• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #include "api.h"
31 #include "arguments.h"
32 #include "bootstrapper.h"
33 #include "codegen.h"
34 #include "debug.h"
35 #include "deoptimizer.h"
36 #include "execution.h"
37 #include "full-codegen.h"
38 #include "hydrogen.h"
39 #include "objects-inl.h"
40 #include "objects-visiting.h"
41 #include "macro-assembler.h"
42 #include "safepoint-table.h"
43 #include "scanner-base.h"
44 #include "scopeinfo.h"
45 #include "string-stream.h"
46 #include "utils.h"
47 #include "vm-state-inl.h"
48 
49 #ifdef ENABLE_DISASSEMBLER
50 #include "disasm.h"
51 #include "disassembler.h"
52 #endif
53 
54 namespace v8 {
55 namespace internal {
56 
57 // Getters and setters are stored in a fixed array property.  These are
58 // constants for their indices.
59 const int kGetterIndex = 0;
60 const int kSetterIndex = 1;
61 
62 
CreateJSValue(JSFunction * constructor,Object * value)63 MUST_USE_RESULT static MaybeObject* CreateJSValue(JSFunction* constructor,
64                                                   Object* value) {
65   Object* result;
66   { MaybeObject* maybe_result =
67         constructor->GetHeap()->AllocateJSObject(constructor);
68     if (!maybe_result->ToObject(&result)) return maybe_result;
69   }
70   JSValue::cast(result)->set_value(value);
71   return result;
72 }
73 
74 
ToObject(Context * global_context)75 MaybeObject* Object::ToObject(Context* global_context) {
76   if (IsNumber()) {
77     return CreateJSValue(global_context->number_function(), this);
78   } else if (IsBoolean()) {
79     return CreateJSValue(global_context->boolean_function(), this);
80   } else if (IsString()) {
81     return CreateJSValue(global_context->string_function(), this);
82   }
83   ASSERT(IsJSObject());
84   return this;
85 }
86 
87 
ToObject()88 MaybeObject* Object::ToObject() {
89   if (IsJSObject()) {
90     return this;
91   } else if (IsNumber()) {
92     Isolate* isolate = Isolate::Current();
93     Context* global_context = isolate->context()->global_context();
94     return CreateJSValue(global_context->number_function(), this);
95   } else if (IsBoolean()) {
96     Isolate* isolate = HeapObject::cast(this)->GetIsolate();
97     Context* global_context = isolate->context()->global_context();
98     return CreateJSValue(global_context->boolean_function(), this);
99   } else if (IsString()) {
100     Isolate* isolate = HeapObject::cast(this)->GetIsolate();
101     Context* global_context = isolate->context()->global_context();
102     return CreateJSValue(global_context->string_function(), this);
103   }
104 
105   // Throw a type error.
106   return Failure::InternalError();
107 }
108 
109 
ToBoolean()110 Object* Object::ToBoolean() {
111   if (IsTrue()) return this;
112   if (IsFalse()) return this;
113   if (IsSmi()) {
114     return Isolate::Current()->heap()->ToBoolean(Smi::cast(this)->value() != 0);
115   }
116   HeapObject* heap_object = HeapObject::cast(this);
117   if (heap_object->IsUndefined() || heap_object->IsNull()) {
118     return heap_object->GetHeap()->false_value();
119   }
120   // Undetectable object is false
121   if (heap_object->IsUndetectableObject()) {
122     return heap_object->GetHeap()->false_value();
123   }
124   if (heap_object->IsString()) {
125     return heap_object->GetHeap()->ToBoolean(
126         String::cast(this)->length() != 0);
127   }
128   if (heap_object->IsHeapNumber()) {
129     return HeapNumber::cast(this)->HeapNumberToBoolean();
130   }
131   return heap_object->GetHeap()->true_value();
132 }
133 
134 
Lookup(String * name,LookupResult * result)135 void Object::Lookup(String* name, LookupResult* result) {
136   Object* holder = NULL;
137   if (IsSmi()) {
138     Heap* heap = Isolate::Current()->heap();
139     Context* global_context = heap->isolate()->context()->global_context();
140     holder = global_context->number_function()->instance_prototype();
141   } else {
142     HeapObject* heap_object = HeapObject::cast(this);
143     if (heap_object->IsJSObject()) {
144       return JSObject::cast(this)->Lookup(name, result);
145     }
146     Heap* heap = heap_object->GetHeap();
147     if (heap_object->IsString()) {
148       Context* global_context = heap->isolate()->context()->global_context();
149       holder = global_context->string_function()->instance_prototype();
150     } else if (heap_object->IsHeapNumber()) {
151       Context* global_context = heap->isolate()->context()->global_context();
152       holder = global_context->number_function()->instance_prototype();
153     } else if (heap_object->IsBoolean()) {
154       Context* global_context = heap->isolate()->context()->global_context();
155       holder = global_context->boolean_function()->instance_prototype();
156     }
157   }
158   ASSERT(holder != NULL);  // Cannot handle null or undefined.
159   JSObject::cast(holder)->Lookup(name, result);
160 }
161 
162 
GetPropertyWithReceiver(Object * receiver,String * name,PropertyAttributes * attributes)163 MaybeObject* Object::GetPropertyWithReceiver(Object* receiver,
164                                              String* name,
165                                              PropertyAttributes* attributes) {
166   LookupResult result;
167   Lookup(name, &result);
168   MaybeObject* value = GetProperty(receiver, &result, name, attributes);
169   ASSERT(*attributes <= ABSENT);
170   return value;
171 }
172 
173 
GetPropertyWithCallback(Object * receiver,Object * structure,String * name,Object * holder)174 MaybeObject* Object::GetPropertyWithCallback(Object* receiver,
175                                              Object* structure,
176                                              String* name,
177                                              Object* holder) {
178   Isolate* isolate = name->GetIsolate();
179   // To accommodate both the old and the new api we switch on the
180   // data structure used to store the callbacks.  Eventually proxy
181   // callbacks should be phased out.
182   if (structure->IsProxy()) {
183     AccessorDescriptor* callback =
184         reinterpret_cast<AccessorDescriptor*>(Proxy::cast(structure)->proxy());
185     MaybeObject* value = (callback->getter)(receiver, callback->data);
186     RETURN_IF_SCHEDULED_EXCEPTION(isolate);
187     return value;
188   }
189 
190   // api style callbacks.
191   if (structure->IsAccessorInfo()) {
192     AccessorInfo* data = AccessorInfo::cast(structure);
193     Object* fun_obj = data->getter();
194     v8::AccessorGetter call_fun = v8::ToCData<v8::AccessorGetter>(fun_obj);
195     HandleScope scope;
196     JSObject* self = JSObject::cast(receiver);
197     JSObject* holder_handle = JSObject::cast(holder);
198     Handle<String> key(name);
199     LOG(isolate, ApiNamedPropertyAccess("load", self, name));
200     CustomArguments args(isolate, data->data(), self, holder_handle);
201     v8::AccessorInfo info(args.end());
202     v8::Handle<v8::Value> result;
203     {
204       // Leaving JavaScript.
205       VMState state(isolate, EXTERNAL);
206       result = call_fun(v8::Utils::ToLocal(key), info);
207     }
208     RETURN_IF_SCHEDULED_EXCEPTION(isolate);
209     if (result.IsEmpty()) {
210       return isolate->heap()->undefined_value();
211     }
212     return *v8::Utils::OpenHandle(*result);
213   }
214 
215   // __defineGetter__ callback
216   if (structure->IsFixedArray()) {
217     Object* getter = FixedArray::cast(structure)->get(kGetterIndex);
218     if (getter->IsJSFunction()) {
219       return Object::GetPropertyWithDefinedGetter(receiver,
220                                                   JSFunction::cast(getter));
221     }
222     // Getter is not a function.
223     return isolate->heap()->undefined_value();
224   }
225 
226   UNREACHABLE();
227   return NULL;
228 }
229 
230 
GetPropertyWithDefinedGetter(Object * receiver,JSFunction * getter)231 MaybeObject* Object::GetPropertyWithDefinedGetter(Object* receiver,
232                                                   JSFunction* getter) {
233   HandleScope scope;
234   Handle<JSFunction> fun(JSFunction::cast(getter));
235   Handle<Object> self(receiver);
236 #ifdef ENABLE_DEBUGGER_SUPPORT
237   Debug* debug = fun->GetHeap()->isolate()->debug();
238   // Handle stepping into a getter if step into is active.
239   if (debug->StepInActive()) {
240     debug->HandleStepIn(fun, Handle<Object>::null(), 0, false);
241   }
242 #endif
243   bool has_pending_exception;
244   Handle<Object> result =
245       Execution::Call(fun, self, 0, NULL, &has_pending_exception);
246   // Check for pending exception and return the result.
247   if (has_pending_exception) return Failure::Exception();
248   return *result;
249 }
250 
251 
252 // Only deal with CALLBACKS and INTERCEPTOR
GetPropertyWithFailedAccessCheck(Object * receiver,LookupResult * result,String * name,PropertyAttributes * attributes)253 MaybeObject* JSObject::GetPropertyWithFailedAccessCheck(
254     Object* receiver,
255     LookupResult* result,
256     String* name,
257     PropertyAttributes* attributes) {
258   if (result->IsProperty()) {
259     switch (result->type()) {
260       case CALLBACKS: {
261         // Only allow API accessors.
262         Object* obj = result->GetCallbackObject();
263         if (obj->IsAccessorInfo()) {
264           AccessorInfo* info = AccessorInfo::cast(obj);
265           if (info->all_can_read()) {
266             *attributes = result->GetAttributes();
267             return GetPropertyWithCallback(receiver,
268                                            result->GetCallbackObject(),
269                                            name,
270                                            result->holder());
271           }
272         }
273         break;
274       }
275       case NORMAL:
276       case FIELD:
277       case CONSTANT_FUNCTION: {
278         // Search ALL_CAN_READ accessors in prototype chain.
279         LookupResult r;
280         result->holder()->LookupRealNamedPropertyInPrototypes(name, &r);
281         if (r.IsProperty()) {
282           return GetPropertyWithFailedAccessCheck(receiver,
283                                                   &r,
284                                                   name,
285                                                   attributes);
286         }
287         break;
288       }
289       case INTERCEPTOR: {
290         // If the object has an interceptor, try real named properties.
291         // No access check in GetPropertyAttributeWithInterceptor.
292         LookupResult r;
293         result->holder()->LookupRealNamedProperty(name, &r);
294         if (r.IsProperty()) {
295           return GetPropertyWithFailedAccessCheck(receiver,
296                                                   &r,
297                                                   name,
298                                                   attributes);
299         }
300         break;
301       }
302       default:
303         UNREACHABLE();
304     }
305   }
306 
307   // No accessible property found.
308   *attributes = ABSENT;
309   Heap* heap = name->GetHeap();
310   heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_GET);
311   return heap->undefined_value();
312 }
313 
314 
GetPropertyAttributeWithFailedAccessCheck(Object * receiver,LookupResult * result,String * name,bool continue_search)315 PropertyAttributes JSObject::GetPropertyAttributeWithFailedAccessCheck(
316     Object* receiver,
317     LookupResult* result,
318     String* name,
319     bool continue_search) {
320   if (result->IsProperty()) {
321     switch (result->type()) {
322       case CALLBACKS: {
323         // Only allow API accessors.
324         Object* obj = result->GetCallbackObject();
325         if (obj->IsAccessorInfo()) {
326           AccessorInfo* info = AccessorInfo::cast(obj);
327           if (info->all_can_read()) {
328             return result->GetAttributes();
329           }
330         }
331         break;
332       }
333 
334       case NORMAL:
335       case FIELD:
336       case CONSTANT_FUNCTION: {
337         if (!continue_search) break;
338         // Search ALL_CAN_READ accessors in prototype chain.
339         LookupResult r;
340         result->holder()->LookupRealNamedPropertyInPrototypes(name, &r);
341         if (r.IsProperty()) {
342           return GetPropertyAttributeWithFailedAccessCheck(receiver,
343                                                            &r,
344                                                            name,
345                                                            continue_search);
346         }
347         break;
348       }
349 
350       case INTERCEPTOR: {
351         // If the object has an interceptor, try real named properties.
352         // No access check in GetPropertyAttributeWithInterceptor.
353         LookupResult r;
354         if (continue_search) {
355           result->holder()->LookupRealNamedProperty(name, &r);
356         } else {
357           result->holder()->LocalLookupRealNamedProperty(name, &r);
358         }
359         if (r.IsProperty()) {
360           return GetPropertyAttributeWithFailedAccessCheck(receiver,
361                                                            &r,
362                                                            name,
363                                                            continue_search);
364         }
365         break;
366       }
367 
368       default:
369         UNREACHABLE();
370     }
371   }
372 
373   GetHeap()->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS);
374   return ABSENT;
375 }
376 
377 
GetNormalizedProperty(LookupResult * result)378 Object* JSObject::GetNormalizedProperty(LookupResult* result) {
379   ASSERT(!HasFastProperties());
380   Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry());
381   if (IsGlobalObject()) {
382     value = JSGlobalPropertyCell::cast(value)->value();
383   }
384   ASSERT(!value->IsJSGlobalPropertyCell());
385   return value;
386 }
387 
388 
SetNormalizedProperty(LookupResult * result,Object * value)389 Object* JSObject::SetNormalizedProperty(LookupResult* result, Object* value) {
390   ASSERT(!HasFastProperties());
391   if (IsGlobalObject()) {
392     JSGlobalPropertyCell* cell =
393         JSGlobalPropertyCell::cast(
394             property_dictionary()->ValueAt(result->GetDictionaryEntry()));
395     cell->set_value(value);
396   } else {
397     property_dictionary()->ValueAtPut(result->GetDictionaryEntry(), value);
398   }
399   return value;
400 }
401 
402 
SetNormalizedProperty(String * name,Object * value,PropertyDetails details)403 MaybeObject* JSObject::SetNormalizedProperty(String* name,
404                                              Object* value,
405                                              PropertyDetails details) {
406   ASSERT(!HasFastProperties());
407   int entry = property_dictionary()->FindEntry(name);
408   if (entry == StringDictionary::kNotFound) {
409     Object* store_value = value;
410     if (IsGlobalObject()) {
411       Heap* heap = name->GetHeap();
412       MaybeObject* maybe_store_value =
413           heap->AllocateJSGlobalPropertyCell(value);
414       if (!maybe_store_value->ToObject(&store_value)) return maybe_store_value;
415     }
416     Object* dict;
417     { MaybeObject* maybe_dict =
418           property_dictionary()->Add(name, store_value, details);
419       if (!maybe_dict->ToObject(&dict)) return maybe_dict;
420     }
421     set_properties(StringDictionary::cast(dict));
422     return value;
423   }
424   // Preserve enumeration index.
425   details = PropertyDetails(details.attributes(),
426                             details.type(),
427                             property_dictionary()->DetailsAt(entry).index());
428   if (IsGlobalObject()) {
429     JSGlobalPropertyCell* cell =
430         JSGlobalPropertyCell::cast(property_dictionary()->ValueAt(entry));
431     cell->set_value(value);
432     // Please note we have to update the property details.
433     property_dictionary()->DetailsAtPut(entry, details);
434   } else {
435     property_dictionary()->SetEntry(entry, name, value, details);
436   }
437   return value;
438 }
439 
440 
DeleteNormalizedProperty(String * name,DeleteMode mode)441 MaybeObject* JSObject::DeleteNormalizedProperty(String* name, DeleteMode mode) {
442   ASSERT(!HasFastProperties());
443   StringDictionary* dictionary = property_dictionary();
444   int entry = dictionary->FindEntry(name);
445   if (entry != StringDictionary::kNotFound) {
446     // If we have a global object set the cell to the hole.
447     if (IsGlobalObject()) {
448       PropertyDetails details = dictionary->DetailsAt(entry);
449       if (details.IsDontDelete()) {
450         if (mode != FORCE_DELETION) return GetHeap()->false_value();
451         // When forced to delete global properties, we have to make a
452         // map change to invalidate any ICs that think they can load
453         // from the DontDelete cell without checking if it contains
454         // the hole value.
455         Object* new_map;
456         { MaybeObject* maybe_new_map = map()->CopyDropDescriptors();
457           if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map;
458         }
459         set_map(Map::cast(new_map));
460       }
461       JSGlobalPropertyCell* cell =
462           JSGlobalPropertyCell::cast(dictionary->ValueAt(entry));
463       cell->set_value(cell->heap()->the_hole_value());
464       dictionary->DetailsAtPut(entry, details.AsDeleted());
465     } else {
466       return dictionary->DeleteProperty(entry, mode);
467     }
468   }
469   return GetHeap()->true_value();
470 }
471 
472 
IsDirty()473 bool JSObject::IsDirty() {
474   Object* cons_obj = map()->constructor();
475   if (!cons_obj->IsJSFunction())
476     return true;
477   JSFunction* fun = JSFunction::cast(cons_obj);
478   if (!fun->shared()->IsApiFunction())
479     return true;
480   // If the object is fully fast case and has the same map it was
481   // created with then no changes can have been made to it.
482   return map() != fun->initial_map()
483       || !HasFastElements()
484       || !HasFastProperties();
485 }
486 
487 
GetProperty(Object * receiver,LookupResult * result,String * name,PropertyAttributes * attributes)488 MaybeObject* Object::GetProperty(Object* receiver,
489                                  LookupResult* result,
490                                  String* name,
491                                  PropertyAttributes* attributes) {
492   // Make sure that the top context does not change when doing
493   // callbacks or interceptor calls.
494   AssertNoContextChange ncc;
495   Heap* heap = name->GetHeap();
496 
497   // Traverse the prototype chain from the current object (this) to
498   // the holder and check for access rights. This avoid traversing the
499   // objects more than once in case of interceptors, because the
500   // holder will always be the interceptor holder and the search may
501   // only continue with a current object just after the interceptor
502   // holder in the prototype chain.
503   Object* last = result->IsProperty() ? result->holder() : heap->null_value();
504   for (Object* current = this; true; current = current->GetPrototype()) {
505     if (current->IsAccessCheckNeeded()) {
506       // Check if we're allowed to read from the current object. Note
507       // that even though we may not actually end up loading the named
508       // property from the current object, we still check that we have
509       // access to it.
510       JSObject* checked = JSObject::cast(current);
511       if (!heap->isolate()->MayNamedAccess(checked, name, v8::ACCESS_GET)) {
512         return checked->GetPropertyWithFailedAccessCheck(receiver,
513                                                          result,
514                                                          name,
515                                                          attributes);
516       }
517     }
518     // Stop traversing the chain once we reach the last object in the
519     // chain; either the holder of the result or null in case of an
520     // absent property.
521     if (current == last) break;
522   }
523 
524   if (!result->IsProperty()) {
525     *attributes = ABSENT;
526     return heap->undefined_value();
527   }
528   *attributes = result->GetAttributes();
529   Object* value;
530   JSObject* holder = result->holder();
531   switch (result->type()) {
532     case NORMAL:
533       value = holder->GetNormalizedProperty(result);
534       ASSERT(!value->IsTheHole() || result->IsReadOnly());
535       return value->IsTheHole() ? heap->undefined_value() : value;
536     case FIELD:
537       value = holder->FastPropertyAt(result->GetFieldIndex());
538       ASSERT(!value->IsTheHole() || result->IsReadOnly());
539       return value->IsTheHole() ? heap->undefined_value() : value;
540     case CONSTANT_FUNCTION:
541       return result->GetConstantFunction();
542     case CALLBACKS:
543       return GetPropertyWithCallback(receiver,
544                                      result->GetCallbackObject(),
545                                      name,
546                                      holder);
547     case INTERCEPTOR: {
548       JSObject* recvr = JSObject::cast(receiver);
549       return holder->GetPropertyWithInterceptor(recvr, name, attributes);
550     }
551     default:
552       UNREACHABLE();
553       return NULL;
554   }
555 }
556 
557 
GetElementWithReceiver(Object * receiver,uint32_t index)558 MaybeObject* Object::GetElementWithReceiver(Object* receiver, uint32_t index) {
559   Object* holder = NULL;
560   if (IsSmi()) {
561     Context* global_context = Isolate::Current()->context()->global_context();
562     holder = global_context->number_function()->instance_prototype();
563   } else {
564     HeapObject* heap_object = HeapObject::cast(this);
565 
566     if (heap_object->IsJSObject()) {
567       return JSObject::cast(this)->GetElementWithReceiver(receiver, index);
568     }
569     Heap* heap = heap_object->GetHeap();
570     Isolate* isolate = heap->isolate();
571 
572     Context* global_context = isolate->context()->global_context();
573     if (heap_object->IsString()) {
574       holder = global_context->string_function()->instance_prototype();
575     } else if (heap_object->IsHeapNumber()) {
576       holder = global_context->number_function()->instance_prototype();
577     } else if (heap_object->IsBoolean()) {
578       holder = global_context->boolean_function()->instance_prototype();
579     } else {
580       // Undefined and null have no indexed properties.
581       ASSERT(heap_object->IsUndefined() || heap_object->IsNull());
582       return heap->undefined_value();
583     }
584   }
585 
586   return JSObject::cast(holder)->GetElementWithReceiver(receiver, index);
587 }
588 
589 
GetPrototype()590 Object* Object::GetPrototype() {
591   if (IsSmi()) {
592     Heap* heap = Isolate::Current()->heap();
593     Context* context = heap->isolate()->context()->global_context();
594     return context->number_function()->instance_prototype();
595   }
596 
597   HeapObject* heap_object = HeapObject::cast(this);
598 
599   // The object is either a number, a string, a boolean, or a real JS object.
600   if (heap_object->IsJSObject()) {
601     return JSObject::cast(this)->map()->prototype();
602   }
603   Heap* heap = heap_object->GetHeap();
604   Context* context = heap->isolate()->context()->global_context();
605 
606   if (heap_object->IsHeapNumber()) {
607     return context->number_function()->instance_prototype();
608   }
609   if (heap_object->IsString()) {
610     return context->string_function()->instance_prototype();
611   }
612   if (heap_object->IsBoolean()) {
613     return context->boolean_function()->instance_prototype();
614   } else {
615     return heap->null_value();
616   }
617 }
618 
619 
ShortPrint(FILE * out)620 void Object::ShortPrint(FILE* out) {
621   HeapStringAllocator allocator;
622   StringStream accumulator(&allocator);
623   ShortPrint(&accumulator);
624   accumulator.OutputToFile(out);
625 }
626 
627 
ShortPrint(StringStream * accumulator)628 void Object::ShortPrint(StringStream* accumulator) {
629   if (IsSmi()) {
630     Smi::cast(this)->SmiPrint(accumulator);
631   } else if (IsFailure()) {
632     Failure::cast(this)->FailurePrint(accumulator);
633   } else {
634     HeapObject::cast(this)->HeapObjectShortPrint(accumulator);
635   }
636 }
637 
638 
SmiPrint(FILE * out)639 void Smi::SmiPrint(FILE* out) {
640   PrintF(out, "%d", value());
641 }
642 
643 
SmiPrint(StringStream * accumulator)644 void Smi::SmiPrint(StringStream* accumulator) {
645   accumulator->Add("%d", value());
646 }
647 
648 
FailurePrint(StringStream * accumulator)649 void Failure::FailurePrint(StringStream* accumulator) {
650   accumulator->Add("Failure(%p)", reinterpret_cast<void*>(value()));
651 }
652 
653 
FailurePrint(FILE * out)654 void Failure::FailurePrint(FILE* out) {
655   PrintF(out, "Failure(%p)", reinterpret_cast<void*>(value()));
656 }
657 
658 
659 // Should a word be prefixed by 'a' or 'an' in order to read naturally in
660 // English?  Returns false for non-ASCII or words that don't start with
661 // a capital letter.  The a/an rule follows pronunciation in English.
662 // We don't use the BBC's overcorrect "an historic occasion" though if
663 // you speak a dialect you may well say "an 'istoric occasion".
AnWord(String * str)664 static bool AnWord(String* str) {
665   if (str->length() == 0) return false;  // A nothing.
666   int c0 = str->Get(0);
667   int c1 = str->length() > 1 ? str->Get(1) : 0;
668   if (c0 == 'U') {
669     if (c1 > 'Z') {
670       return true;  // An Umpire, but a UTF8String, a U.
671     }
672   } else if (c0 == 'A' || c0 == 'E' || c0 == 'I' || c0 == 'O') {
673     return true;    // An Ape, an ABCBook.
674   } else if ((c1 == 0 || (c1 >= 'A' && c1 <= 'Z')) &&
675            (c0 == 'F' || c0 == 'H' || c0 == 'M' || c0 == 'N' || c0 == 'R' ||
676             c0 == 'S' || c0 == 'X')) {
677     return true;    // An MP3File, an M.
678   }
679   return false;
680 }
681 
682 
SlowTryFlatten(PretenureFlag pretenure)683 MaybeObject* String::SlowTryFlatten(PretenureFlag pretenure) {
684 #ifdef DEBUG
685   // Do not attempt to flatten in debug mode when allocation is not
686   // allowed.  This is to avoid an assertion failure when allocating.
687   // Flattening strings is the only case where we always allow
688   // allocation because no GC is performed if the allocation fails.
689   if (!HEAP->IsAllocationAllowed()) return this;
690 #endif
691 
692   Heap* heap = GetHeap();
693   switch (StringShape(this).representation_tag()) {
694     case kConsStringTag: {
695       ConsString* cs = ConsString::cast(this);
696       if (cs->second()->length() == 0) {
697         return cs->first();
698       }
699       // There's little point in putting the flat string in new space if the
700       // cons string is in old space.  It can never get GCed until there is
701       // an old space GC.
702       PretenureFlag tenure = heap->InNewSpace(this) ? pretenure : TENURED;
703       int len = length();
704       Object* object;
705       String* result;
706       if (IsAsciiRepresentation()) {
707         { MaybeObject* maybe_object = heap->AllocateRawAsciiString(len, tenure);
708           if (!maybe_object->ToObject(&object)) return maybe_object;
709         }
710         result = String::cast(object);
711         String* first = cs->first();
712         int first_length = first->length();
713         char* dest = SeqAsciiString::cast(result)->GetChars();
714         WriteToFlat(first, dest, 0, first_length);
715         String* second = cs->second();
716         WriteToFlat(second,
717                     dest + first_length,
718                     0,
719                     len - first_length);
720       } else {
721         { MaybeObject* maybe_object =
722               heap->AllocateRawTwoByteString(len, tenure);
723           if (!maybe_object->ToObject(&object)) return maybe_object;
724         }
725         result = String::cast(object);
726         uc16* dest = SeqTwoByteString::cast(result)->GetChars();
727         String* first = cs->first();
728         int first_length = first->length();
729         WriteToFlat(first, dest, 0, first_length);
730         String* second = cs->second();
731         WriteToFlat(second,
732                     dest + first_length,
733                     0,
734                     len - first_length);
735       }
736       cs->set_first(result);
737       cs->set_second(heap->empty_string());
738       return result;
739     }
740     default:
741       return this;
742   }
743 }
744 
745 
MakeExternal(v8::String::ExternalStringResource * resource)746 bool String::MakeExternal(v8::String::ExternalStringResource* resource) {
747   // Externalizing twice leaks the external resource, so it's
748   // prohibited by the API.
749   ASSERT(!this->IsExternalString());
750 #ifdef DEBUG
751   if (FLAG_enable_slow_asserts) {
752     // Assert that the resource and the string are equivalent.
753     ASSERT(static_cast<size_t>(this->length()) == resource->length());
754     ScopedVector<uc16> smart_chars(this->length());
755     String::WriteToFlat(this, smart_chars.start(), 0, this->length());
756     ASSERT(memcmp(smart_chars.start(),
757                   resource->data(),
758                   resource->length() * sizeof(smart_chars[0])) == 0);
759   }
760 #endif  // DEBUG
761   Heap* heap = GetHeap();
762   int size = this->Size();  // Byte size of the original string.
763   if (size < ExternalString::kSize) {
764     // The string is too small to fit an external String in its place. This can
765     // only happen for zero length strings.
766     return false;
767   }
768   ASSERT(size >= ExternalString::kSize);
769   bool is_ascii = this->IsAsciiRepresentation();
770   bool is_symbol = this->IsSymbol();
771   int length = this->length();
772   int hash_field = this->hash_field();
773 
774   // Morph the object to an external string by adjusting the map and
775   // reinitializing the fields.
776   this->set_map(is_ascii ?
777                 heap->external_string_with_ascii_data_map() :
778                 heap->external_string_map());
779   ExternalTwoByteString* self = ExternalTwoByteString::cast(this);
780   self->set_length(length);
781   self->set_hash_field(hash_field);
782   self->set_resource(resource);
783   // Additionally make the object into an external symbol if the original string
784   // was a symbol to start with.
785   if (is_symbol) {
786     self->Hash();  // Force regeneration of the hash value.
787     // Now morph this external string into a external symbol.
788     this->set_map(is_ascii ?
789                   heap->external_symbol_with_ascii_data_map() :
790                   heap->external_symbol_map());
791   }
792 
793   // Fill the remainder of the string with dead wood.
794   int new_size = this->Size();  // Byte size of the external String object.
795   heap->CreateFillerObjectAt(this->address() + new_size, size - new_size);
796   return true;
797 }
798 
799 
MakeExternal(v8::String::ExternalAsciiStringResource * resource)800 bool String::MakeExternal(v8::String::ExternalAsciiStringResource* resource) {
801 #ifdef DEBUG
802   if (FLAG_enable_slow_asserts) {
803     // Assert that the resource and the string are equivalent.
804     ASSERT(static_cast<size_t>(this->length()) == resource->length());
805     ScopedVector<char> smart_chars(this->length());
806     String::WriteToFlat(this, smart_chars.start(), 0, this->length());
807     ASSERT(memcmp(smart_chars.start(),
808                   resource->data(),
809                   resource->length() * sizeof(smart_chars[0])) == 0);
810   }
811 #endif  // DEBUG
812   Heap* heap = GetHeap();
813   int size = this->Size();  // Byte size of the original string.
814   if (size < ExternalString::kSize) {
815     // The string is too small to fit an external String in its place. This can
816     // only happen for zero length strings.
817     return false;
818   }
819   ASSERT(size >= ExternalString::kSize);
820   bool is_symbol = this->IsSymbol();
821   int length = this->length();
822   int hash_field = this->hash_field();
823 
824   // Morph the object to an external string by adjusting the map and
825   // reinitializing the fields.
826   this->set_map(heap->external_ascii_string_map());
827   ExternalAsciiString* self = ExternalAsciiString::cast(this);
828   self->set_length(length);
829   self->set_hash_field(hash_field);
830   self->set_resource(resource);
831   // Additionally make the object into an external symbol if the original string
832   // was a symbol to start with.
833   if (is_symbol) {
834     self->Hash();  // Force regeneration of the hash value.
835     // Now morph this external string into a external symbol.
836     this->set_map(heap->external_ascii_symbol_map());
837   }
838 
839   // Fill the remainder of the string with dead wood.
840   int new_size = this->Size();  // Byte size of the external String object.
841   heap->CreateFillerObjectAt(this->address() + new_size, size - new_size);
842   return true;
843 }
844 
845 
StringShortPrint(StringStream * accumulator)846 void String::StringShortPrint(StringStream* accumulator) {
847   int len = length();
848   if (len > kMaxShortPrintLength) {
849     accumulator->Add("<Very long string[%u]>", len);
850     return;
851   }
852 
853   if (!LooksValid()) {
854     accumulator->Add("<Invalid String>");
855     return;
856   }
857 
858   StringInputBuffer buf(this);
859 
860   bool truncated = false;
861   if (len > kMaxShortPrintLength) {
862     len = kMaxShortPrintLength;
863     truncated = true;
864   }
865   bool ascii = true;
866   for (int i = 0; i < len; i++) {
867     int c = buf.GetNext();
868 
869     if (c < 32 || c >= 127) {
870       ascii = false;
871     }
872   }
873   buf.Reset(this);
874   if (ascii) {
875     accumulator->Add("<String[%u]: ", length());
876     for (int i = 0; i < len; i++) {
877       accumulator->Put(buf.GetNext());
878     }
879     accumulator->Put('>');
880   } else {
881     // Backslash indicates that the string contains control
882     // characters and that backslashes are therefore escaped.
883     accumulator->Add("<String[%u]\\: ", length());
884     for (int i = 0; i < len; i++) {
885       int c = buf.GetNext();
886       if (c == '\n') {
887         accumulator->Add("\\n");
888       } else if (c == '\r') {
889         accumulator->Add("\\r");
890       } else if (c == '\\') {
891         accumulator->Add("\\\\");
892       } else if (c < 32 || c > 126) {
893         accumulator->Add("\\x%02x", c);
894       } else {
895         accumulator->Put(c);
896       }
897     }
898     if (truncated) {
899       accumulator->Put('.');
900       accumulator->Put('.');
901       accumulator->Put('.');
902     }
903     accumulator->Put('>');
904   }
905   return;
906 }
907 
908 
JSObjectShortPrint(StringStream * accumulator)909 void JSObject::JSObjectShortPrint(StringStream* accumulator) {
910   switch (map()->instance_type()) {
911     case JS_ARRAY_TYPE: {
912       double length = JSArray::cast(this)->length()->Number();
913       accumulator->Add("<JS array[%u]>", static_cast<uint32_t>(length));
914       break;
915     }
916     case JS_REGEXP_TYPE: {
917       accumulator->Add("<JS RegExp>");
918       break;
919     }
920     case JS_FUNCTION_TYPE: {
921       Object* fun_name = JSFunction::cast(this)->shared()->name();
922       bool printed = false;
923       if (fun_name->IsString()) {
924         String* str = String::cast(fun_name);
925         if (str->length() > 0) {
926           accumulator->Add("<JS Function ");
927           accumulator->Put(str);
928           accumulator->Put('>');
929           printed = true;
930         }
931       }
932       if (!printed) {
933         accumulator->Add("<JS Function>");
934       }
935       break;
936     }
937     // All other JSObjects are rather similar to each other (JSObject,
938     // JSGlobalProxy, JSGlobalObject, JSUndetectableObject, JSValue).
939     default: {
940       Map* map_of_this = map();
941       Heap* heap = map_of_this->heap();
942       Object* constructor = map_of_this->constructor();
943       bool printed = false;
944       if (constructor->IsHeapObject() &&
945           !heap->Contains(HeapObject::cast(constructor))) {
946         accumulator->Add("!!!INVALID CONSTRUCTOR!!!");
947       } else {
948         bool global_object = IsJSGlobalProxy();
949         if (constructor->IsJSFunction()) {
950           if (!heap->Contains(JSFunction::cast(constructor)->shared())) {
951             accumulator->Add("!!!INVALID SHARED ON CONSTRUCTOR!!!");
952           } else {
953             Object* constructor_name =
954                 JSFunction::cast(constructor)->shared()->name();
955             if (constructor_name->IsString()) {
956               String* str = String::cast(constructor_name);
957               if (str->length() > 0) {
958                 bool vowel = AnWord(str);
959                 accumulator->Add("<%sa%s ",
960                        global_object ? "Global Object: " : "",
961                        vowel ? "n" : "");
962                 accumulator->Put(str);
963                 accumulator->Put('>');
964                 printed = true;
965               }
966             }
967           }
968         }
969         if (!printed) {
970           accumulator->Add("<JS %sObject", global_object ? "Global " : "");
971         }
972       }
973       if (IsJSValue()) {
974         accumulator->Add(" value = ");
975         JSValue::cast(this)->value()->ShortPrint(accumulator);
976       }
977       accumulator->Put('>');
978       break;
979     }
980   }
981 }
982 
983 
HeapObjectShortPrint(StringStream * accumulator)984 void HeapObject::HeapObjectShortPrint(StringStream* accumulator) {
985   // if (!HEAP->InNewSpace(this)) PrintF("*", this);
986   Heap* heap = GetHeap();
987   if (!heap->Contains(this)) {
988     accumulator->Add("!!!INVALID POINTER!!!");
989     return;
990   }
991   if (!heap->Contains(map())) {
992     accumulator->Add("!!!INVALID MAP!!!");
993     return;
994   }
995 
996   accumulator->Add("%p ", this);
997 
998   if (IsString()) {
999     String::cast(this)->StringShortPrint(accumulator);
1000     return;
1001   }
1002   if (IsJSObject()) {
1003     JSObject::cast(this)->JSObjectShortPrint(accumulator);
1004     return;
1005   }
1006   switch (map()->instance_type()) {
1007     case MAP_TYPE:
1008       accumulator->Add("<Map>");
1009       break;
1010     case FIXED_ARRAY_TYPE:
1011       accumulator->Add("<FixedArray[%u]>", FixedArray::cast(this)->length());
1012       break;
1013     case BYTE_ARRAY_TYPE:
1014       accumulator->Add("<ByteArray[%u]>", ByteArray::cast(this)->length());
1015       break;
1016     case EXTERNAL_PIXEL_ARRAY_TYPE:
1017       accumulator->Add("<ExternalPixelArray[%u]>",
1018                        ExternalPixelArray::cast(this)->length());
1019       break;
1020     case EXTERNAL_BYTE_ARRAY_TYPE:
1021       accumulator->Add("<ExternalByteArray[%u]>",
1022                        ExternalByteArray::cast(this)->length());
1023       break;
1024     case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE:
1025       accumulator->Add("<ExternalUnsignedByteArray[%u]>",
1026                        ExternalUnsignedByteArray::cast(this)->length());
1027       break;
1028     case EXTERNAL_SHORT_ARRAY_TYPE:
1029       accumulator->Add("<ExternalShortArray[%u]>",
1030                        ExternalShortArray::cast(this)->length());
1031       break;
1032     case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE:
1033       accumulator->Add("<ExternalUnsignedShortArray[%u]>",
1034                        ExternalUnsignedShortArray::cast(this)->length());
1035       break;
1036     case EXTERNAL_INT_ARRAY_TYPE:
1037       accumulator->Add("<ExternalIntArray[%u]>",
1038                        ExternalIntArray::cast(this)->length());
1039       break;
1040     case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE:
1041       accumulator->Add("<ExternalUnsignedIntArray[%u]>",
1042                        ExternalUnsignedIntArray::cast(this)->length());
1043       break;
1044     case EXTERNAL_FLOAT_ARRAY_TYPE:
1045       accumulator->Add("<ExternalFloatArray[%u]>",
1046                        ExternalFloatArray::cast(this)->length());
1047       break;
1048     case SHARED_FUNCTION_INFO_TYPE:
1049       accumulator->Add("<SharedFunctionInfo>");
1050       break;
1051     case JS_MESSAGE_OBJECT_TYPE:
1052       accumulator->Add("<JSMessageObject>");
1053       break;
1054 #define MAKE_STRUCT_CASE(NAME, Name, name) \
1055   case NAME##_TYPE:                        \
1056     accumulator->Put('<');                 \
1057     accumulator->Add(#Name);               \
1058     accumulator->Put('>');                 \
1059     break;
1060   STRUCT_LIST(MAKE_STRUCT_CASE)
1061 #undef MAKE_STRUCT_CASE
1062     case CODE_TYPE:
1063       accumulator->Add("<Code>");
1064       break;
1065     case ODDBALL_TYPE: {
1066       if (IsUndefined())
1067         accumulator->Add("<undefined>");
1068       else if (IsTheHole())
1069         accumulator->Add("<the hole>");
1070       else if (IsNull())
1071         accumulator->Add("<null>");
1072       else if (IsTrue())
1073         accumulator->Add("<true>");
1074       else if (IsFalse())
1075         accumulator->Add("<false>");
1076       else
1077         accumulator->Add("<Odd Oddball>");
1078       break;
1079     }
1080     case HEAP_NUMBER_TYPE:
1081       accumulator->Add("<Number: ");
1082       HeapNumber::cast(this)->HeapNumberPrint(accumulator);
1083       accumulator->Put('>');
1084       break;
1085     case PROXY_TYPE:
1086       accumulator->Add("<Proxy>");
1087       break;
1088     case JS_GLOBAL_PROPERTY_CELL_TYPE:
1089       accumulator->Add("Cell for ");
1090       JSGlobalPropertyCell::cast(this)->value()->ShortPrint(accumulator);
1091       break;
1092     default:
1093       accumulator->Add("<Other heap object (%d)>", map()->instance_type());
1094       break;
1095   }
1096 }
1097 
1098 
Iterate(ObjectVisitor * v)1099 void HeapObject::Iterate(ObjectVisitor* v) {
1100   // Handle header
1101   IteratePointer(v, kMapOffset);
1102   // Handle object body
1103   Map* m = map();
1104   IterateBody(m->instance_type(), SizeFromMap(m), v);
1105 }
1106 
1107 
IterateBody(InstanceType type,int object_size,ObjectVisitor * v)1108 void HeapObject::IterateBody(InstanceType type, int object_size,
1109                              ObjectVisitor* v) {
1110   // Avoiding <Type>::cast(this) because it accesses the map pointer field.
