• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Histogram is an object that aggregates statistics, and can summarize them in
6 // various forms, including ASCII graphical, HTML, and numerically (as a
7 // vector of numbers corresponding to each of the aggregating buckets).
8 // See header file for details and examples.
9 
10 #include "base/metrics/histogram.h"
11 
12 #include <math.h>
13 
14 #include <algorithm>
15 #include <string>
16 
17 #include "base/logging.h"
18 #include "base/pickle.h"
19 #include "base/stringprintf.h"
20 #include "base/synchronization/lock.h"
21 
22 namespace base {
23 
24 // Static table of checksums for all possible 8 bit bytes.
25 const uint32 Histogram::kCrcTable[256] = {0x0, 0x77073096L, 0xee0e612cL,
26 0x990951baL, 0x76dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0xedb8832L,
27 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x9b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
28 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL,
29 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 0x646ba8c0L, 0xfd62f97aL,
30 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L,
31 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL,
32 0xa50ab56bL, 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
33 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 0xc8d75180L,
34 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL, 0x2802b89eL,
35 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL,
36 0xb6662d3dL, 0x76dc4190L, 0x1db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L,
37 0x6b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0xf00f934L, 0x9609a88eL,
38 0xe10e9818L, 0x7f6a0dbbL, 0x86d3d2dL, 0x91646c97L, 0xe6635c01L, 0x6b6b51f4L,
39 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L,
40 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL,
41 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L,
42 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
43 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL,
44 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L,
45 0x206f85b3L, 0xb966d409L, 0xce61e49fL, 0x5edef90eL, 0x29d9c998L, 0xb0d09822L,
46 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L,
47 0x9abfb3b6L, 0x3b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x4db2615L,
48 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0xd6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL,
49 0x9309ff9dL, 0xa00ae27L, 0x7d079eb1L, 0xf00f9344L, 0x8708a3d2L, 0x1e01f268L,
50 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L,
51 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L,
52 0x60b08ed5L, 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
53 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L,
54 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L, 0xcb61b38cL,
55 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L,
56 0x5505262fL, 0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L,
57 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
58 0x26d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x5005713L, 0x95bf4a82L,
59 0xe2b87a14L, 0x7bb12baeL, 0xcb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L,
60 0xbdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL,
61 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL,
62 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
63 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL,
64 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L,
65 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L,
66 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL,
67 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
68 0x2d02ef8dL,
69 };
70 
71 typedef Histogram::Count Count;
72 
73 // static
74 const size_t Histogram::kBucketCount_MAX = 16384u;
75 
FactoryGet(const std::string & name,Sample minimum,Sample maximum,size_t bucket_count,Flags flags)76 Histogram* Histogram::FactoryGet(const std::string& name,
77                                  Sample minimum,
78                                  Sample maximum,
79                                  size_t bucket_count,
80                                  Flags flags) {
81   Histogram* histogram(NULL);
82 
83   // Defensive code.
84   if (minimum < 1)
85     minimum = 1;
86   if (maximum > kSampleType_MAX - 1)
87     maximum = kSampleType_MAX - 1;
88 
89   if (!StatisticsRecorder::FindHistogram(name, &histogram)) {
90     // Extra variable is not needed... but this keeps this section basically
91     // identical to other derived classes in this file (and compiler will
92     // optimize away the extra variable.
93     // To avoid racy destruction at shutdown, the following will be leaked.
94     Histogram* tentative_histogram =
95         new Histogram(name, minimum, maximum, bucket_count);
96     tentative_histogram->InitializeBucketRange();
97     tentative_histogram->SetFlags(flags);
98     histogram =
99         StatisticsRecorder::RegisterOrDeleteDuplicate(tentative_histogram);
100   }
101 
102   DCHECK_EQ(HISTOGRAM, histogram->histogram_type());
103   DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count));
104   return histogram;
105 }
106 
FactoryTimeGet(const std::string & name,TimeDelta minimum,TimeDelta maximum,size_t bucket_count,Flags flags)107 Histogram* Histogram::FactoryTimeGet(const std::string& name,
108                                      TimeDelta minimum,
109                                      TimeDelta maximum,
110                                      size_t bucket_count,
111                                      Flags flags) {
112   return FactoryGet(name, minimum.InMilliseconds(), maximum.InMilliseconds(),
113                     bucket_count, flags);
114 }
115 
Add(int value)116 void Histogram::Add(int value) {
117   if (value > kSampleType_MAX - 1)
118     value = kSampleType_MAX - 1;
119   if (value < 0)
120     value = 0;
121   size_t index = BucketIndex(value);
122   DCHECK_GE(value, ranges(index));
123   DCHECK_LT(value, ranges(index + 1));
124   Accumulate(value, 1, index);
125 }
126 
AddBoolean(bool value)127 void Histogram::AddBoolean(bool value) {
128   DCHECK(false);
129 }
130 
AddSampleSet(const SampleSet & sample)131 void Histogram::AddSampleSet(const SampleSet& sample) {
132   sample_.Add(sample);
133 }
134 
SetRangeDescriptions(const DescriptionPair descriptions[])135 void Histogram::SetRangeDescriptions(const DescriptionPair descriptions[]) {
136   DCHECK(false);
137 }
138 
139 // The following methods provide a graphical histogram display.
WriteHTMLGraph(std::string * output) const140 void Histogram::WriteHTMLGraph(std::string* output) const {
141   // TBD(jar) Write a nice HTML bar chart, with divs an mouse-overs etc.
142   output->append("<PRE>");
143   WriteAscii(true, "<br>", output);
144   output->append("</PRE>");
145 }
146 
WriteAscii(bool graph_it,const std::string & newline,std::string * output) const147 void Histogram::WriteAscii(bool graph_it, const std::string& newline,
148                            std::string* output) const {
149   // Get local (stack) copies of all effectively volatile class data so that we
150   // are consistent across our output activities.
151   SampleSet snapshot;
152   SnapshotSample(&snapshot);
153   Count sample_count = snapshot.TotalCount();
154 
155   WriteAsciiHeader(snapshot, sample_count, output);
156   output->append(newline);
157 
158   // Prepare to normalize graphical rendering of bucket contents.
