1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 ///////////////////////////////////////////////////
18 // Blend.cpp
19 // $Id: Blend.cpp,v 1.22 2011/06/24 04:22:14 mbansal Exp $
20
21 #include <string.h>
22
23 #include "Interp.h"
24 #include "Blend.h"
25
26 #include "Geometry.h"
27 #include "trsMatrix.h"
28
29 #include "Log.h"
30 #define LOG_TAG "BLEND"
31
Blend()32 Blend::Blend()
33 {
34 m_wb.blendingType = BLEND_TYPE_NONE;
35 }
36
~Blend()37 Blend::~Blend()
38 {
39 if (m_pFrameVPyr) free(m_pFrameVPyr);
40 if (m_pFrameUPyr) free(m_pFrameUPyr);
41 if (m_pFrameYPyr) free(m_pFrameYPyr);
42 }
43
initialize(int blendingType,int stripType,int frame_width,int frame_height)44 int Blend::initialize(int blendingType, int stripType, int frame_width, int frame_height)
45 {
46 this->width = frame_width;
47 this->height = frame_height;
48 this->m_wb.blendingType = blendingType;
49 this->m_wb.stripType = stripType;
50
51 m_wb.blendRange = m_wb.blendRangeUV = BLEND_RANGE_DEFAULT;
52 m_wb.nlevs = m_wb.blendRange;
53 m_wb.nlevsC = m_wb.blendRangeUV;
54
55 if (m_wb.nlevs <= 0) m_wb.nlevs = 1; // Need levels for YUV processing
56 if (m_wb.nlevsC > m_wb.nlevs) m_wb.nlevsC = m_wb.nlevs;
57
58 m_wb.roundoffOverlap = 1.5;
59
60 m_pFrameYPyr = NULL;
61 m_pFrameUPyr = NULL;
62 m_pFrameVPyr = NULL;
63
64 m_pFrameYPyr = PyramidShort::allocatePyramidPacked(m_wb.nlevs, (unsigned short) width, (unsigned short) height, BORDER);
65 m_pFrameUPyr = PyramidShort::allocatePyramidPacked(m_wb.nlevsC, (unsigned short) (width), (unsigned short) (height), BORDER);
66 m_pFrameVPyr = PyramidShort::allocatePyramidPacked(m_wb.nlevsC, (unsigned short) (width), (unsigned short) (height), BORDER);
67
68 if (!m_pFrameYPyr || !m_pFrameUPyr || !m_pFrameVPyr)
69 {
70 LOGE("Error: Could not allocate pyramids for blending");
71 return BLEND_RET_ERROR_MEMORY;
72 }
73
74 return BLEND_RET_OK;
75 }
76
max(double a,double b)77 inline double max(double a, double b) { return a > b ? a : b; }
min(double a,double b)78 inline double min(double a, double b) { return a < b ? a : b; }
79
AlignToMiddleFrame(MosaicFrame ** frames,int frames_size)80 void Blend::AlignToMiddleFrame(MosaicFrame **frames, int frames_size)
81 {
82 // Unwarp this frame and Warp the others to match
83 MosaicFrame *mb = NULL;
84 MosaicFrame *ref = frames[int(frames_size/2)]; // Middle frame
85
86 double invtrs[3][3];
87 inv33d(ref->trs, invtrs);
88
89 for(int mfit = 0; mfit < frames_size; mfit++)
90 {
91 mb = frames[mfit];
92 double temp[3][3];
93 mult33d(temp, invtrs, mb->trs);
94 memcpy(mb->trs, temp, sizeof(temp));
95 normProjMat33d(mb->trs);
96 }
97 }
98
runBlend(MosaicFrame ** oframes,MosaicFrame ** rframes,int frames_size,ImageType & imageMosaicYVU,int & mosaicWidth,int & mosaicHeight,float & progress,bool & cancelComputation)99 int Blend::runBlend(MosaicFrame **oframes, MosaicFrame **rframes,
100 int frames_size,
101 ImageType &imageMosaicYVU, int &mosaicWidth, int &mosaicHeight,
102 float &progress, bool &cancelComputation)
103 {
104 int ret;
105 int numCenters;
106
107 MosaicFrame **frames;
108
109 // For THIN strip mode, accept all frames for blending
110 if (m_wb.stripType == STRIP_TYPE_THIN)
111 {
112 frames = oframes;
113 }
114 else // For WIDE strip mode, first select the relevant frames to blend.
115 {
116 SelectRelevantFrames(oframes, frames_size, rframes, frames_size);
117 frames = rframes;
118 }
119
120 ComputeBlendParameters(frames, frames_size, true);
121 numCenters = frames_size;
122
123 if (numCenters == 0)
124 {
125 LOGE("Error: No frames to blend");
126 return BLEND_RET_ERROR;
127 }
128
129 if (!(m_AllSites = m_Triangulator.allocMemory(numCenters)))
130 {
131 return BLEND_RET_ERROR_MEMORY;
132 }
133
134 // Bounding rectangle (real numbers) of the final mosaic computed by projecting
135 // each input frame into the mosaic coordinate system.
136 BlendRect global_rect;
137
138 global_rect.lft = global_rect.bot = 2e30; // min values
139 global_rect.rgt = global_rect.top = -2e30; // max values
140 MosaicFrame *mb = NULL;
141 double halfwidth = width / 2.0;
142 double halfheight = height / 2.0;
143
144 double z, x0, y0, x1, y1, x2, y2, x3, y3;
145
146 // Corners of the left-most and right-most frames respectively in the
147 // mosaic coordinate system.
148 double xLeftCorners[2] = {2e30, 2e30};
149 double xRightCorners[2] = {-2e30, -2e30};
150
151 // Corners of the top-most and bottom-most frames respectively in the
152 // mosaic coordinate system.
153 double yTopCorners[2] = {2e30, 2e30};
154 double yBottomCorners[2] = {-2e30, -2e30};
155
156
157 // Determine the extents of the final mosaic
158 CSite *csite = m_AllSites ;
159 for(int mfit = 0; mfit < frames_size; mfit++)
160 {
161 mb = frames[mfit];
162
163 // Compute clipping for this frame's rect
164 FrameToMosaicRect(mb->width, mb->height, mb->trs, mb->brect);
165 // Clip global rect using this frame's rect
166 ClipRect(mb->brect, global_rect);
167
168 // Calculate the corner points
169 FrameToMosaic(mb->trs, 0.0, 0.0, x0, y0);
170 FrameToMosaic(mb->trs, 0.0, mb->height-1.0, x1, y1);
171 FrameToMosaic(mb->trs, mb->width-1.0, mb->height-1.0, x2, y2);
172 FrameToMosaic(mb->trs, mb->width-1.0, 0.0, x3, y3);
173
174 if(x0 < xLeftCorners[0] || x1 < xLeftCorners[1]) // If either of the left corners is lower
175 {
176 xLeftCorners[0] = x0;
177 xLeftCorners[1] = x1;
178 }
179
180 if(x3 > xRightCorners[0] || x2 > xRightCorners[1]) // If either of the right corners is higher
181 {
182 xRightCorners[0] = x3;
183 xRightCorners[1] = x2;
184 }
185
186 if(y0 < yTopCorners[0] || y3 < yTopCorners[1]) // If either of the top corners is lower
187 {
188 yTopCorners[0] = y0;
189 yTopCorners[1] = y3;
190 }
191
192 if(y1 > yBottomCorners[0] || y2 > yBottomCorners[1]) // If either of the bottom corners is higher
193 {
194 yBottomCorners[0] = y1;
195 yBottomCorners[1] = y2;
196 }
197
198
199 // Compute the centroid of the warped region
200 FindQuadCentroid(x0, y0, x1, y1, x2, y2, x3, y3, csite->getVCenter().x, csite->getVCenter().y);
201
202 csite->setMb(mb);
203 csite++;
204 }
205
206 // Get origin and sizes
207
208 // Bounding rectangle (int numbers) of the final mosaic computed by projecting
209 // each input frame into the mosaic coordinate system.
