1 //===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ overloading.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Lookup.h"
16 #include "clang/Sema/Initialization.h"
17 #include "clang/Sema/Template.h"
18 #include "clang/Sema/TemplateDeduction.h"
19 #include "clang/Basic/Diagnostic.h"
20 #include "clang/Lex/Preprocessor.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/CXXInheritance.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "llvm/ADT/DenseSet.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include <algorithm>
33
34 namespace clang {
35 using namespace sema;
36
37 /// A convenience routine for creating a decayed reference to a
38 /// function.
39 static ExprResult
CreateFunctionRefExpr(Sema & S,FunctionDecl * Fn,SourceLocation Loc=SourceLocation (),const DeclarationNameLoc & LocInfo=DeclarationNameLoc ())40 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn,
41 SourceLocation Loc = SourceLocation(),
42 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
43 ExprResult E = S.Owned(new (S.Context) DeclRefExpr(Fn, Fn->getType(),
44 VK_LValue, Loc, LocInfo));
45 E = S.DefaultFunctionArrayConversion(E.take());
46 if (E.isInvalid())
47 return ExprError();
48 return move(E);
49 }
50
51 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
52 bool InOverloadResolution,
53 StandardConversionSequence &SCS,
54 bool CStyle,
55 bool AllowObjCWritebackConversion);
56
57 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
58 QualType &ToType,
59 bool InOverloadResolution,
60 StandardConversionSequence &SCS,
61 bool CStyle);
62 static OverloadingResult
63 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
64 UserDefinedConversionSequence& User,
65 OverloadCandidateSet& Conversions,
66 bool AllowExplicit);
67
68
69 static ImplicitConversionSequence::CompareKind
70 CompareStandardConversionSequences(Sema &S,
71 const StandardConversionSequence& SCS1,
72 const StandardConversionSequence& SCS2);
73
74 static ImplicitConversionSequence::CompareKind
75 CompareQualificationConversions(Sema &S,
76 const StandardConversionSequence& SCS1,
77 const StandardConversionSequence& SCS2);
78
79 static ImplicitConversionSequence::CompareKind
80 CompareDerivedToBaseConversions(Sema &S,
81 const StandardConversionSequence& SCS1,
82 const StandardConversionSequence& SCS2);
83
84
85
86 /// GetConversionCategory - Retrieve the implicit conversion
87 /// category corresponding to the given implicit conversion kind.
88 ImplicitConversionCategory
GetConversionCategory(ImplicitConversionKind Kind)89 GetConversionCategory(ImplicitConversionKind Kind) {
90 static const ImplicitConversionCategory
91 Category[(int)ICK_Num_Conversion_Kinds] = {
92 ICC_Identity,
93 ICC_Lvalue_Transformation,
94 ICC_Lvalue_Transformation,
95 ICC_Lvalue_Transformation,
96 ICC_Identity,
97 ICC_Qualification_Adjustment,
98 ICC_Promotion,
99 ICC_Promotion,
100 ICC_Promotion,
101 ICC_Conversion,
102 ICC_Conversion,
103 ICC_Conversion,
104 ICC_Conversion,
105 ICC_Conversion,
106 ICC_Conversion,
107 ICC_Conversion,
108 ICC_Conversion,
109 ICC_Conversion,
110 ICC_Conversion,
111 ICC_Conversion,
112 ICC_Conversion,
113 ICC_Conversion
114 };
115 return Category[(int)Kind];
116 }
117
118 /// GetConversionRank - Retrieve the implicit conversion rank
119 /// corresponding to the given implicit conversion kind.
GetConversionRank(ImplicitConversionKind Kind)120 ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
121 static const ImplicitConversionRank
122 Rank[(int)ICK_Num_Conversion_Kinds] = {
123 ICR_Exact_Match,
124 ICR_Exact_Match,
125 ICR_Exact_Match,
126 ICR_Exact_Match,
127 ICR_Exact_Match,
128 ICR_Exact_Match,
129 ICR_Promotion,
130 ICR_Promotion,
131 ICR_Promotion,
132 ICR_Conversion,
133 ICR_Conversion,
134 ICR_Conversion,
135 ICR_Conversion,
136 ICR_Conversion,
137 ICR_Conversion,
138 ICR_Conversion,
139 ICR_Conversion,
140 ICR_Conversion,
141 ICR_Conversion,
142 ICR_Conversion,
143 ICR_Complex_Real_Conversion,
144 ICR_Conversion,
145 ICR_Conversion,
146 ICR_Writeback_Conversion
147 };
148 return Rank[(int)Kind];
149 }
150
151 /// GetImplicitConversionName - Return the name of this kind of
152 /// implicit conversion.
GetImplicitConversionName(ImplicitConversionKind Kind)153 const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
154 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
155 "No conversion",
156 "Lvalue-to-rvalue",
157 "Array-to-pointer",
158 "Function-to-pointer",
159 "Noreturn adjustment",
160 "Qualification",
161 "Integral promotion",
162 "Floating point promotion",
163 "Complex promotion",
164 "Integral conversion",
165 "Floating conversion",
166 "Complex conversion",
167 "Floating-integral conversion",
168 "Pointer conversion",
169 "Pointer-to-member conversion",
170 "Boolean conversion",
171 "Compatible-types conversion",
172 "Derived-to-base conversion",
173 "Vector conversion",
174 "Vector splat",
175 "Complex-real conversion",
176 "Block Pointer conversion",
177 "Transparent Union Conversion"
178 "Writeback conversion"
179 };
180 return Name[Kind];
181 }
182
183 /// StandardConversionSequence - Set the standard conversion
184 /// sequence to the identity conversion.
setAsIdentityConversion()185 void StandardConversionSequence::setAsIdentityConversion() {
186 First = ICK_Identity;
187 Second = ICK_Identity;
188 Third = ICK_Identity;
189 DeprecatedStringLiteralToCharPtr = false;
190 QualificationIncludesObjCLifetime = false;
191 ReferenceBinding = false;
192 DirectBinding = false;
193 IsLvalueReference = true;
194 BindsToFunctionLvalue = false;
195 BindsToRvalue = false;
196 BindsImplicitObjectArgumentWithoutRefQualifier = false;
197 ObjCLifetimeConversionBinding = false;
198 CopyConstructor = 0;
199 }
200
201 /// getRank - Retrieve the rank of this standard conversion sequence
202 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
203 /// implicit conversions.
getRank() const204 ImplicitConversionRank StandardConversionSequence::getRank() const {
205 ImplicitConversionRank Rank = ICR_Exact_Match;
206 if (GetConversionRank(First) > Rank)
207 Rank = GetConversionRank(First);
208 if (GetConversionRank(Second) > Rank)
209 Rank = GetConversionRank(Second);
210 if (GetConversionRank(Third) > Rank)
211 Rank = GetConversionRank(Third);
212 return Rank;
213 }
214
215 /// isPointerConversionToBool - Determines whether this conversion is
216 /// a conversion of a pointer or pointer-to-member to bool. This is
217 /// used as part of the ranking of standard conversion sequences
218 /// (C++ 13.3.3.2p4).
isPointerConversionToBool() const219 bool StandardConversionSequence::isPointerConversionToBool() const {
220 // Note that FromType has not necessarily been transformed by the
221 // array-to-pointer or function-to-pointer implicit conversions, so
222 // check for their presence as well as checking whether FromType is
223 // a pointer.
224 if (getToType(1)->isBooleanType() &&
225 (getFromType()->isPointerType() ||
226 getFromType()->isObjCObjectPointerType() ||
227 getFromType()->isBlockPointerType() ||
228 getFromType()->isNullPtrType() ||
229 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
230 return true;
231
232 return false;
233 }
234
235 /// isPointerConversionToVoidPointer - Determines whether this
236 /// conversion is a conversion of a pointer to a void pointer. This is
237 /// used as part of the ranking of standard conversion sequences (C++
238 /// 13.3.3.2p4).
239 bool
240 StandardConversionSequence::
isPointerConversionToVoidPointer(ASTContext & Context) const241 isPointerConversionToVoidPointer(ASTContext& Context) const {
242 QualType FromType = getFromType();
243 QualType ToType = getToType(1);
244
245 // Note that FromType has not necessarily been transformed by the
246 // array-to-pointer implicit conversion, so check for its presence
247 // and redo the conversion to get a pointer.
248 if (First == ICK_Array_To_Pointer)
249 FromType = Context.getArrayDecayedType(FromType);
250
251 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
252 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
253 return ToPtrType->getPointeeType()->isVoidType();
254
255 return false;
256 }
257
258 /// DebugPrint - Print this standard conversion sequence to standard
259 /// error. Useful for debugging overloading issues.
DebugPrint() const260 void StandardConversionSequence::DebugPrint() const {
261 llvm::raw_ostream &OS = llvm::errs();
262 bool PrintedSomething = false;
263 if (First != ICK_Identity) {
264 OS << GetImplicitConversionName(First);
265 PrintedSomething = true;
266 }
267
268 if (Second != ICK_Identity) {
269 if (PrintedSomething) {
270 OS << " -> ";
271 }
272 OS << GetImplicitConversionName(Second);
273
274 if (CopyConstructor) {
275 OS << " (by copy constructor)";
276 } else if (DirectBinding) {
277 OS << " (direct reference binding)";
278 } else if (ReferenceBinding) {
279 OS << " (reference binding)";
280 }
281 PrintedSomething = true;
282 }
283
284 if (Third != ICK_Identity) {
285 if (PrintedSomething) {
286 OS << " -> ";
287 }
288 OS << GetImplicitConversionName(Third);
289 PrintedSomething = true;
290 }
291
292 if (!PrintedSomething) {
293 OS << "No conversions required";
294 }
295 }
296
297 /// DebugPrint - Print this user-defined conversion sequence to standard
298 /// error. Useful for debugging overloading issues.
DebugPrint() const299 void UserDefinedConversionSequence::DebugPrint() const {
300 llvm::raw_ostream &OS = llvm::errs();
301 if (Before.First || Before.Second || Before.Third) {
302 Before.DebugPrint();
303 OS << " -> ";
304 }
305 OS << '\'' << ConversionFunction << '\'';
306 if (After.First || After.Second || After.Third) {
307 OS << " -> ";
308 After.DebugPrint();
309 }
310 }
311
312 /// DebugPrint - Print this implicit conversion sequence to standard
313 /// error. Useful for debugging overloading issues.
DebugPrint() const314 void ImplicitConversionSequence::DebugPrint() const {
315 llvm::raw_ostream &OS = llvm::errs();
316 switch (ConversionKind) {
317 case StandardConversion:
318 OS << "Standard conversion: ";
319 Standard.DebugPrint();
320 break;
321 case UserDefinedConversion:
322 OS << "User-defined conversion: ";
323 UserDefined.DebugPrint();
324 break;
325 case EllipsisConversion:
326 OS << "Ellipsis conversion";
327 break;
328 case AmbiguousConversion:
329 OS << "Ambiguous conversion";
330 break;
331 case BadConversion:
332 OS << "Bad conversion";
333 break;
334 }
335
336 OS << "\n";
337 }
338
construct()339 void AmbiguousConversionSequence::construct() {
340 new (&conversions()) ConversionSet();
341 }
342
destruct()343 void AmbiguousConversionSequence::destruct() {
344 conversions().~ConversionSet();
345 }
346
347 void
copyFrom(const AmbiguousConversionSequence & O)348 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
349 FromTypePtr = O.FromTypePtr;
350 ToTypePtr = O.ToTypePtr;
351 new (&conversions()) ConversionSet(O.conversions());
352 }
353
354 namespace {
355 // Structure used by OverloadCandidate::DeductionFailureInfo to store
356 // template parameter and template argument information.
357 struct DFIParamWithArguments {
358 TemplateParameter Param;
359 TemplateArgument FirstArg;
360 TemplateArgument SecondArg;
361 };
362 }
363
364 /// \brief Convert from Sema's representation of template deduction information
365 /// to the form used in overload-candidate information.
366 OverloadCandidate::DeductionFailureInfo
MakeDeductionFailureInfo(ASTContext & Context,Sema::TemplateDeductionResult TDK,TemplateDeductionInfo & Info)367 static MakeDeductionFailureInfo(ASTContext &Context,
368 Sema::TemplateDeductionResult TDK,
369 TemplateDeductionInfo &Info) {
370 OverloadCandidate::DeductionFailureInfo Result;
371 Result.Result = static_cast<unsigned>(TDK);
372 Result.Data = 0;
373 switch (TDK) {
374 case Sema::TDK_Success:
375 case Sema::TDK_InstantiationDepth:
376 case Sema::TDK_TooManyArguments:
377 case Sema::TDK_TooFewArguments:
378 break;
379
380 case Sema::TDK_Incomplete:
381 case Sema::TDK_InvalidExplicitArguments:
382 Result.Data = Info.Param.getOpaqueValue();
383 break;
384
385 case Sema::TDK_Inconsistent:
386 case Sema::TDK_Underqualified: {
387 // FIXME: Should allocate from normal heap so that we can free this later.
388 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
389 Saved->Param = Info.Param;
390 Saved->FirstArg = Info.FirstArg;
391 Saved->SecondArg = Info.SecondArg;
392 Result.Data = Saved;
393 break;
394 }
395
396 case Sema::TDK_SubstitutionFailure:
397 Result.Data = Info.take();
398 break;
399
400 case Sema::TDK_NonDeducedMismatch:
401 case Sema::TDK_FailedOverloadResolution:
402 break;
403 }
404
405 return Result;
406 }
407
Destroy()408 void OverloadCandidate::DeductionFailureInfo::Destroy() {
409 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
410 case Sema::TDK_Success:
411 case Sema::TDK_InstantiationDepth:
412 case Sema::TDK_Incomplete:
413 case Sema::TDK_TooManyArguments:
414 case Sema::TDK_TooFewArguments:
415 case Sema::TDK_InvalidExplicitArguments:
416 break;
417
418 case Sema::TDK_Inconsistent:
419 case Sema::TDK_Underqualified:
420 // FIXME: Destroy the data?
421 Data = 0;
422 break;
423
424 case Sema::TDK_SubstitutionFailure:
425 // FIXME: Destroy the template arugment list?
426 Data = 0;
427 break;
428
429 // Unhandled
430 case Sema::TDK_NonDeducedMismatch:
431 case Sema::TDK_FailedOverloadResolution:
432 break;
433 }
434 }
435
436 TemplateParameter
getTemplateParameter()437 OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
438 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
439 case Sema::TDK_Success:
440 case Sema::TDK_InstantiationDepth:
441 case Sema::TDK_TooManyArguments:
442 case Sema::TDK_TooFewArguments:
443 case Sema::TDK_SubstitutionFailure:
444 return TemplateParameter();
445
446 case Sema::TDK_Incomplete:
447 case Sema::TDK_InvalidExplicitArguments:
448 return TemplateParameter::getFromOpaqueValue(Data);
449
450 case Sema::TDK_Inconsistent:
451 case Sema::TDK_Underqualified:
452 return static_cast<DFIParamWithArguments*>(Data)->Param;
453
454 // Unhandled
455 case Sema::TDK_NonDeducedMismatch:
456 case Sema::TDK_FailedOverloadResolution:
457 break;
458 }
459
460 return TemplateParameter();
461 }
462
463 TemplateArgumentList *
getTemplateArgumentList()464 OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
465 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
466 case Sema::TDK_Success:
467 case Sema::TDK_InstantiationDepth:
468 case Sema::TDK_TooManyArguments:
469 case Sema::TDK_TooFewArguments:
470 case Sema::TDK_Incomplete:
471 case Sema::TDK_InvalidExplicitArguments:
472 case Sema::TDK_Inconsistent:
473 case Sema::TDK_Underqualified:
474 return 0;
475
476 case Sema::TDK_SubstitutionFailure:
477 return static_cast<TemplateArgumentList*>(Data);
478
479 // Unhandled
480 case Sema::TDK_NonDeducedMismatch:
481 case Sema::TDK_FailedOverloadResolution:
482 break;
483 }
484
485 return 0;
486 }
487
getFirstArg()488 const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
489 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
490 case Sema::TDK_Success:
491 case Sema::TDK_InstantiationDepth:
492 case Sema::TDK_Incomplete:
493 case Sema::TDK_TooManyArguments:
494 case Sema::TDK_TooFewArguments:
495 case Sema::TDK_InvalidExplicitArguments:
496 case Sema::TDK_SubstitutionFailure:
497 return 0;
498
499 case Sema::TDK_Inconsistent:
500 case Sema::TDK_Underqualified:
501 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
502
503 // Unhandled
504 case Sema::TDK_NonDeducedMismatch:
505 case Sema::TDK_FailedOverloadResolution:
506 break;
507 }
508
509 return 0;
510 }
511
512 const TemplateArgument *
getSecondArg()513 OverloadCandidate::DeductionFailureInfo::getSecondArg() {
514 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
515 case Sema::TDK_Success:
516 case Sema::TDK_InstantiationDepth:
517 case Sema::TDK_Incomplete:
518 case Sema::TDK_TooManyArguments:
519 case Sema::TDK_TooFewArguments:
520 case Sema::TDK_InvalidExplicitArguments:
521 case Sema::TDK_SubstitutionFailure:
522 return 0;
523
524 case Sema::TDK_Inconsistent:
525 case Sema::TDK_Underqualified:
526 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
527
528 // Unhandled
529 case Sema::TDK_NonDeducedMismatch:
530 case Sema::TDK_FailedOverloadResolution:
531 break;
532 }
533
534 return 0;
535 }
536
clear()537 void OverloadCandidateSet::clear() {
538 inherited::clear();
539 Functions.clear();
540 }
541
542 // IsOverload - Determine whether the given New declaration is an
543 // overload of the declarations in Old. This routine returns false if
544 // New and Old cannot be overloaded, e.g., if New has the same
545 // signature as some function in Old (C++ 1.3.10) or if the Old
546 // declarations aren't functions (or function templates) at all. When
547 // it does return false, MatchedDecl will point to the decl that New
548 // cannot be overloaded with. This decl may be a UsingShadowDecl on
549 // top of the underlying declaration.
550 //
551 // Example: Given the following input:
552 //
553 // void f(int, float); // #1
554 // void f(int, int); // #2
555 // int f(int, int); // #3
556 //
557 // When we process #1, there is no previous declaration of "f",
558 // so IsOverload will not be used.
559 //
560 // When we process #2, Old contains only the FunctionDecl for #1. By
561 // comparing the parameter types, we see that #1 and #2 are overloaded
562 // (since they have different signatures), so this routine returns
563 // false; MatchedDecl is unchanged.
564 //
565 // When we process #3, Old is an overload set containing #1 and #2. We
566 // compare the signatures of #3 to #1 (they're overloaded, so we do
567 // nothing) and then #3 to #2. Since the signatures of #3 and #2 are
568 // identical (return types of functions are not part of the
569 // signature), IsOverload returns false and MatchedDecl will be set to
570 // point to the FunctionDecl for #2.
571 //
572 // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
573 // into a class by a using declaration. The rules for whether to hide
574 // shadow declarations ignore some properties which otherwise figure
575 // into a function template's signature.
576 Sema::OverloadKind
CheckOverload(Scope * S,FunctionDecl * New,const LookupResult & Old,NamedDecl * & Match,bool NewIsUsingDecl)577 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
578 NamedDecl *&Match, bool NewIsUsingDecl) {
579 for (LookupResult::iterator I = Old.begin(), E = Old.end();
580 I != E; ++I) {
581 NamedDecl *OldD = *I;
582
583 bool OldIsUsingDecl = false;
584 if (isa<UsingShadowDecl>(OldD)) {
585 OldIsUsingDecl = true;
586
587 // We can always introduce two using declarations into the same
588 // context, even if they have identical signatures.
589 if (NewIsUsingDecl) continue;
590
591 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
592 }
593
594 // If either declaration was introduced by a using declaration,
595 // we'll need to use slightly different rules for matching.
596 // Essentially, these rules are the normal rules, except that
597 // function templates hide function templates with different
598 // return types or template parameter lists.
599 bool UseMemberUsingDeclRules =
600 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
601
602 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
603 if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
604 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
605 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
606 continue;
607 }
608
609 Match = *I;
610 return Ovl_Match;
611 }
612 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
613 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
614 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
615 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
616 continue;
617 }
618
619 Match = *I;
620 return Ovl_Match;
621 }
622 } else if (isa<UsingDecl>(OldD)) {
623 // We can overload with these, which can show up when doing
624 // redeclaration checks for UsingDecls.
625 assert(Old.getLookupKind() == LookupUsingDeclName);
626 } else if (isa<TagDecl>(OldD)) {
627 // We can always overload with tags by hiding them.
628 } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
629 // Optimistically assume that an unresolved using decl will
630 // overload; if it doesn't, we'll have to diagnose during
631 // template instantiation.
632 } else {
633 // (C++ 13p1):
634 // Only function declarations can be overloaded; object and type
635 // declarations cannot be overloaded.
636 Match = *I;
637 return Ovl_NonFunction;
638 }
639 }
640
641 return Ovl_Overload;
642 }
643
IsOverload(FunctionDecl * New,FunctionDecl * Old,bool UseUsingDeclRules)644 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
645 bool UseUsingDeclRules) {
646 // If both of the functions are extern "C", then they are not
647 // overloads.
648 if (Old->isExternC() && New->isExternC())
649 return false;
650
651 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
652 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
653
654 // C++ [temp.fct]p2:
655 // A function template can be overloaded with other function templates
656 // and with normal (non-template) functions.
657 if ((OldTemplate == 0) != (NewTemplate == 0))
658 return true;
659
660 // Is the function New an overload of the function Old?
661 QualType OldQType = Context.getCanonicalType(Old->getType());
662 QualType NewQType = Context.getCanonicalType(New->getType());
663
664 // Compare the signatures (C++ 1.3.10) of the two functions to
665 // determine whether they are overloads. If we find any mismatch
666 // in the signature, they are overloads.
667
668 // If either of these functions is a K&R-style function (no
669 // prototype), then we consider them to have matching signatures.
670 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
671 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
672 return false;
673
674 const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
675 const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
676
677 // The signature of a function includes the types of its
678 // parameters (C++ 1.3.10), which includes the presence or absence
679 // of the ellipsis; see C++ DR 357).
680 if (OldQType != NewQType &&
681 (OldType->getNumArgs() != NewType->getNumArgs() ||
682 OldType->isVariadic() != NewType->isVariadic() ||
683 !FunctionArgTypesAreEqual(OldType, NewType)))
684 return true;
685
686 // C++ [temp.over.link]p4:
687 // The signature of a function template consists of its function
688 // signature, its return type and its template parameter list. The names
689 // of the template parameters are significant only for establishing the
690 // relationship between the template parameters and the rest of the
691 // signature.
692 //
693 // We check the return type and template parameter lists for function
694 // templates first; the remaining checks follow.
695 //
696 // However, we don't consider either of these when deciding whether
697 // a member introduced by a shadow declaration is hidden.
698 if (!UseUsingDeclRules && NewTemplate &&
699 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
700 OldTemplate->getTemplateParameters(),
701 false, TPL_TemplateMatch) ||
702 OldType->getResultType() != NewType->getResultType()))
703 return true;
704
705 // If the function is a class member, its signature includes the
706 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
707 //
708 // As part of this, also check whether one of the member functions
709 // is static, in which case they are not overloads (C++
710 // 13.1p2). While not part of the definition of the signature,
711 // this check is important to determine whether these functions
712 // can be overloaded.
713 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
714 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
715 if (OldMethod && NewMethod &&
716 !OldMethod->isStatic() && !NewMethod->isStatic() &&
717 (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
718 OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) {
719 if (!UseUsingDeclRules &&
720 OldMethod->getRefQualifier() != NewMethod->getRefQualifier() &&
721 (OldMethod->getRefQualifier() == RQ_None ||
722 NewMethod->getRefQualifier() == RQ_None)) {
723 // C++0x [over.load]p2:
724 // - Member function declarations with the same name and the same
725 // parameter-type-list as well as member function template
726 // declarations with the same name, the same parameter-type-list, and
727 // the same template parameter lists cannot be overloaded if any of
728 // them, but not all, have a ref-qualifier (8.3.5).
729 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
730 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
731 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
732 }
733
734 return true;
735 }
736
737 // The signatures match; this is not an overload.
738 return false;
739 }
740
741 /// \brief Checks availability of the function depending on the current
742 /// function context. Inside an unavailable function, unavailability is ignored.
743 ///
744 /// \returns true if \arg FD is unavailable and current context is inside
745 /// an available function, false otherwise.
isFunctionConsideredUnavailable(FunctionDecl * FD)746 bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
747 return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
748 }
749
750 /// TryImplicitConversion - Attempt to perform an implicit conversion
751 /// from the given expression (Expr) to the given type (ToType). This
752 /// function returns an implicit conversion sequence that can be used
753 /// to perform the initialization. Given
754 ///
755 /// void f(float f);
756 /// void g(int i) { f(i); }
757 ///
758 /// this routine would produce an implicit conversion sequence to
759 /// describe the initialization of f from i, which will be a standard
760 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
761 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
762 //
763 /// Note that this routine only determines how the conversion can be
764 /// performed; it does not actually perform the conversion. As such,
765 /// it will not produce any diagnostics if no conversion is available,
766 /// but will instead return an implicit conversion sequence of kind
767 /// "BadConversion".
768 ///
769 /// If @p SuppressUserConversions, then user-defined conversions are
770 /// not permitted.
771 /// If @p AllowExplicit, then explicit user-defined conversions are
772 /// permitted.
773 ///
774 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
775 /// writeback conversion, which allows __autoreleasing id* parameters to
776 /// be initialized with __strong id* or __weak id* arguments.
777 static ImplicitConversionSequence
TryImplicitConversion(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,bool AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion)778 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
779 bool SuppressUserConversions,
780 bool AllowExplicit,
781 bool InOverloadResolution,
782 bool CStyle,
783 bool AllowObjCWritebackConversion) {
784 ImplicitConversionSequence ICS;
785 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
786 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
787 ICS.setStandard();
788 return ICS;
789 }
790
791 if (!S.getLangOptions().CPlusPlus) {
792 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
793 return ICS;
794 }
795
796 // C++ [over.ics.user]p4:
797 // A conversion of an expression of class type to the same class
798 // type is given Exact Match rank, and a conversion of an
799 // expression of class type to a base class of that type is
800 // given Conversion rank, in spite of the fact that a copy/move
801 // constructor (i.e., a user-defined conversion function) is
802 // called for those cases.
803 QualType FromType = From->getType();
804 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
805 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
806 S.IsDerivedFrom(FromType, ToType))) {
807 ICS.setStandard();
808 ICS.Standard.setAsIdentityConversion();
809 ICS.Standard.setFromType(FromType);
810 ICS.Standard.setAllToTypes(ToType);
811
812 // We don't actually check at this point whether there is a valid
813 // copy/move constructor, since overloading just assumes that it
814 // exists. When we actually perform initialization, we'll find the
815 // appropriate constructor to copy the returned object, if needed.
816 ICS.Standard.CopyConstructor = 0;
817
818 // Determine whether this is considered a derived-to-base conversion.
819 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
820 ICS.Standard.Second = ICK_Derived_To_Base;
821
822 return ICS;
823 }
824
825 if (SuppressUserConversions) {
826 // We're not in the case above, so there is no conversion that
827 // we can perform.
828 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
829 return ICS;
830 }
831
832 // Attempt user-defined conversion.
833 OverloadCandidateSet Conversions(From->getExprLoc());
834 OverloadingResult UserDefResult
835 = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
836 AllowExplicit);
837
838 if (UserDefResult == OR_Success) {
839 ICS.setUserDefined();
840 // C++ [over.ics.user]p4:
841 // A conversion of an expression of class type to the same class
842 // type is given Exact Match rank, and a conversion of an
843 // expression of class type to a base class of that type is
844 // given Conversion rank, in spite of the fact that a copy
845 // constructor (i.e., a user-defined conversion function) is
846 // called for those cases.
847 if (CXXConstructorDecl *Constructor
848 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
849 QualType FromCanon
850 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
851 QualType ToCanon
852 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
853 if (Constructor->isCopyConstructor() &&
854 (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
855 // Turn this into a "standard" conversion sequence, so that it
856 // gets ranked with standard conversion sequences.
857 ICS.setStandard();
858 ICS.Standard.setAsIdentityConversion();
859 ICS.Standard.setFromType(From->getType());
860 ICS.Standard.setAllToTypes(ToType);
861 ICS.Standard.CopyConstructor = Constructor;
862 if (ToCanon != FromCanon)
863 ICS.Standard.Second = ICK_Derived_To_Base;
864 }
865 }
866
867 // C++ [over.best.ics]p4:
868 // However, when considering the argument of a user-defined
869 // conversion function that is a candidate by 13.3.1.3 when
870 // invoked for the copying of the temporary in the second step
871 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
872 // 13.3.1.6 in all cases, only standard conversion sequences and
873 // ellipsis conversion sequences are allowed.
874 if (SuppressUserConversions && ICS.isUserDefined()) {
875 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
876 }
877 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
878 ICS.setAmbiguous();
879 ICS.Ambiguous.setFromType(From->getType());
880 ICS.Ambiguous.setToType(ToType);
881 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
882 Cand != Conversions.end(); ++Cand)
883 if (Cand->Viable)
884 ICS.Ambiguous.addConversion(Cand->Function);
885 } else {
886 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
887 }
888
889 return ICS;
890 }
891
892 ImplicitConversionSequence
TryImplicitConversion(Expr * From,QualType ToType,bool SuppressUserConversions,bool AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion)893 Sema::TryImplicitConversion(Expr *From, QualType ToType,
894 bool SuppressUserConversions,
895 bool AllowExplicit,
896 bool InOverloadResolution,
897 bool CStyle,
898 bool AllowObjCWritebackConversion) {
899 return clang::TryImplicitConversion(*this, From, ToType,
900 SuppressUserConversions, AllowExplicit,
901 InOverloadResolution, CStyle,
902 AllowObjCWritebackConversion);
903 }
904
905 /// PerformImplicitConversion - Perform an implicit conversion of the
906 /// expression From to the type ToType. Returns the
907 /// converted expression. Flavor is the kind of conversion we're
908 /// performing, used in the error message. If @p AllowExplicit,
909 /// explicit user-defined conversions are permitted.
910 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,AssignmentAction Action,bool AllowExplicit)911 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
912 AssignmentAction Action, bool AllowExplicit) {
913 ImplicitConversionSequence ICS;
914 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
915 }
916
917 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,AssignmentAction Action,bool AllowExplicit,ImplicitConversionSequence & ICS)918 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
919 AssignmentAction Action, bool AllowExplicit,
920 ImplicitConversionSequence& ICS) {
921 // Objective-C ARC: Determine whether we will allow the writeback conversion.
922 bool AllowObjCWritebackConversion
923 = getLangOptions().ObjCAutoRefCount &&
924 (Action == AA_Passing || Action == AA_Sending);
925
926
927 ICS = clang::TryImplicitConversion(*this, From, ToType,
928 /*SuppressUserConversions=*/false,
929 AllowExplicit,
930 /*InOverloadResolution=*/false,
931 /*CStyle=*/false,
932 AllowObjCWritebackConversion);
933 return PerformImplicitConversion(From, ToType, ICS, Action);
934 }
935
936 /// \brief Determine whether the conversion from FromType to ToType is a valid
937 /// conversion that strips "noreturn" off the nested function type.
IsNoReturnConversion(QualType FromType,QualType ToType,QualType & ResultTy)938 bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
939 QualType &ResultTy) {
940 if (Context.hasSameUnqualifiedType(FromType, ToType))
941 return false;
942
943 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
944 // where F adds one of the following at most once:
945 // - a pointer
946 // - a member pointer
947 // - a block pointer
948 CanQualType CanTo = Context.getCanonicalType(ToType);
949 CanQualType CanFrom = Context.getCanonicalType(FromType);
950 Type::TypeClass TyClass = CanTo->getTypeClass();
951 if (TyClass != CanFrom->getTypeClass()) return false;
952 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
953 if (TyClass == Type::Pointer) {
954 CanTo = CanTo.getAs<PointerType>()->getPointeeType();
955 CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
956 } else if (TyClass == Type::BlockPointer) {
957 CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
958 CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
959 } else if (TyClass == Type::MemberPointer) {
960 CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
961 CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
962 } else {
963 return false;
964 }
965
966 TyClass = CanTo->getTypeClass();
967 if (TyClass != CanFrom->getTypeClass()) return false;
968 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
969 return false;
970 }
971
972 const FunctionType *FromFn = cast<FunctionType>(CanFrom);
973 FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
974 if (!EInfo.getNoReturn()) return false;
975
976 FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
977 assert(QualType(FromFn, 0).isCanonical());
978 if (QualType(FromFn, 0) != CanTo) return false;
979
980 ResultTy = ToType;
981 return true;
982 }
983
984 /// \brief Determine whether the conversion from FromType to ToType is a valid
985 /// vector conversion.
986 ///
987 /// \param ICK Will be set to the vector conversion kind, if this is a vector
988 /// conversion.
IsVectorConversion(ASTContext & Context,QualType FromType,QualType ToType,ImplicitConversionKind & ICK)989 static bool IsVectorConversion(ASTContext &Context, QualType FromType,
990 QualType ToType, ImplicitConversionKind &ICK) {
991 // We need at least one of these types to be a vector type to have a vector
992 // conversion.
993 if (!ToType->isVectorType() && !FromType->isVectorType())
994 return false;
995
996 // Identical types require no conversions.
997 if (Context.hasSameUnqualifiedType(FromType, ToType))
998 return false;
999
1000 // There are no conversions between extended vector types, only identity.
1001 if (ToType->isExtVectorType()) {
1002 // There are no conversions between extended vector types other than the
1003 // identity conversion.
1004 if (FromType->isExtVectorType())
1005 return false;
1006
1007 // Vector splat from any arithmetic type to a vector.
1008 if (FromType->isArithmeticType()) {
1009 ICK = ICK_Vector_Splat;
1010 return true;
1011 }
1012 }
1013
1014 // We can perform the conversion between vector types in the following cases:
1015 // 1)vector types are equivalent AltiVec and GCC vector types
1016 // 2)lax vector conversions are permitted and the vector types are of the
1017 // same size
1018 if (ToType->isVectorType() && FromType->isVectorType()) {
1019 if (Context.areCompatibleVectorTypes(FromType, ToType) ||
1020 (Context.getLangOptions().LaxVectorConversions &&
1021 (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1022 ICK = ICK_Vector_Conversion;
1023 return true;
1024 }
1025 }
1026
1027 return false;
1028 }
1029
1030 /// IsStandardConversion - Determines whether there is a standard
1031 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1032 /// expression From to the type ToType. Standard conversion sequences
1033 /// only consider non-class types; for conversions that involve class
1034 /// types, use TryImplicitConversion. If a conversion exists, SCS will
1035 /// contain the standard conversion sequence required to perform this
1036 /// conversion and this routine will return true. Otherwise, this
1037 /// routine will return false and the value of SCS is unspecified.
IsStandardConversion(Sema & S,Expr * From,QualType ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle,bool AllowObjCWritebackConversion)1038 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1039 bool InOverloadResolution,
1040 StandardConversionSequence &SCS,
1041 bool CStyle,
1042 bool AllowObjCWritebackConversion) {
1043 QualType FromType = From->getType();
1044
1045 // Standard conversions (C++ [conv])
1046 SCS.setAsIdentityConversion();
1047 SCS.DeprecatedStringLiteralToCharPtr = false;
1048 SCS.IncompatibleObjC = false;
1049 SCS.setFromType(FromType);
1050 SCS.CopyConstructor = 0;
1051
1052 // There are no standard conversions for class types in C++, so
1053 // abort early. When overloading in C, however, we do permit
1054 if (FromType->isRecordType() || ToType->isRecordType()) {
1055 if (S.getLangOptions().CPlusPlus)
1056 return false;
1057
1058 // When we're overloading in C, we allow, as standard conversions,
1059 }
1060
1061 // The first conversion can be an lvalue-to-rvalue conversion,
1062 // array-to-pointer conversion, or function-to-pointer conversion
1063 // (C++ 4p1).
1064
1065 if (FromType == S.Context.OverloadTy) {
1066 DeclAccessPair AccessPair;
1067 if (FunctionDecl *Fn
1068 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1069 AccessPair)) {
1070 // We were able to resolve the address of the overloaded function,
1071 // so we can convert to the type of that function.
1072 FromType = Fn->getType();
1073
1074 // we can sometimes resolve &foo<int> regardless of ToType, so check
1075 // if the type matches (identity) or we are converting to bool
1076 if (!S.Context.hasSameUnqualifiedType(
1077 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1078 QualType resultTy;
1079 // if the function type matches except for [[noreturn]], it's ok
1080 if (!S.IsNoReturnConversion(FromType,
1081 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1082 // otherwise, only a boolean conversion is standard
1083 if (!ToType->isBooleanType())
1084 return false;
1085 }
1086
1087 // Check if the "from" expression is taking the address of an overloaded
1088 // function and recompute the FromType accordingly. Take advantage of the
1089 // fact that non-static member functions *must* have such an address-of
1090 // expression.
1091 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1092 if (Method && !Method->isStatic()) {
1093 assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1094 "Non-unary operator on non-static member address");
1095 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1096 == UO_AddrOf &&
1097 "Non-address-of operator on non-static member address");
1098 const Type *ClassType
1099 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1100 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1101 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1102 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1103 UO_AddrOf &&
1104 "Non-address-of operator for overloaded function expression");
1105 FromType = S.Context.getPointerType(FromType);
1106 }
1107
1108 // Check that we've computed the proper type after overload resolution.
1109 assert(S.Context.hasSameType(
1110 FromType,
1111 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1112 } else {
1113 return false;
1114 }
1115 }
1116 // Lvalue-to-rvalue conversion (C++ 4.1):
1117 // An lvalue (3.10) of a non-function, non-array type T can be
1118 // converted to an rvalue.
1119 bool argIsLValue = From->isLValue();
1120 if (argIsLValue &&
1121 !FromType->isFunctionType() && !FromType->isArrayType() &&
1122 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1123 SCS.First = ICK_Lvalue_To_Rvalue;
1124
1125 // If T is a non-class type, the type of the rvalue is the
1126 // cv-unqualified version of T. Otherwise, the type of the rvalue
1127 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1128 // just strip the qualifiers because they don't matter.
1129 FromType = FromType.getUnqualifiedType();
1130 } else if (FromType->isArrayType()) {
1131 // Array-to-pointer conversion (C++ 4.2)
1132 SCS.First = ICK_Array_To_Pointer;
1133
1134 // An lvalue or rvalue of type "array of N T" or "array of unknown
1135 // bound of T" can be converted to an rvalue of type "pointer to
1136 // T" (C++ 4.2p1).
1137 FromType = S.Context.getArrayDecayedType(FromType);
1138
1139 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1140 // This conversion is deprecated. (C++ D.4).
1141 SCS.DeprecatedStringLiteralToCharPtr = true;
1142
1143 // For the purpose of ranking in overload resolution
1144 // (13.3.3.1.1), this conversion is considered an
1145 // array-to-pointer conversion followed by a qualification
1146 // conversion (4.4). (C++ 4.2p2)
1147 SCS.Second = ICK_Identity;
1148 SCS.Third = ICK_Qualification;
1149 SCS.QualificationIncludesObjCLifetime = false;
1150 SCS.setAllToTypes(FromType);
1151 return true;
1152 }
1153 } else if (FromType->isFunctionType() && argIsLValue) {
1154 // Function-to-pointer conversion (C++ 4.3).
1155 SCS.First = ICK_Function_To_Pointer;
1156
1157 // An lvalue of function type T can be converted to an rvalue of
1158 // type "pointer to T." The result is a pointer to the
1159 // function. (C++ 4.3p1).
1160 FromType = S.Context.getPointerType(FromType);
1161 } else {
1162 // We don't require any conversions for the first step.
1163 SCS.First = ICK_Identity;
1164 }
1165 SCS.setToType(0, FromType);
1166
1167 // The second conversion can be an integral promotion, floating
1168 // point promotion, integral conversion, floating point conversion,
1169 // floating-integral conversion, pointer conversion,
1170 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1171 // For overloading in C, this can also be a "compatible-type"
1172 // conversion.
1173 bool IncompatibleObjC = false;
1174 ImplicitConversionKind SecondICK = ICK_Identity;
1175 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1176 // The unqualified versions of the types are the same: there's no
1177 // conversion to do.
1178 SCS.Second = ICK_Identity;
1179 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1180 // Integral promotion (C++ 4.5).
1181 SCS.Second = ICK_Integral_Promotion;
1182 FromType = ToType.getUnqualifiedType();
1183 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1184 // Floating point promotion (C++ 4.6).
1185 SCS.Second = ICK_Floating_Promotion;
1186 FromType = ToType.getUnqualifiedType();
1187 } else if (S.IsComplexPromotion(FromType, ToType)) {
1188 // Complex promotion (Clang extension)
1189 SCS.Second = ICK_Complex_Promotion;
1190 FromType = ToType.getUnqualifiedType();
1191 } else if (ToType->isBooleanType() &&
1192 (FromType->isArithmeticType() ||
1193 FromType->isAnyPointerType() ||
1194 FromType->isBlockPointerType() ||
1195 FromType->isMemberPointerType() ||
1196 FromType->isNullPtrType())) {
1197 // Boolean conversions (C++ 4.12).
1198 SCS.Second = ICK_Boolean_Conversion;
1199 FromType = S.Context.BoolTy;
1200 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1201 ToType->isIntegralType(S.Context)) {
1202 // Integral conversions (C++ 4.7).
1203 SCS.Second = ICK_Integral_Conversion;
1204 FromType = ToType.getUnqualifiedType();
1205 } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1206 // Complex conversions (C99 6.3.1.6)
1207 SCS.Second = ICK_Complex_Conversion;
1208 FromType = ToType.getUnqualifiedType();
1209 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1210 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1211 // Complex-real conversions (C99 6.3.1.7)
1212 SCS.Second = ICK_Complex_Real;
1213 FromType = ToType.getUnqualifiedType();
1214 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1215 // Floating point conversions (C++ 4.8).
1216 SCS.Second = ICK_Floating_Conversion;
1217 FromType = ToType.getUnqualifiedType();
1218 } else if ((FromType->isRealFloatingType() &&
1219 ToType->isIntegralType(S.Context)) ||
1220 (FromType->isIntegralOrUnscopedEnumerationType() &&
1221 ToType->isRealFloatingType())) {
1222 // Floating-integral conversions (C++ 4.9).
1223 SCS.Second = ICK_Floating_Integral;
1224 FromType = ToType.getUnqualifiedType();
1225 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1226 SCS.Second = ICK_Block_Pointer_Conversion;
1227 } else if (AllowObjCWritebackConversion &&
1228 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1229 SCS.Second = ICK_Writeback_Conversion;
1230 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1231 FromType, IncompatibleObjC)) {
1232 // Pointer conversions (C++ 4.10).
1233 SCS.Second = ICK_Pointer_Conversion;
1234 SCS.IncompatibleObjC = IncompatibleObjC;
1235 FromType = FromType.getUnqualifiedType();
1236 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1237 InOverloadResolution, FromType)) {
1238 // Pointer to member conversions (4.11).
1239 SCS.Second = ICK_Pointer_Member;
1240 } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1241 SCS.Second = SecondICK;
1242 FromType = ToType.getUnqualifiedType();
1243 } else if (!S.getLangOptions().CPlusPlus &&
1244 S.Context.typesAreCompatible(ToType, FromType)) {
1245 // Compatible conversions (Clang extension for C function overloading)
1246 SCS.Second = ICK_Compatible_Conversion;
1247 FromType = ToType.getUnqualifiedType();
1248 } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1249 // Treat a conversion that strips "noreturn" as an identity conversion.
1250 SCS.Second = ICK_NoReturn_Adjustment;
1251 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1252 InOverloadResolution,
1253 SCS, CStyle)) {
1254 SCS.Second = ICK_TransparentUnionConversion;
1255 FromType = ToType;
1256 } else {
1257 // No second conversion required.
1258 SCS.Second = ICK_Identity;
1259 }
1260 SCS.setToType(1, FromType);
1261
1262 QualType CanonFrom;
1263 QualType CanonTo;
1264 // The third conversion can be a qualification conversion (C++ 4p1).
1265 bool ObjCLifetimeConversion;
1266 if (S.IsQualificationConversion(FromType, ToType, CStyle,
1267 ObjCLifetimeConversion)) {
1268 SCS.Third = ICK_Qualification;
1269 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1270 FromType = ToType;
1271 CanonFrom = S.Context.getCanonicalType(FromType);
1272 CanonTo = S.Context.getCanonicalType(ToType);
1273 } else {
1274 // No conversion required
1275 SCS.Third = ICK_Identity;
1276
1277 // C++ [over.best.ics]p6:
1278 // [...] Any difference in top-level cv-qualification is
1279 // subsumed by the initialization itself and does not constitute
1280 // a conversion. [...]
1281 CanonFrom = S.Context.getCanonicalType(FromType);
1282 CanonTo = S.Context.getCanonicalType(ToType);
1283 if (CanonFrom.getLocalUnqualifiedType()
1284 == CanonTo.getLocalUnqualifiedType() &&
1285 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1286 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr()
1287 || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) {
1288 FromType = ToType;
1289 CanonFrom = CanonTo;
1290 }
1291 }
1292 SCS.setToType(2, FromType);
1293
1294 // If we have not converted the argument type to the parameter type,
1295 // this is a bad conversion sequence.