159   double max_size = 0;
160   if (graph_it)
161     max_size = GetPeakBucketSize(snapshot);
162 
163   // Calculate space needed to print bucket range numbers.  Leave room to print
164   // nearly the largest bucket range without sliding over the histogram.
165   size_t largest_non_empty_bucket = bucket_count() - 1;
166   while (0 == snapshot.counts(largest_non_empty_bucket)) {
167     if (0 == largest_non_empty_bucket)
168       break;  // All buckets are empty.
169     --largest_non_empty_bucket;
170   }
171 
172   // Calculate largest print width needed for any of our bucket range displays.
173   size_t print_width = 1;
174   for (size_t i = 0; i < bucket_count(); ++i) {
175     if (snapshot.counts(i)) {
176       size_t width = GetAsciiBucketRange(i).size() + 1;
177       if (width > print_width)
178         print_width = width;
179     }
180   }
181 
182   int64 remaining = sample_count;
183   int64 past = 0;
184   // Output the actual histogram graph.
185   for (size_t i = 0; i < bucket_count(); ++i) {
186     Count current = snapshot.counts(i);
187     if (!current && !PrintEmptyBucket(i))
188       continue;
189     remaining -= current;
190     std::string range = GetAsciiBucketRange(i);
191     output->append(range);
192     for (size_t j = 0; range.size() + j < print_width + 1; ++j)
193       output->push_back(' ');
194     if (0 == current && i < bucket_count() - 1 && 0 == snapshot.counts(i + 1)) {
195       while (i < bucket_count() - 1 && 0 == snapshot.counts(i + 1))
196         ++i;
197       output->append("... ");
198       output->append(newline);
199       continue;  // No reason to plot emptiness.
200     }
201     double current_size = GetBucketSize(current, i);
202     if (graph_it)
203       WriteAsciiBucketGraph(current_size, max_size, output);
204     WriteAsciiBucketContext(past, current, remaining, i, output);
205     output->append(newline);
206     past += current;
207   }
208   DCHECK_EQ(sample_count, past);
209 }
210 
211 // static
SerializeHistogramInfo(const Histogram & histogram,const SampleSet & snapshot)212 std::string Histogram::SerializeHistogramInfo(const Histogram& histogram,
213                                               const SampleSet& snapshot) {
214   DCHECK_NE(NOT_VALID_IN_RENDERER, histogram.histogram_type());
215 
216   Pickle pickle;
217   pickle.WriteString(histogram.histogram_name());
218   pickle.WriteInt(histogram.declared_min());
219   pickle.WriteInt(histogram.declared_max());
220   pickle.WriteSize(histogram.bucket_count());
221   pickle.WriteUInt32(histogram.range_checksum());
222   pickle.WriteInt(histogram.histogram_type());
223   pickle.WriteInt(histogram.flags());
224 
225   snapshot.Serialize(&pickle);
226   return std::string(static_cast<const char*>(pickle.data()), pickle.size());
227 }
228 
229 // static
DeserializeHistogramInfo(const std::string & histogram_info)230 bool Histogram::DeserializeHistogramInfo(const std::string& histogram_info) {
231   if (histogram_info.empty()) {
232       return false;
233   }
234 
235   Pickle pickle(histogram_info.data(),
236                 static_cast<int>(histogram_info.size()));
237   std::string histogram_name;
238   int declared_min;
239   int declared_max;
240   size_t bucket_count;
241   uint32 range_checksum;
242   int histogram_type;
243   int pickle_flags;
244   SampleSet sample;
245 
246   void* iter = NULL;
247   if (!pickle.ReadString(&iter, &histogram_name) ||
248       !pickle.ReadInt(&iter, &declared_min) ||
249       !pickle.ReadInt(&iter, &declared_max) ||
250       !pickle.ReadSize(&iter, &bucket_count) ||
251       !pickle.ReadUInt32(&iter, &range_checksum) ||
252       !pickle.ReadInt(&iter, &histogram_type) ||
253       !pickle.ReadInt(&iter, &pickle_flags) ||
254       !sample.Histogram::SampleSet::Deserialize(&iter, pickle)) {
255     LOG(ERROR) << "Pickle error decoding Histogram: " << histogram_name;
256     return false;
257   }
258   DCHECK(pickle_flags & kIPCSerializationSourceFlag);
259   // Since these fields may have come from an untrusted renderer, do additional
260   // checks above and beyond those in Histogram::Initialize()
261   if (declared_max <= 0 || declared_min <= 0 || declared_max < declared_min ||
262       INT_MAX / sizeof(Count) <= bucket_count || bucket_count < 2) {
263     LOG(ERROR) << "Values error decoding Histogram: " << histogram_name;
264     return false;
265   }
266 
267   Flags flags = static_cast<Flags>(pickle_flags & ~kIPCSerializationSourceFlag);
268 
269   DCHECK_NE(NOT_VALID_IN_RENDERER, histogram_type);
270 
271   Histogram* render_histogram(NULL);
272 
273   if (histogram_type == HISTOGRAM) {
274     render_histogram = Histogram::FactoryGet(
275         histogram_name, declared_min, declared_max, bucket_count, flags);
276   } else if (histogram_type == LINEAR_HISTOGRAM) {
277     render_histogram = LinearHistogram::FactoryGet(
278         histogram_name, declared_min, declared_max, bucket_count, flags);
279   } else if (histogram_type == BOOLEAN_HISTOGRAM) {
280     render_histogram = BooleanHistogram::FactoryGet(histogram_name, flags);
281   } else {
282     LOG(ERROR) << "Error Deserializing Histogram Unknown histogram_type: "
283                << histogram_type;
284     return false;
285   }
286 
287   DCHECK_EQ(render_histogram->declared_min(), declared_min);
288   DCHECK_EQ(render_histogram->declared_max(), declared_max);
289   DCHECK_EQ(render_histogram->bucket_count(), bucket_count);
290   DCHECK_EQ(render_histogram->range_checksum(), range_checksum);
291   DCHECK_EQ(render_histogram->histogram_type(), histogram_type);
292 
293   if (render_histogram->flags() & kIPCSerializationSourceFlag) {
294     DVLOG(1) << "Single process mode, histogram observed and not copied: "
295              << histogram_name;
296   } else {
297     DCHECK_EQ(flags & render_histogram->flags(), flags);
298     render_histogram->AddSampleSet(sample);
299   }
300 
301   return true;
302 }
303 
304 //------------------------------------------------------------------------------
305 // Methods for the validating a sample and a related histogram.