210 MosaicRect fullRect;
211
212 fullRect.left = (int) floor(global_rect.lft); // min-x
213 fullRect.top = (int) floor(global_rect.bot); // min-y
214 fullRect.right = (int) ceil(global_rect.rgt); // max-x
215 fullRect.bottom = (int) ceil(global_rect.top);// max-y
216 Mwidth = (unsigned short) (fullRect.right - fullRect.left + 1);
217 Mheight = (unsigned short) (fullRect.bottom - fullRect.top + 1);
218
219 int xLeftMost, xRightMost;
220 int yTopMost, yBottomMost;
221
222 // Rounding up, so that we don't include the gray border.
223 xLeftMost = max(0, max(xLeftCorners[0], xLeftCorners[1]) - fullRect.left + 1);
224 xRightMost = min(Mwidth - 1, min(xRightCorners[0], xRightCorners[1]) - fullRect.left - 1);
225
226 yTopMost = max(0, max(yTopCorners[0], yTopCorners[1]) - fullRect.top + 1);
227 yBottomMost = min(Mheight - 1, min(yBottomCorners[0], yBottomCorners[1]) - fullRect.top - 1);
228
229 // Make sure image width is multiple of 4
230 Mwidth = (unsigned short) ((Mwidth + 3) & ~3);
231 Mheight = (unsigned short) ((Mheight + 3) & ~3); // Round up.
232
233 if (Mwidth < width || Mheight < height || xRightMost <= xLeftMost)
234 {
235 LOGE("RunBlend: aborting - consistency check failed, w=%d, h=%d, xLeftMost=%d, xRightMost=%d", Mwidth, Mheight, xLeftMost, xRightMost);
236 return BLEND_RET_ERROR;
237 }
238
239 LOGI("Allocate mosaic image for blending - size: %d x %d", Mwidth, Mheight);
240 YUVinfo *imgMos = YUVinfo::allocateImage(Mwidth, Mheight);
241 if (imgMos == NULL)
242 {
243 LOGE("RunBlend: aborting - couldn't alloc %d x %d mosaic image", Mwidth, Mheight);
244 return BLEND_RET_ERROR_MEMORY;
245 }
246
247 // Set the Y image to 255 so we can distinguish when frame idx are written to it
248 memset(imgMos->Y.ptr[0], 255, (imgMos->Y.width * imgMos->Y.height));
249 // Set the v and u images to black
250 memset(imgMos->V.ptr[0], 128, (imgMos->V.width * imgMos->V.height) << 1);
251
252 // Do the triangulation. It returns a sorted list of edges
253 SEdgeVector *edge;
254 int n = m_Triangulator.triangulate(&edge, numCenters, width, height);
255 m_Triangulator.linkNeighbors(edge, n, numCenters);
256
257 // Bounding rectangle that determines the positioning of the rectangle that is
258 // cropped out of the computed mosaic to get rid of the gray borders.
259 MosaicRect cropping_rect;
260
261 if (m_wb.horizontal)
262 {
263 cropping_rect.left = xLeftMost;
264 cropping_rect.right = xRightMost;
265 }
266 else
267 {
268 cropping_rect.top = yTopMost;
269 cropping_rect.bottom = yBottomMost;
270 }
271
272 // Do merging and blending :
273 ret = DoMergeAndBlend(frames, numCenters, width, height, *imgMos, fullRect,
274 cropping_rect, progress, cancelComputation);
275
276 if (m_wb.blendingType == BLEND_TYPE_HORZ)
277 CropFinalMosaic(*imgMos, cropping_rect);
278
279
280 m_Triangulator.freeMemory(); // note: can be called even if delaunay_alloc() wasn't successful
281
282 imageMosaicYVU = imgMos->Y.ptr[0];
283
284
285 if (m_wb.blendingType == BLEND_TYPE_HORZ)
286 {
287 mosaicWidth = cropping_rect.right - cropping_rect.left + 1;
288 mosaicHeight = cropping_rect.bottom - cropping_rect.top + 1;
289 }
290 else
291 {
292 mosaicWidth = Mwidth;
293 mosaicHeight = Mheight;
294 }
295
296 return ret;
297 }
298
299
FillFramePyramid(MosaicFrame * mb)300 int Blend::FillFramePyramid(MosaicFrame *mb)
301 {
302 ImageType mbY, mbU, mbV;
303 // Lay this image, centered into the temporary buffer
304 mbY = mb->image;
305 mbU = mb->getU();
306 mbV = mb->getV();
307
308 int h, w;
309
310 for(h=0; h<height; h++)
311 {
312 ImageTypeShort yptr = m_pFrameYPyr->ptr[h];
313 ImageTypeShort uptr = m_pFrameUPyr->ptr[h];
314 ImageTypeShort vptr = m_pFrameVPyr->ptr[h];
315
316 for(w=0; w<width; w++)
317 {
318 yptr[w] = (short) ((*(mbY++)) << 3);
319 uptr[w] = (short) ((*(mbU++)) << 3);
320 vptr[w] = (short) ((*(mbV++)) << 3);
321 }
322 }
323
324 // Spread the image through the border
325 PyramidShort::BorderSpread(m_pFrameYPyr, BORDER, BORDER, BORDER, BORDER);
326 PyramidShort::BorderSpread(m_pFrameUPyr, BORDER, BORDER, BORDER, BORDER);
327 PyramidShort::BorderSpread(m_pFrameVPyr, BORDER, BORDER, BORDER, BORDER);
328
329 // Generate Laplacian pyramids
330 if (!PyramidShort::BorderReduce(m_pFrameYPyr, m_wb.nlevs) || !PyramidShort::BorderExpand(m_pFrameYPyr, m_wb.nlevs, -1) ||
331 !PyramidShort::BorderReduce(m_pFrameUPyr, m_wb.nlevsC) || !PyramidShort::BorderExpand(m_pFrameUPyr, m_wb.nlevsC, -1) ||
332 !PyramidShort::BorderReduce(m_pFrameVPyr, m_wb.nlevsC) || !PyramidShort::BorderExpand(m_pFrameVPyr, m_wb.nlevsC, -1))
333 {
334 LOGE("Error: Could not generate Laplacian pyramids");
335 return BLEND_RET_ERROR;
336 }
337 else
338 {
339 return BLEND_RET_OK;
340 }
341 }
342
DoMergeAndBlend(MosaicFrame ** frames,int nsite,int width,int height,YUVinfo & imgMos,MosaicRect & rect,MosaicRect & cropping_rect,float & progress,bool & cancelComputation)343 int Blend::DoMergeAndBlend(MosaicFrame **frames, int nsite,
344 int width, int height, YUVinfo &imgMos, MosaicRect &rect,
345 MosaicRect &cropping_rect, float &progress, bool &cancelComputation)