1111   // During GC, the map pointer field is encoded.
1112   if (type < FIRST_NONSTRING_TYPE) {
1113     switch (type & kStringRepresentationMask) {
1114       case kSeqStringTag:
1115         break;
1116       case kConsStringTag:
1117         ConsString::BodyDescriptor::IterateBody(this, v);
1118         break;
1119       case kExternalStringTag:
1120         if ((type & kStringEncodingMask) == kAsciiStringTag) {
1121           reinterpret_cast<ExternalAsciiString*>(this)->
1122               ExternalAsciiStringIterateBody(v);
1123         } else {
1124           reinterpret_cast<ExternalTwoByteString*>(this)->
1125               ExternalTwoByteStringIterateBody(v);
1126         }
1127         break;
1128     }
1129     return;
1130   }
1131 
1132   switch (type) {
1133     case FIXED_ARRAY_TYPE:
1134       FixedArray::BodyDescriptor::IterateBody(this, object_size, v);
1135       break;
1136     case JS_OBJECT_TYPE:
1137     case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
1138     case JS_VALUE_TYPE:
1139     case JS_ARRAY_TYPE:
1140     case JS_REGEXP_TYPE:
1141     case JS_GLOBAL_PROXY_TYPE:
1142     case JS_GLOBAL_OBJECT_TYPE:
1143     case JS_BUILTINS_OBJECT_TYPE:
1144     case JS_MESSAGE_OBJECT_TYPE:
1145       JSObject::BodyDescriptor::IterateBody(this, object_size, v);
1146       break;
1147     case JS_FUNCTION_TYPE:
1148       reinterpret_cast<JSFunction*>(this)
1149           ->JSFunctionIterateBody(object_size, v);
1150       break;
1151     case ODDBALL_TYPE:
1152       Oddball::BodyDescriptor::IterateBody(this, v);
1153       break;
1154     case PROXY_TYPE:
1155       reinterpret_cast<Proxy*>(this)->ProxyIterateBody(v);
1156       break;
1157     case MAP_TYPE:
1158       Map::BodyDescriptor::IterateBody(this, v);
1159       break;
1160     case CODE_TYPE:
1161       reinterpret_cast<Code*>(this)->CodeIterateBody(v);
1162       break;
1163     case JS_GLOBAL_PROPERTY_CELL_TYPE:
1164       JSGlobalPropertyCell::BodyDescriptor::IterateBody(this, v);
1165       break;
1166     case HEAP_NUMBER_TYPE:
1167     case FILLER_TYPE:
1168     case BYTE_ARRAY_TYPE:
1169     case EXTERNAL_PIXEL_ARRAY_TYPE:
1170     case EXTERNAL_BYTE_ARRAY_TYPE:
1171     case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE:
1172     case EXTERNAL_SHORT_ARRAY_TYPE:
1173     case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE:
1174     case EXTERNAL_INT_ARRAY_TYPE:
1175     case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE:
1176     case EXTERNAL_FLOAT_ARRAY_TYPE:
1177       break;
1178     case SHARED_FUNCTION_INFO_TYPE:
1179       SharedFunctionInfo::BodyDescriptor::IterateBody(this, v);
1180       break;
1181 
1182 #define MAKE_STRUCT_CASE(NAME, Name, name) \
1183         case NAME##_TYPE:
1184       STRUCT_LIST(MAKE_STRUCT_CASE)
1185 #undef MAKE_STRUCT_CASE
1186       StructBodyDescriptor::IterateBody(this, object_size, v);
1187       break;
1188     default:
1189       PrintF("Unknown type: %d\n", type);
1190       UNREACHABLE();
1191   }
1192 }
1193 
1194 
HeapNumberToBoolean()1195 Object* HeapNumber::HeapNumberToBoolean() {
1196   // NaN, +0, and -0 should return the false object
1197 #if __BYTE_ORDER == __LITTLE_ENDIAN
1198   union IeeeDoubleLittleEndianArchType u;
1199 #elif __BYTE_ORDER == __BIG_ENDIAN
1200   union IeeeDoubleBigEndianArchType u;
1201 #endif
1202   u.d = value();
1203   if (u.bits.exp == 2047) {
1204     // Detect NaN for IEEE double precision floating point.
1205     if ((u.bits.man_low | u.bits.man_high) != 0)
1206       return GetHeap()->false_value();
1207   }
1208   if (u.bits.exp == 0) {
1209     // Detect +0, and -0 for IEEE double precision floating point.
1210     if ((u.bits.man_low | u.bits.man_high) == 0)
1211       return GetHeap()->false_value();
1212   }
1213   return GetHeap()->true_value();
1214 }
1215 
1216 
HeapNumberPrint(FILE * out)1217 void HeapNumber::HeapNumberPrint(FILE* out) {
1218   PrintF(out, "%.16g", Number());
1219 }
1220 
1221 
HeapNumberPrint(StringStream * accumulator)1222 void HeapNumber::HeapNumberPrint(StringStream* accumulator) {
1223   // The Windows version of vsnprintf can allocate when printing a %g string
1224   // into a buffer that may not be big enough.  We don't want random memory
1225   // allocation when producing post-crash stack traces, so we print into a
1226   // buffer that is plenty big enough for any floating point number, then
1227   // print that using vsnprintf (which may truncate but never allocate if
1228   // there is no more space in the buffer).
1229   EmbeddedVector<char, 100> buffer;
1230   OS::SNPrintF(buffer, "%.16g", Number());
1231   accumulator->Add("%s", buffer.start());
1232 }
1233 
1234 
class_name()1235 String* JSObject::class_name() {
1236   if (IsJSFunction()) {
1237     return GetHeap()->function_class_symbol();
1238   }
1239   if (map()->constructor()->IsJSFunction()) {
1240     JSFunction* constructor = JSFunction::cast(map()->constructor());
1241     return String::cast(constructor->shared()->instance_class_name());
1242   }
1243   // If the constructor is not present, return "Object".
1244   return GetHeap()->Object_symbol();
1245 }
1246 
1247 
constructor_name()1248 String* JSObject::constructor_name() {
1249   if (map()->constructor()->IsJSFunction()) {
1250     JSFunction* constructor = JSFunction::cast(map()->constructor());
1251     String* name = String::cast(constructor->shared()->name());
1252     if (name->length() > 0) return name;
1253     String* inferred_name = constructor->shared()->inferred_name();
1254     if (inferred_name->length() > 0) return inferred_name;
1255     Object* proto = GetPrototype();
1256     if (proto->IsJSObject()) return JSObject::cast(proto)->constructor_name();
1257   }
1258   // If the constructor is not present, return "Object".
1259   return GetHeap()->Object_symbol();
1260 }
1261 
1262 
AddFastPropertyUsingMap(Map * new_map,String * name,Object * value)1263 MaybeObject* JSObject::AddFastPropertyUsingMap(Map* new_map,
1264                                                String* name,
1265                                                Object* value) {
1266   int index = new_map->PropertyIndexFor(name);
1267   if (map()->unused_property_fields() == 0) {
1268     ASSERT(map()->unused_property_fields() == 0);
1269     int new_unused = new_map->unused_property_fields();
1270     Object* values;
1271     { MaybeObject* maybe_values =
1272           properties()->CopySize(properties()->length() + new_unused + 1);
1273       if (!maybe_values->ToObject(&values)) return maybe_values;
1274     }
1275     set_properties(FixedArray::cast(values));
1276   }
1277   set_map(new_map);
1278   return FastPropertyAtPut(index, value);
1279 }
1280 
1281 
IsIdentifier(UnicodeCache * cache,unibrow::CharacterStream * buffer)1282 static bool IsIdentifier(UnicodeCache* cache,
1283                          unibrow::CharacterStream* buffer) {
1284   // Checks whether the buffer contains an identifier (no escape).
1285   if (!buffer->has_more()) return false;
1286   if (!cache->IsIdentifierStart(buffer->GetNext())) {
1287     return false;
1288   }
1289   while (buffer->has_more()) {
1290     if (!cache->IsIdentifierPart(buffer->GetNext())) {
1291       return false;
1292     }
1293   }
1294   return true;
1295 }
1296 
1297 
AddFastProperty(String * name,Object * value,PropertyAttributes attributes)1298 MaybeObject* JSObject::AddFastProperty(String* name,
1299                                        Object* value,
1300                                        PropertyAttributes attributes) {
1301   ASSERT(!IsJSGlobalProxy());
1302 
1303   // Normalize the object if the name is an actual string (not the
1304   // hidden symbols) and is not a real identifier.
1305   Isolate* isolate = GetHeap()->isolate();
1306   StringInputBuffer buffer(name);
1307   if (!IsIdentifier(isolate->unicode_cache(), &buffer)
1308       && name != isolate->heap()->hidden_symbol()) {
1309     Object* obj;
1310     { MaybeObject* maybe_obj =
1311           NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
1312       if (!maybe_obj->ToObject(&obj)) return maybe_obj;
1313     }
1314     return AddSlowProperty(name, value, attributes);
1315   }
1316 
1317   DescriptorArray* old_descriptors = map()->instance_descriptors();
1318   // Compute the new index for new field.
1319   int index = map()->NextFreePropertyIndex();
1320 
1321   // Allocate new instance descriptors with (name, index) added
1322   FieldDescriptor new_field(name, index, attributes);
1323   Object* new_descriptors;
1324   { MaybeObject* maybe_new_descriptors =
1325         old_descriptors->CopyInsert(&new_field, REMOVE_TRANSITIONS);
1326     if (!maybe_new_descriptors->ToObject(&new_descriptors)) {
1327       return maybe_new_descriptors;
1328     }
1329   }
1330 
1331   // Only allow map transition if the object isn't the global object and there
1332   // is not a transition for the name, or there's a transition for the name but
1333   // it's unrelated to properties.
1334   int descriptor_index = old_descriptors->Search(name);
1335 
1336   // External array transitions are stored in the descriptor for property "",
1337   // which is not a identifier and should have forced a switch to slow
1338   // properties above.
1339   ASSERT(descriptor_index == DescriptorArray::kNotFound ||
1340       old_descriptors->GetType(descriptor_index) != EXTERNAL_ARRAY_TRANSITION);
1341   bool can_insert_transition = descriptor_index == DescriptorArray::kNotFound ||
1342       old_descriptors->GetType(descriptor_index) == EXTERNAL_ARRAY_TRANSITION;
1343   bool allow_map_transition =
1344       can_insert_transition &&
1345       (isolate->context()->global_context()->object_function()->map() != map());
1346 
1347   ASSERT(index < map()->inobject_properties() ||
1348          (index - map()->inobject_properties()) < properties()->length() ||
1349          map()->unused_property_fields() == 0);
1350   // Allocate a new map for the object.
1351   Object* r;
1352   { MaybeObject* maybe_r = map()->CopyDropDescriptors();
1353     if (!maybe_r->ToObject(&r)) return maybe_r;
1354   }
1355   Map* new_map = Map::cast(r);
1356   if (allow_map_transition) {
1357     // Allocate new instance descriptors for the old map with map transition.
1358     MapTransitionDescriptor d(name, Map::cast(new_map), attributes);
1359     Object* r;
1360     { MaybeObject* maybe_r = old_descriptors->CopyInsert(&d, KEEP_TRANSITIONS);
1361       if (!maybe_r->ToObject(&r)) return maybe_r;
1362     }
1363     old_descriptors = DescriptorArray::cast(r);
1364   }
1365 
1366   if (map()->unused_property_fields() == 0) {
1367     if (properties()->length() > MaxFastProperties()) {
1368       Object* obj;
1369       { MaybeObject* maybe_obj =
1370             NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
1371         if (!maybe_obj->ToObject(&obj)) return maybe_obj;
1372       }
1373       return AddSlowProperty(name, value, attributes);
1374     }
1375     // Make room for the new value
1376     Object* values;
1377     { MaybeObject* maybe_values =
1378           properties()->CopySize(properties()->length() + kFieldsAdded);
1379       if (!maybe_values->ToObject(&values)) return maybe_values;
1380     }
1381     set_properties(FixedArray::cast(values));
1382     new_map->set_unused_property_fields(kFieldsAdded - 1);
1383   } else {
1384     new_map->set_unused_property_fields(map()->unused_property_fields() - 1);
1385   }
1386   // We have now allocated all the necessary objects.
1387   // All the changes can be applied at once, so they are atomic.
1388   map()->set_instance_descriptors(old_descriptors);
1389   new_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors));
1390   set_map(new_map);
1391   return FastPropertyAtPut(index, value);
1392 }
1393 
1394 
AddConstantFunctionProperty(String * name,JSFunction * function,PropertyAttributes attributes)1395 MaybeObject* JSObject::AddConstantFunctionProperty(
1396     String* name,
1397     JSFunction* function,
1398     PropertyAttributes attributes) {
1399   ASSERT(!GetHeap()->InNewSpace(function));
1400 
1401   // Allocate new instance descriptors with (name, function) added
1402   ConstantFunctionDescriptor d(name, function, attributes);
1403   Object* new_descriptors;
1404   { MaybeObject* maybe_new_descriptors =
1405         map()->instance_descriptors()->CopyInsert(&d, REMOVE_TRANSITIONS);
1406     if (!maybe_new_descriptors->ToObject(&new_descriptors)) {
1407       return maybe_new_descriptors;
1408     }
1409   }
1410 
1411   // Allocate a new map for the object.
1412   Object* new_map;
1413   { MaybeObject* maybe_new_map = map()->CopyDropDescriptors();
1414     if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map;
1415   }
1416 
1417   DescriptorArray* descriptors = DescriptorArray::cast(new_descriptors);
1418   Map::cast(new_map)->set_instance_descriptors(descriptors);
1419   Map* old_map = map();
1420   set_map(Map::cast(new_map));
1421 
1422   // If the old map is the global object map (from new Object()),
1423   // then transitions are not added to it, so we are done.
1424   Heap* heap = old_map->heap();
1425   if (old_map == heap->isolate()->context()->global_context()->
1426       object_function()->map()) {
1427     return function;
1428   }
1429 
1430   // Do not add CONSTANT_TRANSITIONS to global objects
1431   if (IsGlobalObject()) {
1432     return function;
1433   }
1434 
1435   // Add a CONSTANT_TRANSITION descriptor to the old map,
1436   // so future assignments to this property on other objects
1437   // of the same type will create a normal field, not a constant function.
1438   // Don't do this for special properties, with non-trival attributes.
1439   if (attributes != NONE) {
1440     return function;
1441   }
1442   ConstTransitionDescriptor mark(name, Map::cast(new_map));
1443   { MaybeObject* maybe_new_descriptors =
1444         old_map->instance_descriptors()->CopyInsert(&mark, KEEP_TRANSITIONS);
1445     if (!maybe_new_descriptors->ToObject(&new_descriptors)) {
1446       // We have accomplished the main goal, so return success.
1447       return function;
1448     }
1449   }
1450   old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors));
1451 
1452   return function;
1453 }
1454 
1455 
1456 // Add property in slow mode
AddSlowProperty(String * name,Object * value,PropertyAttributes attributes)1457 MaybeObject* JSObject::AddSlowProperty(String* name,
1458                                        Object* value,
1459                                        PropertyAttributes attributes) {
1460   ASSERT(!HasFastProperties());
1461   StringDictionary* dict = property_dictionary();
1462   Object* store_value = value;
1463   if (IsGlobalObject()) {
1464     // In case name is an orphaned property reuse the cell.
1465     int entry = dict->FindEntry(name);
1466     if (entry != StringDictionary::kNotFound) {
1467       store_value = dict->ValueAt(entry);
1468       JSGlobalPropertyCell::cast(store_value)->set_value(value);
1469       // Assign an enumeration index to the property and update
1470       // SetNextEnumerationIndex.
1471       int index = dict->NextEnumerationIndex();
1472       PropertyDetails details = PropertyDetails(attributes, NORMAL, index);
1473       dict->SetNextEnumerationIndex(index + 1);
1474       dict->SetEntry(entry, name, store_value, details);
1475       return value;
1476     }
1477     Heap* heap = GetHeap();
1478     { MaybeObject* maybe_store_value =
1479           heap->AllocateJSGlobalPropertyCell(value);
1480       if (!maybe_store_value->ToObject(&store_value)) return maybe_store_value;
1481     }
1482     JSGlobalPropertyCell::cast(store_value)->set_value(value);
1483   }
1484   PropertyDetails details = PropertyDetails(attributes, NORMAL);
1485   Object* result;
1486   { MaybeObject* maybe_result = dict->Add(name, store_value, details);
1487     if (!maybe_result->ToObject(&result)) return maybe_result;
1488   }
1489   if (dict != result) set_properties(StringDictionary::cast(result));
1490   return value;
1491 }
1492 
1493 
AddProperty(String * name,Object * value,PropertyAttributes attributes,StrictModeFlag strict_mode)1494 MaybeObject* JSObject::AddProperty(String* name,
1495                                    Object* value,
1496                                    PropertyAttributes attributes,
1497                                    StrictModeFlag strict_mode) {
1498   ASSERT(!IsJSGlobalProxy());
1499   Map* map_of_this = map();
1500   Heap* heap = map_of_this->heap();
1501   if (!map_of_this->is_extensible()) {
1502     if (strict_mode == kNonStrictMode) {
1503       return heap->undefined_value();
1504     } else {
1505       Handle<Object> args[1] = {Handle<String>(name)};
1506       return heap->isolate()->Throw(
1507           *FACTORY->NewTypeError("object_not_extensible",
1508                                  HandleVector(args, 1)));
1509     }
1510   }
1511   if (HasFastProperties()) {
1512     // Ensure the descriptor array does not get too big.
1513     if (map_of_this->instance_descriptors()->number_of_descriptors() <
1514         DescriptorArray::kMaxNumberOfDescriptors) {
1515       if (value->IsJSFunction() && !heap->InNewSpace(value)) {
1516         return AddConstantFunctionProperty(name,
1517                                            JSFunction::cast(value),
1518                                            attributes);
1519       } else {
1520         return AddFastProperty(name, value, attributes);
1521       }
1522     } else {
1523       // Normalize the object to prevent very large instance descriptors.
1524       // This eliminates unwanted N^2 allocation and lookup behavior.
1525       Object* obj;
1526       { MaybeObject* maybe_obj =
1527             NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
1528         if (!maybe_obj->ToObject(&obj)) return maybe_obj;
1529       }
1530     }
1531   }
1532   return AddSlowProperty(name, value, attributes);
1533 }
1534 
1535 
SetPropertyPostInterceptor(String * name,Object * value,PropertyAttributes attributes,StrictModeFlag strict_mode)1536 MaybeObject* JSObject::SetPropertyPostInterceptor(
1537     String* name,
1538     Object* value,
1539     PropertyAttributes attributes,
1540     StrictModeFlag strict_mode) {
1541   // Check local property, ignore interceptor.
1542   LookupResult result;
1543   LocalLookupRealNamedProperty(name, &result);
1544   if (result.IsFound()) {
1545     // An existing property, a map transition or a null descriptor was
1546     // found.  Use set property to handle all these cases.
1547     return SetProperty(&result, name, value, attributes, strict_mode);
1548   }
1549   // Add a new real property.
1550   return AddProperty(name, value, attributes, strict_mode);
1551 }
1552 
1553 
ReplaceSlowProperty(String * name,Object * value,PropertyAttributes attributes)1554 MaybeObject* JSObject::ReplaceSlowProperty(String* name,
1555                                            Object* value,
1556                                            PropertyAttributes attributes) {
1557   StringDictionary* dictionary = property_dictionary();
1558   int old_index = dictionary->FindEntry(name);
1559   int new_enumeration_index = 0;  // 0 means "Use the next available index."
1560   if (old_index != -1) {
1561     // All calls to ReplaceSlowProperty have had all transitions removed.
1562     ASSERT(!dictionary->DetailsAt(old_index).IsTransition());
1563     new_enumeration_index = dictionary->DetailsAt(old_index).index();
1564   }
1565 
1566   PropertyDetails new_details(attributes, NORMAL, new_enumeration_index);
1567   return SetNormalizedProperty(name, value, new_details);
1568 }
1569 
1570 
ConvertDescriptorToFieldAndMapTransition(String * name,Object * new_value,PropertyAttributes attributes)1571 MaybeObject* JSObject::ConvertDescriptorToFieldAndMapTransition(
1572     String* name,
1573     Object* new_value,
1574     PropertyAttributes attributes) {
1575   Map* old_map = map();
1576   Object* result;
1577   { MaybeObject* maybe_result =
1578         ConvertDescriptorToField(name, new_value, attributes);
1579     if (!maybe_result->ToObject(&result)) return maybe_result;
1580   }
1581   // If we get to this point we have succeeded - do not return failure
1582   // after this point.  Later stuff is optional.
1583   if (!HasFastProperties()) {
1584     return result;
1585   }
1586   // Do not add transitions to the map of "new Object()".
1587   if (map() == old_map->heap()->isolate()->context()->global_context()->
1588       object_function()->map()) {
1589     return result;
1590   }
1591 
1592   MapTransitionDescriptor transition(name,
1593                                      map(),
1594                                      attributes);
1595   Object* new_descriptors;
1596   { MaybeObject* maybe_new_descriptors = old_map->instance_descriptors()->
1597         CopyInsert(&transition, KEEP_TRANSITIONS);
1598     if (!maybe_new_descriptors->ToObject(&new_descriptors)) {
1599       return result;  // Yes, return _result_.
1600     }
1601   }
1602   old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors));
1603   return result;
1604 }
1605 
1606 
ConvertDescriptorToField(String * name,Object * new_value,PropertyAttributes attributes)1607 MaybeObject* JSObject::ConvertDescriptorToField(String* name,
1608                                                 Object* new_value,
1609                                                 PropertyAttributes attributes) {
1610   if (map()->unused_property_fields() == 0 &&
1611       properties()->length() > MaxFastProperties()) {
1612     Object* obj;
1613     { MaybeObject* maybe_obj =
1614           NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
1615       if (!maybe_obj->ToObject(&obj)) return maybe_obj;
1616     }
1617     return ReplaceSlowProperty(name, new_value, attributes);
1618   }
1619 
1620   int index = map()->NextFreePropertyIndex();
1621   FieldDescriptor new_field(name, index, attributes);
1622   // Make a new DescriptorArray replacing an entry with FieldDescriptor.
1623   Object* descriptors_unchecked;
1624   { MaybeObject* maybe_descriptors_unchecked = map()->instance_descriptors()->
1625                                   CopyInsert(&new_field, REMOVE_TRANSITIONS);
1626     if (!maybe_descriptors_unchecked->ToObject(&descriptors_unchecked)) {
1627       return maybe_descriptors_unchecked;
1628     }
1629   }
1630   DescriptorArray* new_descriptors =
1631       DescriptorArray::cast(descriptors_unchecked);
1632 
1633   // Make a new map for the object.
1634   Object* new_map_unchecked;
1635   { MaybeObject* maybe_new_map_unchecked = map()->CopyDropDescriptors();
1636     if (!maybe_new_map_unchecked->ToObject(&new_map_unchecked)) {
1637       return maybe_new_map_unchecked;
1638     }
1639   }
1640   Map* new_map = Map::cast(new_map_unchecked);
1641   new_map->set_instance_descriptors(new_descriptors);
1642 
1643   // Make new properties array if necessary.
1644   FixedArray* new_properties = 0;  // Will always be NULL or a valid pointer.
1645   int new_unused_property_fields = map()->unused_property_fields() - 1;
1646   if (map()->unused_property_fields() == 0) {
1647     new_unused_property_fields = kFieldsAdded - 1;
1648     Object* new_properties_object;
1649     { MaybeObject* maybe_new_properties_object =
1650           properties()->CopySize(properties()->length() + kFieldsAdded);
1651       if (!maybe_new_properties_object->ToObject(&new_properties_object)) {
1652         return maybe_new_properties_object;
1653       }
1654     }
1655     new_properties = FixedArray::cast(new_properties_object);
1656   }
1657 
1658   // Update pointers to commit changes.
1659   // Object points to the new map.
1660   new_map->set_unused_property_fields(new_unused_property_fields);
1661   set_map(new_map);
1662   if (new_properties) {
1663     set_properties(FixedArray::cast(new_properties));
1664   }
1665   return FastPropertyAtPut(index, new_value);
1666 }
1667 
1668 
1669 
SetPropertyWithInterceptor(String * name,Object * value,PropertyAttributes attributes,StrictModeFlag strict_mode)1670 MaybeObject* JSObject::SetPropertyWithInterceptor(
1671     String* name,
1672     Object* value,
1673     PropertyAttributes attributes,
1674     StrictModeFlag strict_mode) {
1675   Isolate* isolate = GetIsolate();
1676   HandleScope scope(isolate);
1677   Handle<JSObject> this_handle(this);
1678   Handle<String> name_handle(name);
1679   Handle<Object> value_handle(value, isolate);
1680   Handle<InterceptorInfo> interceptor(GetNamedInterceptor());
1681   if (!interceptor->setter()->IsUndefined()) {
1682     LOG(isolate, ApiNamedPropertyAccess("interceptor-named-set", this, name));
1683     CustomArguments args(isolate, interceptor->data(), this, this);
1684     v8::AccessorInfo info(args.end());
1685     v8::NamedPropertySetter setter =
1686         v8::ToCData<v8::NamedPropertySetter>(interceptor->setter());
1687     v8::Handle<v8::Value> result;
1688     {
1689       // Leaving JavaScript.
1690       VMState state(isolate, EXTERNAL);
1691       Handle<Object> value_unhole(value->IsTheHole() ?
1692                                   isolate->heap()->undefined_value() :
1693                                   value,
1694                                   isolate);
1695       result = setter(v8::Utils::ToLocal(name_handle),
1696                       v8::Utils::ToLocal(value_unhole),
1697                       info);
1698     }
1699     RETURN_IF_SCHEDULED_EXCEPTION(isolate);
1700     if (!result.IsEmpty()) return *value_handle;
1701   }
1702   MaybeObject* raw_result =
1703       this_handle->SetPropertyPostInterceptor(*name_handle,
1704                                               *value_handle,
1705                                               attributes,
1706                                               strict_mode);
1707   RETURN_IF_SCHEDULED_EXCEPTION(isolate);
1708   return raw_result;
1709 }
1710 
1711 
SetProperty(String * name,Object * value,PropertyAttributes attributes,StrictModeFlag strict_mode)1712 MaybeObject* JSObject::SetProperty(String* name,
1713                                    Object* value,
1714                                    PropertyAttributes attributes,
1715                                    StrictModeFlag strict_mode) {
1716   LookupResult result;
1717   LocalLookup(name, &result);
1718   return SetProperty(&result, name, value, attributes, strict_mode);
1719 }
1720 
1721 
SetPropertyWithCallback(Object * structure,String * name,Object * value,JSObject * holder)1722 MaybeObject* JSObject::SetPropertyWithCallback(Object* structure,
1723                                                String* name,
1724                                                Object* value,
1725                                                JSObject* holder) {
1726   Isolate* isolate = GetIsolate();
1727   HandleScope scope(isolate);
1728 
1729   // We should never get here to initialize a const with the hole
1730   // value since a const declaration would conflict with the setter.
1731   ASSERT(!value->IsTheHole());
1732   Handle<Object> value_handle(value, isolate);
1733 
1734   // To accommodate both the old and the new api we switch on the
1735   // data structure used to store the callbacks.  Eventually proxy
1736   // callbacks should be phased out.
1737   if (structure->IsProxy()) {
1738     AccessorDescriptor* callback =
1739         reinterpret_cast<AccessorDescriptor*>(Proxy::cast(structure)->proxy());
1740     MaybeObject* obj = (callback->setter)(this,  value, callback->data);
1741     RETURN_IF_SCHEDULED_EXCEPTION(isolate);
1742     if (obj->IsFailure()) return obj;
1743     return *value_handle;
1744   }
1745 
1746   if (structure->IsAccessorInfo()) {
1747     // api style callbacks
1748     AccessorInfo* data = AccessorInfo::cast(structure);
1749     Object* call_obj = data->setter();
1750     v8::AccessorSetter call_fun = v8::ToCData<v8::AccessorSetter>(call_obj);
1751     if (call_fun == NULL) return value;
1752     Handle<String> key(name);
1753     LOG(isolate, ApiNamedPropertyAccess("store", this, name));
1754     CustomArguments args(isolate, data->data(), this, JSObject::cast(holder));
1755     v8::AccessorInfo info(args.end());
1756     {
1757       // Leaving JavaScript.
1758       VMState state(isolate, EXTERNAL);
1759       call_fun(v8::Utils::ToLocal(key),
1760                v8::Utils::ToLocal(value_handle),
1761                info);
1762     }
1763     RETURN_IF_SCHEDULED_EXCEPTION(isolate);
1764     return *value_handle;
1765   }
1766 
1767   if (structure->IsFixedArray()) {
1768     Object* setter = FixedArray::cast(structure)->get(kSetterIndex);
1769     if (setter->IsJSFunction()) {
1770      return SetPropertyWithDefinedSetter(JSFunction::cast(setter), value);
1771     } else {
1772       Handle<String> key(name);
1773       Handle<Object> holder_handle(holder, isolate);
1774       Handle<Object> args[2] = { key, holder_handle };
1775       return isolate->Throw(
1776           *isolate->factory()->NewTypeError("no_setter_in_callback",
1777                                             HandleVector(args, 2)));
1778     }
1779   }
1780 
1781   UNREACHABLE();
1782   return NULL;
1783 }
1784 
1785 
SetPropertyWithDefinedSetter(JSFunction * setter,Object * value)1786 MaybeObject* JSObject::SetPropertyWithDefinedSetter(JSFunction* setter,
1787                                                     Object* value) {
1788   Isolate* isolate = GetIsolate();
1789   Handle<Object> value_handle(value, isolate);
1790   Handle<JSFunction> fun(JSFunction::cast(setter), isolate);
1791   Handle<JSObject> self(this, isolate);
1792 #ifdef ENABLE_DEBUGGER_SUPPORT
1793   Debug* debug = isolate->debug();
1794   // Handle stepping into a setter if step into is active.
1795   if (debug->StepInActive()) {
1796     debug->HandleStepIn(fun, Handle<Object>::null(), 0, false);
1797   }
1798 #endif
1799   bool has_pending_exception;
1800   Object** argv[] = { value_handle.location() };
1801   Execution::Call(fun, self, 1, argv, &has_pending_exception);
1802   // Check for pending exception and return the result.
1803   if (has_pending_exception) return Failure::Exception();
1804   return *value_handle;
1805 }
1806 
1807 
LookupCallbackSetterInPrototypes(String * name,LookupResult * result)1808 void JSObject::LookupCallbackSetterInPrototypes(String* name,
1809                                                 LookupResult* result) {
1810   Heap* heap = GetHeap();
1811   for (Object* pt = GetPrototype();
1812        pt != heap->null_value();
1813        pt = pt->GetPrototype()) {
1814     JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result);
1815     if (result->IsProperty()) {
1816       if (result->type() == CALLBACKS && !result->IsReadOnly()) return;
1817       // Found non-callback or read-only callback, stop looking.
1818       break;
1819     }
1820   }
1821   result->NotFound();
1822 }
1823 
1824 
SetElementWithCallbackSetterInPrototypes(uint32_t index,Object * value,bool * found)1825 MaybeObject* JSObject::SetElementWithCallbackSetterInPrototypes(uint32_t index,
1826                                                                 Object* value,
1827                                                                 bool* found) {
1828   Heap* heap = GetHeap();
1829   for (Object* pt = GetPrototype();
1830        pt != heap->null_value();
1831        pt = pt->GetPrototype()) {
1832     if (!JSObject::cast(pt)->HasDictionaryElements()) {
1833         continue;
1834     }
1835     NumberDictionary* dictionary = JSObject::cast(pt)->element_dictionary();
1836     int entry = dictionary->FindEntry(index);
1837     if (entry != NumberDictionary::kNotFound) {
1838       PropertyDetails details = dictionary->DetailsAt(entry);
1839       if (details.type() == CALLBACKS) {
1840         *found = true;
1841         return SetElementWithCallback(
1842             dictionary->ValueAt(entry), index, value, JSObject::cast(pt));
1843       }
1844     }
1845   }
1846   *found = false;
1847   return heap->the_hole_value();
1848 }
1849 
1850 
LookupInDescriptor(String * name,LookupResult * result)1851 void JSObject::LookupInDescriptor(String* name, LookupResult* result) {
1852   DescriptorArray* descriptors = map()->instance_descriptors();
1853   int number = descriptors->SearchWithCache(name);
1854   if (number != DescriptorArray::kNotFound) {
1855     result->DescriptorResult(this, descriptors->GetDetails(number), number);
1856   } else {
1857     result->NotFound();
1858   }
1859 }
1860 
1861 
LookupInDescriptors(JSObject * holder,String * name,LookupResult * result)1862 void Map::LookupInDescriptors(JSObject* holder,
1863                               String* name,
1864                               LookupResult* result) {
1865   DescriptorArray* descriptors = instance_descriptors();
1866   DescriptorLookupCache* cache = heap()->isolate()->descriptor_lookup_cache();
1867   int number = cache->Lookup(descriptors, name);
1868   if (number == DescriptorLookupCache::kAbsent) {
1869     number = descriptors->Search(name);
1870     cache->Update(descriptors, name, number);
1871   }
1872   if (number != DescriptorArray::kNotFound) {
1873     result->DescriptorResult(holder, descriptors->GetDetails(number), number);
1874   } else {
1875     result->NotFound();
1876   }
1877 }
1878 
1879 
GetExternalArrayElementsMap(ExternalArrayType array_type,bool safe_to_add_transition)1880 MaybeObject* Map::GetExternalArrayElementsMap(ExternalArrayType array_type,
1881                                               bool safe_to_add_transition) {
1882   Heap* current_heap = heap();
1883   DescriptorArray* descriptors = instance_descriptors();
1884   String* external_array_sentinel_name = current_heap->empty_symbol();
1885 
1886   if (safe_to_add_transition) {
1887     // It's only safe to manipulate the descriptor array if it would be
1888     // safe to add a transition.
1889 
1890     ASSERT(!is_shared());  // no transitions can be added to shared maps.
1891     // Check if the external array transition already exists.
1892     DescriptorLookupCache* cache =
1893         current_heap->isolate()->descriptor_lookup_cache();
1894     int index = cache->Lookup(descriptors, external_array_sentinel_name);
1895     if (index == DescriptorLookupCache::kAbsent) {
1896       index = descriptors->Search(external_array_sentinel_name);
1897       cache->Update(descriptors,
1898                     external_array_sentinel_name,
1899                     index);
1900     }
1901 
1902     // If the transition already exists, check the type. If there is a match,
1903     // return it.
1904     if (index != DescriptorArray::kNotFound) {
1905       PropertyDetails details(PropertyDetails(descriptors->GetDetails(index)));
1906       if (details.type() == EXTERNAL_ARRAY_TRANSITION &&
1907           details.array_type() == array_type) {
1908         return descriptors->GetValue(index);
1909       } else {
1910         safe_to_add_transition = false;
1911       }
1912     }
1913   }
1914 
1915   // No transition to an existing external array map. Make a new one.
1916   Object* obj;
1917   { MaybeObject* maybe_map = CopyDropTransitions();
1918     if (!maybe_map->ToObject(&obj)) return maybe_map;
1919   }
1920   Map* new_map = Map::cast(obj);
1921 
1922   new_map->set_has_fast_elements(false);
1923   new_map->set_has_external_array_elements(true);
1924   GetIsolate()->counters()->map_to_external_array_elements()->Increment();
1925 
1926   // Only remember the map transition if the object's map is NOT equal to the
1927   // global object_function's map and there is not an already existing
1928   // non-matching external array transition.
1929   bool allow_map_transition =
1930       safe_to_add_transition &&
1931       (GetIsolate()->context()->global_context()->object_function()->map() !=
1932        map());
1933   if (allow_map_transition) {
1934     // Allocate new instance descriptors for the old map with map transition.
1935     ExternalArrayTransitionDescriptor desc(external_array_sentinel_name,
1936                                            Map::cast(new_map),
1937                                            array_type);
1938     Object* new_descriptors;
1939     MaybeObject* maybe_new_descriptors = descriptors->CopyInsert(
1940         &desc,
1941         KEEP_TRANSITIONS);
1942     if (!maybe_new_descriptors->ToObject(&new_descriptors)) {
1943       return maybe_new_descriptors;
1944     }
1945     descriptors = DescriptorArray::cast(new_descriptors);
1946     set_instance_descriptors(descriptors);
1947   }
1948 
1949   return new_map;
1950 }
1951 
1952 
LocalLookupRealNamedProperty(String * name,LookupResult * result)1953 void JSObject::LocalLookupRealNamedProperty(String* name,
1954                                             LookupResult* result) {
1955   if (IsJSGlobalProxy()) {
1956     Object* proto = GetPrototype();
1957     if (proto->IsNull()) return result->NotFound();
1958     ASSERT(proto->IsJSGlobalObject());
1959     return JSObject::cast(proto)->LocalLookupRealNamedProperty(name, result);
1960   }
1961 
1962   if (HasFastProperties()) {
1963     LookupInDescriptor(name, result);
1964     if (result->IsFound()) {
1965       // A property, a map transition or a null descriptor was found.
1966       // We return all of these result types because
1967       // LocalLookupRealNamedProperty is used when setting properties
1968       // where map transitions and null descriptors are handled.
1969       ASSERT(result->holder() == this && result->type() != NORMAL);
1970       // Disallow caching for uninitialized constants. These can only
1971       // occur as fields.