306 //------------------------------------------------------------------------------
307 
FindCorruption(const SampleSet & snapshot) const308 Histogram::Inconsistencies Histogram::FindCorruption(
309     const SampleSet& snapshot) const {
310   int inconsistencies = NO_INCONSISTENCIES;
311   Sample previous_range = -1;  // Bottom range is always 0.
312   int64 count = 0;
313   for (size_t index = 0; index < bucket_count(); ++index) {
314     count += snapshot.counts(index);
315     int new_range = ranges(index);
316     if (previous_range >= new_range)
317       inconsistencies |= BUCKET_ORDER_ERROR;
318     previous_range = new_range;
319   }
320 
321   if (!HasValidRangeChecksum())
322     inconsistencies |= RANGE_CHECKSUM_ERROR;
323 
324   int64 delta64 = snapshot.redundant_count() - count;
325   if (delta64 != 0) {
326     int delta = static_cast<int>(delta64);
327     if (delta != delta64)
328       delta = INT_MAX;  // Flag all giant errors as INT_MAX.
329     // Since snapshots of histograms are taken asynchronously relative to
330     // sampling (and snapped from different threads), it is pretty likely that
331     // we'll catch a redundant count that doesn't match the sample count.  We
332     // allow for a certain amount of slop before flagging this as an
333     // inconsistency.  Even with an inconsistency, we'll snapshot it again (for
334     // UMA in about a half hour, so we'll eventually get the data, if it was
335     // not the result of a corruption.  If histograms show that 1 is "too tight"
336     // then we may try to use 2 or 3 for this slop value.
337     const int kCommonRaceBasedCountMismatch = 1;
338     if (delta > 0) {
339       UMA_HISTOGRAM_COUNTS("Histogram.InconsistentCountHigh", delta);
340       if (delta > kCommonRaceBasedCountMismatch)
341         inconsistencies |= COUNT_HIGH_ERROR;
342     } else {
343       DCHECK_GT(0, delta);
344       UMA_HISTOGRAM_COUNTS("Histogram.InconsistentCountLow", -delta);
345       if (-delta > kCommonRaceBasedCountMismatch)
346         inconsistencies |= COUNT_LOW_ERROR;
347     }
348   }
349   return static_cast<Inconsistencies>(inconsistencies);
350 }
351 
histogram_type() const352 Histogram::ClassType Histogram::histogram_type() const {
353   return HISTOGRAM;
354 }
355 
ranges(size_t i) const356 Histogram::Sample Histogram::ranges(size_t i) const {
357   return ranges_[i];
358 }
359 
bucket_count() const360 size_t Histogram::bucket_count() const {
361   return bucket_count_;
362 }
363 
364 // Do a safe atomic snapshot of sample data.
365 // This implementation assumes we are on a safe single thread.
SnapshotSample(SampleSet * sample) const366 void Histogram::SnapshotSample(SampleSet* sample) const {
367   // Note locking not done in this version!!!
368   *sample = sample_;
369 }
370 
HasConstructorArguments(Sample minimum,Sample maximum,size_t bucket_count)371 bool Histogram::HasConstructorArguments(Sample minimum,
372                                         Sample maximum,
373                                         size_t bucket_count) {
374   return ((minimum == declared_min_) && (maximum == declared_max_) &&
375           (bucket_count == bucket_count_));
376 }
377 
HasConstructorTimeDeltaArguments(TimeDelta minimum,TimeDelta maximum,size_t bucket_count)378 bool Histogram::HasConstructorTimeDeltaArguments(TimeDelta minimum,
379                                                  TimeDelta maximum,
380                                                  size_t bucket_count) {
381   return ((minimum.InMilliseconds() == declared_min_) &&
382           (maximum.InMilliseconds() == declared_max_) &&
383           (bucket_count == bucket_count_));
384 }
385 
HasValidRangeChecksum() const386 bool Histogram::HasValidRangeChecksum() const {
387   return CalculateRangeChecksum() == range_checksum_;
388 }
389 
Histogram(const std::string & name,Sample minimum,Sample maximum,size_t bucket_count)390 Histogram::Histogram(const std::string& name, Sample minimum,
391                      Sample maximum, size_t bucket_count)
392   : histogram_name_(name),
393     declared_min_(minimum),
394     declared_max_(maximum),
395     bucket_count_(bucket_count),
396     flags_(kNoFlags),
397     ranges_(bucket_count + 1, 0),
398     range_checksum_(0),
399     sample_() {
400   Initialize();
401 }
402 
Histogram(const std::string & name,TimeDelta minimum,TimeDelta maximum,size_t bucket_count)403 Histogram::Histogram(const std::string& name, TimeDelta minimum,
404                      TimeDelta maximum, size_t bucket_count)
405   : histogram_name_(name),
406     declared_min_(static_cast<int> (minimum.InMilliseconds())),
407     declared_max_(static_cast<int> (maximum.InMilliseconds())),
408     bucket_count_(bucket_count),
409     flags_(kNoFlags),
410     ranges_(bucket_count + 1, 0),
411     range_checksum_(0),
412     sample_() {
413   Initialize();
414 }
415 
~Histogram()416 Histogram::~Histogram() {
417   if (StatisticsRecorder::dump_on_exit()) {
418     std::string output;
419     WriteAscii(true, "\n", &output);
420     LOG(INFO) << output;
421   }
422 
423   // Just to make sure most derived class did this properly...
424   DCHECK(ValidateBucketRanges());
425 }
426 
427 // Calculate what range of values are held in each bucket.