1296 if (CanonFrom != CanonTo)
1297 return false;
1298
1299 return true;
1300 }
1301
1302 static bool
IsTransparentUnionStandardConversion(Sema & S,Expr * From,QualType & ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle)1303 IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1304 QualType &ToType,
1305 bool InOverloadResolution,
1306 StandardConversionSequence &SCS,
1307 bool CStyle) {
1308
1309 const RecordType *UT = ToType->getAsUnionType();
1310 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1311 return false;
1312 // The field to initialize within the transparent union.
1313 RecordDecl *UD = UT->getDecl();
1314 // It's compatible if the expression matches any of the fields.
1315 for (RecordDecl::field_iterator it = UD->field_begin(),
1316 itend = UD->field_end();
1317 it != itend; ++it) {
1318 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1319 CStyle, /*ObjCWritebackConversion=*/false)) {
1320 ToType = it->getType();
1321 return true;
1322 }
1323 }
1324 return false;
1325 }
1326
1327 /// IsIntegralPromotion - Determines whether the conversion from the
1328 /// expression From (whose potentially-adjusted type is FromType) to
1329 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
1330 /// sets PromotedType to the promoted type.
IsIntegralPromotion(Expr * From,QualType FromType,QualType ToType)1331 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1332 const BuiltinType *To = ToType->getAs<BuiltinType>();
1333 // All integers are built-in.
1334 if (!To) {
1335 return false;
1336 }
1337
1338 // An rvalue of type char, signed char, unsigned char, short int, or
1339 // unsigned short int can be converted to an rvalue of type int if
1340 // int can represent all the values of the source type; otherwise,
1341 // the source rvalue can be converted to an rvalue of type unsigned
1342 // int (C++ 4.5p1).
1343 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1344 !FromType->isEnumeralType()) {
1345 if (// We can promote any signed, promotable integer type to an int
1346 (FromType->isSignedIntegerType() ||
1347 // We can promote any unsigned integer type whose size is
1348 // less than int to an int.
1349 (!FromType->isSignedIntegerType() &&
1350 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1351 return To->getKind() == BuiltinType::Int;
1352 }
1353
1354 return To->getKind() == BuiltinType::UInt;
1355 }
1356
1357 // C++0x [conv.prom]p3:
1358 // A prvalue of an unscoped enumeration type whose underlying type is not
1359 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1360 // following types that can represent all the values of the enumeration
1361 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
1362 // unsigned int, long int, unsigned long int, long long int, or unsigned
1363 // long long int. If none of the types in that list can represent all the
1364 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1365 // type can be converted to an rvalue a prvalue of the extended integer type
1366 // with lowest integer conversion rank (4.13) greater than the rank of long
1367 // long in which all the values of the enumeration can be represented. If
1368 // there are two such extended types, the signed one is chosen.
1369 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1370 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1371 // provided for a scoped enumeration.
1372 if (FromEnumType->getDecl()->isScoped())
1373 return false;
1374
1375 // We have already pre-calculated the promotion type, so this is trivial.
1376 if (ToType->isIntegerType() &&
1377 !RequireCompleteType(From->getLocStart(), FromType, PDiag()))
1378 return Context.hasSameUnqualifiedType(ToType,
1379 FromEnumType->getDecl()->getPromotionType());
1380 }
1381
1382 // C++0x [conv.prom]p2:
1383 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1384 // to an rvalue a prvalue of the first of the following types that can
1385 // represent all the values of its underlying type: int, unsigned int,
1386 // long int, unsigned long int, long long int, or unsigned long long int.
1387 // If none of the types in that list can represent all the values of its
1388 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
1389 // or wchar_t can be converted to an rvalue a prvalue of its underlying
1390 // type.
1391 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1392 ToType->isIntegerType()) {
1393 // Determine whether the type we're converting from is signed or
1394 // unsigned.
1395 bool FromIsSigned;
1396 uint64_t FromSize = Context.getTypeSize(FromType);
1397
1398 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
1399 FromIsSigned = true;
1400
1401 // The types we'll try to promote to, in the appropriate
1402 // order. Try each of these types.
1403 QualType PromoteTypes[6] = {
1404 Context.IntTy, Context.UnsignedIntTy,
1405 Context.LongTy, Context.UnsignedLongTy ,
1406 Context.LongLongTy, Context.UnsignedLongLongTy
1407 };
1408 for (int Idx = 0; Idx < 6; ++Idx) {
1409 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1410 if (FromSize < ToSize ||
1411 (FromSize == ToSize &&
1412 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1413 // We found the type that we can promote to. If this is the
1414 // type we wanted, we have a promotion. Otherwise, no
1415 // promotion.
1416 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1417 }
1418 }
1419 }
1420
1421 // An rvalue for an integral bit-field (9.6) can be converted to an
1422 // rvalue of type int if int can represent all the values of the
1423 // bit-field; otherwise, it can be converted to unsigned int if
1424 // unsigned int can represent all the values of the bit-field. If
1425 // the bit-field is larger yet, no integral promotion applies to
1426 // it. If the bit-field has an enumerated type, it is treated as any
1427 // other value of that type for promotion purposes (C++ 4.5p3).
1428 // FIXME: We should delay checking of bit-fields until we actually perform the
1429 // conversion.
1430 using llvm::APSInt;
1431 if (From)
1432 if (FieldDecl *MemberDecl = From->getBitField()) {
1433 APSInt BitWidth;
1434 if (FromType->isIntegralType(Context) &&
1435 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1436 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1437 ToSize = Context.getTypeSize(ToType);
1438
1439 // Are we promoting to an int from a bitfield that fits in an int?
1440 if (BitWidth < ToSize ||
1441 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1442 return To->getKind() == BuiltinType::Int;
1443 }
1444
1445 // Are we promoting to an unsigned int from an unsigned bitfield
1446 // that fits into an unsigned int?
1447 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1448 return To->getKind() == BuiltinType::UInt;
1449 }
1450
1451 return false;
1452 }
1453 }
1454
1455 // An rvalue of type bool can be converted to an rvalue of type int,
1456 // with false becoming zero and true becoming one (C++ 4.5p4).
1457 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1458 return true;
1459 }
1460
1461 return false;
1462 }
1463
1464 /// IsFloatingPointPromotion - Determines whether the conversion from
1465 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1466 /// returns true and sets PromotedType to the promoted type.
IsFloatingPointPromotion(QualType FromType,QualType ToType)1467 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1468 /// An rvalue of type float can be converted to an rvalue of type
1469 /// double. (C++ 4.6p1).
1470 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1471 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1472 if (FromBuiltin->getKind() == BuiltinType::Float &&
1473 ToBuiltin->getKind() == BuiltinType::Double)
1474 return true;
1475
1476 // C99 6.3.1.5p1:
1477 // When a float is promoted to double or long double, or a
1478 // double is promoted to long double [...].
1479 if (!getLangOptions().CPlusPlus &&
1480 (FromBuiltin->getKind() == BuiltinType::Float ||
1481 FromBuiltin->getKind() == BuiltinType::Double) &&
1482 (ToBuiltin->getKind() == BuiltinType::LongDouble))
1483 return true;
1484 }
1485
1486 return false;
1487 }
1488
1489 /// \brief Determine if a conversion is a complex promotion.
1490 ///
1491 /// A complex promotion is defined as a complex -> complex conversion
1492 /// where the conversion between the underlying real types is a
1493 /// floating-point or integral promotion.
IsComplexPromotion(QualType FromType,QualType ToType)1494 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1495 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1496 if (!FromComplex)
1497 return false;
1498
1499 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1500 if (!ToComplex)
1501 return false;
1502
1503 return IsFloatingPointPromotion(FromComplex->getElementType(),
1504 ToComplex->getElementType()) ||
1505 IsIntegralPromotion(0, FromComplex->getElementType(),
1506 ToComplex->getElementType());
1507 }
1508
1509 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1510 /// the pointer type FromPtr to a pointer to type ToPointee, with the
1511 /// same type qualifiers as FromPtr has on its pointee type. ToType,
1512 /// if non-empty, will be a pointer to ToType that may or may not have
1513 /// the right set of qualifiers on its pointee.
1514 ///
1515 static QualType
BuildSimilarlyQualifiedPointerType(const Type * FromPtr,QualType ToPointee,QualType ToType,ASTContext & Context,bool StripObjCLifetime=false)1516 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1517 QualType ToPointee, QualType ToType,
1518 ASTContext &Context,
1519 bool StripObjCLifetime = false) {
1520 assert((FromPtr->getTypeClass() == Type::Pointer ||
1521 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1522 "Invalid similarly-qualified pointer type");
1523
1524 /// Conversions to 'id' subsume cv-qualifier conversions.
1525 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1526 return ToType.getUnqualifiedType();
1527
1528 QualType CanonFromPointee
1529 = Context.getCanonicalType(FromPtr->getPointeeType());
1530 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1531 Qualifiers Quals = CanonFromPointee.getQualifiers();
1532
1533 if (StripObjCLifetime)
1534 Quals.removeObjCLifetime();
1535
1536 // Exact qualifier match -> return the pointer type we're converting to.
1537 if (CanonToPointee.getLocalQualifiers() == Quals) {
1538 // ToType is exactly what we need. Return it.
1539 if (!ToType.isNull())
1540 return ToType.getUnqualifiedType();
1541
1542 // Build a pointer to ToPointee. It has the right qualifiers
1543 // already.
1544 if (isa<ObjCObjectPointerType>(ToType))
1545 return Context.getObjCObjectPointerType(ToPointee);
1546 return Context.getPointerType(ToPointee);
1547 }
1548
1549 // Just build a canonical type that has the right qualifiers.
1550 QualType QualifiedCanonToPointee
1551 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1552
1553 if (isa<ObjCObjectPointerType>(ToType))
1554 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1555 return Context.getPointerType(QualifiedCanonToPointee);
1556 }
1557
isNullPointerConstantForConversion(Expr * Expr,bool InOverloadResolution,ASTContext & Context)1558 static bool isNullPointerConstantForConversion(Expr *Expr,
1559 bool InOverloadResolution,
1560 ASTContext &Context) {
1561 // Handle value-dependent integral null pointer constants correctly.
1562 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1563 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1564 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1565 return !InOverloadResolution;
1566
1567 return Expr->isNullPointerConstant(Context,
1568 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1569 : Expr::NPC_ValueDependentIsNull);
1570 }
1571
1572 /// IsPointerConversion - Determines whether the conversion of the
1573 /// expression From, which has the (possibly adjusted) type FromType,
1574 /// can be converted to the type ToType via a pointer conversion (C++
1575 /// 4.10). If so, returns true and places the converted type (that
1576 /// might differ from ToType in its cv-qualifiers at some level) into
1577 /// ConvertedType.
1578 ///
1579 /// This routine also supports conversions to and from block pointers
1580 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
1581 /// pointers to interfaces. FIXME: Once we've determined the
1582 /// appropriate overloading rules for Objective-C, we may want to
1583 /// split the Objective-C checks into a different routine; however,
1584 /// GCC seems to consider all of these conversions to be pointer
1585 /// conversions, so for now they live here. IncompatibleObjC will be
1586 /// set if the conversion is an allowed Objective-C conversion that
1587 /// should result in a warning.
IsPointerConversion(Expr * From,QualType FromType,QualType ToType,bool InOverloadResolution,QualType & ConvertedType,bool & IncompatibleObjC)1588 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1589 bool InOverloadResolution,
1590 QualType& ConvertedType,
1591 bool &IncompatibleObjC) {
1592 IncompatibleObjC = false;
1593 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1594 IncompatibleObjC))
1595 return true;
1596
1597 // Conversion from a null pointer constant to any Objective-C pointer type.
1598 if (ToType->isObjCObjectPointerType() &&
1599 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1600 ConvertedType = ToType;
1601 return true;
1602 }
1603
1604 // Blocks: Block pointers can be converted to void*.
1605 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1606 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1607 ConvertedType = ToType;
1608 return true;
1609 }
1610 // Blocks: A null pointer constant can be converted to a block
1611 // pointer type.
1612 if (ToType->isBlockPointerType() &&
1613 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1614 ConvertedType = ToType;
1615 return true;
1616 }
1617
1618 // If the left-hand-side is nullptr_t, the right side can be a null
1619 // pointer constant.
1620 if (ToType->isNullPtrType() &&
1621 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1622 ConvertedType = ToType;
1623 return true;
1624 }
1625
1626 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1627 if (!ToTypePtr)
1628 return false;
1629
1630 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1631 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1632 ConvertedType = ToType;
1633 return true;
1634 }
1635
1636 // Beyond this point, both types need to be pointers
1637 // , including objective-c pointers.
1638 QualType ToPointeeType = ToTypePtr->getPointeeType();
1639 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
1640 !getLangOptions().ObjCAutoRefCount) {
1641 ConvertedType = BuildSimilarlyQualifiedPointerType(
1642 FromType->getAs<ObjCObjectPointerType>(),
1643 ToPointeeType,
1644 ToType, Context);
1645 return true;
1646 }
1647 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1648 if (!FromTypePtr)
1649 return false;
1650
1651 QualType FromPointeeType = FromTypePtr->getPointeeType();
1652
1653 // If the unqualified pointee types are the same, this can't be a
1654 // pointer conversion, so don't do all of the work below.
1655 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1656 return false;
1657
1658 // An rvalue of type "pointer to cv T," where T is an object type,
1659 // can be converted to an rvalue of type "pointer to cv void" (C++
1660 // 4.10p2).
1661 if (FromPointeeType->isIncompleteOrObjectType() &&
1662 ToPointeeType->isVoidType()) {
1663 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1664 ToPointeeType,
1665 ToType, Context,
1666 /*StripObjCLifetime=*/true);
1667 return true;
1668 }
1669
1670 // MSVC allows implicit function to void* type conversion.
1671 if (getLangOptions().Microsoft && FromPointeeType->isFunctionType() &&
1672 ToPointeeType->isVoidType()) {
1673 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1674 ToPointeeType,
1675 ToType, Context);
1676 return true;
1677 }
1678
1679 // When we're overloading in C, we allow a special kind of pointer
1680 // conversion for compatible-but-not-identical pointee types.
1681 if (!getLangOptions().CPlusPlus &&
1682 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1683 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1684 ToPointeeType,
1685 ToType, Context);
1686 return true;
1687 }
1688
1689 // C++ [conv.ptr]p3:
1690 //
1691 // An rvalue of type "pointer to cv D," where D is a class type,
1692 // can be converted to an rvalue of type "pointer to cv B," where
1693 // B is a base class (clause 10) of D. If B is an inaccessible
1694 // (clause 11) or ambiguous (10.2) base class of D, a program that
1695 // necessitates this conversion is ill-formed. The result of the
1696 // conversion is a pointer to the base class sub-object of the
1697 // derived class object. The null pointer value is converted to
1698 // the null pointer value of the destination type.
1699 //
1700 // Note that we do not check for ambiguity or inaccessibility
1701 // here. That is handled by CheckPointerConversion.
1702 if (getLangOptions().CPlusPlus &&
1703 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1704 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1705 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1706 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1707 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1708 ToPointeeType,
1709 ToType, Context);
1710 return true;
1711 }
1712
1713 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
1714 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
1715 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1716 ToPointeeType,
1717 ToType, Context);
1718 return true;
1719 }
1720
1721 return false;
1722 }
1723
1724 /// \brief Adopt the given qualifiers for the given type.
AdoptQualifiers(ASTContext & Context,QualType T,Qualifiers Qs)1725 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
1726 Qualifiers TQs = T.getQualifiers();
1727
1728 // Check whether qualifiers already match.
1729 if (TQs == Qs)
1730 return T;
1731
1732 if (Qs.compatiblyIncludes(TQs))
1733 return Context.getQualifiedType(T, Qs);
1734
1735 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
1736 }
1737
1738 /// isObjCPointerConversion - Determines whether this is an
1739 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1740 /// with the same arguments and return values.
isObjCPointerConversion(QualType FromType,QualType ToType,QualType & ConvertedType,bool & IncompatibleObjC)1741 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1742 QualType& ConvertedType,
1743 bool &IncompatibleObjC) {
1744 if (!getLangOptions().ObjC1)
1745 return false;
1746
1747 // The set of qualifiers on the type we're converting from.
1748 Qualifiers FromQualifiers = FromType.getQualifiers();
1749
1750 // First, we handle all conversions on ObjC object pointer types.
1751 const ObjCObjectPointerType* ToObjCPtr =
1752 ToType->getAs<ObjCObjectPointerType>();
1753 const ObjCObjectPointerType *FromObjCPtr =
1754 FromType->getAs<ObjCObjectPointerType>();
1755
1756 if (ToObjCPtr && FromObjCPtr) {
1757 // If the pointee types are the same (ignoring qualifications),
1758 // then this is not a pointer conversion.
1759 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
1760 FromObjCPtr->getPointeeType()))
1761 return false;
1762
1763 // Check for compatible
1764 // Objective C++: We're able to convert between "id" or "Class" and a
1765 // pointer to any interface (in both directions).
1766 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1767 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1768 return true;
1769 }
1770 // Conversions with Objective-C's id<...>.
1771 if ((FromObjCPtr->isObjCQualifiedIdType() ||
1772 ToObjCPtr->isObjCQualifiedIdType()) &&
1773 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1774 /*compare=*/false)) {
1775 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1776 return true;
1777 }
1778 // Objective C++: We're able to convert from a pointer to an
1779 // interface to a pointer to a different interface.
1780 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1781 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1782 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1783 if (getLangOptions().CPlusPlus && LHS && RHS &&
1784 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1785 FromObjCPtr->getPointeeType()))
1786 return false;
1787 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1788 ToObjCPtr->getPointeeType(),
1789 ToType, Context);
1790 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1791 return true;
1792 }
1793
1794 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1795 // Okay: this is some kind of implicit downcast of Objective-C
1796 // interfaces, which is permitted. However, we're going to
1797 // complain about it.
1798 IncompatibleObjC = true;
1799 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1800 ToObjCPtr->getPointeeType(),
1801 ToType, Context);
1802 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1803 return true;
1804 }
1805 }
1806 // Beyond this point, both types need to be C pointers or block pointers.
1807 QualType ToPointeeType;
1808 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1809 ToPointeeType = ToCPtr->getPointeeType();
1810 else if (const BlockPointerType *ToBlockPtr =
1811 ToType->getAs<BlockPointerType>()) {
1812 // Objective C++: We're able to convert from a pointer to any object
1813 // to a block pointer type.
1814 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1815 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1816 return true;
1817 }
1818 ToPointeeType = ToBlockPtr->getPointeeType();
1819 }
1820 else if (FromType->getAs<BlockPointerType>() &&
1821 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1822 // Objective C++: We're able to convert from a block pointer type to a
1823 // pointer to any object.
1824 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1825 return true;
1826 }
1827 else
1828 return false;
1829
1830 QualType FromPointeeType;
1831 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1832 FromPointeeType = FromCPtr->getPointeeType();
1833 else if (const BlockPointerType *FromBlockPtr =
1834 FromType->getAs<BlockPointerType>())
1835 FromPointeeType = FromBlockPtr->getPointeeType();
1836 else
1837 return false;
1838
1839 // If we have pointers to pointers, recursively check whether this
1840 // is an Objective-C conversion.
1841 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1842 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1843 IncompatibleObjC)) {
1844 // We always complain about this conversion.
1845 IncompatibleObjC = true;
1846 ConvertedType = Context.getPointerType(ConvertedType);
1847 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1848 return true;
1849 }
1850 // Allow conversion of pointee being objective-c pointer to another one;
1851 // as in I* to id.
1852 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1853 ToPointeeType->getAs<ObjCObjectPointerType>() &&
1854 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1855 IncompatibleObjC)) {
1856
1857 ConvertedType = Context.getPointerType(ConvertedType);
1858 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1859 return true;
1860 }
1861
1862 // If we have pointers to functions or blocks, check whether the only
1863 // differences in the argument and result types are in Objective-C
1864 // pointer conversions. If so, we permit the conversion (but
1865 // complain about it).
1866 const FunctionProtoType *FromFunctionType
1867 = FromPointeeType->getAs<FunctionProtoType>();
1868 const FunctionProtoType *ToFunctionType
1869 = ToPointeeType->getAs<FunctionProtoType>();
1870 if (FromFunctionType && ToFunctionType) {
1871 // If the function types are exactly the same, this isn't an
1872 // Objective-C pointer conversion.
1873 if (Context.getCanonicalType(FromPointeeType)
1874 == Context.getCanonicalType(ToPointeeType))
1875 return false;
1876
1877 // Perform the quick checks that will tell us whether these
1878 // function types are obviously different.
1879 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1880 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1881 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1882 return false;
1883
1884 bool HasObjCConversion = false;
1885 if (Context.getCanonicalType(FromFunctionType->getResultType())
1886 == Context.getCanonicalType(ToFunctionType->getResultType())) {
1887 // Okay, the types match exactly. Nothing to do.
1888 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1889 ToFunctionType->getResultType(),
1890 ConvertedType, IncompatibleObjC)) {
1891 // Okay, we have an Objective-C pointer conversion.
1892 HasObjCConversion = true;
1893 } else {
1894 // Function types are too different. Abort.
1895 return false;
1896 }
1897
1898 // Check argument types.
1899 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1900 ArgIdx != NumArgs; ++ArgIdx) {
1901 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1902 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1903 if (Context.getCanonicalType(FromArgType)
1904 == Context.getCanonicalType(ToArgType)) {
1905 // Okay, the types match exactly. Nothing to do.
1906 } else if (isObjCPointerConversion(FromArgType, ToArgType,
1907 ConvertedType, IncompatibleObjC)) {
1908 // Okay, we have an Objective-C pointer conversion.
1909 HasObjCConversion = true;
1910 } else {
1911 // Argument types are too different. Abort.
1912 return false;
1913 }
1914 }
1915
1916 if (HasObjCConversion) {
1917 // We had an Objective-C conversion. Allow this pointer
1918 // conversion, but complain about it.
1919 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1920 IncompatibleObjC = true;
1921 return true;
1922 }
1923 }
1924
1925 return false;
1926 }
1927
1928 /// \brief Determine whether this is an Objective-C writeback conversion,
1929 /// used for parameter passing when performing automatic reference counting.
1930 ///
1931 /// \param FromType The type we're converting form.
1932 ///
1933 /// \param ToType The type we're converting to.
1934 ///
1935 /// \param ConvertedType The type that will be produced after applying
1936 /// this conversion.
isObjCWritebackConversion(QualType FromType,QualType ToType,QualType & ConvertedType)1937 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
1938 QualType &ConvertedType) {
1939 if (!getLangOptions().ObjCAutoRefCount ||
1940 Context.hasSameUnqualifiedType(FromType, ToType))
1941 return false;
1942
1943 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
1944 QualType ToPointee;
1945 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
1946 ToPointee = ToPointer->getPointeeType();
1947 else
1948 return false;
1949
1950 Qualifiers ToQuals = ToPointee.getQualifiers();
1951 if (!ToPointee->isObjCLifetimeType() ||
1952 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
1953 !ToQuals.withoutObjCGLifetime().empty())
1954 return false;
1955
1956 // Argument must be a pointer to __strong to __weak.
1957 QualType FromPointee;
1958 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
1959 FromPointee = FromPointer->getPointeeType();
1960 else
1961 return false;
1962
1963 Qualifiers FromQuals = FromPointee.getQualifiers();
1964 if (!FromPointee->isObjCLifetimeType() ||
1965 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
1966 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
1967 return false;
1968
1969 // Make sure that we have compatible qualifiers.
1970 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
1971 if (!ToQuals.compatiblyIncludes(FromQuals))
1972 return false;
1973
1974 // Remove qualifiers from the pointee type we're converting from; they
1975 // aren't used in the compatibility check belong, and we'll be adding back
1976 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
1977 FromPointee = FromPointee.getUnqualifiedType();
1978
1979 // The unqualified form of the pointee types must be compatible.
1980 ToPointee = ToPointee.getUnqualifiedType();
1981 bool IncompatibleObjC;
1982 if (Context.typesAreCompatible(FromPointee, ToPointee))
1983 FromPointee = ToPointee;
1984 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
1985 IncompatibleObjC))
1986 return false;
1987
1988 /// \brief Construct the type we're converting to, which is a pointer to
1989 /// __autoreleasing pointee.
1990 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
1991 ConvertedType = Context.getPointerType(FromPointee);
1992 return true;
1993 }
1994
IsBlockPointerConversion(QualType FromType,QualType ToType,QualType & ConvertedType)1995 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
1996 QualType& ConvertedType) {
1997 QualType ToPointeeType;
1998 if (const BlockPointerType *ToBlockPtr =
1999 ToType->getAs<BlockPointerType>())
2000 ToPointeeType = ToBlockPtr->getPointeeType();
2001 else
2002 return false;
2003
2004 QualType FromPointeeType;
2005 if (const BlockPointerType *FromBlockPtr =
2006 FromType->getAs<BlockPointerType>())
2007 FromPointeeType = FromBlockPtr->getPointeeType();
2008 else
2009 return false;
2010 // We have pointer to blocks, check whether the only
2011 // differences in the argument and result types are in Objective-C
2012 // pointer conversions. If so, we permit the conversion.
2013
2014 const FunctionProtoType *FromFunctionType
2015 = FromPointeeType->getAs<FunctionProtoType>();
2016 const FunctionProtoType *ToFunctionType
2017 = ToPointeeType->getAs<FunctionProtoType>();
2018
2019 if (!FromFunctionType || !ToFunctionType)
2020 return false;
2021
2022 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2023 return true;
2024
2025 // Perform the quick checks that will tell us whether these
2026 // function types are obviously different.
2027 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2028 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2029 return false;
2030
2031 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2032 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2033 if (FromEInfo != ToEInfo)
2034 return false;
2035
2036 bool IncompatibleObjC = false;
2037 if (Context.hasSameType(FromFunctionType->getResultType(),
2038 ToFunctionType->getResultType())) {
2039 // Okay, the types match exactly. Nothing to do.
2040 } else {
2041 QualType RHS = FromFunctionType->getResultType();
2042 QualType LHS = ToFunctionType->getResultType();
2043 if ((!getLangOptions().CPlusPlus || !RHS->isRecordType()) &&
2044 !RHS.hasQualifiers() && LHS.hasQualifiers())
2045 LHS = LHS.getUnqualifiedType();
2046
2047 if (Context.hasSameType(RHS,LHS)) {
2048 // OK exact match.
2049 } else if (isObjCPointerConversion(RHS, LHS,
2050 ConvertedType, IncompatibleObjC)) {
2051 if (IncompatibleObjC)
2052 return false;
2053 // Okay, we have an Objective-C pointer conversion.
2054 }
2055 else
2056 return false;
2057 }
2058
2059 // Check argument types.
2060 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2061 ArgIdx != NumArgs; ++ArgIdx) {
2062 IncompatibleObjC = false;
2063 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2064 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2065 if (Context.hasSameType(FromArgType, ToArgType)) {
2066 // Okay, the types match exactly. Nothing to do.
2067 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2068 ConvertedType, IncompatibleObjC)) {
2069 if (IncompatibleObjC)
2070 return false;
2071 // Okay, we have an Objective-C pointer conversion.
2072 } else
2073 // Argument types are too different. Abort.
2074 return false;
2075 }
2076 ConvertedType = ToType;
2077 return true;
2078 }
2079
2080 /// FunctionArgTypesAreEqual - This routine checks two function proto types
2081 /// for equlity of their argument types. Caller has already checked that
2082 /// they have same number of arguments. This routine assumes that Objective-C
2083 /// pointer types which only differ in their protocol qualifiers are equal.
FunctionArgTypesAreEqual(const FunctionProtoType * OldType,const FunctionProtoType * NewType)2084 bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
2085 const FunctionProtoType *NewType) {
2086 if (!getLangOptions().ObjC1)
2087 return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
2088 NewType->arg_type_begin());
2089
2090 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2091 N = NewType->arg_type_begin(),
2092 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2093 QualType ToType = (*O);
2094 QualType FromType = (*N);
2095 if (ToType != FromType) {
2096 if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
2097 if (const PointerType *PTFr = FromType->getAs<PointerType>())
2098 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
2099 PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
2100 (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
2101 PTFr->getPointeeType()->isObjCQualifiedClassType()))
2102 continue;
2103 }
2104 else if (const ObjCObjectPointerType *PTTo =
2105 ToType->getAs<ObjCObjectPointerType>()) {
2106 if (const ObjCObjectPointerType *PTFr =
2107 FromType->getAs<ObjCObjectPointerType>())
2108 if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
2109 continue;
2110 }
2111 return false;
2112 }
2113 }
2114 return true;
2115 }
2116
2117 /// CheckPointerConversion - Check the pointer conversion from the
2118 /// expression From to the type ToType. This routine checks for
2119 /// ambiguous or inaccessible derived-to-base pointer
2120 /// conversions for which IsPointerConversion has already returned
2121 /// true. It returns true and produces a diagnostic if there was an
2122 /// error, or returns false otherwise.
CheckPointerConversion(Expr * From,QualType ToType,CastKind & Kind,CXXCastPath & BasePath,bool IgnoreBaseAccess)2123 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2124 CastKind &Kind,
2125 CXXCastPath& BasePath,
2126 bool IgnoreBaseAccess) {
2127 QualType FromType = From->getType();
2128 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2129
2130 Kind = CK_BitCast;
2131
2132 if (!IsCStyleOrFunctionalCast &&
2133 Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) &&
2134 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
2135 DiagRuntimeBehavior(From->getExprLoc(), From,
2136 PDiag(diag::warn_impcast_bool_to_null_pointer)
2137 << ToType << From->getSourceRange());
2138
2139 if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
2140 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2141 QualType FromPointeeType = FromPtrType->getPointeeType(),
2142 ToPointeeType = ToPtrType->getPointeeType();
2143
2144 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2145 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2146 // We must have a derived-to-base conversion. Check an
2147 // ambiguous or inaccessible conversion.
2148 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2149 From->getExprLoc(),
2150 From->getSourceRange(), &BasePath,
2151 IgnoreBaseAccess))
2152 return true;
2153
2154 // The conversion was successful.
2155 Kind = CK_DerivedToBase;
2156 }
2157 }
2158 if (const ObjCObjectPointerType *FromPtrType =
2159 FromType->getAs<ObjCObjectPointerType>()) {
2160 if (const ObjCObjectPointerType *ToPtrType =
2161 ToType->getAs<ObjCObjectPointerType>()) {
2162 // Objective-C++ conversions are always okay.
2163 // FIXME: We should have a different class of conversions for the
2164 // Objective-C++ implicit conversions.
2165 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2166 return false;
2167 }
2168 }
2169
2170 // We shouldn't fall into this case unless it's valid for other
2171 // reasons.
2172 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2173 Kind = CK_NullToPointer;
2174
2175 return false;
2176 }
2177
2178 /// IsMemberPointerConversion - Determines whether the conversion of the
2179 /// expression From, which has the (possibly adjusted) type FromType, can be
2180 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
2181 /// If so, returns true and places the converted type (that might differ from
2182 /// ToType in its cv-qualifiers at some level) into ConvertedType.
IsMemberPointerConversion(Expr * From,QualType FromType,QualType ToType,bool InOverloadResolution,QualType & ConvertedType)2183 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2184 QualType ToType,
2185 bool InOverloadResolution,
2186 QualType &ConvertedType) {
2187 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2188 if (!ToTypePtr)
2189 return false;
2190
2191 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2192 if (From->isNullPointerConstant(Context,
2193 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2194 : Expr::NPC_ValueDependentIsNull)) {
2195 ConvertedType = ToType;
2196 return true;
2197 }
2198
2199 // Otherwise, both types have to be member pointers.
2200 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2201 if (!FromTypePtr)
2202 return false;
2203
2204 // A pointer to member of B can be converted to a pointer to member of D,
2205 // where D is derived from B (C++ 4.11p2).
2206 QualType FromClass(FromTypePtr->getClass(), 0);
2207 QualType ToClass(ToTypePtr->getClass(), 0);
2208
2209 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2210 !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) &&
2211 IsDerivedFrom(ToClass, FromClass)) {
2212 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2213 ToClass.getTypePtr());
2214 return true;
2215 }
2216
2217 return false;
2218 }
2219
2220 /// CheckMemberPointerConversion - Check the member pointer conversion from the
2221 /// expression From to the type ToType. This routine checks for ambiguous or
2222 /// virtual or inaccessible base-to-derived member pointer conversions
2223 /// for which IsMemberPointerConversion has already returned true. It returns
2224 /// true and produces a diagnostic if there was an error, or returns false
2225 /// otherwise.
CheckMemberPointerConversion(Expr * From,QualType ToType,CastKind & Kind,CXXCastPath & BasePath,bool IgnoreBaseAccess)2226 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2227 CastKind &Kind,
2228 CXXCastPath &BasePath,
2229 bool IgnoreBaseAccess) {
2230 QualType FromType = From->getType();
2231 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2232 if (!FromPtrType) {
2233 // This must be a null pointer to member pointer conversion
2234 assert(From->isNullPointerConstant(Context,
2235 Expr::NPC_ValueDependentIsNull) &&
2236 "Expr must be null pointer constant!");
2237 Kind = CK_NullToMemberPointer;
2238 return false;
2239 }
2240
2241 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2242 assert(ToPtrType && "No member pointer cast has a target type "
2243 "that is not a member pointer.");
2244
2245 QualType FromClass = QualType(FromPtrType->getClass(), 0);
2246 QualType ToClass = QualType(ToPtrType->getClass(), 0);
2247
2248 // FIXME: What about dependent types?
2249 assert(FromClass->isRecordType() && "Pointer into non-class.");
2250 assert(ToClass->isRecordType() && "Pointer into non-class.");
2251
2252 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2253 /*DetectVirtual=*/true);
2254 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2255 assert(DerivationOkay &&
2256 "Should not have been called if derivation isn't OK.");
2257 (void)DerivationOkay;
2258
2259 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2260 getUnqualifiedType())) {
2261 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2262 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2263 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2264 return true;
2265 }
2266
2267 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2268 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2269 << FromClass << ToClass << QualType(VBase, 0)
2270 << From->getSourceRange();
2271 return true;
2272 }
2273
2274 if (!IgnoreBaseAccess)
2275 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2276 Paths.front(),
2277 diag::err_downcast_from_inaccessible_base);
2278
2279 // Must be a base to derived member conversion.
2280 BuildBasePathArray(Paths, BasePath);
2281 Kind = CK_BaseToDerivedMemberPointer;
2282 return false;
2283 }
2284
2285 /// IsQualificationConversion - Determines whether the conversion from
2286 /// an rvalue of type FromType to ToType is a qualification conversion
2287 /// (C++ 4.4).
2288 ///
2289 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2290 /// when the qualification conversion involves a change in the Objective-C
2291 /// object lifetime.
2292 bool
IsQualificationConversion(QualType FromType,QualType ToType,bool CStyle,bool & ObjCLifetimeConversion)2293 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2294 bool CStyle, bool &ObjCLifetimeConversion) {
2295 FromType = Context.getCanonicalType(FromType);
2296 ToType = Context.getCanonicalType(ToType);
2297 ObjCLifetimeConversion = false;
2298
2299 // If FromType and ToType are the same type, this is not a
2300 // qualification conversion.
2301 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2302 return false;
2303
2304 // (C++ 4.4p4):
2305 // A conversion can add cv-qualifiers at levels other than the first
2306 // in multi-level pointers, subject to the following rules: [...]
2307 bool PreviousToQualsIncludeConst = true;
2308 bool UnwrappedAnyPointer = false;
2309 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2310 // Within each iteration of the loop, we check the qualifiers to
2311 // determine if this still looks like a qualification
2312 // conversion. Then, if all is well, we unwrap one more level of
2313 // pointers or pointers-to-members and do it all again
2314 // until there are no more pointers or pointers-to-members left to
2315 // unwrap.
2316 UnwrappedAnyPointer = true;
2317
2318 Qualifiers FromQuals = FromType.getQualifiers();
2319 Qualifiers ToQuals = ToType.getQualifiers();
2320
2321 // Objective-C ARC:
2322 // Check Objective-C lifetime conversions.
2323 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2324 UnwrappedAnyPointer) {
2325 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2326 ObjCLifetimeConversion = true;
2327 FromQuals.removeObjCLifetime();
2328 ToQuals.removeObjCLifetime();
2329 } else {
2330 // Qualification conversions cannot cast between different
2331 // Objective-C lifetime qualifiers.
2332 return false;
2333 }
2334 }
2335
2336 // Allow addition/removal of GC attributes but not changing GC attributes.
2337 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2338 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2339 FromQuals.removeObjCGCAttr();
2340 ToQuals.removeObjCGCAttr();
2341 }
2342
2343 // -- for every j > 0, if const is in cv 1,j then const is in cv
2344 // 2,j, and similarly for volatile.
2345 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2346 return false;
2347
2348 // -- if the cv 1,j and cv 2,j are different, then const is in
2349 // every cv for 0 < k < j.
2350 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2351 && !PreviousToQualsIncludeConst)
2352 return false;
2353
2354 // Keep track of whether all prior cv-qualifiers in the "to" type
2355 // include const.
2356 PreviousToQualsIncludeConst
2357 = PreviousToQualsIncludeConst && ToQuals.hasConst();
2358 }
2359
2360 // We are left with FromType and ToType being the pointee types
2361 // after unwrapping the original FromType and ToType the same number
2362 // of types. If we unwrapped any pointers, and if FromType and
2363 // ToType have the same unqualified type (since we checked
2364 // qualifiers above), then this is a qualification conversion.
2365 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2366 }
2367
2368 /// Determines whether there is a user-defined conversion sequence
2369 /// (C++ [over.ics.user]) that converts expression From to the type
2370 /// ToType. If such a conversion exists, User will contain the
2371 /// user-defined conversion sequence that performs such a conversion
2372 /// and this routine will return true. Otherwise, this routine returns
2373 /// false and User is unspecified.
2374 ///
2375 /// \param AllowExplicit true if the conversion should consider C++0x
2376 /// "explicit" conversion functions as well as non-explicit conversion
2377 /// functions (C++0x [class.conv.fct]p2).
2378 static OverloadingResult
IsUserDefinedConversion(Sema & S,Expr * From,QualType ToType,UserDefinedConversionSequence & User,OverloadCandidateSet & CandidateSet,bool AllowExplicit)2379 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2380 UserDefinedConversionSequence& User,
2381 OverloadCandidateSet& CandidateSet,
2382 bool AllowExplicit) {
2383 // Whether we will only visit constructors.
2384 bool ConstructorsOnly = false;
2385
2386 // If the type we are conversion to is a class type, enumerate its
2387 // constructors.
2388 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2389 // C++ [over.match.ctor]p1:
2390 // When objects of class type are direct-initialized (8.5), or
2391 // copy-initialized from an expression of the same or a
2392 // derived class type (8.5), overload resolution selects the
2393 // constructor. [...] For copy-initialization, the candidate
2394 // functions are all the converting constructors (12.3.1) of
2395 // that class. The argument list is the expression-list within
2396 // the parentheses of the initializer.
2397 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2398 (From->getType()->getAs<RecordType>() &&
2399 S.IsDerivedFrom(From->getType(), ToType)))
2400 ConstructorsOnly = true;
2401
2402 S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag());
2403 // RequireCompleteType may have returned true due to some invalid decl
2404 // during template instantiation, but ToType may be complete enough now
2405 // to try to recover.
2406 if (ToType->isIncompleteType()) {
2407 // We're not going to find any constructors.
2408 } else if (CXXRecordDecl *ToRecordDecl
2409 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2410 DeclContext::lookup_iterator Con, ConEnd;
2411 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
2412 Con != ConEnd; ++Con) {
2413 NamedDecl *D = *Con;
2414 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2415
2416 // Find the constructor (which may be a template).
2417 CXXConstructorDecl *Constructor = 0;
2418 FunctionTemplateDecl *ConstructorTmpl
2419 = dyn_cast<FunctionTemplateDecl>(D);
2420 if (ConstructorTmpl)
2421 Constructor
2422 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2423 else
2424 Constructor = cast<CXXConstructorDecl>(D);
2425
2426 if (!Constructor->isInvalidDecl() &&
2427 Constructor->isConvertingConstructor(AllowExplicit)) {
2428 if (ConstructorTmpl)
2429 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2430 /*ExplicitArgs*/ 0,
2431 &From, 1, CandidateSet,
2432 /*SuppressUserConversions=*/
2433 !ConstructorsOnly);
2434 else
2435 // Allow one user-defined conversion when user specifies a
2436 // From->ToType conversion via an static cast (c-style, etc).
2437 S.AddOverloadCandidate(Constructor, FoundDecl,
2438 &From, 1, CandidateSet,
2439 /*SuppressUserConversions=*/
2440 !ConstructorsOnly);
2441 }
2442 }
2443 }
2444 }
2445
2446 // Enumerate conversion functions, if we're allowed to.
2447 if (ConstructorsOnly) {
2448 } else if (S.RequireCompleteType(From->getLocStart(), From->getType(),
2449 S.PDiag(0) << From->getSourceRange())) {
2450 // No conversion functions from incomplete types.
2451 } else if (const RecordType *FromRecordType
2452 = From->getType()->getAs<RecordType>()) {
2453 if (CXXRecordDecl *FromRecordDecl
2454 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
2455 // Add all of the conversion functions as candidates.
2456 const UnresolvedSetImpl *Conversions
2457 = FromRecordDecl->getVisibleConversionFunctions();
2458 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2459 E = Conversions->end(); I != E; ++I) {
2460 DeclAccessPair FoundDecl = I.getPair();
2461 NamedDecl *D = FoundDecl.getDecl();
2462 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
2463 if (isa<UsingShadowDecl>(D))
2464 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2465
2466 CXXConversionDecl *Conv;
2467 FunctionTemplateDecl *ConvTemplate;
2468 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
2469 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2470 else
2471 Conv = cast<CXXConversionDecl>(D);
2472
2473 if (AllowExplicit || !Conv->isExplicit()) {
2474 if (ConvTemplate)
2475 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
2476 ActingContext, From, ToType,
2477 CandidateSet);
2478 else
2479 S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
2480 From, ToType, CandidateSet);
2481 }
2482 }
2483 }
2484 }
2485
2486 OverloadCandidateSet::iterator Best;
2487 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2488 case OR_Success:
2489 // Record the standard conversion we used and the conversion function.
2490 if (CXXConstructorDecl *Constructor
2491 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
2492 S.MarkDeclarationReferenced(From->getLocStart(), Constructor);
2493
2494 // C++ [over.ics.user]p1:
2495 // If the user-defined conversion is specified by a
2496 // constructor (12.3.1), the initial standard conversion
2497 // sequence converts the source type to the type required by
2498 // the argument of the constructor.
2499 //
2500 QualType ThisType = Constructor->getThisType(S.Context);
2501 if (Best->Conversions[0].isEllipsis())
2502 User.EllipsisConversion = true;
2503 else {
2504 User.Before = Best->Conversions[0].Standard;
2505 User.EllipsisConversion = false;
2506 }
2507 User.ConversionFunction = Constructor;
2508 User.FoundConversionFunction = Best->FoundDecl.getDecl();
2509 User.After.setAsIdentityConversion();
2510 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2511 User.After.setAllToTypes(ToType);
2512 return OR_Success;
2513 } else if (CXXConversionDecl *Conversion
2514 = dyn_cast<CXXConversionDecl>(Best->Function)) {
2515 S.MarkDeclarationReferenced(From->getLocStart(), Conversion);
2516
2517 // C++ [over.ics.user]p1:
2518 //
2519 // [...] If the user-defined conversion is specified by a
2520 // conversion function (12.3.2), the initial standard
2521 // conversion sequence converts the source type to the
2522 // implicit object parameter of the conversion function.
2523 User.Before = Best->Conversions[0].Standard;
2524 User.ConversionFunction = Conversion;
2525 User.FoundConversionFunction = Best->FoundDecl.getDecl();
2526 User.EllipsisConversion = false;
2527
2528 // C++ [over.ics.user]p2:
2529 // The second standard conversion sequence converts the
2530 // result of the user-defined conversion to the target type
2531 // for the sequence. Since an implicit conversion sequence
2532 // is an initialization, the special rules for
2533 // initialization by user-defined conversion apply when
2534 // selecting the best user-defined conversion for a
2535 // user-defined conversion sequence (see 13.3.3 and
2536 // 13.3.3.1).
2537 User.After = Best->FinalConversion;
2538 return OR_Success;
2539 } else {
2540 llvm_unreachable("Not a constructor or conversion function?");
2541 return OR_No_Viable_Function;
2542 }
2543
2544 case OR_No_Viable_Function:
2545 return OR_No_Viable_Function;
2546 case OR_Deleted:
2547 // No conversion here! We're done.