1972       if (result->IsReadOnly() && result->type() == FIELD &&
1973           FastPropertyAt(result->GetFieldIndex())->IsTheHole()) {
1974         result->DisallowCaching();
1975       }
1976       return;
1977     }
1978   } else {
1979     int entry = property_dictionary()->FindEntry(name);
1980     if (entry != StringDictionary::kNotFound) {
1981       Object* value = property_dictionary()->ValueAt(entry);
1982       if (IsGlobalObject()) {
1983         PropertyDetails d = property_dictionary()->DetailsAt(entry);
1984         if (d.IsDeleted()) {
1985           result->NotFound();
1986           return;
1987         }
1988         value = JSGlobalPropertyCell::cast(value)->value();
1989       }
1990       // Make sure to disallow caching for uninitialized constants
1991       // found in the dictionary-mode objects.
1992       if (value->IsTheHole()) result->DisallowCaching();
1993       result->DictionaryResult(this, entry);
1994       return;
1995     }
1996   }
1997   result->NotFound();
1998 }
1999 
2000 
LookupRealNamedProperty(String * name,LookupResult * result)2001 void JSObject::LookupRealNamedProperty(String* name, LookupResult* result) {
2002   LocalLookupRealNamedProperty(name, result);
2003   if (result->IsProperty()) return;
2004 
2005   LookupRealNamedPropertyInPrototypes(name, result);
2006 }
2007 
2008 
LookupRealNamedPropertyInPrototypes(String * name,LookupResult * result)2009 void JSObject::LookupRealNamedPropertyInPrototypes(String* name,
2010                                                    LookupResult* result) {
2011   Heap* heap = GetHeap();
2012   for (Object* pt = GetPrototype();
2013        pt != heap->null_value();
2014        pt = JSObject::cast(pt)->GetPrototype()) {
2015     JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result);
2016     if (result->IsProperty() && (result->type() != INTERCEPTOR)) return;
2017   }
2018   result->NotFound();
2019 }
2020 
2021 
2022 // We only need to deal with CALLBACKS and INTERCEPTORS
SetPropertyWithFailedAccessCheck(LookupResult * result,String * name,Object * value,bool check_prototype)2023 MaybeObject* JSObject::SetPropertyWithFailedAccessCheck(LookupResult* result,
2024                                                         String* name,
2025                                                         Object* value,
2026                                                         bool check_prototype) {
2027   if (check_prototype && !result->IsProperty()) {
2028     LookupCallbackSetterInPrototypes(name, result);
2029   }
2030 
2031   if (result->IsProperty()) {
2032     if (!result->IsReadOnly()) {
2033       switch (result->type()) {
2034         case CALLBACKS: {
2035           Object* obj = result->GetCallbackObject();
2036           if (obj->IsAccessorInfo()) {
2037             AccessorInfo* info = AccessorInfo::cast(obj);
2038             if (info->all_can_write()) {
2039               return SetPropertyWithCallback(result->GetCallbackObject(),
2040                                              name,
2041                                              value,
2042                                              result->holder());
2043             }
2044           }
2045           break;
2046         }
2047         case INTERCEPTOR: {
2048           // Try lookup real named properties. Note that only property can be
2049           // set is callbacks marked as ALL_CAN_WRITE on the prototype chain.
2050           LookupResult r;
2051           LookupRealNamedProperty(name, &r);
2052           if (r.IsProperty()) {
2053             return SetPropertyWithFailedAccessCheck(&r, name, value,
2054                                                     check_prototype);
2055           }
2056           break;
2057         }
2058         default: {
2059           break;
2060         }
2061       }
2062     }
2063   }
2064 
2065   HandleScope scope;
2066   Handle<Object> value_handle(value);
2067   Heap* heap = GetHeap();
2068   heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_SET);
2069   return *value_handle;
2070 }
2071 
2072 
SetProperty(LookupResult * result,String * name,Object * value,PropertyAttributes attributes,StrictModeFlag strict_mode)2073 MaybeObject* JSObject::SetProperty(LookupResult* result,
2074                                    String* name,
2075                                    Object* value,
2076                                    PropertyAttributes attributes,
2077                                    StrictModeFlag strict_mode) {
2078   Heap* heap = GetHeap();
2079   // Make sure that the top context does not change when doing callbacks or
2080   // interceptor calls.
2081   AssertNoContextChange ncc;
2082 
2083   // Optimization for 2-byte strings often used as keys in a decompression
2084   // dictionary.  We make these short keys into symbols to avoid constantly
2085   // reallocating them.
2086   if (!name->IsSymbol() && name->length() <= 2) {
2087     Object* symbol_version;
2088     { MaybeObject* maybe_symbol_version = heap->LookupSymbol(name);
2089       if (maybe_symbol_version->ToObject(&symbol_version)) {
2090         name = String::cast(symbol_version);
2091       }
2092     }
2093   }
2094 
2095   // Check access rights if needed.
2096   if (IsAccessCheckNeeded()
2097       && !heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_SET)) {
2098     return SetPropertyWithFailedAccessCheck(result, name, value, true);
2099   }
2100 
2101   if (IsJSGlobalProxy()) {
2102     Object* proto = GetPrototype();
2103     if (proto->IsNull()) return value;
2104     ASSERT(proto->IsJSGlobalObject());
2105     return JSObject::cast(proto)->SetProperty(
2106         result, name, value, attributes, strict_mode);
2107   }
2108 
2109   if (!result->IsProperty() && !IsJSContextExtensionObject()) {
2110     // We could not find a local property so let's check whether there is an
2111     // accessor that wants to handle the property.
2112     LookupResult accessor_result;
2113     LookupCallbackSetterInPrototypes(name, &accessor_result);
2114     if (accessor_result.IsProperty()) {
2115       return SetPropertyWithCallback(accessor_result.GetCallbackObject(),
2116                                      name,
2117                                      value,
2118                                      accessor_result.holder());
2119     }
2120   }
2121   if (!result->IsFound()) {
2122     // Neither properties nor transitions found.
2123     return AddProperty(name, value, attributes, strict_mode);
2124   }
2125   if (result->IsReadOnly() && result->IsProperty()) {
2126     if (strict_mode == kStrictMode) {
2127       HandleScope scope;
2128       Handle<String> key(name);
2129       Handle<Object> holder(this);
2130       Handle<Object> args[2] = { key, holder };
2131       return heap->isolate()->Throw(*heap->isolate()->factory()->NewTypeError(
2132           "strict_read_only_property", HandleVector(args, 2)));
2133     } else {
2134       return value;
2135     }
2136   }
2137   // This is a real property that is not read-only, or it is a
2138   // transition or null descriptor and there are no setters in the prototypes.
2139   switch (result->type()) {
2140     case NORMAL:
2141       return SetNormalizedProperty(result, value);
2142     case FIELD:
2143       return FastPropertyAtPut(result->GetFieldIndex(), value);
2144     case MAP_TRANSITION:
2145       if (attributes == result->GetAttributes()) {
2146         // Only use map transition if the attributes match.
2147         return AddFastPropertyUsingMap(result->GetTransitionMap(),
2148                                        name,
2149                                        value);
2150       }
2151       return ConvertDescriptorToField(name, value, attributes);
2152     case CONSTANT_FUNCTION:
2153       // Only replace the function if necessary.
2154       if (value == result->GetConstantFunction()) return value;
2155       // Preserve the attributes of this existing property.
2156       attributes = result->GetAttributes();
2157       return ConvertDescriptorToField(name, value, attributes);
2158     case CALLBACKS:
2159       return SetPropertyWithCallback(result->GetCallbackObject(),
2160                                      name,
2161                                      value,
2162                                      result->holder());
2163     case INTERCEPTOR:
2164       return SetPropertyWithInterceptor(name, value, attributes, strict_mode);
2165     case CONSTANT_TRANSITION: {
2166       // If the same constant function is being added we can simply
2167       // transition to the target map.
2168       Map* target_map = result->GetTransitionMap();
2169       DescriptorArray* target_descriptors = target_map->instance_descriptors();
2170       int number = target_descriptors->SearchWithCache(name);
2171       ASSERT(number != DescriptorArray::kNotFound);
2172       ASSERT(target_descriptors->GetType(number) == CONSTANT_FUNCTION);
2173       JSFunction* function =
2174           JSFunction::cast(target_descriptors->GetValue(number));
2175       ASSERT(!HEAP->InNewSpace(function));
2176       if (value == function) {
2177         set_map(target_map);
2178         return value;
2179       }
2180       // Otherwise, replace with a MAP_TRANSITION to a new map with a
2181       // FIELD, even if the value is a constant function.
2182       return ConvertDescriptorToFieldAndMapTransition(name, value, attributes);
2183     }
2184     case NULL_DESCRIPTOR:
2185     case EXTERNAL_ARRAY_TRANSITION:
2186       return ConvertDescriptorToFieldAndMapTransition(name, value, attributes);
2187     default:
2188       UNREACHABLE();
2189   }
2190   UNREACHABLE();
2191   return value;
2192 }
2193 
2194 
2195 // Set a real local property, even if it is READ_ONLY.  If the property is not
2196 // present, add it with attributes NONE.  This code is an exact clone of
2197 // SetProperty, with the check for IsReadOnly and the check for a
2198 // callback setter removed.  The two lines looking up the LookupResult
2199 // result are also added.  If one of the functions is changed, the other
2200 // should be.
SetLocalPropertyIgnoreAttributes(String * name,Object * value,PropertyAttributes attributes)2201 MaybeObject* JSObject::SetLocalPropertyIgnoreAttributes(
2202     String* name,
2203     Object* value,
2204     PropertyAttributes attributes) {
2205 
2206   // Make sure that the top context does not change when doing callbacks or
2207   // interceptor calls.
2208   AssertNoContextChange ncc;
2209   LookupResult result;
2210   LocalLookup(name, &result);
2211   // Check access rights if needed.
2212   if (IsAccessCheckNeeded()) {
2213     Heap* heap = GetHeap();
2214     if (!heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_SET)) {
2215       return SetPropertyWithFailedAccessCheck(&result, name, value, false);
2216     }
2217   }
2218 
2219   if (IsJSGlobalProxy()) {
2220     Object* proto = GetPrototype();
2221     if (proto->IsNull()) return value;
2222     ASSERT(proto->IsJSGlobalObject());
2223     return JSObject::cast(proto)->SetLocalPropertyIgnoreAttributes(
2224         name,
2225         value,
2226         attributes);
2227   }
2228 
2229   // Check for accessor in prototype chain removed here in clone.
2230   if (!result.IsFound()) {
2231     // Neither properties nor transitions found.
2232     return AddProperty(name, value, attributes, kNonStrictMode);
2233   }
2234 
2235   PropertyDetails details = PropertyDetails(attributes, NORMAL);
2236 
2237   // Check of IsReadOnly removed from here in clone.
2238   switch (result.type()) {
2239     case NORMAL:
2240       return SetNormalizedProperty(name, value, details);
2241     case FIELD:
2242       return FastPropertyAtPut(result.GetFieldIndex(), value);
2243     case MAP_TRANSITION:
2244       if (attributes == result.GetAttributes()) {
2245         // Only use map transition if the attributes match.
2246         return AddFastPropertyUsingMap(result.GetTransitionMap(),
2247                                        name,
2248                                        value);
2249       }
2250       return ConvertDescriptorToField(name, value, attributes);
2251     case CONSTANT_FUNCTION:
2252       // Only replace the function if necessary.
2253       if (value == result.GetConstantFunction()) return value;
2254       // Preserve the attributes of this existing property.
2255       attributes = result.GetAttributes();
2256       return ConvertDescriptorToField(name, value, attributes);
2257     case CALLBACKS:
2258     case INTERCEPTOR:
2259       // Override callback in clone
2260       return ConvertDescriptorToField(name, value, attributes);
2261     case CONSTANT_TRANSITION:
2262       // Replace with a MAP_TRANSITION to a new map with a FIELD, even
2263       // if the value is a function.
2264       return ConvertDescriptorToFieldAndMapTransition(name, value, attributes);
2265     case NULL_DESCRIPTOR:
2266     case EXTERNAL_ARRAY_TRANSITION:
2267       return ConvertDescriptorToFieldAndMapTransition(name, value, attributes);
2268     default:
2269       UNREACHABLE();
2270   }
2271   UNREACHABLE();
2272   return value;
2273 }
2274 
2275 
GetPropertyAttributePostInterceptor(JSObject * receiver,String * name,bool continue_search)2276 PropertyAttributes JSObject::GetPropertyAttributePostInterceptor(
2277       JSObject* receiver,
2278       String* name,
2279       bool continue_search) {
2280   // Check local property, ignore interceptor.
2281   LookupResult result;
2282   LocalLookupRealNamedProperty(name, &result);
2283   if (result.IsProperty()) return result.GetAttributes();
2284 
2285   if (continue_search) {
2286     // Continue searching via the prototype chain.
2287     Object* pt = GetPrototype();
2288     if (!pt->IsNull()) {
2289       return JSObject::cast(pt)->
2290         GetPropertyAttributeWithReceiver(receiver, name);
2291     }
2292   }
2293   return ABSENT;
2294 }
2295 
2296 
GetPropertyAttributeWithInterceptor(JSObject * receiver,String * name,bool continue_search)2297 PropertyAttributes JSObject::GetPropertyAttributeWithInterceptor(
2298       JSObject* receiver,
2299       String* name,
2300       bool continue_search) {
2301   Isolate* isolate = GetIsolate();
2302 
2303   // Make sure that the top context does not change when doing
2304   // callbacks or interceptor calls.
2305   AssertNoContextChange ncc;
2306 
2307   HandleScope scope(isolate);
2308   Handle<InterceptorInfo> interceptor(GetNamedInterceptor());
2309   Handle<JSObject> receiver_handle(receiver);
2310   Handle<JSObject> holder_handle(this);
2311   Handle<String> name_handle(name);
2312   CustomArguments args(isolate, interceptor->data(), receiver, this);
2313   v8::AccessorInfo info(args.end());
2314   if (!interceptor->query()->IsUndefined()) {
2315     v8::NamedPropertyQuery query =
2316         v8::ToCData<v8::NamedPropertyQuery>(interceptor->query());
2317     LOG(isolate,
2318         ApiNamedPropertyAccess("interceptor-named-has", *holder_handle, name));
2319     v8::Handle<v8::Integer> result;
2320     {
2321       // Leaving JavaScript.
2322       VMState state(isolate, EXTERNAL);
2323       result = query(v8::Utils::ToLocal(name_handle), info);
2324     }
2325     if (!result.IsEmpty()) {
2326       ASSERT(result->IsInt32());
2327       return static_cast<PropertyAttributes>(result->Int32Value());
2328     }
2329   } else if (!interceptor->getter()->IsUndefined()) {
2330     v8::NamedPropertyGetter getter =
2331         v8::ToCData<v8::NamedPropertyGetter>(interceptor->getter());
2332     LOG(isolate,
2333         ApiNamedPropertyAccess("interceptor-named-get-has", this, name));
2334     v8::Handle<v8::Value> result;
2335     {
2336       // Leaving JavaScript.
2337       VMState state(isolate, EXTERNAL);
2338       result = getter(v8::Utils::ToLocal(name_handle), info);
2339     }
2340     if (!result.IsEmpty()) return DONT_ENUM;
2341   }
2342   return holder_handle->GetPropertyAttributePostInterceptor(*receiver_handle,
2343                                                             *name_handle,
2344                                                             continue_search);
2345 }
2346 
2347 
GetPropertyAttributeWithReceiver(JSObject * receiver,String * key)2348 PropertyAttributes JSObject::GetPropertyAttributeWithReceiver(
2349       JSObject* receiver,
2350       String* key) {
2351   uint32_t index = 0;
2352   if (key->AsArrayIndex(&index)) {
2353     if (HasElementWithReceiver(receiver, index)) return NONE;
2354     return ABSENT;
2355   }
2356   // Named property.
2357   LookupResult result;
2358   Lookup(key, &result);
2359   return GetPropertyAttribute(receiver, &result, key, true);
2360 }
2361 
2362 
GetPropertyAttribute(JSObject * receiver,LookupResult * result,String * name,bool continue_search)2363 PropertyAttributes JSObject::GetPropertyAttribute(JSObject* receiver,
2364                                                   LookupResult* result,
2365                                                   String* name,
2366                                                   bool continue_search) {
2367   // Check access rights if needed.
2368   if (IsAccessCheckNeeded()) {
2369     Heap* heap = GetHeap();
2370     if (!heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_HAS)) {
2371       return GetPropertyAttributeWithFailedAccessCheck(receiver,
2372                                                        result,
2373                                                        name,
2374                                                        continue_search);
2375     }
2376   }
2377   if (result->IsProperty()) {
2378     switch (result->type()) {
2379       case NORMAL:  // fall through
2380       case FIELD:
2381       case CONSTANT_FUNCTION:
2382       case CALLBACKS:
2383         return result->GetAttributes();
2384       case INTERCEPTOR:
2385         return result->holder()->
2386           GetPropertyAttributeWithInterceptor(receiver, name, continue_search);
2387       default:
2388         UNREACHABLE();
2389     }
2390   }
2391   return ABSENT;
2392 }
2393 
2394 
GetLocalPropertyAttribute(String * name)2395 PropertyAttributes JSObject::GetLocalPropertyAttribute(String* name) {
2396   // Check whether the name is an array index.
2397   uint32_t index = 0;
2398   if (name->AsArrayIndex(&index)) {
2399     if (HasLocalElement(index)) return NONE;
2400     return ABSENT;
2401   }
2402   // Named property.
2403   LookupResult result;
2404   LocalLookup(name, &result);
2405   return GetPropertyAttribute(this, &result, name, false);
2406 }
2407 
2408 
Get(JSObject * obj,PropertyNormalizationMode mode)2409 MaybeObject* NormalizedMapCache::Get(JSObject* obj,
2410                                      PropertyNormalizationMode mode) {
2411   Isolate* isolate = obj->GetIsolate();
2412   Map* fast = obj->map();
2413   int index = Hash(fast) % kEntries;
2414   Object* result = get(index);
2415   if (result->IsMap() && CheckHit(Map::cast(result), fast, mode)) {
2416 #ifdef DEBUG
2417     if (FLAG_enable_slow_asserts) {
2418       // The cached map should match newly created normalized map bit-by-bit.
2419       Object* fresh;
2420       { MaybeObject* maybe_fresh =
2421             fast->CopyNormalized(mode, SHARED_NORMALIZED_MAP);
2422         if (maybe_fresh->ToObject(&fresh)) {
2423           ASSERT(memcmp(Map::cast(fresh)->address(),
2424                         Map::cast(result)->address(),
2425                         Map::kSize) == 0);
2426         }
2427       }
2428     }
2429 #endif
2430     return result;
2431   }
2432 
2433   { MaybeObject* maybe_result =
2434         fast->CopyNormalized(mode, SHARED_NORMALIZED_MAP);
2435     if (!maybe_result->ToObject(&result)) return maybe_result;
2436   }
2437   set(index, result);
2438   isolate->counters()->normalized_maps()->Increment();
2439 
2440   return result;
2441 }
2442 
2443 
Clear()2444 void NormalizedMapCache::Clear() {
2445   int entries = length();
2446   for (int i = 0; i != entries; i++) {
2447     set_undefined(i);
2448   }
2449 }
2450 
2451 
Hash(Map * fast)2452 int NormalizedMapCache::Hash(Map* fast) {
2453   // For performance reasons we only hash the 3 most variable fields of a map:
2454   // constructor, prototype and bit_field2.
2455 
2456   // Shift away the tag.
2457   int hash = (static_cast<uint32_t>(
2458         reinterpret_cast<uintptr_t>(fast->constructor())) >> 2);
2459 
2460   // XOR-ing the prototype and constructor directly yields too many zero bits
2461   // when the two pointers are close (which is fairly common).
2462   // To avoid this we shift the prototype 4 bits relatively to the constructor.
2463   hash ^= (static_cast<uint32_t>(
2464         reinterpret_cast<uintptr_t>(fast->prototype())) << 2);
2465 
2466   return hash ^ (hash >> 16) ^ fast->bit_field2();
2467 }
2468 
2469 
CheckHit(Map * slow,Map * fast,PropertyNormalizationMode mode)2470 bool NormalizedMapCache::CheckHit(Map* slow,
2471                                   Map* fast,
2472                                   PropertyNormalizationMode mode) {
2473 #ifdef DEBUG
2474   slow->SharedMapVerify();
2475 #endif
2476   return
2477     slow->constructor() == fast->constructor() &&
2478     slow->prototype() == fast->prototype() &&
2479     slow->inobject_properties() == ((mode == CLEAR_INOBJECT_PROPERTIES) ?
2480                                     0 :
2481                                     fast->inobject_properties()) &&
2482     slow->instance_type() == fast->instance_type() &&
2483     slow->bit_field() == fast->bit_field() &&
2484     (slow->bit_field2() & ~(1<<Map::kIsShared)) == fast->bit_field2();
2485 }
2486 
2487 
UpdateMapCodeCache(String * name,Code * code)2488 MaybeObject* JSObject::UpdateMapCodeCache(String* name, Code* code) {
2489   if (map()->is_shared()) {
2490     // Fast case maps are never marked as shared.
2491     ASSERT(!HasFastProperties());
2492     // Replace the map with an identical copy that can be safely modified.
2493     Object* obj;
2494     { MaybeObject* maybe_obj = map()->CopyNormalized(KEEP_INOBJECT_PROPERTIES,
2495                                                      UNIQUE_NORMALIZED_MAP);
2496       if (!maybe_obj->ToObject(&obj)) return maybe_obj;
2497     }
2498     GetIsolate()->counters()->normalized_maps()->Increment();
2499 
2500     set_map(Map::cast(obj));
2501   }
2502   return map()->UpdateCodeCache(name, code);
2503 }
2504 
2505 
NormalizeProperties(PropertyNormalizationMode mode,int expected_additional_properties)2506 MaybeObject* JSObject::NormalizeProperties(PropertyNormalizationMode mode,
2507                                            int expected_additional_properties) {
2508   if (!HasFastProperties()) return this;
2509 
2510   // The global object is always normalized.
2511   ASSERT(!IsGlobalObject());
2512   // JSGlobalProxy must never be normalized
2513   ASSERT(!IsJSGlobalProxy());
2514 
2515   Map* map_of_this = map();
2516 
2517   // Allocate new content.
2518   int property_count = map_of_this->NumberOfDescribedProperties();
2519   if (expected_additional_properties > 0) {
2520     property_count += expected_additional_properties;
2521   } else {
2522     property_count += 2;  // Make space for two more properties.
2523   }
2524   Object* obj;
2525   { MaybeObject* maybe_obj =
2526         StringDictionary::Allocate(property_count);
2527     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
2528   }
2529   StringDictionary* dictionary = StringDictionary::cast(obj);
2530 
2531   DescriptorArray* descs = map_of_this->instance_descriptors();
2532   for (int i = 0; i < descs->number_of_descriptors(); i++) {
2533     PropertyDetails details(descs->GetDetails(i));
2534     switch (details.type()) {
2535       case CONSTANT_FUNCTION: {
2536         PropertyDetails d =
2537             PropertyDetails(details.attributes(), NORMAL, details.index());
2538         Object* value = descs->GetConstantFunction(i);
2539         Object* result;
2540         { MaybeObject* maybe_result =
2541               dictionary->Add(descs->GetKey(i), value, d);
2542           if (!maybe_result->ToObject(&result)) return maybe_result;
2543         }
2544         dictionary = StringDictionary::cast(result);
2545         break;
2546       }
2547       case FIELD: {
2548         PropertyDetails d =
2549             PropertyDetails(details.attributes(), NORMAL, details.index());
2550         Object* value = FastPropertyAt(descs->GetFieldIndex(i));
2551         Object* result;
2552         { MaybeObject* maybe_result =
2553               dictionary->Add(descs->GetKey(i), value, d);
2554           if (!maybe_result->ToObject(&result)) return maybe_result;
2555         }
2556         dictionary = StringDictionary::cast(result);
2557         break;
2558       }
2559       case CALLBACKS: {
2560         PropertyDetails d =
2561             PropertyDetails(details.attributes(), CALLBACKS, details.index());
2562         Object* value = descs->GetCallbacksObject(i);
2563         Object* result;
2564         { MaybeObject* maybe_result =
2565               dictionary->Add(descs->GetKey(i), value, d);
2566           if (!maybe_result->ToObject(&result)) return maybe_result;
2567         }
2568         dictionary = StringDictionary::cast(result);
2569         break;
2570       }
2571       case MAP_TRANSITION:
2572       case CONSTANT_TRANSITION:
2573       case NULL_DESCRIPTOR:
2574       case INTERCEPTOR:
2575         break;
2576       default:
2577         UNREACHABLE();
2578     }
2579   }
2580 
2581   Heap* current_heap = map_of_this->heap();
2582 
2583   // Copy the next enumeration index from instance descriptor.
2584   int index = map_of_this->instance_descriptors()->NextEnumerationIndex();
2585   dictionary->SetNextEnumerationIndex(index);
2586 
2587   { MaybeObject* maybe_obj =
2588         current_heap->isolate()->context()->global_context()->
2589         normalized_map_cache()->Get(this, mode);
2590     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
2591   }
2592   Map* new_map = Map::cast(obj);
2593 
2594   // We have now successfully allocated all the necessary objects.
2595   // Changes can now be made with the guarantee that all of them take effect.
2596 
2597   // Resize the object in the heap if necessary.
2598   int new_instance_size = new_map->instance_size();
2599   int instance_size_delta = map_of_this->instance_size() - new_instance_size;
2600   ASSERT(instance_size_delta >= 0);
2601   current_heap->CreateFillerObjectAt(this->address() + new_instance_size,
2602                                      instance_size_delta);
2603 
2604   set_map(new_map);
2605   new_map->set_instance_descriptors(current_heap->empty_descriptor_array());
2606 
2607   set_properties(dictionary);
2608 
2609   current_heap->isolate()->counters()->props_to_dictionary()->Increment();
2610 
2611 #ifdef DEBUG
2612   if (FLAG_trace_normalization) {
2613     PrintF("Object properties have been normalized:\n");
2614     Print();
2615   }
2616 #endif
2617   return this;
2618 }
2619 
2620 
TransformToFastProperties(int unused_property_fields)2621 MaybeObject* JSObject::TransformToFastProperties(int unused_property_fields) {
2622   if (HasFastProperties()) return this;
2623   ASSERT(!IsGlobalObject());
2624   return property_dictionary()->
2625       TransformPropertiesToFastFor(this, unused_property_fields);
2626 }
2627 
2628 
NormalizeElements()2629 MaybeObject* JSObject::NormalizeElements() {
2630   ASSERT(!HasExternalArrayElements());
2631   if (HasDictionaryElements()) return this;
2632   Map* old_map = map();
2633   ASSERT(old_map->has_fast_elements());
2634 
2635   Object* obj;
2636   { MaybeObject* maybe_obj = old_map->GetSlowElementsMap();
2637     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
2638   }
2639   Map* new_map = Map::cast(obj);
2640 
2641   // Get number of entries.
2642   FixedArray* array = FixedArray::cast(elements());
2643 
2644   // Compute the effective length.
2645   int length = IsJSArray() ?
2646                Smi::cast(JSArray::cast(this)->length())->value() :
2647                array->length();
2648   { MaybeObject* maybe_obj = NumberDictionary::Allocate(length);
2649     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
2650   }
2651   NumberDictionary* dictionary = NumberDictionary::cast(obj);
2652   // Copy entries.
2653   for (int i = 0; i < length; i++) {
2654     Object* value = array->get(i);
2655     if (!value->IsTheHole()) {
2656       PropertyDetails details = PropertyDetails(NONE, NORMAL);
2657       Object* result;
2658       { MaybeObject* maybe_result =
2659             dictionary->AddNumberEntry(i, array->get(i), details);
2660         if (!maybe_result->ToObject(&result)) return maybe_result;
2661       }
2662       dictionary = NumberDictionary::cast(result);
2663     }
2664   }
2665   // Switch to using the dictionary as the backing storage for
2666   // elements. Set the new map first to satify the elements type
2667   // assert in set_elements().
2668   set_map(new_map);
2669   set_elements(dictionary);
2670 
2671   new_map->heap()->isolate()->counters()->elements_to_dictionary()->
2672       Increment();
2673 
2674 #ifdef DEBUG
2675   if (FLAG_trace_normalization) {
2676     PrintF("Object elements have been normalized:\n");
2677     Print();
2678   }
2679 #endif
2680 
2681   return this;
2682 }
2683 
2684 
DeletePropertyPostInterceptor(String * name,DeleteMode mode)2685 MaybeObject* JSObject::DeletePropertyPostInterceptor(String* name,
2686                                                      DeleteMode mode) {
2687   // Check local property, ignore interceptor.
2688   LookupResult result;
2689   LocalLookupRealNamedProperty(name, &result);
2690   if (!result.IsProperty()) return GetHeap()->true_value();
2691 
2692   // Normalize object if needed.
2693   Object* obj;
2694   { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
2695     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
2696   }
2697 
2698   return DeleteNormalizedProperty(name, mode);
2699 }
2700 
2701 
DeletePropertyWithInterceptor(String * name)2702 MaybeObject* JSObject::DeletePropertyWithInterceptor(String* name) {
2703   Isolate* isolate = GetIsolate();
2704   HandleScope scope(isolate);
2705   Handle<InterceptorInfo> interceptor(GetNamedInterceptor());
2706   Handle<String> name_handle(name);
2707   Handle<JSObject> this_handle(this);
2708   if (!interceptor->deleter()->IsUndefined()) {
2709     v8::NamedPropertyDeleter deleter =
2710         v8::ToCData<v8::NamedPropertyDeleter>(interceptor->deleter());
2711     LOG(isolate,
2712         ApiNamedPropertyAccess("interceptor-named-delete", *this_handle, name));
2713     CustomArguments args(isolate, interceptor->data(), this, this);
2714     v8::AccessorInfo info(args.end());
2715     v8::Handle<v8::Boolean> result;
2716     {
2717       // Leaving JavaScript.
2718       VMState state(isolate, EXTERNAL);
2719       result = deleter(v8::Utils::ToLocal(name_handle), info);
2720     }
2721     RETURN_IF_SCHEDULED_EXCEPTION(isolate);
2722     if (!result.IsEmpty()) {
2723       ASSERT(result->IsBoolean());
2724       return *v8::Utils::OpenHandle(*result);
2725     }
2726   }
2727   MaybeObject* raw_result =
2728       this_handle->DeletePropertyPostInterceptor(*name_handle, NORMAL_DELETION);
2729   RETURN_IF_SCHEDULED_EXCEPTION(isolate);
2730   return raw_result;
2731 }
2732 
2733 
DeleteElementPostInterceptor(uint32_t index,DeleteMode mode)2734 MaybeObject* JSObject::DeleteElementPostInterceptor(uint32_t index,
2735                                                     DeleteMode mode) {
2736   ASSERT(!HasExternalArrayElements());
2737   switch (GetElementsKind()) {
2738     case FAST_ELEMENTS: {
2739       Object* obj;
2740       { MaybeObject* maybe_obj = EnsureWritableFastElements();
2741         if (!maybe_obj->ToObject(&obj)) return maybe_obj;
2742       }
2743       uint32_t length = IsJSArray() ?
2744       static_cast<uint32_t>(Smi::cast(JSArray::cast(this)->length())->value()) :
2745       static_cast<uint32_t>(FixedArray::cast(elements())->length());
2746       if (index < length) {
2747         FixedArray::cast(elements())->set_the_hole(index);
2748       }
2749       break;
2750     }
2751     case DICTIONARY_ELEMENTS: {
2752       NumberDictionary* dictionary = element_dictionary();
2753       int entry = dictionary->FindEntry(index);
2754       if (entry != NumberDictionary::kNotFound) {
2755         return dictionary->DeleteProperty(entry, mode);
2756       }
2757       break;
2758     }
2759     default:
2760       UNREACHABLE();
2761       break;
2762   }
2763   return GetHeap()->true_value();
2764 }
2765 
2766 
DeleteElementWithInterceptor(uint32_t index)2767 MaybeObject* JSObject::DeleteElementWithInterceptor(uint32_t index) {
2768   Isolate* isolate = GetIsolate();
2769   Heap* heap = isolate->heap();
2770   // Make sure that the top context does not change when doing
2771   // callbacks or interceptor calls.
2772   AssertNoContextChange ncc;
2773   HandleScope scope(isolate);
2774   Handle<InterceptorInfo> interceptor(GetIndexedInterceptor());
2775   if (interceptor->deleter()->IsUndefined()) return heap->false_value();
2776   v8::IndexedPropertyDeleter deleter =
2777       v8::ToCData<v8::IndexedPropertyDeleter>(interceptor->deleter());
2778   Handle<JSObject> this_handle(this);
2779   LOG(isolate,
2780       ApiIndexedPropertyAccess("interceptor-indexed-delete", this, index));
2781   CustomArguments args(isolate, interceptor->data(), this, this);
2782   v8::AccessorInfo info(args.end());
2783   v8::Handle<v8::Boolean> result;
2784   {
2785     // Leaving JavaScript.
2786     VMState state(isolate, EXTERNAL);
2787     result = deleter(index, info);
2788   }
2789   RETURN_IF_SCHEDULED_EXCEPTION(isolate);
2790   if (!result.IsEmpty()) {
2791     ASSERT(result->IsBoolean());
2792     return *v8::Utils::OpenHandle(*result);
2793   }
2794   MaybeObject* raw_result =
2795       this_handle->DeleteElementPostInterceptor(index, NORMAL_DELETION);
2796   RETURN_IF_SCHEDULED_EXCEPTION(isolate);
2797   return raw_result;
2798 }
2799 
2800 
DeleteElement(uint32_t index,DeleteMode mode)2801 MaybeObject* JSObject::DeleteElement(uint32_t index, DeleteMode mode) {
2802   Isolate* isolate = GetIsolate();
2803   // Check access rights if needed.
2804   if (IsAccessCheckNeeded() &&
2805       !isolate->MayIndexedAccess(this, index, v8::ACCESS_DELETE)) {
2806     isolate->ReportFailedAccessCheck(this, v8::ACCESS_DELETE);
2807     return isolate->heap()->false_value();
2808   }
2809 
2810   if (IsJSGlobalProxy()) {
2811     Object* proto = GetPrototype();
2812     if (proto->IsNull()) return isolate->heap()->false_value();
2813     ASSERT(proto->IsJSGlobalObject());
2814     return JSGlobalObject::cast(proto)->DeleteElement(index, mode);
2815   }
2816 
2817   if (HasIndexedInterceptor()) {
2818     // Skip interceptor if forcing deletion.
2819     if (mode == FORCE_DELETION) {
2820       return DeleteElementPostInterceptor(index, mode);
2821     }
2822     return DeleteElementWithInterceptor(index);
2823   }
2824 
2825   switch (GetElementsKind()) {
2826     case FAST_ELEMENTS: {
2827       Object* obj;
2828       { MaybeObject* maybe_obj = EnsureWritableFastElements();
2829         if (!maybe_obj->ToObject(&obj)) return maybe_obj;
2830       }
2831       uint32_t length = IsJSArray() ?
2832       static_cast<uint32_t>(Smi::cast(JSArray::cast(this)->length())->value()) :
2833       static_cast<uint32_t>(FixedArray::cast(elements())->length());
2834       if (index < length) {
2835         FixedArray::cast(elements())->set_the_hole(index);
2836       }
2837       break;
2838     }
2839     case EXTERNAL_PIXEL_ELEMENTS:
2840     case EXTERNAL_BYTE_ELEMENTS:
2841     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
2842     case EXTERNAL_SHORT_ELEMENTS:
2843     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
2844     case EXTERNAL_INT_ELEMENTS:
2845     case EXTERNAL_UNSIGNED_INT_ELEMENTS:
2846     case EXTERNAL_FLOAT_ELEMENTS:
2847       // Pixel and external array elements cannot be deleted. Just
2848       // silently ignore here.
2849       break;
2850     case DICTIONARY_ELEMENTS: {
2851       NumberDictionary* dictionary = element_dictionary();
2852       int entry = dictionary->FindEntry(index);
2853       if (entry != NumberDictionary::kNotFound) {
2854         Object* result = dictionary->DeleteProperty(entry, mode);
2855         if (mode == STRICT_DELETION && result ==
2856             isolate->heap()->false_value()) {
2857           // In strict mode, deleting a non-configurable property throws
2858           // exception. dictionary->DeleteProperty will return false_value()
2859           // if a non-configurable property is being deleted.
2860           HandleScope scope;
2861           Handle<Object> i = isolate->factory()->NewNumberFromUint(index);
2862           Handle<Object> args[2] = { i, Handle<Object>(this) };
2863           return isolate->Throw(*isolate->factory()->NewTypeError(
2864               "strict_delete_property", HandleVector(args, 2)));
2865         }
2866       }
2867       break;
2868     }
2869     default:
2870       UNREACHABLE();
2871       break;
2872   }
2873   return isolate->heap()->true_value();
2874 }
2875 
2876 
DeleteProperty(String * name,DeleteMode mode)2877 MaybeObject* JSObject::DeleteProperty(String* name, DeleteMode mode) {
2878   Isolate* isolate = GetIsolate();
2879   // ECMA-262, 3rd, 8.6.2.5
2880   ASSERT(name->IsString());
2881 
2882   // Check access rights if needed.
2883   if (IsAccessCheckNeeded() &&
2884       !isolate->MayNamedAccess(this, name, v8::ACCESS_DELETE)) {
2885     isolate->ReportFailedAccessCheck(this, v8::ACCESS_DELETE);
2886     return isolate->heap()->false_value();
2887   }
2888 
2889   if (IsJSGlobalProxy()) {
2890     Object* proto = GetPrototype();
2891     if (proto->IsNull()) return isolate->heap()->false_value();
2892     ASSERT(proto->IsJSGlobalObject());
2893     return JSGlobalObject::cast(proto)->DeleteProperty(name, mode);
2894   }
2895 
2896   uint32_t index = 0;
2897   if (name->AsArrayIndex(&index)) {
2898     return DeleteElement(index, mode);
2899   } else {
2900     LookupResult result;
2901     LocalLookup(name, &result);
2902     if (!result.IsProperty()) return isolate->heap()->true_value();
2903     // Ignore attributes if forcing a deletion.
2904     if (result.IsDontDelete() && mode != FORCE_DELETION) {
2905       if (mode == STRICT_DELETION) {
2906         // Deleting a non-configurable property in strict mode.
2907         HandleScope scope(isolate);
2908         Handle<Object> args[2] = { Handle<Object>(name), Handle<Object>(this) };
2909         return isolate->Throw(*isolate->factory()->NewTypeError(
2910             "strict_delete_property", HandleVector(args, 2)));
2911       }
2912       return isolate->heap()->false_value();
2913     }
2914     // Check for interceptor.
2915     if (result.type() == INTERCEPTOR) {
2916       // Skip interceptor if forcing a deletion.
2917       if (mode == FORCE_DELETION) {
2918         return DeletePropertyPostInterceptor(name, mode);
2919       }
2920       return DeletePropertyWithInterceptor(name);
2921     }
2922     // Normalize object if needed.
2923     Object* obj;
2924     { MaybeObject* maybe_obj =
2925           NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
2926       if (!maybe_obj->ToObject(&obj)) return maybe_obj;
2927     }
2928     // Make sure the properties are normalized before removing the entry.
2929     return DeleteNormalizedProperty(name, mode);
2930   }
2931 }
2932 
2933 
2934 // Check whether this object references another object.