428 // We have to be careful that we don't pick a ratio between starting points in
429 // consecutive buckets that is sooo small, that the integer bounds are the same
430 // (effectively making one bucket get no values).  We need to avoid:
431 //   ranges_[i] == ranges_[i + 1]
432 // To avoid that, we just do a fine-grained bucket width as far as we need to
433 // until we get a ratio that moves us along at least 2 units at a time.  From
434 // that bucket onward we do use the exponential growth of buckets.
InitializeBucketRange()435 void Histogram::InitializeBucketRange() {
436   double log_max = log(static_cast<double>(declared_max()));
437   double log_ratio;
438   double log_next;
439   size_t bucket_index = 1;
440   Sample current = declared_min();
441   SetBucketRange(bucket_index, current);
442   while (bucket_count() > ++bucket_index) {
443     double log_current;
444     log_current = log(static_cast<double>(current));
445     // Calculate the count'th root of the range.
446     log_ratio = (log_max - log_current) / (bucket_count() - bucket_index);
447     // See where the next bucket would start.
448     log_next = log_current + log_ratio;
449     int next;
450     next = static_cast<int>(floor(exp(log_next) + 0.5));
451     if (next > current)
452       current = next;
453     else
454       ++current;  // Just do a narrow bucket, and keep trying.
455     SetBucketRange(bucket_index, current);
456   }
457   ResetRangeChecksum();
458 
459   DCHECK_EQ(bucket_count(), bucket_index);
460 }
461 
PrintEmptyBucket(size_t index) const462 bool Histogram::PrintEmptyBucket(size_t index) const {
463   return true;
464 }
465 
BucketIndex(Sample value) const466 size_t Histogram::BucketIndex(Sample value) const {
467   // Use simple binary search.  This is very general, but there are better
468   // approaches if we knew that the buckets were linearly distributed.
469   DCHECK_LE(ranges(0), value);
470   DCHECK_GT(ranges(bucket_count()), value);
471   size_t under = 0;
472   size_t over = bucket_count();
473   size_t mid;
474 
475   do {
476     DCHECK_GE(over, under);
477     mid = under + (over - under)/2;
478     if (mid == under)
479       break;
480     if (ranges(mid) <= value)
481       under = mid;
482     else
483       over = mid;
484   } while (true);
485 
486   DCHECK_LE(ranges(mid), value);
487   CHECK_GT(ranges(mid+1), value);
488   return mid;
489 }
490 
491 // Use the actual bucket widths (like a linear histogram) until the widths get
492 // over some transition value, and then use that transition width.  Exponentials
493 // get so big so fast (and we don't expect to see a lot of entries in the large
494 // buckets), so we need this to make it possible to see what is going on and
495 // not have 0-graphical-height buckets.
GetBucketSize(Count current,size_t i) const496 double Histogram::GetBucketSize(Count current, size_t i) const {
497   DCHECK_GT(ranges(i + 1), ranges(i));
498   static const double kTransitionWidth = 5;
499   double denominator = ranges(i + 1) - ranges(i);
500   if (denominator > kTransitionWidth)
501     denominator = kTransitionWidth;  // Stop trying to normalize.
502   return current/denominator;
503 }
504 
ResetRangeChecksum()505 void Histogram::ResetRangeChecksum() {
506   range_checksum_ = CalculateRangeChecksum();
507 }
508 
GetAsciiBucketRange(size_t i) const509 const std::string Histogram::GetAsciiBucketRange(size_t i) const {
510   std::string result;
511   if (kHexRangePrintingFlag & flags_)
512     StringAppendF(&result, "%#x", ranges(i));
513   else
514     StringAppendF(&result, "%d", ranges(i));
515   return result;
516 }
517 
518 // Update histogram data with new sample.
Accumulate(Sample value,Count count,size_t index)519 void Histogram::Accumulate(Sample value, Count count, size_t index) {
520   // Note locking not done in this version!!!
521   sample_.Accumulate(value, count, index);
522 }
523 
SetBucketRange(size_t i,Sample value)524 void Histogram::SetBucketRange(size_t i, Sample value) {
525   DCHECK_GT(bucket_count_, i);
526   ranges_[i] = value;
527 }
528 
ValidateBucketRanges() const529 bool Histogram::ValidateBucketRanges() const {
530   // Standard assertions that all bucket ranges should satisfy.
531   DCHECK_EQ(bucket_count_ + 1, ranges_.size());
532   DCHECK_EQ(0, ranges_[0]);
533   DCHECK_EQ(declared_min(), ranges_[1]);
534   DCHECK_EQ(declared_max(), ranges_[bucket_count_ - 1]);
535   DCHECK_EQ(kSampleType_MAX, ranges_[bucket_count_]);
536   return true;
537 }
538 
CalculateRangeChecksum() const539 uint32 Histogram::CalculateRangeChecksum() const {
540   DCHECK_EQ(ranges_.size(), bucket_count() + 1);
541   uint32 checksum = static_cast<uint32>(ranges_.size());  // Seed checksum.
542   for (size_t index = 0; index < bucket_count(); ++index)
543     checksum = Crc32(checksum, ranges(index));
544   return checksum;
545 }
546 
Initialize()547 void Histogram::Initialize() {
548   sample_.Resize(*this);
549   if (declared_min_ < 1)
550     declared_min_ = 1;
551   if (declared_max_ > kSampleType_MAX - 1)
552     declared_max_ = kSampleType_MAX - 1;
553   DCHECK_LE(declared_min_, declared_max_);
554   DCHECK_GT(bucket_count_, 1u);
555   CHECK_LT(bucket_count_, kBucketCount_MAX);
556   size_t maximal_bucket_count = declared_max_ - declared_min_ + 2;
557   DCHECK_LE(bucket_count_, maximal_bucket_count);
558   DCHECK_EQ(0, ranges_[0]);
559   ranges_[bucket_count_] = kSampleType_MAX;
560 }
561 
562 // We generate the CRC-32 using the low order bits to select whether to XOR in
563 // the reversed polynomial 0xedb88320L.  This is nice and simple, and allows us
564 // to keep the quotient in a uint32.  Since we're not concerned about the nature
565 // of corruptions (i.e., we don't care about bit sequencing, since we are
566 // handling memory changes, which are more grotesque) so we don't bother to
567 // get the CRC correct for big-endian vs little-ending calculations.  All we
568 // need is a nice hash, that tends to depend on all the bits of the sample, with
569 // very little chance of changes in one place impacting changes in another
570 // place.
