• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the classes used to generate code from scalar expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_EXPANDER_H
15 #define LLVM_ANALYSIS_SCALAREVOLUTION_EXPANDER_H
16 
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
19 #include "llvm/Support/IRBuilder.h"
20 #include "llvm/Support/TargetFolder.h"
21 #include "llvm/Support/ValueHandle.h"
22 #include <set>
23 
24 namespace llvm {
25   /// SCEVExpander - This class uses information about analyze scalars to
26   /// rewrite expressions in canonical form.
27   ///
28   /// Clients should create an instance of this class when rewriting is needed,
29   /// and destroy it when finished to allow the release of the associated
30   /// memory.
31   class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
32     ScalarEvolution &SE;
33 
34     // New instructions receive a name to identifies them with the current pass.
35     const char* IVName;
36 
37     std::map<std::pair<const SCEV *, Instruction *>, AssertingVH<Value> >
38       InsertedExpressions;
39     std::set<AssertingVH<Value> > InsertedValues;
40     std::set<AssertingVH<Value> > InsertedPostIncValues;
41 
42     /// RelevantLoops - A memoization of the "relevant" loop for a given SCEV.
43     DenseMap<const SCEV *, const Loop *> RelevantLoops;
44 
45     /// PostIncLoops - Addrecs referring to any of the given loops are expanded
46     /// in post-inc mode. For example, expanding {1,+,1}<L> in post-inc mode
47     /// returns the add instruction that adds one to the phi for {0,+,1}<L>,
48     /// as opposed to a new phi starting at 1. This is only supported in
49     /// non-canonical mode.
50     PostIncLoopSet PostIncLoops;
51 
52     /// IVIncInsertPos - When this is non-null, addrecs expanded in the
53     /// loop it indicates should be inserted with increments at
54     /// IVIncInsertPos.
55     const Loop *IVIncInsertLoop;
56 
57     /// IVIncInsertPos - When expanding addrecs in the IVIncInsertLoop loop,
58     /// insert the IV increment at this position.
59     Instruction *IVIncInsertPos;
60 
61     /// CanonicalMode - When true, expressions are expanded in "canonical"
62     /// form. In particular, addrecs are expanded as arithmetic based on
63     /// a canonical induction variable. When false, expression are expanded
64     /// in a more literal form.
65     bool CanonicalMode;
66 
67     typedef IRBuilder<true, TargetFolder> BuilderType;
68     BuilderType Builder;
69 
70     friend struct SCEVVisitor<SCEVExpander, Value*>;
71 
72   public:
73     /// SCEVExpander - Construct a SCEVExpander in "canonical" mode.
74     explicit SCEVExpander(ScalarEvolution &se, const char *name)
75       : SE(se), IVName(name), IVIncInsertLoop(0), IVIncInsertPos(0),
76         CanonicalMode(true), Builder(se.getContext(), TargetFolder(se.TD)) {}
77 
78     /// clear - Erase the contents of the InsertedExpressions map so that users
79     /// trying to expand the same expression into multiple BasicBlocks or
80     /// different places within the same BasicBlock can do so.
81     void clear() {
82       InsertedExpressions.clear();
83       InsertedValues.clear();
84       InsertedPostIncValues.clear();
85     }
86 
87     /// getOrInsertCanonicalInductionVariable - This method returns the
88     /// canonical induction variable of the specified type for the specified
89     /// loop (inserting one if there is none).  A canonical induction variable
90     /// starts at zero and steps by one on each iteration.
91     PHINode *getOrInsertCanonicalInductionVariable(const Loop *L,
92                                                    Type *Ty);
93 
94     /// expandCodeFor - Insert code to directly compute the specified SCEV
95     /// expression into the program.  The inserted code is inserted into the
96     /// specified block.
97     Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I);
98 
99     /// setIVIncInsertPos - Set the current IV increment loop and position.
100     void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
101       assert(!CanonicalMode &&
102              "IV increment positions are not supported in CanonicalMode");
103       IVIncInsertLoop = L;
104       IVIncInsertPos = Pos;
105     }
106 
107     /// setPostInc - Enable post-inc expansion for addrecs referring to the
108     /// given loops. Post-inc expansion is only supported in non-canonical
109     /// mode.