ReferencesObject(Object * obj)2935 bool JSObject::ReferencesObject(Object* obj) {
2936   Map* map_of_this = map();
2937   Heap* heap = map_of_this->heap();
2938   AssertNoAllocation no_alloc;
2939 
2940   // Is the object the constructor for this object?
2941   if (map_of_this->constructor() == obj) {
2942     return true;
2943   }
2944 
2945   // Is the object the prototype for this object?
2946   if (map_of_this->prototype() == obj) {
2947     return true;
2948   }
2949 
2950   // Check if the object is among the named properties.
2951   Object* key = SlowReverseLookup(obj);
2952   if (!key->IsUndefined()) {
2953     return true;
2954   }
2955 
2956   // Check if the object is among the indexed properties.
2957   switch (GetElementsKind()) {
2958     case EXTERNAL_PIXEL_ELEMENTS:
2959     case EXTERNAL_BYTE_ELEMENTS:
2960     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
2961     case EXTERNAL_SHORT_ELEMENTS:
2962     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
2963     case EXTERNAL_INT_ELEMENTS:
2964     case EXTERNAL_UNSIGNED_INT_ELEMENTS:
2965     case EXTERNAL_FLOAT_ELEMENTS:
2966       // Raw pixels and external arrays do not reference other
2967       // objects.
2968       break;
2969     case FAST_ELEMENTS: {
2970       int length = IsJSArray() ?
2971           Smi::cast(JSArray::cast(this)->length())->value() :
2972           FixedArray::cast(elements())->length();
2973       for (int i = 0; i < length; i++) {
2974         Object* element = FixedArray::cast(elements())->get(i);
2975         if (!element->IsTheHole() && element == obj) {
2976           return true;
2977         }
2978       }
2979       break;
2980     }
2981     case DICTIONARY_ELEMENTS: {
2982       key = element_dictionary()->SlowReverseLookup(obj);
2983       if (!key->IsUndefined()) {
2984         return true;
2985       }
2986       break;
2987     }
2988     default:
2989       UNREACHABLE();
2990       break;
2991   }
2992 
2993   // For functions check the context.
2994   if (IsJSFunction()) {
2995     // Get the constructor function for arguments array.
2996     JSObject* arguments_boilerplate =
2997         heap->isolate()->context()->global_context()->
2998             arguments_boilerplate();
2999     JSFunction* arguments_function =
3000         JSFunction::cast(arguments_boilerplate->map()->constructor());
3001 
3002     // Get the context and don't check if it is the global context.
3003     JSFunction* f = JSFunction::cast(this);
3004     Context* context = f->context();
3005     if (context->IsGlobalContext()) {
3006       return false;
3007     }
3008 
3009     // Check the non-special context slots.
3010     for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) {
3011       // Only check JS objects.
3012       if (context->get(i)->IsJSObject()) {
3013         JSObject* ctxobj = JSObject::cast(context->get(i));
3014         // If it is an arguments array check the content.
3015         if (ctxobj->map()->constructor() == arguments_function) {
3016           if (ctxobj->ReferencesObject(obj)) {
3017             return true;
3018           }
3019         } else if (ctxobj == obj) {
3020           return true;
3021         }
3022       }
3023     }
3024 
3025     // Check the context extension if any.
3026     if (context->has_extension()) {
3027       return context->extension()->ReferencesObject(obj);
3028     }
3029   }
3030 
3031   // No references to object.
3032   return false;
3033 }
3034 
3035 
PreventExtensions()3036 MaybeObject* JSObject::PreventExtensions() {
3037   Isolate* isolate = GetIsolate();
3038   if (IsAccessCheckNeeded() &&
3039       !isolate->MayNamedAccess(this,
3040                                isolate->heap()->undefined_value(),
3041                                v8::ACCESS_KEYS)) {
3042     isolate->ReportFailedAccessCheck(this, v8::ACCESS_KEYS);
3043     return isolate->heap()->false_value();
3044   }
3045 
3046   if (IsJSGlobalProxy()) {
3047     Object* proto = GetPrototype();
3048     if (proto->IsNull()) return this;
3049     ASSERT(proto->IsJSGlobalObject());
3050     return JSObject::cast(proto)->PreventExtensions();
3051   }
3052 
3053   // If there are fast elements we normalize.
3054   if (HasFastElements()) {
3055     Object* ok;
3056     { MaybeObject* maybe_ok = NormalizeElements();
3057       if (!maybe_ok->ToObject(&ok)) return maybe_ok;
3058     }
3059   }
3060   // Make sure that we never go back to fast case.
3061   element_dictionary()->set_requires_slow_elements();
3062 
3063   // Do a map transition, other objects with this map may still
3064   // be extensible.
3065   Object* new_map;
3066   { MaybeObject* maybe_new_map = map()->CopyDropTransitions();
3067     if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map;
3068   }
3069   Map::cast(new_map)->set_is_extensible(false);
3070   set_map(Map::cast(new_map));
3071   ASSERT(!map()->is_extensible());
3072   return new_map;
3073 }
3074 
3075 
3076 // Tests for the fast common case for property enumeration:
3077 // - This object and all prototypes has an enum cache (which means that it has
3078 //   no interceptors and needs no access checks).
3079 // - This object has no elements.
3080 // - No prototype has enumerable properties/elements.
IsSimpleEnum()3081 bool JSObject::IsSimpleEnum() {
3082   Heap* heap = GetHeap();
3083   for (Object* o = this;
3084        o != heap->null_value();
3085        o = JSObject::cast(o)->GetPrototype()) {
3086     JSObject* curr = JSObject::cast(o);
3087     if (!curr->map()->instance_descriptors()->HasEnumCache()) return false;
3088     ASSERT(!curr->HasNamedInterceptor());
3089     ASSERT(!curr->HasIndexedInterceptor());
3090     ASSERT(!curr->IsAccessCheckNeeded());
3091     if (curr->NumberOfEnumElements() > 0) return false;
3092     if (curr != this) {
3093       FixedArray* curr_fixed_array =
3094           FixedArray::cast(curr->map()->instance_descriptors()->GetEnumCache());
3095       if (curr_fixed_array->length() > 0) return false;
3096     }
3097   }
3098   return true;
3099 }
3100 
3101 
NumberOfDescribedProperties()3102 int Map::NumberOfDescribedProperties() {
3103   int result = 0;
3104   DescriptorArray* descs = instance_descriptors();
3105   for (int i = 0; i < descs->number_of_descriptors(); i++) {
3106     if (descs->IsProperty(i)) result++;
3107   }
3108   return result;
3109 }
3110 
3111 
PropertyIndexFor(String * name)3112 int Map::PropertyIndexFor(String* name) {
3113   DescriptorArray* descs = instance_descriptors();
3114   for (int i = 0; i < descs->number_of_descriptors(); i++) {
3115     if (name->Equals(descs->GetKey(i)) && !descs->IsNullDescriptor(i)) {
3116       return descs->GetFieldIndex(i);
3117     }
3118   }
3119   return -1;
3120 }
3121 
3122 
NextFreePropertyIndex()3123 int Map::NextFreePropertyIndex() {
3124   int max_index = -1;
3125   DescriptorArray* descs = instance_descriptors();
3126   for (int i = 0; i < descs->number_of_descriptors(); i++) {
3127     if (descs->GetType(i) == FIELD) {
3128       int current_index = descs->GetFieldIndex(i);
3129       if (current_index > max_index) max_index = current_index;
3130     }
3131   }
3132   return max_index + 1;
3133 }
3134 
3135 
FindAccessor(String * name)3136 AccessorDescriptor* Map::FindAccessor(String* name) {
3137   DescriptorArray* descs = instance_descriptors();
3138   for (int i = 0; i < descs->number_of_descriptors(); i++) {
3139     if (name->Equals(descs->GetKey(i)) && descs->GetType(i) == CALLBACKS) {
3140       return descs->GetCallbacks(i);
3141     }
3142   }
3143   return NULL;
3144 }
3145 
3146 
LocalLookup(String * name,LookupResult * result)3147 void JSObject::LocalLookup(String* name, LookupResult* result) {
3148   ASSERT(name->IsString());
3149 
3150   Heap* heap = GetHeap();
3151 
3152   if (IsJSGlobalProxy()) {
3153     Object* proto = GetPrototype();
3154     if (proto->IsNull()) return result->NotFound();
3155     ASSERT(proto->IsJSGlobalObject());
3156     return JSObject::cast(proto)->LocalLookup(name, result);
3157   }
3158 
3159   // Do not use inline caching if the object is a non-global object
3160   // that requires access checks.
3161   if (!IsJSGlobalProxy() && IsAccessCheckNeeded()) {
3162     result->DisallowCaching();
3163   }
3164 
3165   // Check __proto__ before interceptor.
3166   if (name->Equals(heap->Proto_symbol()) &&
3167       !IsJSContextExtensionObject()) {
3168     result->ConstantResult(this);
3169     return;
3170   }
3171 
3172   // Check for lookup interceptor except when bootstrapping.
3173   if (HasNamedInterceptor() && !heap->isolate()->bootstrapper()->IsActive()) {
3174     result->InterceptorResult(this);
3175     return;
3176   }
3177 
3178   LocalLookupRealNamedProperty(name, result);
3179 }
3180 
3181 
Lookup(String * name,LookupResult * result)3182 void JSObject::Lookup(String* name, LookupResult* result) {
3183   // Ecma-262 3rd 8.6.2.4
3184   Heap* heap = GetHeap();
3185   for (Object* current = this;
3186        current != heap->null_value();
3187        current = JSObject::cast(current)->GetPrototype()) {
3188     JSObject::cast(current)->LocalLookup(name, result);
3189     if (result->IsProperty()) return;
3190   }
3191   result->NotFound();
3192 }
3193 
3194 
3195 // Search object and it's prototype chain for callback properties.
LookupCallback(String * name,LookupResult * result)3196 void JSObject::LookupCallback(String* name, LookupResult* result) {
3197   Heap* heap = GetHeap();
3198   for (Object* current = this;
3199        current != heap->null_value();
3200        current = JSObject::cast(current)->GetPrototype()) {
3201     JSObject::cast(current)->LocalLookupRealNamedProperty(name, result);
3202     if (result->IsProperty() && result->type() == CALLBACKS) return;
3203   }
3204   result->NotFound();
3205 }
3206 
3207 
DefineGetterSetter(String * name,PropertyAttributes attributes)3208 MaybeObject* JSObject::DefineGetterSetter(String* name,
3209                                           PropertyAttributes attributes) {
3210   Heap* heap = GetHeap();
3211   // Make sure that the top context does not change when doing callbacks or
3212   // interceptor calls.
3213   AssertNoContextChange ncc;
3214 
3215   // Try to flatten before operating on the string.
3216   name->TryFlatten();
3217 
3218   if (!CanSetCallback(name)) {
3219     return heap->undefined_value();
3220   }
3221 
3222   uint32_t index = 0;
3223   bool is_element = name->AsArrayIndex(&index);
3224 
3225   if (is_element) {
3226     switch (GetElementsKind()) {
3227       case FAST_ELEMENTS:
3228         break;
3229       case EXTERNAL_PIXEL_ELEMENTS:
3230       case EXTERNAL_BYTE_ELEMENTS:
3231       case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
3232       case EXTERNAL_SHORT_ELEMENTS:
3233       case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
3234       case EXTERNAL_INT_ELEMENTS:
3235       case EXTERNAL_UNSIGNED_INT_ELEMENTS:
3236       case EXTERNAL_FLOAT_ELEMENTS:
3237         // Ignore getters and setters on pixel and external array
3238         // elements.
3239         return heap->undefined_value();
3240       case DICTIONARY_ELEMENTS: {
3241         // Lookup the index.
3242         NumberDictionary* dictionary = element_dictionary();
3243         int entry = dictionary->FindEntry(index);
3244         if (entry != NumberDictionary::kNotFound) {
3245           Object* result = dictionary->ValueAt(entry);
3246           PropertyDetails details = dictionary->DetailsAt(entry);
3247           if (details.IsReadOnly()) return heap->undefined_value();
3248           if (details.type() == CALLBACKS) {
3249             if (result->IsFixedArray()) {
3250               return result;
3251             }
3252             // Otherwise allow to override it.
3253           }
3254         }
3255         break;
3256       }
3257       default:
3258         UNREACHABLE();
3259         break;
3260     }
3261   } else {
3262     // Lookup the name.
3263     LookupResult result;
3264     LocalLookup(name, &result);
3265     if (result.IsProperty()) {
3266       if (result.IsReadOnly()) return heap->undefined_value();
3267       if (result.type() == CALLBACKS) {
3268         Object* obj = result.GetCallbackObject();
3269         // Need to preserve old getters/setters.
3270         if (obj->IsFixedArray()) {
3271           // Use set to update attributes.
3272           return SetPropertyCallback(name, obj, attributes);
3273         }
3274       }
3275     }
3276   }
3277 
3278   // Allocate the fixed array to hold getter and setter.
3279   Object* structure;
3280   { MaybeObject* maybe_structure = heap->AllocateFixedArray(2, TENURED);
3281     if (!maybe_structure->ToObject(&structure)) return maybe_structure;
3282   }
3283 
3284   if (is_element) {
3285     return SetElementCallback(index, structure, attributes);
3286   } else {
3287     return SetPropertyCallback(name, structure, attributes);
3288   }
3289 }
3290 
3291 
CanSetCallback(String * name)3292 bool JSObject::CanSetCallback(String* name) {
3293   ASSERT(!IsAccessCheckNeeded()
3294          || Isolate::Current()->MayNamedAccess(this, name, v8::ACCESS_SET));
3295 
3296   // Check if there is an API defined callback object which prohibits
3297   // callback overwriting in this object or it's prototype chain.
3298   // This mechanism is needed for instance in a browser setting, where
3299   // certain accessors such as window.location should not be allowed
3300   // to be overwritten because allowing overwriting could potentially
3301   // cause security problems.
3302   LookupResult callback_result;
3303   LookupCallback(name, &callback_result);
3304   if (callback_result.IsProperty()) {
3305     Object* obj = callback_result.GetCallbackObject();
3306     if (obj->IsAccessorInfo() &&
3307         AccessorInfo::cast(obj)->prohibits_overwriting()) {
3308       return false;
3309     }
3310   }
3311 
3312   return true;
3313 }
3314 
3315 
SetElementCallback(uint32_t index,Object * structure,PropertyAttributes attributes)3316 MaybeObject* JSObject::SetElementCallback(uint32_t index,
3317                                           Object* structure,
3318                                           PropertyAttributes attributes) {
3319   PropertyDetails details = PropertyDetails(attributes, CALLBACKS);
3320 
3321   // Normalize elements to make this operation simple.
3322   Object* ok;
3323   { MaybeObject* maybe_ok = NormalizeElements();
3324     if (!maybe_ok->ToObject(&ok)) return maybe_ok;
3325   }
3326 
3327   // Update the dictionary with the new CALLBACKS property.
3328   Object* dict;
3329   { MaybeObject* maybe_dict =
3330         element_dictionary()->Set(index, structure, details);
3331     if (!maybe_dict->ToObject(&dict)) return maybe_dict;
3332   }
3333 
3334   NumberDictionary* elements = NumberDictionary::cast(dict);
3335   elements->set_requires_slow_elements();
3336   // Set the potential new dictionary on the object.
3337   set_elements(elements);
3338 
3339   return structure;
3340 }
3341 
3342 
SetPropertyCallback(String * name,Object * structure,PropertyAttributes attributes)3343 MaybeObject* JSObject::SetPropertyCallback(String* name,
3344                                            Object* structure,
3345                                            PropertyAttributes attributes) {
3346   PropertyDetails details = PropertyDetails(attributes, CALLBACKS);
3347 
3348   bool convert_back_to_fast = HasFastProperties() &&
3349       (map()->instance_descriptors()->number_of_descriptors()
3350           < DescriptorArray::kMaxNumberOfDescriptors);
3351 
3352   // Normalize object to make this operation simple.
3353   Object* ok;
3354   { MaybeObject* maybe_ok = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
3355     if (!maybe_ok->ToObject(&ok)) return maybe_ok;
3356   }
3357 
3358   // For the global object allocate a new map to invalidate the global inline
3359   // caches which have a global property cell reference directly in the code.
3360   if (IsGlobalObject()) {
3361     Object* new_map;
3362     { MaybeObject* maybe_new_map = map()->CopyDropDescriptors();
3363       if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map;
3364     }
3365     set_map(Map::cast(new_map));
3366     // When running crankshaft, changing the map is not enough. We
3367     // need to deoptimize all functions that rely on this global
3368     // object.
3369     Deoptimizer::DeoptimizeGlobalObject(this);
3370   }
3371 
3372   // Update the dictionary with the new CALLBACKS property.
3373   Object* result;
3374   { MaybeObject* maybe_result = SetNormalizedProperty(name, structure, details);
3375     if (!maybe_result->ToObject(&result)) return maybe_result;
3376   }
3377 
3378   if (convert_back_to_fast) {
3379     { MaybeObject* maybe_ok = TransformToFastProperties(0);
3380       if (!maybe_ok->ToObject(&ok)) return maybe_ok;
3381     }
3382   }
3383   return result;
3384 }
3385 
DefineAccessor(String * name,bool is_getter,Object * fun,PropertyAttributes attributes)3386 MaybeObject* JSObject::DefineAccessor(String* name,
3387                                       bool is_getter,
3388                                       Object* fun,
3389                                       PropertyAttributes attributes) {
3390   ASSERT(fun->IsJSFunction() || fun->IsUndefined());
3391   Isolate* isolate = GetIsolate();
3392   // Check access rights if needed.
3393   if (IsAccessCheckNeeded() &&
3394       !isolate->MayNamedAccess(this, name, v8::ACCESS_SET)) {
3395     isolate->ReportFailedAccessCheck(this, v8::ACCESS_SET);
3396     return isolate->heap()->undefined_value();
3397   }
3398 
3399   if (IsJSGlobalProxy()) {
3400     Object* proto = GetPrototype();
3401     if (proto->IsNull()) return this;
3402     ASSERT(proto->IsJSGlobalObject());
3403     return JSObject::cast(proto)->DefineAccessor(name, is_getter,
3404                                                  fun, attributes);
3405   }
3406 
3407   Object* array;
3408   { MaybeObject* maybe_array = DefineGetterSetter(name, attributes);
3409     if (!maybe_array->ToObject(&array)) return maybe_array;
3410   }
3411   if (array->IsUndefined()) return array;
3412   FixedArray::cast(array)->set(is_getter ? 0 : 1, fun);
3413   return this;
3414 }
3415 
3416 
DefineAccessor(AccessorInfo * info)3417 MaybeObject* JSObject::DefineAccessor(AccessorInfo* info) {
3418   Isolate* isolate = GetIsolate();
3419   String* name = String::cast(info->name());
3420   // Check access rights if needed.
3421   if (IsAccessCheckNeeded() &&
3422       !isolate->MayNamedAccess(this, name, v8::ACCESS_SET)) {
3423     isolate->ReportFailedAccessCheck(this, v8::ACCESS_SET);
3424     return isolate->heap()->undefined_value();
3425   }
3426 
3427   if (IsJSGlobalProxy()) {
3428     Object* proto = GetPrototype();
3429     if (proto->IsNull()) return this;
3430     ASSERT(proto->IsJSGlobalObject());
3431     return JSObject::cast(proto)->DefineAccessor(info);
3432   }
3433 
3434   // Make sure that the top context does not change when doing callbacks or
3435   // interceptor calls.
3436   AssertNoContextChange ncc;
3437 
3438   // Try to flatten before operating on the string.
3439   name->TryFlatten();
3440 
3441   if (!CanSetCallback(name)) {
3442     return isolate->heap()->undefined_value();
3443   }
3444 
3445   uint32_t index = 0;
3446   bool is_element = name->AsArrayIndex(&index);
3447 
3448   if (is_element) {
3449     if (IsJSArray()) return isolate->heap()->undefined_value();
3450 
3451     // Accessors overwrite previous callbacks (cf. with getters/setters).
3452     switch (GetElementsKind()) {
3453       case FAST_ELEMENTS:
3454         break;
3455       case EXTERNAL_PIXEL_ELEMENTS:
3456       case EXTERNAL_BYTE_ELEMENTS:
3457       case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
3458       case EXTERNAL_SHORT_ELEMENTS:
3459       case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
3460       case EXTERNAL_INT_ELEMENTS:
3461       case EXTERNAL_UNSIGNED_INT_ELEMENTS:
3462       case EXTERNAL_FLOAT_ELEMENTS:
3463         // Ignore getters and setters on pixel and external array
3464         // elements.
3465         return isolate->heap()->undefined_value();
3466       case DICTIONARY_ELEMENTS:
3467         break;
3468       default:
3469         UNREACHABLE();
3470         break;
3471     }
3472 
3473     Object* ok;
3474     { MaybeObject* maybe_ok =
3475           SetElementCallback(index, info, info->property_attributes());
3476       if (!maybe_ok->ToObject(&ok)) return maybe_ok;
3477     }
3478   } else {
3479     // Lookup the name.
3480     LookupResult result;
3481     LocalLookup(name, &result);
3482     // ES5 forbids turning a property into an accessor if it's not
3483     // configurable (that is IsDontDelete in ES3 and v8), see 8.6.1 (Table 5).
3484     if (result.IsProperty() && (result.IsReadOnly() || result.IsDontDelete())) {
3485       return isolate->heap()->undefined_value();
3486     }
3487     Object* ok;
3488     { MaybeObject* maybe_ok =
3489           SetPropertyCallback(name, info, info->property_attributes());
3490       if (!maybe_ok->ToObject(&ok)) return maybe_ok;
3491     }
3492   }
3493 
3494   return this;
3495 }
3496 
3497 
LookupAccessor(String * name,bool is_getter)3498 Object* JSObject::LookupAccessor(String* name, bool is_getter) {
3499   Heap* heap = GetHeap();
3500 
3501   // Make sure that the top context does not change when doing callbacks or
3502   // interceptor calls.
3503   AssertNoContextChange ncc;
3504 
3505   // Check access rights if needed.
3506   if (IsAccessCheckNeeded() &&
3507       !heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_HAS)) {
3508     heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS);
3509     return heap->undefined_value();
3510   }
3511 
3512   // Make the lookup and include prototypes.
3513   int accessor_index = is_getter ? kGetterIndex : kSetterIndex;
3514   uint32_t index = 0;
3515   if (name->AsArrayIndex(&index)) {
3516     for (Object* obj = this;
3517          obj != heap->null_value();
3518          obj = JSObject::cast(obj)->GetPrototype()) {
3519       JSObject* js_object = JSObject::cast(obj);
3520       if (js_object->HasDictionaryElements()) {
3521         NumberDictionary* dictionary = js_object->element_dictionary();
3522         int entry = dictionary->FindEntry(index);
3523         if (entry != NumberDictionary::kNotFound) {
3524           Object* element = dictionary->ValueAt(entry);
3525           PropertyDetails details = dictionary->DetailsAt(entry);
3526           if (details.type() == CALLBACKS) {
3527             if (element->IsFixedArray()) {
3528               return FixedArray::cast(element)->get(accessor_index);
3529             }
3530           }
3531         }
3532       }
3533     }
3534   } else {
3535     for (Object* obj = this;
3536          obj != heap->null_value();
3537          obj = JSObject::cast(obj)->GetPrototype()) {
3538       LookupResult result;
3539       JSObject::cast(obj)->LocalLookup(name, &result);
3540       if (result.IsProperty()) {
3541         if (result.IsReadOnly()) return heap->undefined_value();
3542         if (result.type() == CALLBACKS) {
3543           Object* obj = result.GetCallbackObject();
3544           if (obj->IsFixedArray()) {
3545             return FixedArray::cast(obj)->get(accessor_index);
3546           }
3547         }
3548       }
3549     }
3550   }
3551   return heap->undefined_value();
3552 }
3553 
3554 
SlowReverseLookup(Object * value)3555 Object* JSObject::SlowReverseLookup(Object* value) {
3556   if (HasFastProperties()) {
3557     DescriptorArray* descs = map()->instance_descriptors();
3558     for (int i = 0; i < descs->number_of_descriptors(); i++) {
3559       if (descs->GetType(i) == FIELD) {
3560         if (FastPropertyAt(descs->GetFieldIndex(i)) == value) {
3561           return descs->GetKey(i);
3562         }
3563       } else if (descs->GetType(i) == CONSTANT_FUNCTION) {
3564         if (descs->GetConstantFunction(i) == value) {
3565           return descs->GetKey(i);
3566         }
3567       }
3568     }
3569     return GetHeap()->undefined_value();
3570   } else {
3571     return property_dictionary()->SlowReverseLookup(value);
3572   }
3573 }
3574 
3575 
CopyDropDescriptors()3576 MaybeObject* Map::CopyDropDescriptors() {
3577   Heap* heap = GetHeap();
3578   Object* result;
3579   { MaybeObject* maybe_result =
3580         heap->AllocateMap(instance_type(), instance_size());
3581     if (!maybe_result->ToObject(&result)) return maybe_result;
3582   }
3583   Map::cast(result)->set_prototype(prototype());
3584   Map::cast(result)->set_constructor(constructor());
3585   // Don't copy descriptors, so map transitions always remain a forest.
3586   // If we retained the same descriptors we would have two maps
3587   // pointing to the same transition which is bad because the garbage
3588   // collector relies on being able to reverse pointers from transitions
3589   // to maps.  If properties need to be retained use CopyDropTransitions.
3590   Map::cast(result)->set_instance_descriptors(
3591       heap->empty_descriptor_array());
3592   // Please note instance_type and instance_size are set when allocated.
3593   Map::cast(result)->set_inobject_properties(inobject_properties());
3594   Map::cast(result)->set_unused_property_fields(unused_property_fields());
3595 
3596   // If the map has pre-allocated properties always start out with a descriptor
3597   // array describing these properties.
3598   if (pre_allocated_property_fields() > 0) {
3599     ASSERT(constructor()->IsJSFunction());
3600     JSFunction* ctor = JSFunction::cast(constructor());
3601     Object* descriptors;
3602     { MaybeObject* maybe_descriptors =
3603           ctor->initial_map()->instance_descriptors()->RemoveTransitions();
3604       if (!maybe_descriptors->ToObject(&descriptors)) return maybe_descriptors;
3605     }
3606     Map::cast(result)->set_instance_descriptors(
3607         DescriptorArray::cast(descriptors));
3608     Map::cast(result)->set_pre_allocated_property_fields(
3609         pre_allocated_property_fields());
3610   }
3611   Map::cast(result)->set_bit_field(bit_field());
3612   Map::cast(result)->set_bit_field2(bit_field2());
3613   Map::cast(result)->set_is_shared(false);
3614   Map::cast(result)->ClearCodeCache(heap);
3615   return result;
3616 }
3617 
3618 
CopyNormalized(PropertyNormalizationMode mode,NormalizedMapSharingMode sharing)3619 MaybeObject* Map::CopyNormalized(PropertyNormalizationMode mode,
3620                                  NormalizedMapSharingMode sharing) {
3621   int new_instance_size = instance_size();
3622   if (mode == CLEAR_INOBJECT_PROPERTIES) {
3623     new_instance_size -= inobject_properties() * kPointerSize;
3624   }
3625 
3626   Object* result;
3627   { MaybeObject* maybe_result =
3628         GetHeap()->AllocateMap(instance_type(), new_instance_size);
3629     if (!maybe_result->ToObject(&result)) return maybe_result;
3630   }
3631 
3632   if (mode != CLEAR_INOBJECT_PROPERTIES) {
3633     Map::cast(result)->set_inobject_properties(inobject_properties());
3634   }
3635 
3636   Map::cast(result)->set_prototype(prototype());
3637   Map::cast(result)->set_constructor(constructor());
3638 
3639   Map::cast(result)->set_bit_field(bit_field());
3640   Map::cast(result)->set_bit_field2(bit_field2());
3641 
3642   Map::cast(result)->set_is_shared(sharing == SHARED_NORMALIZED_MAP);
3643 
3644 #ifdef DEBUG
3645   if (Map::cast(result)->is_shared()) {
3646     Map::cast(result)->SharedMapVerify();
3647   }
3648 #endif
3649 
3650   return result;
3651 }
3652 
3653 
CopyDropTransitions()3654 MaybeObject* Map::CopyDropTransitions() {
3655   Object* new_map;
3656   { MaybeObject* maybe_new_map = CopyDropDescriptors();
3657     if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map;
3658   }
3659   Object* descriptors;
3660   { MaybeObject* maybe_descriptors =
3661         instance_descriptors()->RemoveTransitions();
3662     if (!maybe_descriptors->ToObject(&descriptors)) return maybe_descriptors;
3663   }
3664   cast(new_map)->set_instance_descriptors(DescriptorArray::cast(descriptors));
3665   return new_map;
3666 }
3667 
3668 
UpdateCodeCache(String * name,Code * code)3669 MaybeObject* Map::UpdateCodeCache(String* name, Code* code) {
3670   // Allocate the code cache if not present.
3671   if (code_cache()->IsFixedArray()) {
3672     Object* result;
3673     { MaybeObject* maybe_result = code->heap()->AllocateCodeCache();
3674       if (!maybe_result->ToObject(&result)) return maybe_result;
3675     }
3676     set_code_cache(result);
3677   }
3678 
3679   // Update the code cache.
3680   return CodeCache::cast(code_cache())->Update(name, code);
3681 }
3682 
3683 
FindInCodeCache(String * name,Code::Flags flags)3684 Object* Map::FindInCodeCache(String* name, Code::Flags flags) {
3685   // Do a lookup if a code cache exists.
3686   if (!code_cache()->IsFixedArray()) {
3687     return CodeCache::cast(code_cache())->Lookup(name, flags);
3688   } else {
3689     return GetHeap()->undefined_value();
3690   }
3691 }
3692 
3693 
IndexInCodeCache(Object * name,Code * code)3694 int Map::IndexInCodeCache(Object* name, Code* code) {
3695   // Get the internal index if a code cache exists.
3696   if (!code_cache()->IsFixedArray()) {
3697     return CodeCache::cast(code_cache())->GetIndex(name, code);
3698   }
3699   return -1;
3700 }
3701 
3702 
RemoveFromCodeCache(String * name,Code * code,int index)3703 void Map::RemoveFromCodeCache(String* name, Code* code, int index) {
3704   // No GC is supposed to happen between a call to IndexInCodeCache and
3705   // RemoveFromCodeCache so the code cache must be there.
3706   ASSERT(!code_cache()->IsFixedArray());
3707   CodeCache::cast(code_cache())->RemoveByIndex(name, code, index);
3708 }
3709 
3710 
TraverseTransitionTree(TraverseCallback callback,void * data)3711 void Map::TraverseTransitionTree(TraverseCallback callback, void* data) {
3712   // Traverse the transition tree without using a stack.  We do this by
3713   // reversing the pointers in the maps and descriptor arrays.
3714   Map* current = this;
3715   Map* meta_map = heap()->meta_map();
3716   Object** map_or_index_field = NULL;
3717   while (current != meta_map) {
3718     DescriptorArray* d = reinterpret_cast<DescriptorArray*>(
3719         *RawField(current, Map::kInstanceDescriptorsOffset));
3720     if (!d->IsEmpty()) {
3721       FixedArray* contents = reinterpret_cast<FixedArray*>(
3722           d->get(DescriptorArray::kContentArrayIndex));
3723       map_or_index_field = RawField(contents, HeapObject::kMapOffset);
3724       Object* map_or_index = *map_or_index_field;
3725       bool map_done = true;  // Controls a nested continue statement.
3726       for (int i = map_or_index->IsSmi() ? Smi::cast(map_or_index)->value() : 0;
3727            i < contents->length();
3728            i += 2) {
3729         PropertyDetails details(Smi::cast(contents->get(i + 1)));
3730         if (details.IsTransition()) {
3731           // Found a map in the transition array.  We record our progress in
3732           // the transition array by recording the current map in the map field
3733           // of the next map and recording the index in the transition array in
3734           // the map field of the array.
3735           Map* next = Map::cast(contents->get(i));
3736           next->set_map(current);
3737           *map_or_index_field = Smi::FromInt(i + 2);
3738           current = next;
3739           map_done = false;
3740           break;
3741         }
3742       }
3743       if (!map_done) continue;
3744     } else {
3745       map_or_index_field = NULL;
3746     }
3747     // That was the regular transitions, now for the prototype transitions.
3748     FixedArray* prototype_transitions =
3749         current->unchecked_prototype_transitions();
3750     Object** proto_map_or_index_field =
3751         RawField(prototype_transitions, HeapObject::kMapOffset);
3752     Object* map_or_index = *proto_map_or_index_field;
3753     const int start = 2;
3754     int i = map_or_index->IsSmi() ? Smi::cast(map_or_index)->value() : start;
3755     if (i < prototype_transitions->length()) {
3756       // Found a map in the prototype transition array.  Record progress in
3757       // an analogous way to the regular transitions array above.
3758       Object* perhaps_map = prototype_transitions->get(i);
3759       if (perhaps_map->IsMap()) {
3760         Map* next = Map::cast(perhaps_map);
3761         next->set_map(current);
3762         *proto_map_or_index_field =
3763             Smi::FromInt(i + 2);
3764         current = next;
3765         continue;
3766       }
3767     }
3768     *proto_map_or_index_field = heap()->fixed_array_map();
3769     if (map_or_index_field != NULL) {
3770       *map_or_index_field = heap()->fixed_array_map();
3771     }
3772 
3773     // The callback expects a map to have a real map as its map, so we save
3774     // the map field, which is being used to track the traversal and put the
3775     // correct map (the meta_map) in place while we do the callback.
3776     Map* prev = current->map();
3777     current->set_map(meta_map);
3778     callback(current, data);
3779     current = prev;
3780   }
3781 }
3782 
3783 
Update(String * name,Code * code)3784 MaybeObject* CodeCache::Update(String* name, Code* code) {
3785   ASSERT(code->ic_state() == MONOMORPHIC);
3786 
3787   // The number of monomorphic stubs for normal load/store/call IC's can grow to
3788   // a large number and therefore they need to go into a hash table. They are
3789   // used to load global properties from cells.
3790   if (code->type() == NORMAL) {
3791     // Make sure that a hash table is allocated for the normal load code cache.
3792     if (normal_type_cache()->IsUndefined()) {
3793       Object* result;
3794       { MaybeObject* maybe_result =
3795             CodeCacheHashTable::Allocate(CodeCacheHashTable::kInitialSize);
3796         if (!maybe_result->ToObject(&result)) return maybe_result;
3797       }
3798       set_normal_type_cache(result);
3799     }
3800     return UpdateNormalTypeCache(name, code);
3801   } else {
3802     ASSERT(default_cache()->IsFixedArray());
3803     return UpdateDefaultCache(name, code);
3804   }
3805 }
3806 
3807 
UpdateDefaultCache(String * name,Code * code)3808 MaybeObject* CodeCache::UpdateDefaultCache(String* name, Code* code) {
3809   // When updating the default code cache we disregard the type encoded in the
3810   // flags. This allows call constant stubs to overwrite call field
3811   // stubs, etc.
3812   Code::Flags flags = Code::RemoveTypeFromFlags(code->flags());
3813 
3814   // First check whether we can update existing code cache without
3815   // extending it.
3816   FixedArray* cache = default_cache();
3817   int length = cache->length();
3818   int deleted_index = -1;
3819   for (int i = 0; i < length; i += kCodeCacheEntrySize) {
3820     Object* key = cache->get(i);
3821     if (key->IsNull()) {
3822       if (deleted_index < 0) deleted_index = i;
3823       continue;
3824     }
3825     if (key->IsUndefined()) {
3826       if (deleted_index >= 0) i = deleted_index;
3827       cache->set(i + kCodeCacheEntryNameOffset, name);
3828       cache->set(i + kCodeCacheEntryCodeOffset, code);
3829       return this;
3830     }
3831     if (name->Equals(String::cast(key))) {
3832       Code::Flags found =
3833           Code::cast(cache->get(i + kCodeCacheEntryCodeOffset))->flags();
3834       if (Code::RemoveTypeFromFlags(found) == flags) {
3835         cache->set(i + kCodeCacheEntryCodeOffset, code);
3836         return this;
3837       }
3838     }
3839   }
3840 
3841   // Reached the end of the code cache.  If there were deleted
3842   // elements, reuse the space for the first of them.
3843   if (deleted_index >= 0) {
3844     cache->set(deleted_index + kCodeCacheEntryNameOffset, name);
3845     cache->set(deleted_index + kCodeCacheEntryCodeOffset, code);
3846     return this;
3847   }
3848 
3849   // Extend the code cache with some new entries (at least one). Must be a
3850   // multiple of the entry size.
3851   int new_length = length + ((length >> 1)) + kCodeCacheEntrySize;
3852   new_length = new_length - new_length % kCodeCacheEntrySize;
3853   ASSERT((new_length % kCodeCacheEntrySize) == 0);
3854   Object* result;
3855   { MaybeObject* maybe_result = cache->CopySize(new_length);
3856     if (!maybe_result->ToObject(&result)) return maybe_result;
3857   }
3858 
3859   // Add the (name, code) pair to the new cache.
3860   cache = FixedArray::cast(result);
3861   cache->set(length + kCodeCacheEntryNameOffset, name);
3862   cache->set(length + kCodeCacheEntryCodeOffset, code);
3863   set_default_cache(cache);
3864   return this;
3865 }
3866 
3867 
UpdateNormalTypeCache(String * name,Code * code)3868 MaybeObject* CodeCache::UpdateNormalTypeCache(String* name, Code* code) {
3869   // Adding a new entry can cause a new cache to be allocated.
3870   CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache());
3871   Object* new_cache;
3872   { MaybeObject* maybe_new_cache = cache->Put(name, code);
3873     if (!maybe_new_cache->ToObject(&new_cache)) return maybe_new_cache;
3874   }
3875   set_normal_type_cache(new_cache);
3876   return this;
3877 }
3878 
3879 
Lookup(String * name,Code::Flags flags)3880 Object* CodeCache::Lookup(String* name, Code::Flags flags) {
3881   if (Code::ExtractTypeFromFlags(flags) == NORMAL) {
3882     return LookupNormalTypeCache(name, flags);
3883   } else {
3884     return LookupDefaultCache(name, flags);
3885   }
3886 }
3887 
3888 
LookupDefaultCache(String * name,Code::Flags flags)3889 Object* CodeCache::LookupDefaultCache(String* name, Code::Flags flags) {
3890   FixedArray* cache = default_cache();
3891   int length = cache->length();
3892   for (int i = 0; i < length; i += kCodeCacheEntrySize) {
3893     Object* key = cache->get(i + kCodeCacheEntryNameOffset);
3894     // Skip deleted elements.