346 {
347 m_pMosaicYPyr = NULL;
348 m_pMosaicUPyr = NULL;
349 m_pMosaicVPyr = NULL;
350
351 m_pMosaicYPyr = PyramidShort::allocatePyramidPacked(m_wb.nlevs,(unsigned short)rect.Width(),(unsigned short)rect.Height(),BORDER);
352 m_pMosaicUPyr = PyramidShort::allocatePyramidPacked(m_wb.nlevsC,(unsigned short)rect.Width(),(unsigned short)rect.Height(),BORDER);
353 m_pMosaicVPyr = PyramidShort::allocatePyramidPacked(m_wb.nlevsC,(unsigned short)rect.Width(),(unsigned short)rect.Height(),BORDER);
354 if (!m_pMosaicYPyr || !m_pMosaicUPyr || !m_pMosaicVPyr)
355 {
356 LOGE("Error: Could not allocate pyramids for blending");
357 return BLEND_RET_ERROR_MEMORY;
358 }
359
360 MosaicFrame *mb;
361
362 CSite *esite = m_AllSites + nsite;
363 int site_idx;
364
365 // First go through each frame and for each mosaic pixel determine which frame it should come from
366 site_idx = 0;
367 for(CSite *csite = m_AllSites; csite < esite; csite++)
368 {
369 if(cancelComputation)
370 {
371 if (m_pMosaicVPyr) free(m_pMosaicVPyr);
372 if (m_pMosaicUPyr) free(m_pMosaicUPyr);
373 if (m_pMosaicYPyr) free(m_pMosaicYPyr);
374 return BLEND_RET_CANCELLED;
375 }
376
377 mb = csite->getMb();
378
379 mb->vcrect = mb->brect;
380 ClipBlendRect(csite, mb->vcrect);
381
382 ComputeMask(csite, mb->vcrect, mb->brect, rect, imgMos, site_idx);
383
384 site_idx++;
385 }
386
387 ////////// imgMos.Y, imgMos.V, imgMos.U are used as follows //////////////
388 ////////////////////// THIN STRIP MODE ///////////////////////////////////
389
390 // imgMos.Y is used to store the index of the image from which each pixel
391 // in the output mosaic can be read out for the thin-strip mode. Thus,
392 // there is no special handling for pixels around the seam. Also, imgMos.Y
393 // is set to 255 wherever we can't get its value from any input image e.g.
394 // in the gray border areas. imgMos.V and imgMos.U are set to 128 for the
395 // thin-strip mode.
396
397 ////////////////////// WIDE STRIP MODE ///////////////////////////////////
398
399 // imgMos.Y is used the same way as the thin-strip mode.
400 // imgMos.V is used to store the index of the neighboring image which
401 // should contribute to the color of an output pixel in a band around
402 // the seam. Thus, in this band, we will crossfade between the color values
403 // from the image index imgMos.Y and image index imgMos.V. imgMos.U is
404 // used to store the weight (multiplied by 100) that each image will
405 // contribute to the blending process. Thus, we start at 99% contribution
406 // from the first image, then go to 50% contribution from each image at
407 // the seam. Then, the contribution from the second image goes up to 99%.
408
409 // For WIDE mode, set the pixel masks to guide the blender to cross-fade
410 // between the images on either side of each seam:
411 if (m_wb.stripType == STRIP_TYPE_WIDE)
412 {
413 if(m_wb.horizontal)
414 {
415 // Set the number of pixels around the seam to cross-fade between
416 // the two component images,
417 int tw = STRIP_CROSS_FADE_WIDTH * width;
418
419 // Proceed with the image index calculation for cross-fading
420 // only if the cross-fading width is larger than 0
421 if (tw > 0)
422 {
423 for(int y = 0; y < imgMos.Y.height; y++)
424 {
425 // Since we compare two adjecant pixels to determine
426 // whether there is a seam, the termination condition of x
427 // is set to imgMos.Y.width - tw, so that x+1 below
428 // won't exceed the imgMos' boundary.
429 for(int x = tw; x < imgMos.Y.width - tw; )
430 {
431 // Determine where the seam is...
432 if (imgMos.Y.ptr[y][x] != imgMos.Y.ptr[y][x+1] &&
433 imgMos.Y.ptr[y][x] != 255 &&
434 imgMos.Y.ptr[y][x+1] != 255)
435 {
436 // Find the image indices on both sides of the seam
437 unsigned char idx1 = imgMos.Y.ptr[y][x];
438 unsigned char idx2 = imgMos.Y.ptr[y][x+1];
439
440 for (int o = tw; o >= 0; o--)
441 {
442 // Set the image index to use for cross-fading
443 imgMos.V.ptr[y][x - o] = idx2;
444 // Set the intensity weights to use for cross-fading
445 imgMos.U.ptr[y][x - o] = 50 + (99 - 50) * o / tw;
446 }
447
448 for (int o = 1; o <= tw; o++)
449 {
450 // Set the image index to use for cross-fading
451 imgMos.V.ptr[y][x + o] = idx1;
452 // Set the intensity weights to use for cross-fading
453 imgMos.U.ptr[y][x + o] = imgMos.U.ptr[y][x - o];
454 }
455
456 x += (tw + 1);
457 }
458 else
459 {
460 x++;
461 }
462 }
463 }
464 }
465 }
466 else
467 {
468 // Set the number of pixels around the seam to cross-fade between
469 // the two component images,
470 int tw = STRIP_CROSS_FADE_WIDTH * height;
471
472 // Proceed with the image index calculation for cross-fading
473 // only if the cross-fading width is larger than 0
474 if (tw > 0)
475 {
476 for(int x = 0; x < imgMos.Y.width; x++)
477 {
478 // Since we compare two adjecant pixels to determine
479 // whether there is a seam, the termination condition of y
480 // is set to imgMos.Y.height - tw, so that y+1 below
481 // won't exceed the imgMos' boundary.
482 for(int y = tw; y < imgMos.Y.height - tw; )
483 {
484 // Determine where the seam is...