Crc32(uint32 sum,Histogram::Sample range)571 uint32 Histogram::Crc32(uint32 sum, Histogram::Sample range) {
572   const bool kUseRealCrc = true;  // TODO(jar): Switch to false and watch stats.
573   if (kUseRealCrc) {
574     union {
575       Histogram::Sample range;
576       unsigned char bytes[sizeof(Histogram::Sample)];
577     } converter;
578     converter.range = range;
579     for (size_t i = 0; i < sizeof(converter); ++i)
580       sum = kCrcTable[(sum & 0xff) ^ converter.bytes[i]] ^ (sum >> 8);
581   } else {
582     // Use hash techniques provided in ReallyFastHash, except we don't care
583     // about "avalanching" (which would worsten the hash, and add collisions),
584     // and we don't care about edge cases since we have an even number of bytes.
585     union {
586       Histogram::Sample range;
587       uint16 ints[sizeof(Histogram::Sample) / 2];
588     } converter;
589     DCHECK_EQ(sizeof(Histogram::Sample), sizeof(converter));
590     converter.range = range;
591     sum += converter.ints[0];
592     sum = (sum << 16) ^ sum ^ (static_cast<uint32>(converter.ints[1]) << 11);
593     sum += sum >> 11;
594   }
595   return sum;
596 }
597 
598 //------------------------------------------------------------------------------
599 // Private methods
600 
GetPeakBucketSize(const SampleSet & snapshot) const601 double Histogram::GetPeakBucketSize(const SampleSet& snapshot) const {
602   double max = 0;
603   for (size_t i = 0; i < bucket_count() ; ++i) {
604     double current_size = GetBucketSize(snapshot.counts(i), i);
605     if (current_size > max)
606       max = current_size;
607   }
608   return max;
609 }
610 
WriteAsciiHeader(const SampleSet & snapshot,Count sample_count,std::string * output) const611 void Histogram::WriteAsciiHeader(const SampleSet& snapshot,
612                                  Count sample_count,
613                                  std::string* output) const {
614   StringAppendF(output,
615                 "Histogram: %s recorded %d samples",
616                 histogram_name().c_str(),
617                 sample_count);
618   if (0 == sample_count) {
619     DCHECK_EQ(snapshot.sum(), 0);
620   } else {
621     double average = static_cast<float>(snapshot.sum()) / sample_count;
622 
623     StringAppendF(output, ", average = %.1f", average);
624   }
625   if (flags_ & ~kHexRangePrintingFlag)
626     StringAppendF(output, " (flags = 0x%x)", flags_ & ~kHexRangePrintingFlag);
627 }
628 
WriteAsciiBucketContext(const int64 past,const Count current,const int64 remaining,const size_t i,std::string * output) const629 void Histogram::WriteAsciiBucketContext(const int64 past,
630                                         const Count current,
631                                         const int64 remaining,
632                                         const size_t i,
633                                         std::string* output) const {
634   double scaled_sum = (past + current + remaining) / 100.0;
635   WriteAsciiBucketValue(current, scaled_sum, output);
636   if (0 < i) {
637     double percentage = past / scaled_sum;
638     StringAppendF(output, " {%3.1f%%}", percentage);
639   }
640 }
641 
WriteAsciiBucketValue(Count current,double scaled_sum,std::string * output) const642 void Histogram::WriteAsciiBucketValue(Count current, double scaled_sum,
643                                       std::string* output) const {
644   StringAppendF(output, " (%d = %3.1f%%)", current, current/scaled_sum);
645 }
646 
WriteAsciiBucketGraph(double current_size,double max_size,std::string * output) const647 void Histogram::WriteAsciiBucketGraph(double current_size, double max_size,
648                                       std::string* output) const {
649   const int k_line_length = 72;  // Maximal horizontal width of graph.
650   int x_count = static_cast<int>(k_line_length * (current_size / max_size)
651                                  + 0.5);
652   int x_remainder = k_line_length - x_count;
653 
654   while (0 < x_count--)
655     output->append("-");
656   output->append("O");
657   while (0 < x_remainder--)
658     output->append(" ");
659 }
660 
661 //------------------------------------------------------------------------------
662 // Methods for the Histogram::SampleSet class
663 //------------------------------------------------------------------------------
664 
SampleSet()665 Histogram::SampleSet::SampleSet()
666     : counts_(),
667       sum_(0),
668       redundant_count_(0) {
669 }
670 
~SampleSet()671 Histogram::SampleSet::~SampleSet() {
672 }
673 
Resize(const Histogram & histogram)674 void Histogram::SampleSet::Resize(const Histogram& histogram) {
675   counts_.resize(histogram.bucket_count(), 0);
676 }
677 
CheckSize(const Histogram & histogram) const678 void Histogram::SampleSet::CheckSize(const Histogram& histogram) const {
679   DCHECK_EQ(histogram.bucket_count(), counts_.size());
680 }
681 
682 
Accumulate(Sample value,Count count,size_t index)683 void Histogram::SampleSet::Accumulate(Sample value,  Count count,
684                                       size_t index) {
685   DCHECK(count == 1 || count == -1);
686   counts_[index] += count;
687   sum_ += count * value;
688   redundant_count_ += count;
689   DCHECK_GE(counts_[index], 0);
690   DCHECK_GE(sum_, 0);
691   DCHECK_GE(redundant_count_, 0);
692 }
693 
TotalCount() const694 Count Histogram::SampleSet::TotalCount() const {
695   Count total = 0;
696   for (Counts::const_iterator it = counts_.begin();
697        it != counts_.end();
698        ++it) {
699     total += *it;
700   }
701   return total;
702 }
703 
Add(const SampleSet & other)704 void Histogram::SampleSet::Add(const SampleSet& other) {
705   DCHECK_EQ(counts_.size(), other.counts_.size());
706   sum_ += other.sum_;
707   redundant_count_ += other.redundant_count_;
708   for (size_t index = 0; index < counts_.size(); ++index)
709     counts_[index] += other.counts_[index];
710 }
711 
Subtract(const SampleSet & other)712 void Histogram::SampleSet::Subtract(const SampleSet& other) {
713   DCHECK_EQ(counts_.size(), other.counts_.size());
714   // Note: Race conditions in snapshotting a sum may lead to (temporary)
715   // negative values when snapshots are later combined (and deltas calculated).