3895     if (key->IsNull()) continue;
3896     if (key->IsUndefined()) return key;
3897     if (name->Equals(String::cast(key))) {
3898       Code* code = Code::cast(cache->get(i + kCodeCacheEntryCodeOffset));
3899       if (code->flags() == flags) {
3900         return code;
3901       }
3902     }
3903   }
3904   return GetHeap()->undefined_value();
3905 }
3906 
3907 
LookupNormalTypeCache(String * name,Code::Flags flags)3908 Object* CodeCache::LookupNormalTypeCache(String* name, Code::Flags flags) {
3909   if (!normal_type_cache()->IsUndefined()) {
3910     CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache());
3911     return cache->Lookup(name, flags);
3912   } else {
3913     return GetHeap()->undefined_value();
3914   }
3915 }
3916 
3917 
GetIndex(Object * name,Code * code)3918 int CodeCache::GetIndex(Object* name, Code* code) {
3919   if (code->type() == NORMAL) {
3920     if (normal_type_cache()->IsUndefined()) return -1;
3921     CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache());
3922     return cache->GetIndex(String::cast(name), code->flags());
3923   }
3924 
3925   FixedArray* array = default_cache();
3926   int len = array->length();
3927   for (int i = 0; i < len; i += kCodeCacheEntrySize) {
3928     if (array->get(i + kCodeCacheEntryCodeOffset) == code) return i + 1;
3929   }
3930   return -1;
3931 }
3932 
3933 
RemoveByIndex(Object * name,Code * code,int index)3934 void CodeCache::RemoveByIndex(Object* name, Code* code, int index) {
3935   if (code->type() == NORMAL) {
3936     ASSERT(!normal_type_cache()->IsUndefined());
3937     CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache());
3938     ASSERT(cache->GetIndex(String::cast(name), code->flags()) == index);
3939     cache->RemoveByIndex(index);
3940   } else {
3941     FixedArray* array = default_cache();
3942     ASSERT(array->length() >= index && array->get(index)->IsCode());
3943     // Use null instead of undefined for deleted elements to distinguish
3944     // deleted elements from unused elements.  This distinction is used
3945     // when looking up in the cache and when updating the cache.
3946     ASSERT_EQ(1, kCodeCacheEntryCodeOffset - kCodeCacheEntryNameOffset);
3947     array->set_null(index - 1);  // Name.
3948     array->set_null(index);  // Code.
3949   }
3950 }
3951 
3952 
3953 // The key in the code cache hash table consists of the property name and the
3954 // code object. The actual match is on the name and the code flags. If a key
3955 // is created using the flags and not a code object it can only be used for
3956 // lookup not to create a new entry.
3957 class CodeCacheHashTableKey : public HashTableKey {
3958  public:
CodeCacheHashTableKey(String * name,Code::Flags flags)3959   CodeCacheHashTableKey(String* name, Code::Flags flags)
3960       : name_(name), flags_(flags), code_(NULL) { }
3961 
CodeCacheHashTableKey(String * name,Code * code)3962   CodeCacheHashTableKey(String* name, Code* code)
3963       : name_(name),
3964         flags_(code->flags()),
3965         code_(code) { }
3966 
3967 
IsMatch(Object * other)3968   bool IsMatch(Object* other) {
3969     if (!other->IsFixedArray()) return false;
3970     FixedArray* pair = FixedArray::cast(other);
3971     String* name = String::cast(pair->get(0));
3972     Code::Flags flags = Code::cast(pair->get(1))->flags();
3973     if (flags != flags_) {
3974       return false;
3975     }
3976     return name_->Equals(name);
3977   }
3978 
NameFlagsHashHelper(String * name,Code::Flags flags)3979   static uint32_t NameFlagsHashHelper(String* name, Code::Flags flags) {
3980     return name->Hash() ^ flags;
3981   }
3982 
Hash()3983   uint32_t Hash() { return NameFlagsHashHelper(name_, flags_); }
3984 
HashForObject(Object * obj)3985   uint32_t HashForObject(Object* obj) {
3986     FixedArray* pair = FixedArray::cast(obj);
3987     String* name = String::cast(pair->get(0));
3988     Code* code = Code::cast(pair->get(1));
3989     return NameFlagsHashHelper(name, code->flags());
3990   }
3991 
AsObject()3992   MUST_USE_RESULT MaybeObject* AsObject() {
3993     ASSERT(code_ != NULL);
3994     Object* obj;
3995     { MaybeObject* maybe_obj = code_->heap()->AllocateFixedArray(2);
3996       if (!maybe_obj->ToObject(&obj)) return maybe_obj;
3997     }
3998     FixedArray* pair = FixedArray::cast(obj);
3999     pair->set(0, name_);
4000     pair->set(1, code_);
4001     return pair;
4002   }
4003 
4004  private:
4005   String* name_;
4006   Code::Flags flags_;
4007   Code* code_;
4008 };
4009 
4010 
Lookup(String * name,Code::Flags flags)4011 Object* CodeCacheHashTable::Lookup(String* name, Code::Flags flags) {
4012   CodeCacheHashTableKey key(name, flags);
4013   int entry = FindEntry(&key);
4014   if (entry == kNotFound) return GetHeap()->undefined_value();
4015   return get(EntryToIndex(entry) + 1);
4016 }
4017 
4018 
Put(String * name,Code * code)4019 MaybeObject* CodeCacheHashTable::Put(String* name, Code* code) {
4020   CodeCacheHashTableKey key(name, code);
4021   Object* obj;
4022   { MaybeObject* maybe_obj = EnsureCapacity(1, &key);
4023     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
4024   }
4025 
4026   // Don't use this, as the table might have grown.
4027   CodeCacheHashTable* cache = reinterpret_cast<CodeCacheHashTable*>(obj);
4028 
4029   int entry = cache->FindInsertionEntry(key.Hash());
4030   Object* k;
4031   { MaybeObject* maybe_k = key.AsObject();
4032     if (!maybe_k->ToObject(&k)) return maybe_k;
4033   }
4034 
4035   cache->set(EntryToIndex(entry), k);
4036   cache->set(EntryToIndex(entry) + 1, code);
4037   cache->ElementAdded();
4038   return cache;
4039 }
4040 
4041 
GetIndex(String * name,Code::Flags flags)4042 int CodeCacheHashTable::GetIndex(String* name, Code::Flags flags) {
4043   CodeCacheHashTableKey key(name, flags);
4044   int entry = FindEntry(&key);
4045   return (entry == kNotFound) ? -1 : entry;
4046 }
4047 
4048 
RemoveByIndex(int index)4049 void CodeCacheHashTable::RemoveByIndex(int index) {
4050   ASSERT(index >= 0);
4051   Heap* heap = GetHeap();
4052   set(EntryToIndex(index), heap->null_value());
4053   set(EntryToIndex(index) + 1, heap->null_value());
4054   ElementRemoved();
4055 }
4056 
4057 
HasKey(FixedArray * array,Object * key)4058 static bool HasKey(FixedArray* array, Object* key) {
4059   int len0 = array->length();
4060   for (int i = 0; i < len0; i++) {
4061     Object* element = array->get(i);
4062     if (element->IsSmi() && key->IsSmi() && (element == key)) return true;
4063     if (element->IsString() &&
4064         key->IsString() && String::cast(element)->Equals(String::cast(key))) {
4065       return true;
4066     }
4067   }
4068   return false;
4069 }
4070 
4071 
AddKeysFromJSArray(JSArray * array)4072 MaybeObject* FixedArray::AddKeysFromJSArray(JSArray* array) {
4073   ASSERT(!array->HasExternalArrayElements());
4074   switch (array->GetElementsKind()) {
4075     case JSObject::FAST_ELEMENTS:
4076       return UnionOfKeys(FixedArray::cast(array->elements()));
4077     case JSObject::DICTIONARY_ELEMENTS: {
4078       NumberDictionary* dict = array->element_dictionary();
4079       int size = dict->NumberOfElements();
4080 
4081       // Allocate a temporary fixed array.
4082       Object* object;
4083       { MaybeObject* maybe_object = GetHeap()->AllocateFixedArray(size);
4084         if (!maybe_object->ToObject(&object)) return maybe_object;
4085       }
4086       FixedArray* key_array = FixedArray::cast(object);
4087 
4088       int capacity = dict->Capacity();
4089       int pos = 0;
4090       // Copy the elements from the JSArray to the temporary fixed array.
4091       for (int i = 0; i < capacity; i++) {
4092         if (dict->IsKey(dict->KeyAt(i))) {
4093           key_array->set(pos++, dict->ValueAt(i));
4094         }
4095       }
4096       // Compute the union of this and the temporary fixed array.
4097       return UnionOfKeys(key_array);
4098     }
4099     default:
4100       UNREACHABLE();
4101   }
4102   UNREACHABLE();
4103   return GetHeap()->null_value();  // Failure case needs to "return" a value.
4104 }
4105 
4106 
UnionOfKeys(FixedArray * other)4107 MaybeObject* FixedArray::UnionOfKeys(FixedArray* other) {
4108   int len0 = length();
4109 #ifdef DEBUG
4110   if (FLAG_enable_slow_asserts) {
4111     for (int i = 0; i < len0; i++) {
4112       ASSERT(get(i)->IsString() || get(i)->IsNumber());
4113     }
4114   }
4115 #endif
4116   int len1 = other->length();
4117   // Optimize if 'other' is empty.
4118   // We cannot optimize if 'this' is empty, as other may have holes
4119   // or non keys.
4120   if (len1 == 0) return this;
4121 
4122   // Compute how many elements are not in this.
4123   int extra = 0;
4124   for (int y = 0; y < len1; y++) {
4125     Object* value = other->get(y);
4126     if (!value->IsTheHole() && !HasKey(this, value)) extra++;
4127   }
4128 
4129   if (extra == 0) return this;
4130 
4131   // Allocate the result
4132   Object* obj;
4133   { MaybeObject* maybe_obj = GetHeap()->AllocateFixedArray(len0 + extra);
4134     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
4135   }
4136   // Fill in the content
4137   AssertNoAllocation no_gc;
4138   FixedArray* result = FixedArray::cast(obj);
4139   WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
4140   for (int i = 0; i < len0; i++) {
4141     Object* e = get(i);
4142     ASSERT(e->IsString() || e->IsNumber());
4143     result->set(i, e, mode);
4144   }
4145   // Fill in the extra keys.
4146   int index = 0;
4147   for (int y = 0; y < len1; y++) {
4148     Object* value = other->get(y);
4149     if (!value->IsTheHole() && !HasKey(this, value)) {
4150       Object* e = other->get(y);
4151       ASSERT(e->IsString() || e->IsNumber());
4152       result->set(len0 + index, e, mode);
4153       index++;
4154     }
4155   }
4156   ASSERT(extra == index);
4157   return result;
4158 }
4159 
4160 
CopySize(int new_length)4161 MaybeObject* FixedArray::CopySize(int new_length) {
4162   Heap* heap = GetHeap();
4163   if (new_length == 0) return heap->empty_fixed_array();
4164   Object* obj;
4165   { MaybeObject* maybe_obj = heap->AllocateFixedArray(new_length);
4166     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
4167   }
4168   FixedArray* result = FixedArray::cast(obj);
4169   // Copy the content
4170   AssertNoAllocation no_gc;
4171   int len = length();
4172   if (new_length < len) len = new_length;
4173   result->set_map(map());
4174   WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
4175   for (int i = 0; i < len; i++) {
4176     result->set(i, get(i), mode);
4177   }
4178   return result;
4179 }
4180 
4181 
CopyTo(int pos,FixedArray * dest,int dest_pos,int len)4182 void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) {
4183   AssertNoAllocation no_gc;
4184   WriteBarrierMode mode = dest->GetWriteBarrierMode(no_gc);
4185   for (int index = 0; index < len; index++) {
4186     dest->set(dest_pos+index, get(pos+index), mode);
4187   }
4188 }
4189 
4190 
4191 #ifdef DEBUG
IsEqualTo(FixedArray * other)4192 bool FixedArray::IsEqualTo(FixedArray* other) {
4193   if (length() != other->length()) return false;
4194   for (int i = 0 ; i < length(); ++i) {
4195     if (get(i) != other->get(i)) return false;
4196   }
4197   return true;
4198 }
4199 #endif
4200 
4201 
Allocate(int number_of_descriptors)4202 MaybeObject* DescriptorArray::Allocate(int number_of_descriptors) {
4203   Heap* heap = Isolate::Current()->heap();
4204   if (number_of_descriptors == 0) {
4205     return heap->empty_descriptor_array();
4206   }
4207   // Allocate the array of keys.
4208   Object* array;
4209   { MaybeObject* maybe_array =
4210         heap->AllocateFixedArray(ToKeyIndex(number_of_descriptors));
4211     if (!maybe_array->ToObject(&array)) return maybe_array;
4212   }
4213   // Do not use DescriptorArray::cast on incomplete object.
4214   FixedArray* result = FixedArray::cast(array);
4215 
4216   // Allocate the content array and set it in the descriptor array.
4217   { MaybeObject* maybe_array =
4218         heap->AllocateFixedArray(number_of_descriptors << 1);
4219     if (!maybe_array->ToObject(&array)) return maybe_array;
4220   }
4221   result->set(kContentArrayIndex, array);
4222   result->set(kEnumerationIndexIndex,
4223               Smi::FromInt(PropertyDetails::kInitialIndex));
4224   return result;
4225 }
4226 
4227 
SetEnumCache(FixedArray * bridge_storage,FixedArray * new_cache)4228 void DescriptorArray::SetEnumCache(FixedArray* bridge_storage,
4229                                    FixedArray* new_cache) {
4230   ASSERT(bridge_storage->length() >= kEnumCacheBridgeLength);
4231   if (HasEnumCache()) {
4232     FixedArray::cast(get(kEnumerationIndexIndex))->
4233       set(kEnumCacheBridgeCacheIndex, new_cache);
4234   } else {
4235     if (IsEmpty()) return;  // Do nothing for empty descriptor array.
4236     FixedArray::cast(bridge_storage)->
4237       set(kEnumCacheBridgeCacheIndex, new_cache);
4238     fast_set(FixedArray::cast(bridge_storage),
4239              kEnumCacheBridgeEnumIndex,
4240              get(kEnumerationIndexIndex));
4241     set(kEnumerationIndexIndex, bridge_storage);
4242   }
4243 }
4244 
4245 
CopyInsert(Descriptor * descriptor,TransitionFlag transition_flag)4246 MaybeObject* DescriptorArray::CopyInsert(Descriptor* descriptor,
4247                                          TransitionFlag transition_flag) {
4248   // Transitions are only kept when inserting another transition.
4249   // This precondition is not required by this function's implementation, but
4250   // is currently required by the semantics of maps, so we check it.
4251   // Conversely, we filter after replacing, so replacing a transition and
4252   // removing all other transitions is not supported.
4253   bool remove_transitions = transition_flag == REMOVE_TRANSITIONS;
4254   ASSERT(remove_transitions == !descriptor->GetDetails().IsTransition());
4255   ASSERT(descriptor->GetDetails().type() != NULL_DESCRIPTOR);
4256 
4257   // Ensure the key is a symbol.
4258   Object* result;
4259   { MaybeObject* maybe_result = descriptor->KeyToSymbol();
4260     if (!maybe_result->ToObject(&result)) return maybe_result;
4261   }
4262 
4263   int transitions = 0;
4264   int null_descriptors = 0;
4265   if (remove_transitions) {
4266     for (int i = 0; i < number_of_descriptors(); i++) {
4267       if (IsTransition(i)) transitions++;
4268       if (IsNullDescriptor(i)) null_descriptors++;
4269     }
4270   } else {
4271     for (int i = 0; i < number_of_descriptors(); i++) {
4272       if (IsNullDescriptor(i)) null_descriptors++;
4273     }
4274   }
4275   int new_size = number_of_descriptors() - transitions - null_descriptors;
4276 
4277   // If key is in descriptor, we replace it in-place when filtering.
4278   // Count a null descriptor for key as inserted, not replaced.
4279   int index = Search(descriptor->GetKey());
4280   const bool inserting = (index == kNotFound);
4281   const bool replacing = !inserting;
4282   bool keep_enumeration_index = false;
4283   if (inserting) {
4284     ++new_size;
4285   }
4286   if (replacing) {
4287     // We are replacing an existing descriptor.  We keep the enumeration
4288     // index of a visible property.
4289     PropertyType t = PropertyDetails(GetDetails(index)).type();
4290     if (t == CONSTANT_FUNCTION ||
4291         t == FIELD ||
4292         t == CALLBACKS ||
4293         t == INTERCEPTOR) {
4294       keep_enumeration_index = true;
4295     } else if (remove_transitions) {
4296      // Replaced descriptor has been counted as removed if it is
4297      // a transition that will be replaced.  Adjust count in this case.
4298       ++new_size;
4299     }
4300   }
4301   { MaybeObject* maybe_result = Allocate(new_size);
4302     if (!maybe_result->ToObject(&result)) return maybe_result;
4303   }
4304   DescriptorArray* new_descriptors = DescriptorArray::cast(result);
4305   // Set the enumeration index in the descriptors and set the enumeration index
4306   // in the result.
4307   int enumeration_index = NextEnumerationIndex();
4308   if (!descriptor->GetDetails().IsTransition()) {
4309     if (keep_enumeration_index) {
4310       descriptor->SetEnumerationIndex(
4311           PropertyDetails(GetDetails(index)).index());
4312     } else {
4313       descriptor->SetEnumerationIndex(enumeration_index);
4314       ++enumeration_index;
4315     }
4316   }
4317   new_descriptors->SetNextEnumerationIndex(enumeration_index);
4318 
4319   // Copy the descriptors, filtering out transitions and null descriptors,
4320   // and inserting or replacing a descriptor.
4321   uint32_t descriptor_hash = descriptor->GetKey()->Hash();
4322   int from_index = 0;
4323   int to_index = 0;
4324 
4325   for (; from_index < number_of_descriptors(); from_index++) {
4326     String* key = GetKey(from_index);
4327     if (key->Hash() > descriptor_hash || key == descriptor->GetKey()) {
4328       break;
4329     }
4330     if (IsNullDescriptor(from_index)) continue;
4331     if (remove_transitions && IsTransition(from_index)) continue;
4332     new_descriptors->CopyFrom(to_index++, this, from_index);
4333   }
4334 
4335   new_descriptors->Set(to_index++, descriptor);
4336   if (replacing) from_index++;
4337 
4338   for (; from_index < number_of_descriptors(); from_index++) {
4339     if (IsNullDescriptor(from_index)) continue;
4340     if (remove_transitions && IsTransition(from_index)) continue;
4341     new_descriptors->CopyFrom(to_index++, this, from_index);
4342   }
4343 
4344   ASSERT(to_index == new_descriptors->number_of_descriptors());
4345   SLOW_ASSERT(new_descriptors->IsSortedNoDuplicates());
4346 
4347   return new_descriptors;
4348 }
4349 
4350 
RemoveTransitions()4351 MaybeObject* DescriptorArray::RemoveTransitions() {
4352   // Remove all transitions and null descriptors. Return a copy of the array
4353   // with all transitions removed, or a Failure object if the new array could
4354   // not be allocated.
4355 
4356   // Compute the size of the map transition entries to be removed.
4357   int num_removed = 0;
4358   for (int i = 0; i < number_of_descriptors(); i++) {
4359     if (!IsProperty(i)) num_removed++;
4360   }
4361 
4362   // Allocate the new descriptor array.
4363   Object* result;
4364   { MaybeObject* maybe_result = Allocate(number_of_descriptors() - num_removed);
4365     if (!maybe_result->ToObject(&result)) return maybe_result;
4366   }
4367   DescriptorArray* new_descriptors = DescriptorArray::cast(result);
4368 
4369   // Copy the content.
4370   int next_descriptor = 0;
4371   for (int i = 0; i < number_of_descriptors(); i++) {
4372     if (IsProperty(i)) new_descriptors->CopyFrom(next_descriptor++, this, i);
4373   }
4374   ASSERT(next_descriptor == new_descriptors->number_of_descriptors());
4375 
4376   return new_descriptors;
4377 }
4378 
4379 
SortUnchecked()4380 void DescriptorArray::SortUnchecked() {
4381   // In-place heap sort.
4382   int len = number_of_descriptors();
4383 
4384   // Bottom-up max-heap construction.
4385   // Index of the last node with children
4386   const int max_parent_index = (len / 2) - 1;
4387   for (int i = max_parent_index; i >= 0; --i) {
4388     int parent_index = i;
4389     const uint32_t parent_hash = GetKey(i)->Hash();
4390     while (parent_index <= max_parent_index) {
4391       int child_index = 2 * parent_index + 1;
4392       uint32_t child_hash = GetKey(child_index)->Hash();
4393       if (child_index + 1 < len) {
4394         uint32_t right_child_hash = GetKey(child_index + 1)->Hash();
4395         if (right_child_hash > child_hash) {
4396           child_index++;
4397           child_hash = right_child_hash;
4398         }
4399       }
4400       if (child_hash <= parent_hash) break;
4401       Swap(parent_index, child_index);
4402       // Now element at child_index could be < its children.
4403       parent_index = child_index;  // parent_hash remains correct.
4404     }
4405   }
4406 
4407   // Extract elements and create sorted array.
4408   for (int i = len - 1; i > 0; --i) {
4409     // Put max element at the back of the array.
4410     Swap(0, i);
4411     // Sift down the new top element.
4412     int parent_index = 0;
4413     const uint32_t parent_hash = GetKey(parent_index)->Hash();
4414     const int max_parent_index = (i / 2) - 1;
4415     while (parent_index <= max_parent_index) {
4416       int child_index = parent_index * 2 + 1;
4417       uint32_t child_hash = GetKey(child_index)->Hash();
4418       if (child_index + 1 < i) {
4419         uint32_t right_child_hash = GetKey(child_index + 1)->Hash();
4420         if (right_child_hash > child_hash) {
4421           child_index++;
4422           child_hash = right_child_hash;
4423         }
4424       }
4425       if (child_hash <= parent_hash) break;
4426       Swap(parent_index, child_index);
4427       parent_index = child_index;
4428     }
4429   }
4430 }
4431 
4432 
Sort()4433 void DescriptorArray::Sort() {
4434   SortUnchecked();
4435   SLOW_ASSERT(IsSortedNoDuplicates());
4436 }
4437 
4438 
BinarySearch(String * name,int low,int high)4439 int DescriptorArray::BinarySearch(String* name, int low, int high) {
4440   uint32_t hash = name->Hash();
4441 
4442   while (low <= high) {
4443     int mid = (low + high) / 2;
4444     String* mid_name = GetKey(mid);
4445     uint32_t mid_hash = mid_name->Hash();
4446 
4447     if (mid_hash > hash) {
4448       high = mid - 1;
4449       continue;
4450     }
4451     if (mid_hash < hash) {
4452       low = mid + 1;
4453       continue;
4454     }
4455     // Found an element with the same hash-code.
4456     ASSERT(hash == mid_hash);
4457     // There might be more, so we find the first one and
4458     // check them all to see if we have a match.
4459     if (name == mid_name  && !is_null_descriptor(mid)) return mid;
4460     while ((mid > low) && (GetKey(mid - 1)->Hash() == hash)) mid--;
4461     for (; (mid <= high) && (GetKey(mid)->Hash() == hash); mid++) {
4462       if (GetKey(mid)->Equals(name) && !is_null_descriptor(mid)) return mid;
4463     }
4464     break;
4465   }
4466   return kNotFound;
4467 }
4468 
4469 
LinearSearch(String * name,int len)4470 int DescriptorArray::LinearSearch(String* name, int len) {
4471   uint32_t hash = name->Hash();
4472   for (int number = 0; number < len; number++) {
4473     String* entry = GetKey(number);
4474     if ((entry->Hash() == hash) &&
4475         name->Equals(entry) &&
4476         !is_null_descriptor(number)) {
4477       return number;
4478     }
4479   }
4480   return kNotFound;
4481 }
4482 
4483 
Allocate(int deopt_entry_count,PretenureFlag pretenure)4484 MaybeObject* DeoptimizationInputData::Allocate(int deopt_entry_count,
4485                                                PretenureFlag pretenure) {
4486   ASSERT(deopt_entry_count > 0);
4487   return HEAP->AllocateFixedArray(LengthFor(deopt_entry_count),
4488                                   pretenure);
4489 }
4490 
4491 
Allocate(int number_of_deopt_points,PretenureFlag pretenure)4492 MaybeObject* DeoptimizationOutputData::Allocate(int number_of_deopt_points,
4493                                                 PretenureFlag pretenure) {
4494   if (number_of_deopt_points == 0) return HEAP->empty_fixed_array();
4495   return HEAP->AllocateFixedArray(LengthOfFixedArray(number_of_deopt_points),
4496                                   pretenure);
4497 }
4498 
4499 
4500 #ifdef DEBUG
IsEqualTo(DescriptorArray * other)4501 bool DescriptorArray::IsEqualTo(DescriptorArray* other) {
4502   if (IsEmpty()) return other->IsEmpty();
4503   if (other->IsEmpty()) return false;
4504   if (length() != other->length()) return false;
4505   for (int i = 0; i < length(); ++i) {
4506     if (get(i) != other->get(i) && i != kContentArrayIndex) return false;
4507   }
4508   return GetContentArray()->IsEqualTo(other->GetContentArray());
4509 }
4510 #endif
4511 
4512 
LooksValid()4513 bool String::LooksValid() {
4514   if (!Isolate::Current()->heap()->Contains(this)) return false;
4515   return true;
4516 }
4517 
4518 
Utf8Length()4519 int String::Utf8Length() {
4520   if (IsAsciiRepresentation()) return length();
4521   // Attempt to flatten before accessing the string.  It probably
4522   // doesn't make Utf8Length faster, but it is very likely that
4523   // the string will be accessed later (for example by WriteUtf8)
4524   // so it's still a good idea.
4525   Heap* heap = GetHeap();
4526   TryFlatten();
4527   Access<StringInputBuffer> buffer(
4528       heap->isolate()->objects_string_input_buffer());
4529   buffer->Reset(0, this);
4530   int result = 0;
4531   while (buffer->has_more())
4532     result += unibrow::Utf8::Length(buffer->GetNext());
4533   return result;
4534 }
4535 
4536 
ToAsciiVector()4537 Vector<const char> String::ToAsciiVector() {
4538   ASSERT(IsAsciiRepresentation());
4539   ASSERT(IsFlat());
4540 
4541   int offset = 0;
4542   int length = this->length();
4543   StringRepresentationTag string_tag = StringShape(this).representation_tag();
4544   String* string = this;
4545   if (string_tag == kConsStringTag) {
4546     ConsString* cons = ConsString::cast(string);
4547     ASSERT(cons->second()->length() == 0);
4548     string = cons->first();
4549     string_tag = StringShape(string).representation_tag();
4550   }
4551   if (string_tag == kSeqStringTag) {
4552     SeqAsciiString* seq = SeqAsciiString::cast(string);
4553     char* start = seq->GetChars();
4554     return Vector<const char>(start + offset, length);
4555   }
4556   ASSERT(string_tag == kExternalStringTag);
4557   ExternalAsciiString* ext = ExternalAsciiString::cast(string);
4558   const char* start = ext->resource()->data();
4559   return Vector<const char>(start + offset, length);
4560 }
4561 
4562 
ToUC16Vector()4563 Vector<const uc16> String::ToUC16Vector() {
4564   ASSERT(IsTwoByteRepresentation());
4565   ASSERT(IsFlat());
4566 
4567   int offset = 0;
4568   int length = this->length();
4569   StringRepresentationTag string_tag = StringShape(this).representation_tag();
4570   String* string = this;
4571   if (string_tag == kConsStringTag) {
4572     ConsString* cons = ConsString::cast(string);
4573     ASSERT(cons->second()->length() == 0);
4574     string = cons->first();
4575     string_tag = StringShape(string).representation_tag();
4576   }
4577   if (string_tag == kSeqStringTag) {
4578     SeqTwoByteString* seq = SeqTwoByteString::cast(string);
4579     return Vector<const uc16>(seq->GetChars() + offset, length);
4580   }
4581   ASSERT(string_tag == kExternalStringTag);
4582   ExternalTwoByteString* ext = ExternalTwoByteString::cast(string);
4583   const uc16* start =
4584       reinterpret_cast<const uc16*>(ext->resource()->data());
4585   return Vector<const uc16>(start + offset, length);
4586 }
4587 
4588 
ToCString(AllowNullsFlag allow_nulls,RobustnessFlag robust_flag,int offset,int length,int * length_return)4589 SmartPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
4590                                      RobustnessFlag robust_flag,
4591                                      int offset,
4592                                      int length,
4593                                      int* length_return) {
4594   if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) {
4595     return SmartPointer<char>(NULL);
4596   }
4597   Heap* heap = GetHeap();
4598 
4599   // Negative length means the to the end of the string.
4600   if (length < 0) length = kMaxInt - offset;
4601 
4602   // Compute the size of the UTF-8 string. Start at the specified offset.
4603   Access<StringInputBuffer> buffer(
4604       heap->isolate()->objects_string_input_buffer());
4605   buffer->Reset(offset, this);
4606   int character_position = offset;
4607   int utf8_bytes = 0;
4608   while (buffer->has_more()) {
4609     uint16_t character = buffer->GetNext();
4610     if (character_position < offset + length) {
4611       utf8_bytes += unibrow::Utf8::Length(character);
4612     }
4613     character_position++;
4614   }
4615 
4616   if (length_return) {
4617     *length_return = utf8_bytes;
4618   }
4619 
4620   char* result = NewArray<char>(utf8_bytes + 1);
4621 
4622   // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset.
4623   buffer->Rewind();
4624   buffer->Seek(offset);
4625   character_position = offset;
4626   int utf8_byte_position = 0;
4627   while (buffer->has_more()) {
4628     uint16_t character = buffer->GetNext();
4629     if (character_position < offset + length) {
4630       if (allow_nulls == DISALLOW_NULLS && character == 0) {
4631         character = ' ';
4632       }
4633       utf8_byte_position +=
4634           unibrow::Utf8::Encode(result + utf8_byte_position, character);
4635     }
4636     character_position++;
4637   }
4638   result[utf8_byte_position] = 0;
4639   return SmartPointer<char>(result);
4640 }
4641 
4642 
ToCString(AllowNullsFlag allow_nulls,RobustnessFlag robust_flag,int * length_return)4643 SmartPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
4644                                      RobustnessFlag robust_flag,
4645                                      int* length_return) {
4646   return ToCString(allow_nulls, robust_flag, 0, -1, length_return);
4647 }
4648 
4649 
GetTwoByteData()4650 const uc16* String::GetTwoByteData() {
4651   return GetTwoByteData(0);
4652 }
4653 
4654 
GetTwoByteData(unsigned start)4655 const uc16* String::GetTwoByteData(unsigned start) {
4656   ASSERT(!IsAsciiRepresentation());
4657   switch (StringShape(this).representation_tag()) {
4658     case kSeqStringTag:
4659       return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start);
4660     case kExternalStringTag:
4661       return ExternalTwoByteString::cast(this)->
4662         ExternalTwoByteStringGetData(start);
4663     case kConsStringTag:
4664       UNREACHABLE();
4665       return NULL;
4666   }
4667   UNREACHABLE();
4668   return NULL;
4669 }
4670 
4671 
ToWideCString(RobustnessFlag robust_flag)4672 SmartPointer<uc16> String::ToWideCString(RobustnessFlag robust_flag) {
4673   if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) {
4674     return SmartPointer<uc16>();
4675   }
4676   Heap* heap = GetHeap();
4677 
4678   Access<StringInputBuffer> buffer(
4679       heap->isolate()->objects_string_input_buffer());
4680   buffer->Reset(this);
4681 
4682   uc16* result = NewArray<uc16>(length() + 1);
4683 
4684   int i = 0;
4685   while (buffer->has_more()) {
4686     uint16_t character = buffer->GetNext();
4687     result[i++] = character;
4688   }
4689   result[i] = 0;
4690   return SmartPointer<uc16>(result);
4691 }
4692 
4693 
SeqTwoByteStringGetData(unsigned start)4694 const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) {
4695   return reinterpret_cast<uc16*>(
4696       reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize) + start;
4697 }
4698 
4699 
SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)4700 void SeqTwoByteString::SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* rbb,
4701                                                            unsigned* offset_ptr,
4702                                                            unsigned max_chars) {
4703   unsigned chars_read = 0;
4704   unsigned offset = *offset_ptr;
4705   while (chars_read < max_chars) {
4706     uint16_t c = *reinterpret_cast<uint16_t*>(
4707         reinterpret_cast<char*>(this) -
4708             kHeapObjectTag + kHeaderSize + offset * kShortSize);
4709     if (c <= kMaxAsciiCharCode) {
4710       // Fast case for ASCII characters.   Cursor is an input output argument.
4711       if (!unibrow::CharacterStream::EncodeAsciiCharacter(c,
4712                                                           rbb->util_buffer,
4713                                                           rbb->capacity,
4714                                                           rbb->cursor)) {
4715         break;
4716       }
4717     } else {
4718       if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c,
4719                                                              rbb->util_buffer,
4720                                                              rbb->capacity,
4721                                                              rbb->cursor)) {
4722         break;
4723       }
4724     }
4725     offset++;
4726     chars_read++;
4727   }
4728   *offset_ptr = offset;
4729   rbb->remaining += chars_read;
4730 }
4731 
4732 
SeqAsciiStringReadBlock(unsigned * remaining,unsigned * offset_ptr,unsigned max_chars)4733 const unibrow::byte* SeqAsciiString::SeqAsciiStringReadBlock(
4734     unsigned* remaining,
4735     unsigned* offset_ptr,
4736     unsigned max_chars) {
4737   const unibrow::byte* b = reinterpret_cast<unibrow::byte*>(this) -
4738       kHeapObjectTag + kHeaderSize + *offset_ptr * kCharSize;
4739   *remaining = max_chars;
4740   *offset_ptr += max_chars;
4741   return b;
4742 }
4743 
4744 
4745 // This will iterate unless the block of string data spans two 'halves' of
4746 // a ConsString, in which case it will recurse.  Since the block of string
4747 // data to be read has a maximum size this limits the maximum recursion
4748 // depth to something sane.  Since C++ does not have tail call recursion
4749 // elimination, the iteration must be explicit. Since this is not an
4750 // -IntoBuffer method it can delegate to one of the efficient
4751 // *AsciiStringReadBlock routines.
ConsStringReadBlock(ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)4752 const unibrow::byte* ConsString::ConsStringReadBlock(ReadBlockBuffer* rbb,
4753                                                      unsigned* offset_ptr,
4754                                                      unsigned max_chars) {
4755   ConsString* current = this;
4756   unsigned offset = *offset_ptr;
4757   int offset_correction = 0;
4758 
4759   while (true) {
4760     String* left = current->first();
4761     unsigned left_length = (unsigned)left->length();
4762     if (left_length > offset &&
4763         (max_chars <= left_length - offset ||
4764          (rbb->capacity <= left_length - offset &&
4765           (max_chars = left_length - offset, true)))) {  // comma operator!
4766       // Left hand side only - iterate unless we have reached the bottom of
4767       // the cons tree.  The assignment on the left of the comma operator is
4768       // in order to make use of the fact that the -IntoBuffer routines can
4769       // produce at most 'capacity' characters.  This enables us to postpone
4770       // the point where we switch to the -IntoBuffer routines (below) in order
4771       // to maximize the chances of delegating a big chunk of work to the
4772       // efficient *AsciiStringReadBlock routines.
4773       if (StringShape(left).IsCons()) {
4774         current = ConsString::cast(left);
4775         continue;
4776       } else {
4777         const unibrow::byte* answer =
4778             String::ReadBlock(left, rbb, &offset, max_chars);
4779         *offset_ptr = offset + offset_correction;
4780         return answer;
4781       }
4782     } else if (left_length <= offset) {
4783       // Right hand side only - iterate unless we have reached the bottom of
4784       // the cons tree.
4785       String* right = current->second();
4786       offset -= left_length;
4787       offset_correction += left_length;
4788       if (StringShape(right).IsCons()) {
4789         current = ConsString::cast(right);
4790         continue;
4791       } else {
4792         const unibrow::byte* answer =
4793             String::ReadBlock(right, rbb, &offset, max_chars);
4794         *offset_ptr = offset + offset_correction;
4795         return answer;
4796       }
4797     } else {
4798       // The block to be read spans two sides of the ConsString, so we call the
4799       // -IntoBuffer version, which will recurse.  The -IntoBuffer methods
4800       // are able to assemble data from several part strings because they use
4801       // the util_buffer to store their data and never return direct pointers
4802       // to their storage.  We don't try to read more than the buffer capacity
4803       // here or we can get too much recursion.
4804       ASSERT(rbb->remaining == 0);
4805       ASSERT(rbb->cursor == 0);
4806       current->ConsStringReadBlockIntoBuffer(
4807           rbb,
4808           &offset,
4809           max_chars > rbb->capacity ? rbb->capacity : max_chars);
4810       *offset_ptr = offset + offset_correction;
4811       return rbb->util_buffer;
4812     }
4813   }
4814 }
4815 
4816 
ExternalAsciiStringGet(int index)4817 uint16_t ExternalAsciiString::ExternalAsciiStringGet(int index) {
4818   ASSERT(index >= 0 && index < length());
4819   return resource()->data()[index];
4820 }
4821 
4822 
ExternalAsciiStringReadBlock(unsigned * remaining,unsigned * offset_ptr,unsigned max_chars)4823 const unibrow::byte* ExternalAsciiString::ExternalAsciiStringReadBlock(
4824       unsigned* remaining,
4825       unsigned* offset_ptr,
4826       unsigned max_chars) {
4827   // Cast const char* to unibrow::byte* (signedness difference).
4828   const unibrow::byte* b =
4829       reinterpret_cast<const unibrow::byte*>(resource()->data()) + *offset_ptr;
4830   *remaining = max_chars;
4831   *offset_ptr += max_chars;
4832   return b;
4833 }
4834 
4835 
ExternalTwoByteStringGetData(unsigned start)4836 const uc16* ExternalTwoByteString::ExternalTwoByteStringGetData(
4837       unsigned start) {
4838   return resource()->data() + start;
4839 }
4840 
4841 
ExternalTwoByteStringGet(int index)4842 uint16_t ExternalTwoByteString::ExternalTwoByteStringGet(int index) {
4843   ASSERT(index >= 0 && index < length());
4844   return resource()->data()[index];
4845 }
4846 
4847 
ExternalTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)4848 void ExternalTwoByteString::ExternalTwoByteStringReadBlockIntoBuffer(
4849       ReadBlockBuffer* rbb,
4850       unsigned* offset_ptr,
4851       unsigned max_chars) {
4852   unsigned chars_read = 0;
4853   unsigned offset = *offset_ptr;
4854   const uint16_t* data = resource()->data();
4855   while (chars_read < max_chars) {
4856     uint16_t c = data[offset];
4857     if (c <= kMaxAsciiCharCode) {
4858       // Fast case for ASCII characters. Cursor is an input output argument.