485 if (imgMos.Y.ptr[y][x] != imgMos.Y.ptr[y+1][x] &&
486 imgMos.Y.ptr[y][x] != 255 &&
487 imgMos.Y.ptr[y+1][x] != 255)
488 {
489 // Find the image indices on both sides of the seam
490 unsigned char idx1 = imgMos.Y.ptr[y][x];
491 unsigned char idx2 = imgMos.Y.ptr[y+1][x];
492
493 for (int o = tw; o >= 0; o--)
494 {
495 // Set the image index to use for cross-fading
496 imgMos.V.ptr[y - o][x] = idx2;
497 // Set the intensity weights to use for cross-fading
498 imgMos.U.ptr[y - o][x] = 50 + (99 - 50) * o / tw;
499 }
500
501 for (int o = 1; o <= tw; o++)
502 {
503 // Set the image index to use for cross-fading
504 imgMos.V.ptr[y + o][x] = idx1;
505 // Set the intensity weights to use for cross-fading
506 imgMos.U.ptr[y + o][x] = imgMos.U.ptr[y - o][x];
507 }
508
509 y += (tw + 1);
510 }
511 else
512 {
513 y++;
514 }
515 }
516 }
517 }
518 }
519
520 }
521
522 // Now perform the actual blending using the frame assignment determined above
523 site_idx = 0;
524 for(CSite *csite = m_AllSites; csite < esite; csite++)
525 {
526 if(cancelComputation)
527 {
528 if (m_pMosaicVPyr) free(m_pMosaicVPyr);
529 if (m_pMosaicUPyr) free(m_pMosaicUPyr);
530 if (m_pMosaicYPyr) free(m_pMosaicYPyr);
531 return BLEND_RET_CANCELLED;
532 }
533
534 mb = csite->getMb();
535
536
537 if(FillFramePyramid(mb)!=BLEND_RET_OK)
538 return BLEND_RET_ERROR;
539
540 ProcessPyramidForThisFrame(csite, mb->vcrect, mb->brect, rect, imgMos, mb->trs, site_idx);
541
542 progress += TIME_PERCENT_BLEND/nsite;
543
544 site_idx++;
545 }
546
547
548 // Blend
549 PerformFinalBlending(imgMos, cropping_rect);
550
551 if (m_pMosaicVPyr) free(m_pMosaicVPyr);
552 if (m_pMosaicUPyr) free(m_pMosaicUPyr);
553 if (m_pMosaicYPyr) free(m_pMosaicYPyr);
554
555 progress += TIME_PERCENT_FINAL;
556
557 return BLEND_RET_OK;
558 }
559
CropFinalMosaic(YUVinfo & imgMos,MosaicRect & cropping_rect)560 void Blend::CropFinalMosaic(YUVinfo &imgMos, MosaicRect &cropping_rect)
561 {
562 int i, j, k;
563 ImageType yimg;
564 ImageType uimg;
565 ImageType vimg;
566
567
568 yimg = imgMos.Y.ptr[0];
569 uimg = imgMos.U.ptr[0];
570 vimg = imgMos.V.ptr[0];
571
572 k = 0;
573 for (j = cropping_rect.top; j <= cropping_rect.bottom; j++)
574 {
575 for (i = cropping_rect.left; i <= cropping_rect.right; i++)
576 {
577 yimg[k] = yimg[j*imgMos.Y.width+i];
578 k++;
579 }
580 }
581 for (j = cropping_rect.top; j <= cropping_rect.bottom; j++)
582 {
583 for (i = cropping_rect.left; i <= cropping_rect.right; i++)
584 {
585 yimg[k] = vimg[j*imgMos.Y.width+i];
586 k++;
587 }
588 }
589 for (j = cropping_rect.top; j <= cropping_rect.bottom; j++)
590 {
591 for (i = cropping_rect.left; i <= cropping_rect.right; i++)
592 {
593 yimg[k] = uimg[j*imgMos.Y.width+i];
594 k++;
595 }
596 }
597 }
598
PerformFinalBlending(YUVinfo & imgMos,MosaicRect & cropping_rect)599 int Blend::PerformFinalBlending(YUVinfo &imgMos, MosaicRect &cropping_rect)
600 {
601 if (!PyramidShort::BorderExpand(m_pMosaicYPyr, m_wb.nlevs, 1) || !PyramidShort::BorderExpand(m_pMosaicUPyr, m_wb.nlevsC, 1) ||
602 !PyramidShort::BorderExpand(m_pMosaicVPyr, m_wb.nlevsC, 1))
603 {
604 LOGE("Error: Could not BorderExpand!");
605 return BLEND_RET_ERROR;
606 }
607
608 ImageTypeShort myimg;
609 ImageTypeShort muimg;
610 ImageTypeShort mvimg;
611 ImageType yimg;
612 ImageType uimg;
613 ImageType vimg;
614
615 int cx = (int)imgMos.Y.width/2;
616 int cy = (int)imgMos.Y.height/2;
617
618 // 2D boolean array that contains true wherever the mosaic image data is
619 // invalid (i.e. in the gray border).
620 bool **b = new bool*[imgMos.Y.height];
621
622 for(int j=0; j<imgMos.Y.height; j++)
623 {
624 b[j] = new bool[imgMos.Y.width];
625 }
626
627 // Copy the resulting image into the full image using the mask
628 int i, j;
629
630 yimg = imgMos.Y.ptr[0];
631 uimg = imgMos.U.ptr[0];
632 vimg = imgMos.V.ptr[0];
633
634 for (j = 0; j < imgMos.Y.height; j++)
635 {
636 myimg = m_pMosaicYPyr->ptr[j];
637 muimg = m_pMosaicUPyr->ptr[j];
638 mvimg = m_pMosaicVPyr->ptr[j];
639
640 for (i = 0; i<imgMos.Y.width; i++)
641 {
642 // A final mask was set up previously,
643 // if the value is zero skip it, otherwise replace it.
644 if (*yimg <255)
645 {
646 short value = (short) ((*myimg) >> 3);
647 if (value < 0) value = 0;
648 else if (value > 255) value = 255;
649 *yimg = (unsigned char) value;
650
651 value = (short) ((*muimg) >> 3);
652 if (value < 0) value = 0;
653 else if (value > 255) value = 255;
654 *uimg = (unsigned char) value;
655
656 value = (short) ((*mvimg) >> 3);
657 if (value < 0) value = 0;
658 else if (value > 255) value = 255;
659 *vimg = (unsigned char) value;
660
661 b[j][i] = false;
662
663 }
664 else
665 { // set border color in here
666 *yimg = (unsigned char) 96;
667 *uimg = (unsigned char) 128;
668 *vimg = (unsigned char) 128;
669
670 b[j][i] = true;
671 }
672
673 yimg++;
674 uimg++;
675 vimg++;
676 myimg++;
677 muimg++;
678 mvimg++;
679 }
680 }
681
682 if(m_wb.horizontal)
683 {
684 //Scan through each row and increment top if the row contains any gray
685 for (j = 0; j < imgMos.Y.height; j++)
686 {
687 for (i = cropping_rect.left; i < cropping_rect.right; i++)
688 {
689 if (b[j][i])
690 {
691 break; // to next row
692 }
693 }
694
695 if (i == cropping_rect.right) //no gray pixel in this row!
696 {
697 cropping_rect.top = j;
698 break;
699 }
700 }
701
702 //Scan through each row and decrement bottom if the row contains any gray
703 for (j = imgMos.Y.height-1; j >= 0; j--)
704 {
705 for (i = cropping_rect.left; i < cropping_rect.right; i++)
706 {
707 if (b[j][i])
708 {
709 break; // to next row
710 }
711 }
712
713 if (i == cropping_rect.right) //no gray pixel in this row!