2548 return OR_Deleted;
2549
2550 case OR_Ambiguous:
2551 return OR_Ambiguous;
2552 }
2553
2554 return OR_No_Viable_Function;
2555 }
2556
2557 bool
DiagnoseMultipleUserDefinedConversion(Expr * From,QualType ToType)2558 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
2559 ImplicitConversionSequence ICS;
2560 OverloadCandidateSet CandidateSet(From->getExprLoc());
2561 OverloadingResult OvResult =
2562 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
2563 CandidateSet, false);
2564 if (OvResult == OR_Ambiguous)
2565 Diag(From->getSourceRange().getBegin(),
2566 diag::err_typecheck_ambiguous_condition)
2567 << From->getType() << ToType << From->getSourceRange();
2568 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
2569 Diag(From->getSourceRange().getBegin(),
2570 diag::err_typecheck_nonviable_condition)
2571 << From->getType() << ToType << From->getSourceRange();
2572 else
2573 return false;
2574 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1);
2575 return true;
2576 }
2577
2578 /// CompareImplicitConversionSequences - Compare two implicit
2579 /// conversion sequences to determine whether one is better than the
2580 /// other or if they are indistinguishable (C++ 13.3.3.2).
2581 static ImplicitConversionSequence::CompareKind
CompareImplicitConversionSequences(Sema & S,const ImplicitConversionSequence & ICS1,const ImplicitConversionSequence & ICS2)2582 CompareImplicitConversionSequences(Sema &S,
2583 const ImplicitConversionSequence& ICS1,
2584 const ImplicitConversionSequence& ICS2)
2585 {
2586 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
2587 // conversion sequences (as defined in 13.3.3.1)
2588 // -- a standard conversion sequence (13.3.3.1.1) is a better
2589 // conversion sequence than a user-defined conversion sequence or
2590 // an ellipsis conversion sequence, and
2591 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
2592 // conversion sequence than an ellipsis conversion sequence
2593 // (13.3.3.1.3).
2594 //
2595 // C++0x [over.best.ics]p10:
2596 // For the purpose of ranking implicit conversion sequences as
2597 // described in 13.3.3.2, the ambiguous conversion sequence is
2598 // treated as a user-defined sequence that is indistinguishable
2599 // from any other user-defined conversion sequence.
2600 if (ICS1.getKindRank() < ICS2.getKindRank())
2601 return ImplicitConversionSequence::Better;
2602 else if (ICS2.getKindRank() < ICS1.getKindRank())
2603 return ImplicitConversionSequence::Worse;
2604
2605 // The following checks require both conversion sequences to be of
2606 // the same kind.
2607 if (ICS1.getKind() != ICS2.getKind())
2608 return ImplicitConversionSequence::Indistinguishable;
2609
2610 // Two implicit conversion sequences of the same form are
2611 // indistinguishable conversion sequences unless one of the
2612 // following rules apply: (C++ 13.3.3.2p3):
2613 if (ICS1.isStandard())
2614 return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard);
2615 else if (ICS1.isUserDefined()) {
2616 // User-defined conversion sequence U1 is a better conversion
2617 // sequence than another user-defined conversion sequence U2 if
2618 // they contain the same user-defined conversion function or
2619 // constructor and if the second standard conversion sequence of
2620 // U1 is better than the second standard conversion sequence of
2621 // U2 (C++ 13.3.3.2p3).
2622 if (ICS1.UserDefined.ConversionFunction ==
2623 ICS2.UserDefined.ConversionFunction)
2624 return CompareStandardConversionSequences(S,
2625 ICS1.UserDefined.After,
2626 ICS2.UserDefined.After);
2627 }
2628
2629 return ImplicitConversionSequence::Indistinguishable;
2630 }
2631
hasSimilarType(ASTContext & Context,QualType T1,QualType T2)2632 static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
2633 while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
2634 Qualifiers Quals;
2635 T1 = Context.getUnqualifiedArrayType(T1, Quals);
2636 T2 = Context.getUnqualifiedArrayType(T2, Quals);
2637 }
2638
2639 return Context.hasSameUnqualifiedType(T1, T2);
2640 }
2641
2642 // Per 13.3.3.2p3, compare the given standard conversion sequences to
2643 // determine if one is a proper subset of the other.
2644 static ImplicitConversionSequence::CompareKind
compareStandardConversionSubsets(ASTContext & Context,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)2645 compareStandardConversionSubsets(ASTContext &Context,
2646 const StandardConversionSequence& SCS1,
2647 const StandardConversionSequence& SCS2) {
2648 ImplicitConversionSequence::CompareKind Result
2649 = ImplicitConversionSequence::Indistinguishable;
2650
2651 // the identity conversion sequence is considered to be a subsequence of
2652 // any non-identity conversion sequence
2653 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
2654 return ImplicitConversionSequence::Better;
2655 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
2656 return ImplicitConversionSequence::Worse;
2657
2658 if (SCS1.Second != SCS2.Second) {
2659 if (SCS1.Second == ICK_Identity)
2660 Result = ImplicitConversionSequence::Better;
2661 else if (SCS2.Second == ICK_Identity)
2662 Result = ImplicitConversionSequence::Worse;
2663 else
2664 return ImplicitConversionSequence::Indistinguishable;
2665 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
2666 return ImplicitConversionSequence::Indistinguishable;
2667
2668 if (SCS1.Third == SCS2.Third) {
2669 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
2670 : ImplicitConversionSequence::Indistinguishable;
2671 }
2672
2673 if (SCS1.Third == ICK_Identity)
2674 return Result == ImplicitConversionSequence::Worse
2675 ? ImplicitConversionSequence::Indistinguishable
2676 : ImplicitConversionSequence::Better;
2677
2678 if (SCS2.Third == ICK_Identity)
2679 return Result == ImplicitConversionSequence::Better
2680 ? ImplicitConversionSequence::Indistinguishable
2681 : ImplicitConversionSequence::Worse;
2682
2683 return ImplicitConversionSequence::Indistinguishable;
2684 }
2685
2686 /// \brief Determine whether one of the given reference bindings is better
2687 /// than the other based on what kind of bindings they are.
isBetterReferenceBindingKind(const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)2688 static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
2689 const StandardConversionSequence &SCS2) {
2690 // C++0x [over.ics.rank]p3b4:
2691 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
2692 // implicit object parameter of a non-static member function declared
2693 // without a ref-qualifier, and *either* S1 binds an rvalue reference
2694 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
2695 // lvalue reference to a function lvalue and S2 binds an rvalue
2696 // reference*.
2697 //
2698 // FIXME: Rvalue references. We're going rogue with the above edits,
2699 // because the semantics in the current C++0x working paper (N3225 at the
2700 // time of this writing) break the standard definition of std::forward
2701 // and std::reference_wrapper when dealing with references to functions.
2702 // Proposed wording changes submitted to CWG for consideration.
2703 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
2704 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
2705 return false;
2706
2707 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
2708 SCS2.IsLvalueReference) ||
2709 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
2710 !SCS2.IsLvalueReference);
2711 }
2712
2713 /// CompareStandardConversionSequences - Compare two standard
2714 /// conversion sequences to determine whether one is better than the
2715 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
2716 static ImplicitConversionSequence::CompareKind
CompareStandardConversionSequences(Sema & S,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)2717 CompareStandardConversionSequences(Sema &S,
2718 const StandardConversionSequence& SCS1,
2719 const StandardConversionSequence& SCS2)
2720 {
2721 // Standard conversion sequence S1 is a better conversion sequence
2722 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
2723
2724 // -- S1 is a proper subsequence of S2 (comparing the conversion
2725 // sequences in the canonical form defined by 13.3.3.1.1,
2726 // excluding any Lvalue Transformation; the identity conversion
2727 // sequence is considered to be a subsequence of any
2728 // non-identity conversion sequence) or, if not that,
2729 if (ImplicitConversionSequence::CompareKind CK
2730 = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
2731 return CK;
2732
2733 // -- the rank of S1 is better than the rank of S2 (by the rules
2734 // defined below), or, if not that,
2735 ImplicitConversionRank Rank1 = SCS1.getRank();
2736 ImplicitConversionRank Rank2 = SCS2.getRank();
2737 if (Rank1 < Rank2)
2738 return ImplicitConversionSequence::Better;
2739 else if (Rank2 < Rank1)
2740 return ImplicitConversionSequence::Worse;
2741
2742 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
2743 // are indistinguishable unless one of the following rules
2744 // applies:
2745
2746 // A conversion that is not a conversion of a pointer, or
2747 // pointer to member, to bool is better than another conversion
2748 // that is such a conversion.
2749 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
2750 return SCS2.isPointerConversionToBool()
2751 ? ImplicitConversionSequence::Better
2752 : ImplicitConversionSequence::Worse;
2753
2754 // C++ [over.ics.rank]p4b2:
2755 //
2756 // If class B is derived directly or indirectly from class A,
2757 // conversion of B* to A* is better than conversion of B* to
2758 // void*, and conversion of A* to void* is better than conversion
2759 // of B* to void*.
2760 bool SCS1ConvertsToVoid
2761 = SCS1.isPointerConversionToVoidPointer(S.Context);
2762 bool SCS2ConvertsToVoid
2763 = SCS2.isPointerConversionToVoidPointer(S.Context);
2764 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
2765 // Exactly one of the conversion sequences is a conversion to
2766 // a void pointer; it's the worse conversion.
2767 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
2768 : ImplicitConversionSequence::Worse;
2769 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
2770 // Neither conversion sequence converts to a void pointer; compare
2771 // their derived-to-base conversions.
2772 if (ImplicitConversionSequence::CompareKind DerivedCK
2773 = CompareDerivedToBaseConversions(S, SCS1, SCS2))
2774 return DerivedCK;
2775 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
2776 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
2777 // Both conversion sequences are conversions to void
2778 // pointers. Compare the source types to determine if there's an
2779 // inheritance relationship in their sources.
2780 QualType FromType1 = SCS1.getFromType();
2781 QualType FromType2 = SCS2.getFromType();
2782
2783 // Adjust the types we're converting from via the array-to-pointer
2784 // conversion, if we need to.
2785 if (SCS1.First == ICK_Array_To_Pointer)
2786 FromType1 = S.Context.getArrayDecayedType(FromType1);
2787 if (SCS2.First == ICK_Array_To_Pointer)
2788 FromType2 = S.Context.getArrayDecayedType(FromType2);
2789
2790 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
2791 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
2792
2793 if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2794 return ImplicitConversionSequence::Better;
2795 else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2796 return ImplicitConversionSequence::Worse;
2797
2798 // Objective-C++: If one interface is more specific than the
2799 // other, it is the better one.
2800 const ObjCObjectPointerType* FromObjCPtr1
2801 = FromType1->getAs<ObjCObjectPointerType>();
2802 const ObjCObjectPointerType* FromObjCPtr2
2803 = FromType2->getAs<ObjCObjectPointerType>();
2804 if (FromObjCPtr1 && FromObjCPtr2) {
2805 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
2806 FromObjCPtr2);
2807 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
2808 FromObjCPtr1);
2809 if (AssignLeft != AssignRight) {
2810 return AssignLeft? ImplicitConversionSequence::Better
2811 : ImplicitConversionSequence::Worse;
2812 }
2813 }
2814 }
2815
2816 // Compare based on qualification conversions (C++ 13.3.3.2p3,
2817 // bullet 3).
2818 if (ImplicitConversionSequence::CompareKind QualCK
2819 = CompareQualificationConversions(S, SCS1, SCS2))
2820 return QualCK;
2821
2822 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
2823 // Check for a better reference binding based on the kind of bindings.
2824 if (isBetterReferenceBindingKind(SCS1, SCS2))
2825 return ImplicitConversionSequence::Better;
2826 else if (isBetterReferenceBindingKind(SCS2, SCS1))
2827 return ImplicitConversionSequence::Worse;
2828
2829 // C++ [over.ics.rank]p3b4:
2830 // -- S1 and S2 are reference bindings (8.5.3), and the types to
2831 // which the references refer are the same type except for
2832 // top-level cv-qualifiers, and the type to which the reference
2833 // initialized by S2 refers is more cv-qualified than the type
2834 // to which the reference initialized by S1 refers.
2835 QualType T1 = SCS1.getToType(2);
2836 QualType T2 = SCS2.getToType(2);
2837 T1 = S.Context.getCanonicalType(T1);
2838 T2 = S.Context.getCanonicalType(T2);
2839 Qualifiers T1Quals, T2Quals;
2840 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2841 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2842 if (UnqualT1 == UnqualT2) {
2843 // Objective-C++ ARC: If the references refer to objects with different
2844 // lifetimes, prefer bindings that don't change lifetime.
2845 if (SCS1.ObjCLifetimeConversionBinding !=
2846 SCS2.ObjCLifetimeConversionBinding) {
2847 return SCS1.ObjCLifetimeConversionBinding
2848 ? ImplicitConversionSequence::Worse
2849 : ImplicitConversionSequence::Better;
2850 }
2851
2852 // If the type is an array type, promote the element qualifiers to the
2853 // type for comparison.
2854 if (isa<ArrayType>(T1) && T1Quals)
2855 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2856 if (isa<ArrayType>(T2) && T2Quals)
2857 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2858 if (T2.isMoreQualifiedThan(T1))
2859 return ImplicitConversionSequence::Better;
2860 else if (T1.isMoreQualifiedThan(T2))
2861 return ImplicitConversionSequence::Worse;
2862 }
2863 }
2864
2865 return ImplicitConversionSequence::Indistinguishable;
2866 }
2867
2868 /// CompareQualificationConversions - Compares two standard conversion
2869 /// sequences to determine whether they can be ranked based on their
2870 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
2871 ImplicitConversionSequence::CompareKind
CompareQualificationConversions(Sema & S,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)2872 CompareQualificationConversions(Sema &S,
2873 const StandardConversionSequence& SCS1,
2874 const StandardConversionSequence& SCS2) {
2875 // C++ 13.3.3.2p3:
2876 // -- S1 and S2 differ only in their qualification conversion and
2877 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
2878 // cv-qualification signature of type T1 is a proper subset of
2879 // the cv-qualification signature of type T2, and S1 is not the
2880 // deprecated string literal array-to-pointer conversion (4.2).
2881 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
2882 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
2883 return ImplicitConversionSequence::Indistinguishable;
2884
2885 // FIXME: the example in the standard doesn't use a qualification
2886 // conversion (!)
2887 QualType T1 = SCS1.getToType(2);
2888 QualType T2 = SCS2.getToType(2);
2889 T1 = S.Context.getCanonicalType(T1);
2890 T2 = S.Context.getCanonicalType(T2);
2891 Qualifiers T1Quals, T2Quals;
2892 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2893 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2894
2895 // If the types are the same, we won't learn anything by unwrapped
2896 // them.
2897 if (UnqualT1 == UnqualT2)
2898 return ImplicitConversionSequence::Indistinguishable;
2899
2900 // If the type is an array type, promote the element qualifiers to the type
2901 // for comparison.
2902 if (isa<ArrayType>(T1) && T1Quals)
2903 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2904 if (isa<ArrayType>(T2) && T2Quals)
2905 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2906
2907 ImplicitConversionSequence::CompareKind Result
2908 = ImplicitConversionSequence::Indistinguishable;
2909
2910 // Objective-C++ ARC:
2911 // Prefer qualification conversions not involving a change in lifetime
2912 // to qualification conversions that do not change lifetime.
2913 if (SCS1.QualificationIncludesObjCLifetime !=
2914 SCS2.QualificationIncludesObjCLifetime) {
2915 Result = SCS1.QualificationIncludesObjCLifetime
2916 ? ImplicitConversionSequence::Worse
2917 : ImplicitConversionSequence::Better;
2918 }
2919
2920 while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
2921 // Within each iteration of the loop, we check the qualifiers to
2922 // determine if this still looks like a qualification
2923 // conversion. Then, if all is well, we unwrap one more level of
2924 // pointers or pointers-to-members and do it all again
2925 // until there are no more pointers or pointers-to-members left
2926 // to unwrap. This essentially mimics what
2927 // IsQualificationConversion does, but here we're checking for a
2928 // strict subset of qualifiers.
2929 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2930 // The qualifiers are the same, so this doesn't tell us anything
2931 // about how the sequences rank.
2932 ;
2933 else if (T2.isMoreQualifiedThan(T1)) {
2934 // T1 has fewer qualifiers, so it could be the better sequence.
2935 if (Result == ImplicitConversionSequence::Worse)
2936 // Neither has qualifiers that are a subset of the other's
2937 // qualifiers.
2938 return ImplicitConversionSequence::Indistinguishable;
2939
2940 Result = ImplicitConversionSequence::Better;
2941 } else if (T1.isMoreQualifiedThan(T2)) {
2942 // T2 has fewer qualifiers, so it could be the better sequence.
2943 if (Result == ImplicitConversionSequence::Better)
2944 // Neither has qualifiers that are a subset of the other's
2945 // qualifiers.
2946 return ImplicitConversionSequence::Indistinguishable;
2947
2948 Result = ImplicitConversionSequence::Worse;
2949 } else {
2950 // Qualifiers are disjoint.
2951 return ImplicitConversionSequence::Indistinguishable;
2952 }
2953
2954 // If the types after this point are equivalent, we're done.
2955 if (S.Context.hasSameUnqualifiedType(T1, T2))
2956 break;
2957 }
2958
2959 // Check that the winning standard conversion sequence isn't using
2960 // the deprecated string literal array to pointer conversion.
2961 switch (Result) {
2962 case ImplicitConversionSequence::Better:
2963 if (SCS1.DeprecatedStringLiteralToCharPtr)
2964 Result = ImplicitConversionSequence::Indistinguishable;
2965 break;
2966
2967 case ImplicitConversionSequence::Indistinguishable:
2968 break;
2969
2970 case ImplicitConversionSequence::Worse:
2971 if (SCS2.DeprecatedStringLiteralToCharPtr)
2972 Result = ImplicitConversionSequence::Indistinguishable;
2973 break;
2974 }
2975
2976 return Result;
2977 }
2978
2979 /// CompareDerivedToBaseConversions - Compares two standard conversion
2980 /// sequences to determine whether they can be ranked based on their
2981 /// various kinds of derived-to-base conversions (C++
2982 /// [over.ics.rank]p4b3). As part of these checks, we also look at
2983 /// conversions between Objective-C interface types.
2984 ImplicitConversionSequence::CompareKind
CompareDerivedToBaseConversions(Sema & S,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)2985 CompareDerivedToBaseConversions(Sema &S,
2986 const StandardConversionSequence& SCS1,
2987 const StandardConversionSequence& SCS2) {
2988 QualType FromType1 = SCS1.getFromType();
2989 QualType ToType1 = SCS1.getToType(1);
2990 QualType FromType2 = SCS2.getFromType();
2991 QualType ToType2 = SCS2.getToType(1);
2992
2993 // Adjust the types we're converting from via the array-to-pointer
2994 // conversion, if we need to.
2995 if (SCS1.First == ICK_Array_To_Pointer)
2996 FromType1 = S.Context.getArrayDecayedType(FromType1);
2997 if (SCS2.First == ICK_Array_To_Pointer)
2998 FromType2 = S.Context.getArrayDecayedType(FromType2);
2999
3000 // Canonicalize all of the types.
3001 FromType1 = S.Context.getCanonicalType(FromType1);
3002 ToType1 = S.Context.getCanonicalType(ToType1);
3003 FromType2 = S.Context.getCanonicalType(FromType2);
3004 ToType2 = S.Context.getCanonicalType(ToType2);
3005
3006 // C++ [over.ics.rank]p4b3:
3007 //
3008 // If class B is derived directly or indirectly from class A and
3009 // class C is derived directly or indirectly from B,
3010 //
3011 // Compare based on pointer conversions.
3012 if (SCS1.Second == ICK_Pointer_Conversion &&
3013 SCS2.Second == ICK_Pointer_Conversion &&
3014 /*FIXME: Remove if Objective-C id conversions get their own rank*/
3015 FromType1->isPointerType() && FromType2->isPointerType() &&
3016 ToType1->isPointerType() && ToType2->isPointerType()) {
3017 QualType FromPointee1
3018 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3019 QualType ToPointee1
3020 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3021 QualType FromPointee2
3022 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3023 QualType ToPointee2
3024 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3025
3026 // -- conversion of C* to B* is better than conversion of C* to A*,
3027 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3028 if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3029 return ImplicitConversionSequence::Better;
3030 else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3031 return ImplicitConversionSequence::Worse;
3032 }
3033
3034 // -- conversion of B* to A* is better than conversion of C* to A*,
3035 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3036 if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3037 return ImplicitConversionSequence::Better;
3038 else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3039 return ImplicitConversionSequence::Worse;
3040 }
3041 } else if (SCS1.Second == ICK_Pointer_Conversion &&
3042 SCS2.Second == ICK_Pointer_Conversion) {
3043 const ObjCObjectPointerType *FromPtr1
3044 = FromType1->getAs<ObjCObjectPointerType>();
3045 const ObjCObjectPointerType *FromPtr2
3046 = FromType2->getAs<ObjCObjectPointerType>();
3047 const ObjCObjectPointerType *ToPtr1
3048 = ToType1->getAs<ObjCObjectPointerType>();
3049 const ObjCObjectPointerType *ToPtr2
3050 = ToType2->getAs<ObjCObjectPointerType>();
3051
3052 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3053 // Apply the same conversion ranking rules for Objective-C pointer types
3054 // that we do for C++ pointers to class types. However, we employ the
3055 // Objective-C pseudo-subtyping relationship used for assignment of
3056 // Objective-C pointer types.
3057 bool FromAssignLeft
3058 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3059 bool FromAssignRight
3060 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3061 bool ToAssignLeft
3062 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3063 bool ToAssignRight
3064 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3065
3066 // A conversion to an a non-id object pointer type or qualified 'id'
3067 // type is better than a conversion to 'id'.
3068 if (ToPtr1->isObjCIdType() &&
3069 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3070 return ImplicitConversionSequence::Worse;
3071 if (ToPtr2->isObjCIdType() &&
3072 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3073 return ImplicitConversionSequence::Better;
3074
3075 // A conversion to a non-id object pointer type is better than a
3076 // conversion to a qualified 'id' type
3077 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3078 return ImplicitConversionSequence::Worse;
3079 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3080 return ImplicitConversionSequence::Better;
3081
3082 // A conversion to an a non-Class object pointer type or qualified 'Class'
3083 // type is better than a conversion to 'Class'.
3084 if (ToPtr1->isObjCClassType() &&
3085 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3086 return ImplicitConversionSequence::Worse;
3087 if (ToPtr2->isObjCClassType() &&
3088 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3089 return ImplicitConversionSequence::Better;
3090
3091 // A conversion to a non-Class object pointer type is better than a
3092 // conversion to a qualified 'Class' type.
3093 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3094 return ImplicitConversionSequence::Worse;
3095 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3096 return ImplicitConversionSequence::Better;
3097
3098 // -- "conversion of C* to B* is better than conversion of C* to A*,"
3099 if (S.Context.hasSameType(FromType1, FromType2) &&
3100 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3101 (ToAssignLeft != ToAssignRight))
3102 return ToAssignLeft? ImplicitConversionSequence::Worse
3103 : ImplicitConversionSequence::Better;
3104
3105 // -- "conversion of B* to A* is better than conversion of C* to A*,"
3106 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3107 (FromAssignLeft != FromAssignRight))
3108 return FromAssignLeft? ImplicitConversionSequence::Better
3109 : ImplicitConversionSequence::Worse;
3110 }
3111 }
3112
3113 // Ranking of member-pointer types.
3114 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3115 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3116 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3117 const MemberPointerType * FromMemPointer1 =
3118 FromType1->getAs<MemberPointerType>();
3119 const MemberPointerType * ToMemPointer1 =
3120 ToType1->getAs<MemberPointerType>();
3121 const MemberPointerType * FromMemPointer2 =
3122 FromType2->getAs<MemberPointerType>();
3123 const MemberPointerType * ToMemPointer2 =
3124 ToType2->getAs<MemberPointerType>();
3125 const Type *FromPointeeType1 = FromMemPointer1->getClass();
3126 const Type *ToPointeeType1 = ToMemPointer1->getClass();
3127 const Type *FromPointeeType2 = FromMemPointer2->getClass();
3128 const Type *ToPointeeType2 = ToMemPointer2->getClass();
3129 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3130 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3131 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3132 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3133 // conversion of A::* to B::* is better than conversion of A::* to C::*,
3134 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3135 if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3136 return ImplicitConversionSequence::Worse;
3137 else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3138 return ImplicitConversionSequence::Better;
3139 }
3140 // conversion of B::* to C::* is better than conversion of A::* to C::*
3141 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3142 if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3143 return ImplicitConversionSequence::Better;
3144 else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3145 return ImplicitConversionSequence::Worse;
3146 }
3147 }
3148
3149 if (SCS1.Second == ICK_Derived_To_Base) {
3150 // -- conversion of C to B is better than conversion of C to A,
3151 // -- binding of an expression of type C to a reference of type
3152 // B& is better than binding an expression of type C to a
3153 // reference of type A&,
3154 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3155 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3156 if (S.IsDerivedFrom(ToType1, ToType2))
3157 return ImplicitConversionSequence::Better;
3158 else if (S.IsDerivedFrom(ToType2, ToType1))
3159 return ImplicitConversionSequence::Worse;
3160 }
3161
3162 // -- conversion of B to A is better than conversion of C to A.
3163 // -- binding of an expression of type B to a reference of type
3164 // A& is better than binding an expression of type C to a
3165 // reference of type A&,
3166 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3167 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3168 if (S.IsDerivedFrom(FromType2, FromType1))
3169 return ImplicitConversionSequence::Better;
3170 else if (S.IsDerivedFrom(FromType1, FromType2))
3171 return ImplicitConversionSequence::Worse;
3172 }
3173 }
3174
3175 return ImplicitConversionSequence::Indistinguishable;
3176 }
3177
3178 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
3179 /// determine whether they are reference-related,
3180 /// reference-compatible, reference-compatible with added
3181 /// qualification, or incompatible, for use in C++ initialization by
3182 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3183 /// type, and the first type (T1) is the pointee type of the reference
3184 /// type being initialized.
3185 Sema::ReferenceCompareResult
CompareReferenceRelationship(SourceLocation Loc,QualType OrigT1,QualType OrigT2,bool & DerivedToBase,bool & ObjCConversion,bool & ObjCLifetimeConversion)3186 Sema::CompareReferenceRelationship(SourceLocation Loc,
3187 QualType OrigT1, QualType OrigT2,
3188 bool &DerivedToBase,
3189 bool &ObjCConversion,
3190 bool &ObjCLifetimeConversion) {
3191 assert(!OrigT1->isReferenceType() &&
3192 "T1 must be the pointee type of the reference type");
3193 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3194
3195 QualType T1 = Context.getCanonicalType(OrigT1);
3196 QualType T2 = Context.getCanonicalType(OrigT2);
3197 Qualifiers T1Quals, T2Quals;
3198 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3199 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3200
3201 // C++ [dcl.init.ref]p4:
3202 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3203 // reference-related to "cv2 T2" if T1 is the same type as T2, or
3204 // T1 is a base class of T2.
3205 DerivedToBase = false;
3206 ObjCConversion = false;
3207 ObjCLifetimeConversion = false;
3208 if (UnqualT1 == UnqualT2) {
3209 // Nothing to do.
3210 } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
3211 IsDerivedFrom(UnqualT2, UnqualT1))
3212 DerivedToBase = true;
3213 else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3214 UnqualT2->isObjCObjectOrInterfaceType() &&
3215 Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3216 ObjCConversion = true;
3217 else
3218 return Ref_Incompatible;
3219
3220 // At this point, we know that T1 and T2 are reference-related (at
3221 // least).
3222
3223 // If the type is an array type, promote the element qualifiers to the type
3224 // for comparison.
3225 if (isa<ArrayType>(T1) && T1Quals)
3226 T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3227 if (isa<ArrayType>(T2) && T2Quals)
3228 T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3229
3230 // C++ [dcl.init.ref]p4:
3231 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3232 // reference-related to T2 and cv1 is the same cv-qualification
3233 // as, or greater cv-qualification than, cv2. For purposes of
3234 // overload resolution, cases for which cv1 is greater
3235 // cv-qualification than cv2 are identified as
3236 // reference-compatible with added qualification (see 13.3.3.2).
3237 //
3238 // Note that we also require equivalence of Objective-C GC and address-space
3239 // qualifiers when performing these computations, so that e.g., an int in
3240 // address space 1 is not reference-compatible with an int in address
3241 // space 2.
3242 if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
3243 T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
3244 T1Quals.removeObjCLifetime();
3245 T2Quals.removeObjCLifetime();
3246 ObjCLifetimeConversion = true;
3247 }
3248
3249 if (T1Quals == T2Quals)
3250 return Ref_Compatible;
3251 else if (T1Quals.compatiblyIncludes(T2Quals))
3252 return Ref_Compatible_With_Added_Qualification;
3253 else
3254 return Ref_Related;
3255 }
3256
3257 /// \brief Look for a user-defined conversion to an value reference-compatible
3258 /// with DeclType. Return true if something definite is found.
3259 static bool
FindConversionForRefInit(Sema & S,ImplicitConversionSequence & ICS,QualType DeclType,SourceLocation DeclLoc,Expr * Init,QualType T2,bool AllowRvalues,bool AllowExplicit)3260 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3261 QualType DeclType, SourceLocation DeclLoc,
3262 Expr *Init, QualType T2, bool AllowRvalues,
3263 bool AllowExplicit) {
3264 assert(T2->isRecordType() && "Can only find conversions of record types.");
3265 CXXRecordDecl *T2RecordDecl
3266 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3267
3268 OverloadCandidateSet CandidateSet(DeclLoc);
3269 const UnresolvedSetImpl *Conversions
3270 = T2RecordDecl->getVisibleConversionFunctions();
3271 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3272 E = Conversions->end(); I != E; ++I) {
3273 NamedDecl *D = *I;
3274 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3275 if (isa<UsingShadowDecl>(D))
3276 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3277
3278 FunctionTemplateDecl *ConvTemplate
3279 = dyn_cast<FunctionTemplateDecl>(D);
3280 CXXConversionDecl *Conv;
3281 if (ConvTemplate)
3282 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3283 else
3284 Conv = cast<CXXConversionDecl>(D);
3285
3286 // If this is an explicit conversion, and we're not allowed to consider
3287 // explicit conversions, skip it.
3288 if (!AllowExplicit && Conv->isExplicit())
3289 continue;
3290
3291 if (AllowRvalues) {
3292 bool DerivedToBase = false;
3293 bool ObjCConversion = false;
3294 bool ObjCLifetimeConversion = false;
3295 if (!ConvTemplate &&
3296 S.CompareReferenceRelationship(
3297 DeclLoc,
3298 Conv->getConversionType().getNonReferenceType()
3299 .getUnqualifiedType(),
3300 DeclType.getNonReferenceType().getUnqualifiedType(),
3301 DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
3302 Sema::Ref_Incompatible)
3303 continue;
3304 } else {
3305 // If the conversion function doesn't return a reference type,
3306 // it can't be considered for this conversion. An rvalue reference
3307 // is only acceptable if its referencee is a function type.
3308
3309 const ReferenceType *RefType =
3310 Conv->getConversionType()->getAs<ReferenceType>();
3311 if (!RefType ||
3312 (!RefType->isLValueReferenceType() &&
3313 !RefType->getPointeeType()->isFunctionType()))
3314 continue;
3315 }
3316
3317 if (ConvTemplate)
3318 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
3319 Init, DeclType, CandidateSet);
3320 else
3321 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
3322 DeclType, CandidateSet);
3323 }
3324
3325 OverloadCandidateSet::iterator Best;
3326 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3327 case OR_Success:
3328 // C++ [over.ics.ref]p1:
3329 //
3330 // [...] If the parameter binds directly to the result of
3331 // applying a conversion function to the argument
3332 // expression, the implicit conversion sequence is a
3333 // user-defined conversion sequence (13.3.3.1.2), with the
3334 // second standard conversion sequence either an identity
3335 // conversion or, if the conversion function returns an
3336 // entity of a type that is a derived class of the parameter
3337 // type, a derived-to-base Conversion.
3338 if (!Best->FinalConversion.DirectBinding)
3339 return false;
3340
3341 if (Best->Function)
3342 S.MarkDeclarationReferenced(DeclLoc, Best->Function);
3343 ICS.setUserDefined();
3344 ICS.UserDefined.Before = Best->Conversions[0].Standard;
3345 ICS.UserDefined.After = Best->FinalConversion;
3346 ICS.UserDefined.ConversionFunction = Best->Function;
3347 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl.getDecl();
3348 ICS.UserDefined.EllipsisConversion = false;
3349 assert(ICS.UserDefined.After.ReferenceBinding &&
3350 ICS.UserDefined.After.DirectBinding &&
3351 "Expected a direct reference binding!");
3352 return true;
3353
3354 case OR_Ambiguous:
3355 ICS.setAmbiguous();
3356 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3357 Cand != CandidateSet.end(); ++Cand)
3358 if (Cand->Viable)
3359 ICS.Ambiguous.addConversion(Cand->Function);
3360 return true;
3361
3362 case OR_No_Viable_Function:
3363 case OR_Deleted:
3364 // There was no suitable conversion, or we found a deleted
3365 // conversion; continue with other checks.
3366 return false;
3367 }
3368
3369 return false;
3370 }
3371
3372 /// \brief Compute an implicit conversion sequence for reference
3373 /// initialization.
3374 static ImplicitConversionSequence
TryReferenceInit(Sema & S,Expr * & Init,QualType DeclType,SourceLocation DeclLoc,bool SuppressUserConversions,bool AllowExplicit)3375 TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
3376 SourceLocation DeclLoc,
3377 bool SuppressUserConversions,
3378 bool AllowExplicit) {
3379 assert(DeclType->isReferenceType() && "Reference init needs a reference");
3380
3381 // Most paths end in a failed conversion.
3382 ImplicitConversionSequence ICS;
3383 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3384
3385 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3386 QualType T2 = Init->getType();
3387
3388 // If the initializer is the address of an overloaded function, try
3389 // to resolve the overloaded function. If all goes well, T2 is the
3390 // type of the resulting function.
3391 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
3392 DeclAccessPair Found;
3393 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
3394 false, Found))
3395 T2 = Fn->getType();
3396 }
3397
3398 // Compute some basic properties of the types and the initializer.
3399 bool isRValRef = DeclType->isRValueReferenceType();
3400 bool DerivedToBase = false;
3401 bool ObjCConversion = false;
3402 bool ObjCLifetimeConversion = false;
3403 Expr::Classification InitCategory = Init->Classify(S.Context);
3404 Sema::ReferenceCompareResult RefRelationship
3405 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
3406 ObjCConversion, ObjCLifetimeConversion);
3407
3408
3409 // C++0x [dcl.init.ref]p5:
3410 // A reference to type "cv1 T1" is initialized by an expression
3411 // of type "cv2 T2" as follows:
3412
3413 // -- If reference is an lvalue reference and the initializer expression
3414 if (!isRValRef) {
3415 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3416 // reference-compatible with "cv2 T2," or
3417 //
3418 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
3419 if (InitCategory.isLValue() &&
3420 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
3421 // C++ [over.ics.ref]p1:
3422 // When a parameter of reference type binds directly (8.5.3)
3423 // to an argument expression, the implicit conversion sequence
3424 // is the identity conversion, unless the argument expression
3425 // has a type that is a derived class of the parameter type,
3426 // in which case the implicit conversion sequence is a
3427 // derived-to-base Conversion (13.3.3.1).
3428 ICS.setStandard();
3429 ICS.Standard.First = ICK_Identity;
3430 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3431 : ObjCConversion? ICK_Compatible_Conversion
3432 : ICK_Identity;
3433 ICS.Standard.Third = ICK_Identity;
3434 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3435 ICS.Standard.setToType(0, T2);
3436 ICS.Standard.setToType(1, T1);
3437 ICS.Standard.setToType(2, T1);
3438 ICS.Standard.ReferenceBinding = true;
3439 ICS.Standard.DirectBinding = true;
3440 ICS.Standard.IsLvalueReference = !isRValRef;
3441 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3442 ICS.Standard.BindsToRvalue = false;
3443 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3444 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
3445 ICS.Standard.CopyConstructor = 0;
3446
3447 // Nothing more to do: the inaccessibility/ambiguity check for
3448 // derived-to-base conversions is suppressed when we're
3449 // computing the implicit conversion sequence (C++
3450 // [over.best.ics]p2).
3451 return ICS;
3452 }
3453
3454 // -- has a class type (i.e., T2 is a class type), where T1 is
3455 // not reference-related to T2, and can be implicitly
3456 // converted to an lvalue of type "cv3 T3," where "cv1 T1"
3457 // is reference-compatible with "cv3 T3" 92) (this
3458 // conversion is selected by enumerating the applicable
3459 // conversion functions (13.3.1.6) and choosing the best
3460 // one through overload resolution (13.3)),
3461 if (!SuppressUserConversions && T2->isRecordType() &&
3462 !S.RequireCompleteType(DeclLoc, T2, 0) &&
3463 RefRelationship == Sema::Ref_Incompatible) {
3464 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3465 Init, T2, /*AllowRvalues=*/false,
3466 AllowExplicit))
3467 return ICS;
3468 }
3469 }
3470
3471 // -- Otherwise, the reference shall be an lvalue reference to a
3472 // non-volatile const type (i.e., cv1 shall be const), or the reference
3473 // shall be an rvalue reference.
3474 //
3475 // We actually handle one oddity of C++ [over.ics.ref] at this
3476 // point, which is that, due to p2 (which short-circuits reference
3477 // binding by only attempting a simple conversion for non-direct
3478 // bindings) and p3's strange wording, we allow a const volatile
3479 // reference to bind to an rvalue. Hence the check for the presence
3480 // of "const" rather than checking for "const" being the only
3481 // qualifier.
3482 // This is also the point where rvalue references and lvalue inits no longer
3483 // go together.
3484 if (!isRValRef && !T1.isConstQualified())
3485 return ICS;
3486
3487 // -- If the initializer expression
3488 //
3489 // -- is an xvalue, class prvalue, array prvalue or function
3490 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
3491 if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
3492 (InitCategory.isXValue() ||
3493 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
3494 (InitCategory.isLValue() && T2->isFunctionType()))) {
3495 ICS.setStandard();
3496 ICS.Standard.First = ICK_Identity;
3497 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3498 : ObjCConversion? ICK_Compatible_Conversion
3499 : ICK_Identity;
3500 ICS.Standard.Third = ICK_Identity;
3501 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3502 ICS.Standard.setToType(0, T2);
3503 ICS.Standard.setToType(1, T1);
3504 ICS.Standard.setToType(2, T1);
3505 ICS.Standard.ReferenceBinding = true;
3506 // In C++0x, this is always a direct binding. In C++98/03, it's a direct
3507 // binding unless we're binding to a class prvalue.
3508 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
3509 // allow the use of rvalue references in C++98/03 for the benefit of
3510 // standard library implementors; therefore, we need the xvalue check here.
3511 ICS.Standard.DirectBinding =
3512 S.getLangOptions().CPlusPlus0x ||
3513 (InitCategory.isPRValue() && !T2->isRecordType());
3514 ICS.Standard.IsLvalueReference = !isRValRef;
3515 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3516 ICS.Standard.BindsToRvalue = InitCategory.isRValue();
3517 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3518 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
3519 ICS.Standard.CopyConstructor = 0;
3520 return ICS;
3521 }
3522
3523 // -- has a class type (i.e., T2 is a class type), where T1 is not
3524 // reference-related to T2, and can be implicitly converted to
3525 // an xvalue, class prvalue, or function lvalue of type
3526 // "cv3 T3", where "cv1 T1" is reference-compatible with
3527 // "cv3 T3",
3528 //
3529 // then the reference is bound to the value of the initializer
3530 // expression in the first case and to the result of the conversion
3531 // in the second case (or, in either case, to an appropriate base
3532 // class subobject).
3533 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3534 T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
3535 FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3536 Init, T2, /*AllowRvalues=*/true,
3537 AllowExplicit)) {
3538 // In the second case, if the reference is an rvalue reference
3539 // and the second standard conversion sequence of the
3540 // user-defined conversion sequence includes an lvalue-to-rvalue
3541 // conversion, the program is ill-formed.
3542 if (ICS.isUserDefined() && isRValRef &&
3543 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
3544 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3545
3546 return ICS;
3547 }
3548
3549 // -- Otherwise, a temporary of type "cv1 T1" is created and
3550 // initialized from the initializer expression using the
3551 // rules for a non-reference copy initialization (8.5). The
3552 // reference is then bound to the temporary. If T1 is
3553 // reference-related to T2, cv1 must be the same
3554 // cv-qualification as, or greater cv-qualification than,
3555 // cv2; otherwise, the program is ill-formed.
3556 if (RefRelationship == Sema::Ref_Related) {
3557 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3558 // we would be reference-compatible or reference-compatible with
3559 // added qualification. But that wasn't the case, so the reference
3560 // initialization fails.
3561 //
3562 // Note that we only want to check address spaces and cvr-qualifiers here.
3563 // ObjC GC and lifetime qualifiers aren't important.
3564 Qualifiers T1Quals = T1.getQualifiers();
3565 Qualifiers T2Quals = T2.getQualifiers();
3566 T1Quals.removeObjCGCAttr();
3567 T1Quals.removeObjCLifetime();
3568 T2Quals.removeObjCGCAttr();
3569 T2Quals.removeObjCLifetime();
3570 if (!T1Quals.compatiblyIncludes(T2Quals))
3571 return ICS;
3572 }
3573
3574 // If at least one of the types is a class type, the types are not
3575 // related, and we aren't allowed any user conversions, the
3576 // reference binding fails. This case is important for breaking
3577 // recursion, since TryImplicitConversion below will attempt to
3578 // create a temporary through the use of a copy constructor.
3579 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3580 (T1->isRecordType() || T2->isRecordType()))
3581 return ICS;
3582
3583 // If T1 is reference-related to T2 and the reference is an rvalue
3584 // reference, the initializer expression shall not be an lvalue.
3585 if (RefRelationship >= Sema::Ref_Related &&
3586 isRValRef && Init->Classify(S.Context).isLValue())
3587 return ICS;
3588
3589 // C++ [over.ics.ref]p2:
3590 // When a parameter of reference type is not bound directly to
3591 // an argument expression, the conversion sequence is the one
3592 // required to convert the argument expression to the
3593 // underlying type of the reference according to
3594 // 13.3.3.1. Conceptually, this conversion sequence corresponds
3595 // to copy-initializing a temporary of the underlying type with
3596 // the argument expression. Any difference in top-level
3597 // cv-qualification is subsumed by the initialization itself
3598 // and does not constitute a conversion.
3599 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
3600 /*AllowExplicit=*/false,
3601 /*InOverloadResolution=*/false,
3602 /*CStyle=*/false,
3603 /*AllowObjCWritebackConversion=*/false);
3604
3605 // Of course, that's still a reference binding.
3606 if (ICS.isStandard()) {
3607 ICS.Standard.ReferenceBinding = true;
3608 ICS.Standard.IsLvalueReference = !isRValRef;
3609 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3610 ICS.Standard.BindsToRvalue = true;
3611 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3612 ICS.Standard.ObjCLifetimeConversionBinding = false;
3613 } else if (ICS.isUserDefined()) {
3614 ICS.UserDefined.After.ReferenceBinding = true;
3615 ICS.Standard.IsLvalueReference = !isRValRef;
3616 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3617 ICS.Standard.BindsToRvalue = true;
3618 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3619 ICS.Standard.ObjCLifetimeConversionBinding = false;
3620 }
3621
3622 return ICS;
3623 }
3624
3625 /// TryCopyInitialization - Try to copy-initialize a value of type
3626 /// ToType from the expression From. Return the implicit conversion
3627 /// sequence required to pass this argument, which may be a bad
3628 /// conversion sequence (meaning that the argument cannot be passed to
3629 /// a parameter of this type). If @p SuppressUserConversions, then we
3630 /// do not permit any user-defined conversion sequences.
3631 static ImplicitConversionSequence
TryCopyInitialization(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,bool InOverloadResolution,bool AllowObjCWritebackConversion)3632 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
3633 bool SuppressUserConversions,
3634 bool InOverloadResolution,
3635 bool AllowObjCWritebackConversion) {
3636 if (ToType->isReferenceType())
3637 return TryReferenceInit(S, From, ToType,
3638 /*FIXME:*/From->getLocStart(),
3639 SuppressUserConversions,
3640 /*AllowExplicit=*/false);
3641
3642 return TryImplicitConversion(S, From, ToType,
3643 SuppressUserConversions,
3644 /*AllowExplicit=*/false,
3645 InOverloadResolution,
3646 /*CStyle=*/false,
3647 AllowObjCWritebackConversion);
3648 }
3649
3650 /// TryObjectArgumentInitialization - Try to initialize the object
3651 /// parameter of the given member function (@c Method) from the
3652 /// expression @p From.
3653 static ImplicitConversionSequence
TryObjectArgumentInitialization(Sema & S,QualType OrigFromType,Expr::Classification FromClassification,CXXMethodDecl * Method,CXXRecordDecl * ActingContext)3654 TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
3655 Expr::Classification FromClassification,
3656 CXXMethodDecl *Method,
3657 CXXRecordDecl *ActingContext) {
3658 QualType ClassType = S.Context.getTypeDeclType(ActingContext);
3659 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
3660 // const volatile object.
3661 unsigned Quals = isa<CXXDestructorDecl>(Method) ?
3662 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
3663 QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals);
3664
3665 // Set up the conversion sequence as a "bad" conversion, to allow us
3666 // to exit early.
3667 ImplicitConversionSequence ICS;
3668
3669 // We need to have an object of class type.