4859       if (!unibrow::CharacterStream::EncodeAsciiCharacter(c,
4860                                                           rbb->util_buffer,
4861                                                           rbb->capacity,
4862                                                           rbb->cursor))
4863         break;
4864     } else {
4865       if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c,
4866                                                              rbb->util_buffer,
4867                                                              rbb->capacity,
4868                                                              rbb->cursor))
4869         break;
4870     }
4871     offset++;
4872     chars_read++;
4873   }
4874   *offset_ptr = offset;
4875   rbb->remaining += chars_read;
4876 }
4877 
4878 
SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)4879 void SeqAsciiString::SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* rbb,
4880                                                  unsigned* offset_ptr,
4881                                                  unsigned max_chars) {
4882   unsigned capacity = rbb->capacity - rbb->cursor;
4883   if (max_chars > capacity) max_chars = capacity;
4884   memcpy(rbb->util_buffer + rbb->cursor,
4885          reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize +
4886              *offset_ptr * kCharSize,
4887          max_chars);
4888   rbb->remaining += max_chars;
4889   *offset_ptr += max_chars;
4890   rbb->cursor += max_chars;
4891 }
4892 
4893 
ExternalAsciiStringReadBlockIntoBuffer(ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)4894 void ExternalAsciiString::ExternalAsciiStringReadBlockIntoBuffer(
4895       ReadBlockBuffer* rbb,
4896       unsigned* offset_ptr,
4897       unsigned max_chars) {
4898   unsigned capacity = rbb->capacity - rbb->cursor;
4899   if (max_chars > capacity) max_chars = capacity;
4900   memcpy(rbb->util_buffer + rbb->cursor,
4901          resource()->data() + *offset_ptr,
4902          max_chars);
4903   rbb->remaining += max_chars;
4904   *offset_ptr += max_chars;
4905   rbb->cursor += max_chars;
4906 }
4907 
4908 
4909 // This method determines the type of string involved and then copies
4910 // a whole chunk of characters into a buffer, or returns a pointer to a buffer
4911 // where they can be found.  The pointer is not necessarily valid across a GC
4912 // (see AsciiStringReadBlock).
ReadBlock(String * input,ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)4913 const unibrow::byte* String::ReadBlock(String* input,
4914                                        ReadBlockBuffer* rbb,
4915                                        unsigned* offset_ptr,
4916                                        unsigned max_chars) {
4917   ASSERT(*offset_ptr <= static_cast<unsigned>(input->length()));
4918   if (max_chars == 0) {
4919     rbb->remaining = 0;
4920     return NULL;
4921   }
4922   switch (StringShape(input).representation_tag()) {
4923     case kSeqStringTag:
4924       if (input->IsAsciiRepresentation()) {
4925         SeqAsciiString* str = SeqAsciiString::cast(input);
4926         return str->SeqAsciiStringReadBlock(&rbb->remaining,
4927                                             offset_ptr,
4928                                             max_chars);
4929       } else {
4930         SeqTwoByteString* str = SeqTwoByteString::cast(input);
4931         str->SeqTwoByteStringReadBlockIntoBuffer(rbb,
4932                                                  offset_ptr,
4933                                                  max_chars);
4934         return rbb->util_buffer;
4935       }
4936     case kConsStringTag:
4937       return ConsString::cast(input)->ConsStringReadBlock(rbb,
4938                                                           offset_ptr,
4939                                                           max_chars);
4940     case kExternalStringTag:
4941       if (input->IsAsciiRepresentation()) {
4942         return ExternalAsciiString::cast(input)->ExternalAsciiStringReadBlock(
4943             &rbb->remaining,
4944             offset_ptr,
4945             max_chars);
4946       } else {
4947         ExternalTwoByteString::cast(input)->
4948             ExternalTwoByteStringReadBlockIntoBuffer(rbb,
4949                                                      offset_ptr,
4950                                                      max_chars);
4951         return rbb->util_buffer;
4952       }
4953     default:
4954       break;
4955   }
4956 
4957   UNREACHABLE();
4958   return 0;
4959 }
4960 
4961 
PostGarbageCollectionProcessing()4962 void Relocatable::PostGarbageCollectionProcessing() {
4963   Isolate* isolate = Isolate::Current();
4964   Relocatable* current = isolate->relocatable_top();
4965   while (current != NULL) {
4966     current->PostGarbageCollection();
4967     current = current->prev_;
4968   }
4969 }
4970 
4971 
4972 // Reserve space for statics needing saving and restoring.
ArchiveSpacePerThread()4973 int Relocatable::ArchiveSpacePerThread() {
4974   return sizeof(Isolate::Current()->relocatable_top());
4975 }
4976 
4977 
4978 // Archive statics that are thread local.
ArchiveState(char * to)4979 char* Relocatable::ArchiveState(char* to) {
4980   Isolate* isolate = Isolate::Current();
4981   *reinterpret_cast<Relocatable**>(to) = isolate->relocatable_top();
4982   isolate->set_relocatable_top(NULL);
4983   return to + ArchiveSpacePerThread();
4984 }
4985 
4986 
4987 // Restore statics that are thread local.
RestoreState(char * from)4988 char* Relocatable::RestoreState(char* from) {
4989   Isolate* isolate = Isolate::Current();
4990   isolate->set_relocatable_top(*reinterpret_cast<Relocatable**>(from));
4991   return from + ArchiveSpacePerThread();
4992 }
4993 
4994 
Iterate(ObjectVisitor * v,char * thread_storage)4995 char* Relocatable::Iterate(ObjectVisitor* v, char* thread_storage) {
4996   Relocatable* top = *reinterpret_cast<Relocatable**>(thread_storage);
4997   Iterate(v, top);
4998   return thread_storage + ArchiveSpacePerThread();
4999 }
5000 
5001 
Iterate(ObjectVisitor * v)5002 void Relocatable::Iterate(ObjectVisitor* v) {
5003   Isolate* isolate = Isolate::Current();
5004   Iterate(v, isolate->relocatable_top());
5005 }
5006 
5007 
Iterate(ObjectVisitor * v,Relocatable * top)5008 void Relocatable::Iterate(ObjectVisitor* v, Relocatable* top) {
5009   Relocatable* current = top;
5010   while (current != NULL) {
5011     current->IterateInstance(v);
5012     current = current->prev_;
5013   }
5014 }
5015 
5016 
FlatStringReader(Isolate * isolate,Handle<String> str)5017 FlatStringReader::FlatStringReader(Isolate* isolate, Handle<String> str)
5018     : Relocatable(isolate),
5019       str_(str.location()),
5020       length_(str->length()) {
5021   PostGarbageCollection();
5022 }
5023 
5024 
FlatStringReader(Isolate * isolate,Vector<const char> input)5025 FlatStringReader::FlatStringReader(Isolate* isolate, Vector<const char> input)
5026     : Relocatable(isolate),
5027       str_(0),
5028       is_ascii_(true),
5029       length_(input.length()),
5030       start_(input.start()) { }
5031 
5032 
PostGarbageCollection()5033 void FlatStringReader::PostGarbageCollection() {
5034   if (str_ == NULL) return;
5035   Handle<String> str(str_);
5036   ASSERT(str->IsFlat());
5037   is_ascii_ = str->IsAsciiRepresentation();
5038   if (is_ascii_) {
5039     start_ = str->ToAsciiVector().start();
5040   } else {
5041     start_ = str->ToUC16Vector().start();
5042   }
5043 }
5044 
5045 
Seek(unsigned pos)5046 void StringInputBuffer::Seek(unsigned pos) {
5047   Reset(pos, input_);
5048 }
5049 
5050 
Seek(unsigned pos)5051 void SafeStringInputBuffer::Seek(unsigned pos) {
5052   Reset(pos, input_);
5053 }
5054 
5055 
5056 // This method determines the type of string involved and then copies
5057 // a whole chunk of characters into a buffer.  It can be used with strings
5058 // that have been glued together to form a ConsString and which must cooperate
5059 // to fill up a buffer.
ReadBlockIntoBuffer(String * input,ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)5060 void String::ReadBlockIntoBuffer(String* input,
5061                                  ReadBlockBuffer* rbb,
5062                                  unsigned* offset_ptr,
5063                                  unsigned max_chars) {
5064   ASSERT(*offset_ptr <= (unsigned)input->length());
5065   if (max_chars == 0) return;
5066 
5067   switch (StringShape(input).representation_tag()) {
5068     case kSeqStringTag:
5069       if (input->IsAsciiRepresentation()) {
5070         SeqAsciiString::cast(input)->SeqAsciiStringReadBlockIntoBuffer(rbb,
5071                                                                  offset_ptr,
5072                                                                  max_chars);
5073         return;
5074       } else {
5075         SeqTwoByteString::cast(input)->SeqTwoByteStringReadBlockIntoBuffer(rbb,
5076                                                                      offset_ptr,
5077                                                                      max_chars);
5078         return;
5079       }
5080     case kConsStringTag:
5081       ConsString::cast(input)->ConsStringReadBlockIntoBuffer(rbb,
5082                                                              offset_ptr,
5083                                                              max_chars);
5084       return;
5085     case kExternalStringTag:
5086       if (input->IsAsciiRepresentation()) {
5087         ExternalAsciiString::cast(input)->
5088             ExternalAsciiStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars);
5089       } else {
5090         ExternalTwoByteString::cast(input)->
5091             ExternalTwoByteStringReadBlockIntoBuffer(rbb,
5092                                                      offset_ptr,
5093                                                      max_chars);
5094        }
5095        return;
5096     default:
5097       break;
5098   }
5099 
5100   UNREACHABLE();
5101   return;
5102 }
5103 
5104 
ReadBlock(String * input,unibrow::byte * util_buffer,unsigned capacity,unsigned * remaining,unsigned * offset_ptr)5105 const unibrow::byte* String::ReadBlock(String* input,
5106                                        unibrow::byte* util_buffer,
5107                                        unsigned capacity,
5108                                        unsigned* remaining,
5109                                        unsigned* offset_ptr) {
5110   ASSERT(*offset_ptr <= (unsigned)input->length());
5111   unsigned chars = input->length() - *offset_ptr;
5112   ReadBlockBuffer rbb(util_buffer, 0, capacity, 0);
5113   const unibrow::byte* answer = ReadBlock(input, &rbb, offset_ptr, chars);
5114   ASSERT(rbb.remaining <= static_cast<unsigned>(input->length()));
5115   *remaining = rbb.remaining;
5116   return answer;
5117 }
5118 
5119 
ReadBlock(String ** raw_input,unibrow::byte * util_buffer,unsigned capacity,unsigned * remaining,unsigned * offset_ptr)5120 const unibrow::byte* String::ReadBlock(String** raw_input,
5121                                        unibrow::byte* util_buffer,
5122                                        unsigned capacity,
5123                                        unsigned* remaining,
5124                                        unsigned* offset_ptr) {
5125   Handle<String> input(raw_input);
5126   ASSERT(*offset_ptr <= (unsigned)input->length());
5127   unsigned chars = input->length() - *offset_ptr;
5128   if (chars > capacity) chars = capacity;
5129   ReadBlockBuffer rbb(util_buffer, 0, capacity, 0);
5130   ReadBlockIntoBuffer(*input, &rbb, offset_ptr, chars);
5131   ASSERT(rbb.remaining <= static_cast<unsigned>(input->length()));
5132   *remaining = rbb.remaining;
5133   return rbb.util_buffer;
5134 }
5135 
5136 
5137 // This will iterate unless the block of string data spans two 'halves' of
5138 // a ConsString, in which case it will recurse.  Since the block of string
5139 // data to be read has a maximum size this limits the maximum recursion
5140 // depth to something sane.  Since C++ does not have tail call recursion
5141 // elimination, the iteration must be explicit.
ConsStringReadBlockIntoBuffer(ReadBlockBuffer * rbb,unsigned * offset_ptr,unsigned max_chars)5142 void ConsString::ConsStringReadBlockIntoBuffer(ReadBlockBuffer* rbb,
5143                                                unsigned* offset_ptr,
5144                                                unsigned max_chars) {
5145   ConsString* current = this;
5146   unsigned offset = *offset_ptr;
5147   int offset_correction = 0;
5148 
5149   while (true) {
5150     String* left = current->first();
5151     unsigned left_length = (unsigned)left->length();
5152     if (left_length > offset &&
5153       max_chars <= left_length - offset) {
5154       // Left hand side only - iterate unless we have reached the bottom of
5155       // the cons tree.
5156       if (StringShape(left).IsCons()) {
5157         current = ConsString::cast(left);
5158         continue;
5159       } else {
5160         String::ReadBlockIntoBuffer(left, rbb, &offset, max_chars);
5161         *offset_ptr = offset + offset_correction;
5162         return;
5163       }
5164     } else if (left_length <= offset) {
5165       // Right hand side only - iterate unless we have reached the bottom of
5166       // the cons tree.
5167       offset -= left_length;
5168       offset_correction += left_length;
5169       String* right = current->second();
5170       if (StringShape(right).IsCons()) {
5171         current = ConsString::cast(right);
5172         continue;
5173       } else {
5174         String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars);
5175         *offset_ptr = offset + offset_correction;
5176         return;
5177       }
5178     } else {
5179       // The block to be read spans two sides of the ConsString, so we recurse.
5180       // First recurse on the left.
5181       max_chars -= left_length - offset;
5182       String::ReadBlockIntoBuffer(left, rbb, &offset, left_length - offset);
5183       // We may have reached the max or there may not have been enough space
5184       // in the buffer for the characters in the left hand side.
5185       if (offset == left_length) {
5186         // Recurse on the right.
5187         String* right = String::cast(current->second());
5188         offset -= left_length;
5189         offset_correction += left_length;
5190         String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars);
5191       }
5192       *offset_ptr = offset + offset_correction;
5193       return;
5194     }
5195   }
5196 }
5197 
5198 
ConsStringGet(int index)5199 uint16_t ConsString::ConsStringGet(int index) {
5200   ASSERT(index >= 0 && index < this->length());
5201 
5202   // Check for a flattened cons string
5203   if (second()->length() == 0) {
5204     String* left = first();
5205     return left->Get(index);
5206   }
5207 
5208   String* string = String::cast(this);
5209 
5210   while (true) {
5211     if (StringShape(string).IsCons()) {
5212       ConsString* cons_string = ConsString::cast(string);
5213       String* left = cons_string->first();
5214       if (left->length() > index) {
5215         string = left;
5216       } else {
5217         index -= left->length();
5218         string = cons_string->second();
5219       }
5220     } else {
5221       return string->Get(index);
5222     }
5223   }
5224 
5225   UNREACHABLE();
5226   return 0;
5227 }
5228 
5229 
5230 template <typename sinkchar>
WriteToFlat(String * src,sinkchar * sink,int f,int t)5231 void String::WriteToFlat(String* src,
5232                          sinkchar* sink,
5233                          int f,
5234                          int t) {
5235   String* source = src;
5236   int from = f;
5237   int to = t;
5238   while (true) {
5239     ASSERT(0 <= from && from <= to && to <= source->length());
5240     switch (StringShape(source).full_representation_tag()) {
5241       case kAsciiStringTag | kExternalStringTag: {
5242         CopyChars(sink,
5243                   ExternalAsciiString::cast(source)->resource()->data() + from,
5244                   to - from);
5245         return;
5246       }
5247       case kTwoByteStringTag | kExternalStringTag: {
5248         const uc16* data =
5249             ExternalTwoByteString::cast(source)->resource()->data();
5250         CopyChars(sink,
5251                   data + from,
5252                   to - from);
5253         return;
5254       }
5255       case kAsciiStringTag | kSeqStringTag: {
5256         CopyChars(sink,
5257                   SeqAsciiString::cast(source)->GetChars() + from,
5258                   to - from);
5259         return;
5260       }
5261       case kTwoByteStringTag | kSeqStringTag: {
5262         CopyChars(sink,
5263                   SeqTwoByteString::cast(source)->GetChars() + from,
5264                   to - from);
5265         return;
5266       }
5267       case kAsciiStringTag | kConsStringTag:
5268       case kTwoByteStringTag | kConsStringTag: {
5269         ConsString* cons_string = ConsString::cast(source);
5270         String* first = cons_string->first();
5271         int boundary = first->length();
5272         if (to - boundary >= boundary - from) {
5273           // Right hand side is longer.  Recurse over left.
5274           if (from < boundary) {
5275             WriteToFlat(first, sink, from, boundary);
5276             sink += boundary - from;
5277             from = 0;
5278           } else {
5279             from -= boundary;
5280           }
5281           to -= boundary;
5282           source = cons_string->second();
5283         } else {
5284           // Left hand side is longer.  Recurse over right.
5285           if (to > boundary) {
5286             String* second = cons_string->second();
5287             WriteToFlat(second,
5288                         sink + boundary - from,
5289                         0,
5290                         to - boundary);
5291             to = boundary;
5292           }
5293           source = first;
5294         }
5295         break;
5296       }
5297     }
5298   }
5299 }
5300 
5301 
5302 template <typename IteratorA, typename IteratorB>
CompareStringContents(IteratorA * ia,IteratorB * ib)5303 static inline bool CompareStringContents(IteratorA* ia, IteratorB* ib) {
5304   // General slow case check.  We know that the ia and ib iterators
5305   // have the same length.
5306   while (ia->has_more()) {
5307     uc32 ca = ia->GetNext();
5308     uc32 cb = ib->GetNext();
5309     if (ca != cb)
5310       return false;
5311   }
5312   return true;
5313 }
5314 
5315 
5316 // Compares the contents of two strings by reading and comparing
5317 // int-sized blocks of characters.
5318 template <typename Char>
CompareRawStringContents(Vector<Char> a,Vector<Char> b)5319 static inline bool CompareRawStringContents(Vector<Char> a, Vector<Char> b) {
5320   int length = a.length();
5321   ASSERT_EQ(length, b.length());
5322   const Char* pa = a.start();
5323   const Char* pb = b.start();
5324   int i = 0;
5325 #ifndef V8_HOST_CAN_READ_UNALIGNED
5326   // If this architecture isn't comfortable reading unaligned ints
5327   // then we have to check that the strings are aligned before
5328   // comparing them blockwise.
5329   const int kAlignmentMask = sizeof(uint32_t) - 1;  // NOLINT
5330   uint32_t pa_addr = reinterpret_cast<uint32_t>(pa);
5331   uint32_t pb_addr = reinterpret_cast<uint32_t>(pb);
5332   if (((pa_addr & kAlignmentMask) | (pb_addr & kAlignmentMask)) == 0) {
5333 #endif
5334     const int kStepSize = sizeof(int) / sizeof(Char);  // NOLINT
5335     int endpoint = length - kStepSize;
5336     // Compare blocks until we reach near the end of the string.
5337     for (; i <= endpoint; i += kStepSize) {
5338       uint32_t wa = *reinterpret_cast<const uint32_t*>(pa + i);
5339       uint32_t wb = *reinterpret_cast<const uint32_t*>(pb + i);
5340       if (wa != wb) {
5341         return false;
5342       }
5343     }
5344 #ifndef V8_HOST_CAN_READ_UNALIGNED
5345   }
5346 #endif
5347   // Compare the remaining characters that didn't fit into a block.
5348   for (; i < length; i++) {
5349     if (a[i] != b[i]) {
5350       return false;
5351     }
5352   }
5353   return true;
5354 }
5355 
5356 
5357 template <typename IteratorA>
CompareStringContentsPartial(Isolate * isolate,IteratorA * ia,String * b)5358 static inline bool CompareStringContentsPartial(Isolate* isolate,
5359                                                 IteratorA* ia,
5360                                                 String* b) {
5361   if (b->IsFlat()) {
5362     if (b->IsAsciiRepresentation()) {
5363       VectorIterator<char> ib(b->ToAsciiVector());
5364       return CompareStringContents(ia, &ib);
5365     } else {
5366       VectorIterator<uc16> ib(b->ToUC16Vector());
5367       return CompareStringContents(ia, &ib);
5368     }
5369   } else {
5370     isolate->objects_string_compare_buffer_b()->Reset(0, b);
5371     return CompareStringContents(ia,
5372                                  isolate->objects_string_compare_buffer_b());
5373   }
5374 }
5375 
5376 
SlowEquals(String * other)5377 bool String::SlowEquals(String* other) {
5378   // Fast check: negative check with lengths.
5379   int len = length();
5380   if (len != other->length()) return false;
5381   if (len == 0) return true;
5382 
5383   // Fast check: if hash code is computed for both strings
5384   // a fast negative check can be performed.
5385   if (HasHashCode() && other->HasHashCode()) {
5386     if (Hash() != other->Hash()) return false;
5387   }
5388 
5389   // We know the strings are both non-empty. Compare the first chars
5390   // before we try to flatten the strings.
5391   if (this->Get(0) != other->Get(0)) return false;
5392 
5393   String* lhs = this->TryFlattenGetString();
5394   String* rhs = other->TryFlattenGetString();
5395 
5396   if (StringShape(lhs).IsSequentialAscii() &&
5397       StringShape(rhs).IsSequentialAscii()) {
5398     const char* str1 = SeqAsciiString::cast(lhs)->GetChars();
5399     const char* str2 = SeqAsciiString::cast(rhs)->GetChars();
5400     return CompareRawStringContents(Vector<const char>(str1, len),
5401                                     Vector<const char>(str2, len));
5402   }
5403 
5404   Isolate* isolate = GetIsolate();
5405   if (lhs->IsFlat()) {
5406     if (lhs->IsAsciiRepresentation()) {
5407       Vector<const char> vec1 = lhs->ToAsciiVector();
5408       if (rhs->IsFlat()) {
5409         if (rhs->IsAsciiRepresentation()) {
5410           Vector<const char> vec2 = rhs->ToAsciiVector();
5411           return CompareRawStringContents(vec1, vec2);
5412         } else {
5413           VectorIterator<char> buf1(vec1);
5414           VectorIterator<uc16> ib(rhs->ToUC16Vector());
5415           return CompareStringContents(&buf1, &ib);
5416         }
5417       } else {
5418         VectorIterator<char> buf1(vec1);
5419         isolate->objects_string_compare_buffer_b()->Reset(0, rhs);
5420         return CompareStringContents(&buf1,
5421             isolate->objects_string_compare_buffer_b());
5422       }
5423     } else {
5424       Vector<const uc16> vec1 = lhs->ToUC16Vector();
5425       if (rhs->IsFlat()) {
5426         if (rhs->IsAsciiRepresentation()) {
5427           VectorIterator<uc16> buf1(vec1);
5428           VectorIterator<char> ib(rhs->ToAsciiVector());
5429           return CompareStringContents(&buf1, &ib);
5430         } else {
5431           Vector<const uc16> vec2(rhs->ToUC16Vector());
5432           return CompareRawStringContents(vec1, vec2);
5433         }
5434       } else {
5435         VectorIterator<uc16> buf1(vec1);
5436         isolate->objects_string_compare_buffer_b()->Reset(0, rhs);
5437         return CompareStringContents(&buf1,
5438             isolate->objects_string_compare_buffer_b());
5439       }
5440     }
5441   } else {
5442     isolate->objects_string_compare_buffer_a()->Reset(0, lhs);
5443     return CompareStringContentsPartial(isolate,
5444         isolate->objects_string_compare_buffer_a(), rhs);
5445   }
5446 }
5447 
5448 
MarkAsUndetectable()5449 bool String::MarkAsUndetectable() {
5450   if (StringShape(this).IsSymbol()) return false;
5451 
5452   Map* map = this->map();
5453   Heap* heap = map->heap();
5454   if (map == heap->string_map()) {
5455     this->set_map(heap->undetectable_string_map());
5456     return true;
5457   } else if (map == heap->ascii_string_map()) {
5458     this->set_map(heap->undetectable_ascii_string_map());
5459     return true;
5460   }
5461   // Rest cannot be marked as undetectable
5462   return false;
5463 }
5464 
5465 
IsEqualTo(Vector<const char> str)5466 bool String::IsEqualTo(Vector<const char> str) {
5467   Isolate* isolate = GetIsolate();
5468   int slen = length();
5469   Access<UnicodeCache::Utf8Decoder>
5470       decoder(isolate->unicode_cache()->utf8_decoder());
5471   decoder->Reset(str.start(), str.length());
5472   int i;
5473   for (i = 0; i < slen && decoder->has_more(); i++) {
5474     uc32 r = decoder->GetNext();
5475     if (Get(i) != r) return false;
5476   }
5477   return i == slen && !decoder->has_more();
5478 }
5479 
5480 
IsAsciiEqualTo(Vector<const char> str)5481 bool String::IsAsciiEqualTo(Vector<const char> str) {
5482   int slen = length();
5483   if (str.length() != slen) return false;
5484   for (int i = 0; i < slen; i++) {
5485     if (Get(i) != static_cast<uint16_t>(str[i])) return false;
5486   }
5487   return true;
5488 }
5489 
5490 
IsTwoByteEqualTo(Vector<const uc16> str)5491 bool String::IsTwoByteEqualTo(Vector<const uc16> str) {
5492   int slen = length();
5493   if (str.length() != slen) return false;
5494   for (int i = 0; i < slen; i++) {
5495     if (Get(i) != str[i]) return false;
5496   }
5497   return true;
5498 }
5499 
5500 
ComputeAndSetHash()5501 uint32_t String::ComputeAndSetHash() {
5502   // Should only be called if hash code has not yet been computed.
5503   ASSERT(!HasHashCode());
5504 
5505   const int len = length();
5506 
5507   // Compute the hash code.
5508   uint32_t field = 0;
5509   if (StringShape(this).IsSequentialAscii()) {
5510     field = HashSequentialString(SeqAsciiString::cast(this)->GetChars(), len);
5511   } else if (StringShape(this).IsSequentialTwoByte()) {
5512     field = HashSequentialString(SeqTwoByteString::cast(this)->GetChars(), len);
5513   } else {
5514     StringInputBuffer buffer(this);
5515     field = ComputeHashField(&buffer, len);
5516   }
5517 
5518   // Store the hash code in the object.
5519   set_hash_field(field);
5520 
5521   // Check the hash code is there.
5522   ASSERT(HasHashCode());
5523   uint32_t result = field >> kHashShift;
5524   ASSERT(result != 0);  // Ensure that the hash value of 0 is never computed.
5525   return result;
5526 }
5527 
5528 
ComputeArrayIndex(unibrow::CharacterStream * buffer,uint32_t * index,int length)5529 bool String::ComputeArrayIndex(unibrow::CharacterStream* buffer,
5530                                uint32_t* index,
5531                                int length) {
5532   if (length == 0 || length > kMaxArrayIndexSize) return false;
5533   uc32 ch = buffer->GetNext();
5534 
5535   // If the string begins with a '0' character, it must only consist
5536   // of it to be a legal array index.
5537   if (ch == '0') {
5538     *index = 0;
5539     return length == 1;
5540   }
5541 
5542   // Convert string to uint32 array index; character by character.
5543   int d = ch - '0';
5544   if (d < 0 || d > 9) return false;
5545   uint32_t result = d;
5546   while (buffer->has_more()) {
5547     d = buffer->GetNext() - '0';
5548     if (d < 0 || d > 9) return false;
5549     // Check that the new result is below the 32 bit limit.
5550     if (result > 429496729U - ((d > 5) ? 1 : 0)) return false;
5551     result = (result * 10) + d;
5552   }
5553 
5554   *index = result;
5555   return true;
5556 }
5557 
5558 
SlowAsArrayIndex(uint32_t * index)5559 bool String::SlowAsArrayIndex(uint32_t* index) {
5560   if (length() <= kMaxCachedArrayIndexLength) {
5561     Hash();  // force computation of hash code
5562     uint32_t field = hash_field();
5563     if ((field & kIsNotArrayIndexMask) != 0) return false;
5564     // Isolate the array index form the full hash field.
5565     *index = (kArrayIndexHashMask & field) >> kHashShift;
5566     return true;
5567   } else {
5568     StringInputBuffer buffer(this);
5569     return ComputeArrayIndex(&buffer, index, length());
5570   }
5571 }
5572 
5573 
MakeArrayIndexHash(uint32_t value,int length)5574 uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) {
5575   // For array indexes mix the length into the hash as an array index could
5576   // be zero.
5577   ASSERT(length > 0);
5578   ASSERT(length <= String::kMaxArrayIndexSize);
5579   ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
5580          (1 << String::kArrayIndexValueBits));
5581 
5582   value <<= String::kHashShift;
5583   value |= length << String::kArrayIndexHashLengthShift;
5584 
5585   ASSERT((value & String::kIsNotArrayIndexMask) == 0);
5586   ASSERT((length > String::kMaxCachedArrayIndexLength) ||
5587          (value & String::kContainsCachedArrayIndexMask) == 0);
5588   return value;
5589 }
5590 
5591 
GetHashField()5592 uint32_t StringHasher::GetHashField() {
5593   ASSERT(is_valid());
5594   if (length_ <= String::kMaxHashCalcLength) {
5595     if (is_array_index()) {
5596       return MakeArrayIndexHash(array_index(), length_);
5597     }
5598     return (GetHash() << String::kHashShift) | String::kIsNotArrayIndexMask;
5599   } else {
5600     return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask;
5601   }
5602 }
5603 
5604 
ComputeHashField(unibrow::CharacterStream * buffer,int length)5605 uint32_t String::ComputeHashField(unibrow::CharacterStream* buffer,
5606                                   int length) {
5607   StringHasher hasher(length);
5608 
5609   // Very long strings have a trivial hash that doesn't inspect the
5610   // string contents.
5611   if (hasher.has_trivial_hash()) {
5612     return hasher.GetHashField();
5613   }
5614 
5615   // Do the iterative array index computation as long as there is a
5616   // chance this is an array index.
5617   while (buffer->has_more() && hasher.is_array_index()) {
5618     hasher.AddCharacter(buffer->GetNext());
5619   }
5620 
5621   // Process the remaining characters without updating the array
5622   // index.
5623   while (buffer->has_more()) {
5624     hasher.AddCharacterNoIndex(buffer->GetNext());
5625   }
5626 
5627   return hasher.GetHashField();
5628 }
5629 
5630 
SubString(int start,int end,PretenureFlag pretenure)5631 MaybeObject* String::SubString(int start, int end, PretenureFlag pretenure) {
5632   Heap* heap = GetHeap();
5633   if (start == 0 && end == length()) return this;
5634   MaybeObject* result = heap->AllocateSubString(this, start, end, pretenure);
5635   return result;
5636 }
5637 
5638 
PrintOn(FILE * file)5639 void String::PrintOn(FILE* file) {
5640   int length = this->length();
5641   for (int i = 0; i < length; i++) {
5642     fprintf(file, "%c", Get(i));
5643   }
5644 }
5645 
5646 
CreateBackPointers()5647 void Map::CreateBackPointers() {
5648   DescriptorArray* descriptors = instance_descriptors();
5649   for (int i = 0; i < descriptors->number_of_descriptors(); i++) {
5650     if (descriptors->GetType(i) == MAP_TRANSITION ||
5651         descriptors->GetType(i) == EXTERNAL_ARRAY_TRANSITION ||
5652         descriptors->GetType(i) == CONSTANT_TRANSITION) {
5653       // Get target.
5654       Map* target = Map::cast(descriptors->GetValue(i));
5655 #ifdef DEBUG
5656       // Verify target.
5657       Object* source_prototype = prototype();
5658       Object* target_prototype = target->prototype();
5659       ASSERT(source_prototype->IsJSObject() ||
5660              source_prototype->IsMap() ||
5661              source_prototype->IsNull());
5662       ASSERT(target_prototype->IsJSObject() ||
5663              target_prototype->IsNull());
5664       ASSERT(source_prototype->IsMap() ||
5665              source_prototype == target_prototype);
5666 #endif
5667       // Point target back to source.  set_prototype() will not let us set
5668       // the prototype to a map, as we do here.
5669       *RawField(target, kPrototypeOffset) = this;
5670     }
5671   }
5672 }
5673 
5674 
ClearNonLiveTransitions(Heap * heap,Object * real_prototype)5675 void Map::ClearNonLiveTransitions(Heap* heap, Object* real_prototype) {
5676   // Live DescriptorArray objects will be marked, so we must use
5677   // low-level accessors to get and modify their data.
5678   DescriptorArray* d = reinterpret_cast<DescriptorArray*>(
5679       *RawField(this, Map::kInstanceDescriptorsOffset));
5680   if (d == heap->raw_unchecked_empty_descriptor_array()) return;
5681   Smi* NullDescriptorDetails =
5682     PropertyDetails(NONE, NULL_DESCRIPTOR).AsSmi();
5683   FixedArray* contents = reinterpret_cast<FixedArray*>(
5684       d->get(DescriptorArray::kContentArrayIndex));
5685   ASSERT(contents->length() >= 2);
5686   for (int i = 0; i < contents->length(); i += 2) {
5687     // If the pair (value, details) is a map transition,
5688     // check if the target is live.  If not, null the descriptor.
5689     // Also drop the back pointer for that map transition, so that this
5690     // map is not reached again by following a back pointer from a
5691     // non-live object.
5692     PropertyDetails details(Smi::cast(contents->get(i + 1)));
5693     if (details.type() == MAP_TRANSITION ||
5694         details.type() == EXTERNAL_ARRAY_TRANSITION ||
5695         details.type() == CONSTANT_TRANSITION) {
5696       Map* target = reinterpret_cast<Map*>(contents->get(i));
5697       ASSERT(target->IsHeapObject());
5698       if (!target->IsMarked()) {
5699         ASSERT(target->IsMap());
5700         contents->set_unchecked(i + 1, NullDescriptorDetails);
5701         contents->set_null_unchecked(heap, i);
5702         ASSERT(target->prototype() == this ||
5703                target->prototype() == real_prototype);
5704         // Getter prototype() is read-only, set_prototype() has side effects.
5705         *RawField(target, Map::kPrototypeOffset) = real_prototype;
5706       }
5707     }
5708   }
5709 }
5710 
5711 
JSFunctionIterateBody(int object_size,ObjectVisitor * v)5712 void JSFunction::JSFunctionIterateBody(int object_size, ObjectVisitor* v) {
5713   // Iterate over all fields in the body but take care in dealing with
5714   // the code entry.
5715   IteratePointers(v, kPropertiesOffset, kCodeEntryOffset);
5716   v->VisitCodeEntry(this->address() + kCodeEntryOffset);
5717   IteratePointers(v, kCodeEntryOffset + kPointerSize, object_size);
5718 }
5719 
5720 
MarkForLazyRecompilation()5721 void JSFunction::MarkForLazyRecompilation() {
5722   ASSERT(is_compiled() && !IsOptimized());
5723   ASSERT(shared()->allows_lazy_compilation() ||
5724          code()->optimizable());
5725   Builtins* builtins = GetIsolate()->builtins();
5726   ReplaceCode(builtins->builtin(Builtins::kLazyRecompile));
5727 }
5728 
5729 
SourceHash()5730 uint32_t JSFunction::SourceHash() {
5731   uint32_t hash = 0;
5732   Object* script = shared()->script();
5733   if (!script->IsUndefined()) {
5734     Object* source = Script::cast(script)->source();
5735     if (source->IsUndefined()) hash = String::cast(source)->Hash();
5736   }
5737   hash ^= ComputeIntegerHash(shared()->start_position_and_type());
5738   hash += ComputeIntegerHash(shared()->end_position());
5739   return hash;
5740 }
5741 
5742 
IsInlineable()5743 bool JSFunction::IsInlineable() {
5744   if (IsBuiltin()) return false;
5745   SharedFunctionInfo* shared_info = shared();
5746   // Check that the function has a script associated with it.
5747   if (!shared_info->script()->IsScript()) return false;
5748   if (shared_info->optimization_disabled()) return false;
5749   Code* code = shared_info->code();
5750   if (code->kind() == Code::OPTIMIZED_FUNCTION) return true;
5751   // If we never ran this (unlikely) then lets try to optimize it.
5752   if (code->kind() != Code::FUNCTION) return true;
5753   return code->optimizable();
5754 }
5755 
5756 
SetInstancePrototype(Object * value)5757 Object* JSFunction::SetInstancePrototype(Object* value) {
5758   ASSERT(value->IsJSObject());
5759   Heap* heap = GetHeap();
5760   if (has_initial_map()) {
5761     initial_map()->set_prototype(value);
5762   } else {
5763     // Put the value in the initial map field until an initial map is
5764     // needed.  At that point, a new initial map is created and the
5765     // prototype is put into the initial map where it belongs.
5766     set_prototype_or_initial_map(value);
5767   }
5768   heap->ClearInstanceofCache();
5769   return value;
5770 }
5771 
5772 
SetPrototype(Object * value)5773 MaybeObject* JSFunction::SetPrototype(Object* value) {
5774   ASSERT(should_have_prototype());
5775   Object* construct_prototype = value;
5776 
5777   // If the value is not a JSObject, store the value in the map's
5778   // constructor field so it can be accessed.  Also, set the prototype
5779   // used for constructing objects to the original object prototype.
5780   // See ECMA-262 13.2.2.
5781   if (!value->IsJSObject()) {
5782     // Copy the map so this does not affect unrelated functions.
5783     // Remove map transitions because they point to maps with a
5784     // different prototype.
5785     Object* new_object;
5786     { MaybeObject* maybe_new_map = map()->CopyDropTransitions();
5787       if (!maybe_new_map->ToObject(&new_object)) return maybe_new_map;
5788     }
5789     Map* new_map = Map::cast(new_object);
5790     Heap* heap = new_map->heap();
5791     set_map(new_map);
5792     new_map->set_constructor(value);
5793     new_map->set_non_instance_prototype(true);
5794     construct_prototype =
5795         heap->isolate()->context()->global_context()->
5796             initial_object_prototype();
5797   } else {
5798     map()->set_non_instance_prototype(false);
5799   }
5800 
5801   return SetInstancePrototype(construct_prototype);
5802 }
5803 
5804 
RemovePrototype()5805 Object* JSFunction::RemovePrototype() {
5806   Context* global_context = context()->global_context();
5807   Map* no_prototype_map = shared()->strict_mode()
5808       ? global_context->strict_mode_function_without_prototype_map()
5809       : global_context->function_without_prototype_map();
5810 
5811   if (map() == no_prototype_map) {
5812     // Be idempotent.
5813     return this;
5814   }
5815 
5816   ASSERT(!shared()->strict_mode() ||
5817          map() == global_context->strict_mode_function_map());
5818   ASSERT(shared()->strict_mode() || map() == global_context->function_map());
5819 
5820   set_map(no_prototype_map);
5821   set_prototype_or_initial_map(no_prototype_map->heap()->the_hole_value());
5822   return this;
5823 }
5824 
5825 
SetInstanceClassName(String * name)5826 Object* JSFunction::SetInstanceClassName(String* name) {
5827   shared()->set_instance_class_name(name);
5828   return this;
5829 }
5830 
5831 
PrintName(FILE * out)5832 void JSFunction::PrintName(FILE* out) {
5833   SmartPointer<char> name = shared()->DebugName()->ToCString();
5834   PrintF(out, "%s", *name);
5835 }
5836 
5837 
GlobalContextFromLiterals(FixedArray * literals)5838 Context* JSFunction::GlobalContextFromLiterals(FixedArray* literals) {
5839   return Context::cast(literals->get(JSFunction::kLiteralGlobalContextIndex));
5840 }
5841 
5842 
Initialize(const char * to_string,Object * to_number,byte kind)5843 MaybeObject* Oddball::Initialize(const char* to_string,
5844                                  Object* to_number,
5845                                  byte kind) {
5846   Object* symbol;
5847   { MaybeObject* maybe_symbol =
5848         Isolate::Current()->heap()->LookupAsciiSymbol(to_string);
5849     if (!maybe_symbol->ToObject(&symbol)) return maybe_symbol;
5850   }
5851   set_to_string(String::cast(symbol));
5852   set_to_number(to_number);
5853   set_kind(kind);
5854   return this;
5855 }
5856 
5857 
DebugName()5858 String* SharedFunctionInfo::DebugName() {
5859   Object* n = name();
5860   if (!n->IsString() || String::cast(n)->length() == 0) return inferred_name();
5861   return String::cast(n);
5862 }
5863 
5864 
HasSourceCode()5865 bool SharedFunctionInfo::HasSourceCode() {
5866   return !script()->IsUndefined() &&
5867          !reinterpret_cast<Script*>(script())->source()->IsUndefined();
5868 }
5869 
5870 
GetSourceCode()5871 Object* SharedFunctionInfo::GetSourceCode() {
5872   Isolate* isolate = GetIsolate();
5873   if (!HasSourceCode()) return isolate->heap()->undefined_value();
5874   HandleScope scope(isolate);
5875   Object* source = Script::cast(script())->source();
5876   return *SubString(Handle<String>(String::cast(source), isolate),
5877                     start_position(), end_position());
5878 }
5879 
5880 
SourceSize()5881 int SharedFunctionInfo::SourceSize() {
5882   return end_position() - start_position();
5883 }
5884 
5885 
CalculateInstanceSize()5886 int SharedFunctionInfo::CalculateInstanceSize() {
5887   int instance_size =
5888       JSObject::kHeaderSize +
5889       expected_nof_properties() * kPointerSize;
5890   if (instance_size > JSObject::kMaxInstanceSize) {
5891     instance_size = JSObject::kMaxInstanceSize;
5892   }
5893   return instance_size;
5894 }
5895 
5896 
CalculateInObjectProperties()5897 int SharedFunctionInfo::CalculateInObjectProperties() {
5898   return (CalculateInstanceSize() - JSObject::kHeaderSize) / kPointerSize;
5899 }
5900 
5901 
CanGenerateInlineConstructor(Object * prototype)5902 bool SharedFunctionInfo::CanGenerateInlineConstructor(Object* prototype) {
5903   // Check the basic conditions for generating inline constructor code.