714 {
715 cropping_rect.bottom = j;
716 break;
717 }
718 }
719 }
720 else // Vertical Mosaic
721 {
722 //Scan through each column and increment left if the column contains any gray
723 for (i = 0; i < imgMos.Y.width; i++)
724 {
725 for (j = cropping_rect.top; j < cropping_rect.bottom; j++)
726 {
727 if (b[j][i])
728 {
729 break; // to next column
730 }
731 }
732
733 if (j == cropping_rect.bottom) //no gray pixel in this column!
734 {
735 cropping_rect.left = i;
736 break;
737 }
738 }
739
740 //Scan through each column and decrement right if the column contains any gray
741 for (i = imgMos.Y.width-1; i >= 0; i--)
742 {
743 for (j = cropping_rect.top; j < cropping_rect.bottom; j++)
744 {
745 if (b[j][i])
746 {
747 break; // to next column
748 }
749 }
750
751 if (j == cropping_rect.bottom) //no gray pixel in this column!
752 {
753 cropping_rect.right = i;
754 break;
755 }
756 }
757 }
758
759 for(int j=0; j<imgMos.Y.height; j++)
760 {
761 delete b[j];
762 }
763
764 delete b;
765
766 return BLEND_RET_OK;
767 }
768
ComputeMask(CSite * csite,BlendRect & vcrect,BlendRect & brect,MosaicRect & rect,YUVinfo & imgMos,int site_idx)769 void Blend::ComputeMask(CSite *csite, BlendRect &vcrect, BlendRect &brect, MosaicRect &rect, YUVinfo &imgMos, int site_idx)
770 {
771 PyramidShort *dptr = m_pMosaicYPyr;
772
773 int nC = m_wb.nlevsC;
774 int l = (int) ((vcrect.lft - rect.left));
775 int b = (int) ((vcrect.bot - rect.top));
776 int r = (int) ((vcrect.rgt - rect.left));
777 int t = (int) ((vcrect.top - rect.top));
778
779 if (vcrect.lft == brect.lft)
780 l = (l <= 0) ? -BORDER : l - BORDER;
781 else if (l < -BORDER)
782 l = -BORDER;
783
784 if (vcrect.bot == brect.bot)
785 b = (b <= 0) ? -BORDER : b - BORDER;
786 else if (b < -BORDER)
787 b = -BORDER;
788
789 if (vcrect.rgt == brect.rgt)
790 r = (r >= dptr->width) ? dptr->width + BORDER - 1 : r + BORDER;
791 else if (r >= dptr->width + BORDER)
792 r = dptr->width + BORDER - 1;
793
794 if (vcrect.top == brect.top)
795 t = (t >= dptr->height) ? dptr->height + BORDER - 1 : t + BORDER;
796 else if (t >= dptr->height + BORDER)
797 t = dptr->height + BORDER - 1;
798
799 // Walk the Region of interest and populate the pyramid
800 for (int j = b; j <= t; j++)
801 {
802 int jj = j;
803 double sj = jj + rect.top;
804
805 for (int i = l; i <= r; i++)
806 {
807 int ii = i;
808 // project point and then triangulate to neighbors
809 double si = ii + rect.left;
810
811 double dself = hypotSq(csite->getVCenter().x - si, csite->getVCenter().y - sj);
812 int inMask = ((unsigned) ii < imgMos.Y.width &&
813 (unsigned) jj < imgMos.Y.height) ? 1 : 0;
814
815 if(!inMask)
816 continue;
817
818 // scan the neighbors to see if this is a valid position
819 unsigned char mask = (unsigned char) 255;
820 SEdgeVector *ce;
821 int ecnt;
822 for (ce = csite->getNeighbor(), ecnt = csite->getNumNeighbors(); ecnt--; ce++)
823 {
824 double d1 = hypotSq(m_AllSites[ce->second].getVCenter().x - si,
825 m_AllSites[ce->second].getVCenter().y - sj);
826 if (d1 < dself)
827 {
828 break;
829 }
830 }
831
832 if (ecnt >= 0) continue;
833
834 imgMos.Y.ptr[jj][ii] = (unsigned char)site_idx;
835 }
836 }
837 }
838
ProcessPyramidForThisFrame(CSite * csite,BlendRect & vcrect,BlendRect & brect,MosaicRect & rect,YUVinfo & imgMos,double trs[3][3],int site_idx)839 void Blend::ProcessPyramidForThisFrame(CSite *csite, BlendRect &vcrect, BlendRect &brect, MosaicRect &rect, YUVinfo &imgMos, double trs[3][3], int site_idx)
840 {
841 // Put the Region of interest (for all levels) into m_pMosaicYPyr
842 double inv_trs[3][3];
843 inv33d(trs, inv_trs);
844
845 // Process each pyramid level
846 PyramidShort *sptr = m_pFrameYPyr;
847 PyramidShort *suptr = m_pFrameUPyr;
848 PyramidShort *svptr = m_pFrameVPyr;
849
850 PyramidShort *dptr = m_pMosaicYPyr;
851 PyramidShort *duptr = m_pMosaicUPyr;
852 PyramidShort *dvptr = m_pMosaicVPyr;
853
854 int dscale = 0; // distance scale for the current level
855 int nC = m_wb.nlevsC;
856 for (int n = m_wb.nlevs; n--; dscale++, dptr++, sptr++, dvptr++, duptr++, svptr++, suptr++, nC--)
857 {
858 int l = (int) ((vcrect.lft - rect.left) / (1 << dscale));
859 int b = (int) ((vcrect.bot - rect.top) / (1 << dscale));
860 int r = (int) ((vcrect.rgt - rect.left) / (1 << dscale) + .5);
861 int t = (int) ((vcrect.top - rect.top) / (1 << dscale) + .5);
862
863 if (vcrect.lft == brect.lft)
864 l = (l <= 0) ? -BORDER : l - BORDER;
865 else if (l < -BORDER)
866 l = -BORDER;
867
868 if (vcrect.bot == brect.bot)
869 b = (b <= 0) ? -BORDER : b - BORDER;
870 else if (b < -BORDER)
871 b = -BORDER;
872
873 if (vcrect.rgt == brect.rgt)
874 r = (r >= dptr->width) ? dptr->width + BORDER - 1 : r + BORDER;
875 else if (r >= dptr->width + BORDER)
876 r = dptr->width + BORDER - 1;
877
878 if (vcrect.top == brect.top)
879 t = (t >= dptr->height) ? dptr->height + BORDER - 1 : t + BORDER;
880 else if (t >= dptr->height + BORDER)
881 t = dptr->height + BORDER - 1;
882
883 // Walk the Region of interest and populate the pyramid
884 for (int j = b; j <= t; j++)
885 {
886 int jj = (j << dscale);
887 double sj = jj + rect.top;
888
889 for (int i = l; i <= r; i++)
890 {
891 int ii = (i << dscale);
892 // project point and then triangulate to neighbors
893 double si = ii + rect.left;
894
895 int inMask = ((unsigned) ii < imgMos.Y.width &&
896 (unsigned) jj < imgMos.Y.height) ? 1 : 0;
897
898 if(inMask && imgMos.Y.ptr[jj][ii] != site_idx &&
899 imgMos.V.ptr[jj][ii] != site_idx &&
900 imgMos.Y.ptr[jj][ii] != 255)
901 continue;
902
903 // Setup weights for cross-fading
904 // Weight of the intensity already in the output pixel
905 double wt0 = 0.0;
906 // Weight of the intensity from the input pixel (current frame)
907 double wt1 = 1.0;
908
909 if (m_wb.stripType == STRIP_TYPE_WIDE)
910 {
911 if(inMask && imgMos.Y.ptr[jj][ii] != 255)
912 {
913 if(imgMos.V.ptr[jj][ii] == 128) // Not on a seam
914 {
915 wt0 = 0.0;
916 wt1 = 1.0;
917 }
918 else
919 {
920 wt0 = 1.0;
921 wt1 = ((imgMos.Y.ptr[jj][ii] == site_idx) ?