3670 QualType FromType = OrigFromType;
3671 if (const PointerType *PT = FromType->getAs<PointerType>()) {
3672 FromType = PT->getPointeeType();
3673
3674 // When we had a pointer, it's implicitly dereferenced, so we
3675 // better have an lvalue.
3676 assert(FromClassification.isLValue());
3677 }
3678
3679 assert(FromType->isRecordType());
3680
3681 // C++0x [over.match.funcs]p4:
3682 // For non-static member functions, the type of the implicit object
3683 // parameter is
3684 //
3685 // - "lvalue reference to cv X" for functions declared without a
3686 // ref-qualifier or with the & ref-qualifier
3687 // - "rvalue reference to cv X" for functions declared with the &&
3688 // ref-qualifier
3689 //
3690 // where X is the class of which the function is a member and cv is the
3691 // cv-qualification on the member function declaration.
3692 //
3693 // However, when finding an implicit conversion sequence for the argument, we
3694 // are not allowed to create temporaries or perform user-defined conversions
3695 // (C++ [over.match.funcs]p5). We perform a simplified version of
3696 // reference binding here, that allows class rvalues to bind to
3697 // non-constant references.
3698
3699 // First check the qualifiers.
3700 QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
3701 if (ImplicitParamType.getCVRQualifiers()
3702 != FromTypeCanon.getLocalCVRQualifiers() &&
3703 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
3704 ICS.setBad(BadConversionSequence::bad_qualifiers,
3705 OrigFromType, ImplicitParamType);
3706 return ICS;
3707 }
3708
3709 // Check that we have either the same type or a derived type. It
3710 // affects the conversion rank.
3711 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
3712 ImplicitConversionKind SecondKind;
3713 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
3714 SecondKind = ICK_Identity;
3715 } else if (S.IsDerivedFrom(FromType, ClassType))
3716 SecondKind = ICK_Derived_To_Base;
3717 else {
3718 ICS.setBad(BadConversionSequence::unrelated_class,
3719 FromType, ImplicitParamType);
3720 return ICS;
3721 }
3722
3723 // Check the ref-qualifier.
3724 switch (Method->getRefQualifier()) {
3725 case RQ_None:
3726 // Do nothing; we don't care about lvalueness or rvalueness.
3727 break;
3728
3729 case RQ_LValue:
3730 if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
3731 // non-const lvalue reference cannot bind to an rvalue
3732 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
3733 ImplicitParamType);
3734 return ICS;
3735 }
3736 break;
3737
3738 case RQ_RValue:
3739 if (!FromClassification.isRValue()) {
3740 // rvalue reference cannot bind to an lvalue
3741 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
3742 ImplicitParamType);
3743 return ICS;
3744 }
3745 break;
3746 }
3747
3748 // Success. Mark this as a reference binding.
3749 ICS.setStandard();
3750 ICS.Standard.setAsIdentityConversion();
3751 ICS.Standard.Second = SecondKind;
3752 ICS.Standard.setFromType(FromType);
3753 ICS.Standard.setAllToTypes(ImplicitParamType);
3754 ICS.Standard.ReferenceBinding = true;
3755 ICS.Standard.DirectBinding = true;
3756 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
3757 ICS.Standard.BindsToFunctionLvalue = false;
3758 ICS.Standard.BindsToRvalue = FromClassification.isRValue();
3759 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
3760 = (Method->getRefQualifier() == RQ_None);
3761 return ICS;
3762 }
3763
3764 /// PerformObjectArgumentInitialization - Perform initialization of
3765 /// the implicit object parameter for the given Method with the given
3766 /// expression.
3767 ExprResult
PerformObjectArgumentInitialization(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,CXXMethodDecl * Method)3768 Sema::PerformObjectArgumentInitialization(Expr *From,
3769 NestedNameSpecifier *Qualifier,
3770 NamedDecl *FoundDecl,
3771 CXXMethodDecl *Method) {
3772 QualType FromRecordType, DestType;
3773 QualType ImplicitParamRecordType =
3774 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
3775
3776 Expr::Classification FromClassification;
3777 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
3778 FromRecordType = PT->getPointeeType();
3779 DestType = Method->getThisType(Context);
3780 FromClassification = Expr::Classification::makeSimpleLValue();
3781 } else {
3782 FromRecordType = From->getType();
3783 DestType = ImplicitParamRecordType;
3784 FromClassification = From->Classify(Context);
3785 }
3786
3787 // Note that we always use the true parent context when performing
3788 // the actual argument initialization.
3789 ImplicitConversionSequence ICS
3790 = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
3791 Method, Method->getParent());
3792 if (ICS.isBad()) {
3793 if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
3794 Qualifiers FromQs = FromRecordType.getQualifiers();
3795 Qualifiers ToQs = DestType.getQualifiers();
3796 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
3797 if (CVR) {
3798 Diag(From->getSourceRange().getBegin(),
3799 diag::err_member_function_call_bad_cvr)
3800 << Method->getDeclName() << FromRecordType << (CVR - 1)
3801 << From->getSourceRange();
3802 Diag(Method->getLocation(), diag::note_previous_decl)
3803 << Method->getDeclName();
3804 return ExprError();
3805 }
3806 }
3807
3808 return Diag(From->getSourceRange().getBegin(),
3809 diag::err_implicit_object_parameter_init)
3810 << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
3811 }
3812
3813 if (ICS.Standard.Second == ICK_Derived_To_Base) {
3814 ExprResult FromRes =
3815 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
3816 if (FromRes.isInvalid())
3817 return ExprError();
3818 From = FromRes.take();
3819 }
3820
3821 if (!Context.hasSameType(From->getType(), DestType))
3822 From = ImpCastExprToType(From, DestType, CK_NoOp,
3823 From->getType()->isPointerType() ? VK_RValue : VK_LValue).take();
3824 return Owned(From);
3825 }
3826
3827 /// TryContextuallyConvertToBool - Attempt to contextually convert the
3828 /// expression From to bool (C++0x [conv]p3).
3829 static ImplicitConversionSequence
TryContextuallyConvertToBool(Sema & S,Expr * From)3830 TryContextuallyConvertToBool(Sema &S, Expr *From) {
3831 // FIXME: This is pretty broken.
3832 return TryImplicitConversion(S, From, S.Context.BoolTy,
3833 // FIXME: Are these flags correct?
3834 /*SuppressUserConversions=*/false,
3835 /*AllowExplicit=*/true,
3836 /*InOverloadResolution=*/false,
3837 /*CStyle=*/false,
3838 /*AllowObjCWritebackConversion=*/false);
3839 }
3840
3841 /// PerformContextuallyConvertToBool - Perform a contextual conversion
3842 /// of the expression From to bool (C++0x [conv]p3).
PerformContextuallyConvertToBool(Expr * From)3843 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
3844 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
3845 if (!ICS.isBad())
3846 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
3847
3848 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
3849 return Diag(From->getSourceRange().getBegin(),
3850 diag::err_typecheck_bool_condition)
3851 << From->getType() << From->getSourceRange();
3852 return ExprError();
3853 }
3854
3855 /// TryContextuallyConvertToObjCId - Attempt to contextually convert the
3856 /// expression From to 'id'.
3857 static ImplicitConversionSequence
TryContextuallyConvertToObjCId(Sema & S,Expr * From)3858 TryContextuallyConvertToObjCId(Sema &S, Expr *From) {
3859 QualType Ty = S.Context.getObjCIdType();
3860 return TryImplicitConversion(S, From, Ty,
3861 // FIXME: Are these flags correct?
3862 /*SuppressUserConversions=*/false,
3863 /*AllowExplicit=*/true,
3864 /*InOverloadResolution=*/false,
3865 /*CStyle=*/false,
3866 /*AllowObjCWritebackConversion=*/false);
3867 }
3868
3869 /// PerformContextuallyConvertToObjCId - Perform a contextual conversion
3870 /// of the expression From to 'id'.
PerformContextuallyConvertToObjCId(Expr * From)3871 ExprResult Sema::PerformContextuallyConvertToObjCId(Expr *From) {
3872 QualType Ty = Context.getObjCIdType();
3873 ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(*this, From);
3874 if (!ICS.isBad())
3875 return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
3876 return ExprError();
3877 }
3878
3879 /// \brief Attempt to convert the given expression to an integral or
3880 /// enumeration type.
3881 ///
3882 /// This routine will attempt to convert an expression of class type to an
3883 /// integral or enumeration type, if that class type only has a single
3884 /// conversion to an integral or enumeration type.
3885 ///
3886 /// \param Loc The source location of the construct that requires the
3887 /// conversion.
3888 ///
3889 /// \param FromE The expression we're converting from.
3890 ///
3891 /// \param NotIntDiag The diagnostic to be emitted if the expression does not
3892 /// have integral or enumeration type.
3893 ///
3894 /// \param IncompleteDiag The diagnostic to be emitted if the expression has
3895 /// incomplete class type.
3896 ///
3897 /// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
3898 /// explicit conversion function (because no implicit conversion functions
3899 /// were available). This is a recovery mode.
3900 ///
3901 /// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
3902 /// showing which conversion was picked.
3903 ///
3904 /// \param AmbigDiag The diagnostic to be emitted if there is more than one
3905 /// conversion function that could convert to integral or enumeration type.
3906 ///
3907 /// \param AmbigNote The note to be emitted with \p AmbigDiag for each
3908 /// usable conversion function.
3909 ///
3910 /// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
3911 /// function, which may be an extension in this case.
3912 ///
3913 /// \returns The expression, converted to an integral or enumeration type if
3914 /// successful.
3915 ExprResult
ConvertToIntegralOrEnumerationType(SourceLocation Loc,Expr * From,const PartialDiagnostic & NotIntDiag,const PartialDiagnostic & IncompleteDiag,const PartialDiagnostic & ExplicitConvDiag,const PartialDiagnostic & ExplicitConvNote,const PartialDiagnostic & AmbigDiag,const PartialDiagnostic & AmbigNote,const PartialDiagnostic & ConvDiag)3916 Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
3917 const PartialDiagnostic &NotIntDiag,
3918 const PartialDiagnostic &IncompleteDiag,
3919 const PartialDiagnostic &ExplicitConvDiag,
3920 const PartialDiagnostic &ExplicitConvNote,
3921 const PartialDiagnostic &AmbigDiag,
3922 const PartialDiagnostic &AmbigNote,
3923 const PartialDiagnostic &ConvDiag) {
3924 // We can't perform any more checking for type-dependent expressions.
3925 if (From->isTypeDependent())
3926 return Owned(From);
3927
3928 // If the expression already has integral or enumeration type, we're golden.
3929 QualType T = From->getType();
3930 if (T->isIntegralOrEnumerationType())
3931 return Owned(From);
3932
3933 // FIXME: Check for missing '()' if T is a function type?
3934
3935 // If we don't have a class type in C++, there's no way we can get an
3936 // expression of integral or enumeration type.
3937 const RecordType *RecordTy = T->getAs<RecordType>();
3938 if (!RecordTy || !getLangOptions().CPlusPlus) {
3939 Diag(Loc, NotIntDiag)
3940 << T << From->getSourceRange();
3941 return Owned(From);
3942 }
3943
3944 // We must have a complete class type.
3945 if (RequireCompleteType(Loc, T, IncompleteDiag))
3946 return Owned(From);
3947
3948 // Look for a conversion to an integral or enumeration type.
3949 UnresolvedSet<4> ViableConversions;
3950 UnresolvedSet<4> ExplicitConversions;
3951 const UnresolvedSetImpl *Conversions
3952 = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
3953
3954 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3955 E = Conversions->end();
3956 I != E;
3957 ++I) {
3958 if (CXXConversionDecl *Conversion
3959 = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl()))
3960 if (Conversion->getConversionType().getNonReferenceType()
3961 ->isIntegralOrEnumerationType()) {
3962 if (Conversion->isExplicit())
3963 ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
3964 else
3965 ViableConversions.addDecl(I.getDecl(), I.getAccess());
3966 }
3967 }
3968
3969 switch (ViableConversions.size()) {
3970 case 0:
3971 if (ExplicitConversions.size() == 1) {
3972 DeclAccessPair Found = ExplicitConversions[0];
3973 CXXConversionDecl *Conversion
3974 = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
3975
3976 // The user probably meant to invoke the given explicit
3977 // conversion; use it.
3978 QualType ConvTy
3979 = Conversion->getConversionType().getNonReferenceType();
3980 std::string TypeStr;
3981 ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy);
3982
3983 Diag(Loc, ExplicitConvDiag)
3984 << T << ConvTy
3985 << FixItHint::CreateInsertion(From->getLocStart(),
3986 "static_cast<" + TypeStr + ">(")
3987 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
3988 ")");
3989 Diag(Conversion->getLocation(), ExplicitConvNote)
3990 << ConvTy->isEnumeralType() << ConvTy;
3991
3992 // If we aren't in a SFINAE context, build a call to the
3993 // explicit conversion function.
3994 if (isSFINAEContext())
3995 return ExprError();
3996
3997 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
3998 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion);
3999 if (Result.isInvalid())
4000 return ExprError();
4001
4002 From = Result.get();
4003 }
4004
4005 // We'll complain below about a non-integral condition type.
4006 break;
4007
4008 case 1: {
4009 // Apply this conversion.
4010 DeclAccessPair Found = ViableConversions[0];
4011 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
4012
4013 CXXConversionDecl *Conversion
4014 = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
4015 QualType ConvTy
4016 = Conversion->getConversionType().getNonReferenceType();
4017 if (ConvDiag.getDiagID()) {
4018 if (isSFINAEContext())
4019 return ExprError();
4020
4021 Diag(Loc, ConvDiag)
4022 << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
4023 }
4024
4025 ExprResult Result = BuildCXXMemberCallExpr(From, Found,
4026 cast<CXXConversionDecl>(Found->getUnderlyingDecl()));
4027 if (Result.isInvalid())
4028 return ExprError();
4029
4030 From = Result.get();
4031 break;
4032 }
4033
4034 default:
4035 Diag(Loc, AmbigDiag)
4036 << T << From->getSourceRange();
4037 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
4038 CXXConversionDecl *Conv
4039 = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
4040 QualType ConvTy = Conv->getConversionType().getNonReferenceType();
4041 Diag(Conv->getLocation(), AmbigNote)
4042 << ConvTy->isEnumeralType() << ConvTy;
4043 }
4044 return Owned(From);
4045 }
4046
4047 if (!From->getType()->isIntegralOrEnumerationType())
4048 Diag(Loc, NotIntDiag)
4049 << From->getType() << From->getSourceRange();
4050
4051 return Owned(From);
4052 }
4053
4054 /// AddOverloadCandidate - Adds the given function to the set of
4055 /// candidate functions, using the given function call arguments. If
4056 /// @p SuppressUserConversions, then don't allow user-defined
4057 /// conversions via constructors or conversion operators.
4058 ///
4059 /// \para PartialOverloading true if we are performing "partial" overloading
4060 /// based on an incomplete set of function arguments. This feature is used by
4061 /// code completion.
4062 void
AddOverloadCandidate(FunctionDecl * Function,DeclAccessPair FoundDecl,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading)4063 Sema::AddOverloadCandidate(FunctionDecl *Function,
4064 DeclAccessPair FoundDecl,
4065 Expr **Args, unsigned NumArgs,
4066 OverloadCandidateSet& CandidateSet,
4067 bool SuppressUserConversions,
4068 bool PartialOverloading) {
4069 const FunctionProtoType* Proto
4070 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
4071 assert(Proto && "Functions without a prototype cannot be overloaded");
4072 assert(!Function->getDescribedFunctionTemplate() &&
4073 "Use AddTemplateOverloadCandidate for function templates");
4074
4075 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
4076 if (!isa<CXXConstructorDecl>(Method)) {
4077 // If we get here, it's because we're calling a member function
4078 // that is named without a member access expression (e.g.,
4079 // "this->f") that was either written explicitly or created
4080 // implicitly. This can happen with a qualified call to a member
4081 // function, e.g., X::f(). We use an empty type for the implied
4082 // object argument (C++ [over.call.func]p3), and the acting context
4083 // is irrelevant.
4084 AddMethodCandidate(Method, FoundDecl, Method->getParent(),
4085 QualType(), Expr::Classification::makeSimpleLValue(),
4086 Args, NumArgs, CandidateSet,
4087 SuppressUserConversions);
4088 return;
4089 }
4090 // We treat a constructor like a non-member function, since its object
4091 // argument doesn't participate in overload resolution.
4092 }
4093
4094 if (!CandidateSet.isNewCandidate(Function))
4095 return;
4096
4097 // Overload resolution is always an unevaluated context.
4098 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4099
4100 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
4101 // C++ [class.copy]p3:
4102 // A member function template is never instantiated to perform the copy
4103 // of a class object to an object of its class type.
4104 QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
4105 if (NumArgs == 1 &&
4106 Constructor->isSpecializationCopyingObject() &&
4107 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
4108 IsDerivedFrom(Args[0]->getType(), ClassType)))
4109 return;
4110 }
4111
4112 // Add this candidate
4113 CandidateSet.push_back(OverloadCandidate());
4114 OverloadCandidate& Candidate = CandidateSet.back();
4115 Candidate.FoundDecl = FoundDecl;
4116 Candidate.Function = Function;
4117 Candidate.Viable = true;
4118 Candidate.IsSurrogate = false;
4119 Candidate.IgnoreObjectArgument = false;
4120 Candidate.ExplicitCallArguments = NumArgs;
4121
4122 unsigned NumArgsInProto = Proto->getNumArgs();
4123
4124 // (C++ 13.3.2p2): A candidate function having fewer than m
4125 // parameters is viable only if it has an ellipsis in its parameter
4126 // list (8.3.5).
4127 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
4128 !Proto->isVariadic()) {
4129 Candidate.Viable = false;
4130 Candidate.FailureKind = ovl_fail_too_many_arguments;
4131 return;
4132 }
4133
4134 // (C++ 13.3.2p2): A candidate function having more than m parameters
4135 // is viable only if the (m+1)st parameter has a default argument
4136 // (8.3.6). For the purposes of overload resolution, the
4137 // parameter list is truncated on the right, so that there are
4138 // exactly m parameters.
4139 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
4140 if (NumArgs < MinRequiredArgs && !PartialOverloading) {
4141 // Not enough arguments.
4142 Candidate.Viable = false;
4143 Candidate.FailureKind = ovl_fail_too_few_arguments;
4144 return;
4145 }
4146
4147 // Determine the implicit conversion sequences for each of the
4148 // arguments.
4149 Candidate.Conversions.resize(NumArgs);
4150 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4151 if (ArgIdx < NumArgsInProto) {
4152 // (C++ 13.3.2p3): for F to be a viable function, there shall
4153 // exist for each argument an implicit conversion sequence
4154 // (13.3.3.1) that converts that argument to the corresponding
4155 // parameter of F.
4156 QualType ParamType = Proto->getArgType(ArgIdx);
4157 Candidate.Conversions[ArgIdx]
4158 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4159 SuppressUserConversions,
4160 /*InOverloadResolution=*/true,
4161 /*AllowObjCWritebackConversion=*/
4162 getLangOptions().ObjCAutoRefCount);
4163 if (Candidate.Conversions[ArgIdx].isBad()) {
4164 Candidate.Viable = false;
4165 Candidate.FailureKind = ovl_fail_bad_conversion;
4166 break;
4167 }
4168 } else {
4169 // (C++ 13.3.2p2): For the purposes of overload resolution, any
4170 // argument for which there is no corresponding parameter is
4171 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4172 Candidate.Conversions[ArgIdx].setEllipsis();
4173 }
4174 }
4175 }
4176
4177 /// \brief Add all of the function declarations in the given function set to
4178 /// the overload canddiate set.
AddFunctionCandidates(const UnresolvedSetImpl & Fns,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)4179 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
4180 Expr **Args, unsigned NumArgs,
4181 OverloadCandidateSet& CandidateSet,
4182 bool SuppressUserConversions) {
4183 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
4184 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
4185 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4186 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
4187 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
4188 cast<CXXMethodDecl>(FD)->getParent(),
4189 Args[0]->getType(), Args[0]->Classify(Context),
4190 Args + 1, NumArgs - 1,
4191 CandidateSet, SuppressUserConversions);
4192 else
4193 AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
4194 SuppressUserConversions);
4195 } else {
4196 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
4197 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
4198 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
4199 AddMethodTemplateCandidate(FunTmpl, F.getPair(),
4200 cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
4201 /*FIXME: explicit args */ 0,
4202 Args[0]->getType(),
4203 Args[0]->Classify(Context),
4204 Args + 1, NumArgs - 1,
4205 CandidateSet,
4206 SuppressUserConversions);
4207 else
4208 AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
4209 /*FIXME: explicit args */ 0,
4210 Args, NumArgs, CandidateSet,
4211 SuppressUserConversions);
4212 }
4213 }
4214 }
4215
4216 /// AddMethodCandidate - Adds a named decl (which is some kind of
4217 /// method) as a method candidate to the given overload set.
AddMethodCandidate(DeclAccessPair FoundDecl,QualType ObjectType,Expr::Classification ObjectClassification,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)4218 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
4219 QualType ObjectType,
4220 Expr::Classification ObjectClassification,
4221 Expr **Args, unsigned NumArgs,
4222 OverloadCandidateSet& CandidateSet,
4223 bool SuppressUserConversions) {
4224 NamedDecl *Decl = FoundDecl.getDecl();
4225 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
4226
4227 if (isa<UsingShadowDecl>(Decl))
4228 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
4229
4230 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
4231 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
4232 "Expected a member function template");
4233 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
4234 /*ExplicitArgs*/ 0,
4235 ObjectType, ObjectClassification, Args, NumArgs,
4236 CandidateSet,
4237 SuppressUserConversions);
4238 } else {
4239 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
4240 ObjectType, ObjectClassification, Args, NumArgs,
4241 CandidateSet, SuppressUserConversions);
4242 }
4243 }
4244
4245 /// AddMethodCandidate - Adds the given C++ member function to the set
4246 /// of candidate functions, using the given function call arguments
4247 /// and the object argument (@c Object). For example, in a call
4248 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
4249 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
4250 /// allow user-defined conversions via constructors or conversion
4251 /// operators.
4252 void
AddMethodCandidate(CXXMethodDecl * Method,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,QualType ObjectType,Expr::Classification ObjectClassification,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)4253 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
4254 CXXRecordDecl *ActingContext, QualType ObjectType,
4255 Expr::Classification ObjectClassification,
4256 Expr **Args, unsigned NumArgs,
4257 OverloadCandidateSet& CandidateSet,
4258 bool SuppressUserConversions) {
4259 const FunctionProtoType* Proto
4260 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
4261 assert(Proto && "Methods without a prototype cannot be overloaded");
4262 assert(!isa<CXXConstructorDecl>(Method) &&
4263 "Use AddOverloadCandidate for constructors");
4264
4265 if (!CandidateSet.isNewCandidate(Method))
4266 return;
4267
4268 // Overload resolution is always an unevaluated context.
4269 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4270
4271 // Add this candidate
4272 CandidateSet.push_back(OverloadCandidate());
4273 OverloadCandidate& Candidate = CandidateSet.back();
4274 Candidate.FoundDecl = FoundDecl;
4275 Candidate.Function = Method;
4276 Candidate.IsSurrogate = false;
4277 Candidate.IgnoreObjectArgument = false;
4278 Candidate.ExplicitCallArguments = NumArgs;
4279
4280 unsigned NumArgsInProto = Proto->getNumArgs();
4281
4282 // (C++ 13.3.2p2): A candidate function having fewer than m
4283 // parameters is viable only if it has an ellipsis in its parameter
4284 // list (8.3.5).
4285 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
4286 Candidate.Viable = false;
4287 Candidate.FailureKind = ovl_fail_too_many_arguments;
4288 return;
4289 }
4290
4291 // (C++ 13.3.2p2): A candidate function having more than m parameters
4292 // is viable only if the (m+1)st parameter has a default argument
4293 // (8.3.6). For the purposes of overload resolution, the
4294 // parameter list is truncated on the right, so that there are
4295 // exactly m parameters.
4296 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
4297 if (NumArgs < MinRequiredArgs) {
4298 // Not enough arguments.
4299 Candidate.Viable = false;
4300 Candidate.FailureKind = ovl_fail_too_few_arguments;
4301 return;
4302 }
4303
4304 Candidate.Viable = true;
4305 Candidate.Conversions.resize(NumArgs + 1);
4306
4307 if (Method->isStatic() || ObjectType.isNull())
4308 // The implicit object argument is ignored.
4309 Candidate.IgnoreObjectArgument = true;
4310 else {
4311 // Determine the implicit conversion sequence for the object
4312 // parameter.
4313 Candidate.Conversions[0]
4314 = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
4315 Method, ActingContext);
4316 if (Candidate.Conversions[0].isBad()) {
4317 Candidate.Viable = false;
4318 Candidate.FailureKind = ovl_fail_bad_conversion;
4319 return;
4320 }
4321 }
4322
4323 // Determine the implicit conversion sequences for each of the
4324 // arguments.
4325 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4326 if (ArgIdx < NumArgsInProto) {
4327 // (C++ 13.3.2p3): for F to be a viable function, there shall
4328 // exist for each argument an implicit conversion sequence
4329 // (13.3.3.1) that converts that argument to the corresponding
4330 // parameter of F.
4331 QualType ParamType = Proto->getArgType(ArgIdx);
4332 Candidate.Conversions[ArgIdx + 1]
4333 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4334 SuppressUserConversions,
4335 /*InOverloadResolution=*/true,
4336 /*AllowObjCWritebackConversion=*/
4337 getLangOptions().ObjCAutoRefCount);
4338 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
4339 Candidate.Viable = false;
4340 Candidate.FailureKind = ovl_fail_bad_conversion;
4341 break;
4342 }
4343 } else {
4344 // (C++ 13.3.2p2): For the purposes of overload resolution, any
4345 // argument for which there is no corresponding parameter is
4346 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4347 Candidate.Conversions[ArgIdx + 1].setEllipsis();
4348 }
4349 }
4350 }
4351
4352 /// \brief Add a C++ member function template as a candidate to the candidate
4353 /// set, using template argument deduction to produce an appropriate member
4354 /// function template specialization.
4355 void
AddMethodTemplateCandidate(FunctionTemplateDecl * MethodTmpl,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ObjectType,Expr::Classification ObjectClassification,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)4356 Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
4357 DeclAccessPair FoundDecl,
4358 CXXRecordDecl *ActingContext,
4359 TemplateArgumentListInfo *ExplicitTemplateArgs,
4360 QualType ObjectType,
4361 Expr::Classification ObjectClassification,
4362 Expr **Args, unsigned NumArgs,
4363 OverloadCandidateSet& CandidateSet,
4364 bool SuppressUserConversions) {
4365 if (!CandidateSet.isNewCandidate(MethodTmpl))
4366 return;
4367
4368 // C++ [over.match.funcs]p7:
4369 // In each case where a candidate is a function template, candidate
4370 // function template specializations are generated using template argument
4371 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
4372 // candidate functions in the usual way.113) A given name can refer to one
4373 // or more function templates and also to a set of overloaded non-template
4374 // functions. In such a case, the candidate functions generated from each
4375 // function template are combined with the set of non-template candidate
4376 // functions.
4377 TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4378 FunctionDecl *Specialization = 0;
4379 if (TemplateDeductionResult Result
4380 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
4381 Args, NumArgs, Specialization, Info)) {
4382 CandidateSet.push_back(OverloadCandidate());
4383 OverloadCandidate &Candidate = CandidateSet.back();
4384 Candidate.FoundDecl = FoundDecl;
4385 Candidate.Function = MethodTmpl->getTemplatedDecl();
4386 Candidate.Viable = false;
4387 Candidate.FailureKind = ovl_fail_bad_deduction;
4388 Candidate.IsSurrogate = false;
4389 Candidate.IgnoreObjectArgument = false;
4390 Candidate.ExplicitCallArguments = NumArgs;
4391 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4392 Info);
4393 return;
4394 }
4395
4396 // Add the function template specialization produced by template argument
4397 // deduction as a candidate.
4398 assert(Specialization && "Missing member function template specialization?");
4399 assert(isa<CXXMethodDecl>(Specialization) &&
4400 "Specialization is not a member function?");
4401 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
4402 ActingContext, ObjectType, ObjectClassification,
4403 Args, NumArgs, CandidateSet, SuppressUserConversions);
4404 }
4405
4406 /// \brief Add a C++ function template specialization as a candidate
4407 /// in the candidate set, using template argument deduction to produce
4408 /// an appropriate function template specialization.
4409 void
AddTemplateOverloadCandidate(FunctionTemplateDecl * FunctionTemplate,DeclAccessPair FoundDecl,TemplateArgumentListInfo * ExplicitTemplateArgs,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)4410 Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
4411 DeclAccessPair FoundDecl,
4412 TemplateArgumentListInfo *ExplicitTemplateArgs,
4413 Expr **Args, unsigned NumArgs,
4414 OverloadCandidateSet& CandidateSet,
4415 bool SuppressUserConversions) {
4416 if (!CandidateSet.isNewCandidate(FunctionTemplate))
4417 return;
4418
4419 // C++ [over.match.funcs]p7:
4420 // In each case where a candidate is a function template, candidate
4421 // function template specializations are generated using template argument
4422 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
4423 // candidate functions in the usual way.113) A given name can refer to one
4424 // or more function templates and also to a set of overloaded non-template
4425 // functions. In such a case, the candidate functions generated from each
4426 // function template are combined with the set of non-template candidate
4427 // functions.
4428 TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4429 FunctionDecl *Specialization = 0;
4430 if (TemplateDeductionResult Result
4431 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
4432 Args, NumArgs, Specialization, Info)) {
4433 CandidateSet.push_back(OverloadCandidate());
4434 OverloadCandidate &Candidate = CandidateSet.back();
4435 Candidate.FoundDecl = FoundDecl;
4436 Candidate.Function = FunctionTemplate->getTemplatedDecl();
4437 Candidate.Viable = false;
4438 Candidate.FailureKind = ovl_fail_bad_deduction;
4439 Candidate.IsSurrogate = false;
4440 Candidate.IgnoreObjectArgument = false;
4441 Candidate.ExplicitCallArguments = NumArgs;
4442 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4443 Info);
4444 return;
4445 }
4446
4447 // Add the function template specialization produced by template argument
4448 // deduction as a candidate.
4449 assert(Specialization && "Missing function template specialization?");
4450 AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
4451 SuppressUserConversions);
4452 }
4453
4454 /// AddConversionCandidate - Add a C++ conversion function as a
4455 /// candidate in the candidate set (C++ [over.match.conv],
4456 /// C++ [over.match.copy]). From is the expression we're converting from,
4457 /// and ToType is the type that we're eventually trying to convert to
4458 /// (which may or may not be the same type as the type that the
4459 /// conversion function produces).
4460 void
AddConversionCandidate(CXXConversionDecl * Conversion,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,Expr * From,QualType ToType,OverloadCandidateSet & CandidateSet)4461 Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
4462 DeclAccessPair FoundDecl,
4463 CXXRecordDecl *ActingContext,
4464 Expr *From, QualType ToType,
4465 OverloadCandidateSet& CandidateSet) {
4466 assert(!Conversion->getDescribedFunctionTemplate() &&
4467 "Conversion function templates use AddTemplateConversionCandidate");
4468 QualType ConvType = Conversion->getConversionType().getNonReferenceType();
4469 if (!CandidateSet.isNewCandidate(Conversion))
4470 return;
4471
4472 // Overload resolution is always an unevaluated context.
4473 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4474
4475 // Add this candidate
4476 CandidateSet.push_back(OverloadCandidate());
4477 OverloadCandidate& Candidate = CandidateSet.back();
4478 Candidate.FoundDecl = FoundDecl;
4479 Candidate.Function = Conversion;
4480 Candidate.IsSurrogate = false;
4481 Candidate.IgnoreObjectArgument = false;
4482 Candidate.FinalConversion.setAsIdentityConversion();
4483 Candidate.FinalConversion.setFromType(ConvType);
4484 Candidate.FinalConversion.setAllToTypes(ToType);
4485 Candidate.Viable = true;
4486 Candidate.Conversions.resize(1);
4487 Candidate.ExplicitCallArguments = 1;
4488
4489 // C++ [over.match.funcs]p4:
4490 // For conversion functions, the function is considered to be a member of
4491 // the class of the implicit implied object argument for the purpose of
4492 // defining the type of the implicit object parameter.
4493 //
4494 // Determine the implicit conversion sequence for the implicit
4495 // object parameter.
4496 QualType ImplicitParamType = From->getType();
4497 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
4498 ImplicitParamType = FromPtrType->getPointeeType();
4499 CXXRecordDecl *ConversionContext
4500 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
4501
4502 Candidate.Conversions[0]
4503 = TryObjectArgumentInitialization(*this, From->getType(),
4504 From->Classify(Context),
4505 Conversion, ConversionContext);
4506
4507 if (Candidate.Conversions[0].isBad()) {
4508 Candidate.Viable = false;
4509 Candidate.FailureKind = ovl_fail_bad_conversion;
4510 return;
4511 }
4512
4513 // We won't go through a user-define type conversion function to convert a
4514 // derived to base as such conversions are given Conversion Rank. They only
4515 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
4516 QualType FromCanon
4517 = Context.getCanonicalType(From->getType().getUnqualifiedType());
4518 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
4519 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
4520 Candidate.Viable = false;
4521 Candidate.FailureKind = ovl_fail_trivial_conversion;
4522 return;
4523 }
4524
4525 // To determine what the conversion from the result of calling the
4526 // conversion function to the type we're eventually trying to
4527 // convert to (ToType), we need to synthesize a call to the
4528 // conversion function and attempt copy initialization from it. This
4529 // makes sure that we get the right semantics with respect to
4530 // lvalues/rvalues and the type. Fortunately, we can allocate this
4531 // call on the stack and we don't need its arguments to be
4532 // well-formed.
4533 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
4534 VK_LValue, From->getLocStart());
4535 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
4536 Context.getPointerType(Conversion->getType()),
4537 CK_FunctionToPointerDecay,
4538 &ConversionRef, VK_RValue);
4539
4540 QualType ConversionType = Conversion->getConversionType();
4541 if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
4542 Candidate.Viable = false;
4543 Candidate.FailureKind = ovl_fail_bad_final_conversion;
4544 return;
4545 }
4546
4547 ExprValueKind VK = Expr::getValueKindForType(ConversionType);
4548
4549 // Note that it is safe to allocate CallExpr on the stack here because
4550 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
4551 // allocator).
4552 QualType CallResultType = ConversionType.getNonLValueExprType(Context);
4553 CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK,
4554 From->getLocStart());
4555 ImplicitConversionSequence ICS =
4556 TryCopyInitialization(*this, &Call, ToType,
4557 /*SuppressUserConversions=*/true,
4558 /*InOverloadResolution=*/false,
4559 /*AllowObjCWritebackConversion=*/false);
4560
4561 switch (ICS.getKind()) {
4562 case ImplicitConversionSequence::StandardConversion:
4563 Candidate.FinalConversion = ICS.Standard;
4564
4565 // C++ [over.ics.user]p3:
4566 // If the user-defined conversion is specified by a specialization of a
4567 // conversion function template, the second standard conversion sequence
4568 // shall have exact match rank.
4569 if (Conversion->getPrimaryTemplate() &&
4570 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
4571 Candidate.Viable = false;
4572 Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
4573 }
4574
4575 // C++0x [dcl.init.ref]p5:
4576 // In the second case, if the reference is an rvalue reference and
4577 // the second standard conversion sequence of the user-defined
4578 // conversion sequence includes an lvalue-to-rvalue conversion, the
4579 // program is ill-formed.
4580 if (ToType->isRValueReferenceType() &&
4581 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4582 Candidate.Viable = false;
4583 Candidate.FailureKind = ovl_fail_bad_final_conversion;
4584 }
4585 break;
4586
4587 case ImplicitConversionSequence::BadConversion:
4588 Candidate.Viable = false;
4589 Candidate.FailureKind = ovl_fail_bad_final_conversion;
4590 break;
4591
4592 default:
4593 assert(false &&
4594 "Can only end up with a standard conversion sequence or failure");
4595 }
4596 }
4597
4598 /// \brief Adds a conversion function template specialization
4599 /// candidate to the overload set, using template argument deduction
4600 /// to deduce the template arguments of the conversion function
4601 /// template from the type that we are converting to (C++
4602 /// [temp.deduct.conv]).
4603 void
AddTemplateConversionCandidate(FunctionTemplateDecl * FunctionTemplate,DeclAccessPair FoundDecl,CXXRecordDecl * ActingDC,Expr * From,QualType ToType,OverloadCandidateSet & CandidateSet)4604 Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
4605 DeclAccessPair FoundDecl,
4606 CXXRecordDecl *ActingDC,
4607 Expr *From, QualType ToType,
4608 OverloadCandidateSet &CandidateSet) {
4609 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
4610 "Only conversion function templates permitted here");
4611
4612 if (!CandidateSet.isNewCandidate(FunctionTemplate))
4613 return;
4614
4615 TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4616 CXXConversionDecl *Specialization = 0;
4617 if (TemplateDeductionResult Result
4618 = DeduceTemplateArguments(FunctionTemplate, ToType,
4619 Specialization, Info)) {
4620 CandidateSet.push_back(OverloadCandidate());
4621 OverloadCandidate &Candidate = CandidateSet.back();
4622 Candidate.FoundDecl = FoundDecl;
4623 Candidate.Function = FunctionTemplate->getTemplatedDecl();
4624 Candidate.Viable = false;
4625 Candidate.FailureKind = ovl_fail_bad_deduction;
4626 Candidate.IsSurrogate = false;
4627 Candidate.IgnoreObjectArgument = false;
4628 Candidate.ExplicitCallArguments = 1;
4629 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4630 Info);
4631 return;
4632 }
4633
4634 // Add the conversion function template specialization produced by
4635 // template argument deduction as a candidate.
4636 assert(Specialization && "Missing function template specialization?");
4637 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
4638 CandidateSet);
4639 }
4640
4641 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
4642 /// converts the given @c Object to a function pointer via the
4643 /// conversion function @c Conversion, and then attempts to call it
4644 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
4645 /// the type of function that we'll eventually be calling.
AddSurrogateCandidate(CXXConversionDecl * Conversion,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,const FunctionProtoType * Proto,Expr * Object,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet)4646 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
4647 DeclAccessPair FoundDecl,
4648 CXXRecordDecl *ActingContext,
4649 const FunctionProtoType *Proto,
4650 Expr *Object,
4651 Expr **Args, unsigned NumArgs,
4652 OverloadCandidateSet& CandidateSet) {
4653 if (!CandidateSet.isNewCandidate(Conversion))
4654 return;
4655
4656 // Overload resolution is always an unevaluated context.
4657 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4658
4659 CandidateSet.push_back(OverloadCandidate());
4660 OverloadCandidate& Candidate = CandidateSet.back();
4661 Candidate.FoundDecl = FoundDecl;
4662 Candidate.Function = 0;
4663 Candidate.Surrogate = Conversion;
4664 Candidate.Viable = true;
4665 Candidate.IsSurrogate = true;
4666 Candidate.IgnoreObjectArgument = false;
4667 Candidate.Conversions.resize(NumArgs + 1);
4668 Candidate.ExplicitCallArguments = NumArgs;
4669
4670 // Determine the implicit conversion sequence for the implicit
4671 // object parameter.
4672 ImplicitConversionSequence ObjectInit
4673 = TryObjectArgumentInitialization(*this, Object->getType(),
4674 Object->Classify(Context),
4675 Conversion, ActingContext);
4676 if (ObjectInit.isBad()) {
4677 Candidate.Viable = false;
4678 Candidate.FailureKind = ovl_fail_bad_conversion;
4679 Candidate.Conversions[0] = ObjectInit;
4680 return;
4681 }
4682
4683 // The first conversion is actually a user-defined conversion whose
4684 // first conversion is ObjectInit's standard conversion (which is
4685 // effectively a reference binding). Record it as such.
4686 Candidate.Conversions[0].setUserDefined();
4687 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
4688 Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
4689 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
4690 Candidate.Conversions[0].UserDefined.FoundConversionFunction
4691 = FoundDecl.getDecl();
4692 Candidate.Conversions[0].UserDefined.After
4693 = Candidate.Conversions[0].UserDefined.Before;
4694 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
4695
4696 // Find the
4697 unsigned NumArgsInProto = Proto->getNumArgs();
4698
4699 // (C++ 13.3.2p2): A candidate function having fewer than m
4700 // parameters is viable only if it has an ellipsis in its parameter
4701 // list (8.3.5).
4702 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
4703 Candidate.Viable = false;
4704 Candidate.FailureKind = ovl_fail_too_many_arguments;
4705 return;
4706 }
4707
4708 // Function types don't have any default arguments, so just check if
4709 // we have enough arguments.
4710 if (NumArgs < NumArgsInProto) {
4711 // Not enough arguments.
4712 Candidate.Viable = false;
4713 Candidate.FailureKind = ovl_fail_too_few_arguments;
4714 return;
4715 }
4716
4717 // Determine the implicit conversion sequences for each of the
4718 // arguments.
4719 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4720 if (ArgIdx < NumArgsInProto) {
4721 // (C++ 13.3.2p3): for F to be a viable function, there shall
4722 // exist for each argument an implicit conversion sequence
4723 // (13.3.3.1) that converts that argument to the corresponding
4724 // parameter of F.
4725 QualType ParamType = Proto->getArgType(ArgIdx);
4726 Candidate.Conversions[ArgIdx + 1]
4727 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4728 /*SuppressUserConversions=*/false,
4729 /*InOverloadResolution=*/false,
4730 /*AllowObjCWritebackConversion=*/
4731 getLangOptions().ObjCAutoRefCount);
4732 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
4733 Candidate.Viable = false;
4734 Candidate.FailureKind = ovl_fail_bad_conversion;
4735 break;
4736 }
4737 } else {
4738 // (C++ 13.3.2p2): For the purposes of overload resolution, any
4739 // argument for which there is no corresponding parameter is
4740 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4741 Candidate.Conversions[ArgIdx + 1].setEllipsis();
4742 }
4743 }
4744 }
4745
4746 /// \brief Add overload candidates for overloaded operators that are
4747 /// member functions.
4748 ///
4749 /// Add the overloaded operator candidates that are member functions
4750 /// for the operator Op that was used in an operator expression such
4751 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
4752 /// CandidateSet will store the added overload candidates. (C++
4753 /// [over.match.oper]).
AddMemberOperatorCandidates(OverloadedOperatorKind Op,SourceLocation OpLoc,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,SourceRange OpRange)4754 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
4755 SourceLocation OpLoc,
4756 Expr **Args, unsigned NumArgs,
4757 OverloadCandidateSet& CandidateSet,
4758 SourceRange OpRange) {
4759 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4760
4761 // C++ [over.match.oper]p3:
4762 // For a unary operator @ with an operand of a type whose
4763 // cv-unqualified version is T1, and for a binary operator @ with
4764 // a left operand of a type whose cv-unqualified version is T1 and
4765 // a right operand of a type whose cv-unqualified version is T2,
4766 // three sets of candidate functions, designated member
4767 // candidates, non-member candidates and built-in candidates, are
4768 // constructed as follows:
4769 QualType T1 = Args[0]->getType();
4770
4771 // -- If T1 is a class type, the set of member candidates is the
4772 // result of the qualified lookup of T1::operator@
4773 // (13.3.1.1.1); otherwise, the set of member candidates is
4774 // empty.
4775 if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
4776 // Complete the type if it can be completed. Otherwise, we're done.
4777 if (RequireCompleteType(OpLoc, T1, PDiag()))
4778 return;
4779
4780 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
4781 LookupQualifiedName(Operators, T1Rec->getDecl());
4782 Operators.suppressDiagnostics();
4783
4784 for (LookupResult::iterator Oper = Operators.begin(),
4785 OperEnd = Operators.end();
4786 Oper != OperEnd;
4787 ++Oper)
4788 AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
4789 Args[0]->Classify(Context), Args + 1, NumArgs - 1,
4790 CandidateSet,
4791 /* SuppressUserConversions = */ false);
4792 }
4793 }
4794
4795 /// AddBuiltinCandidate - Add a candidate for a built-in
4796 /// operator. ResultTy and ParamTys are the result and parameter types
4797 /// of the built-in candidate, respectively. Args and NumArgs are the
4798 /// arguments being passed to the candidate. IsAssignmentOperator
4799 /// should be true when this built-in candidate is an assignment
4800 /// operator. NumContextualBoolArguments is the number of arguments
4801 /// (at the beginning of the argument list) that will be contextually
4802 /// converted to bool.
AddBuiltinCandidate(QualType ResultTy,QualType * ParamTys,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,bool IsAssignmentOperator,unsigned NumContextualBoolArguments)4803 void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
4804 Expr **Args, unsigned NumArgs,
4805 OverloadCandidateSet& CandidateSet,
4806 bool IsAssignmentOperator,
4807 unsigned NumContextualBoolArguments) {
4808 // Overload resolution is always an unevaluated context.
4809 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4810
4811 // Add this candidate
4812 CandidateSet.push_back(OverloadCandidate());
4813 OverloadCandidate& Candidate = CandidateSet.back();
4814 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
4815 Candidate.Function = 0;
4816 Candidate.IsSurrogate = false;
4817 Candidate.IgnoreObjectArgument = false;
4818 Candidate.BuiltinTypes.ResultTy = ResultTy;
4819 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4820 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
4821
4822 // Determine the implicit conversion sequences for each of the
4823 // arguments.