5904   if (!FLAG_inline_new
5905       || !has_only_simple_this_property_assignments()
5906       || this_property_assignments_count() == 0) {
5907     return false;
5908   }
5909 
5910   // If the prototype is null inline constructors cause no problems.
5911   if (!prototype->IsJSObject()) {
5912     ASSERT(prototype->IsNull());
5913     return true;
5914   }
5915 
5916   Heap* heap = GetHeap();
5917 
5918   // Traverse the proposed prototype chain looking for setters for properties of
5919   // the same names as are set by the inline constructor.
5920   for (Object* obj = prototype;
5921        obj != heap->null_value();
5922        obj = obj->GetPrototype()) {
5923     JSObject* js_object = JSObject::cast(obj);
5924     for (int i = 0; i < this_property_assignments_count(); i++) {
5925       LookupResult result;
5926       String* name = GetThisPropertyAssignmentName(i);
5927       js_object->LocalLookupRealNamedProperty(name, &result);
5928       if (result.IsProperty() && result.type() == CALLBACKS) {
5929         return false;
5930       }
5931     }
5932   }
5933 
5934   return true;
5935 }
5936 
5937 
ForbidInlineConstructor()5938 void SharedFunctionInfo::ForbidInlineConstructor() {
5939   set_compiler_hints(BooleanBit::set(compiler_hints(),
5940                                      kHasOnlySimpleThisPropertyAssignments,
5941                                      false));
5942 }
5943 
5944 
SetThisPropertyAssignmentsInfo(bool only_simple_this_property_assignments,FixedArray * assignments)5945 void SharedFunctionInfo::SetThisPropertyAssignmentsInfo(
5946     bool only_simple_this_property_assignments,
5947     FixedArray* assignments) {
5948   set_compiler_hints(BooleanBit::set(compiler_hints(),
5949                                      kHasOnlySimpleThisPropertyAssignments,
5950                                      only_simple_this_property_assignments));
5951   set_this_property_assignments(assignments);
5952   set_this_property_assignments_count(assignments->length() / 3);
5953 }
5954 
5955 
ClearThisPropertyAssignmentsInfo()5956 void SharedFunctionInfo::ClearThisPropertyAssignmentsInfo() {
5957   Heap* heap = GetHeap();
5958   set_compiler_hints(BooleanBit::set(compiler_hints(),
5959                                      kHasOnlySimpleThisPropertyAssignments,
5960                                      false));
5961   set_this_property_assignments(heap->undefined_value());
5962   set_this_property_assignments_count(0);
5963 }
5964 
5965 
GetThisPropertyAssignmentName(int index)5966 String* SharedFunctionInfo::GetThisPropertyAssignmentName(int index) {
5967   Object* obj = this_property_assignments();
5968   ASSERT(obj->IsFixedArray());
5969   ASSERT(index < this_property_assignments_count());
5970   obj = FixedArray::cast(obj)->get(index * 3);
5971   ASSERT(obj->IsString());
5972   return String::cast(obj);
5973 }
5974 
5975 
IsThisPropertyAssignmentArgument(int index)5976 bool SharedFunctionInfo::IsThisPropertyAssignmentArgument(int index) {
5977   Object* obj = this_property_assignments();
5978   ASSERT(obj->IsFixedArray());
5979   ASSERT(index < this_property_assignments_count());
5980   obj = FixedArray::cast(obj)->get(index * 3 + 1);
5981   return Smi::cast(obj)->value() != -1;
5982 }
5983 
5984 
GetThisPropertyAssignmentArgument(int index)5985 int SharedFunctionInfo::GetThisPropertyAssignmentArgument(int index) {
5986   ASSERT(IsThisPropertyAssignmentArgument(index));
5987   Object* obj =
5988       FixedArray::cast(this_property_assignments())->get(index * 3 + 1);
5989   return Smi::cast(obj)->value();
5990 }
5991 
5992 
GetThisPropertyAssignmentConstant(int index)5993 Object* SharedFunctionInfo::GetThisPropertyAssignmentConstant(int index) {
5994   ASSERT(!IsThisPropertyAssignmentArgument(index));
5995   Object* obj =
5996       FixedArray::cast(this_property_assignments())->get(index * 3 + 2);
5997   return obj;
5998 }
5999 
6000 
6001 // Support function for printing the source code to a StringStream
6002 // without any allocation in the heap.
SourceCodePrint(StringStream * accumulator,int max_length)6003 void SharedFunctionInfo::SourceCodePrint(StringStream* accumulator,
6004                                          int max_length) {
6005   // For some native functions there is no source.
6006   if (!HasSourceCode()) {
6007     accumulator->Add("<No Source>");
6008     return;
6009   }
6010 
6011   // Get the source for the script which this function came from.
6012   // Don't use String::cast because we don't want more assertion errors while
6013   // we are already creating a stack dump.
6014   String* script_source =
6015       reinterpret_cast<String*>(Script::cast(script())->source());
6016 
6017   if (!script_source->LooksValid()) {
6018     accumulator->Add("<Invalid Source>");
6019     return;
6020   }
6021 
6022   if (!is_toplevel()) {
6023     accumulator->Add("function ");
6024     Object* name = this->name();
6025     if (name->IsString() && String::cast(name)->length() > 0) {
6026       accumulator->PrintName(name);
6027     }
6028   }
6029 
6030   int len = end_position() - start_position();
6031   if (len <= max_length || max_length < 0) {
6032     accumulator->Put(script_source, start_position(), end_position());
6033   } else {
6034     accumulator->Put(script_source,
6035                      start_position(),
6036                      start_position() + max_length);
6037     accumulator->Add("...\n");
6038   }
6039 }
6040 
6041 
IsCodeEquivalent(Code * code,Code * recompiled)6042 static bool IsCodeEquivalent(Code* code, Code* recompiled) {
6043   if (code->instruction_size() != recompiled->instruction_size()) return false;
6044   ByteArray* code_relocation = code->relocation_info();
6045   ByteArray* recompiled_relocation = recompiled->relocation_info();
6046   int length = code_relocation->length();
6047   if (length != recompiled_relocation->length()) return false;
6048   int compare = memcmp(code_relocation->GetDataStartAddress(),
6049                        recompiled_relocation->GetDataStartAddress(),
6050                        length);
6051   return compare == 0;
6052 }
6053 
6054 
EnableDeoptimizationSupport(Code * recompiled)6055 void SharedFunctionInfo::EnableDeoptimizationSupport(Code* recompiled) {
6056   ASSERT(!has_deoptimization_support());
6057   AssertNoAllocation no_allocation;
6058   Code* code = this->code();
6059   if (IsCodeEquivalent(code, recompiled)) {
6060     // Copy the deoptimization data from the recompiled code.
6061     code->set_deoptimization_data(recompiled->deoptimization_data());
6062     code->set_has_deoptimization_support(true);
6063   } else {
6064     // TODO(3025757): In case the recompiled isn't equivalent to the
6065     // old code, we have to replace it. We should try to avoid this
6066     // altogether because it flushes valuable type feedback by
6067     // effectively resetting all IC state.
6068     set_code(recompiled);
6069   }
6070   ASSERT(has_deoptimization_support());
6071 }
6072 
6073 
VerifyBailoutId(int id)6074 bool SharedFunctionInfo::VerifyBailoutId(int id) {
6075   // TODO(srdjan): debugging ARM crashes in hydrogen. OK to disable while
6076   // we are always bailing out on ARM.
6077 
6078   ASSERT(id != AstNode::kNoNumber);
6079   Code* unoptimized = code();
6080   DeoptimizationOutputData* data =
6081       DeoptimizationOutputData::cast(unoptimized->deoptimization_data());
6082   unsigned ignore = Deoptimizer::GetOutputInfo(data, id, this);
6083   USE(ignore);
6084   return true;  // Return true if there was no ASSERT.
6085 }
6086 
6087 
StartInobjectSlackTracking(Map * map)6088 void SharedFunctionInfo::StartInobjectSlackTracking(Map* map) {
6089   ASSERT(!IsInobjectSlackTrackingInProgress());
6090 
6091   // Only initiate the tracking the first time.
6092   if (live_objects_may_exist()) return;
6093   set_live_objects_may_exist(true);
6094 
6095   // No tracking during the snapshot construction phase.
6096   if (Serializer::enabled()) return;
6097 
6098   if (map->unused_property_fields() == 0) return;
6099 
6100   // Nonzero counter is a leftover from the previous attempt interrupted
6101   // by GC, keep it.
6102   if (construction_count() == 0) {
6103     set_construction_count(kGenerousAllocationCount);
6104   }
6105   set_initial_map(map);
6106   Builtins* builtins = map->heap()->isolate()->builtins();
6107   ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubGeneric),
6108             construct_stub());
6109   set_construct_stub(builtins->builtin(Builtins::kJSConstructStubCountdown));
6110 }
6111 
6112 
6113 // Called from GC, hence reinterpret_cast and unchecked accessors.
DetachInitialMap()6114 void SharedFunctionInfo::DetachInitialMap() {
6115   Map* map = reinterpret_cast<Map*>(initial_map());
6116 
6117   // Make the map remember to restore the link if it survives the GC.
6118   map->set_bit_field2(
6119       map->bit_field2() | (1 << Map::kAttachedToSharedFunctionInfo));
6120 
6121   // Undo state changes made by StartInobjectTracking (except the
6122   // construction_count). This way if the initial map does not survive the GC
6123   // then StartInobjectTracking will be called again the next time the
6124   // constructor is called. The countdown will continue and (possibly after
6125   // several more GCs) CompleteInobjectSlackTracking will eventually be called.
6126   set_initial_map(map->heap()->raw_unchecked_undefined_value());
6127   Builtins* builtins = map->heap()->isolate()->builtins();
6128   ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubCountdown),
6129             *RawField(this, kConstructStubOffset));
6130   set_construct_stub(builtins->builtin(Builtins::kJSConstructStubGeneric));
6131   // It is safe to clear the flag: it will be set again if the map is live.
6132   set_live_objects_may_exist(false);
6133 }
6134 
6135 
6136 // Called from GC, hence reinterpret_cast and unchecked accessors.
AttachInitialMap(Map * map)6137 void SharedFunctionInfo::AttachInitialMap(Map* map) {
6138   map->set_bit_field2(
6139       map->bit_field2() & ~(1 << Map::kAttachedToSharedFunctionInfo));
6140 
6141   // Resume inobject slack tracking.
6142   set_initial_map(map);
6143   Builtins* builtins = map->heap()->isolate()->builtins();
6144   ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubGeneric),
6145             *RawField(this, kConstructStubOffset));
6146   set_construct_stub(builtins->builtin(Builtins::kJSConstructStubCountdown));
6147   // The map survived the gc, so there may be objects referencing it.
6148   set_live_objects_may_exist(true);
6149 }
6150 
6151 
GetMinInobjectSlack(Map * map,void * data)6152 static void GetMinInobjectSlack(Map* map, void* data) {
6153   int slack = map->unused_property_fields();
6154   if (*reinterpret_cast<int*>(data) > slack) {
6155     *reinterpret_cast<int*>(data) = slack;
6156   }
6157 }
6158 
6159 
ShrinkInstanceSize(Map * map,void * data)6160 static void ShrinkInstanceSize(Map* map, void* data) {
6161   int slack = *reinterpret_cast<int*>(data);
6162   map->set_inobject_properties(map->inobject_properties() - slack);
6163   map->set_unused_property_fields(map->unused_property_fields() - slack);
6164   map->set_instance_size(map->instance_size() - slack * kPointerSize);
6165 
6166   // Visitor id might depend on the instance size, recalculate it.
6167   map->set_visitor_id(StaticVisitorBase::GetVisitorId(map));
6168 }
6169 
6170 
CompleteInobjectSlackTracking()6171 void SharedFunctionInfo::CompleteInobjectSlackTracking() {
6172   ASSERT(live_objects_may_exist() && IsInobjectSlackTrackingInProgress());
6173   Map* map = Map::cast(initial_map());
6174 
6175   Heap* heap = map->heap();
6176   set_initial_map(heap->undefined_value());
6177   Builtins* builtins = heap->isolate()->builtins();
6178   ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubCountdown),
6179             construct_stub());
6180   set_construct_stub(builtins->builtin(Builtins::kJSConstructStubGeneric));
6181 
6182   int slack = map->unused_property_fields();
6183   map->TraverseTransitionTree(&GetMinInobjectSlack, &slack);
6184   if (slack != 0) {
6185     // Resize the initial map and all maps in its transition tree.
6186     map->TraverseTransitionTree(&ShrinkInstanceSize, &slack);
6187     // Give the correct expected_nof_properties to initial maps created later.
6188     ASSERT(expected_nof_properties() >= slack);
6189     set_expected_nof_properties(expected_nof_properties() - slack);
6190   }
6191 }
6192 
6193 
VisitCodeTarget(RelocInfo * rinfo)6194 void ObjectVisitor::VisitCodeTarget(RelocInfo* rinfo) {
6195   ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode()));
6196   Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
6197   Object* old_target = target;
6198   VisitPointer(&target);
6199   CHECK_EQ(target, old_target);  // VisitPointer doesn't change Code* *target.
6200 }
6201 
6202 
VisitCodeEntry(Address entry_address)6203 void ObjectVisitor::VisitCodeEntry(Address entry_address) {
6204   Object* code = Code::GetObjectFromEntryAddress(entry_address);
6205   Object* old_code = code;
6206   VisitPointer(&code);
6207   if (code != old_code) {
6208     Memory::Address_at(entry_address) = reinterpret_cast<Code*>(code)->entry();
6209   }
6210 }
6211 
6212 
VisitGlobalPropertyCell(RelocInfo * rinfo)6213 void ObjectVisitor::VisitGlobalPropertyCell(RelocInfo* rinfo) {
6214   ASSERT(rinfo->rmode() == RelocInfo::GLOBAL_PROPERTY_CELL);
6215   Object* cell = rinfo->target_cell();
6216   Object* old_cell = cell;
6217   VisitPointer(&cell);
6218   if (cell != old_cell) {
6219     rinfo->set_target_cell(reinterpret_cast<JSGlobalPropertyCell*>(cell));
6220   }
6221 }
6222 
6223 
VisitDebugTarget(RelocInfo * rinfo)6224 void ObjectVisitor::VisitDebugTarget(RelocInfo* rinfo) {
6225   ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) &&
6226           rinfo->IsPatchedReturnSequence()) ||
6227          (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
6228           rinfo->IsPatchedDebugBreakSlotSequence()));
6229   Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address());
6230   Object* old_target = target;
6231   VisitPointer(&target);
6232   CHECK_EQ(target, old_target);  // VisitPointer doesn't change Code* *target.
6233 }
6234 
6235 
InvalidateRelocation()6236 void Code::InvalidateRelocation() {
6237   set_relocation_info(heap()->empty_byte_array());
6238 }
6239 
6240 
Relocate(intptr_t delta)6241 void Code::Relocate(intptr_t delta) {
6242   for (RelocIterator it(this, RelocInfo::kApplyMask); !it.done(); it.next()) {
6243     it.rinfo()->apply(delta);
6244   }
6245   CPU::FlushICache(instruction_start(), instruction_size());
6246 }
6247 
6248 
CopyFrom(const CodeDesc & desc)6249 void Code::CopyFrom(const CodeDesc& desc) {
6250   // copy code
6251   memmove(instruction_start(), desc.buffer, desc.instr_size);
6252 
6253   // copy reloc info
6254   memmove(relocation_start(),
6255           desc.buffer + desc.buffer_size - desc.reloc_size,
6256           desc.reloc_size);
6257 
6258   // unbox handles and relocate
6259   intptr_t delta = instruction_start() - desc.buffer;
6260   int mode_mask = RelocInfo::kCodeTargetMask |
6261                   RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
6262                   RelocInfo::ModeMask(RelocInfo::GLOBAL_PROPERTY_CELL) |
6263                   RelocInfo::kApplyMask;
6264   Assembler* origin = desc.origin;  // Needed to find target_object on X64.
6265   for (RelocIterator it(this, mode_mask); !it.done(); it.next()) {
6266     RelocInfo::Mode mode = it.rinfo()->rmode();
6267     if (mode == RelocInfo::EMBEDDED_OBJECT) {
6268       Handle<Object> p = it.rinfo()->target_object_handle(origin);
6269       it.rinfo()->set_target_object(*p);
6270     } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
6271       Handle<JSGlobalPropertyCell> cell = it.rinfo()->target_cell_handle();
6272       it.rinfo()->set_target_cell(*cell);
6273     } else if (RelocInfo::IsCodeTarget(mode)) {
6274       // rewrite code handles in inline cache targets to direct
6275       // pointers to the first instruction in the code object
6276       Handle<Object> p = it.rinfo()->target_object_handle(origin);
6277       Code* code = Code::cast(*p);
6278       it.rinfo()->set_target_address(code->instruction_start());
6279     } else {
6280       it.rinfo()->apply(delta);
6281     }
6282   }
6283   CPU::FlushICache(instruction_start(), instruction_size());
6284 }
6285 
6286 
6287 // Locate the source position which is closest to the address in the code. This
6288 // is using the source position information embedded in the relocation info.
6289 // The position returned is relative to the beginning of the script where the
6290 // source for this function is found.
SourcePosition(Address pc)6291 int Code::SourcePosition(Address pc) {
6292   int distance = kMaxInt;
6293   int position = RelocInfo::kNoPosition;  // Initially no position found.
6294   // Run through all the relocation info to find the best matching source
6295   // position. All the code needs to be considered as the sequence of the
6296   // instructions in the code does not necessarily follow the same order as the
6297   // source.
6298   RelocIterator it(this, RelocInfo::kPositionMask);
6299   while (!it.done()) {
6300     // Only look at positions after the current pc.
6301     if (it.rinfo()->pc() < pc) {
6302       // Get position and distance.
6303 
6304       int dist = static_cast<int>(pc - it.rinfo()->pc());
6305       int pos = static_cast<int>(it.rinfo()->data());
6306       // If this position is closer than the current candidate or if it has the
6307       // same distance as the current candidate and the position is higher then
6308       // this position is the new candidate.
6309       if ((dist < distance) ||
6310           (dist == distance && pos > position)) {
6311         position = pos;
6312         distance = dist;
6313       }
6314     }
6315     it.next();
6316   }
6317   return position;
6318 }
6319 
6320 
6321 // Same as Code::SourcePosition above except it only looks for statement
6322 // positions.
SourceStatementPosition(Address pc)6323 int Code::SourceStatementPosition(Address pc) {
6324   // First find the position as close as possible using all position
6325   // information.
6326   int position = SourcePosition(pc);
6327   // Now find the closest statement position before the position.
6328   int statement_position = 0;
6329   RelocIterator it(this, RelocInfo::kPositionMask);
6330   while (!it.done()) {
6331     if (RelocInfo::IsStatementPosition(it.rinfo()->rmode())) {
6332       int p = static_cast<int>(it.rinfo()->data());
6333       if (statement_position < p && p <= position) {
6334         statement_position = p;
6335       }
6336     }
6337     it.next();
6338   }
6339   return statement_position;
6340 }
6341 
6342 
GetSafepointEntry(Address pc)6343 SafepointEntry Code::GetSafepointEntry(Address pc) {
6344   SafepointTable table(this);
6345   return table.FindEntry(pc);
6346 }
6347 
6348 
SetNoStackCheckTable()6349 void Code::SetNoStackCheckTable() {
6350   // Indicate the absence of a stack-check table by a table start after the
6351   // end of the instructions.  Table start must be aligned, so round up.
6352   set_stack_check_table_offset(RoundUp(instruction_size(), kIntSize));
6353 }
6354 
6355 
FindFirstMap()6356 Map* Code::FindFirstMap() {
6357   ASSERT(is_inline_cache_stub());
6358   AssertNoAllocation no_allocation;
6359   int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
6360   for (RelocIterator it(this, mask); !it.done(); it.next()) {
6361     RelocInfo* info = it.rinfo();
6362     Object* object = info->target_object();
6363     if (object->IsMap()) return Map::cast(object);
6364   }
6365   return NULL;
6366 }
6367 
6368 
6369 #ifdef ENABLE_DISASSEMBLER
6370 
6371 #ifdef OBJECT_PRINT
6372 
DeoptimizationInputDataPrint(FILE * out)6373 void DeoptimizationInputData::DeoptimizationInputDataPrint(FILE* out) {
6374   disasm::NameConverter converter;
6375   int deopt_count = DeoptCount();
6376   PrintF(out, "Deoptimization Input Data (deopt points = %d)\n", deopt_count);
6377   if (0 == deopt_count) return;
6378 
6379   PrintF(out, "%6s  %6s  %6s  %12s\n", "index", "ast id", "argc", "commands");
6380   for (int i = 0; i < deopt_count; i++) {
6381     int command_count = 0;
6382     PrintF(out, "%6d  %6d  %6d",
6383            i, AstId(i)->value(), ArgumentsStackHeight(i)->value());
6384     int translation_index = TranslationIndex(i)->value();
6385     TranslationIterator iterator(TranslationByteArray(), translation_index);
6386     Translation::Opcode opcode =
6387         static_cast<Translation::Opcode>(iterator.Next());
6388     ASSERT(Translation::BEGIN == opcode);
6389     int frame_count = iterator.Next();
6390     if (FLAG_print_code_verbose) {
6391       PrintF(out, "  %s {count=%d}\n", Translation::StringFor(opcode),
6392              frame_count);
6393     }
6394 
6395     for (int i = 0; i < frame_count; ++i) {
6396       opcode = static_cast<Translation::Opcode>(iterator.Next());
6397       ASSERT(Translation::FRAME == opcode);
6398       int ast_id = iterator.Next();
6399       int function_id = iterator.Next();
6400       JSFunction* function =
6401           JSFunction::cast(LiteralArray()->get(function_id));
6402       unsigned height = iterator.Next();
6403       if (FLAG_print_code_verbose) {
6404         PrintF(out, "%24s  %s {ast_id=%d, function=",
6405                "", Translation::StringFor(opcode), ast_id);
6406         function->PrintName(out);
6407         PrintF(out, ", height=%u}\n", height);
6408       }
6409 
6410       // Size of translation is height plus all incoming arguments including
6411       // receiver.
6412       int size = height + function->shared()->formal_parameter_count() + 1;
6413       command_count += size;
6414       for (int j = 0; j < size; ++j) {
6415         opcode = static_cast<Translation::Opcode>(iterator.Next());
6416         if (FLAG_print_code_verbose) {
6417           PrintF(out, "%24s    %s ", "", Translation::StringFor(opcode));
6418         }
6419 
6420         if (opcode == Translation::DUPLICATE) {
6421           opcode = static_cast<Translation::Opcode>(iterator.Next());
6422           if (FLAG_print_code_verbose) {
6423             PrintF(out, "%s ", Translation::StringFor(opcode));
6424           }
6425           --j;  // Two commands share the same frame index.
6426         }
6427 
6428         switch (opcode) {
6429           case Translation::BEGIN:
6430           case Translation::FRAME:
6431           case Translation::DUPLICATE:
6432             UNREACHABLE();
6433             break;
6434 
6435           case Translation::REGISTER: {
6436             int reg_code = iterator.Next();
6437             if (FLAG_print_code_verbose)  {
6438               PrintF(out, "{input=%s}", converter.NameOfCPURegister(reg_code));
6439             }
6440             break;
6441           }
6442 
6443           case Translation::INT32_REGISTER: {
6444             int reg_code = iterator.Next();
6445             if (FLAG_print_code_verbose)  {
6446               PrintF(out, "{input=%s}", converter.NameOfCPURegister(reg_code));
6447             }
6448             break;
6449           }
6450 
6451           case Translation::DOUBLE_REGISTER: {
6452             int reg_code = iterator.Next();
6453             if (FLAG_print_code_verbose)  {
6454               PrintF(out, "{input=%s}",
6455                      DoubleRegister::AllocationIndexToString(reg_code));
6456             }
6457             break;
6458           }
6459 
6460           case Translation::STACK_SLOT: {
6461             int input_slot_index = iterator.Next();
6462             if (FLAG_print_code_verbose)  {
6463               PrintF(out, "{input=%d}", input_slot_index);
6464             }
6465             break;
6466           }
6467 
6468           case Translation::INT32_STACK_SLOT: {
6469             int input_slot_index = iterator.Next();
6470             if (FLAG_print_code_verbose)  {
6471               PrintF(out, "{input=%d}", input_slot_index);
6472             }
6473             break;
6474           }
6475 
6476           case Translation::DOUBLE_STACK_SLOT: {
6477             int input_slot_index = iterator.Next();
6478             if (FLAG_print_code_verbose)  {
6479               PrintF(out, "{input=%d}", input_slot_index);
6480             }
6481             break;
6482           }
6483 
6484           case Translation::LITERAL: {
6485             unsigned literal_index = iterator.Next();
6486             if (FLAG_print_code_verbose)  {
6487               PrintF(out, "{literal_id=%u}", literal_index);
6488             }
6489             break;
6490           }
6491 
6492           case Translation::ARGUMENTS_OBJECT:
6493             break;
6494         }
6495         if (FLAG_print_code_verbose) PrintF(out, "\n");
6496       }
6497     }
6498     if (!FLAG_print_code_verbose) PrintF(out, "  %12d\n", command_count);
6499   }
6500 }
6501 
6502 
DeoptimizationOutputDataPrint(FILE * out)6503 void DeoptimizationOutputData::DeoptimizationOutputDataPrint(FILE* out) {
6504   PrintF(out, "Deoptimization Output Data (deopt points = %d)\n",
6505          this->DeoptPoints());
6506   if (this->DeoptPoints() == 0) return;
6507 
6508   PrintF("%6s  %8s  %s\n", "ast id", "pc", "state");
6509   for (int i = 0; i < this->DeoptPoints(); i++) {
6510     int pc_and_state = this->PcAndState(i)->value();
6511     PrintF("%6d  %8d  %s\n",
6512            this->AstId(i)->value(),
6513            FullCodeGenerator::PcField::decode(pc_and_state),
6514            FullCodeGenerator::State2String(
6515                FullCodeGenerator::StateField::decode(pc_and_state)));
6516   }
6517 }
6518 
6519 #endif
6520 
6521 
6522 // Identify kind of code.
Kind2String(Kind kind)6523 const char* Code::Kind2String(Kind kind) {
6524   switch (kind) {
6525     case FUNCTION: return "FUNCTION";
6526     case OPTIMIZED_FUNCTION: return "OPTIMIZED_FUNCTION";
6527     case STUB: return "STUB";
6528     case BUILTIN: return "BUILTIN";
6529     case LOAD_IC: return "LOAD_IC";
6530     case KEYED_LOAD_IC: return "KEYED_LOAD_IC";
6531     case KEYED_EXTERNAL_ARRAY_LOAD_IC: return "KEYED_EXTERNAL_ARRAY_LOAD_IC";
6532     case STORE_IC: return "STORE_IC";
6533     case KEYED_STORE_IC: return "KEYED_STORE_IC";
6534     case KEYED_EXTERNAL_ARRAY_STORE_IC: return "KEYED_EXTERNAL_ARRAY_STORE_IC";
6535     case CALL_IC: return "CALL_IC";
6536     case KEYED_CALL_IC: return "KEYED_CALL_IC";
6537     case TYPE_RECORDING_BINARY_OP_IC: return "TYPE_RECORDING_BINARY_OP_IC";
6538     case COMPARE_IC: return "COMPARE_IC";
6539   }
6540   UNREACHABLE();
6541   return NULL;
6542 }
6543 
6544 
ICState2String(InlineCacheState state)6545 const char* Code::ICState2String(InlineCacheState state) {
6546   switch (state) {
6547     case UNINITIALIZED: return "UNINITIALIZED";
6548     case PREMONOMORPHIC: return "PREMONOMORPHIC";
6549     case MONOMORPHIC: return "MONOMORPHIC";
6550     case MONOMORPHIC_PROTOTYPE_FAILURE: return "MONOMORPHIC_PROTOTYPE_FAILURE";
6551     case MEGAMORPHIC: return "MEGAMORPHIC";
6552     case DEBUG_BREAK: return "DEBUG_BREAK";
6553     case DEBUG_PREPARE_STEP_IN: return "DEBUG_PREPARE_STEP_IN";
6554   }
6555   UNREACHABLE();
6556   return NULL;
6557 }
6558 
6559 
PropertyType2String(PropertyType type)6560 const char* Code::PropertyType2String(PropertyType type) {
6561   switch (type) {
6562     case NORMAL: return "NORMAL";
6563     case FIELD: return "FIELD";
6564     case CONSTANT_FUNCTION: return "CONSTANT_FUNCTION";
6565     case CALLBACKS: return "CALLBACKS";
6566     case INTERCEPTOR: return "INTERCEPTOR";
6567     case MAP_TRANSITION: return "MAP_TRANSITION";
6568     case EXTERNAL_ARRAY_TRANSITION: return "EXTERNAL_ARRAY_TRANSITION";
6569     case CONSTANT_TRANSITION: return "CONSTANT_TRANSITION";
6570     case NULL_DESCRIPTOR: return "NULL_DESCRIPTOR";
6571   }
6572   UNREACHABLE();
6573   return NULL;
6574 }
6575 
6576 
PrintExtraICState(FILE * out,Kind kind,ExtraICState extra)6577 void Code::PrintExtraICState(FILE* out, Kind kind, ExtraICState extra) {
6578   const char* name = NULL;
6579   switch (kind) {
6580     case CALL_IC:
6581       if (extra == STRING_INDEX_OUT_OF_BOUNDS) {
6582         name = "STRING_INDEX_OUT_OF_BOUNDS";
6583       }
6584       break;
6585     case STORE_IC:
6586     case KEYED_STORE_IC:
6587       if (extra == kStrictMode) {
6588         name = "STRICT";
6589       }
6590       break;
6591     default:
6592       break;
6593   }
6594   if (name != NULL) {
6595     PrintF(out, "extra_ic_state = %s\n", name);
6596   } else {
6597     PrintF(out, "etra_ic_state = %d\n", extra);
6598   }
6599 }
6600 
6601 
Disassemble(const char * name,FILE * out)6602 void Code::Disassemble(const char* name, FILE* out) {
6603   PrintF(out, "kind = %s\n", Kind2String(kind()));
6604   if (is_inline_cache_stub()) {
6605     PrintF(out, "ic_state = %s\n", ICState2String(ic_state()));
6606     PrintExtraICState(out, kind(), extra_ic_state());
6607     PrintF(out, "ic_in_loop = %d\n", ic_in_loop() == IN_LOOP);
6608     if (ic_state() == MONOMORPHIC) {
6609       PrintF(out, "type = %s\n", PropertyType2String(type()));
6610     }
6611   }
6612   if ((name != NULL) && (name[0] != '\0')) {
6613     PrintF(out, "name = %s\n", name);
6614   }
6615   if (kind() == OPTIMIZED_FUNCTION) {
6616     PrintF(out, "stack_slots = %d\n", stack_slots());
6617   }
6618 
6619   PrintF(out, "Instructions (size = %d)\n", instruction_size());
6620   Disassembler::Decode(out, this);
6621   PrintF(out, "\n");
6622 
6623 #ifdef DEBUG
6624   if (kind() == FUNCTION) {
6625     DeoptimizationOutputData* data =
6626         DeoptimizationOutputData::cast(this->deoptimization_data());
6627     data->DeoptimizationOutputDataPrint(out);
6628   } else if (kind() == OPTIMIZED_FUNCTION) {
6629     DeoptimizationInputData* data =
6630         DeoptimizationInputData::cast(this->deoptimization_data());
6631     data->DeoptimizationInputDataPrint(out);
6632   }
6633   PrintF("\n");
6634 #endif
6635 
6636   if (kind() == OPTIMIZED_FUNCTION) {
6637     SafepointTable table(this);
6638     PrintF(out, "Safepoints (size = %u)\n", table.size());
6639     for (unsigned i = 0; i < table.length(); i++) {
6640       unsigned pc_offset = table.GetPcOffset(i);
6641       PrintF(out, "%p  %4d  ", (instruction_start() + pc_offset), pc_offset);
6642       table.PrintEntry(i);
6643       PrintF(out, " (sp -> fp)");
6644       SafepointEntry entry = table.GetEntry(i);
6645       if (entry.deoptimization_index() != Safepoint::kNoDeoptimizationIndex) {
6646         PrintF(out, "  %6d", entry.deoptimization_index());
6647       } else {
6648         PrintF(out, "  <none>");
6649       }
6650       if (entry.argument_count() > 0) {
6651         PrintF(out, " argc: %d", entry.argument_count());
6652       }
6653       PrintF(out, "\n");
6654     }
6655     PrintF(out, "\n");
6656   } else if (kind() == FUNCTION) {
6657     unsigned offset = stack_check_table_offset();
6658     // If there is no stack check table, the "table start" will at or after
6659     // (due to alignment) the end of the instruction stream.
6660     if (static_cast<int>(offset) < instruction_size()) {
6661       unsigned* address =
6662           reinterpret_cast<unsigned*>(instruction_start() + offset);
6663       unsigned length = address[0];
6664       PrintF(out, "Stack checks (size = %u)\n", length);
6665       PrintF(out, "ast_id  pc_offset\n");
6666       for (unsigned i = 0; i < length; ++i) {
6667         unsigned index = (2 * i) + 1;
6668         PrintF(out, "%6u  %9u\n", address[index], address[index + 1]);
6669       }
6670       PrintF(out, "\n");
6671     }
6672   }
6673 
6674   PrintF("RelocInfo (size = %d)\n", relocation_size());
6675   for (RelocIterator it(this); !it.done(); it.next()) it.rinfo()->Print(out);
6676   PrintF(out, "\n");
6677 }
6678 #endif  // ENABLE_DISASSEMBLER
6679 
6680 
SetFastElementsCapacityAndLength(int capacity,int length)6681 MaybeObject* JSObject::SetFastElementsCapacityAndLength(int capacity,
6682                                                         int length) {
6683   Heap* heap = GetHeap();
6684   // We should never end in here with a pixel or external array.
6685   ASSERT(!HasExternalArrayElements());
6686 
6687   Object* obj;
6688   { MaybeObject* maybe_obj = heap->AllocateFixedArrayWithHoles(capacity);
6689     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
6690   }
6691   FixedArray* elems = FixedArray::cast(obj);
6692 
6693   { MaybeObject* maybe_obj = map()->GetFastElementsMap();
6694     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
6695   }
6696   Map* new_map = Map::cast(obj);
6697 
6698   AssertNoAllocation no_gc;
6699   WriteBarrierMode mode = elems->GetWriteBarrierMode(no_gc);
6700   switch (GetElementsKind()) {
6701     case FAST_ELEMENTS: {
6702       FixedArray* old_elements = FixedArray::cast(elements());
6703       uint32_t old_length = static_cast<uint32_t>(old_elements->length());
6704       // Fill out the new array with this content and array holes.
6705       for (uint32_t i = 0; i < old_length; i++) {
6706         elems->set(i, old_elements->get(i), mode);
6707       }
6708       break;
6709     }
6710     case DICTIONARY_ELEMENTS: {
6711       NumberDictionary* dictionary = NumberDictionary::cast(elements());
6712       for (int i = 0; i < dictionary->Capacity(); i++) {
6713         Object* key = dictionary->KeyAt(i);
6714         if (key->IsNumber()) {
6715           uint32_t entry = static_cast<uint32_t>(key->Number());
6716           elems->set(entry, dictionary->ValueAt(i), mode);
6717         }
6718       }
6719       break;
6720     }
6721     default:
6722       UNREACHABLE();
6723       break;
6724   }
6725 
6726   set_map(new_map);
6727   set_elements(elems);
6728 
6729   if (IsJSArray()) {
6730     JSArray::cast(this)->set_length(Smi::FromInt(length));
6731   }
6732 
6733   return this;
6734 }
6735 
6736 
SetSlowElements(Object * len)6737 MaybeObject* JSObject::SetSlowElements(Object* len) {
6738   // We should never end in here with a pixel or external array.
6739   ASSERT(!HasExternalArrayElements());
6740 
6741   uint32_t new_length = static_cast<uint32_t>(len->Number());
6742 
6743   switch (GetElementsKind()) {
6744     case FAST_ELEMENTS: {
6745       // Make sure we never try to shrink dense arrays into sparse arrays.
6746       ASSERT(static_cast<uint32_t>(FixedArray::cast(elements())->length()) <=
6747                                    new_length);
6748       Object* obj;
6749       { MaybeObject* maybe_obj = NormalizeElements();
6750         if (!maybe_obj->ToObject(&obj)) return maybe_obj;
6751       }
6752 
6753       // Update length for JSArrays.
6754       if (IsJSArray()) JSArray::cast(this)->set_length(len);
6755       break;
6756     }
6757     case DICTIONARY_ELEMENTS: {
6758       if (IsJSArray()) {
6759         uint32_t old_length =
6760             static_cast<uint32_t>(JSArray::cast(this)->length()->Number());
6761         element_dictionary()->RemoveNumberEntries(new_length, old_length),
6762         JSArray::cast(this)->set_length(len);
6763       }
6764       break;
6765     }
6766     default:
6767       UNREACHABLE();
6768       break;
6769   }
6770   return this;
6771 }
6772 
6773 
Initialize(int capacity)6774 MaybeObject* JSArray::Initialize(int capacity) {
6775   Heap* heap = GetHeap();
6776   ASSERT(capacity >= 0);
6777   set_length(Smi::FromInt(0));
6778   FixedArray* new_elements;
6779   if (capacity == 0) {
6780     new_elements = heap->empty_fixed_array();
6781   } else {
6782     Object* obj;
6783     { MaybeObject* maybe_obj = heap->AllocateFixedArrayWithHoles(capacity);
6784       if (!maybe_obj->ToObject(&obj)) return maybe_obj;
6785     }
6786     new_elements = FixedArray::cast(obj);
6787   }
6788   set_elements(new_elements);
6789   return this;
6790 }
6791 
6792 
Expand(int required_size)6793 void JSArray::Expand(int required_size) {
6794   Handle<JSArray> self(this);
6795   Handle<FixedArray> old_backing(FixedArray::cast(elements()));
6796   int old_size = old_backing->length();
6797   int new_size = required_size > old_size ? required_size : old_size;
6798   Handle<FixedArray> new_backing = FACTORY->NewFixedArray(new_size);
6799   // Can't use this any more now because we may have had a GC!