922 (double)imgMos.U.ptr[jj][ii] / 100.0 :
923 1.0 - (double)imgMos.U.ptr[jj][ii] / 100.0);
924 }
925 }
926 }
927
928 // Project this mosaic point into the original frame coordinate space
929 double xx, yy;
930
931 MosaicToFrame(inv_trs, si, sj, xx, yy);
932
933 if (xx < 0.0 || yy < 0.0 || xx > width - 1.0 || yy > height - 1.0)
934 {
935 if(inMask)
936 {
937 imgMos.Y.ptr[jj][ii] = 255;
938 wt0 = 0.0f;
939 wt1 = 1.0f;
940 }
941 }
942
943 xx /= (1 << dscale);
944 yy /= (1 << dscale);
945
946
947 int x1 = (xx >= 0.0) ? (int) xx : (int) floor(xx);
948 int y1 = (yy >= 0.0) ? (int) yy : (int) floor(yy);
949
950 // Final destination in extended pyramid
951 #ifndef LINEAR_INTERP
952 if(inSegment(x1, sptr->width, BORDER-1) &&
953 inSegment(y1, sptr->height, BORDER-1))
954 {
955 double xfrac = xx - x1;
956 double yfrac = yy - y1;
957 dptr->ptr[j][i] = (short) (wt0 * dptr->ptr[j][i] + .5 +
958 wt1 * ciCalc(sptr, x1, y1, xfrac, yfrac));
959 if (dvptr >= m_pMosaicVPyr && nC > 0)
960 {
961 duptr->ptr[j][i] = (short) (wt0 * duptr->ptr[j][i] + .5 +
962 wt1 * ciCalc(suptr, x1, y1, xfrac, yfrac));
963 dvptr->ptr[j][i] = (short) (wt0 * dvptr->ptr[j][i] + .5 +
964 wt1 * ciCalc(svptr, x1, y1, xfrac, yfrac));
965 }
966 }
967 #else
968 if(inSegment(x1, sptr->width, BORDER) && inSegment(y1, sptr->height, BORDER))
969 {
970 int x2 = x1 + 1;
971 int y2 = y1 + 1;
972 double xfrac = xx - x1;
973 double yfrac = yy - y1;
974 double y1val = sptr->ptr[y1][x1] +
975 (sptr->ptr[y1][x2] - sptr->ptr[y1][x1]) * xfrac;
976 double y2val = sptr->ptr[y2][x1] +
977 (sptr->ptr[y2][x2] - sptr->ptr[y2][x1]) * xfrac;
978 dptr->ptr[j][i] = (short) (y1val + yfrac * (y2val - y1val));
979
980 if (dvptr >= m_pMosaicVPyr && nC > 0)
981 {
982 y1val = suptr->ptr[y1][x1] +
983 (suptr->ptr[y1][x2] - suptr->ptr[y1][x1]) * xfrac;
984 y2val = suptr->ptr[y2][x1] +
985 (suptr->ptr[y2][x2] - suptr->ptr[y2][x1]) * xfrac;
986
987 duptr->ptr[j][i] = (short) (y1val + yfrac * (y2val - y1val));
988
989 y1val = svptr->ptr[y1][x1] +
990 (svptr->ptr[y1][x2] - svptr->ptr[y1][x1]) * xfrac;
991 y2val = svptr->ptr[y2][x1] +
992 (svptr->ptr[y2][x2] - svptr->ptr[y2][x1]) * xfrac;
993
994 dvptr->ptr[j][i] = (short) (y1val + yfrac * (y2val - y1val));
995 }
996 }
997 #endif
998 else
999 {
1000 clipToSegment(x1, sptr->width, BORDER);
1001 clipToSegment(y1, sptr->height, BORDER);
1002
1003 dptr->ptr[j][i] = (short) (wt0 * dptr->ptr[j][i] + 0.5 +
1004 wt1 * sptr->ptr[y1][x1] );
1005 if (dvptr >= m_pMosaicVPyr && nC > 0)
1006 {
1007 dvptr->ptr[j][i] = (short) (wt0 * dvptr->ptr[j][i] +
1008 0.5 + wt1 * svptr->ptr[y1][x1] );
1009 duptr->ptr[j][i] = (short) (wt0 * duptr->ptr[j][i] +
1010 0.5 + wt1 * suptr->ptr[y1][x1] );
1011 }
1012 }
1013 }
1014 }
1015 }
1016 }
1017
MosaicToFrame(double trs[3][3],double x,double y,double & wx,double & wy)1018 void Blend::MosaicToFrame(double trs[3][3], double x, double y, double &wx, double &wy)
1019 {
1020 double X, Y, z;
1021 if (m_wb.theta == 0.0)
1022 {
1023 X = x;
1024 Y = y;
1025 }
1026 else if (m_wb.horizontal)
1027 {
1028 double alpha = x * m_wb.direction / m_wb.width;
1029 double length = (y - alpha * m_wb.correction) * m_wb.direction + m_wb.radius;
1030 double deltaTheta = m_wb.theta * alpha;
1031 double sinTheta = sin(deltaTheta);
1032 double cosTheta = sqrt(1.0 - sinTheta * sinTheta) * m_wb.direction;
1033 X = length * sinTheta + m_wb.x;
1034 Y = length * cosTheta + m_wb.y;
1035 }
1036 else
1037 {
1038 double alpha = y * m_wb.direction / m_wb.width;
1039 double length = (x - alpha * m_wb.correction) * m_wb.direction + m_wb.radius;
1040 double deltaTheta = m_wb.theta * alpha;
1041 double sinTheta = sin(deltaTheta);
1042 double cosTheta = sqrt(1.0 - sinTheta * sinTheta) * m_wb.direction;
1043 Y = length * sinTheta + m_wb.y;
1044 X = length * cosTheta + m_wb.x;
1045 }
1046 z = ProjZ(trs, X, Y, 1.0);
1047 wx = ProjX(trs, X, Y, z, 1.0);
1048 wy = ProjY(trs, X, Y, z, 1.0);
1049 }
1050
FrameToMosaic(double trs[3][3],double x,double y,double & wx,double & wy)1051 void Blend::FrameToMosaic(double trs[3][3], double x, double y, double &wx, double &wy)
1052 {
1053 // Project into the intermediate Mosaic coordinate system
1054 double z = ProjZ(trs, x, y, 1.0);
1055 double X = ProjX(trs, x, y, z, 1.0);
1056 double Y = ProjY(trs, x, y, z, 1.0);
1057
1058 if (m_wb.theta == 0.0)
1059 {
1060 // No rotation, then this is all we need to do.