4824 Candidate.Viable = true;
4825 Candidate.Conversions.resize(NumArgs);
4826 Candidate.ExplicitCallArguments = NumArgs;
4827 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4828 // C++ [over.match.oper]p4:
4829 // For the built-in assignment operators, conversions of the
4830 // left operand are restricted as follows:
4831 // -- no temporaries are introduced to hold the left operand, and
4832 // -- no user-defined conversions are applied to the left
4833 // operand to achieve a type match with the left-most
4834 // parameter of a built-in candidate.
4835 //
4836 // We block these conversions by turning off user-defined
4837 // conversions, since that is the only way that initialization of
4838 // a reference to a non-class type can occur from something that
4839 // is not of the same type.
4840 if (ArgIdx < NumContextualBoolArguments) {
4841 assert(ParamTys[ArgIdx] == Context.BoolTy &&
4842 "Contextual conversion to bool requires bool type");
4843 Candidate.Conversions[ArgIdx]
4844 = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
4845 } else {
4846 Candidate.Conversions[ArgIdx]
4847 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
4848 ArgIdx == 0 && IsAssignmentOperator,
4849 /*InOverloadResolution=*/false,
4850 /*AllowObjCWritebackConversion=*/
4851 getLangOptions().ObjCAutoRefCount);
4852 }
4853 if (Candidate.Conversions[ArgIdx].isBad()) {
4854 Candidate.Viable = false;
4855 Candidate.FailureKind = ovl_fail_bad_conversion;
4856 break;
4857 }
4858 }
4859 }
4860
4861 /// BuiltinCandidateTypeSet - A set of types that will be used for the
4862 /// candidate operator functions for built-in operators (C++
4863 /// [over.built]). The types are separated into pointer types and
4864 /// enumeration types.
4865 class BuiltinCandidateTypeSet {
4866 /// TypeSet - A set of types.
4867 typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
4868
4869 /// PointerTypes - The set of pointer types that will be used in the
4870 /// built-in candidates.
4871 TypeSet PointerTypes;
4872
4873 /// MemberPointerTypes - The set of member pointer types that will be
4874 /// used in the built-in candidates.
4875 TypeSet MemberPointerTypes;
4876
4877 /// EnumerationTypes - The set of enumeration types that will be
4878 /// used in the built-in candidates.
4879 TypeSet EnumerationTypes;
4880
4881 /// \brief The set of vector types that will be used in the built-in
4882 /// candidates.
4883 TypeSet VectorTypes;
4884
4885 /// \brief A flag indicating non-record types are viable candidates
4886 bool HasNonRecordTypes;
4887
4888 /// \brief A flag indicating whether either arithmetic or enumeration types
4889 /// were present in the candidate set.
4890 bool HasArithmeticOrEnumeralTypes;
4891
4892 /// \brief A flag indicating whether the nullptr type was present in the
4893 /// candidate set.
4894 bool HasNullPtrType;
4895
4896 /// Sema - The semantic analysis instance where we are building the
4897 /// candidate type set.
4898 Sema &SemaRef;
4899
4900 /// Context - The AST context in which we will build the type sets.
4901 ASTContext &Context;
4902
4903 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4904 const Qualifiers &VisibleQuals);
4905 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
4906
4907 public:
4908 /// iterator - Iterates through the types that are part of the set.
4909 typedef TypeSet::iterator iterator;
4910
BuiltinCandidateTypeSet(Sema & SemaRef)4911 BuiltinCandidateTypeSet(Sema &SemaRef)
4912 : HasNonRecordTypes(false),
4913 HasArithmeticOrEnumeralTypes(false),
4914 HasNullPtrType(false),
4915 SemaRef(SemaRef),
4916 Context(SemaRef.Context) { }
4917
4918 void AddTypesConvertedFrom(QualType Ty,
4919 SourceLocation Loc,
4920 bool AllowUserConversions,
4921 bool AllowExplicitConversions,
4922 const Qualifiers &VisibleTypeConversionsQuals);
4923
4924 /// pointer_begin - First pointer type found;
pointer_begin()4925 iterator pointer_begin() { return PointerTypes.begin(); }
4926
4927 /// pointer_end - Past the last pointer type found;
pointer_end()4928 iterator pointer_end() { return PointerTypes.end(); }
4929
4930 /// member_pointer_begin - First member pointer type found;
member_pointer_begin()4931 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
4932
4933 /// member_pointer_end - Past the last member pointer type found;
member_pointer_end()4934 iterator member_pointer_end() { return MemberPointerTypes.end(); }
4935
4936 /// enumeration_begin - First enumeration type found;
enumeration_begin()4937 iterator enumeration_begin() { return EnumerationTypes.begin(); }
4938
4939 /// enumeration_end - Past the last enumeration type found;
enumeration_end()4940 iterator enumeration_end() { return EnumerationTypes.end(); }
4941
vector_begin()4942 iterator vector_begin() { return VectorTypes.begin(); }
vector_end()4943 iterator vector_end() { return VectorTypes.end(); }
4944
hasNonRecordTypes()4945 bool hasNonRecordTypes() { return HasNonRecordTypes; }
hasArithmeticOrEnumeralTypes()4946 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
hasNullPtrType() const4947 bool hasNullPtrType() const { return HasNullPtrType; }
4948 };
4949
4950 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
4951 /// the set of pointer types along with any more-qualified variants of
4952 /// that type. For example, if @p Ty is "int const *", this routine
4953 /// will add "int const *", "int const volatile *", "int const
4954 /// restrict *", and "int const volatile restrict *" to the set of
4955 /// pointer types. Returns true if the add of @p Ty itself succeeded,
4956 /// false otherwise.
4957 ///
4958 /// FIXME: what to do about extended qualifiers?
4959 bool
AddPointerWithMoreQualifiedTypeVariants(QualType Ty,const Qualifiers & VisibleQuals)4960 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4961 const Qualifiers &VisibleQuals) {
4962
4963 // Insert this type.
4964 if (!PointerTypes.insert(Ty))
4965 return false;
4966
4967 QualType PointeeTy;
4968 const PointerType *PointerTy = Ty->getAs<PointerType>();
4969 bool buildObjCPtr = false;
4970 if (!PointerTy) {
4971 if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) {
4972 PointeeTy = PTy->getPointeeType();
4973 buildObjCPtr = true;
4974 }
4975 else
4976 assert(false && "type was not a pointer type!");
4977 }
4978 else
4979 PointeeTy = PointerTy->getPointeeType();
4980
4981 // Don't add qualified variants of arrays. For one, they're not allowed
4982 // (the qualifier would sink to the element type), and for another, the
4983 // only overload situation where it matters is subscript or pointer +- int,
4984 // and those shouldn't have qualifier variants anyway.
4985 if (PointeeTy->isArrayType())
4986 return true;
4987 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
4988 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
4989 BaseCVR = Array->getElementType().getCVRQualifiers();
4990 bool hasVolatile = VisibleQuals.hasVolatile();
4991 bool hasRestrict = VisibleQuals.hasRestrict();
4992
4993 // Iterate through all strict supersets of BaseCVR.
4994 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
4995 if ((CVR | BaseCVR) != CVR) continue;
4996 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
4997 // in the types.
4998 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
4999 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
5000 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
5001 if (!buildObjCPtr)
5002 PointerTypes.insert(Context.getPointerType(QPointeeTy));
5003 else
5004 PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy));
5005 }
5006
5007 return true;
5008 }
5009
5010 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
5011 /// to the set of pointer types along with any more-qualified variants of
5012 /// that type. For example, if @p Ty is "int const *", this routine
5013 /// will add "int const *", "int const volatile *", "int const
5014 /// restrict *", and "int const volatile restrict *" to the set of
5015 /// pointer types. Returns true if the add of @p Ty itself succeeded,
5016 /// false otherwise.
5017 ///
5018 /// FIXME: what to do about extended qualifiers?
5019 bool
AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty)5020 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
5021 QualType Ty) {
5022 // Insert this type.
5023 if (!MemberPointerTypes.insert(Ty))
5024 return false;
5025
5026 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
5027 assert(PointerTy && "type was not a member pointer type!");
5028
5029 QualType PointeeTy = PointerTy->getPointeeType();
5030 // Don't add qualified variants of arrays. For one, they're not allowed
5031 // (the qualifier would sink to the element type), and for another, the
5032 // only overload situation where it matters is subscript or pointer +- int,
5033 // and those shouldn't have qualifier variants anyway.
5034 if (PointeeTy->isArrayType())
5035 return true;
5036 const Type *ClassTy = PointerTy->getClass();
5037
5038 // Iterate through all strict supersets of the pointee type's CVR
5039 // qualifiers.
5040 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
5041 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
5042 if ((CVR | BaseCVR) != CVR) continue;
5043
5044 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
5045 MemberPointerTypes.insert(
5046 Context.getMemberPointerType(QPointeeTy, ClassTy));
5047 }
5048
5049 return true;
5050 }
5051
5052 /// AddTypesConvertedFrom - Add each of the types to which the type @p
5053 /// Ty can be implicit converted to the given set of @p Types. We're
5054 /// primarily interested in pointer types and enumeration types. We also
5055 /// take member pointer types, for the conditional operator.
5056 /// AllowUserConversions is true if we should look at the conversion
5057 /// functions of a class type, and AllowExplicitConversions if we
5058 /// should also include the explicit conversion functions of a class
5059 /// type.
5060 void
AddTypesConvertedFrom(QualType Ty,SourceLocation Loc,bool AllowUserConversions,bool AllowExplicitConversions,const Qualifiers & VisibleQuals)5061 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
5062 SourceLocation Loc,
5063 bool AllowUserConversions,
5064 bool AllowExplicitConversions,
5065 const Qualifiers &VisibleQuals) {
5066 // Only deal with canonical types.
5067 Ty = Context.getCanonicalType(Ty);
5068
5069 // Look through reference types; they aren't part of the type of an
5070 // expression for the purposes of conversions.
5071 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
5072 Ty = RefTy->getPointeeType();
5073
5074 // If we're dealing with an array type, decay to the pointer.
5075 if (Ty->isArrayType())
5076 Ty = SemaRef.Context.getArrayDecayedType(Ty);
5077
5078 // Otherwise, we don't care about qualifiers on the type.
5079 Ty = Ty.getLocalUnqualifiedType();
5080
5081 // Flag if we ever add a non-record type.
5082 const RecordType *TyRec = Ty->getAs<RecordType>();
5083 HasNonRecordTypes = HasNonRecordTypes || !TyRec;
5084
5085 // Flag if we encounter an arithmetic type.
5086 HasArithmeticOrEnumeralTypes =
5087 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
5088
5089 if (Ty->isObjCIdType() || Ty->isObjCClassType())
5090 PointerTypes.insert(Ty);
5091 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
5092 // Insert our type, and its more-qualified variants, into the set
5093 // of types.
5094 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
5095 return;
5096 } else if (Ty->isMemberPointerType()) {
5097 // Member pointers are far easier, since the pointee can't be converted.
5098 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
5099 return;
5100 } else if (Ty->isEnumeralType()) {
5101 HasArithmeticOrEnumeralTypes = true;
5102 EnumerationTypes.insert(Ty);
5103 } else if (Ty->isVectorType()) {
5104 // We treat vector types as arithmetic types in many contexts as an
5105 // extension.
5106 HasArithmeticOrEnumeralTypes = true;
5107 VectorTypes.insert(Ty);
5108 } else if (Ty->isNullPtrType()) {
5109 HasNullPtrType = true;
5110 } else if (AllowUserConversions && TyRec) {
5111 // No conversion functions in incomplete types.
5112 if (SemaRef.RequireCompleteType(Loc, Ty, 0))
5113 return;
5114
5115 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
5116 const UnresolvedSetImpl *Conversions
5117 = ClassDecl->getVisibleConversionFunctions();
5118 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
5119 E = Conversions->end(); I != E; ++I) {
5120 NamedDecl *D = I.getDecl();
5121 if (isa<UsingShadowDecl>(D))
5122 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5123
5124 // Skip conversion function templates; they don't tell us anything
5125 // about which builtin types we can convert to.
5126 if (isa<FunctionTemplateDecl>(D))
5127 continue;
5128
5129 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
5130 if (AllowExplicitConversions || !Conv->isExplicit()) {
5131 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
5132 VisibleQuals);
5133 }
5134 }
5135 }
5136 }
5137
5138 /// \brief Helper function for AddBuiltinOperatorCandidates() that adds
5139 /// the volatile- and non-volatile-qualified assignment operators for the
5140 /// given type to the candidate set.
AddBuiltinAssignmentOperatorCandidates(Sema & S,QualType T,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet)5141 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
5142 QualType T,
5143 Expr **Args,
5144 unsigned NumArgs,
5145 OverloadCandidateSet &CandidateSet) {
5146 QualType ParamTypes[2];
5147
5148 // T& operator=(T&, T)
5149 ParamTypes[0] = S.Context.getLValueReferenceType(T);
5150 ParamTypes[1] = T;
5151 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5152 /*IsAssignmentOperator=*/true);
5153
5154 if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
5155 // volatile T& operator=(volatile T&, T)
5156 ParamTypes[0]
5157 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
5158 ParamTypes[1] = T;
5159 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5160 /*IsAssignmentOperator=*/true);
5161 }
5162 }
5163
5164 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
5165 /// if any, found in visible type conversion functions found in ArgExpr's type.
CollectVRQualifiers(ASTContext & Context,Expr * ArgExpr)5166 static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
5167 Qualifiers VRQuals;
5168 const RecordType *TyRec;
5169 if (const MemberPointerType *RHSMPType =
5170 ArgExpr->getType()->getAs<MemberPointerType>())
5171 TyRec = RHSMPType->getClass()->getAs<RecordType>();
5172 else
5173 TyRec = ArgExpr->getType()->getAs<RecordType>();
5174 if (!TyRec) {
5175 // Just to be safe, assume the worst case.
5176 VRQuals.addVolatile();
5177 VRQuals.addRestrict();
5178 return VRQuals;
5179 }
5180
5181 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
5182 if (!ClassDecl->hasDefinition())
5183 return VRQuals;
5184
5185 const UnresolvedSetImpl *Conversions =
5186 ClassDecl->getVisibleConversionFunctions();
5187
5188 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
5189 E = Conversions->end(); I != E; ++I) {
5190 NamedDecl *D = I.getDecl();
5191 if (isa<UsingShadowDecl>(D))
5192 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5193 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
5194 QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
5195 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
5196 CanTy = ResTypeRef->getPointeeType();
5197 // Need to go down the pointer/mempointer chain and add qualifiers
5198 // as see them.
5199 bool done = false;
5200 while (!done) {
5201 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
5202 CanTy = ResTypePtr->getPointeeType();
5203 else if (const MemberPointerType *ResTypeMPtr =
5204 CanTy->getAs<MemberPointerType>())
5205 CanTy = ResTypeMPtr->getPointeeType();
5206 else
5207 done = true;
5208 if (CanTy.isVolatileQualified())
5209 VRQuals.addVolatile();
5210 if (CanTy.isRestrictQualified())
5211 VRQuals.addRestrict();
5212 if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
5213 return VRQuals;
5214 }
5215 }
5216 }
5217 return VRQuals;
5218 }
5219
5220 namespace {
5221
5222 /// \brief Helper class to manage the addition of builtin operator overload
5223 /// candidates. It provides shared state and utility methods used throughout
5224 /// the process, as well as a helper method to add each group of builtin
5225 /// operator overloads from the standard to a candidate set.
5226 class BuiltinOperatorOverloadBuilder {
5227 // Common instance state available to all overload candidate addition methods.
5228 Sema &S;
5229 Expr **Args;
5230 unsigned NumArgs;
5231 Qualifiers VisibleTypeConversionsQuals;
5232 bool HasArithmeticOrEnumeralCandidateType;
5233 llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
5234 OverloadCandidateSet &CandidateSet;
5235
5236 // Define some constants used to index and iterate over the arithemetic types
5237 // provided via the getArithmeticType() method below.
5238 // The "promoted arithmetic types" are the arithmetic
5239 // types are that preserved by promotion (C++ [over.built]p2).
5240 static const unsigned FirstIntegralType = 3;
5241 static const unsigned LastIntegralType = 18;
5242 static const unsigned FirstPromotedIntegralType = 3,
5243 LastPromotedIntegralType = 9;
5244 static const unsigned FirstPromotedArithmeticType = 0,
5245 LastPromotedArithmeticType = 9;
5246 static const unsigned NumArithmeticTypes = 18;
5247
5248 /// \brief Get the canonical type for a given arithmetic type index.
getArithmeticType(unsigned index)5249 CanQualType getArithmeticType(unsigned index) {
5250 assert(index < NumArithmeticTypes);
5251 static CanQualType ASTContext::* const
5252 ArithmeticTypes[NumArithmeticTypes] = {
5253 // Start of promoted types.
5254 &ASTContext::FloatTy,
5255 &ASTContext::DoubleTy,
5256 &ASTContext::LongDoubleTy,
5257
5258 // Start of integral types.
5259 &ASTContext::IntTy,
5260 &ASTContext::LongTy,
5261 &ASTContext::LongLongTy,
5262 &ASTContext::UnsignedIntTy,
5263 &ASTContext::UnsignedLongTy,
5264 &ASTContext::UnsignedLongLongTy,
5265 // End of promoted types.
5266
5267 &ASTContext::BoolTy,
5268 &ASTContext::CharTy,
5269 &ASTContext::WCharTy,
5270 &ASTContext::Char16Ty,
5271 &ASTContext::Char32Ty,
5272 &ASTContext::SignedCharTy,
5273 &ASTContext::ShortTy,
5274 &ASTContext::UnsignedCharTy,
5275 &ASTContext::UnsignedShortTy,
5276 // End of integral types.
5277 // FIXME: What about complex?
5278 };
5279 return S.Context.*ArithmeticTypes[index];
5280 }
5281
5282 /// \brief Gets the canonical type resulting from the usual arithemetic
5283 /// converions for the given arithmetic types.
getUsualArithmeticConversions(unsigned L,unsigned R)5284 CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
5285 // Accelerator table for performing the usual arithmetic conversions.
5286 // The rules are basically:
5287 // - if either is floating-point, use the wider floating-point
5288 // - if same signedness, use the higher rank
5289 // - if same size, use unsigned of the higher rank
5290 // - use the larger type
5291 // These rules, together with the axiom that higher ranks are
5292 // never smaller, are sufficient to precompute all of these results
5293 // *except* when dealing with signed types of higher rank.
5294 // (we could precompute SLL x UI for all known platforms, but it's
5295 // better not to make any assumptions).
5296 enum PromotedType {
5297 Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL, Dep=-1
5298 };
5299 static PromotedType ConversionsTable[LastPromotedArithmeticType]
5300 [LastPromotedArithmeticType] = {
5301 /* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt },
5302 /* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl },
5303 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
5304 /* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL },
5305 /* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, Dep, UL, ULL },
5306 /* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, Dep, Dep, ULL },
5307 /* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, UI, UL, ULL },
5308 /* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, UL, UL, ULL },
5309 /* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, ULL, ULL, ULL },
5310 };
5311
5312 assert(L < LastPromotedArithmeticType);
5313 assert(R < LastPromotedArithmeticType);
5314 int Idx = ConversionsTable[L][R];
5315
5316 // Fast path: the table gives us a concrete answer.
5317 if (Idx != Dep) return getArithmeticType(Idx);
5318
5319 // Slow path: we need to compare widths.
5320 // An invariant is that the signed type has higher rank.
5321 CanQualType LT = getArithmeticType(L),
5322 RT = getArithmeticType(R);
5323 unsigned LW = S.Context.getIntWidth(LT),
5324 RW = S.Context.getIntWidth(RT);
5325
5326 // If they're different widths, use the signed type.
5327 if (LW > RW) return LT;
5328 else if (LW < RW) return RT;
5329
5330 // Otherwise, use the unsigned type of the signed type's rank.
5331 if (L == SL || R == SL) return S.Context.UnsignedLongTy;
5332 assert(L == SLL || R == SLL);
5333 return S.Context.UnsignedLongLongTy;
5334 }
5335
5336 /// \brief Helper method to factor out the common pattern of adding overloads
5337 /// for '++' and '--' builtin operators.
addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,bool HasVolatile)5338 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
5339 bool HasVolatile) {
5340 QualType ParamTypes[2] = {
5341 S.Context.getLValueReferenceType(CandidateTy),
5342 S.Context.IntTy
5343 };
5344
5345 // Non-volatile version.
5346 if (NumArgs == 1)
5347 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
5348 else
5349 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
5350
5351 // Use a heuristic to reduce number of builtin candidates in the set:
5352 // add volatile version only if there are conversions to a volatile type.
5353 if (HasVolatile) {
5354 ParamTypes[0] =
5355 S.Context.getLValueReferenceType(
5356 S.Context.getVolatileType(CandidateTy));
5357 if (NumArgs == 1)
5358 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
5359 else
5360 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
5361 }
5362 }
5363
5364 public:
BuiltinOperatorOverloadBuilder(Sema & S,Expr ** Args,unsigned NumArgs,Qualifiers VisibleTypeConversionsQuals,bool HasArithmeticOrEnumeralCandidateType,llvm::SmallVectorImpl<BuiltinCandidateTypeSet> & CandidateTypes,OverloadCandidateSet & CandidateSet)5365 BuiltinOperatorOverloadBuilder(
5366 Sema &S, Expr **Args, unsigned NumArgs,
5367 Qualifiers VisibleTypeConversionsQuals,
5368 bool HasArithmeticOrEnumeralCandidateType,
5369 llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
5370 OverloadCandidateSet &CandidateSet)
5371 : S(S), Args(Args), NumArgs(NumArgs),
5372 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
5373 HasArithmeticOrEnumeralCandidateType(
5374 HasArithmeticOrEnumeralCandidateType),
5375 CandidateTypes(CandidateTypes),
5376 CandidateSet(CandidateSet) {
5377 // Validate some of our static helper constants in debug builds.
5378 assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
5379 "Invalid first promoted integral type");
5380 assert(getArithmeticType(LastPromotedIntegralType - 1)
5381 == S.Context.UnsignedLongLongTy &&
5382 "Invalid last promoted integral type");
5383 assert(getArithmeticType(FirstPromotedArithmeticType)
5384 == S.Context.FloatTy &&
5385 "Invalid first promoted arithmetic type");
5386 assert(getArithmeticType(LastPromotedArithmeticType - 1)
5387 == S.Context.UnsignedLongLongTy &&
5388 "Invalid last promoted arithmetic type");
5389 }
5390
5391 // C++ [over.built]p3:
5392 //
5393 // For every pair (T, VQ), where T is an arithmetic type, and VQ
5394 // is either volatile or empty, there exist candidate operator
5395 // functions of the form
5396 //
5397 // VQ T& operator++(VQ T&);
5398 // T operator++(VQ T&, int);
5399 //
5400 // C++ [over.built]p4:
5401 //
5402 // For every pair (T, VQ), where T is an arithmetic type other
5403 // than bool, and VQ is either volatile or empty, there exist
5404 // candidate operator functions of the form
5405 //
5406 // VQ T& operator--(VQ T&);
5407 // T operator--(VQ T&, int);
addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op)5408 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
5409 if (!HasArithmeticOrEnumeralCandidateType)
5410 return;
5411
5412 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
5413 Arith < NumArithmeticTypes; ++Arith) {
5414 addPlusPlusMinusMinusStyleOverloads(
5415 getArithmeticType(Arith),
5416 VisibleTypeConversionsQuals.hasVolatile());
5417 }
5418 }
5419
5420 // C++ [over.built]p5:
5421 //
5422 // For every pair (T, VQ), where T is a cv-qualified or
5423 // cv-unqualified object type, and VQ is either volatile or
5424 // empty, there exist candidate operator functions of the form
5425 //
5426 // T*VQ& operator++(T*VQ&);
5427 // T*VQ& operator--(T*VQ&);
5428 // T* operator++(T*VQ&, int);
5429 // T* operator--(T*VQ&, int);
addPlusPlusMinusMinusPointerOverloads()5430 void addPlusPlusMinusMinusPointerOverloads() {
5431 for (BuiltinCandidateTypeSet::iterator
5432 Ptr = CandidateTypes[0].pointer_begin(),
5433 PtrEnd = CandidateTypes[0].pointer_end();
5434 Ptr != PtrEnd; ++Ptr) {
5435 // Skip pointer types that aren't pointers to object types.
5436 if (!(*Ptr)->getPointeeType()->isObjectType())
5437 continue;
5438
5439 addPlusPlusMinusMinusStyleOverloads(*Ptr,
5440 (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5441 VisibleTypeConversionsQuals.hasVolatile()));
5442 }
5443 }
5444
5445 // C++ [over.built]p6:
5446 // For every cv-qualified or cv-unqualified object type T, there
5447 // exist candidate operator functions of the form
5448 //
5449 // T& operator*(T*);
5450 //
5451 // C++ [over.built]p7:
5452 // For every function type T that does not have cv-qualifiers or a
5453 // ref-qualifier, there exist candidate operator functions of the form
5454 // T& operator*(T*);
addUnaryStarPointerOverloads()5455 void addUnaryStarPointerOverloads() {
5456 for (BuiltinCandidateTypeSet::iterator
5457 Ptr = CandidateTypes[0].pointer_begin(),
5458 PtrEnd = CandidateTypes[0].pointer_end();
5459 Ptr != PtrEnd; ++Ptr) {
5460 QualType ParamTy = *Ptr;
5461 QualType PointeeTy = ParamTy->getPointeeType();
5462 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
5463 continue;
5464
5465 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
5466 if (Proto->getTypeQuals() || Proto->getRefQualifier())
5467 continue;
5468
5469 S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
5470 &ParamTy, Args, 1, CandidateSet);
5471 }
5472 }
5473
5474 // C++ [over.built]p9:
5475 // For every promoted arithmetic type T, there exist candidate
5476 // operator functions of the form
5477 //
5478 // T operator+(T);
5479 // T operator-(T);
addUnaryPlusOrMinusArithmeticOverloads()5480 void addUnaryPlusOrMinusArithmeticOverloads() {
5481 if (!HasArithmeticOrEnumeralCandidateType)
5482 return;
5483
5484 for (unsigned Arith = FirstPromotedArithmeticType;
5485 Arith < LastPromotedArithmeticType; ++Arith) {
5486 QualType ArithTy = getArithmeticType(Arith);
5487 S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
5488 }
5489
5490 // Extension: We also add these operators for vector types.
5491 for (BuiltinCandidateTypeSet::iterator
5492 Vec = CandidateTypes[0].vector_begin(),
5493 VecEnd = CandidateTypes[0].vector_end();
5494 Vec != VecEnd; ++Vec) {
5495 QualType VecTy = *Vec;
5496 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
5497 }
5498 }
5499
5500 // C++ [over.built]p8:
5501 // For every type T, there exist candidate operator functions of
5502 // the form
5503 //
5504 // T* operator+(T*);
addUnaryPlusPointerOverloads()5505 void addUnaryPlusPointerOverloads() {
5506 for (BuiltinCandidateTypeSet::iterator
5507 Ptr = CandidateTypes[0].pointer_begin(),
5508 PtrEnd = CandidateTypes[0].pointer_end();
5509 Ptr != PtrEnd; ++Ptr) {
5510 QualType ParamTy = *Ptr;
5511 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
5512 }
5513 }
5514
5515 // C++ [over.built]p10:
5516 // For every promoted integral type T, there exist candidate
5517 // operator functions of the form
5518 //
5519 // T operator~(T);
addUnaryTildePromotedIntegralOverloads()5520 void addUnaryTildePromotedIntegralOverloads() {
5521 if (!HasArithmeticOrEnumeralCandidateType)
5522 return;
5523
5524 for (unsigned Int = FirstPromotedIntegralType;
5525 Int < LastPromotedIntegralType; ++Int) {
5526 QualType IntTy = getArithmeticType(Int);
5527 S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
5528 }
5529
5530 // Extension: We also add this operator for vector types.
5531 for (BuiltinCandidateTypeSet::iterator
5532 Vec = CandidateTypes[0].vector_begin(),
5533 VecEnd = CandidateTypes[0].vector_end();
5534 Vec != VecEnd; ++Vec) {
5535 QualType VecTy = *Vec;
5536 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
5537 }
5538 }
5539
5540 // C++ [over.match.oper]p16:
5541 // For every pointer to member type T, there exist candidate operator
5542 // functions of the form
5543 //
5544 // bool operator==(T,T);
5545 // bool operator!=(T,T);
addEqualEqualOrNotEqualMemberPointerOverloads()5546 void addEqualEqualOrNotEqualMemberPointerOverloads() {
5547 /// Set of (canonical) types that we've already handled.
5548 llvm::SmallPtrSet<QualType, 8> AddedTypes;
5549
5550 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5551 for (BuiltinCandidateTypeSet::iterator
5552 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5553 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5554 MemPtr != MemPtrEnd;
5555 ++MemPtr) {
5556 // Don't add the same builtin candidate twice.
5557 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5558 continue;
5559
5560 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
5561 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5562 CandidateSet);
5563 }
5564 }
5565 }
5566
5567 // C++ [over.built]p15:
5568 //
5569 // For every T, where T is an enumeration type, a pointer type, or
5570 // std::nullptr_t, there exist candidate operator functions of the form
5571 //
5572 // bool operator<(T, T);
5573 // bool operator>(T, T);
5574 // bool operator<=(T, T);
5575 // bool operator>=(T, T);
5576 // bool operator==(T, T);
5577 // bool operator!=(T, T);
addRelationalPointerOrEnumeralOverloads()5578 void addRelationalPointerOrEnumeralOverloads() {
5579 // C++ [over.built]p1:
5580 // If there is a user-written candidate with the same name and parameter
5581 // types as a built-in candidate operator function, the built-in operator
5582 // function is hidden and is not included in the set of candidate
5583 // functions.
5584 //
5585 // The text is actually in a note, but if we don't implement it then we end
5586 // up with ambiguities when the user provides an overloaded operator for
5587 // an enumeration type. Note that only enumeration types have this problem,
5588 // so we track which enumeration types we've seen operators for. Also, the
5589 // only other overloaded operator with enumeration argumenst, operator=,
5590 // cannot be overloaded for enumeration types, so this is the only place
5591 // where we must suppress candidates like this.
5592 llvm::DenseSet<std::pair<CanQualType, CanQualType> >
5593 UserDefinedBinaryOperators;
5594
5595 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5596 if (CandidateTypes[ArgIdx].enumeration_begin() !=
5597 CandidateTypes[ArgIdx].enumeration_end()) {
5598 for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
5599 CEnd = CandidateSet.end();
5600 C != CEnd; ++C) {
5601 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
5602 continue;
5603
5604 QualType FirstParamType =
5605 C->Function->getParamDecl(0)->getType().getUnqualifiedType();
5606 QualType SecondParamType =
5607 C->Function->getParamDecl(1)->getType().getUnqualifiedType();
5608
5609 // Skip if either parameter isn't of enumeral type.
5610 if (!FirstParamType->isEnumeralType() ||
5611 !SecondParamType->isEnumeralType())
5612 continue;
5613
5614 // Add this operator to the set of known user-defined operators.
5615 UserDefinedBinaryOperators.insert(
5616 std::make_pair(S.Context.getCanonicalType(FirstParamType),
5617 S.Context.getCanonicalType(SecondParamType)));
5618 }
5619 }
5620 }
5621
5622 /// Set of (canonical) types that we've already handled.
5623 llvm::SmallPtrSet<QualType, 8> AddedTypes;
5624
5625 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5626 for (BuiltinCandidateTypeSet::iterator
5627 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
5628 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
5629 Ptr != PtrEnd; ++Ptr) {
5630 // Don't add the same builtin candidate twice.
5631 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5632 continue;
5633
5634 QualType ParamTypes[2] = { *Ptr, *Ptr };
5635 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5636 CandidateSet);
5637 }
5638 for (BuiltinCandidateTypeSet::iterator
5639 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5640 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5641 Enum != EnumEnd; ++Enum) {
5642 CanQualType CanonType = S.Context.getCanonicalType(*Enum);
5643
5644 // Don't add the same builtin candidate twice, or if a user defined
5645 // candidate exists.
5646 if (!AddedTypes.insert(CanonType) ||
5647 UserDefinedBinaryOperators.count(std::make_pair(CanonType,
5648 CanonType)))
5649 continue;
5650
5651 QualType ParamTypes[2] = { *Enum, *Enum };
5652 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5653 CandidateSet);
5654 }
5655
5656 if (CandidateTypes[ArgIdx].hasNullPtrType()) {
5657 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
5658 if (AddedTypes.insert(NullPtrTy) &&
5659 !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
5660 NullPtrTy))) {
5661 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
5662 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5663 CandidateSet);
5664 }
5665 }
5666 }
5667 }
5668
5669 // C++ [over.built]p13:
5670 //
5671 // For every cv-qualified or cv-unqualified object type T
5672 // there exist candidate operator functions of the form
5673 //
5674 // T* operator+(T*, ptrdiff_t);
5675 // T& operator[](T*, ptrdiff_t); [BELOW]
5676 // T* operator-(T*, ptrdiff_t);
5677 // T* operator+(ptrdiff_t, T*);
5678 // T& operator[](ptrdiff_t, T*); [BELOW]
5679 //
5680 // C++ [over.built]p14:
5681 //
5682 // For every T, where T is a pointer to object type, there
5683 // exist candidate operator functions of the form
5684 //
5685 // ptrdiff_t operator-(T, T);
addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op)5686 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
5687 /// Set of (canonical) types that we've already handled.
5688 llvm::SmallPtrSet<QualType, 8> AddedTypes;
5689
5690 for (int Arg = 0; Arg < 2; ++Arg) {
5691 QualType AsymetricParamTypes[2] = {
5692 S.Context.getPointerDiffType(),
5693 S.Context.getPointerDiffType(),
5694 };
5695 for (BuiltinCandidateTypeSet::iterator
5696 Ptr = CandidateTypes[Arg].pointer_begin(),
5697 PtrEnd = CandidateTypes[Arg].pointer_end();
5698 Ptr != PtrEnd; ++Ptr) {
5699 QualType PointeeTy = (*Ptr)->getPointeeType();
5700 if (!PointeeTy->isObjectType())
5701 continue;
5702
5703 AsymetricParamTypes[Arg] = *Ptr;
5704 if (Arg == 0 || Op == OO_Plus) {
5705 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
5706 // T* operator+(ptrdiff_t, T*);
5707 S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
5708 CandidateSet);
5709 }
5710 if (Op == OO_Minus) {
5711 // ptrdiff_t operator-(T, T);
5712 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5713 continue;
5714
5715 QualType ParamTypes[2] = { *Ptr, *Ptr };
5716 S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
5717 Args, 2, CandidateSet);
5718 }
5719 }
5720 }
5721 }
5722
5723 // C++ [over.built]p12:
5724 //
5725 // For every pair of promoted arithmetic types L and R, there
5726 // exist candidate operator functions of the form
5727 //
5728 // LR operator*(L, R);
5729 // LR operator/(L, R);
5730 // LR operator+(L, R);
5731 // LR operator-(L, R);
5732 // bool operator<(L, R);
5733 // bool operator>(L, R);
5734 // bool operator<=(L, R);
5735 // bool operator>=(L, R);
5736 // bool operator==(L, R);
5737 // bool operator!=(L, R);
5738 //
5739 // where LR is the result of the usual arithmetic conversions
5740 // between types L and R.
5741 //
5742 // C++ [over.built]p24:
5743 //
5744 // For every pair of promoted arithmetic types L and R, there exist
5745 // candidate operator functions of the form
5746 //
5747 // LR operator?(bool, L, R);
5748 //
5749 // where LR is the result of the usual arithmetic conversions
5750 // between types L and R.
5751 // Our candidates ignore the first parameter.
addGenericBinaryArithmeticOverloads(bool isComparison)5752 void addGenericBinaryArithmeticOverloads(bool isComparison) {
5753 if (!HasArithmeticOrEnumeralCandidateType)
5754 return;
5755
5756 for (unsigned Left = FirstPromotedArithmeticType;
5757 Left < LastPromotedArithmeticType; ++Left) {
5758 for (unsigned Right = FirstPromotedArithmeticType;
5759 Right < LastPromotedArithmeticType; ++Right) {
5760 QualType LandR[2] = { getArithmeticType(Left),
5761 getArithmeticType(Right) };
5762 QualType Result =
5763 isComparison ? S.Context.BoolTy
5764 : getUsualArithmeticConversions(Left, Right);
5765 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5766 }
5767 }
5768
5769 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
5770 // conditional operator for vector types.
5771 for (BuiltinCandidateTypeSet::iterator
5772 Vec1 = CandidateTypes[0].vector_begin(),
5773 Vec1End = CandidateTypes[0].vector_end();
5774 Vec1 != Vec1End; ++Vec1) {
5775 for (BuiltinCandidateTypeSet::iterator
5776 Vec2 = CandidateTypes[1].vector_begin(),
5777 Vec2End = CandidateTypes[1].vector_end();
5778 Vec2 != Vec2End; ++Vec2) {
5779 QualType LandR[2] = { *Vec1, *Vec2 };
5780 QualType Result = S.Context.BoolTy;
5781 if (!isComparison) {
5782 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
5783 Result = *Vec1;
5784 else
5785 Result = *Vec2;
5786 }
5787
5788 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5789 }
5790 }
5791 }
5792
5793 // C++ [over.built]p17:
5794 //
5795 // For every pair of promoted integral types L and R, there
5796 // exist candidate operator functions of the form
5797 //
5798 // LR operator%(L, R);
5799 // LR operator&(L, R);
5800 // LR operator^(L, R);
5801 // LR operator|(L, R);
5802 // L operator<<(L, R);
5803 // L operator>>(L, R);
5804 //
5805 // where LR is the result of the usual arithmetic conversions
5806 // between types L and R.
addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op)5807 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
5808 if (!HasArithmeticOrEnumeralCandidateType)
5809 return;
5810
5811 for (unsigned Left = FirstPromotedIntegralType;
5812 Left < LastPromotedIntegralType; ++Left) {
5813 for (unsigned Right = FirstPromotedIntegralType;
5814 Right < LastPromotedIntegralType; ++Right) {
5815 QualType LandR[2] = { getArithmeticType(Left),
5816 getArithmeticType(Right) };
5817 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
5818 ? LandR[0]
5819 : getUsualArithmeticConversions(Left, Right);
5820 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5821 }
5822 }
5823 }
5824
5825 // C++ [over.built]p20:
5826 //
5827 // For every pair (T, VQ), where T is an enumeration or
5828 // pointer to member type and VQ is either volatile or
5829 // empty, there exist candidate operator functions of the form
5830 //
5831 // VQ T& operator=(VQ T&, T);
addAssignmentMemberPointerOrEnumeralOverloads()5832 void addAssignmentMemberPointerOrEnumeralOverloads() {
5833 /// Set of (canonical) types that we've already handled.
5834 llvm::SmallPtrSet<QualType, 8> AddedTypes;
5835
5836 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
5837 for (BuiltinCandidateTypeSet::iterator
5838 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5839 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5840 Enum != EnumEnd; ++Enum) {
5841 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
5842 continue;
5843
5844 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
5845 CandidateSet);
5846 }
5847
5848 for (BuiltinCandidateTypeSet::iterator
5849 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5850 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5851 MemPtr != MemPtrEnd; ++MemPtr) {
5852 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5853 continue;
5854
5855 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
5856 CandidateSet);
5857 }
5858 }
5859 }
5860
5861 // C++ [over.built]p19:
5862 //
5863 // For every pair (T, VQ), where T is any type and VQ is either
5864 // volatile or empty, there exist candidate operator functions
5865 // of the form
5866 //
5867 // T*VQ& operator=(T*VQ&, T*);
5868 //
5869 // C++ [over.built]p21:
5870 //
5871 // For every pair (T, VQ), where T is a cv-qualified or
5872 // cv-unqualified object type and VQ is either volatile or
5873 // empty, there exist candidate operator functions of the form
5874 //
5875 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
5876 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
addAssignmentPointerOverloads(bool isEqualOp)5877 void addAssignmentPointerOverloads(bool isEqualOp) {
5878 /// Set of (canonical) types that we've already handled.
5879 llvm::SmallPtrSet<QualType, 8> AddedTypes;
5880
5881 for (BuiltinCandidateTypeSet::iterator
5882 Ptr = CandidateTypes[0].pointer_begin(),
5883 PtrEnd = CandidateTypes[0].pointer_end();
5884 Ptr != PtrEnd; ++Ptr) {
5885 // If this is operator=, keep track of the builtin candidates we added.
5886 if (isEqualOp)
5887 AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
5888 else if (!(*Ptr)->getPointeeType()->isObjectType())
5889 continue;
5890
5891 // non-volatile version
5892 QualType ParamTypes[2] = {
5893 S.Context.getLValueReferenceType(*Ptr),
5894 isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
5895 };
5896 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5897 /*IsAssigmentOperator=*/ isEqualOp);
5898
5899 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5900 VisibleTypeConversionsQuals.hasVolatile()) {
5901 // volatile version
5902 ParamTypes[0] =
5903 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
5904 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5905 /*IsAssigmentOperator=*/isEqualOp);
5906 }
5907 }
5908
5909 if (isEqualOp) {
5910 for (BuiltinCandidateTypeSet::iterator
5911 Ptr = CandidateTypes[1].pointer_begin(),
5912 PtrEnd = CandidateTypes[1].pointer_end();
5913 Ptr != PtrEnd; ++Ptr) {
5914 // Make sure we don't add the same candidate twice.
5915 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5916 continue;
5917
5918 QualType ParamTypes[2] = {
5919 S.Context.getLValueReferenceType(*Ptr),
5920 *Ptr,
5921 };
5922
5923 // non-volatile version
5924 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5925 /*IsAssigmentOperator=*/true);
5926
5927 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5928 VisibleTypeConversionsQuals.hasVolatile()) {
5929 // volatile version
5930 ParamTypes[0] =
5931 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
5932 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5933 CandidateSet, /*IsAssigmentOperator=*/true);
5934 }
5935 }
5936 }
5937 }
5938
5939 // C++ [over.built]p18:
5940 //
5941 // For every triple (L, VQ, R), where L is an arithmetic type,
5942 // VQ is either volatile or empty, and R is a promoted
5943 // arithmetic type, there exist candidate operator functions of
5944 // the form
5945 //
5946 // VQ L& operator=(VQ L&, R);
5947 // VQ L& operator*=(VQ L&, R);
5948 // VQ L& operator/=(VQ L&, R);
5949 // VQ L& operator+=(VQ L&, R);
5950 // VQ L& operator-=(VQ L&, R);
addAssignmentArithmeticOverloads(bool isEqualOp)5951 void addAssignmentArithmeticOverloads(bool isEqualOp) {
5952 if (!HasArithmeticOrEnumeralCandidateType)
5953 return;
5954
5955 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
5956 for (unsigned Right = FirstPromotedArithmeticType;
5957 Right < LastPromotedArithmeticType; ++Right) {
5958 QualType ParamTypes[2];
5959 ParamTypes[1] = getArithmeticType(Right);
5960
5961 // Add this built-in operator as a candidate (VQ is empty).
5962 ParamTypes[0] =
5963 S.Context.getLValueReferenceType(getArithmeticType(Left));
5964 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5965 /*IsAssigmentOperator=*/isEqualOp);
5966
5967 // Add this built-in operator as a candidate (VQ is 'volatile').
5968 if (VisibleTypeConversionsQuals.hasVolatile()) {
5969 ParamTypes[0] =
5970 S.Context.getVolatileType(getArithmeticType(Left));
5971 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5972 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5973 CandidateSet,
5974 /*IsAssigmentOperator=*/isEqualOp);
5975 }
5976 }
5977 }
5978
5979 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
5980 for (BuiltinCandidateTypeSet::iterator
5981 Vec1 = CandidateTypes[0].vector_begin(),
5982 Vec1End = CandidateTypes[0].vector_end();
5983 Vec1 != Vec1End; ++Vec1) {
5984 for (BuiltinCandidateTypeSet::iterator
5985 Vec2 = CandidateTypes[1].vector_begin(),
5986 Vec2End = CandidateTypes[1].vector_end();
5987 Vec2 != Vec2End; ++Vec2) {
5988 QualType ParamTypes[2];
5989 ParamTypes[1] = *Vec2;
5990 // Add this built-in operator as a candidate (VQ is empty).
5991 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
5992 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5993 /*IsAssigmentOperator=*/isEqualOp);
5994
5995 // Add this built-in operator as a candidate (VQ is 'volatile').