716   // As a result, we don't currently CHCEK() for positive values.
717   sum_ -= other.sum_;
718   redundant_count_ -= other.redundant_count_;
719   for (size_t index = 0; index < counts_.size(); ++index) {
720     counts_[index] -= other.counts_[index];
721     DCHECK_GE(counts_[index], 0);
722   }
723 }
724 
Serialize(Pickle * pickle) const725 bool Histogram::SampleSet::Serialize(Pickle* pickle) const {
726   pickle->WriteInt64(sum_);
727   pickle->WriteInt64(redundant_count_);
728   pickle->WriteSize(counts_.size());
729 
730   for (size_t index = 0; index < counts_.size(); ++index) {
731     pickle->WriteInt(counts_[index]);
732   }
733 
734   return true;
735 }
736 
Deserialize(void ** iter,const Pickle & pickle)737 bool Histogram::SampleSet::Deserialize(void** iter, const Pickle& pickle) {
738   DCHECK_EQ(counts_.size(), 0u);
739   DCHECK_EQ(sum_, 0);
740   DCHECK_EQ(redundant_count_, 0);
741 
742   size_t counts_size;
743 
744   if (!pickle.ReadInt64(iter, &sum_) ||
745       !pickle.ReadInt64(iter, &redundant_count_) ||
746       !pickle.ReadSize(iter, &counts_size)) {
747     return false;
748   }
749 
750   if (counts_size == 0)
751     return false;
752 
753   int count = 0;
754   for (size_t index = 0; index < counts_size; ++index) {
755     int i;
756     if (!pickle.ReadInt(iter, &i))
757       return false;
758     counts_.push_back(i);
759     count += i;
760   }
761   DCHECK_EQ(count, redundant_count_);
762   return count == redundant_count_;
763 }
764 
765 //------------------------------------------------------------------------------
766 // LinearHistogram: This histogram uses a traditional set of evenly spaced
767 // buckets.
768 //------------------------------------------------------------------------------
769 
~LinearHistogram()770 LinearHistogram::~LinearHistogram() {
771 }
772 
FactoryGet(const std::string & name,Sample minimum,Sample maximum,size_t bucket_count,Flags flags)773 Histogram* LinearHistogram::FactoryGet(const std::string& name,
774                                        Sample minimum,
775                                        Sample maximum,
776                                        size_t bucket_count,
777                                        Flags flags) {
778   Histogram* histogram(NULL);
779 
780   if (minimum < 1)
781     minimum = 1;
782   if (maximum > kSampleType_MAX - 1)
783     maximum = kSampleType_MAX - 1;
784 
785   if (!StatisticsRecorder::FindHistogram(name, &histogram)) {
786     // To avoid racy destruction at shutdown, the following will be leaked.
787     LinearHistogram* tentative_histogram =
788         new LinearHistogram(name, minimum, maximum, bucket_count);
789     tentative_histogram->InitializeBucketRange();
790     tentative_histogram->SetFlags(flags);
791     histogram =
792         StatisticsRecorder::RegisterOrDeleteDuplicate(tentative_histogram);
793   }
794 
795   DCHECK_EQ(LINEAR_HISTOGRAM, histogram->histogram_type());
796   DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count));
797   return histogram;
798 }
799 
FactoryTimeGet(const std::string & name,TimeDelta minimum,TimeDelta maximum,size_t bucket_count,Flags flags)800 Histogram* LinearHistogram::FactoryTimeGet(const std::string& name,
801                                            TimeDelta minimum,
802                                            TimeDelta maximum,
803                                            size_t bucket_count,
804                                            Flags flags) {
805   return FactoryGet(name, minimum.InMilliseconds(), maximum.InMilliseconds(),
806                     bucket_count, flags);
807 }
808 
histogram_type() const809 Histogram::ClassType LinearHistogram::histogram_type() const {
810   return LINEAR_HISTOGRAM;
811 }
812 
SetRangeDescriptions(const DescriptionPair descriptions[])813 void LinearHistogram::SetRangeDescriptions(
814     const DescriptionPair descriptions[]) {
815   for (int i =0; descriptions[i].description; ++i) {
816     bucket_description_[descriptions[i].sample] = descriptions[i].description;
817   }
818 }
819 
LinearHistogram(const std::string & name,Sample minimum,Sample maximum,size_t bucket_count)820 LinearHistogram::LinearHistogram(const std::string& name,
821                                  Sample minimum,
822                                  Sample maximum,
823                                  size_t bucket_count)
824     : Histogram(name, minimum >= 1 ? minimum : 1, maximum, bucket_count) {
825 }
826 
LinearHistogram(const std::string & name,TimeDelta minimum,TimeDelta maximum,size_t bucket_count)827 LinearHistogram::LinearHistogram(const std::string& name,
828                                  TimeDelta minimum,
829                                  TimeDelta maximum,
830                                  size_t bucket_count)
831     : Histogram(name, minimum >= TimeDelta::FromMilliseconds(1) ?
832                                  minimum : TimeDelta::FromMilliseconds(1),
833                 maximum, bucket_count) {
834 }
835 
InitializeBucketRange()836 void LinearHistogram::InitializeBucketRange() {
837   DCHECK_GT(declared_min(), 0);  // 0 is the underflow bucket here.
838   double min = declared_min();
839   double max = declared_max();
840   size_t i;
841   for (i = 1; i < bucket_count(); ++i) {
842     double linear_range = (min * (bucket_count() -1 - i) + max * (i - 1)) /
843                           (bucket_count() - 2);
844     SetBucketRange(i, static_cast<int> (linear_range + 0.5));
845   }
846   ResetRangeChecksum();
847 }
848 
GetBucketSize(Count current,size_t i) const849 double LinearHistogram::GetBucketSize(Count current, size_t i) const {
850   DCHECK_GT(ranges(i + 1), ranges(i));
851   // Adjacent buckets with different widths would have "surprisingly" many (few)
852   // samples in a histogram if we didn't normalize this way.
