 SourceLocation TemplateLoc,
675 CXXScopeSpec &SS,
676 TemplateTy Template,
677 SourceLocation TemplateNameLoc,
678 SourceLocation LAngleLoc,
679 ASTTemplateArgsPtr TemplateArgsIn,
680 SourceLocation RAngleLoc,
681 SourceLocation CCLoc,
682 bool EnteringContext) {
683 if (SS.isInvalid())
684 return true;
685
686 // Translate the parser's template argument list in our AST format.
687 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
688 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
689
690 if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
691 // Handle a dependent template specialization for which we cannot resolve
692 // the template name.
693 assert(DTN->getQualifier()
694 == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
695 QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
696 DTN->getQualifier(),
697 DTN->getIdentifier(),
698 TemplateArgs);
699
700 // Create source-location information for this type.
701 TypeLocBuilder Builder;
702 DependentTemplateSpecializationTypeLoc SpecTL
703 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
704 SpecTL.setLAngleLoc(LAngleLoc);
705 SpecTL.setRAngleLoc(RAngleLoc);
706 SpecTL.setKeywordLoc(SourceLocation());
707 SpecTL.setNameLoc(TemplateNameLoc);
708 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
709 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
710 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
711
712 SS.Extend(Context, TemplateLoc, Builder.getTypeLocInContext(Context, T),
713 CCLoc);
714 return false;
715 }
716
717
718 if (Template.get().getAsOverloadedTemplate() ||
719 isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
720 SourceRange R(TemplateNameLoc, RAngleLoc);
721 if (SS.getRange().isValid())
722 R.setBegin(SS.getRange().getBegin());
723
724 Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
725 << Template.get() << R;
726 NoteAllFoundTemplates(Template.get());
727 return true;
728 }
729
730 // We were able to resolve the template name to an actual template.
731 // Build an appropriate nested-name-specifier.
732 QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
733 TemplateArgs);
734 if (T.isNull())
735 return true;
736
737 // Alias template specializations can produce types which are not valid
738 // nested name specifiers.
739 if (!T->isDependentType() && !T->getAs<TagType>()) {
740 Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
741 NoteAllFoundTemplates(Template.get());
742 return true;
743 }
744
745 // Provide source-location information for the template specialization
746 // type.
747 TypeLocBuilder Builder;
748 TemplateSpecializationTypeLoc SpecTL
749 = Builder.push<TemplateSpecializationTypeLoc>(T);
750
751 SpecTL.setLAngleLoc(LAngleLoc);
752 SpecTL.setRAngleLoc(RAngleLoc);
753 SpecTL.setTemplateNameLoc(TemplateNameLoc);
754 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
755 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
756
757
758 SS.Extend(Context, TemplateLoc, Builder.getTypeLocInContext(Context, T),
759 CCLoc);
760 return false;
761 }
762
763 namespace {
764 /// \brief A structure that stores a nested-name-specifier annotation,
765 /// including both the nested-name-specifier
766 struct NestedNameSpecifierAnnotation {
767 NestedNameSpecifier *NNS;
768 };
769 }
770
SaveNestedNameSpecifierAnnotation(CXXScopeSpec & SS)771 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
772 if (SS.isEmpty() || SS.isInvalid())
773 return 0;
774
775 void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
776 SS.location_size()),
777 llvm::alignOf<NestedNameSpecifierAnnotation>());
778 NestedNameSpecifierAnnotation *Annotation
779 = new (Mem) NestedNameSpecifierAnnotation;
780 Annotation->NNS = SS.getScopeRep();
781 memcpy(Annotation + 1, SS.location_data(), SS.location_size());
782 return Annotation;
783 }
784
RestoreNestedNameSpecifierAnnotation(void * AnnotationPtr,SourceRange AnnotationRange,CXXScopeSpec & SS)785 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
786 SourceRange AnnotationRange,
787 CXXScopeSpec &SS) {
788 if (!AnnotationPtr) {
789 SS.SetInvalid(AnnotationRange);
790 return;
791 }
792
793 NestedNameSpecifierAnnotation *Annotation
794 = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
795 SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
796 }
797
ShouldEnterDeclaratorScope(Scope * S,const CXXScopeSpec & SS)798 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
799 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
800
801 NestedNameSpecifier *Qualifier =
802 static_cast<NestedNameSpecifier*>(SS.getScopeRep());
803
804 // There are only two places a well-formed program may qualify a
805 // declarator: first, when defining a namespace or class member
806 // out-of-line, and second, when naming an explicitly-qualified
807 // friend function. The latter case is governed by
808 // C++03 [basic.lookup.unqual]p10:
809 // In a friend declaration naming a member function, a name used
810 // in the function declarator and not part of a template-argument
811 // in a template-id is first looked up in the scope of the member
812 // function's class. If it is not found, or if the name is part of
813 // a template-argument in a template-id, the look up is as
814 // described for unqualified names in the definition of the class
815 // granting friendship.
816 // i.e. we don't push a scope unless it's a class member.
817
818 switch (Qualifier->getKind()) {
819 case NestedNameSpecifier::Global:
820 case NestedNameSpecifier::Namespace:
821 case NestedNameSpecifier::NamespaceAlias:
822 // These are always namespace scopes. We never want to enter a
823 // namespace scope from anything but a file context.
824 return CurContext->getRedeclContext()->isFileContext();
825
826 case NestedNameSpecifier::Identifier:
827 case NestedNameSpecifier::TypeSpec:
828 case NestedNameSpecifier::TypeSpecWithTemplate:
829 // These are never namespace scopes.
830 return true;
831 }
832
833 // Silence bogus warning.
834 return false;
835 }
836
837 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
838 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
839 /// After this method is called, according to [C++ 3.4.3p3], names should be
840 /// looked up in the declarator-id's scope, until the declarator is parsed and
841 /// ActOnCXXExitDeclaratorScope is called.
842 /// The 'SS' should be a non-empty valid CXXScopeSpec.
ActOnCXXEnterDeclaratorScope(Scope * S,CXXScopeSpec & SS)843 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
844 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
845
846 if (SS.isInvalid()) return true;
847
848 DeclContext *DC = computeDeclContext(SS, true);
849 if (!DC) return true;
850
851 // Before we enter a declarator's context, we need to make sure that
852 // it is a complete declaration context.
853 if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
854 return true;
855
856 EnterDeclaratorContext(S, DC);
857
858 // Rebuild the nested name specifier for the new scope.
859 if (DC->isDependentContext())
860 RebuildNestedNameSpecifierInCurrentInstantiation(SS);
861
862 return false;
863 }
864
865 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
866 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
867 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
868 /// Used to indicate that names should revert to being looked up in the
869 /// defining scope.
ActOnCXXExitDeclaratorScope(Scope * S,const CXXScopeSpec & SS)870 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
871 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
872 if (SS.isInvalid())
873 return;
874 assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
875 "exiting declarator scope we never really entered");
876 ExitDeclaratorContext(S);
877 }
878