5996 if (VisibleTypeConversionsQuals.hasVolatile()) {
5997 ParamTypes[0] = S.Context.getVolatileType(*Vec1);
5998 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5999 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6000 CandidateSet,
6001 /*IsAssigmentOperator=*/isEqualOp);
6002 }
6003 }
6004 }
6005 }
6006
6007 // C++ [over.built]p22:
6008 //
6009 // For every triple (L, VQ, R), where L is an integral type, VQ
6010 // is either volatile or empty, and R is a promoted integral
6011 // type, there exist candidate operator functions of the form
6012 //
6013 // VQ L& operator%=(VQ L&, R);
6014 // VQ L& operator<<=(VQ L&, R);
6015 // VQ L& operator>>=(VQ L&, R);
6016 // VQ L& operator&=(VQ L&, R);
6017 // VQ L& operator^=(VQ L&, R);
6018 // VQ L& operator|=(VQ L&, R);
addAssignmentIntegralOverloads()6019 void addAssignmentIntegralOverloads() {
6020 if (!HasArithmeticOrEnumeralCandidateType)
6021 return;
6022
6023 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
6024 for (unsigned Right = FirstPromotedIntegralType;
6025 Right < LastPromotedIntegralType; ++Right) {
6026 QualType ParamTypes[2];
6027 ParamTypes[1] = getArithmeticType(Right);
6028
6029 // Add this built-in operator as a candidate (VQ is empty).
6030 ParamTypes[0] =
6031 S.Context.getLValueReferenceType(getArithmeticType(Left));
6032 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
6033 if (VisibleTypeConversionsQuals.hasVolatile()) {
6034 // Add this built-in operator as a candidate (VQ is 'volatile').
6035 ParamTypes[0] = getArithmeticType(Left);
6036 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
6037 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
6038 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6039 CandidateSet);
6040 }
6041 }
6042 }
6043 }
6044
6045 // C++ [over.operator]p23:
6046 //
6047 // There also exist candidate operator functions of the form
6048 //
6049 // bool operator!(bool);
6050 // bool operator&&(bool, bool);
6051 // bool operator||(bool, bool);
addExclaimOverload()6052 void addExclaimOverload() {
6053 QualType ParamTy = S.Context.BoolTy;
6054 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
6055 /*IsAssignmentOperator=*/false,
6056 /*NumContextualBoolArguments=*/1);
6057 }
addAmpAmpOrPipePipeOverload()6058 void addAmpAmpOrPipePipeOverload() {
6059 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
6060 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
6061 /*IsAssignmentOperator=*/false,
6062 /*NumContextualBoolArguments=*/2);
6063 }
6064
6065 // C++ [over.built]p13:
6066 //
6067 // For every cv-qualified or cv-unqualified object type T there
6068 // exist candidate operator functions of the form
6069 //
6070 // T* operator+(T*, ptrdiff_t); [ABOVE]
6071 // T& operator[](T*, ptrdiff_t);
6072 // T* operator-(T*, ptrdiff_t); [ABOVE]
6073 // T* operator+(ptrdiff_t, T*); [ABOVE]
6074 // T& operator[](ptrdiff_t, T*);
addSubscriptOverloads()6075 void addSubscriptOverloads() {
6076 for (BuiltinCandidateTypeSet::iterator
6077 Ptr = CandidateTypes[0].pointer_begin(),
6078 PtrEnd = CandidateTypes[0].pointer_end();
6079 Ptr != PtrEnd; ++Ptr) {
6080 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
6081 QualType PointeeType = (*Ptr)->getPointeeType();
6082 if (!PointeeType->isObjectType())
6083 continue;
6084
6085 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
6086
6087 // T& operator[](T*, ptrdiff_t)
6088 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
6089 }
6090
6091 for (BuiltinCandidateTypeSet::iterator
6092 Ptr = CandidateTypes[1].pointer_begin(),
6093 PtrEnd = CandidateTypes[1].pointer_end();
6094 Ptr != PtrEnd; ++Ptr) {
6095 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
6096 QualType PointeeType = (*Ptr)->getPointeeType();
6097 if (!PointeeType->isObjectType())
6098 continue;
6099
6100 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
6101
6102 // T& operator[](ptrdiff_t, T*)
6103 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
6104 }
6105 }
6106
6107 // C++ [over.built]p11:
6108 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
6109 // C1 is the same type as C2 or is a derived class of C2, T is an object
6110 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
6111 // there exist candidate operator functions of the form
6112 //
6113 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
6114 //
6115 // where CV12 is the union of CV1 and CV2.
addArrowStarOverloads()6116 void addArrowStarOverloads() {
6117 for (BuiltinCandidateTypeSet::iterator
6118 Ptr = CandidateTypes[0].pointer_begin(),
6119 PtrEnd = CandidateTypes[0].pointer_end();
6120 Ptr != PtrEnd; ++Ptr) {
6121 QualType C1Ty = (*Ptr);
6122 QualType C1;
6123 QualifierCollector Q1;
6124 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
6125 if (!isa<RecordType>(C1))
6126 continue;
6127 // heuristic to reduce number of builtin candidates in the set.
6128 // Add volatile/restrict version only if there are conversions to a
6129 // volatile/restrict type.
6130 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
6131 continue;
6132 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
6133 continue;
6134 for (BuiltinCandidateTypeSet::iterator
6135 MemPtr = CandidateTypes[1].member_pointer_begin(),
6136 MemPtrEnd = CandidateTypes[1].member_pointer_end();
6137 MemPtr != MemPtrEnd; ++MemPtr) {
6138 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
6139 QualType C2 = QualType(mptr->getClass(), 0);
6140 C2 = C2.getUnqualifiedType();
6141 if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
6142 break;
6143 QualType ParamTypes[2] = { *Ptr, *MemPtr };
6144 // build CV12 T&
6145 QualType T = mptr->getPointeeType();
6146 if (!VisibleTypeConversionsQuals.hasVolatile() &&
6147 T.isVolatileQualified())
6148 continue;
6149 if (!VisibleTypeConversionsQuals.hasRestrict() &&
6150 T.isRestrictQualified())
6151 continue;
6152 T = Q1.apply(S.Context, T);
6153 QualType ResultTy = S.Context.getLValueReferenceType(T);
6154 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
6155 }
6156 }
6157 }
6158
6159 // Note that we don't consider the first argument, since it has been
6160 // contextually converted to bool long ago. The candidates below are
6161 // therefore added as binary.
6162 //
6163 // C++ [over.built]p25:
6164 // For every type T, where T is a pointer, pointer-to-member, or scoped
6165 // enumeration type, there exist candidate operator functions of the form
6166 //
6167 // T operator?(bool, T, T);
6168 //
addConditionalOperatorOverloads()6169 void addConditionalOperatorOverloads() {
6170 /// Set of (canonical) types that we've already handled.
6171 llvm::SmallPtrSet<QualType, 8> AddedTypes;
6172
6173 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
6174 for (BuiltinCandidateTypeSet::iterator
6175 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
6176 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
6177 Ptr != PtrEnd; ++Ptr) {
6178 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6179 continue;
6180
6181 QualType ParamTypes[2] = { *Ptr, *Ptr };
6182 S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
6183 }
6184
6185 for (BuiltinCandidateTypeSet::iterator
6186 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6187 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6188 MemPtr != MemPtrEnd; ++MemPtr) {
6189 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6190 continue;
6191
6192 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
6193 S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
6194 }
6195
6196 if (S.getLangOptions().CPlusPlus0x) {
6197 for (BuiltinCandidateTypeSet::iterator
6198 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6199 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6200 Enum != EnumEnd; ++Enum) {
6201 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
6202 continue;
6203
6204 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
6205 continue;
6206
6207 QualType ParamTypes[2] = { *Enum, *Enum };
6208 S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
6209 }
6210 }
6211 }
6212 }
6213 };
6214
6215 } // end anonymous namespace
6216
6217 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
6218 /// operator overloads to the candidate set (C++ [over.built]), based
6219 /// on the operator @p Op and the arguments given. For example, if the
6220 /// operator is a binary '+', this routine might add "int
6221 /// operator+(int, int)" to cover integer addition.
6222 void
AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,SourceLocation OpLoc,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet)6223 Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
6224 SourceLocation OpLoc,
6225 Expr **Args, unsigned NumArgs,
6226 OverloadCandidateSet& CandidateSet) {
6227 // Find all of the types that the arguments can convert to, but only
6228 // if the operator we're looking at has built-in operator candidates
6229 // that make use of these types. Also record whether we encounter non-record
6230 // candidate types or either arithmetic or enumeral candidate types.
6231 Qualifiers VisibleTypeConversionsQuals;
6232 VisibleTypeConversionsQuals.addConst();
6233 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6234 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
6235
6236 bool HasNonRecordCandidateType = false;
6237 bool HasArithmeticOrEnumeralCandidateType = false;
6238 llvm::SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
6239 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6240 CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
6241 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
6242 OpLoc,
6243 true,
6244 (Op == OO_Exclaim ||
6245 Op == OO_AmpAmp ||
6246 Op == OO_PipePipe),
6247 VisibleTypeConversionsQuals);
6248 HasNonRecordCandidateType = HasNonRecordCandidateType ||
6249 CandidateTypes[ArgIdx].hasNonRecordTypes();
6250 HasArithmeticOrEnumeralCandidateType =
6251 HasArithmeticOrEnumeralCandidateType ||
6252 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
6253 }
6254
6255 // Exit early when no non-record types have been added to the candidate set
6256 // for any of the arguments to the operator.
6257 if (!HasNonRecordCandidateType)
6258 return;
6259
6260 // Setup an object to manage the common state for building overloads.
6261 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
6262 VisibleTypeConversionsQuals,
6263 HasArithmeticOrEnumeralCandidateType,
6264 CandidateTypes, CandidateSet);
6265
6266 // Dispatch over the operation to add in only those overloads which apply.
6267 switch (Op) {
6268 case OO_None:
6269 case NUM_OVERLOADED_OPERATORS:
6270 assert(false && "Expected an overloaded operator");
6271 break;
6272
6273 case OO_New:
6274 case OO_Delete:
6275 case OO_Array_New:
6276 case OO_Array_Delete:
6277 case OO_Call:
6278 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
6279 break;
6280
6281 case OO_Comma:
6282 case OO_Arrow:
6283 // C++ [over.match.oper]p3:
6284 // -- For the operator ',', the unary operator '&', or the
6285 // operator '->', the built-in candidates set is empty.
6286 break;
6287
6288 case OO_Plus: // '+' is either unary or binary
6289 if (NumArgs == 1)
6290 OpBuilder.addUnaryPlusPointerOverloads();
6291 // Fall through.
6292
6293 case OO_Minus: // '-' is either unary or binary
6294 if (NumArgs == 1) {
6295 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
6296 } else {
6297 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
6298 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6299 }
6300 break;
6301
6302 case OO_Star: // '*' is either unary or binary
6303 if (NumArgs == 1)
6304 OpBuilder.addUnaryStarPointerOverloads();
6305 else
6306 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6307 break;
6308
6309 case OO_Slash:
6310 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6311 break;
6312
6313 case OO_PlusPlus:
6314 case OO_MinusMinus:
6315 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
6316 OpBuilder.addPlusPlusMinusMinusPointerOverloads();
6317 break;
6318
6319 case OO_EqualEqual:
6320 case OO_ExclaimEqual:
6321 OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
6322 // Fall through.
6323
6324 case OO_Less:
6325 case OO_Greater:
6326 case OO_LessEqual:
6327 case OO_GreaterEqual:
6328 OpBuilder.addRelationalPointerOrEnumeralOverloads();
6329 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
6330 break;
6331
6332 case OO_Percent:
6333 case OO_Caret:
6334 case OO_Pipe:
6335 case OO_LessLess:
6336 case OO_GreaterGreater:
6337 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
6338 break;
6339
6340 case OO_Amp: // '&' is either unary or binary
6341 if (NumArgs == 1)
6342 // C++ [over.match.oper]p3:
6343 // -- For the operator ',', the unary operator '&', or the
6344 // operator '->', the built-in candidates set is empty.
6345 break;
6346
6347 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
6348 break;
6349
6350 case OO_Tilde:
6351 OpBuilder.addUnaryTildePromotedIntegralOverloads();
6352 break;
6353
6354 case OO_Equal:
6355 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
6356 // Fall through.
6357
6358 case OO_PlusEqual:
6359 case OO_MinusEqual:
6360 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
6361 // Fall through.
6362
6363 case OO_StarEqual:
6364 case OO_SlashEqual:
6365 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
6366 break;
6367
6368 case OO_PercentEqual:
6369 case OO_LessLessEqual:
6370 case OO_GreaterGreaterEqual:
6371 case OO_AmpEqual:
6372 case OO_CaretEqual:
6373 case OO_PipeEqual:
6374 OpBuilder.addAssignmentIntegralOverloads();
6375 break;
6376
6377 case OO_Exclaim:
6378 OpBuilder.addExclaimOverload();
6379 break;
6380
6381 case OO_AmpAmp:
6382 case OO_PipePipe:
6383 OpBuilder.addAmpAmpOrPipePipeOverload();
6384 break;
6385
6386 case OO_Subscript:
6387 OpBuilder.addSubscriptOverloads();
6388 break;
6389
6390 case OO_ArrowStar:
6391 OpBuilder.addArrowStarOverloads();
6392 break;
6393
6394 case OO_Conditional:
6395 OpBuilder.addConditionalOperatorOverloads();
6396 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6397 break;
6398 }
6399 }
6400
6401 /// \brief Add function candidates found via argument-dependent lookup
6402 /// to the set of overloading candidates.
6403 ///
6404 /// This routine performs argument-dependent name lookup based on the
6405 /// given function name (which may also be an operator name) and adds
6406 /// all of the overload candidates found by ADL to the overload
6407 /// candidate set (C++ [basic.lookup.argdep]).
6408 void
AddArgumentDependentLookupCandidates(DeclarationName Name,bool Operator,Expr ** Args,unsigned NumArgs,TemplateArgumentListInfo * ExplicitTemplateArgs,OverloadCandidateSet & CandidateSet,bool PartialOverloading,bool StdNamespaceIsAssociated)6409 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
6410 bool Operator,
6411 Expr **Args, unsigned NumArgs,
6412 TemplateArgumentListInfo *ExplicitTemplateArgs,
6413 OverloadCandidateSet& CandidateSet,
6414 bool PartialOverloading,
6415 bool StdNamespaceIsAssociated) {
6416 ADLResult Fns;
6417
6418 // FIXME: This approach for uniquing ADL results (and removing
6419 // redundant candidates from the set) relies on pointer-equality,
6420 // which means we need to key off the canonical decl. However,
6421 // always going back to the canonical decl might not get us the
6422 // right set of default arguments. What default arguments are
6423 // we supposed to consider on ADL candidates, anyway?
6424
6425 // FIXME: Pass in the explicit template arguments?
6426 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns,
6427 StdNamespaceIsAssociated);
6428
6429 // Erase all of the candidates we already knew about.
6430 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
6431 CandEnd = CandidateSet.end();
6432 Cand != CandEnd; ++Cand)
6433 if (Cand->Function) {
6434 Fns.erase(Cand->Function);
6435 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
6436 Fns.erase(FunTmpl);
6437 }
6438
6439 // For each of the ADL candidates we found, add it to the overload
6440 // set.
6441 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
6442 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
6443 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
6444 if (ExplicitTemplateArgs)
6445 continue;
6446
6447 AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
6448 false, PartialOverloading);
6449 } else
6450 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
6451 FoundDecl, ExplicitTemplateArgs,
6452 Args, NumArgs, CandidateSet);
6453 }
6454 }
6455
6456 /// isBetterOverloadCandidate - Determines whether the first overload
6457 /// candidate is a better candidate than the second (C++ 13.3.3p1).
6458 bool
isBetterOverloadCandidate(Sema & S,const OverloadCandidate & Cand1,const OverloadCandidate & Cand2,SourceLocation Loc,bool UserDefinedConversion)6459 isBetterOverloadCandidate(Sema &S,
6460 const OverloadCandidate &Cand1,
6461 const OverloadCandidate &Cand2,
6462 SourceLocation Loc,
6463 bool UserDefinedConversion) {
6464 // Define viable functions to be better candidates than non-viable
6465 // functions.
6466 if (!Cand2.Viable)
6467 return Cand1.Viable;
6468 else if (!Cand1.Viable)
6469 return false;
6470
6471 // C++ [over.match.best]p1:
6472 //
6473 // -- if F is a static member function, ICS1(F) is defined such
6474 // that ICS1(F) is neither better nor worse than ICS1(G) for
6475 // any function G, and, symmetrically, ICS1(G) is neither
6476 // better nor worse than ICS1(F).
6477 unsigned StartArg = 0;
6478 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
6479 StartArg = 1;
6480
6481 // C++ [over.match.best]p1:
6482 // A viable function F1 is defined to be a better function than another
6483 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
6484 // conversion sequence than ICSi(F2), and then...
6485 unsigned NumArgs = Cand1.Conversions.size();
6486 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
6487 bool HasBetterConversion = false;
6488 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
6489 switch (CompareImplicitConversionSequences(S,
6490 Cand1.Conversions[ArgIdx],
6491 Cand2.Conversions[ArgIdx])) {
6492 case ImplicitConversionSequence::Better:
6493 // Cand1 has a better conversion sequence.
6494 HasBetterConversion = true;
6495 break;
6496
6497 case ImplicitConversionSequence::Worse:
6498 // Cand1 can't be better than Cand2.
6499 return false;
6500
6501 case ImplicitConversionSequence::Indistinguishable:
6502 // Do nothing.
6503 break;
6504 }
6505 }
6506
6507 // -- for some argument j, ICSj(F1) is a better conversion sequence than
6508 // ICSj(F2), or, if not that,
6509 if (HasBetterConversion)
6510 return true;
6511
6512 // - F1 is a non-template function and F2 is a function template
6513 // specialization, or, if not that,
6514 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
6515 Cand2.Function && Cand2.Function->getPrimaryTemplate())
6516 return true;
6517
6518 // -- F1 and F2 are function template specializations, and the function
6519 // template for F1 is more specialized than the template for F2
6520 // according to the partial ordering rules described in 14.5.5.2, or,
6521 // if not that,
6522 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
6523 Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
6524 if (FunctionTemplateDecl *BetterTemplate
6525 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
6526 Cand2.Function->getPrimaryTemplate(),
6527 Loc,
6528 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
6529 : TPOC_Call,
6530 Cand1.ExplicitCallArguments))
6531 return BetterTemplate == Cand1.Function->getPrimaryTemplate();
6532 }
6533
6534 // -- the context is an initialization by user-defined conversion
6535 // (see 8.5, 13.3.1.5) and the standard conversion sequence
6536 // from the return type of F1 to the destination type (i.e.,
6537 // the type of the entity being initialized) is a better
6538 // conversion sequence than the standard conversion sequence
6539 // from the return type of F2 to the destination type.
6540 if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
6541 isa<CXXConversionDecl>(Cand1.Function) &&
6542 isa<CXXConversionDecl>(Cand2.Function)) {
6543 switch (CompareStandardConversionSequences(S,
6544 Cand1.FinalConversion,
6545 Cand2.FinalConversion)) {
6546 case ImplicitConversionSequence::Better:
6547 // Cand1 has a better conversion sequence.
6548 return true;
6549
6550 case ImplicitConversionSequence::Worse:
6551 // Cand1 can't be better than Cand2.
6552 return false;
6553
6554 case ImplicitConversionSequence::Indistinguishable:
6555 // Do nothing
6556 break;
6557 }
6558 }
6559
6560 return false;
6561 }
6562
6563 /// \brief Computes the best viable function (C++ 13.3.3)
6564 /// within an overload candidate set.
6565 ///
6566 /// \param CandidateSet the set of candidate functions.
6567 ///
6568 /// \param Loc the location of the function name (or operator symbol) for
6569 /// which overload resolution occurs.
6570 ///
6571 /// \param Best f overload resolution was successful or found a deleted
6572 /// function, Best points to the candidate function found.
6573 ///
6574 /// \returns The result of overload resolution.
6575 OverloadingResult
BestViableFunction(Sema & S,SourceLocation Loc,iterator & Best,bool UserDefinedConversion)6576 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
6577 iterator &Best,
6578 bool UserDefinedConversion) {
6579 // Find the best viable function.
6580 Best = end();
6581 for (iterator Cand = begin(); Cand != end(); ++Cand) {
6582 if (Cand->Viable)
6583 if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
6584 UserDefinedConversion))
6585 Best = Cand;
6586 }
6587
6588 // If we didn't find any viable functions, abort.
6589 if (Best == end())
6590 return OR_No_Viable_Function;
6591
6592 // Make sure that this function is better than every other viable
6593 // function. If not, we have an ambiguity.
6594 for (iterator Cand = begin(); Cand != end(); ++Cand) {
6595 if (Cand->Viable &&
6596 Cand != Best &&
6597 !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
6598 UserDefinedConversion)) {
6599 Best = end();
6600 return OR_Ambiguous;
6601 }
6602 }
6603
6604 // Best is the best viable function.
6605 if (Best->Function &&
6606 (Best->Function->isDeleted() ||
6607 S.isFunctionConsideredUnavailable(Best->Function)))
6608 return OR_Deleted;
6609
6610 return OR_Success;
6611 }
6612
6613 namespace {
6614
6615 enum OverloadCandidateKind {
6616 oc_function,
6617 oc_method,
6618 oc_constructor,
6619 oc_function_template,
6620 oc_method_template,
6621 oc_constructor_template,
6622 oc_implicit_default_constructor,
6623 oc_implicit_copy_constructor,
6624 oc_implicit_move_constructor,
6625 oc_implicit_copy_assignment,
6626 oc_implicit_move_assignment,
6627 oc_implicit_inherited_constructor
6628 };
6629
ClassifyOverloadCandidate(Sema & S,FunctionDecl * Fn,std::string & Description)6630 OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
6631 FunctionDecl *Fn,
6632 std::string &Description) {
6633 bool isTemplate = false;
6634
6635 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
6636 isTemplate = true;
6637 Description = S.getTemplateArgumentBindingsText(
6638 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
6639 }
6640
6641 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
6642 if (!Ctor->isImplicit())
6643 return isTemplate ? oc_constructor_template : oc_constructor;
6644
6645 if (Ctor->getInheritedConstructor())
6646 return oc_implicit_inherited_constructor;
6647
6648 if (Ctor->isDefaultConstructor())
6649 return oc_implicit_default_constructor;
6650
6651 if (Ctor->isMoveConstructor())
6652 return oc_implicit_move_constructor;
6653
6654 assert(Ctor->isCopyConstructor() &&
6655 "unexpected sort of implicit constructor");
6656 return oc_implicit_copy_constructor;
6657 }
6658
6659 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
6660 // This actually gets spelled 'candidate function' for now, but
6661 // it doesn't hurt to split it out.
6662 if (!Meth->isImplicit())
6663 return isTemplate ? oc_method_template : oc_method;
6664
6665 if (Meth->isMoveAssignmentOperator())
6666 return oc_implicit_move_assignment;
6667
6668 assert(Meth->isCopyAssignmentOperator()
6669 && "implicit method is not copy assignment operator?");
6670 return oc_implicit_copy_assignment;
6671 }
6672
6673 return isTemplate ? oc_function_template : oc_function;
6674 }
6675
MaybeEmitInheritedConstructorNote(Sema & S,FunctionDecl * Fn)6676 void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
6677 const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
6678 if (!Ctor) return;
6679
6680 Ctor = Ctor->getInheritedConstructor();
6681 if (!Ctor) return;
6682
6683 S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
6684 }
6685
6686 } // end anonymous namespace
6687
6688 // Notes the location of an overload candidate.
NoteOverloadCandidate(FunctionDecl * Fn)6689 void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
6690 std::string FnDesc;
6691 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
6692 Diag(Fn->getLocation(), diag::note_ovl_candidate)
6693 << (unsigned) K << FnDesc;
6694 MaybeEmitInheritedConstructorNote(*this, Fn);
6695 }
6696
6697 //Notes the location of all overload candidates designated through
6698 // OverloadedExpr
NoteAllOverloadCandidates(Expr * OverloadedExpr)6699 void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr) {
6700 assert(OverloadedExpr->getType() == Context.OverloadTy);
6701
6702 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
6703 OverloadExpr *OvlExpr = Ovl.Expression;
6704
6705 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6706 IEnd = OvlExpr->decls_end();
6707 I != IEnd; ++I) {
6708 if (FunctionTemplateDecl *FunTmpl =
6709 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
6710 NoteOverloadCandidate(FunTmpl->getTemplatedDecl());
6711 } else if (FunctionDecl *Fun
6712 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
6713 NoteOverloadCandidate(Fun);
6714 }
6715 }
6716 }
6717
6718 /// Diagnoses an ambiguous conversion. The partial diagnostic is the
6719 /// "lead" diagnostic; it will be given two arguments, the source and
6720 /// target types of the conversion.
DiagnoseAmbiguousConversion(Sema & S,SourceLocation CaretLoc,const PartialDiagnostic & PDiag) const6721 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
6722 Sema &S,
6723 SourceLocation CaretLoc,
6724 const PartialDiagnostic &PDiag) const {
6725 S.Diag(CaretLoc, PDiag)
6726 << Ambiguous.getFromType() << Ambiguous.getToType();
6727 for (AmbiguousConversionSequence::const_iterator
6728 I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
6729 S.NoteOverloadCandidate(*I);
6730 }
6731 }
6732
6733 namespace {
6734
6735 /// Try to find a fix for the bad conversion. Populate the ConvFix structure
6736 /// on success. Produces the hints for the following cases:
6737 /// - The user forgot to apply * or & operator to one or more arguments.
TryToFixBadConversion(Sema & S,const ImplicitConversionSequence & Conv,OverloadCandidate::FixInfo & ConvFix)6738 static bool TryToFixBadConversion(Sema &S,
6739 const ImplicitConversionSequence &Conv,
6740 OverloadCandidate::FixInfo &ConvFix) {
6741 assert(Conv.isBad() && "Only try to fix a bad conversion.");
6742
6743 const Expr *Arg = Conv.Bad.FromExpr;
6744 if (!Arg)
6745 return false;
6746
6747 // The conversion is from argument type to parameter type.
6748 const CanQualType FromQTy = S.Context.getCanonicalType(Conv.Bad
6749 .getFromType());
6750 const CanQualType ToQTy = S.Context.getCanonicalType(Conv.Bad.getToType());
6751 const SourceLocation Begin = Arg->getSourceRange().getBegin();
6752 const SourceLocation End = S.PP.getLocForEndOfToken(Arg->getSourceRange()
6753 .getEnd());
6754 bool NeedParen = true;
6755 if (isa<ParenExpr>(Arg) || isa<DeclRefExpr>(Arg))
6756 NeedParen = false;
6757
6758 // Check if the argument needs to be dereferenced
6759 // (type * -> type) or (type * -> type &).
6760 if (const PointerType *FromPtrTy = dyn_cast<PointerType>(FromQTy)) {
6761 // Try to construct an implicit conversion from argument type to the
6762 // parameter type.
6763 OpaqueValueExpr TmpExpr(Arg->getExprLoc(), FromPtrTy->getPointeeType(),
6764 VK_LValue);
6765 ImplicitConversionSequence ICS =
6766 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
6767
6768 if (!ICS.isBad()) {
6769 // Do not suggest dereferencing a Null pointer.
6770 if (Arg->IgnoreParenCasts()->
6771 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
6772 return false;
6773
6774 if (NeedParen) {
6775 ConvFix.Hints.push_back(FixItHint::CreateInsertion(Begin, "*("));
6776 ConvFix.Hints.push_back(FixItHint::CreateInsertion(End, ")"));
6777 } else {
6778 ConvFix.Hints.push_back(FixItHint::CreateInsertion(Begin, "*"));
6779 }
6780 ConvFix.NumConversionsFixed++;
6781 if (ConvFix.NumConversionsFixed == 1)
6782 ConvFix.Kind = OFIK_Dereference;
6783 return true;
6784 }
6785 }
6786
6787 // Check if the pointer to the argument needs to be passed
6788 // (type -> type *) or (type & -> type *).
6789 if (isa<PointerType>(ToQTy)) {
6790 // Only suggest taking address of L-values.
6791 if (!Arg->isLValue())
6792 return false;
6793
6794 OpaqueValueExpr TmpExpr(Arg->getExprLoc(),
6795 S.Context.getPointerType(FromQTy), VK_RValue);
6796 ImplicitConversionSequence ICS =
6797 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
6798 if (!ICS.isBad()) {
6799 if (NeedParen) {
6800 ConvFix.Hints.push_back(FixItHint::CreateInsertion(Begin, "&("));
6801 ConvFix.Hints.push_back(FixItHint::CreateInsertion(End, ")"));
6802 } else {
6803 ConvFix.Hints.push_back(FixItHint::CreateInsertion(Begin, "&"));
6804 }
6805 ConvFix.NumConversionsFixed++;
6806 if (ConvFix.NumConversionsFixed == 1)
6807 ConvFix.Kind = OFIK_TakeAddress;
6808 return true;
6809 }
6810 }
6811 return false;
6812 }
6813
DiagnoseBadConversion(Sema & S,OverloadCandidate * Cand,unsigned I)6814 void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
6815 const ImplicitConversionSequence &Conv = Cand->Conversions[I];
6816 assert(Conv.isBad());
6817 assert(Cand->Function && "for now, candidate must be a function");
6818 FunctionDecl *Fn = Cand->Function;
6819
6820 // There's a conversion slot for the object argument if this is a
6821 // non-constructor method. Note that 'I' corresponds the
6822 // conversion-slot index.
6823 bool isObjectArgument = false;
6824 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
6825 if (I == 0)
6826 isObjectArgument = true;
6827 else
6828 I--;
6829 }
6830
6831 std::string FnDesc;
6832 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
6833
6834 Expr *FromExpr = Conv.Bad.FromExpr;
6835 QualType FromTy = Conv.Bad.getFromType();
6836 QualType ToTy = Conv.Bad.getToType();
6837
6838 if (FromTy == S.Context.OverloadTy) {
6839 assert(FromExpr && "overload set argument came from implicit argument?");
6840 Expr *E = FromExpr->IgnoreParens();
6841 if (isa<UnaryOperator>(E))
6842 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
6843 DeclarationName Name = cast<OverloadExpr>(E)->getName();
6844
6845 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
6846 << (unsigned) FnKind << FnDesc
6847 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6848 << ToTy << Name << I+1;
6849 MaybeEmitInheritedConstructorNote(S, Fn);
6850 return;
6851 }
6852
6853 // Do some hand-waving analysis to see if the non-viability is due
6854 // to a qualifier mismatch.
6855 CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
6856 CanQualType CToTy = S.Context.getCanonicalType(ToTy);
6857 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
6858 CToTy = RT->getPointeeType();
6859 else {
6860 // TODO: detect and diagnose the full richness of const mismatches.
6861 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
6862 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
6863 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
6864 }
6865
6866 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
6867 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
6868 // It is dumb that we have to do this here.
6869 while (isa<ArrayType>(CFromTy))
6870 CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
6871 while (isa<ArrayType>(CToTy))
6872 CToTy = CFromTy->getAs<ArrayType>()->getElementType();
6873
6874 Qualifiers FromQs = CFromTy.getQualifiers();
6875 Qualifiers ToQs = CToTy.getQualifiers();
6876
6877 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
6878 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
6879 << (unsigned) FnKind << FnDesc
6880 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6881 << FromTy
6882 << FromQs.getAddressSpace() << ToQs.getAddressSpace()
6883 << (unsigned) isObjectArgument << I+1;
6884 MaybeEmitInheritedConstructorNote(S, Fn);
6885 return;
6886 }
6887
6888 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
6889 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
6890 << (unsigned) FnKind << FnDesc
6891 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6892 << FromTy
6893 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
6894 << (unsigned) isObjectArgument << I+1;
6895 MaybeEmitInheritedConstructorNote(S, Fn);
6896 return;
6897 }
6898
6899 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
6900 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
6901 << (unsigned) FnKind << FnDesc
6902 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6903 << FromTy
6904 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
6905 << (unsigned) isObjectArgument << I+1;
6906 MaybeEmitInheritedConstructorNote(S, Fn);
6907 return;
6908 }
6909
6910 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
6911 assert(CVR && "unexpected qualifiers mismatch");
6912
6913 if (isObjectArgument) {
6914 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
6915 << (unsigned) FnKind << FnDesc
6916 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6917 << FromTy << (CVR - 1);
6918 } else {
6919 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
6920 << (unsigned) FnKind << FnDesc
6921 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6922 << FromTy << (CVR - 1) << I+1;
6923 }
6924 MaybeEmitInheritedConstructorNote(S, Fn);
6925 return;
6926 }
6927
6928 // Diagnose references or pointers to incomplete types differently,
6929 // since it's far from impossible that the incompleteness triggered
6930 // the failure.
6931 QualType TempFromTy = FromTy.getNonReferenceType();
6932 if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
6933 TempFromTy = PTy->getPointeeType();
6934 if (TempFromTy->isIncompleteType()) {
6935 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
6936 << (unsigned) FnKind << FnDesc
6937 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6938 << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
6939 MaybeEmitInheritedConstructorNote(S, Fn);
6940 return;
6941 }
6942
6943 // Diagnose base -> derived pointer conversions.
6944 unsigned BaseToDerivedConversion = 0;
6945 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
6946 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
6947 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
6948 FromPtrTy->getPointeeType()) &&
6949 !FromPtrTy->getPointeeType()->isIncompleteType() &&
6950 !ToPtrTy->getPointeeType()->isIncompleteType() &&
6951 S.IsDerivedFrom(ToPtrTy->getPointeeType(),
6952 FromPtrTy->getPointeeType()))
6953 BaseToDerivedConversion = 1;
6954 }
6955 } else if (const ObjCObjectPointerType *FromPtrTy
6956 = FromTy->getAs<ObjCObjectPointerType>()) {
6957 if (const ObjCObjectPointerType *ToPtrTy
6958 = ToTy->getAs<ObjCObjectPointerType>())
6959 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
6960 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
6961 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
6962 FromPtrTy->getPointeeType()) &&
6963 FromIface->isSuperClassOf(ToIface))
6964 BaseToDerivedConversion = 2;
6965 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
6966 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
6967 !FromTy->isIncompleteType() &&
6968 !ToRefTy->getPointeeType()->isIncompleteType() &&
6969 S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
6970 BaseToDerivedConversion = 3;
6971 }
6972
6973 if (BaseToDerivedConversion) {
6974 S.Diag(Fn->getLocation(),
6975 diag::note_ovl_candidate_bad_base_to_derived_conv)
6976 << (unsigned) FnKind << FnDesc
6977 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6978 << (BaseToDerivedConversion - 1)
6979 << FromTy << ToTy << I+1;
6980 MaybeEmitInheritedConstructorNote(S, Fn);
6981 return;
6982 }
6983
6984 // TODO: specialize more based on the kind of mismatch
6985
6986 // Emit the generic diagnostic and, optionally, add the hints to it.
6987 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
6988 FDiag << (unsigned) FnKind << FnDesc
6989 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6990 << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
6991 << (unsigned) (Cand->Fix.Kind);
6992
6993 // If we can fix the conversion, suggest the FixIts.
6994 for (llvm::SmallVector<FixItHint, 4>::iterator
6995 HI = Cand->Fix.Hints.begin(), HE = Cand->Fix.Hints.end();
6996 HI != HE; ++HI)
6997 FDiag << *HI;
6998 S.Diag(Fn->getLocation(), FDiag);
6999
7000 MaybeEmitInheritedConstructorNote(S, Fn);
7001 }
7002
DiagnoseArityMismatch(Sema & S,OverloadCandidate * Cand,unsigned NumFormalArgs)7003 void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
7004 unsigned NumFormalArgs) {
7005 // TODO: treat calls to a missing default constructor as a special case
7006
7007 FunctionDecl *Fn = Cand->Function;
7008 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
7009
7010 unsigned MinParams = Fn->getMinRequiredArguments();
7011
7012 // With invalid overloaded operators, it's possible that we think we
7013 // have an arity mismatch when it fact it looks like we have the
7014 // right number of arguments, because only overloaded operators have
7015 // the weird behavior of overloading member and non-member functions.
7016 // Just don't report anything.
7017 if (Fn->isInvalidDecl() &&
7018 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
7019 return;
7020
7021 // at least / at most / exactly
7022 unsigned mode, modeCount;
7023 if (NumFormalArgs < MinParams) {
7024 assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
7025 (Cand->FailureKind == ovl_fail_bad_deduction &&
7026 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
7027 if (MinParams != FnTy->getNumArgs() ||
7028 FnTy->isVariadic() || FnTy->isTemplateVariadic())
7029 mode = 0; // "at least"
7030 else
7031 mode = 2; // "exactly"
7032 modeCount = MinParams;
7033 } else {
7034 assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
7035 (Cand->FailureKind == ovl_fail_bad_deduction &&
7036 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
7037 if (MinParams != FnTy->getNumArgs())
7038 mode = 1; // "at most"
7039 else
7040 mode = 2; // "exactly"
7041 modeCount = FnTy->getNumArgs();
7042 }
7043
7044 std::string Description;
7045 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
7046
7047 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
7048 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
7049 << modeCount << NumFormalArgs;
7050 MaybeEmitInheritedConstructorNote(S, Fn);
7051 }
7052
7053 /// Diagnose a failed template-argument deduction.
DiagnoseBadDeduction(Sema & S,OverloadCandidate * Cand,Expr ** Args,unsigned NumArgs)7054 void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
7055 Expr **Args, unsigned NumArgs) {
7056 FunctionDecl *Fn = Cand->Function; // pattern
7057
7058 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
7059 NamedDecl *ParamD;
7060 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
7061 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
7062 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
7063 switch (Cand->DeductionFailure.Result) {
7064 case Sema::TDK_Success:
7065 llvm_unreachable("TDK_success while diagnosing bad deduction");
7066
7067 case Sema::TDK_Incomplete: {
7068 assert(ParamD && "no parameter found for incomplete deduction result");
7069 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
7070 << ParamD->getDeclName();
7071 MaybeEmitInheritedConstructorNote(S, Fn);
7072 return;
7073 }
7074
7075 case Sema::TDK_Underqualified: {
7076 assert(ParamD && "no parameter found for bad qualifiers deduction result");
7077 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
7078
7079 QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
7080
7081 // Param will have been canonicalized, but it should just be a
7082 // qualified version of ParamD, so move the qualifiers to that.
7083 QualifierCollector Qs;
7084 Qs.strip(Param);
7085 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
7086 assert(S.Context.hasSameType(Param, NonCanonParam));
7087
7088 // Arg has also been canonicalized, but there's nothing we can do
7089 // about that. It also doesn't matter as much, because it won't
7090 // have any template parameters in it (because deduction isn't
7091 // done on dependent types).
7092 QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
7093
7094 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
7095 << ParamD->getDeclName() << Arg << NonCanonParam;
7096 MaybeEmitInheritedConstructorNote(S, Fn);
7097 return;
7098 }
7099
7100 case Sema::TDK_Inconsistent: {
7101 assert(ParamD && "no parameter found for inconsistent deduction result");
7102 int which = 0;
7103 if (isa<TemplateTypeParmDecl>(ParamD))
7104 which = 0;
7105 else if (isa<NonTypeTemplateParmDecl>(ParamD))
7106 which = 1;
7107 else {
7108 which = 2;
7109 }
7110
7111 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
7112 << which << ParamD->getDeclName()
7113 << *Cand->DeductionFailure.getFirstArg()
7114 << *Cand->DeductionFailure.getSecondArg();
7115 MaybeEmitInheritedConstructorNote(S, Fn);
7116 return;
7117 }
7118
7119 case Sema::TDK_InvalidExplicitArguments:
7120 assert(ParamD && "no parameter found for invalid explicit arguments");
7121 if (ParamD->getDeclName())
7122 S.Diag(Fn->getLocation(),
7123 diag::note_ovl_candidate_explicit_arg_mismatch_named)
7124 << ParamD->getDeclName();
7125 else {
7126 int index = 0;
7127 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
7128 index = TTP->getIndex();
7129 else if (NonTypeTemplateParmDecl *NTTP
7130 = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
7131 index = NTTP->getIndex();
7132 else
7133 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
7134 S.Diag(Fn->getLocation(),
7135 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
7136 << (index + 1);
7137 }
7138 MaybeEmitInheritedConstructorNote(S, Fn);
7139 return;
7140
7141 case Sema::TDK_TooManyArguments:
7142 case Sema::TDK_TooFewArguments:
7143 DiagnoseArityMismatch(S, Cand, NumArgs);
7144 return;
7145
7146 case Sema::TDK_InstantiationDepth:
7147 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
7148 MaybeEmitInheritedConstructorNote(S, Fn);
7149 return;
7150
7151 case Sema::TDK_SubstitutionFailure: {
7152 std::string ArgString;
7153 if (TemplateArgumentList *Args
7154 = Cand->DeductionFailure.getTemplateArgumentList())
7155 ArgString = S.getTemplateArgumentBindingsText(
7156 Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
7157 *Args);
7158 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
7159 << ArgString;
7160 MaybeEmitInheritedConstructorNote(S, Fn);
7161 return;
7162 }
7163
7164 // TODO: diagnose these individually, then kill off
7165 // note_ovl_candidate_bad_deduction, which is uselessly vague.
7166 case Sema::TDK_NonDeducedMismatch:
7167 case Sema::TDK_FailedOverloadResolution:
7168 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
7169 MaybeEmitInheritedConstructorNote(S, Fn);
7170 return;
7171 }
7172 }
7173
7174 /// Generates a 'note' diagnostic for an overload candidate. We've
7175 /// already generated a primary error at the call site.
7176 ///
7177 /// It really does need to be a single diagnostic with its caret
7178 /// pointed at the candidate declaration. Yes, this creates some
7179 /// major challenges of technical writing. Yes, this makes pointing
7180 /// out problems with specific arguments quite awkward. It's still
7181 /// better than generating twenty screens of text for every failed
7182 /// overload.
7183 ///
7184 /// It would be great to be able to express per-candidate problems
7185 /// more richly for those diagnostic clients that cared, but we'd
7186 /// still have to be just as careful with the default diagnostics.
NoteFunctionCandidate(Sema & S,OverloadCandidate * Cand,Expr ** Args,unsigned NumArgs)7187 void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
7188 Expr **Args, unsigned NumArgs) {
7189 FunctionDecl *Fn = Cand->Function;
7190
7191 // Note deleted candidates, but only if they're viable.
7192 if (Cand->Viable && (Fn->isDeleted() ||
7193 S.isFunctionConsideredUnavailable(Fn))) {
7194 std::string FnDesc;
7195 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
7196
7197 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
7198 << FnKind << FnDesc << Fn->isDeleted();
7199 MaybeEmitInheritedConstructorNote(S, Fn);
7200 return;
7201 }
7202
7203 // We don't really have anything else to say about viable candidates.
7204 if (Cand->Viable) {
7205 S.NoteOverloadCandidate(Fn);
7206 return;
7207 }
7208
7209 switch (Cand->FailureKind) {
7210 case ovl_fail_too_many_arguments:
7211 case ovl_fail_too_few_arguments:
7212 return DiagnoseArityMismatch(S, Cand, NumArgs);
7213
7214 case ovl_fail_bad_deduction:
7215 return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
7216
7217 case ovl_fail_trivial_conversion:
7218 case ovl_fail_bad_final_conversion:
7219 case ovl_fail_final_conversion_not_exact:
7220 return S.NoteOverloadCandidate(Fn);
7221
7222 case ovl_fail_bad_conversion: {
7223 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
7224 for (unsigned N = Cand->Conversions.size(); I != N; ++I)
7225 if (Cand->Conversions[I].isBad())
7226 return DiagnoseBadConversion(S, Cand, I);
7227
7228 // FIXME: this currently happens when we're called from SemaInit
7229 // when user-conversion overload fails. Figure out how to handle
7230 // those conditions and diagnose them well.
7231 return S.NoteOverloadCandidate(Fn);
7232 }
7233 }
7234 }
7235
NoteSurrogateCandidate(Sema & S,OverloadCandidate * Cand)7236 void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
7237 // Desugar the type of the surrogate down to a function type,
7238 // retaining as many typedefs as possible while still showing
7239 // the function type (and, therefore, its parameter types).
7240 QualType FnType = Cand->Surrogate->getConversionType();
7241 bool isLValueReference = false;
7242 bool isRValueReference = false;
7243 bool isPointer = false;
7244 if (const LValueReferenceType *FnTypeRef =
7245 FnType->getAs<LValueReferenceType>()) {
7246 FnType = FnTypeRef->getPointeeType();
7247 isLValueReference = true;
7248 } else if (const RValueReferenceType *FnTypeRef =
7249 FnType->getAs<RValueReferenceType>()) {
7250 FnType = FnTypeRef->getPointeeType();
7251 isRValueReference = true;
7252 }
7253 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
7254 FnType = FnTypePtr->getPointeeType();
7255 isPointer = true;
7256 }
7257 // Desugar down to a function type.
7258 FnType = QualType(FnType->getAs<FunctionType>(), 0);
7259 // Reconstruct the pointer/reference as appropriate.