853   double denominator = ranges(i + 1) - ranges(i);
854   return current/denominator;
855 }
856 
GetAsciiBucketRange(size_t i) const857 const std::string LinearHistogram::GetAsciiBucketRange(size_t i) const {
858   int range = ranges(i);
859   BucketDescriptionMap::const_iterator it = bucket_description_.find(range);
860   if (it == bucket_description_.end())
861     return Histogram::GetAsciiBucketRange(i);
862   return it->second;
863 }
864 
PrintEmptyBucket(size_t index) const865 bool LinearHistogram::PrintEmptyBucket(size_t index) const {
866   return bucket_description_.find(ranges(index)) == bucket_description_.end();
867 }
868 
869 
870 //------------------------------------------------------------------------------
871 // This section provides implementation for BooleanHistogram.
872 //------------------------------------------------------------------------------
873 
FactoryGet(const std::string & name,Flags flags)874 Histogram* BooleanHistogram::FactoryGet(const std::string& name, Flags flags) {
875   Histogram* histogram(NULL);
876 
877   if (!StatisticsRecorder::FindHistogram(name, &histogram)) {
878     // To avoid racy destruction at shutdown, the following will be leaked.
879     BooleanHistogram* tentative_histogram = new BooleanHistogram(name);
880     tentative_histogram->InitializeBucketRange();
881     tentative_histogram->SetFlags(flags);
882     histogram =
883         StatisticsRecorder::RegisterOrDeleteDuplicate(tentative_histogram);
884   }
885 
886   DCHECK_EQ(BOOLEAN_HISTOGRAM, histogram->histogram_type());
887   return histogram;
888 }
889 
histogram_type() const890 Histogram::ClassType BooleanHistogram::histogram_type() const {
891   return BOOLEAN_HISTOGRAM;
892 }
893 
AddBoolean(bool value)894 void BooleanHistogram::AddBoolean(bool value) {
895   Add(value ? 1 : 0);
896 }
897 
BooleanHistogram(const std::string & name)898 BooleanHistogram::BooleanHistogram(const std::string& name)
899     : LinearHistogram(name, 1, 2, 3) {
900 }
901 
902 //------------------------------------------------------------------------------
903 // CustomHistogram:
904 //------------------------------------------------------------------------------
905 
FactoryGet(const std::string & name,const std::vector<Sample> & custom_ranges,Flags flags)906 Histogram* CustomHistogram::FactoryGet(const std::string& name,
907                                        const std::vector<Sample>& custom_ranges,
908                                        Flags flags) {
909   Histogram* histogram(NULL);
910 
911   // Remove the duplicates in the custom ranges array.
912   std::vector<int> ranges = custom_ranges;
913   ranges.push_back(0);  // Ensure we have a zero value.
914   std::sort(ranges.begin(), ranges.end());
915   ranges.erase(std::unique(ranges.begin(), ranges.end()), ranges.end());
916   if (ranges.size() <= 1) {
917     DCHECK(false);
918     // Note that we pushed a 0 in above, so for defensive code....
919     ranges.push_back(1);  // Put in some data so we can index to [1].
920   }
921 
922   DCHECK_LT(ranges.back(), kSampleType_MAX);
923 
924   if (!StatisticsRecorder::FindHistogram(name, &histogram)) {
925     // To avoid racy destruction at shutdown, the following will be leaked.
926     CustomHistogram* tentative_histogram = new CustomHistogram(name, ranges);
927     tentative_histogram->InitializedCustomBucketRange(ranges);
928     tentative_histogram->SetFlags(flags);
929     histogram =
930         StatisticsRecorder::RegisterOrDeleteDuplicate(tentative_histogram);
931   }
932 
933   DCHECK_EQ(histogram->histogram_type(), CUSTOM_HISTOGRAM);
934   DCHECK(histogram->HasConstructorArguments(ranges[1], ranges.back(),
935                                             ranges.size()));
936   return histogram;
937 }
938 
histogram_type() const939 Histogram::ClassType CustomHistogram::histogram_type() const {
940   return CUSTOM_HISTOGRAM;
941 }
942 
CustomHistogram(const std::string & name,const std::vector<Sample> & custom_ranges)943 CustomHistogram::CustomHistogram(const std::string& name,
944                                  const std::vector<Sample>& custom_ranges)
945     : Histogram(name, custom_ranges[1], custom_ranges.back(),
946                 custom_ranges.size()) {
947   DCHECK_GT(custom_ranges.size(), 1u);
948   DCHECK_EQ(custom_ranges[0], 0);
949 }
950 
InitializedCustomBucketRange(const std::vector<Sample> & custom_ranges)951 void CustomHistogram::InitializedCustomBucketRange(
952     const std::vector<Sample>& custom_ranges) {
953   DCHECK_GT(custom_ranges.size(), 1u);
954   DCHECK_EQ(custom_ranges[0], 0);
955   DCHECK_LE(custom_ranges.size(), bucket_count());
956   for (size_t index = 0; index < custom_ranges.size(); ++index)
957     SetBucketRange(index, custom_ranges[index]);
958   ResetRangeChecksum();
959 }
960 
GetBucketSize(Count current,size_t i) const961 double CustomHistogram::GetBucketSize(Count current, size_t i) const {
962   return 1;
963 }
964 
965 //------------------------------------------------------------------------------
966 // The next section handles global (central) support for all histograms, as well
967 // as startup/teardown of this service.
968 //------------------------------------------------------------------------------
969 
970 // This singleton instance should be started during the single threaded portion
971 // of main(), and hence it is not thread safe.  It initializes globals to
972 // provide support for all future calls.