1061 wx = X;
1062 wy = Y;
1063 }
1064 else if (m_wb.horizontal)
1065 {
1066 double deltaX = X - m_wb.x;
1067 double deltaY = Y - m_wb.y;
1068 double length = sqrt(deltaX * deltaX + deltaY * deltaY);
1069 double deltaTheta = asin(deltaX / length);
1070 double alpha = deltaTheta / m_wb.theta;
1071 wx = alpha * m_wb.width * m_wb.direction;
1072 wy = (length - m_wb.radius) * m_wb.direction + alpha * m_wb.correction;
1073 }
1074 else
1075 {
1076 double deltaX = X - m_wb.x;
1077 double deltaY = Y - m_wb.y;
1078 double length = sqrt(deltaX * deltaX + deltaY * deltaY);
1079 double deltaTheta = asin(deltaY / length);
1080 double alpha = deltaTheta / m_wb.theta;
1081 wy = alpha * m_wb.width * m_wb.direction;
1082 wx = (length - m_wb.radius) * m_wb.direction + alpha * m_wb.correction;
1083 }
1084 }
1085
1086
1087
1088 // Clip the region of interest as small as possible by using the Voronoi edges of
1089 // the neighbors
ClipBlendRect(CSite * csite,BlendRect & brect)1090 void Blend::ClipBlendRect(CSite *csite, BlendRect &brect)
1091 {
1092 SEdgeVector *ce;
1093 int ecnt;
1094 for (ce = csite->getNeighbor(), ecnt = csite->getNumNeighbors(); ecnt--; ce++)
1095 {
1096 // calculate the Voronoi bisector intersection
1097 const double epsilon = 1e-5;
1098 double dx = (m_AllSites[ce->second].getVCenter().x - m_AllSites[ce->first].getVCenter().x);
1099 double dy = (m_AllSites[ce->second].getVCenter().y - m_AllSites[ce->first].getVCenter().y);
1100 double xmid = m_AllSites[ce->first].getVCenter().x + dx/2.0;
1101 double ymid = m_AllSites[ce->first].getVCenter().y + dy/2.0;
1102 double inter;
1103
1104 if (dx > epsilon)
1105 {
1106 // neighbor is on right
1107 if ((inter = m_wb.roundoffOverlap + xmid - dy * (((dy >= 0.0) ? brect.bot : brect.top) - ymid) / dx) < brect.rgt)
1108 brect.rgt = inter;
1109 }
1110 else if (dx < -epsilon)
1111 {
1112 // neighbor is on left
1113 if ((inter = -m_wb.roundoffOverlap + xmid - dy * (((dy >= 0.0) ? brect.bot : brect.top) - ymid) / dx) > brect.lft)
1114 brect.lft = inter;
1115 }
1116 if (dy > epsilon)
1117 {
1118 // neighbor is above
1119 if ((inter = m_wb.roundoffOverlap + ymid - dx * (((dx >= 0.0) ? brect.lft : brect.rgt) - xmid) / dy) < brect.top)
1120 brect.top = inter;
1121 }
1122 else if (dy < -epsilon)
1123 {
1124 // neighbor is below
1125 if ((inter = -m_wb.roundoffOverlap + ymid - dx * (((dx >= 0.0) ? brect.lft : brect.rgt) - xmid) / dy) > brect.bot)
1126 brect.bot = inter;
1127 }
1128 }
1129 }
1130
FrameToMosaicRect(int width,int height,double trs[3][3],BlendRect & brect)1131 void Blend::FrameToMosaicRect(int width, int height, double trs[3][3], BlendRect &brect)
1132 {
1133 // We need to walk the perimeter since the borders can be bent.
1134 brect.lft = brect.bot = 2e30;
1135 brect.rgt = brect.top = -2e30;
1136 double xpos, ypos;
1137 double lasty = height - 1.0;
1138 double lastx = width - 1.0;
1139 int i;
1140
1141 for (i = width; i--;)
1142 {
1143
1144 FrameToMosaic(trs, (double) i, 0.0, xpos, ypos);
1145 ClipRect(xpos, ypos, brect);
1146 FrameToMosaic(trs, (double) i, lasty, xpos, ypos);
1147 ClipRect(xpos, ypos, brect);
1148 }
1149 for (i = height; i--;)
1150 {
1151 FrameToMosaic(trs, 0.0, (double) i, xpos, ypos);
1152 ClipRect(xpos, ypos, brect);
1153 FrameToMosaic(trs, lastx, (double) i, xpos, ypos);
1154 ClipRect(xpos, ypos, brect);
1155 }
1156 }
1157
SelectRelevantFrames(MosaicFrame ** frames,int frames_size,MosaicFrame ** relevant_frames,int & relevant_frames_size)1158 void Blend::SelectRelevantFrames(MosaicFrame **frames, int frames_size,
1159 MosaicFrame **relevant_frames, int &relevant_frames_size)
1160 {
1161 MosaicFrame *first = frames[0];
1162 MosaicFrame *last = frames[frames_size-1];
1163 MosaicFrame *mb;
1164
1165 double fxpos = first->trs[0][2], fypos = first->trs[1][2];
1166
1167 double midX = last->width / 2.0;
1168 double midY = last->height / 2.0;
1169 double z = ProjZ(first->trs, midX, midY, 1.0);
1170 double firstX, firstY;
1171 double prevX = firstX = ProjX(first->trs, midX, midY, z, 1.0);
1172 double prevY = firstY = ProjY(first->trs, midX, midY, z, 1.0);
1173
1174 relevant_frames[0] = first; // Add first frame by default
1175 relevant_frames_size = 1;
1176
1177 for (int i = 0; i < frames_size - 1; i++)
1178 {
1179 mb = frames[i];
1180 double currX, currY;
1181 z = ProjZ(mb->trs, midX, midY, 1.0);
1182 currX = ProjX(mb->trs, midX, midY, z, 1.0);
1183 currY = ProjY(mb->trs, midX, midY, z, 1.0);
1184 double deltaX = currX - prevX;
1185 double deltaY = currY - prevY;
1186 double center2centerDist = sqrt(deltaY * deltaY + deltaX * deltaX);
1187
1188 if (fabs(deltaX) > STRIP_SEPARATION_THRESHOLD * last->width ||
1189 fabs(deltaY) > STRIP_SEPARATION_THRESHOLD * last->height)
1190 {
1191 relevant_frames[relevant_frames_size] = mb;
1192 relevant_frames_size++;
1193
1194 prevX = currX;
1195 prevY = currY;
1196 }
1197 }
1198
1199 // Add last frame by default
1200 relevant_frames[relevant_frames_size] = last;
1201 relevant_frames_size++;
1202 }
1203
ComputeBlendParameters(MosaicFrame ** frames,int frames_size,int is360)1204 void Blend::ComputeBlendParameters(MosaicFrame **frames, int frames_size, int is360)
1205 {
1206 // For FULL and PAN modes, we do not unwarp the mosaic into a rectangular coordinate system
1207 // and so we set the theta to 0 and return.