7260 if (isPointer) FnType = S.Context.getPointerType(FnType);
7261 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
7262 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
7263
7264 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
7265 << FnType;
7266 MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
7267 }
7268
NoteBuiltinOperatorCandidate(Sema & S,const char * Opc,SourceLocation OpLoc,OverloadCandidate * Cand)7269 void NoteBuiltinOperatorCandidate(Sema &S,
7270 const char *Opc,
7271 SourceLocation OpLoc,
7272 OverloadCandidate *Cand) {
7273 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
7274 std::string TypeStr("operator");
7275 TypeStr += Opc;
7276 TypeStr += "(";
7277 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
7278 if (Cand->Conversions.size() == 1) {
7279 TypeStr += ")";
7280 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
7281 } else {
7282 TypeStr += ", ";
7283 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
7284 TypeStr += ")";
7285 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
7286 }
7287 }
7288
NoteAmbiguousUserConversions(Sema & S,SourceLocation OpLoc,OverloadCandidate * Cand)7289 void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
7290 OverloadCandidate *Cand) {
7291 unsigned NoOperands = Cand->Conversions.size();
7292 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
7293 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
7294 if (ICS.isBad()) break; // all meaningless after first invalid
7295 if (!ICS.isAmbiguous()) continue;
7296
7297 ICS.DiagnoseAmbiguousConversion(S, OpLoc,
7298 S.PDiag(diag::note_ambiguous_type_conversion));
7299 }
7300 }
7301
GetLocationForCandidate(const OverloadCandidate * Cand)7302 SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
7303 if (Cand->Function)
7304 return Cand->Function->getLocation();
7305 if (Cand->IsSurrogate)
7306 return Cand->Surrogate->getLocation();
7307 return SourceLocation();
7308 }
7309
7310 struct CompareOverloadCandidatesForDisplay {
7311 Sema &S;
CompareOverloadCandidatesForDisplayclang::__anon1808bbb60411::CompareOverloadCandidatesForDisplay7312 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
7313
operator ()clang::__anon1808bbb60411::CompareOverloadCandidatesForDisplay7314 bool operator()(const OverloadCandidate *L,
7315 const OverloadCandidate *R) {
7316 // Fast-path this check.
7317 if (L == R) return false;
7318
7319 // Order first by viability.
7320 if (L->Viable) {
7321 if (!R->Viable) return true;
7322
7323 // TODO: introduce a tri-valued comparison for overload
7324 // candidates. Would be more worthwhile if we had a sort
7325 // that could exploit it.
7326 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
7327 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
7328 } else if (R->Viable)
7329 return false;
7330
7331 assert(L->Viable == R->Viable);
7332
7333 // Criteria by which we can sort non-viable candidates:
7334 if (!L->Viable) {
7335 // 1. Arity mismatches come after other candidates.
7336 if (L->FailureKind == ovl_fail_too_many_arguments ||
7337 L->FailureKind == ovl_fail_too_few_arguments)
7338 return false;
7339 if (R->FailureKind == ovl_fail_too_many_arguments ||
7340 R->FailureKind == ovl_fail_too_few_arguments)
7341 return true;
7342
7343 // 2. Bad conversions come first and are ordered by the number
7344 // of bad conversions and quality of good conversions.
7345 if (L->FailureKind == ovl_fail_bad_conversion) {
7346 if (R->FailureKind != ovl_fail_bad_conversion)
7347 return true;
7348
7349 // The conversion that can be fixed with a smaller number of changes,
7350 // comes first.
7351 unsigned numLFixes = L->Fix.NumConversionsFixed;
7352 unsigned numRFixes = R->Fix.NumConversionsFixed;
7353 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
7354 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
7355 if (numLFixes != numRFixes)
7356 if (numLFixes < numRFixes)
7357 return true;
7358 else
7359 return false;
7360
7361 // If there's any ordering between the defined conversions...
7362 // FIXME: this might not be transitive.
7363 assert(L->Conversions.size() == R->Conversions.size());
7364
7365 int leftBetter = 0;
7366 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
7367 for (unsigned E = L->Conversions.size(); I != E; ++I) {
7368 switch (CompareImplicitConversionSequences(S,
7369 L->Conversions[I],
7370 R->Conversions[I])) {
7371 case ImplicitConversionSequence::Better:
7372 leftBetter++;
7373 break;
7374
7375 case ImplicitConversionSequence::Worse:
7376 leftBetter--;
7377 break;
7378
7379 case ImplicitConversionSequence::Indistinguishable:
7380 break;
7381 }
7382 }
7383 if (leftBetter > 0) return true;
7384 if (leftBetter < 0) return false;
7385
7386 } else if (R->FailureKind == ovl_fail_bad_conversion)
7387 return false;
7388
7389 // TODO: others?
7390 }
7391
7392 // Sort everything else by location.
7393 SourceLocation LLoc = GetLocationForCandidate(L);
7394 SourceLocation RLoc = GetLocationForCandidate(R);
7395
7396 // Put candidates without locations (e.g. builtins) at the end.
7397 if (LLoc.isInvalid()) return false;
7398 if (RLoc.isInvalid()) return true;
7399
7400 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
7401 }
7402 };
7403
7404 /// CompleteNonViableCandidate - Normally, overload resolution only
7405 /// computes up to the first. Produces the FixIt set if possible.
CompleteNonViableCandidate(Sema & S,OverloadCandidate * Cand,Expr ** Args,unsigned NumArgs)7406 void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
7407 Expr **Args, unsigned NumArgs) {
7408 assert(!Cand->Viable);
7409
7410 // Don't do anything on failures other than bad conversion.
7411 if (Cand->FailureKind != ovl_fail_bad_conversion) return;
7412
7413 // We only want the FixIts if all the arguments can be corrected.
7414 bool Unfixable = false;
7415
7416 // Skip forward to the first bad conversion.
7417 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
7418 unsigned ConvCount = Cand->Conversions.size();
7419 while (true) {
7420 assert(ConvIdx != ConvCount && "no bad conversion in candidate");
7421 ConvIdx++;
7422 if (Cand->Conversions[ConvIdx - 1].isBad()) {
7423 if ((Unfixable = !TryToFixBadConversion(S, Cand->Conversions[ConvIdx - 1],
7424 Cand->Fix)))
7425 Cand->Fix.Hints.clear();
7426 break;
7427 }
7428 }
7429
7430 if (ConvIdx == ConvCount)
7431 return;
7432
7433 assert(!Cand->Conversions[ConvIdx].isInitialized() &&
7434 "remaining conversion is initialized?");
7435
7436 // FIXME: this should probably be preserved from the overload
7437 // operation somehow.
7438 bool SuppressUserConversions = false;
7439
7440 const FunctionProtoType* Proto;
7441 unsigned ArgIdx = ConvIdx;
7442
7443 if (Cand->IsSurrogate) {
7444 QualType ConvType
7445 = Cand->Surrogate->getConversionType().getNonReferenceType();
7446 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
7447 ConvType = ConvPtrType->getPointeeType();
7448 Proto = ConvType->getAs<FunctionProtoType>();
7449 ArgIdx--;
7450 } else if (Cand->Function) {
7451 Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
7452 if (isa<CXXMethodDecl>(Cand->Function) &&
7453 !isa<CXXConstructorDecl>(Cand->Function))
7454 ArgIdx--;
7455 } else {
7456 // Builtin binary operator with a bad first conversion.
7457 assert(ConvCount <= 3);
7458 for (; ConvIdx != ConvCount; ++ConvIdx)
7459 Cand->Conversions[ConvIdx]
7460 = TryCopyInitialization(S, Args[ConvIdx],
7461 Cand->BuiltinTypes.ParamTypes[ConvIdx],
7462 SuppressUserConversions,
7463 /*InOverloadResolution*/ true,
7464 /*AllowObjCWritebackConversion=*/
7465 S.getLangOptions().ObjCAutoRefCount);
7466 return;
7467 }
7468
7469 // Fill in the rest of the conversions.
7470 unsigned NumArgsInProto = Proto->getNumArgs();
7471 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
7472 if (ArgIdx < NumArgsInProto) {
7473 Cand->Conversions[ConvIdx]
7474 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
7475 SuppressUserConversions,
7476 /*InOverloadResolution=*/true,
7477 /*AllowObjCWritebackConversion=*/
7478 S.getLangOptions().ObjCAutoRefCount);
7479 // Store the FixIt in the candidate if it exists.
7480 if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
7481 Unfixable = !TryToFixBadConversion(S, Cand->Conversions[ConvIdx],
7482 Cand->Fix);
7483 }
7484 else
7485 Cand->Conversions[ConvIdx].setEllipsis();
7486 }
7487
7488 if (Unfixable) {
7489 Cand->Fix.Hints.clear();
7490 Cand->Fix.NumConversionsFixed = 0;
7491 }
7492 }
7493
7494 } // end anonymous namespace
7495
7496 /// PrintOverloadCandidates - When overload resolution fails, prints
7497 /// diagnostic messages containing the candidates in the candidate
7498 /// set.
NoteCandidates(Sema & S,OverloadCandidateDisplayKind OCD,Expr ** Args,unsigned NumArgs,const char * Opc,SourceLocation OpLoc)7499 void OverloadCandidateSet::NoteCandidates(Sema &S,
7500 OverloadCandidateDisplayKind OCD,
7501 Expr **Args, unsigned NumArgs,
7502 const char *Opc,
7503 SourceLocation OpLoc) {
7504 // Sort the candidates by viability and position. Sorting directly would
7505 // be prohibitive, so we make a set of pointers and sort those.
7506 llvm::SmallVector<OverloadCandidate*, 32> Cands;
7507 if (OCD == OCD_AllCandidates) Cands.reserve(size());
7508 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
7509 if (Cand->Viable)
7510 Cands.push_back(Cand);
7511 else if (OCD == OCD_AllCandidates) {
7512 CompleteNonViableCandidate(S, Cand, Args, NumArgs);
7513 if (Cand->Function || Cand->IsSurrogate)
7514 Cands.push_back(Cand);
7515 // Otherwise, this a non-viable builtin candidate. We do not, in general,
7516 // want to list every possible builtin candidate.
7517 }
7518 }
7519
7520 std::sort(Cands.begin(), Cands.end(),
7521 CompareOverloadCandidatesForDisplay(S));
7522
7523 bool ReportedAmbiguousConversions = false;
7524
7525 llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
7526 const Diagnostic::OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
7527 unsigned CandsShown = 0;
7528 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
7529 OverloadCandidate *Cand = *I;
7530
7531 // Set an arbitrary limit on the number of candidate functions we'll spam
7532 // the user with. FIXME: This limit should depend on details of the
7533 // candidate list.
7534 if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) {
7535 break;
7536 }
7537 ++CandsShown;
7538
7539 if (Cand->Function)
7540 NoteFunctionCandidate(S, Cand, Args, NumArgs);
7541 else if (Cand->IsSurrogate)
7542 NoteSurrogateCandidate(S, Cand);
7543 else {
7544 assert(Cand->Viable &&
7545 "Non-viable built-in candidates are not added to Cands.");
7546 // Generally we only see ambiguities including viable builtin
7547 // operators if overload resolution got screwed up by an
7548 // ambiguous user-defined conversion.
7549 //
7550 // FIXME: It's quite possible for different conversions to see
7551 // different ambiguities, though.
7552 if (!ReportedAmbiguousConversions) {
7553 NoteAmbiguousUserConversions(S, OpLoc, Cand);
7554 ReportedAmbiguousConversions = true;
7555 }
7556
7557 // If this is a viable builtin, print it.
7558 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
7559 }
7560 }
7561
7562 if (I != E)
7563 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
7564 }
7565
7566 // [PossiblyAFunctionType] --> [Return]
7567 // NonFunctionType --> NonFunctionType
7568 // R (A) --> R(A)
7569 // R (*)(A) --> R (A)
7570 // R (&)(A) --> R (A)
7571 // R (S::*)(A) --> R (A)
ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType)7572 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
7573 QualType Ret = PossiblyAFunctionType;
7574 if (const PointerType *ToTypePtr =
7575 PossiblyAFunctionType->getAs<PointerType>())
7576 Ret = ToTypePtr->getPointeeType();
7577 else if (const ReferenceType *ToTypeRef =
7578 PossiblyAFunctionType->getAs<ReferenceType>())
7579 Ret = ToTypeRef->getPointeeType();
7580 else if (const MemberPointerType *MemTypePtr =
7581 PossiblyAFunctionType->getAs<MemberPointerType>())
7582 Ret = MemTypePtr->getPointeeType();
7583 Ret =
7584 Context.getCanonicalType(Ret).getUnqualifiedType();
7585 return Ret;
7586 }
7587
7588 // A helper class to help with address of function resolution
7589 // - allows us to avoid passing around all those ugly parameters
7590 class AddressOfFunctionResolver
7591 {
7592 Sema& S;
7593 Expr* SourceExpr;
7594 const QualType& TargetType;
7595 QualType TargetFunctionType; // Extracted function type from target type
7596
7597 bool Complain;
7598 //DeclAccessPair& ResultFunctionAccessPair;
7599 ASTContext& Context;
7600
7601 bool TargetTypeIsNonStaticMemberFunction;
7602 bool FoundNonTemplateFunction;
7603
7604 OverloadExpr::FindResult OvlExprInfo;
7605 OverloadExpr *OvlExpr;
7606 TemplateArgumentListInfo OvlExplicitTemplateArgs;
7607 llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
7608
7609 public:
AddressOfFunctionResolver(Sema & S,Expr * SourceExpr,const QualType & TargetType,bool Complain)7610 AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
7611 const QualType& TargetType, bool Complain)
7612 : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
7613 Complain(Complain), Context(S.getASTContext()),
7614 TargetTypeIsNonStaticMemberFunction(
7615 !!TargetType->getAs<MemberPointerType>()),
7616 FoundNonTemplateFunction(false),
7617 OvlExprInfo(OverloadExpr::find(SourceExpr)),
7618 OvlExpr(OvlExprInfo.Expression)
7619 {
7620 ExtractUnqualifiedFunctionTypeFromTargetType();
7621
7622 if (!TargetFunctionType->isFunctionType()) {
7623 if (OvlExpr->hasExplicitTemplateArgs()) {
7624 DeclAccessPair dap;
7625 if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
7626 OvlExpr, false, &dap) ) {
7627
7628 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7629 if (!Method->isStatic()) {
7630 // If the target type is a non-function type and the function
7631 // found is a non-static member function, pretend as if that was
7632 // the target, it's the only possible type to end up with.
7633 TargetTypeIsNonStaticMemberFunction = true;
7634
7635 // And skip adding the function if its not in the proper form.
7636 // We'll diagnose this due to an empty set of functions.
7637 if (!OvlExprInfo.HasFormOfMemberPointer)
7638 return;
7639 }
7640 }
7641
7642 Matches.push_back(std::make_pair(dap,Fn));
7643 }
7644 }
7645 return;
7646 }
7647
7648 if (OvlExpr->hasExplicitTemplateArgs())
7649 OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
7650
7651 if (FindAllFunctionsThatMatchTargetTypeExactly()) {
7652 // C++ [over.over]p4:
7653 // If more than one function is selected, [...]
7654 if (Matches.size() > 1) {
7655 if (FoundNonTemplateFunction)
7656 EliminateAllTemplateMatches();
7657 else
7658 EliminateAllExceptMostSpecializedTemplate();
7659 }
7660 }
7661 }
7662
7663 private:
isTargetTypeAFunction() const7664 bool isTargetTypeAFunction() const {
7665 return TargetFunctionType->isFunctionType();
7666 }
7667
7668 // [ToType] [Return]
7669
7670 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
7671 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
7672 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
ExtractUnqualifiedFunctionTypeFromTargetType()7673 void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
7674 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
7675 }
7676
7677 // return true if any matching specializations were found
AddMatchingTemplateFunction(FunctionTemplateDecl * FunctionTemplate,const DeclAccessPair & CurAccessFunPair)7678 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
7679 const DeclAccessPair& CurAccessFunPair) {
7680 if (CXXMethodDecl *Method
7681 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
7682 // Skip non-static function templates when converting to pointer, and
7683 // static when converting to member pointer.
7684 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
7685 return false;
7686 }
7687 else if (TargetTypeIsNonStaticMemberFunction)
7688 return false;
7689
7690 // C++ [over.over]p2:
7691 // If the name is a function template, template argument deduction is
7692 // done (14.8.2.2), and if the argument deduction succeeds, the
7693 // resulting template argument list is used to generate a single
7694 // function template specialization, which is added to the set of
7695 // overloaded functions considered.
7696 FunctionDecl *Specialization = 0;
7697 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
7698 if (Sema::TemplateDeductionResult Result
7699 = S.DeduceTemplateArguments(FunctionTemplate,
7700 &OvlExplicitTemplateArgs,
7701 TargetFunctionType, Specialization,
7702 Info)) {
7703 // FIXME: make a note of the failed deduction for diagnostics.
7704 (void)Result;
7705 return false;
7706 }
7707
7708 // Template argument deduction ensures that we have an exact match.
7709 // This function template specicalization works.
7710 Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
7711 assert(TargetFunctionType
7712 == Context.getCanonicalType(Specialization->getType()));
7713 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
7714 return true;
7715 }
7716
AddMatchingNonTemplateFunction(NamedDecl * Fn,const DeclAccessPair & CurAccessFunPair)7717 bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
7718 const DeclAccessPair& CurAccessFunPair) {
7719 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7720 // Skip non-static functions when converting to pointer, and static
7721 // when converting to member pointer.
7722 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
7723 return false;
7724 }
7725 else if (TargetTypeIsNonStaticMemberFunction)
7726 return false;
7727
7728 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
7729 QualType ResultTy;
7730 if (Context.hasSameUnqualifiedType(TargetFunctionType,
7731 FunDecl->getType()) ||
7732 S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
7733 ResultTy)) {
7734 Matches.push_back(std::make_pair(CurAccessFunPair,
7735 cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
7736 FoundNonTemplateFunction = true;
7737 return true;
7738 }
7739 }
7740
7741 return false;
7742 }
7743
FindAllFunctionsThatMatchTargetTypeExactly()7744 bool FindAllFunctionsThatMatchTargetTypeExactly() {
7745 bool Ret = false;
7746
7747 // If the overload expression doesn't have the form of a pointer to
7748 // member, don't try to convert it to a pointer-to-member type.
7749 if (IsInvalidFormOfPointerToMemberFunction())
7750 return false;
7751
7752 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7753 E = OvlExpr->decls_end();
7754 I != E; ++I) {
7755 // Look through any using declarations to find the underlying function.
7756 NamedDecl *Fn = (*I)->getUnderlyingDecl();
7757
7758 // C++ [over.over]p3:
7759 // Non-member functions and static member functions match
7760 // targets of type "pointer-to-function" or "reference-to-function."
7761 // Nonstatic member functions match targets of
7762 // type "pointer-to-member-function."
7763 // Note that according to DR 247, the containing class does not matter.
7764 if (FunctionTemplateDecl *FunctionTemplate
7765 = dyn_cast<FunctionTemplateDecl>(Fn)) {
7766 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
7767 Ret = true;
7768 }
7769 // If we have explicit template arguments supplied, skip non-templates.
7770 else if (!OvlExpr->hasExplicitTemplateArgs() &&
7771 AddMatchingNonTemplateFunction(Fn, I.getPair()))
7772 Ret = true;
7773 }
7774 assert(Ret || Matches.empty());
7775 return Ret;
7776 }
7777
EliminateAllExceptMostSpecializedTemplate()7778 void EliminateAllExceptMostSpecializedTemplate() {
7779 // [...] and any given function template specialization F1 is
7780 // eliminated if the set contains a second function template
7781 // specialization whose function template is more specialized
7782 // than the function template of F1 according to the partial
7783 // ordering rules of 14.5.5.2.
7784
7785 // The algorithm specified above is quadratic. We instead use a
7786 // two-pass algorithm (similar to the one used to identify the
7787 // best viable function in an overload set) that identifies the
7788 // best function template (if it exists).
7789
7790 UnresolvedSet<4> MatchesCopy; // TODO: avoid!
7791 for (unsigned I = 0, E = Matches.size(); I != E; ++I)
7792 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
7793
7794 UnresolvedSetIterator Result =
7795 S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
7796 TPOC_Other, 0, SourceExpr->getLocStart(),
7797 S.PDiag(),
7798 S.PDiag(diag::err_addr_ovl_ambiguous)
7799 << Matches[0].second->getDeclName(),
7800 S.PDiag(diag::note_ovl_candidate)
7801 << (unsigned) oc_function_template,
7802 Complain);
7803
7804 if (Result != MatchesCopy.end()) {
7805 // Make it the first and only element
7806 Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
7807 Matches[0].second = cast<FunctionDecl>(*Result);
7808 Matches.resize(1);
7809 }
7810 }
7811
EliminateAllTemplateMatches()7812 void EliminateAllTemplateMatches() {
7813 // [...] any function template specializations in the set are
7814 // eliminated if the set also contains a non-template function, [...]
7815 for (unsigned I = 0, N = Matches.size(); I != N; ) {
7816 if (Matches[I].second->getPrimaryTemplate() == 0)
7817 ++I;
7818 else {
7819 Matches[I] = Matches[--N];
7820 Matches.set_size(N);
7821 }
7822 }
7823 }
7824
7825 public:
ComplainNoMatchesFound() const7826 void ComplainNoMatchesFound() const {
7827 assert(Matches.empty());
7828 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
7829 << OvlExpr->getName() << TargetFunctionType
7830 << OvlExpr->getSourceRange();
7831 S.NoteAllOverloadCandidates(OvlExpr);
7832 }
7833
IsInvalidFormOfPointerToMemberFunction() const7834 bool IsInvalidFormOfPointerToMemberFunction() const {
7835 return TargetTypeIsNonStaticMemberFunction &&
7836 !OvlExprInfo.HasFormOfMemberPointer;
7837 }
7838
ComplainIsInvalidFormOfPointerToMemberFunction() const7839 void ComplainIsInvalidFormOfPointerToMemberFunction() const {
7840 // TODO: Should we condition this on whether any functions might
7841 // have matched, or is it more appropriate to do that in callers?
7842 // TODO: a fixit wouldn't hurt.
7843 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
7844 << TargetType << OvlExpr->getSourceRange();
7845 }
7846
ComplainOfInvalidConversion() const7847 void ComplainOfInvalidConversion() const {
7848 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
7849 << OvlExpr->getName() << TargetType;
7850 }
7851
ComplainMultipleMatchesFound() const7852 void ComplainMultipleMatchesFound() const {
7853 assert(Matches.size() > 1);
7854 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
7855 << OvlExpr->getName()
7856 << OvlExpr->getSourceRange();
7857 S.NoteAllOverloadCandidates(OvlExpr);
7858 }
7859
getNumMatches() const7860 int getNumMatches() const { return Matches.size(); }
7861
getMatchingFunctionDecl() const7862 FunctionDecl* getMatchingFunctionDecl() const {
7863 if (Matches.size() != 1) return 0;
7864 return Matches[0].second;
7865 }
7866
getMatchingFunctionAccessPair() const7867 const DeclAccessPair* getMatchingFunctionAccessPair() const {
7868 if (Matches.size() != 1) return 0;
7869 return &Matches[0].first;
7870 }
7871 };
7872
7873 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
7874 /// an overloaded function (C++ [over.over]), where @p From is an
7875 /// expression with overloaded function type and @p ToType is the type
7876 /// we're trying to resolve to. For example:
7877 ///
7878 /// @code
7879 /// int f(double);
7880 /// int f(int);
7881 ///
7882 /// int (*pfd)(double) = f; // selects f(double)
7883 /// @endcode
7884 ///
7885 /// This routine returns the resulting FunctionDecl if it could be
7886 /// resolved, and NULL otherwise. When @p Complain is true, this
7887 /// routine will emit diagnostics if there is an error.
7888 FunctionDecl *
ResolveAddressOfOverloadedFunction(Expr * AddressOfExpr,QualType TargetType,bool Complain,DeclAccessPair & FoundResult)7889 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType,
7890 bool Complain,
7891 DeclAccessPair &FoundResult) {
7892
7893 assert(AddressOfExpr->getType() == Context.OverloadTy);
7894
7895 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, Complain);
7896 int NumMatches = Resolver.getNumMatches();
7897 FunctionDecl* Fn = 0;
7898 if ( NumMatches == 0 && Complain) {
7899 if (Resolver.IsInvalidFormOfPointerToMemberFunction())
7900 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
7901 else
7902 Resolver.ComplainNoMatchesFound();
7903 }
7904 else if (NumMatches > 1 && Complain)
7905 Resolver.ComplainMultipleMatchesFound();
7906 else if (NumMatches == 1) {
7907 Fn = Resolver.getMatchingFunctionDecl();
7908 assert(Fn);
7909 FoundResult = *Resolver.getMatchingFunctionAccessPair();
7910 MarkDeclarationReferenced(AddressOfExpr->getLocStart(), Fn);
7911 if (Complain)
7912 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
7913 }
7914
7915 return Fn;
7916 }
7917
7918 /// \brief Given an expression that refers to an overloaded function, try to
7919 /// resolve that overloaded function expression down to a single function.
7920 ///
7921 /// This routine can only resolve template-ids that refer to a single function
7922 /// template, where that template-id refers to a single template whose template
7923 /// arguments are either provided by the template-id or have defaults,
7924 /// as described in C++0x [temp.arg.explicit]p3.
7925 FunctionDecl *
ResolveSingleFunctionTemplateSpecialization(OverloadExpr * ovl,bool Complain,DeclAccessPair * FoundResult)7926 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
7927 bool Complain,
7928 DeclAccessPair *FoundResult) {
7929 // C++ [over.over]p1:
7930 // [...] [Note: any redundant set of parentheses surrounding the
7931 // overloaded function name is ignored (5.1). ]
7932 // C++ [over.over]p1:
7933 // [...] The overloaded function name can be preceded by the &
7934 // operator.
7935
7936 // If we didn't actually find any template-ids, we're done.
7937 if (!ovl->hasExplicitTemplateArgs())
7938 return 0;
7939
7940 TemplateArgumentListInfo ExplicitTemplateArgs;
7941 ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
7942
7943 // Look through all of the overloaded functions, searching for one
7944 // whose type matches exactly.
7945 FunctionDecl *Matched = 0;
7946 for (UnresolvedSetIterator I = ovl->decls_begin(),
7947 E = ovl->decls_end(); I != E; ++I) {
7948 // C++0x [temp.arg.explicit]p3:
7949 // [...] In contexts where deduction is done and fails, or in contexts
7950 // where deduction is not done, if a template argument list is
7951 // specified and it, along with any default template arguments,
7952 // identifies a single function template specialization, then the
7953 // template-id is an lvalue for the function template specialization.
7954 FunctionTemplateDecl *FunctionTemplate
7955 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
7956
7957 // C++ [over.over]p2:
7958 // If the name is a function template, template argument deduction is
7959 // done (14.8.2.2), and if the argument deduction succeeds, the
7960 // resulting template argument list is used to generate a single
7961 // function template specialization, which is added to the set of
7962 // overloaded functions considered.
7963 FunctionDecl *Specialization = 0;
7964 TemplateDeductionInfo Info(Context, ovl->getNameLoc());
7965 if (TemplateDeductionResult Result
7966 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
7967 Specialization, Info)) {
7968 // FIXME: make a note of the failed deduction for diagnostics.
7969 (void)Result;
7970 continue;
7971 }
7972
7973 assert(Specialization && "no specialization and no error?");
7974
7975 // Multiple matches; we can't resolve to a single declaration.
7976 if (Matched) {
7977 if (Complain) {
7978 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
7979 << ovl->getName();
7980 NoteAllOverloadCandidates(ovl);
7981 }
7982 return 0;
7983 }
7984
7985 Matched = Specialization;
7986 if (FoundResult) *FoundResult = I.getPair();
7987 }
7988
7989 return Matched;
7990 }
7991
7992
7993
7994
7995 // Resolve and fix an overloaded expression that
7996 // can be resolved because it identifies a single function
7997 // template specialization
7998 // Last three arguments should only be supplied if Complain = true
ResolveAndFixSingleFunctionTemplateSpecialization(Expr * SrcExpr,bool doFunctionPointerConverion,bool complain,const SourceRange & OpRangeForComplaining,QualType DestTypeForComplaining,unsigned DiagIDForComplaining)7999 ExprResult Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
8000 Expr *SrcExpr, bool doFunctionPointerConverion, bool complain,
8001 const SourceRange& OpRangeForComplaining,
8002 QualType DestTypeForComplaining,
8003 unsigned DiagIDForComplaining) {
8004 assert(SrcExpr->getType() == Context.OverloadTy);
8005
8006 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr);
8007
8008 DeclAccessPair found;
8009 ExprResult SingleFunctionExpression;
8010 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
8011 ovl.Expression, /*complain*/ false, &found)) {
8012 if (DiagnoseUseOfDecl(fn, SrcExpr->getSourceRange().getBegin()))
8013 return ExprError();
8014
8015 // It is only correct to resolve to an instance method if we're
8016 // resolving a form that's permitted to be a pointer to member.
8017 // Otherwise we'll end up making a bound member expression, which
8018 // is illegal in all the contexts we resolve like this.
8019 if (!ovl.HasFormOfMemberPointer &&
8020 isa<CXXMethodDecl>(fn) &&
8021 cast<CXXMethodDecl>(fn)->isInstance()) {
8022 if (complain) {
8023 Diag(ovl.Expression->getExprLoc(),
8024 diag::err_invalid_use_of_bound_member_func)
8025 << ovl.Expression->getSourceRange();
8026 // TODO: I believe we only end up here if there's a mix of
8027 // static and non-static candidates (otherwise the expression
8028 // would have 'bound member' type, not 'overload' type).
8029 // Ideally we would note which candidate was chosen and why
8030 // the static candidates were rejected.
8031 }
8032
8033 return ExprError();
8034 }
8035
8036 // Fix the expresion to refer to 'fn'.
8037 SingleFunctionExpression =
8038 Owned(FixOverloadedFunctionReference(SrcExpr, found, fn));
8039
8040 // If desired, do function-to-pointer decay.
8041 if (doFunctionPointerConverion)
8042 SingleFunctionExpression =
8043 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
8044 }
8045
8046 if (!SingleFunctionExpression.isUsable()) {
8047 if (complain) {
8048 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
8049 << ovl.Expression->getName()
8050 << DestTypeForComplaining
8051 << OpRangeForComplaining
8052 << ovl.Expression->getQualifierLoc().getSourceRange();
8053 NoteAllOverloadCandidates(SrcExpr);
8054 }
8055 return ExprError();
8056 }
8057
8058 return SingleFunctionExpression;
8059 }
8060
8061 /// \brief Add a single candidate to the overload set.
AddOverloadedCallCandidate(Sema & S,DeclAccessPair FoundDecl,TemplateArgumentListInfo * ExplicitTemplateArgs,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,bool PartialOverloading,bool KnownValid)8062 static void AddOverloadedCallCandidate(Sema &S,
8063 DeclAccessPair FoundDecl,
8064 TemplateArgumentListInfo *ExplicitTemplateArgs,
8065 Expr **Args, unsigned NumArgs,
8066 OverloadCandidateSet &CandidateSet,
8067 bool PartialOverloading,
8068 bool KnownValid) {
8069 NamedDecl *Callee = FoundDecl.getDecl();
8070 if (isa<UsingShadowDecl>(Callee))
8071 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
8072
8073 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
8074 if (ExplicitTemplateArgs) {
8075 assert(!KnownValid && "Explicit template arguments?");
8076 return;
8077 }
8078 S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
8079 false, PartialOverloading);
8080 return;
8081 }
8082
8083 if (FunctionTemplateDecl *FuncTemplate
8084 = dyn_cast<FunctionTemplateDecl>(Callee)) {
8085 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
8086 ExplicitTemplateArgs,
8087 Args, NumArgs, CandidateSet);
8088 return;
8089 }
8090
8091 assert(!KnownValid && "unhandled case in overloaded call candidate");
8092 }
8093
8094 /// \brief Add the overload candidates named by callee and/or found by argument
8095 /// dependent lookup to the given overload set.
AddOverloadedCallCandidates(UnresolvedLookupExpr * ULE,Expr ** Args,unsigned NumArgs,OverloadCandidateSet & CandidateSet,bool PartialOverloading)8096 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
8097 Expr **Args, unsigned NumArgs,
8098 OverloadCandidateSet &CandidateSet,
8099 bool PartialOverloading) {
8100
8101 #ifndef NDEBUG
8102 // Verify that ArgumentDependentLookup is consistent with the rules
8103 // in C++0x [basic.lookup.argdep]p3:
8104 //
8105 // Let X be the lookup set produced by unqualified lookup (3.4.1)
8106 // and let Y be the lookup set produced by argument dependent
8107 // lookup (defined as follows). If X contains
8108 //
8109 // -- a declaration of a class member, or
8110 //
8111 // -- a block-scope function declaration that is not a
8112 // using-declaration, or
8113 //
8114 // -- a declaration that is neither a function or a function
8115 // template
8116 //
8117 // then Y is empty.
8118
8119 if (ULE->requiresADL()) {
8120 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
8121 E = ULE->decls_end(); I != E; ++I) {
8122 assert(!(*I)->getDeclContext()->isRecord());
8123 assert(isa<UsingShadowDecl>(*I) ||
8124 !(*I)->getDeclContext()->isFunctionOrMethod());
8125 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
8126 }
8127 }
8128 #endif
8129
8130 // It would be nice to avoid this copy.
8131 TemplateArgumentListInfo TABuffer;
8132 TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
8133 if (ULE->hasExplicitTemplateArgs()) {
8134 ULE->copyTemplateArgumentsInto(TABuffer);
8135 ExplicitTemplateArgs = &TABuffer;
8136 }
8137
8138 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
8139 E = ULE->decls_end(); I != E; ++I)
8140 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
8141 Args, NumArgs, CandidateSet,
8142 PartialOverloading, /*KnownValid*/ true);
8143
8144 if (ULE->requiresADL())
8145 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
8146 Args, NumArgs,
8147 ExplicitTemplateArgs,
8148 CandidateSet,
8149 PartialOverloading,
8150 ULE->isStdAssociatedNamespace());
8151 }
8152
8153 /// Attempt to recover from an ill-formed use of a non-dependent name in a
8154 /// template, where the non-dependent name was declared after the template
8155 /// was defined. This is common in code written for a compilers which do not
8156 /// correctly implement two-stage name lookup.
8157 ///
8158 /// Returns true if a viable candidate was found and a diagnostic was issued.
8159 static bool
DiagnoseTwoPhaseLookup(Sema & SemaRef,SourceLocation FnLoc,const CXXScopeSpec & SS,LookupResult & R,TemplateArgumentListInfo * ExplicitTemplateArgs,Expr ** Args,unsigned NumArgs)8160 DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
8161 const CXXScopeSpec &SS, LookupResult &R,
8162 TemplateArgumentListInfo *ExplicitTemplateArgs,
8163 Expr **Args, unsigned NumArgs) {
8164 if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
8165 return false;
8166
8167 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
8168 SemaRef.LookupQualifiedName(R, DC);
8169
8170 if (!R.empty()) {
8171 R.suppressDiagnostics();
8172
8173 if (isa<CXXRecordDecl>(DC)) {
8174 // Don't diagnose names we find in classes; we get much better
8175 // diagnostics for these from DiagnoseEmptyLookup.
8176 R.clear();
8177 return false;
8178 }
8179
8180 OverloadCandidateSet Candidates(FnLoc);
8181 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
8182 AddOverloadedCallCandidate(SemaRef, I.getPair(),
8183 ExplicitTemplateArgs, Args, NumArgs,
8184 Candidates, false, /*KnownValid*/ false);
8185
8186 OverloadCandidateSet::iterator Best;
8187 if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
8188 // No viable functions. Don't bother the user with notes for functions
8189 // which don't work and shouldn't be found anyway.
8190 R.clear();
8191 return false;
8192 }
8193
8194 // Find the namespaces where ADL would have looked, and suggest
8195 // declaring the function there instead.
8196 Sema::AssociatedNamespaceSet AssociatedNamespaces;
8197 Sema::AssociatedClassSet AssociatedClasses;
8198 SemaRef.FindAssociatedClassesAndNamespaces(Args, NumArgs,
8199 AssociatedNamespaces,
8200 AssociatedClasses);
8201 // Never suggest declaring a function within namespace 'std'.
8202 Sema::AssociatedNamespaceSet SuggestedNamespaces;
8203 if (DeclContext *Std = SemaRef.getStdNamespace()) {
8204 for (Sema::AssociatedNamespaceSet::iterator
8205 it = AssociatedNamespaces.begin(),
8206 end = AssociatedNamespaces.end(); it != end; ++it) {
8207 if (!Std->Encloses(*it))
8208 SuggestedNamespaces.insert(*it);
8209 }
8210 } else {
8211 // Lacking the 'std::' namespace, use all of the associated namespaces.
8212 SuggestedNamespaces = AssociatedNamespaces;
8213 }
8214
8215 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
8216 << R.getLookupName();
8217 if (SuggestedNamespaces.empty()) {
8218 SemaRef.Diag(Best->Function->getLocation(),
8219 diag::note_not_found_by_two_phase_lookup)
8220 << R.getLookupName() << 0;
8221 } else if (SuggestedNamespaces.size() == 1) {
8222 SemaRef.Diag(Best->Function->getLocation(),
8223 diag::note_not_found_by_two_phase_lookup)
8224 << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
8225 } else {
8226 // FIXME: It would be useful to list the associated namespaces here,
8227 // but the diagnostics infrastructure doesn't provide a way to produce
8228 // a localized representation of a list of items.
8229 SemaRef.Diag(Best->Function->getLocation(),
8230 diag::note_not_found_by_two_phase_lookup)
8231 << R.getLookupName() << 2;
8232 }
8233
8234 // Try to recover by calling this function.
8235 return true;
8236 }
8237
8238 R.clear();
8239 }
8240
8241 return false;
8242 }
8243
8244 /// Attempt to recover from ill-formed use of a non-dependent operator in a
8245 /// template, where the non-dependent operator was declared after the template
8246 /// was defined.
8247 ///
8248 /// Returns true if a viable candidate was found and a diagnostic was issued.
8249 static bool
DiagnoseTwoPhaseOperatorLookup(Sema & SemaRef,OverloadedOperatorKind Op,SourceLocation OpLoc,Expr ** Args,unsigned NumArgs)8250 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
8251 SourceLocation OpLoc,
8252 Expr **Args, unsigned NumArgs) {
8253 DeclarationName OpName =
8254 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
8255 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
8256 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
8257 /*ExplicitTemplateArgs=*/0, Args, NumArgs);
8258 }
8259
8260 /// Attempts to recover from a call where no functions were found.
8261 ///
8262 /// Returns true if new candidates were found.
8263 static ExprResult
BuildRecoveryCallExpr(Sema & SemaRef,Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,bool EmptyLookup)8264 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
8265 UnresolvedLookupExpr *ULE,
8266 SourceLocation LParenLoc,
8267 Expr **Args, unsigned NumArgs,
8268 SourceLocation RParenLoc,
8269 bool EmptyLookup) {
8270
8271 CXXScopeSpec SS;
8272 SS.Adopt(ULE->getQualifierLoc());
8273
8274 TemplateArgumentListInfo TABuffer;
8275 TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
8276 if (ULE->hasExplicitTemplateArgs()) {
8277 ULE->copyTemplateArgumentsInto(TABuffer);
8278 ExplicitTemplateArgs = &TABuffer;
8279 }
8280
8281 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
8282 Sema::LookupOrdinaryName);
8283 if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
8284 ExplicitTemplateArgs, Args, NumArgs) &&
8285 (!EmptyLookup ||
8286 SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression)))
8287 return ExprError();
8288
8289 assert(!R.empty() && "lookup results empty despite recovery");
8290
8291 // Build an implicit member call if appropriate. Just drop the
8292 // casts and such from the call, we don't really care.
8293 ExprResult NewFn = ExprError();
8294 if ((*R.begin())->isCXXClassMember())
8295 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R,
8296 ExplicitTemplateArgs);
8297 else if (ExplicitTemplateArgs)
8298 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
8299 else
8300 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
8301
8302 if (NewFn.isInvalid())
8303 return ExprError();
8304
8305 // This shouldn't cause an infinite loop because we're giving it
8306 // an expression with viable lookup results, which should never
8307 // end up here.
8308 return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
8309 MultiExprArg(Args, NumArgs), RParenLoc);
8310 }
8311
8312 /// ResolveOverloadedCallFn - Given the call expression that calls Fn
8313 /// (which eventually refers to the declaration Func) and the call
8314 /// arguments Args/NumArgs, attempt to resolve the function call down
8315 /// to a specific function. If overload resolution succeeds, returns
8316 /// the function declaration produced by overload
8317 /// resolution. Otherwise, emits diagnostics, deletes all of the
8318 /// arguments and Fn, and returns NULL.
8319 ExprResult
BuildOverloadedCallExpr(Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,Expr * ExecConfig)8320 Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
8321 SourceLocation LParenLoc,
8322 Expr **Args, unsigned NumArgs,
8323 SourceLocation RParenLoc,
8324 Expr *ExecConfig) {
8325 #ifndef NDEBUG
8326 if (ULE->requiresADL()) {
8327 // To do ADL, we must have found an unqualified name.
8328 assert(!ULE->getQualifier() && "qualified name with ADL");
8329
8330 // We don't perform ADL for implicit declarations of builtins.
8331 // Verify that this was correctly set up.
8332 FunctionDecl *F;
8333 if (ULE->decls_begin() + 1 == ULE->decls_end() &&
8334 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
8335 F->getBuiltinID() && F->isImplicit())
8336 assert(0 && "performing ADL for builtin");
8337
8338 // We don't perform ADL in C.
8339 assert(getLangOptions().CPlusPlus && "ADL enabled in C");
8340 } else
8341 assert(!ULE->isStdAssociatedNamespace() &&
8342 "std is associated namespace but not doing ADL");
8343 #endif
8344
8345 OverloadCandidateSet CandidateSet(Fn->getExprLoc());
8346
8347 // Add the functions denoted by the callee to the set of candidate
8348 // functions, including those from argument-dependent lookup.
8349 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
8350
8351 // If we found nothing, try to recover.
8352 // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
8353 // out if it fails.
8354 if (CandidateSet.empty())
8355 return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
8356 RParenLoc, /*EmptyLookup=*/true);
8357
8358 OverloadCandidateSet::iterator Best;
8359 switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
8360 case OR_Success: {
8361 FunctionDecl *FDecl = Best->Function;
8362 MarkDeclarationReferenced(Fn->getExprLoc(), FDecl);
8363 CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
8364 DiagnoseUseOfDecl(FDecl? FDecl : Best->FoundDecl.getDecl(),
8365 ULE->getNameLoc());
8366 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
8367 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc,
8368 ExecConfig);
8369 }
8370
8371 case OR_No_Viable_Function: {
8372 // Try to recover by looking for viable functions which the user might
8373 // have meant to call.
8374 ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
8375 Args, NumArgs, RParenLoc,
8376 /*EmptyLookup=*/false);
8377 if (!Recovery.isInvalid())
8378 return Recovery;
8379
8380 Diag(Fn->getSourceRange().getBegin(),
8381 diag::err_ovl_no_viable_function_in_call)
8382 << ULE->getName() << Fn->getSourceRange();
8383 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8384 break;
8385 }
8386
8387 case OR_Ambiguous:
8388 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
8389 << ULE->getName() << Fn->getSourceRange();
8390 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
8391 break;
8392
8393 case OR_Deleted:
8394 {
8395 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
8396 << Best->Function->isDeleted()
8397 << ULE->getName()
8398 << getDeletedOrUnavailableSuffix(Best->Function)
8399 << Fn->getSourceRange();
8400 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8401 }
8402 break;
8403 }
8404
8405 // Overload resolution failed.
8406 return ExprError();
8407 }
8408
IsOverloaded(const UnresolvedSetImpl & Functions)8409 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
8410 return Functions.size() > 1 ||
8411 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
8412 }
8413
8414 /// \brief Create a unary operation that may resolve to an overloaded
8415 /// operator.
8416 ///
8417 /// \param OpLoc The location of the operator itself (e.g., '*').
8418 ///
8419 /// \param OpcIn The UnaryOperator::Opcode that describes this
8420 /// operator.
8421 ///
8422 /// \param Functions The set of non-member functions that will be
8423 /// considered by overload resolution. The caller needs to build this
8424 /// set based on the context using, e.g.,
8425 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
8426 /// set should not contain any member functions; those will be added
8427 /// by CreateOverloadedUnaryOp().
8428 ///
8429 /// \param input The input argument.
8430 ExprResult
CreateOverloadedUnaryOp(SourceLocation OpLoc,unsigned OpcIn,const UnresolvedSetImpl & Fns,Expr * Input)8431 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
8432 const UnresolvedSetImpl &Fns,
8433 Expr *Input) {
8434 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
8435
8436 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
8437 assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
8438 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
8439 // TODO: provide better source location info.
8440 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
8441
8442 if (Input->getObjectKind() == OK_ObjCProperty) {
8443 ExprResult Result = ConvertPropertyForRValue(Input);
8444 if (Result.isInvalid())
8445 return ExprError();
8446 Input = Result.take();
8447 }
8448
8449 Expr *Args[2] = { Input, 0 };
8450 unsigned NumArgs = 1;
8451
8452 // For post-increment and post-decrement, add the implicit '0' as
8453 // the second argument, so that we know this is a post-increment or
8454 // post-decrement.
8455 if (Opc == UO_PostInc || Opc == UO_PostDec) {
8456 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
8457 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
8458 SourceLocation());
8459 NumArgs = 2;
8460 }
8461
8462 if (Input->isTypeDependent()) {
8463 if (Fns.empty())
8464 return Owned(new (Context) UnaryOperator(Input,
8465 Opc,
8466 Context.DependentTy,
8467 VK_RValue, OK_Ordinary,
8468 OpLoc));
8469
8470 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
8471 UnresolvedLookupExpr *Fn
8472 = UnresolvedLookupExpr::Create(Context, NamingClass,
8473 NestedNameSpecifierLoc(), OpNameInfo,
8474 /*ADL*/ true, IsOverloaded(Fns),
8475 Fns.begin(), Fns.end());
8476 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
8477 &Args[0], NumArgs,
8478 Context.DependentTy,
8479 VK_RValue,
8480 OpLoc));
8481 }
8482
8483 // Build an empty overload set.