110     void setPostInc(const PostIncLoopSet &L) {
111       assert(!CanonicalMode &&
112              "Post-inc expansion is not supported in CanonicalMode");
113       PostIncLoops = L;
114     }
115 
116     /// clearPostInc - Disable all post-inc expansion.
117     void clearPostInc() {
118       PostIncLoops.clear();
119 
120       // When we change the post-inc loop set, cached expansions may no
121       // longer be valid.
122       InsertedPostIncValues.clear();
123     }
124 
125     /// disableCanonicalMode - Disable the behavior of expanding expressions in
126     /// canonical form rather than in a more literal form. Non-canonical mode
127     /// is useful for late optimization passes.
128     void disableCanonicalMode() { CanonicalMode = false; }
129 
130     /// clearInsertPoint - Clear the current insertion point. This is useful
131     /// if the instruction that had been serving as the insertion point may
132     /// have been deleted.
133     void clearInsertPoint() {
134       Builder.ClearInsertionPoint();
135     }
136 
137   private:
138     LLVMContext &getContext() const { return SE.getContext(); }
139 
140     /// InsertBinop - Insert the specified binary operator, doing a small amount
141     /// of work to avoid inserting an obviously redundant operation.
142     Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS);
143 
144     /// ReuseOrCreateCast - Arange for there to be a cast of V to Ty at IP,
145     /// reusing an existing cast if a suitable one exists, moving an existing
146     /// cast if a suitable one exists but isn't in the right place, or
147     /// or creating a new one.
148     Value *ReuseOrCreateCast(Value *V, Type *Ty,
149                              Instruction::CastOps Op,
150                              BasicBlock::iterator IP);
151 
152     /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
153     /// which must be possible with a noop cast, doing what we can to
154     /// share the casts.
155     Value *InsertNoopCastOfTo(Value *V, Type *Ty);
156 
157     /// expandAddToGEP - Expand a SCEVAddExpr with a pointer type into a GEP
158     /// instead of using ptrtoint+arithmetic+inttoptr.
159     Value *expandAddToGEP(const SCEV *const *op_begin,
160                           const SCEV *const *op_end,
161                           PointerType *PTy, Type *Ty, Value *V);
162 
163     Value *expand(const SCEV *S);
164 
165     /// expandCodeFor - Insert code to directly compute the specified SCEV
166     /// expression into the program.  The inserted code is inserted into the
167     /// SCEVExpander's current insertion point. If a type is specified, the
168     /// result will be expanded to have that type, with a cast if necessary.
169     Value *expandCodeFor(const SCEV *SH, Type *Ty = 0);
170 
171     /// isInsertedInstruction - Return true if the specified instruction was
172     /// inserted by the code rewriter.  If so, the client should not modify the
173     /// instruction.
174     bool isInsertedInstruction(Instruction *I) const {
175       return InsertedValues.count(I) || InsertedPostIncValues.count(I);
176     }
177 
178     /// getRelevantLoop - Determine the most "relevant" loop for the given SCEV.
179     const Loop *getRelevantLoop(const SCEV *);
180 
181     Value *visitConstant(const SCEVConstant *S) {
182       return S->getValue();
183     }
184 
185     Value *visitTruncateExpr(const SCEVTruncateExpr *S);
186 
187     Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
188 
189     Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
190 
191     Value *visitAddExpr(const SCEVAddExpr *S);
192 
193     Value *visitMulExpr(const SCEVMulExpr *S);
194 
195     Value *visitUDivExpr(const SCEVUDivExpr *S);
196 
197     Value *visitAddRecExpr(const SCEVAddRecExpr *S);
198 
199     Value *visitSMaxExpr(const SCEVSMaxExpr *S);
200 
201     Value *visitUMaxExpr(const SCEVUMaxExpr *S);
202 
203     Value *visitUnknown(const SCEVUnknown *S) {
204       return S->getValue();
205     }
206 
207     void rememberInstruction(Value *I);
208 
209     void restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I);
210 
211     Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
212     PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
213                                        const Loop *L,
214                                        Type *ExpandTy,
215                                        Type *IntTy);
216   };
217 }
218 
219 #endif
220