1208 if (m_wb.blendingType != BLEND_TYPE_CYLPAN && m_wb.blendingType != BLEND_TYPE_HORZ)
1209 {
1210 m_wb.theta = 0.0;
1211 return;
1212 }
1213
1214 MosaicFrame *first = frames[0];
1215 MosaicFrame *last = frames[frames_size-1];
1216 MosaicFrame *mb;
1217
1218 double lxpos = last->trs[0][2], lypos = last->trs[1][2];
1219 double fxpos = first->trs[0][2], fypos = first->trs[1][2];
1220
1221 // Calculate warp to produce proper stitching.
1222 // get x, y displacement
1223 double midX = last->width / 2.0;
1224 double midY = last->height / 2.0;
1225 double z = ProjZ(first->trs, midX, midY, 1.0);
1226 double firstX, firstY;
1227 double prevX = firstX = ProjX(first->trs, midX, midY, z, 1.0);
1228 double prevY = firstY = ProjY(first->trs, midX, midY, z, 1.0);
1229
1230 double arcLength, lastTheta;
1231 m_wb.theta = lastTheta = arcLength = 0.0;
1232
1233 // Step through all the frames to compute the total arc-length of the cone
1234 // swept while capturing the mosaic (in the original conical coordinate system).
1235 for (int i = 0; i < frames_size; i++)
1236 {
1237 mb = frames[i];
1238 double currX, currY;
1239 z = ProjZ(mb->trs, midX, midY, 1.0);
1240 currX = ProjX(mb->trs, midX, midY, z, 1.0);
1241 currY = ProjY(mb->trs, midX, midY, z, 1.0);
1242 double deltaX = currX - prevX;
1243 double deltaY = currY - prevY;
1244
1245 // The arcLength is computed by summing the lengths of the chords
1246 // connecting the pairwise projected image centers of the input image frames.
1247 arcLength += sqrt(deltaY * deltaY + deltaX * deltaX);
1248
1249 if (!is360)
1250 {
1251 double thisTheta = asin(mb->trs[1][0]);
1252 m_wb.theta += thisTheta - lastTheta;
1253 lastTheta = thisTheta;
1254 }
1255
1256 prevX = currX;
1257 prevY = currY;
1258 }
1259
1260 // Stretch this to end at the proper alignment i.e. the width of the
1261 // rectangle is determined by the arcLength computed above and the cone
1262 // sector angle is determined using the rotation of the last frame.
1263 m_wb.width = arcLength;
1264 if (is360) m_wb.theta = asin(last->trs[1][0]);
1265
1266 // If there is no rotation, we're done.
1267 if (m_wb.theta != 0.0)
1268 {
1269 double dx = prevX - firstX;
1270 double dy = prevY - firstY;
1271
1272 // If the mosaic was captured by sweeping horizontally
1273 if (abs(lxpos - fxpos) > abs(lypos - fypos))
1274 {
1275 m_wb.horizontal = 1;
1276 // Calculate radius position to make ends exactly the same Y offset
1277 double radiusTheta = dx / cos(3.14159 / 2.0 - m_wb.theta);
1278 m_wb.radius = dy + radiusTheta * cos(m_wb.theta);
1279 if (m_wb.radius < 0.0) m_wb.radius = -m_wb.radius;
1280 }
1281 else
1282 {
1283 m_wb.horizontal = 0;
1284 // Calculate radius position to make ends exactly the same Y offset
1285 double radiusTheta = dy / cos(3.14159 / 2.0 - m_wb.theta);
1286 m_wb.radius = dx + radiusTheta * cos(m_wb.theta);
1287 if (m_wb.radius < 0.0) m_wb.radius = -m_wb.radius;
1288 }
1289
1290 // Determine major direction
1291 if (m_wb.horizontal)
1292 {
1293 // Horizontal strip
1294 // m_wb.x,y record the origin of the rectangle coordinate system.
1295 if (is360) m_wb.x = firstX;
1296 else
1297 {
1298 if (lxpos - fxpos < 0)
1299 {
1300 m_wb.x = firstX + midX;
1301 z = ProjZ(last->trs, 0.0, midY, 1.0);
1302 prevX = ProjX(last->trs, 0.0, midY, z, 1.0);
1303 prevY = ProjY(last->trs, 0.0, midY, z, 1.0);
1304 }
1305 else
1306 {
1307 m_wb.x = firstX - midX;
1308 z = ProjZ(last->trs, last->width - 1.0, midY, 1.0);
1309 prevX = ProjX(last->trs, last->width - 1.0, midY, z, 1.0);
1310 prevY = ProjY(last->trs, last->width - 1.0, midY, z, 1.0);
1311 }
1312 }
1313 dy = prevY - firstY;
1314 if (dy < 0.0) m_wb.direction = 1.0;
1315 else m_wb.direction = -1.0;
1316 m_wb.y = firstY - m_wb.radius * m_wb.direction;
1317 if (dy * m_wb.theta > 0.0) m_wb.width = -m_wb.width;
1318 }
1319 else
1320 {
1321 // Vertical strip
1322 if (is360) m_wb.y = firstY;
1323 else
1324 {
1325 if (lypos - fypos < 0)
1326 {
1327 m_wb.x = firstY + midY;
1328 z = ProjZ(last->trs, midX, 0.0, 1.0);
1329 prevX = ProjX(last->trs, midX, 0.0, z, 1.0);
1330 prevY = ProjY(last->trs, midX, 0.0, z, 1.0);
1331 }
1332 else
1333 {
1334 m_wb.x = firstX - midX;
1335 z = ProjZ(last->trs, midX, last->height - 1.0, 1.0);
1336 prevX = ProjX(last->trs, midX, last->height - 1.0, z, 1.0);
1337 prevY = ProjY(last->trs, midX, last->height - 1.0, z, 1.0);
1338 }
1339 }
1340 dx = prevX - firstX;
1341 if (dx < 0.0) m_wb.direction = 1.0;
1342 else m_wb.direction = -1.0;
1343 m_wb.x = firstX - m_wb.radius * m_wb.direction;
1344 if (dx * m_wb.theta > 0.0) m_wb.width = -m_wb.width;
1345 }
1346
1347 // Calculate the correct correction factor
1348 double deltaX = prevX - m_wb.x;
1349 double deltaY = prevY - m_wb.y;
1350 double length = sqrt(deltaX * deltaX + deltaY * deltaY);
1351 double deltaTheta = (m_wb.horizontal) ? deltaX : deltaY;
1352 deltaTheta = asin(deltaTheta / length);
1353 m_wb.correction = ((m_wb.radius - length) * m_wb.direction) /
1354 (deltaTheta / m_wb.theta);
1355 }
1356 }
1357