8484 OverloadCandidateSet CandidateSet(OpLoc);
8485
8486 // Add the candidates from the given function set.
8487 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
8488
8489 // Add operator candidates that are member functions.
8490 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
8491
8492 // Add candidates from ADL.
8493 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
8494 Args, NumArgs,
8495 /*ExplicitTemplateArgs*/ 0,
8496 CandidateSet);
8497
8498 // Add builtin operator candidates.
8499 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
8500
8501 // Perform overload resolution.
8502 OverloadCandidateSet::iterator Best;
8503 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
8504 case OR_Success: {
8505 // We found a built-in operator or an overloaded operator.
8506 FunctionDecl *FnDecl = Best->Function;
8507
8508 if (FnDecl) {
8509 // We matched an overloaded operator. Build a call to that
8510 // operator.
8511
8512 MarkDeclarationReferenced(OpLoc, FnDecl);
8513
8514 // Convert the arguments.
8515 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
8516 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
8517
8518 ExprResult InputRes =
8519 PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
8520 Best->FoundDecl, Method);
8521 if (InputRes.isInvalid())
8522 return ExprError();
8523 Input = InputRes.take();
8524 } else {
8525 // Convert the arguments.
8526 ExprResult InputInit
8527 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
8528 Context,
8529 FnDecl->getParamDecl(0)),
8530 SourceLocation(),
8531 Input);
8532 if (InputInit.isInvalid())
8533 return ExprError();
8534 Input = InputInit.take();
8535 }
8536
8537 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
8538
8539 // Determine the result type.
8540 QualType ResultTy = FnDecl->getResultType();
8541 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8542 ResultTy = ResultTy.getNonLValueExprType(Context);
8543
8544 // Build the actual expression node.
8545 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl);
8546 if (FnExpr.isInvalid())
8547 return ExprError();
8548
8549 Args[0] = Input;
8550 CallExpr *TheCall =
8551 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
8552 Args, NumArgs, ResultTy, VK, OpLoc);
8553
8554 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
8555 FnDecl))
8556 return ExprError();
8557
8558 return MaybeBindToTemporary(TheCall);
8559 } else {
8560 // We matched a built-in operator. Convert the arguments, then
8561 // break out so that we will build the appropriate built-in
8562 // operator node.
8563 ExprResult InputRes =
8564 PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
8565 Best->Conversions[0], AA_Passing);
8566 if (InputRes.isInvalid())
8567 return ExprError();
8568 Input = InputRes.take();
8569 break;
8570 }
8571 }
8572
8573 case OR_No_Viable_Function:
8574 // This is an erroneous use of an operator which can be overloaded by
8575 // a non-member function. Check for non-member operators which were
8576 // defined too late to be candidates.
8577 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, NumArgs))
8578 // FIXME: Recover by calling the found function.
8579 return ExprError();
8580
8581 // No viable function; fall through to handling this as a
8582 // built-in operator, which will produce an error message for us.
8583 break;
8584
8585 case OR_Ambiguous:
8586 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
8587 << UnaryOperator::getOpcodeStr(Opc)
8588 << Input->getType()
8589 << Input->getSourceRange();
8590 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
8591 Args, NumArgs,
8592 UnaryOperator::getOpcodeStr(Opc), OpLoc);
8593 return ExprError();
8594
8595 case OR_Deleted:
8596 Diag(OpLoc, diag::err_ovl_deleted_oper)
8597 << Best->Function->isDeleted()
8598 << UnaryOperator::getOpcodeStr(Opc)
8599 << getDeletedOrUnavailableSuffix(Best->Function)
8600 << Input->getSourceRange();
8601 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8602 return ExprError();
8603 }
8604
8605 // Either we found no viable overloaded operator or we matched a
8606 // built-in operator. In either case, fall through to trying to
8607 // build a built-in operation.
8608 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8609 }
8610
8611 /// \brief Create a binary operation that may resolve to an overloaded
8612 /// operator.
8613 ///
8614 /// \param OpLoc The location of the operator itself (e.g., '+').
8615 ///
8616 /// \param OpcIn The BinaryOperator::Opcode that describes this
8617 /// operator.
8618 ///
8619 /// \param Functions The set of non-member functions that will be
8620 /// considered by overload resolution. The caller needs to build this
8621 /// set based on the context using, e.g.,
8622 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
8623 /// set should not contain any member functions; those will be added
8624 /// by CreateOverloadedBinOp().
8625 ///
8626 /// \param LHS Left-hand argument.
8627 /// \param RHS Right-hand argument.
8628 ExprResult
CreateOverloadedBinOp(SourceLocation OpLoc,unsigned OpcIn,const UnresolvedSetImpl & Fns,Expr * LHS,Expr * RHS)8629 Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
8630 unsigned OpcIn,
8631 const UnresolvedSetImpl &Fns,
8632 Expr *LHS, Expr *RHS) {
8633 Expr *Args[2] = { LHS, RHS };
8634 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
8635
8636 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
8637 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
8638 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
8639
8640 // If either side is type-dependent, create an appropriate dependent
8641 // expression.
8642 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
8643 if (Fns.empty()) {
8644 // If there are no functions to store, just build a dependent
8645 // BinaryOperator or CompoundAssignment.
8646 if (Opc <= BO_Assign || Opc > BO_OrAssign)
8647 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
8648 Context.DependentTy,
8649 VK_RValue, OK_Ordinary,
8650 OpLoc));
8651
8652 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
8653 Context.DependentTy,
8654 VK_LValue,
8655 OK_Ordinary,
8656 Context.DependentTy,
8657 Context.DependentTy,
8658 OpLoc));
8659 }
8660
8661 // FIXME: save results of ADL from here?
8662 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
8663 // TODO: provide better source location info in DNLoc component.
8664 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
8665 UnresolvedLookupExpr *Fn
8666 = UnresolvedLookupExpr::Create(Context, NamingClass,
8667 NestedNameSpecifierLoc(), OpNameInfo,
8668 /*ADL*/ true, IsOverloaded(Fns),
8669 Fns.begin(), Fns.end());
8670 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
8671 Args, 2,
8672 Context.DependentTy,
8673 VK_RValue,
8674 OpLoc));
8675 }
8676
8677 // Always do property rvalue conversions on the RHS.
8678 if (Args[1]->getObjectKind() == OK_ObjCProperty) {
8679 ExprResult Result = ConvertPropertyForRValue(Args[1]);
8680 if (Result.isInvalid())
8681 return ExprError();
8682 Args[1] = Result.take();
8683 }
8684
8685 // The LHS is more complicated.
8686 if (Args[0]->getObjectKind() == OK_ObjCProperty) {
8687
8688 // There's a tension for assignment operators between primitive
8689 // property assignment and the overloaded operators.
8690 if (BinaryOperator::isAssignmentOp(Opc)) {
8691 const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty();
8692
8693 // Is the property "logically" settable?
8694 bool Settable = (PRE->isExplicitProperty() ||
8695 PRE->getImplicitPropertySetter());
8696
8697 // To avoid gratuitously inventing semantics, use the primitive
8698 // unless it isn't. Thoughts in case we ever really care:
8699 // - If the property isn't logically settable, we have to
8700 // load and hope.
8701 // - If the property is settable and this is simple assignment,
8702 // we really should use the primitive.
8703 // - If the property is settable, then we could try overloading
8704 // on a generic lvalue of the appropriate type; if it works
8705 // out to a builtin candidate, we would do that same operation
8706 // on the property, and otherwise just error.
8707 if (Settable)
8708 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8709 }
8710
8711 ExprResult Result = ConvertPropertyForRValue(Args[0]);
8712 if (Result.isInvalid())
8713 return ExprError();
8714 Args[0] = Result.take();
8715 }
8716
8717 // If this is the assignment operator, we only perform overload resolution
8718 // if the left-hand side is a class or enumeration type. This is actually
8719 // a hack. The standard requires that we do overload resolution between the
8720 // various built-in candidates, but as DR507 points out, this can lead to
8721 // problems. So we do it this way, which pretty much follows what GCC does.
8722 // Note that we go the traditional code path for compound assignment forms.
8723 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
8724 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8725
8726 // If this is the .* operator, which is not overloadable, just
8727 // create a built-in binary operator.
8728 if (Opc == BO_PtrMemD)
8729 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8730
8731 // Build an empty overload set.
8732 OverloadCandidateSet CandidateSet(OpLoc);
8733
8734 // Add the candidates from the given function set.
8735 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
8736
8737 // Add operator candidates that are member functions.
8738 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
8739
8740 // Add candidates from ADL.
8741 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
8742 Args, 2,
8743 /*ExplicitTemplateArgs*/ 0,
8744 CandidateSet);
8745
8746 // Add builtin operator candidates.
8747 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
8748
8749 // Perform overload resolution.
8750 OverloadCandidateSet::iterator Best;
8751 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
8752 case OR_Success: {
8753 // We found a built-in operator or an overloaded operator.
8754 FunctionDecl *FnDecl = Best->Function;
8755
8756 if (FnDecl) {
8757 // We matched an overloaded operator. Build a call to that
8758 // operator.
8759
8760 MarkDeclarationReferenced(OpLoc, FnDecl);
8761
8762 // Convert the arguments.
8763 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
8764 // Best->Access is only meaningful for class members.
8765 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
8766
8767 ExprResult Arg1 =
8768 PerformCopyInitialization(
8769 InitializedEntity::InitializeParameter(Context,
8770 FnDecl->getParamDecl(0)),
8771 SourceLocation(), Owned(Args[1]));
8772 if (Arg1.isInvalid())
8773 return ExprError();
8774
8775 ExprResult Arg0 =
8776 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
8777 Best->FoundDecl, Method);
8778 if (Arg0.isInvalid())
8779 return ExprError();
8780 Args[0] = Arg0.takeAs<Expr>();
8781 Args[1] = RHS = Arg1.takeAs<Expr>();
8782 } else {
8783 // Convert the arguments.
8784 ExprResult Arg0 = PerformCopyInitialization(
8785 InitializedEntity::InitializeParameter(Context,
8786 FnDecl->getParamDecl(0)),
8787 SourceLocation(), Owned(Args[0]));
8788 if (Arg0.isInvalid())
8789 return ExprError();
8790
8791 ExprResult Arg1 =
8792 PerformCopyInitialization(
8793 InitializedEntity::InitializeParameter(Context,
8794 FnDecl->getParamDecl(1)),
8795 SourceLocation(), Owned(Args[1]));
8796 if (Arg1.isInvalid())
8797 return ExprError();
8798 Args[0] = LHS = Arg0.takeAs<Expr>();
8799 Args[1] = RHS = Arg1.takeAs<Expr>();
8800 }
8801
8802 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
8803
8804 // Determine the result type.
8805 QualType ResultTy = FnDecl->getResultType();
8806 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8807 ResultTy = ResultTy.getNonLValueExprType(Context);
8808
8809 // Build the actual expression node.
8810 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, OpLoc);
8811 if (FnExpr.isInvalid())
8812 return ExprError();
8813
8814 CXXOperatorCallExpr *TheCall =
8815 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
8816 Args, 2, ResultTy, VK, OpLoc);
8817
8818 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
8819 FnDecl))
8820 return ExprError();
8821
8822 return MaybeBindToTemporary(TheCall);
8823 } else {
8824 // We matched a built-in operator. Convert the arguments, then
8825 // break out so that we will build the appropriate built-in
8826 // operator node.
8827 ExprResult ArgsRes0 =
8828 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
8829 Best->Conversions[0], AA_Passing);
8830 if (ArgsRes0.isInvalid())
8831 return ExprError();
8832 Args[0] = ArgsRes0.take();
8833
8834 ExprResult ArgsRes1 =
8835 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
8836 Best->Conversions[1], AA_Passing);
8837 if (ArgsRes1.isInvalid())
8838 return ExprError();
8839 Args[1] = ArgsRes1.take();
8840 break;
8841 }
8842 }
8843
8844 case OR_No_Viable_Function: {
8845 // C++ [over.match.oper]p9:
8846 // If the operator is the operator , [...] and there are no
8847 // viable functions, then the operator is assumed to be the
8848 // built-in operator and interpreted according to clause 5.
8849 if (Opc == BO_Comma)
8850 break;
8851
8852 // For class as left operand for assignment or compound assigment
8853 // operator do not fall through to handling in built-in, but report that
8854 // no overloaded assignment operator found
8855 ExprResult Result = ExprError();
8856 if (Args[0]->getType()->isRecordType() &&
8857 Opc >= BO_Assign && Opc <= BO_OrAssign) {
8858 Diag(OpLoc, diag::err_ovl_no_viable_oper)
8859 << BinaryOperator::getOpcodeStr(Opc)
8860 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8861 } else {
8862 // This is an erroneous use of an operator which can be overloaded by
8863 // a non-member function. Check for non-member operators which were
8864 // defined too late to be candidates.
8865 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, 2))
8866 // FIXME: Recover by calling the found function.
8867 return ExprError();
8868
8869 // No viable function; try to create a built-in operation, which will
8870 // produce an error. Then, show the non-viable candidates.
8871 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8872 }
8873 assert(Result.isInvalid() &&
8874 "C++ binary operator overloading is missing candidates!");
8875 if (Result.isInvalid())
8876 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
8877 BinaryOperator::getOpcodeStr(Opc), OpLoc);
8878 return move(Result);
8879 }
8880
8881 case OR_Ambiguous:
8882 Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary)
8883 << BinaryOperator::getOpcodeStr(Opc)
8884 << Args[0]->getType() << Args[1]->getType()
8885 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8886 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
8887 BinaryOperator::getOpcodeStr(Opc), OpLoc);
8888 return ExprError();
8889
8890 case OR_Deleted:
8891 Diag(OpLoc, diag::err_ovl_deleted_oper)
8892 << Best->Function->isDeleted()
8893 << BinaryOperator::getOpcodeStr(Opc)
8894 << getDeletedOrUnavailableSuffix(Best->Function)
8895 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8896 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2);
8897 return ExprError();
8898 }
8899
8900 // We matched a built-in operator; build it.
8901 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8902 }
8903
8904 ExprResult
CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,SourceLocation RLoc,Expr * Base,Expr * Idx)8905 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
8906 SourceLocation RLoc,
8907 Expr *Base, Expr *Idx) {
8908 Expr *Args[2] = { Base, Idx };
8909 DeclarationName OpName =
8910 Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
8911
8912 // If either side is type-dependent, create an appropriate dependent
8913 // expression.
8914 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
8915
8916 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
8917 // CHECKME: no 'operator' keyword?
8918 DeclarationNameInfo OpNameInfo(OpName, LLoc);
8919 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
8920 UnresolvedLookupExpr *Fn
8921 = UnresolvedLookupExpr::Create(Context, NamingClass,
8922 NestedNameSpecifierLoc(), OpNameInfo,
8923 /*ADL*/ true, /*Overloaded*/ false,
8924 UnresolvedSetIterator(),
8925 UnresolvedSetIterator());
8926 // Can't add any actual overloads yet
8927
8928 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
8929 Args, 2,
8930 Context.DependentTy,
8931 VK_RValue,
8932 RLoc));
8933 }
8934
8935 if (Args[0]->getObjectKind() == OK_ObjCProperty) {
8936 ExprResult Result = ConvertPropertyForRValue(Args[0]);
8937 if (Result.isInvalid())
8938 return ExprError();
8939 Args[0] = Result.take();
8940 }
8941 if (Args[1]->getObjectKind() == OK_ObjCProperty) {
8942 ExprResult Result = ConvertPropertyForRValue(Args[1]);
8943 if (Result.isInvalid())
8944 return ExprError();
8945 Args[1] = Result.take();
8946 }
8947
8948 // Build an empty overload set.
8949 OverloadCandidateSet CandidateSet(LLoc);
8950
8951 // Subscript can only be overloaded as a member function.
8952
8953 // Add operator candidates that are member functions.
8954 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
8955
8956 // Add builtin operator candidates.
8957 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
8958
8959 // Perform overload resolution.
8960 OverloadCandidateSet::iterator Best;
8961 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
8962 case OR_Success: {
8963 // We found a built-in operator or an overloaded operator.
8964 FunctionDecl *FnDecl = Best->Function;
8965
8966 if (FnDecl) {
8967 // We matched an overloaded operator. Build a call to that
8968 // operator.
8969
8970 MarkDeclarationReferenced(LLoc, FnDecl);
8971
8972 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
8973 DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
8974
8975 // Convert the arguments.
8976 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
8977 ExprResult Arg0 =
8978 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
8979 Best->FoundDecl, Method);
8980 if (Arg0.isInvalid())
8981 return ExprError();
8982 Args[0] = Arg0.take();
8983
8984 // Convert the arguments.
8985 ExprResult InputInit
8986 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
8987 Context,
8988 FnDecl->getParamDecl(0)),
8989 SourceLocation(),
8990 Owned(Args[1]));
8991 if (InputInit.isInvalid())
8992 return ExprError();
8993
8994 Args[1] = InputInit.takeAs<Expr>();
8995
8996 // Determine the result type
8997 QualType ResultTy = FnDecl->getResultType();
8998 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8999 ResultTy = ResultTy.getNonLValueExprType(Context);
9000
9001 // Build the actual expression node.
9002 DeclarationNameLoc LocInfo;
9003 LocInfo.CXXOperatorName.BeginOpNameLoc = LLoc.getRawEncoding();
9004 LocInfo.CXXOperatorName.EndOpNameLoc = RLoc.getRawEncoding();
9005 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, LLoc, LocInfo);
9006 if (FnExpr.isInvalid())
9007 return ExprError();
9008
9009 CXXOperatorCallExpr *TheCall =
9010 new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
9011 FnExpr.take(), Args, 2,
9012 ResultTy, VK, RLoc);
9013
9014 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
9015 FnDecl))
9016 return ExprError();
9017
9018 return MaybeBindToTemporary(TheCall);
9019 } else {
9020 // We matched a built-in operator. Convert the arguments, then
9021 // break out so that we will build the appropriate built-in
9022 // operator node.
9023 ExprResult ArgsRes0 =
9024 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
9025 Best->Conversions[0], AA_Passing);
9026 if (ArgsRes0.isInvalid())
9027 return ExprError();
9028 Args[0] = ArgsRes0.take();
9029
9030 ExprResult ArgsRes1 =
9031 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
9032 Best->Conversions[1], AA_Passing);
9033 if (ArgsRes1.isInvalid())
9034 return ExprError();
9035 Args[1] = ArgsRes1.take();
9036
9037 break;
9038 }
9039 }
9040
9041 case OR_No_Viable_Function: {
9042 if (CandidateSet.empty())
9043 Diag(LLoc, diag::err_ovl_no_oper)
9044 << Args[0]->getType() << /*subscript*/ 0
9045 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9046 else
9047 Diag(LLoc, diag::err_ovl_no_viable_subscript)
9048 << Args[0]->getType()
9049 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9050 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
9051 "[]", LLoc);
9052 return ExprError();
9053 }
9054
9055 case OR_Ambiguous:
9056 Diag(LLoc, diag::err_ovl_ambiguous_oper_binary)
9057 << "[]"
9058 << Args[0]->getType() << Args[1]->getType()
9059 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9060 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
9061 "[]", LLoc);
9062 return ExprError();
9063
9064 case OR_Deleted:
9065 Diag(LLoc, diag::err_ovl_deleted_oper)
9066 << Best->Function->isDeleted() << "[]"
9067 << getDeletedOrUnavailableSuffix(Best->Function)
9068 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9069 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
9070 "[]", LLoc);
9071 return ExprError();
9072 }
9073
9074 // We matched a built-in operator; build it.
9075 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
9076 }
9077
9078 /// BuildCallToMemberFunction - Build a call to a member
9079 /// function. MemExpr is the expression that refers to the member
9080 /// function (and includes the object parameter), Args/NumArgs are the
9081 /// arguments to the function call (not including the object
9082 /// parameter). The caller needs to validate that the member
9083 /// expression refers to a non-static member function or an overloaded
9084 /// member function.
9085 ExprResult
BuildCallToMemberFunction(Scope * S,Expr * MemExprE,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc)9086 Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
9087 SourceLocation LParenLoc, Expr **Args,
9088 unsigned NumArgs, SourceLocation RParenLoc) {
9089 assert(MemExprE->getType() == Context.BoundMemberTy ||
9090 MemExprE->getType() == Context.OverloadTy);
9091
9092 // Dig out the member expression. This holds both the object
9093 // argument and the member function we're referring to.
9094 Expr *NakedMemExpr = MemExprE->IgnoreParens();
9095
9096 // Determine whether this is a call to a pointer-to-member function.
9097 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
9098 assert(op->getType() == Context.BoundMemberTy);
9099 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
9100
9101 QualType fnType =
9102 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
9103
9104 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
9105 QualType resultType = proto->getCallResultType(Context);
9106 ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
9107
9108 // Check that the object type isn't more qualified than the
9109 // member function we're calling.
9110 Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
9111
9112 QualType objectType = op->getLHS()->getType();
9113 if (op->getOpcode() == BO_PtrMemI)
9114 objectType = objectType->castAs<PointerType>()->getPointeeType();
9115 Qualifiers objectQuals = objectType.getQualifiers();
9116
9117 Qualifiers difference = objectQuals - funcQuals;
9118 difference.removeObjCGCAttr();
9119 difference.removeAddressSpace();
9120 if (difference) {
9121 std::string qualsString = difference.getAsString();
9122 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
9123 << fnType.getUnqualifiedType()
9124 << qualsString
9125 << (qualsString.find(' ') == std::string::npos ? 1 : 2);
9126 }
9127
9128 CXXMemberCallExpr *call
9129 = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
9130 resultType, valueKind, RParenLoc);
9131
9132 if (CheckCallReturnType(proto->getResultType(),
9133 op->getRHS()->getSourceRange().getBegin(),
9134 call, 0))
9135 return ExprError();
9136
9137 if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc))
9138 return ExprError();
9139
9140 return MaybeBindToTemporary(call);
9141 }
9142
9143 MemberExpr *MemExpr;
9144 CXXMethodDecl *Method = 0;
9145 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
9146 NestedNameSpecifier *Qualifier = 0;
9147 if (isa<MemberExpr>(NakedMemExpr)) {
9148 MemExpr = cast<MemberExpr>(NakedMemExpr);
9149 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
9150 FoundDecl = MemExpr->getFoundDecl();
9151 Qualifier = MemExpr->getQualifier();
9152 } else {
9153 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
9154 Qualifier = UnresExpr->getQualifier();
9155
9156 QualType ObjectType = UnresExpr->getBaseType();
9157 Expr::Classification ObjectClassification
9158 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
9159 : UnresExpr->getBase()->Classify(Context);
9160
9161 // Add overload candidates
9162 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
9163
9164 // FIXME: avoid copy.
9165 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
9166 if (UnresExpr->hasExplicitTemplateArgs()) {
9167 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
9168 TemplateArgs = &TemplateArgsBuffer;
9169 }
9170
9171 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
9172 E = UnresExpr->decls_end(); I != E; ++I) {
9173
9174 NamedDecl *Func = *I;
9175 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
9176 if (isa<UsingShadowDecl>(Func))
9177 Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
9178
9179
9180 // Microsoft supports direct constructor calls.
9181 if (getLangOptions().Microsoft && isa<CXXConstructorDecl>(Func)) {
9182 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs,
9183 CandidateSet);
9184 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
9185 // If explicit template arguments were provided, we can't call a
9186 // non-template member function.
9187 if (TemplateArgs)
9188 continue;
9189
9190 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
9191 ObjectClassification,
9192 Args, NumArgs, CandidateSet,
9193 /*SuppressUserConversions=*/false);
9194 } else {
9195 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
9196 I.getPair(), ActingDC, TemplateArgs,
9197 ObjectType, ObjectClassification,
9198 Args, NumArgs, CandidateSet,
9199 /*SuppressUsedConversions=*/false);
9200 }
9201 }
9202
9203 DeclarationName DeclName = UnresExpr->getMemberName();
9204
9205 OverloadCandidateSet::iterator Best;
9206 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
9207 Best)) {
9208 case OR_Success:
9209 Method = cast<CXXMethodDecl>(Best->Function);
9210 MarkDeclarationReferenced(UnresExpr->getMemberLoc(), Method);
9211 FoundDecl = Best->FoundDecl;
9212 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
9213 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
9214 break;
9215
9216 case OR_No_Viable_Function:
9217 Diag(UnresExpr->getMemberLoc(),
9218 diag::err_ovl_no_viable_member_function_in_call)
9219 << DeclName << MemExprE->getSourceRange();
9220 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9221 // FIXME: Leaking incoming expressions!
9222 return ExprError();
9223
9224 case OR_Ambiguous:
9225 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
9226 << DeclName << MemExprE->getSourceRange();
9227 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9228 // FIXME: Leaking incoming expressions!
9229 return ExprError();
9230
9231 case OR_Deleted:
9232 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
9233 << Best->Function->isDeleted()
9234 << DeclName
9235 << getDeletedOrUnavailableSuffix(Best->Function)
9236 << MemExprE->getSourceRange();
9237 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9238 // FIXME: Leaking incoming expressions!
9239 return ExprError();
9240 }
9241
9242 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
9243
9244 // If overload resolution picked a static member, build a
9245 // non-member call based on that function.
9246 if (Method->isStatic()) {
9247 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
9248 Args, NumArgs, RParenLoc);
9249 }
9250
9251 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
9252 }
9253
9254 QualType ResultType = Method->getResultType();
9255 ExprValueKind VK = Expr::getValueKindForType(ResultType);
9256 ResultType = ResultType.getNonLValueExprType(Context);
9257
9258 assert(Method && "Member call to something that isn't a method?");
9259 CXXMemberCallExpr *TheCall =
9260 new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
9261 ResultType, VK, RParenLoc);
9262
9263 // Check for a valid return type.
9264 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
9265 TheCall, Method))
9266 return ExprError();
9267
9268 // Convert the object argument (for a non-static member function call).
9269 // We only need to do this if there was actually an overload; otherwise
9270 // it was done at lookup.
9271 if (!Method->isStatic()) {
9272 ExprResult ObjectArg =
9273 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
9274 FoundDecl, Method);
9275 if (ObjectArg.isInvalid())
9276 return ExprError();
9277 MemExpr->setBase(ObjectArg.take());
9278 }
9279
9280 // Convert the rest of the arguments
9281 const FunctionProtoType *Proto =
9282 Method->getType()->getAs<FunctionProtoType>();
9283 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
9284 RParenLoc))
9285 return ExprError();
9286
9287 if (CheckFunctionCall(Method, TheCall))
9288 return ExprError();
9289
9290 if ((isa<CXXConstructorDecl>(CurContext) ||
9291 isa<CXXDestructorDecl>(CurContext)) &&
9292 TheCall->getMethodDecl()->isPure()) {
9293 const CXXMethodDecl *MD = TheCall->getMethodDecl();
9294
9295 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
9296 Diag(MemExpr->getLocStart(),
9297 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
9298 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
9299 << MD->getParent()->getDeclName();
9300
9301 Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
9302 }
9303 }
9304 return MaybeBindToTemporary(TheCall);
9305 }
9306
9307 /// BuildCallToObjectOfClassType - Build a call to an object of class
9308 /// type (C++ [over.call.object]), which can end up invoking an
9309 /// overloaded function call operator (@c operator()) or performing a
9310 /// user-defined conversion on the object argument.
9311 ExprResult
BuildCallToObjectOfClassType(Scope * S,Expr * Obj,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc)9312 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
9313 SourceLocation LParenLoc,
9314 Expr **Args, unsigned NumArgs,
9315 SourceLocation RParenLoc) {
9316 ExprResult Object = Owned(Obj);
9317 if (Object.get()->getObjectKind() == OK_ObjCProperty) {
9318 Object = ConvertPropertyForRValue(Object.take());
9319 if (Object.isInvalid())
9320 return ExprError();
9321 }
9322
9323 assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
9324 const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
9325
9326 // C++ [over.call.object]p1:
9327 // If the primary-expression E in the function call syntax
9328 // evaluates to a class object of type "cv T", then the set of
9329 // candidate functions includes at least the function call
9330 // operators of T. The function call operators of T are obtained by
9331 // ordinary lookup of the name operator() in the context of
9332 // (E).operator().
9333 OverloadCandidateSet CandidateSet(LParenLoc);
9334 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
9335
9336 if (RequireCompleteType(LParenLoc, Object.get()->getType(),
9337 PDiag(diag::err_incomplete_object_call)
9338 << Object.get()->getSourceRange()))
9339 return true;
9340
9341 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
9342 LookupQualifiedName(R, Record->getDecl());
9343 R.suppressDiagnostics();
9344
9345 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
9346 Oper != OperEnd; ++Oper) {
9347 AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
9348 Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
9349 /*SuppressUserConversions=*/ false);
9350 }
9351
9352 // C++ [over.call.object]p2:
9353 // In addition, for each conversion function declared in T of the
9354 // form
9355 //
9356 // operator conversion-type-id () cv-qualifier;
9357 //
9358 // where cv-qualifier is the same cv-qualification as, or a
9359 // greater cv-qualification than, cv, and where conversion-type-id
9360 // denotes the type "pointer to function of (P1,...,Pn) returning
9361 // R", or the type "reference to pointer to function of
9362 // (P1,...,Pn) returning R", or the type "reference to function
9363 // of (P1,...,Pn) returning R", a surrogate call function [...]
9364 // is also considered as a candidate function. Similarly,
9365 // surrogate call functions are added to the set of candidate
9366 // functions for each conversion function declared in an
9367 // accessible base class provided the function is not hidden
9368 // within T by another intervening declaration.
9369 const UnresolvedSetImpl *Conversions
9370 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
9371 for (UnresolvedSetImpl::iterator I = Conversions->begin(),
9372 E = Conversions->end(); I != E; ++I) {
9373 NamedDecl *D = *I;
9374 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
9375 if (isa<UsingShadowDecl>(D))
9376 D = cast<UsingShadowDecl>(D)->getTargetDecl();
9377
9378 // Skip over templated conversion functions; they aren't
9379 // surrogates.
9380 if (isa<FunctionTemplateDecl>(D))
9381 continue;
9382
9383 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
9384
9385 // Strip the reference type (if any) and then the pointer type (if
9386 // any) to get down to what might be a function type.
9387 QualType ConvType = Conv->getConversionType().getNonReferenceType();
9388 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
9389 ConvType = ConvPtrType->getPointeeType();
9390
9391 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
9392 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
9393 Object.get(), Args, NumArgs, CandidateSet);
9394 }
9395
9396 // Perform overload resolution.
9397 OverloadCandidateSet::iterator Best;
9398 switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
9399 Best)) {
9400 case OR_Success:
9401 // Overload resolution succeeded; we'll build the appropriate call
9402 // below.
9403 break;
9404
9405 case OR_No_Viable_Function:
9406 if (CandidateSet.empty())
9407 Diag(Object.get()->getSourceRange().getBegin(), diag::err_ovl_no_oper)
9408 << Object.get()->getType() << /*call*/ 1
9409 << Object.get()->getSourceRange();
9410 else
9411 Diag(Object.get()->getSourceRange().getBegin(),
9412 diag::err_ovl_no_viable_object_call)
9413 << Object.get()->getType() << Object.get()->getSourceRange();
9414 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9415 break;
9416
9417 case OR_Ambiguous:
9418 Diag(Object.get()->getSourceRange().getBegin(),
9419 diag::err_ovl_ambiguous_object_call)
9420 << Object.get()->getType() << Object.get()->getSourceRange();
9421 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
9422 break;
9423
9424 case OR_Deleted:
9425 Diag(Object.get()->getSourceRange().getBegin(),
9426 diag::err_ovl_deleted_object_call)
9427 << Best->Function->isDeleted()
9428 << Object.get()->getType()
9429 << getDeletedOrUnavailableSuffix(Best->Function)
9430 << Object.get()->getSourceRange();
9431 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9432 break;
9433 }
9434
9435 if (Best == CandidateSet.end())
9436 return true;
9437
9438 if (Best->Function == 0) {
9439 // Since there is no function declaration, this is one of the
9440 // surrogate candidates. Dig out the conversion function.
9441 CXXConversionDecl *Conv
9442 = cast<CXXConversionDecl>(
9443 Best->Conversions[0].UserDefined.ConversionFunction);
9444
9445 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
9446 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
9447
9448 // We selected one of the surrogate functions that converts the
9449 // object parameter to a function pointer. Perform the conversion
9450 // on the object argument, then let ActOnCallExpr finish the job.
9451
9452 // Create an implicit member expr to refer to the conversion operator.
9453 // and then call it.
9454 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, Conv);
9455 if (Call.isInvalid())
9456 return ExprError();
9457
9458 return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
9459 RParenLoc);
9460 }
9461
9462 MarkDeclarationReferenced(LParenLoc, Best->Function);
9463 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
9464 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
9465
9466 // We found an overloaded operator(). Build a CXXOperatorCallExpr
9467 // that calls this method, using Object for the implicit object
9468 // parameter and passing along the remaining arguments.
9469 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
9470 const FunctionProtoType *Proto =
9471 Method->getType()->getAs<FunctionProtoType>();
9472
9473 unsigned NumArgsInProto = Proto->getNumArgs();
9474 unsigned NumArgsToCheck = NumArgs;
9475
9476 // Build the full argument list for the method call (the
9477 // implicit object parameter is placed at the beginning of the
9478 // list).
9479 Expr **MethodArgs;
9480 if (NumArgs < NumArgsInProto) {
9481 NumArgsToCheck = NumArgsInProto;
9482 MethodArgs = new Expr*[NumArgsInProto + 1];
9483 } else {
9484 MethodArgs = new Expr*[NumArgs + 1];
9485 }
9486 MethodArgs[0] = Object.get();
9487 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
9488 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
9489
9490 ExprResult NewFn = CreateFunctionRefExpr(*this, Method);
9491 if (NewFn.isInvalid())
9492 return true;
9493
9494 // Once we've built TheCall, all of the expressions are properly
9495 // owned.
9496 QualType ResultTy = Method->getResultType();
9497 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9498 ResultTy = ResultTy.getNonLValueExprType(Context);
9499
9500 CXXOperatorCallExpr *TheCall =
9501 new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
9502 MethodArgs, NumArgs + 1,
9503 ResultTy, VK, RParenLoc);
9504 delete [] MethodArgs;
9505
9506 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
9507 Method))
9508 return true;
9509
9510 // We may have default arguments. If so, we need to allocate more
9511 // slots in the call for them.
9512 if (NumArgs < NumArgsInProto)
9513 TheCall->setNumArgs(Context, NumArgsInProto + 1);
9514 else if (NumArgs > NumArgsInProto)
9515 NumArgsToCheck = NumArgsInProto;
9516
9517 bool IsError = false;
9518
9519 // Initialize the implicit object parameter.
9520 ExprResult ObjRes =
9521 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
9522 Best->FoundDecl, Method);
9523 if (ObjRes.isInvalid())
9524 IsError = true;
9525 else
9526 Object = move(ObjRes);
9527 TheCall->setArg(0, Object.take());
9528
9529 // Check the argument types.
9530 for (unsigned i = 0; i != NumArgsToCheck; i++) {
9531 Expr *Arg;
9532 if (i < NumArgs) {
9533 Arg = Args[i];
9534
9535 // Pass the argument.
9536
9537 ExprResult InputInit
9538 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
9539 Context,
9540 Method->getParamDecl(i)),
9541 SourceLocation(), Arg);
9542
9543 IsError |= InputInit.isInvalid();
9544 Arg = InputInit.takeAs<Expr>();
9545 } else {
9546 ExprResult DefArg
9547 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
9548 if (DefArg.isInvalid()) {
9549 IsError = true;
9550 break;
9551 }
9552
9553 Arg = DefArg.takeAs<Expr>();
9554 }
9555
9556 TheCall->setArg(i + 1, Arg);
9557 }
9558
9559 // If this is a variadic call, handle args passed through "...".
9560 if (Proto->isVariadic()) {
9561 // Promote the arguments (C99 6.5.2.2p7).
9562 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
9563 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
9564 IsError |= Arg.isInvalid();
9565 TheCall->setArg(i + 1, Arg.take());
9566 }
9567 }
9568
9569 if (IsError) return true;
9570
9571 if (CheckFunctionCall(Method, TheCall))
9572 return true;
9573
9574 return MaybeBindToTemporary(TheCall);
9575 }
9576
9577 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
9578 /// (if one exists), where @c Base is an expression of class type and
9579 /// @c Member is the name of the member we're trying to find.
9580 ExprResult
BuildOverloadedArrowExpr(Scope * S,Expr * Base,SourceLocation OpLoc)9581 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
9582 assert(Base->getType()->isRecordType() &&
9583 "left-hand side must have class type");
9584
9585 if (Base->getObjectKind() == OK_ObjCProperty) {
9586 ExprResult Result = ConvertPropertyForRValue(Base);
9587 if (Result.isInvalid())
9588 return ExprError();
9589 Base = Result.take();
9590 }
9591
9592 SourceLocation Loc = Base->getExprLoc();
9593
9594 // C++ [over.ref]p1:
9595 //
9596 // [...] An expression x->m is interpreted as (x.operator->())->m
9597 // for a class object x of type T if T::operator->() exists and if
9598 // the operator is selected as the best match function by the
9599 // overload resolution mechanism (13.3).
9600 DeclarationName OpName =
9601 Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
9602 OverloadCandidateSet CandidateSet(Loc);
9603 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
9604
9605 if (RequireCompleteType(Loc, Base->getType(),
9606 PDiag(diag::err_typecheck_incomplete_tag)
9607 << Base->getSourceRange()))
9608 return ExprError();
9609
9610 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
9611 LookupQualifiedName(R, BaseRecord->getDecl());
9612 R.suppressDiagnostics();
9613
9614 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
9615 Oper != OperEnd; ++Oper) {
9616 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
9617 0, 0, CandidateSet, /*SuppressUserConversions=*/false);
9618 }
9619
9620 // Perform overload resolution.
9621 OverloadCandidateSet::iterator Best;
9622 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
9623 case OR_Success:
9624 // Overload resolution succeeded; we'll build the call below.
9625 break;
9626
9627 case OR_No_Viable_Function:
9628 if (CandidateSet.empty())
9629 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
9630 << Base->getType() << Base->getSourceRange();
9631 else
9632 Diag(OpLoc, diag::err_ovl_no_viable_oper)
9633 << "operator->" << Base->getSourceRange();
9634 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
9635 return ExprError();
9636
9637 case OR_Ambiguous:
9638 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
9639 << "->" << Base->getType() << Base->getSourceRange();
9640 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1);
9641 return ExprError();
9642
9643 case OR_Deleted:
9644 Diag(OpLoc, diag::err_ovl_deleted_oper)
9645 << Best->Function->isDeleted()
9646 << "->"
9647 << getDeletedOrUnavailableSuffix(Best->Function)
9648 << Base->getSourceRange();
9649 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
9650 return ExprError();
9651 }
9652
9653 MarkDeclarationReferenced(OpLoc, Best->Function);
9654 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
9655 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
9656
9657 // Convert the object parameter.
9658 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
9659 ExprResult BaseResult =
9660 PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
9661 Best->FoundDecl, Method);
9662 if (BaseResult.isInvalid())
9663 return ExprError();
9664 Base = BaseResult.take();
9665
9666 // Build the operator call.
9667 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method);
9668 if (FnExpr.isInvalid())
9669 return ExprError();
9670
9671 QualType ResultTy = Method->getResultType();
9672 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9673 ResultTy = ResultTy.getNonLValueExprType(Context);
9674 CXXOperatorCallExpr *TheCall =
9675 new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
9676 &Base, 1, ResultTy, VK, OpLoc);
9677
9678 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
9679 Method))
9680 return ExprError();
9681
9682 return MaybeBindToTemporary(TheCall);
9683 }
9684
9685 /// FixOverloadedFunctionReference - E is an expression that refers to
9686 /// a C++ overloaded function (possibly with some parentheses and
9687 /// perhaps a '&' around it). We have resolved the overloaded function
9688 /// to the function declaration Fn, so patch up the expression E to
9689 /// refer (possibly indirectly) to Fn. Returns the new expr.
FixOverloadedFunctionReference(Expr * E,DeclAccessPair Found,FunctionDecl * Fn)9690 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
9691 FunctionDecl *Fn) {
9692 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
9693 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
9694 Found, Fn);
9695 if (SubExpr == PE->getSubExpr())
9696 return PE;
9697
9698 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
9699 }
9700
9701 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
9702 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
9703 Found, Fn);
9704 assert(Context.hasSameType(ICE->getSubExpr()->getType(),
9705 SubExpr->getType()) &&
9706 "Implicit cast type cannot be determined from overload");
9707 assert(ICE->path_empty() && "fixing up hierarchy conversion?");
9708 if (SubExpr == ICE->getSubExpr())
9709 return ICE;
9710
9711 return ImplicitCastExpr::Create(Context, ICE->getType(),
9712 ICE->getCastKind(),
9713 SubExpr, 0,
9714 ICE->getValueKind());
9715 }
9716
9717 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
9718 assert(UnOp->getOpcode() == UO_AddrOf &&
9719 "Can only take the address of an overloaded function");
9720 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
9721 if (Method->isStatic()) {
9722 // Do nothing: static member functions aren't any different
9723 // from non-member functions.
9724 } else {
9725 // Fix the sub expression, which really has to be an
9726 // UnresolvedLookupExpr holding an overloaded member function
9727 // or template.
9728 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
9729 Found, Fn);
9730 if (SubExpr == UnOp->getSubExpr())
9731 return UnOp;
9732
9733 assert(isa<DeclRefExpr>(SubExpr)
9734 && "fixed to something other than a decl ref");
9735 assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
9736 && "fixed to a member ref with no nested name qualifier");
9737
9738 // We have taken the address of a pointer to member
9739 // function. Perform the computation here so that we get the
9740 // appropriate pointer to member type.
9741 QualType ClassType
9742 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
9743 QualType MemPtrType
9744 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
9745
9746 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
9747 VK_RValue, OK_Ordinary,
9748 UnOp->getOperatorLoc());
9749 }
9750 }
9751 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
9752 Found, Fn);
9753 if (SubExpr == UnOp->getSubExpr())
9754 return UnOp;
9755
9756 return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
9757 Context.getPointerType(SubExpr->getType()),
9758 VK_RValue, OK_Ordinary,
9759 UnOp->getOperatorLoc());
9760 }
9761
9762 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
9763 // FIXME: avoid copy.
9764 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
9765 if (ULE->hasExplicitTemplateArgs()) {
9766 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
9767 TemplateArgs = &TemplateArgsBuffer;
9768 }
9769
9770 return DeclRefExpr::Create(Context,
9771 ULE->getQualifierLoc(),
9772 Fn,
9773 ULE->getNameLoc(),
9774 Fn->getType(),
9775 VK_LValue,
9776 Found.getDecl(),
9777 TemplateArgs);
9778 }
9779
9780 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
9781 // FIXME: avoid copy.
9782 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
9783 if (MemExpr->hasExplicitTemplateArgs()) {
9784 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
9785 TemplateArgs = &TemplateArgsBuffer;
9786 }
9787
9788 Expr *Base;
9789
9790 // If we're filling in a static method where we used to have an
9791 // implicit member access, rewrite to a simple decl ref.
9792 if (MemExpr->isImplicitAccess()) {
9793 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
9794 return DeclRefExpr::Create(Context,
9795 MemExpr->getQualifierLoc(),
9796 Fn,
9797 MemExpr->getMemberLoc(),
9798 Fn->getType(),
9799 VK_LValue,
9800 Found.getDecl(),
9801 TemplateArgs);
9802 } else {
9803 SourceLocation Loc = MemExpr->getMemberLoc();
9804 if (MemExpr->getQualifier())
9805 Loc = MemExpr->getQualifierLoc().getBeginLoc();
9806 Base = new (Context) CXXThisExpr(Loc,
9807 MemExpr->getBaseType(),
9808 /*isImplicit=*/true);
9809 }
9810 } else
9811 Base = MemExpr->getBase();
9812
9813 ExprValueKind valueKind;
9814 QualType type;
9815 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
9816 valueKind = VK_LValue;
9817 type = Fn->getType();
9818 } else {
9819 valueKind = VK_RValue;
9820 type = Context.BoundMemberTy;
9821 }
9822
9823 return MemberExpr::Create(Context, Base,
9824 MemExpr->isArrow(),
9825 MemExpr->getQualifierLoc(),
9826 Fn,
9827 Found,
9828 MemExpr->getMemberNameInfo(),
9829 TemplateArgs,
9830 type, valueKind, OK_Ordinary);
9831 }
9832
9833 llvm_unreachable("Invalid reference to overloaded function");
9834 return E;
9835 }
9836
FixOverloadedFunctionReference(ExprResult E,DeclAccessPair Found,FunctionDecl * Fn)9837 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
9838 DeclAccessPair Found,
9839 FunctionDecl *Fn) {
9840 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
9841 }
9842
9843 } // end namespace clang
9844