StatisticsRecorder()973 StatisticsRecorder::StatisticsRecorder() {
974   DCHECK(!histograms_);
975   if (lock_ == NULL) {
976     // This will leak on purpose. It's the only way to make sure we won't race
977     // against the static uninitialization of the module while one of our
978     // static methods relying on the lock get called at an inappropriate time
979     // during the termination phase. Since it's a static data member, we will
980     // leak one per process, which would be similar to the instance allocated
981     // during static initialization and released only on  process termination.
982     lock_ = new base::Lock;
983   }
984   base::AutoLock auto_lock(*lock_);
985   histograms_ = new HistogramMap;
986 }
987 
~StatisticsRecorder()988 StatisticsRecorder::~StatisticsRecorder() {
989   DCHECK(histograms_ && lock_);
990 
991   if (dump_on_exit_) {
992     std::string output;
993     WriteGraph("", &output);
994     LOG(INFO) << output;
995   }
996   // Clean up.
997   HistogramMap* histograms = NULL;
998   {
999     base::AutoLock auto_lock(*lock_);
1000     histograms = histograms_;
1001     histograms_ = NULL;
1002   }
1003   delete histograms;
1004   // We don't delete lock_ on purpose to avoid having to properly protect
1005   // against it going away after we checked for NULL in the static methods.
1006 }
1007 
1008 // static
IsActive()1009 bool StatisticsRecorder::IsActive() {
1010   if (lock_ == NULL)
1011     return false;
1012   base::AutoLock auto_lock(*lock_);
1013   return NULL != histograms_;
1014 }
1015 
RegisterOrDeleteDuplicate(Histogram * histogram)1016 Histogram* StatisticsRecorder::RegisterOrDeleteDuplicate(Histogram* histogram) {
1017   DCHECK(histogram->HasValidRangeChecksum());
1018   if (lock_ == NULL)
1019     return histogram;
1020   base::AutoLock auto_lock(*lock_);
1021   if (!histograms_)
1022     return histogram;
1023   const std::string name = histogram->histogram_name();
1024   HistogramMap::iterator it = histograms_->find(name);
1025   // Avoid overwriting a previous registration.
1026   if (histograms_->end() == it) {
1027     (*histograms_)[name] = histogram;
1028   } else {
1029     delete histogram;  // We already have one by this name.
1030     histogram = it->second;
1031   }
1032   return histogram;
1033 }
1034 
1035 // static
WriteHTMLGraph(const std::string & query,std::string * output)1036 void StatisticsRecorder::WriteHTMLGraph(const std::string& query,
1037                                         std::string* output) {
1038   if (!IsActive())
1039     return;
1040   output->append("<html><head><title>About Histograms");
1041   if (!query.empty())
1042     output->append(" - " + query);
1043   output->append("</title>"
1044                  // We'd like the following no-cache... but it doesn't work.
1045                  // "<META HTTP-EQUIV=\"Pragma\" CONTENT=\"no-cache\">"
1046                  "</head><body>");
1047 
1048   Histograms snapshot;
1049   GetSnapshot(query, &snapshot);
1050   for (Histograms::iterator it = snapshot.begin();
1051        it != snapshot.end();
1052        ++it) {
1053     (*it)->WriteHTMLGraph(output);
1054     output->append("<br><hr><br>");
1055   }
1056   output->append("</body></html>");
1057 }
1058 
1059 // static
WriteGraph(const std::string & query,std::string * output)1060 void StatisticsRecorder::WriteGraph(const std::string& query,
1061                                     std::string* output) {
1062   if (!IsActive())
1063     return;
1064   if (query.length())
1065     StringAppendF(output, "Collections of histograms for %s\n", query.c_str());
1066   else
1067     output->append("Collections of all histograms\n");
1068 
1069   Histograms snapshot;
1070   GetSnapshot(query, &snapshot);
1071   for (Histograms::iterator it = snapshot.begin();
1072        it != snapshot.end();
1073        ++it) {
1074     (*it)->WriteAscii(true, "\n", output);
1075     output->append("\n");
1076   }
1077 }
1078 
1079 // static
GetHistograms(Histograms * output)1080 void StatisticsRecorder::GetHistograms(Histograms* output) {
1081   if (lock_ == NULL)
1082     return;
1083   base::AutoLock auto_lock(*lock_);
1084   if (!histograms_)
1085     return;
1086   for (HistogramMap::iterator it = histograms_->begin();
1087        histograms_->end() != it;
1088        ++it) {
1089     DCHECK_EQ(it->first, it->second->histogram_name());
1090     output->push_back(it->second);
1091   }
1092 }
1093 
FindHistogram(const std::string & name,Histogram ** histogram)1094 bool StatisticsRecorder::FindHistogram(const std::string& name,
1095                                        Histogram** histogram) {
1096   if (lock_ == NULL)
1097     return false;
1098   base::AutoLock auto_lock(*lock_);
1099   if (!histograms_)
1100     return false;
1101   HistogramMap::iterator it = histograms_->find(name);
1102   if (histograms_->end() == it)
1103     return false;
1104   *histogram = it->second;
1105   return true;
1106 }
1107 
1108 // private static
GetSnapshot(const std::string & query,Histograms * snapshot)1109 void StatisticsRecorder::GetSnapshot(const std::string& query,
1110                                      Histograms* snapshot) {
1111   if (lock_ == NULL)
1112     return;
1113   base::AutoLock auto_lock(*lock_);
1114   if (!histograms_)
1115     return;
1116   for (HistogramMap::iterator it = histograms_->begin();
1117        histograms_->end() != it;
1118        ++it) {
1119     if (it->first.find(query) != std::string::npos)
1120       snapshot->push_back(it->second);
1121   }
1122 }
1123 
1124 // static
1125 StatisticsRecorder::HistogramMap* StatisticsRecorder::histograms_ = NULL;
1126 // static
1127 base::Lock* StatisticsRecorder::lock_ = NULL;
1128 // static
1129 bool StatisticsRecorder::dump_on_exit_ = false;
1130 
1131 }  // namespace base
1132