6800   for (int i = 0; i < old_size; i++) new_backing->set(i, old_backing->get(i));
6801   self->SetContent(*new_backing);
6802 }
6803 
6804 
ArrayLengthRangeError(Heap * heap)6805 static Failure* ArrayLengthRangeError(Heap* heap) {
6806   HandleScope scope;
6807   return heap->isolate()->Throw(
6808       *FACTORY->NewRangeError("invalid_array_length",
6809           HandleVector<Object>(NULL, 0)));
6810 }
6811 
6812 
SetElementsLength(Object * len)6813 MaybeObject* JSObject::SetElementsLength(Object* len) {
6814   // We should never end in here with a pixel or external array.
6815   ASSERT(AllowsSetElementsLength());
6816 
6817   MaybeObject* maybe_smi_length = len->ToSmi();
6818   Object* smi_length = Smi::FromInt(0);
6819   if (maybe_smi_length->ToObject(&smi_length) && smi_length->IsSmi()) {
6820     const int value = Smi::cast(smi_length)->value();
6821     if (value < 0) return ArrayLengthRangeError(GetHeap());
6822     switch (GetElementsKind()) {
6823       case FAST_ELEMENTS: {
6824         int old_capacity = FixedArray::cast(elements())->length();
6825         if (value <= old_capacity) {
6826           if (IsJSArray()) {
6827             Object* obj;
6828             { MaybeObject* maybe_obj = EnsureWritableFastElements();
6829               if (!maybe_obj->ToObject(&obj)) return maybe_obj;
6830             }
6831             int old_length = FastD2I(JSArray::cast(this)->length()->Number());
6832             // NOTE: We may be able to optimize this by removing the
6833             // last part of the elements backing storage array and
6834             // setting the capacity to the new size.
6835             for (int i = value; i < old_length; i++) {
6836               FixedArray::cast(elements())->set_the_hole(i);
6837             }
6838             JSArray::cast(this)->set_length(Smi::cast(smi_length));
6839           }
6840           return this;
6841         }
6842         int min = NewElementsCapacity(old_capacity);
6843         int new_capacity = value > min ? value : min;
6844         if (new_capacity <= kMaxFastElementsLength ||
6845             !ShouldConvertToSlowElements(new_capacity)) {
6846           Object* obj;
6847           { MaybeObject* maybe_obj =
6848                 SetFastElementsCapacityAndLength(new_capacity, value);
6849             if (!maybe_obj->ToObject(&obj)) return maybe_obj;
6850           }
6851           return this;
6852         }
6853         break;
6854       }
6855       case DICTIONARY_ELEMENTS: {
6856         if (IsJSArray()) {
6857           if (value == 0) {
6858             // If the length of a slow array is reset to zero, we clear
6859             // the array and flush backing storage. This has the added
6860             // benefit that the array returns to fast mode.
6861             Object* obj;
6862             { MaybeObject* maybe_obj = ResetElements();
6863               if (!maybe_obj->ToObject(&obj)) return maybe_obj;
6864             }
6865           } else {
6866             // Remove deleted elements.
6867             uint32_t old_length =
6868             static_cast<uint32_t>(JSArray::cast(this)->length()->Number());
6869             element_dictionary()->RemoveNumberEntries(value, old_length);
6870           }
6871           JSArray::cast(this)->set_length(Smi::cast(smi_length));
6872         }
6873         return this;
6874       }
6875       default:
6876         UNREACHABLE();
6877         break;
6878     }
6879   }
6880 
6881   // General slow case.
6882   if (len->IsNumber()) {
6883     uint32_t length;
6884     if (len->ToArrayIndex(&length)) {
6885       return SetSlowElements(len);
6886     } else {
6887       return ArrayLengthRangeError(GetHeap());
6888     }
6889   }
6890 
6891   // len is not a number so make the array size one and
6892   // set only element to len.
6893   Object* obj;
6894   { MaybeObject* maybe_obj = GetHeap()->AllocateFixedArray(1);
6895     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
6896   }
6897   FixedArray::cast(obj)->set(0, len);
6898   if (IsJSArray()) JSArray::cast(this)->set_length(Smi::FromInt(1));
6899   set_elements(FixedArray::cast(obj));
6900   return this;
6901 }
6902 
6903 
GetPrototypeTransition(Object * prototype)6904 Object* Map::GetPrototypeTransition(Object* prototype) {
6905   FixedArray* cache = prototype_transitions();
6906   int capacity = cache->length();
6907   if (capacity == 0) return NULL;
6908   int finger = Smi::cast(cache->get(0))->value();
6909   for (int i = 1; i < finger; i += 2) {
6910     if (cache->get(i) == prototype) return cache->get(i + 1);
6911   }
6912   return NULL;
6913 }
6914 
6915 
PutPrototypeTransition(Object * prototype,Map * map)6916 MaybeObject* Map::PutPrototypeTransition(Object* prototype, Map* map) {
6917   // Don't cache prototype transition if this map is shared.
6918   if (is_shared() || !FLAG_cache_prototype_transitions) return this;
6919 
6920   FixedArray* cache = prototype_transitions();
6921 
6922   int capacity = cache->length();
6923 
6924   int finger = (capacity == 0) ? 1 : Smi::cast(cache->get(0))->value();
6925 
6926   if (finger >= capacity) {
6927     if (capacity > kMaxCachedPrototypeTransitions) return this;
6928 
6929     FixedArray* new_cache;
6930     { MaybeObject* maybe_cache = heap()->AllocateFixedArray(finger * 2 + 1);
6931       if (!maybe_cache->To<FixedArray>(&new_cache)) return maybe_cache;
6932     }
6933 
6934     for (int i = 1; i < capacity; i++) new_cache->set(i, cache->get(i));
6935     cache = new_cache;
6936     set_prototype_transitions(cache);
6937   }
6938 
6939   cache->set(finger, prototype);
6940   cache->set(finger + 1, map);
6941   cache->set(0, Smi::FromInt(finger + 2));
6942 
6943   return cache;
6944 }
6945 
6946 
SetPrototype(Object * value,bool skip_hidden_prototypes)6947 MaybeObject* JSObject::SetPrototype(Object* value,
6948                                     bool skip_hidden_prototypes) {
6949   Heap* heap = GetHeap();
6950   // Silently ignore the change if value is not a JSObject or null.
6951   // SpiderMonkey behaves this way.
6952   if (!value->IsJSObject() && !value->IsNull()) return value;
6953 
6954   // From 8.6.2 Object Internal Methods
6955   // ...
6956   // In addition, if [[Extensible]] is false the value of the [[Class]] and
6957   // [[Prototype]] internal properties of the object may not be modified.
6958   // ...
6959   // Implementation specific extensions that modify [[Class]], [[Prototype]]
6960   // or [[Extensible]] must not violate the invariants defined in the preceding
6961   // paragraph.
6962   if (!this->map()->is_extensible()) {
6963     HandleScope scope;
6964     Handle<Object> handle(this, heap->isolate());
6965     return heap->isolate()->Throw(
6966         *FACTORY->NewTypeError("non_extensible_proto",
6967                                HandleVector<Object>(&handle, 1)));
6968   }
6969 
6970   // Before we can set the prototype we need to be sure
6971   // prototype cycles are prevented.
6972   // It is sufficient to validate that the receiver is not in the new prototype
6973   // chain.
6974   for (Object* pt = value; pt != heap->null_value(); pt = pt->GetPrototype()) {
6975     if (JSObject::cast(pt) == this) {
6976       // Cycle detected.
6977       HandleScope scope;
6978       return heap->isolate()->Throw(
6979           *FACTORY->NewError("cyclic_proto", HandleVector<Object>(NULL, 0)));
6980     }
6981   }
6982 
6983   JSObject* real_receiver = this;
6984 
6985   if (skip_hidden_prototypes) {
6986     // Find the first object in the chain whose prototype object is not
6987     // hidden and set the new prototype on that object.
6988     Object* current_proto = real_receiver->GetPrototype();
6989     while (current_proto->IsJSObject() &&
6990           JSObject::cast(current_proto)->map()->is_hidden_prototype()) {
6991       real_receiver = JSObject::cast(current_proto);
6992       current_proto = current_proto->GetPrototype();
6993     }
6994   }
6995 
6996   // Set the new prototype of the object.
6997   Map* map = real_receiver->map();
6998 
6999   // Nothing to do if prototype is already set.
7000   if (map->prototype() == value) return value;
7001 
7002   Object* new_map = map->GetPrototypeTransition(value);
7003   if (new_map == NULL) {
7004     { MaybeObject* maybe_new_map = map->CopyDropTransitions();
7005       if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map;
7006     }
7007 
7008     { MaybeObject* maybe_new_cache =
7009           map->PutPrototypeTransition(value, Map::cast(new_map));
7010       if (maybe_new_cache->IsFailure()) return maybe_new_cache;
7011     }
7012 
7013     Map::cast(new_map)->set_prototype(value);
7014   }
7015   ASSERT(Map::cast(new_map)->prototype() == value);
7016   real_receiver->set_map(Map::cast(new_map));
7017 
7018   heap->ClearInstanceofCache();
7019 
7020   return value;
7021 }
7022 
7023 
HasElementPostInterceptor(JSObject * receiver,uint32_t index)7024 bool JSObject::HasElementPostInterceptor(JSObject* receiver, uint32_t index) {
7025   switch (GetElementsKind()) {
7026     case FAST_ELEMENTS: {
7027       uint32_t length = IsJSArray() ?
7028           static_cast<uint32_t>
7029               (Smi::cast(JSArray::cast(this)->length())->value()) :
7030           static_cast<uint32_t>(FixedArray::cast(elements())->length());
7031       if ((index < length) &&
7032           !FixedArray::cast(elements())->get(index)->IsTheHole()) {
7033         return true;
7034       }
7035       break;
7036     }
7037     case EXTERNAL_PIXEL_ELEMENTS: {
7038       ExternalPixelArray* pixels = ExternalPixelArray::cast(elements());
7039       if (index < static_cast<uint32_t>(pixels->length())) {
7040         return true;
7041       }
7042       break;
7043     }
7044     case EXTERNAL_BYTE_ELEMENTS:
7045     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
7046     case EXTERNAL_SHORT_ELEMENTS:
7047     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
7048     case EXTERNAL_INT_ELEMENTS:
7049     case EXTERNAL_UNSIGNED_INT_ELEMENTS:
7050     case EXTERNAL_FLOAT_ELEMENTS: {
7051       ExternalArray* array = ExternalArray::cast(elements());
7052       if (index < static_cast<uint32_t>(array->length())) {
7053         return true;
7054       }
7055       break;
7056     }
7057     case DICTIONARY_ELEMENTS: {
7058       if (element_dictionary()->FindEntry(index)
7059           != NumberDictionary::kNotFound) {
7060         return true;
7061       }
7062       break;
7063     }
7064     default:
7065       UNREACHABLE();
7066       break;
7067   }
7068 
7069   // Handle [] on String objects.
7070   if (this->IsStringObjectWithCharacterAt(index)) return true;
7071 
7072   Object* pt = GetPrototype();
7073   if (pt->IsNull()) return false;
7074   return JSObject::cast(pt)->HasElementWithReceiver(receiver, index);
7075 }
7076 
7077 
HasElementWithInterceptor(JSObject * receiver,uint32_t index)7078 bool JSObject::HasElementWithInterceptor(JSObject* receiver, uint32_t index) {
7079   Isolate* isolate = GetIsolate();
7080   // Make sure that the top context does not change when doing
7081   // callbacks or interceptor calls.
7082   AssertNoContextChange ncc;
7083   HandleScope scope(isolate);
7084   Handle<InterceptorInfo> interceptor(GetIndexedInterceptor());
7085   Handle<JSObject> receiver_handle(receiver);
7086   Handle<JSObject> holder_handle(this);
7087   CustomArguments args(isolate, interceptor->data(), receiver, this);
7088   v8::AccessorInfo info(args.end());
7089   if (!interceptor->query()->IsUndefined()) {
7090     v8::IndexedPropertyQuery query =
7091         v8::ToCData<v8::IndexedPropertyQuery>(interceptor->query());
7092     LOG(isolate,
7093         ApiIndexedPropertyAccess("interceptor-indexed-has", this, index));
7094     v8::Handle<v8::Integer> result;
7095     {
7096       // Leaving JavaScript.
7097       VMState state(isolate, EXTERNAL);
7098       result = query(index, info);
7099     }
7100     if (!result.IsEmpty()) {
7101       ASSERT(result->IsInt32());
7102       return true;  // absence of property is signaled by empty handle.
7103     }
7104   } else if (!interceptor->getter()->IsUndefined()) {
7105     v8::IndexedPropertyGetter getter =
7106         v8::ToCData<v8::IndexedPropertyGetter>(interceptor->getter());
7107     LOG(isolate,
7108         ApiIndexedPropertyAccess("interceptor-indexed-has-get", this, index));
7109     v8::Handle<v8::Value> result;
7110     {
7111       // Leaving JavaScript.
7112       VMState state(isolate, EXTERNAL);
7113       result = getter(index, info);
7114     }
7115     if (!result.IsEmpty()) return true;
7116   }
7117   return holder_handle->HasElementPostInterceptor(*receiver_handle, index);
7118 }
7119 
7120 
HasLocalElement(uint32_t index)7121 JSObject::LocalElementType JSObject::HasLocalElement(uint32_t index) {
7122   // Check access rights if needed.
7123   if (IsAccessCheckNeeded()) {
7124     Heap* heap = GetHeap();
7125     if (!heap->isolate()->MayIndexedAccess(this, index, v8::ACCESS_HAS)) {
7126       heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS);
7127       return UNDEFINED_ELEMENT;
7128     }
7129   }
7130 
7131   if (IsJSGlobalProxy()) {
7132     Object* proto = GetPrototype();
7133     if (proto->IsNull()) return UNDEFINED_ELEMENT;
7134     ASSERT(proto->IsJSGlobalObject());
7135     return JSObject::cast(proto)->HasLocalElement(index);
7136   }
7137 
7138   // Check for lookup interceptor
7139   if (HasIndexedInterceptor()) {
7140     return HasElementWithInterceptor(this, index) ? INTERCEPTED_ELEMENT
7141                                                   : UNDEFINED_ELEMENT;
7142   }
7143 
7144   // Handle [] on String objects.
7145   if (this->IsStringObjectWithCharacterAt(index)) {
7146     return STRING_CHARACTER_ELEMENT;
7147   }
7148 
7149   switch (GetElementsKind()) {
7150     case FAST_ELEMENTS: {
7151       uint32_t length = IsJSArray() ?
7152           static_cast<uint32_t>
7153               (Smi::cast(JSArray::cast(this)->length())->value()) :
7154           static_cast<uint32_t>(FixedArray::cast(elements())->length());
7155       if ((index < length) &&
7156           !FixedArray::cast(elements())->get(index)->IsTheHole()) {
7157         return FAST_ELEMENT;
7158       }
7159       break;
7160     }
7161     case EXTERNAL_PIXEL_ELEMENTS: {
7162       ExternalPixelArray* pixels = ExternalPixelArray::cast(elements());
7163       if (index < static_cast<uint32_t>(pixels->length())) return FAST_ELEMENT;
7164       break;
7165     }
7166     case EXTERNAL_BYTE_ELEMENTS:
7167     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
7168     case EXTERNAL_SHORT_ELEMENTS:
7169     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
7170     case EXTERNAL_INT_ELEMENTS:
7171     case EXTERNAL_UNSIGNED_INT_ELEMENTS:
7172     case EXTERNAL_FLOAT_ELEMENTS: {
7173       ExternalArray* array = ExternalArray::cast(elements());
7174       if (index < static_cast<uint32_t>(array->length())) return FAST_ELEMENT;
7175       break;
7176     }
7177     case DICTIONARY_ELEMENTS: {
7178       if (element_dictionary()->FindEntry(index) !=
7179               NumberDictionary::kNotFound) {
7180         return DICTIONARY_ELEMENT;
7181       }
7182       break;
7183     }
7184     default:
7185       UNREACHABLE();
7186       break;
7187   }
7188 
7189   return UNDEFINED_ELEMENT;
7190 }
7191 
7192 
HasElementWithReceiver(JSObject * receiver,uint32_t index)7193 bool JSObject::HasElementWithReceiver(JSObject* receiver, uint32_t index) {
7194   // Check access rights if needed.
7195   if (IsAccessCheckNeeded()) {
7196     Heap* heap = GetHeap();
7197     if (!heap->isolate()->MayIndexedAccess(this, index, v8::ACCESS_HAS)) {
7198       heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS);
7199       return false;
7200     }
7201   }
7202 
7203   // Check for lookup interceptor
7204   if (HasIndexedInterceptor()) {
7205     return HasElementWithInterceptor(receiver, index);
7206   }
7207 
7208   switch (GetElementsKind()) {
7209     case FAST_ELEMENTS: {
7210       uint32_t length = IsJSArray() ?
7211           static_cast<uint32_t>
7212               (Smi::cast(JSArray::cast(this)->length())->value()) :
7213           static_cast<uint32_t>(FixedArray::cast(elements())->length());
7214       if ((index < length) &&
7215           !FixedArray::cast(elements())->get(index)->IsTheHole()) return true;
7216       break;
7217     }
7218     case EXTERNAL_PIXEL_ELEMENTS: {
7219       ExternalPixelArray* pixels = ExternalPixelArray::cast(elements());
7220       if (index < static_cast<uint32_t>(pixels->length())) {
7221         return true;
7222       }
7223       break;
7224     }
7225     case EXTERNAL_BYTE_ELEMENTS:
7226     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
7227     case EXTERNAL_SHORT_ELEMENTS:
7228     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
7229     case EXTERNAL_INT_ELEMENTS:
7230     case EXTERNAL_UNSIGNED_INT_ELEMENTS:
7231     case EXTERNAL_FLOAT_ELEMENTS: {
7232       ExternalArray* array = ExternalArray::cast(elements());
7233       if (index < static_cast<uint32_t>(array->length())) {
7234         return true;
7235       }
7236       break;
7237     }
7238     case DICTIONARY_ELEMENTS: {
7239       if (element_dictionary()->FindEntry(index)
7240           != NumberDictionary::kNotFound) {
7241         return true;
7242       }
7243       break;
7244     }
7245     default:
7246       UNREACHABLE();
7247       break;
7248   }
7249 
7250   // Handle [] on String objects.
7251   if (this->IsStringObjectWithCharacterAt(index)) return true;
7252 
7253   Object* pt = GetPrototype();
7254   if (pt->IsNull()) return false;
7255   return JSObject::cast(pt)->HasElementWithReceiver(receiver, index);
7256 }
7257 
7258 
SetElementWithInterceptor(uint32_t index,Object * value,StrictModeFlag strict_mode,bool check_prototype)7259 MaybeObject* JSObject::SetElementWithInterceptor(uint32_t index,
7260                                                  Object* value,
7261                                                  StrictModeFlag strict_mode,
7262                                                  bool check_prototype) {
7263   Isolate* isolate = GetIsolate();
7264   // Make sure that the top context does not change when doing
7265   // callbacks or interceptor calls.
7266   AssertNoContextChange ncc;
7267   HandleScope scope(isolate);
7268   Handle<InterceptorInfo> interceptor(GetIndexedInterceptor());
7269   Handle<JSObject> this_handle(this);
7270   Handle<Object> value_handle(value, isolate);
7271   if (!interceptor->setter()->IsUndefined()) {
7272     v8::IndexedPropertySetter setter =
7273         v8::ToCData<v8::IndexedPropertySetter>(interceptor->setter());
7274     LOG(isolate,
7275         ApiIndexedPropertyAccess("interceptor-indexed-set", this, index));
7276     CustomArguments args(isolate, interceptor->data(), this, this);
7277     v8::AccessorInfo info(args.end());
7278     v8::Handle<v8::Value> result;
7279     {
7280       // Leaving JavaScript.
7281       VMState state(isolate, EXTERNAL);
7282       result = setter(index, v8::Utils::ToLocal(value_handle), info);
7283     }
7284     RETURN_IF_SCHEDULED_EXCEPTION(isolate);
7285     if (!result.IsEmpty()) return *value_handle;
7286   }
7287   MaybeObject* raw_result =
7288       this_handle->SetElementWithoutInterceptor(index,
7289                                                 *value_handle,
7290                                                 strict_mode,
7291                                                 check_prototype);
7292   RETURN_IF_SCHEDULED_EXCEPTION(isolate);
7293   return raw_result;
7294 }
7295 
7296 
GetElementWithCallback(Object * receiver,Object * structure,uint32_t index,Object * holder)7297 MaybeObject* JSObject::GetElementWithCallback(Object* receiver,
7298                                               Object* structure,
7299                                               uint32_t index,
7300                                               Object* holder) {
7301   Isolate* isolate = GetIsolate();
7302   ASSERT(!structure->IsProxy());
7303 
7304   // api style callbacks.
7305   if (structure->IsAccessorInfo()) {
7306     AccessorInfo* data = AccessorInfo::cast(structure);
7307     Object* fun_obj = data->getter();
7308     v8::AccessorGetter call_fun = v8::ToCData<v8::AccessorGetter>(fun_obj);
7309     HandleScope scope(isolate);
7310     Handle<JSObject> self(JSObject::cast(receiver));
7311     Handle<JSObject> holder_handle(JSObject::cast(holder));
7312     Handle<Object> number = isolate->factory()->NewNumberFromUint(index);
7313     Handle<String> key(isolate->factory()->NumberToString(number));
7314     LOG(isolate, ApiNamedPropertyAccess("load", *self, *key));
7315     CustomArguments args(isolate, data->data(), *self, *holder_handle);
7316     v8::AccessorInfo info(args.end());
7317     v8::Handle<v8::Value> result;
7318     {
7319       // Leaving JavaScript.
7320       VMState state(isolate, EXTERNAL);
7321       result = call_fun(v8::Utils::ToLocal(key), info);
7322     }
7323     RETURN_IF_SCHEDULED_EXCEPTION(isolate);
7324     if (result.IsEmpty()) return isolate->heap()->undefined_value();
7325     return *v8::Utils::OpenHandle(*result);
7326   }
7327 
7328   // __defineGetter__ callback
7329   if (structure->IsFixedArray()) {
7330     Object* getter = FixedArray::cast(structure)->get(kGetterIndex);
7331     if (getter->IsJSFunction()) {
7332       return Object::GetPropertyWithDefinedGetter(receiver,
7333                                                   JSFunction::cast(getter));
7334     }
7335     // Getter is not a function.
7336     return isolate->heap()->undefined_value();
7337   }
7338 
7339   UNREACHABLE();
7340   return NULL;
7341 }
7342 
7343 
SetElementWithCallback(Object * structure,uint32_t index,Object * value,JSObject * holder)7344 MaybeObject* JSObject::SetElementWithCallback(Object* structure,
7345                                               uint32_t index,
7346                                               Object* value,
7347                                               JSObject* holder) {
7348   Isolate* isolate = GetIsolate();
7349   HandleScope scope(isolate);
7350 
7351   // We should never get here to initialize a const with the hole
7352   // value since a const declaration would conflict with the setter.
7353   ASSERT(!value->IsTheHole());
7354   Handle<Object> value_handle(value, isolate);
7355 
7356   // To accommodate both the old and the new api we switch on the
7357   // data structure used to store the callbacks.  Eventually proxy
7358   // callbacks should be phased out.
7359   ASSERT(!structure->IsProxy());
7360 
7361   if (structure->IsAccessorInfo()) {
7362     // api style callbacks
7363     AccessorInfo* data = AccessorInfo::cast(structure);
7364     Object* call_obj = data->setter();
7365     v8::AccessorSetter call_fun = v8::ToCData<v8::AccessorSetter>(call_obj);
7366     if (call_fun == NULL) return value;
7367     Handle<Object> number = isolate->factory()->NewNumberFromUint(index);
7368     Handle<String> key(isolate->factory()->NumberToString(number));
7369     LOG(isolate, ApiNamedPropertyAccess("store", this, *key));
7370     CustomArguments args(isolate, data->data(), this, JSObject::cast(holder));
7371     v8::AccessorInfo info(args.end());
7372     {
7373       // Leaving JavaScript.
7374       VMState state(isolate, EXTERNAL);
7375       call_fun(v8::Utils::ToLocal(key),
7376                v8::Utils::ToLocal(value_handle),
7377                info);
7378     }
7379     RETURN_IF_SCHEDULED_EXCEPTION(isolate);
7380     return *value_handle;
7381   }
7382 
7383   if (structure->IsFixedArray()) {
7384     Object* setter = FixedArray::cast(structure)->get(kSetterIndex);
7385     if (setter->IsJSFunction()) {
7386      return SetPropertyWithDefinedSetter(JSFunction::cast(setter), value);
7387     } else {
7388       Handle<Object> holder_handle(holder, isolate);
7389       Handle<Object> key(isolate->factory()->NewNumberFromUint(index));
7390       Handle<Object> args[2] = { key, holder_handle };
7391       return isolate->Throw(
7392           *isolate->factory()->NewTypeError("no_setter_in_callback",
7393                                             HandleVector(args, 2)));
7394     }
7395   }
7396 
7397   UNREACHABLE();
7398   return NULL;
7399 }
7400 
7401 
7402 // Adding n elements in fast case is O(n*n).
7403 // Note: revisit design to have dual undefined values to capture absent
7404 // elements.
SetFastElement(uint32_t index,Object * value,StrictModeFlag strict_mode,bool check_prototype)7405 MaybeObject* JSObject::SetFastElement(uint32_t index,
7406                                       Object* value,
7407                                       StrictModeFlag strict_mode,
7408                                       bool check_prototype) {
7409   ASSERT(HasFastElements());
7410 
7411   Object* elms_obj;
7412   { MaybeObject* maybe_elms_obj = EnsureWritableFastElements();
7413     if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj;
7414   }
7415   FixedArray* elms = FixedArray::cast(elms_obj);
7416   uint32_t elms_length = static_cast<uint32_t>(elms->length());
7417 
7418   if (check_prototype &&
7419       (index >= elms_length || elms->get(index)->IsTheHole())) {
7420     bool found;
7421     MaybeObject* result =
7422         SetElementWithCallbackSetterInPrototypes(index, value, &found);
7423     if (found) return result;
7424   }
7425 
7426 
7427   // Check whether there is extra space in fixed array..
7428   if (index < elms_length) {
7429     elms->set(index, value);
7430     if (IsJSArray()) {
7431       // Update the length of the array if needed.
7432       uint32_t array_length = 0;
7433       CHECK(JSArray::cast(this)->length()->ToArrayIndex(&array_length));
7434       if (index >= array_length) {
7435         JSArray::cast(this)->set_length(Smi::FromInt(index + 1));
7436       }
7437     }
7438     return value;
7439   }
7440 
7441   // Allow gap in fast case.
7442   if ((index - elms_length) < kMaxGap) {
7443     // Try allocating extra space.
7444     int new_capacity = NewElementsCapacity(index+1);
7445     if (new_capacity <= kMaxFastElementsLength ||
7446         !ShouldConvertToSlowElements(new_capacity)) {
7447       ASSERT(static_cast<uint32_t>(new_capacity) > index);
7448       Object* obj;
7449       { MaybeObject* maybe_obj =
7450             SetFastElementsCapacityAndLength(new_capacity, index + 1);
7451         if (!maybe_obj->ToObject(&obj)) return maybe_obj;
7452       }
7453       FixedArray::cast(elements())->set(index, value);
7454       return value;
7455     }
7456   }
7457 
7458   // Otherwise default to slow case.
7459   Object* obj;
7460   { MaybeObject* maybe_obj = NormalizeElements();
7461     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
7462   }
7463   ASSERT(HasDictionaryElements());
7464   return SetElement(index, value, strict_mode, check_prototype);
7465 }
7466 
7467 
SetElement(uint32_t index,Object * value,StrictModeFlag strict_mode,bool check_prototype)7468 MaybeObject* JSObject::SetElement(uint32_t index,
7469                                   Object* value,
7470                                   StrictModeFlag strict_mode,
7471                                   bool check_prototype) {
7472   // Check access rights if needed.
7473   if (IsAccessCheckNeeded()) {
7474     Heap* heap = GetHeap();
7475     if (!heap->isolate()->MayIndexedAccess(this, index, v8::ACCESS_SET)) {
7476       HandleScope scope;
7477       Handle<Object> value_handle(value);
7478       heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_SET);
7479       return *value_handle;
7480     }
7481   }
7482 
7483   if (IsJSGlobalProxy()) {
7484     Object* proto = GetPrototype();
7485     if (proto->IsNull()) return value;
7486     ASSERT(proto->IsJSGlobalObject());
7487     return JSObject::cast(proto)->SetElement(index,
7488                                              value,
7489                                              strict_mode,
7490                                              check_prototype);
7491   }
7492 
7493   // Check for lookup interceptor
7494   if (HasIndexedInterceptor()) {
7495     return SetElementWithInterceptor(index,
7496                                      value,
7497                                      strict_mode,
7498                                      check_prototype);
7499   }
7500 
7501   return SetElementWithoutInterceptor(index,
7502                                       value,
7503                                       strict_mode,
7504                                       check_prototype);
7505 }
7506 
7507 
SetElementWithoutInterceptor(uint32_t index,Object * value,StrictModeFlag strict_mode,bool check_prototype)7508 MaybeObject* JSObject::SetElementWithoutInterceptor(uint32_t index,
7509                                                     Object* value,
7510                                                     StrictModeFlag strict_mode,
7511                                                     bool check_prototype) {
7512   Isolate* isolate = GetIsolate();
7513   switch (GetElementsKind()) {
7514     case FAST_ELEMENTS:
7515       // Fast case.
7516       return SetFastElement(index, value, strict_mode, check_prototype);
7517     case EXTERNAL_PIXEL_ELEMENTS: {
7518       ExternalPixelArray* pixels = ExternalPixelArray::cast(elements());
7519       return pixels->SetValue(index, value);
7520     }
7521     case EXTERNAL_BYTE_ELEMENTS: {
7522       ExternalByteArray* array = ExternalByteArray::cast(elements());
7523       return array->SetValue(index, value);
7524     }
7525     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: {
7526       ExternalUnsignedByteArray* array =
7527           ExternalUnsignedByteArray::cast(elements());
7528       return array->SetValue(index, value);
7529     }
7530     case EXTERNAL_SHORT_ELEMENTS: {
7531       ExternalShortArray* array = ExternalShortArray::cast(elements());
7532       return array->SetValue(index, value);
7533     }
7534     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: {
7535       ExternalUnsignedShortArray* array =
7536           ExternalUnsignedShortArray::cast(elements());
7537       return array->SetValue(index, value);
7538     }
7539     case EXTERNAL_INT_ELEMENTS: {
7540       ExternalIntArray* array = ExternalIntArray::cast(elements());
7541       return array->SetValue(index, value);
7542     }
7543     case EXTERNAL_UNSIGNED_INT_ELEMENTS: {
7544       ExternalUnsignedIntArray* array =
7545           ExternalUnsignedIntArray::cast(elements());
7546       return array->SetValue(index, value);
7547     }
7548     case EXTERNAL_FLOAT_ELEMENTS: {
7549       ExternalFloatArray* array = ExternalFloatArray::cast(elements());
7550       return array->SetValue(index, value);
7551     }
7552     case DICTIONARY_ELEMENTS: {
7553       // Insert element in the dictionary.
7554       FixedArray* elms = FixedArray::cast(elements());
7555       NumberDictionary* dictionary = NumberDictionary::cast(elms);
7556 
7557       int entry = dictionary->FindEntry(index);
7558       if (entry != NumberDictionary::kNotFound) {
7559         Object* element = dictionary->ValueAt(entry);
7560         PropertyDetails details = dictionary->DetailsAt(entry);
7561         if (details.type() == CALLBACKS) {
7562           return SetElementWithCallback(element, index, value, this);
7563         } else {
7564           dictionary->UpdateMaxNumberKey(index);
7565           // If put fails instrict mode, throw exception.
7566           if (!dictionary->ValueAtPut(entry, value) &&
7567               strict_mode == kStrictMode) {
7568             Handle<Object> number(isolate->factory()->NewNumberFromUint(index));
7569             Handle<Object> holder(this);
7570             Handle<Object> args[2] = { number, holder };
7571             return isolate->Throw(
7572                 *isolate->factory()->NewTypeError("strict_read_only_property",
7573                                                   HandleVector(args, 2)));
7574           }
7575         }
7576       } else {
7577         // Index not already used. Look for an accessor in the prototype chain.
7578         if (check_prototype) {
7579           bool found;
7580           MaybeObject* result =
7581               // Strict mode not needed. No-setter case already handled.
7582               SetElementWithCallbackSetterInPrototypes(index, value, &found);
7583           if (found) return result;
7584         }
7585         // When we set the is_extensible flag to false we always force
7586         // the element into dictionary mode (and force them to stay there).
7587         if (!map()->is_extensible()) {
7588           if (strict_mode == kNonStrictMode) {
7589             return isolate->heap()->undefined_value();
7590           } else {
7591             Handle<Object> number(isolate->factory()->NewNumberFromUint(index));
7592             Handle<String> index_string(
7593                 isolate->factory()->NumberToString(number));
7594             Handle<Object> args[1] = { index_string };
7595             return isolate->Throw(
7596                 *isolate->factory()->NewTypeError("object_not_extensible",
7597                                                   HandleVector(args, 1)));
7598           }
7599         }
7600         Object* result;
7601         { MaybeObject* maybe_result = dictionary->AtNumberPut(index, value);
7602           if (!maybe_result->ToObject(&result)) return maybe_result;
7603         }
7604         if (elms != FixedArray::cast(result)) {
7605           set_elements(FixedArray::cast(result));
7606         }
7607       }
7608 
7609       // Update the array length if this JSObject is an array.
7610       if (IsJSArray()) {
7611         JSArray* array = JSArray::cast(this);
7612         Object* return_value;
7613         { MaybeObject* maybe_return_value =
7614               array->JSArrayUpdateLengthFromIndex(index, value);
7615           if (!maybe_return_value->ToObject(&return_value)) {
7616             return maybe_return_value;
7617           }
7618         }
7619       }
7620 
7621       // Attempt to put this object back in fast case.
7622       if (ShouldConvertToFastElements()) {
7623         uint32_t new_length = 0;
7624         if (IsJSArray()) {
7625           CHECK(JSArray::cast(this)->length()->ToArrayIndex(&new_length));
7626         } else {
7627           new_length = NumberDictionary::cast(elements())->max_number_key() + 1;
7628         }
7629         Object* obj;
7630         { MaybeObject* maybe_obj =
7631               SetFastElementsCapacityAndLength(new_length, new_length);
7632           if (!maybe_obj->ToObject(&obj)) return maybe_obj;
7633         }
7634 #ifdef DEBUG
7635         if (FLAG_trace_normalization) {
7636           PrintF("Object elements are fast case again:\n");
7637           Print();
7638         }
7639 #endif
7640       }
7641 
7642       return value;
7643     }
7644     default:
7645       UNREACHABLE();
7646       break;
7647   }
7648   // All possible cases have been handled above. Add a return to avoid the
7649   // complaints from the compiler.
7650   UNREACHABLE();
7651   return isolate->heap()->null_value();
7652 }
7653 
7654 
JSArrayUpdateLengthFromIndex(uint32_t index,Object * value)7655 MaybeObject* JSArray::JSArrayUpdateLengthFromIndex(uint32_t index,
7656                                                    Object* value) {
7657   uint32_t old_len = 0;
7658   CHECK(length()->ToArrayIndex(&old_len));
7659   // Check to see if we need to update the length. For now, we make
7660   // sure that the length stays within 32-bits (unsigned).
7661   if (index >= old_len && index != 0xffffffff) {
7662     Object* len;
7663     { MaybeObject* maybe_len =
7664           GetHeap()->NumberFromDouble(static_cast<double>(index) + 1);
7665       if (!maybe_len->ToObject(&len)) return maybe_len;
7666     }
7667     set_length(len);
7668   }
7669   return value;
7670 }
7671 
7672 
GetElementPostInterceptor(Object * receiver,uint32_t index)7673 MaybeObject* JSObject::GetElementPostInterceptor(Object* receiver,
7674                                                  uint32_t index) {
7675   // Get element works for both JSObject and JSArray since
7676   // JSArray::length cannot change.
7677   switch (GetElementsKind()) {
7678     case FAST_ELEMENTS: {
7679       FixedArray* elms = FixedArray::cast(elements());
7680       if (index < static_cast<uint32_t>(elms->length())) {
7681         Object* value = elms->get(index);
7682         if (!value->IsTheHole()) return value;
7683       }
7684       break;
7685     }
7686     case EXTERNAL_PIXEL_ELEMENTS:
7687     case EXTERNAL_BYTE_ELEMENTS:
7688     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
7689     case EXTERNAL_SHORT_ELEMENTS:
7690     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
7691     case EXTERNAL_INT_ELEMENTS:
7692     case EXTERNAL_UNSIGNED_INT_ELEMENTS:
7693     case EXTERNAL_FLOAT_ELEMENTS: {
7694       MaybeObject* maybe_value = GetExternalElement(index);
7695       Object* value;
7696       if (!maybe_value->ToObject(&value)) return maybe_value;
7697       if (!value->IsUndefined()) return value;
7698       break;
7699     }
7700     case DICTIONARY_ELEMENTS: {
7701       NumberDictionary* dictionary = element_dictionary();
7702       int entry = dictionary->FindEntry(index);
7703       if (entry != NumberDictionary::kNotFound) {
7704         Object* element = dictionary->ValueAt(entry);
7705         PropertyDetails details = dictionary->DetailsAt(entry);
7706         if (details.type() == CALLBACKS) {
7707           return GetElementWithCallback(receiver,
7708                                         element,
7709                                         index,
7710                                         this);
7711         }
7712         return element;
7713       }
7714       break;
7715     }
7716     default:
7717       UNREACHABLE();
7718       break;
7719   }
7720 
7721   // Continue searching via the prototype chain.
7722   Object* pt = GetPrototype();
7723   if (pt->IsNull()) return GetHeap()->undefined_value();
7724   return pt->GetElementWithReceiver(receiver, index);
7725 }
7726 
7727 
GetElementWithInterceptor(Object * receiver,uint32_t index)7728 MaybeObject* JSObject::GetElementWithInterceptor(Object* receiver,
7729                                                  uint32_t index) {
7730   Isolate* isolate = GetIsolate();
7731   // Make sure that the top context does not change when doing
7732   // callbacks or interceptor calls.
7733   AssertNoContextChange ncc;
7734   HandleScope scope(isolate);
7735   Handle<InterceptorInfo> interceptor(GetIndexedInterceptor(), isolate);
7736   Handle<Object> this_handle(receiver, isolate);
7737   Handle<JSObject> holder_handle(this, isolate);
7738   if (!interceptor->getter()->IsUndefined()) {
7739     v8::IndexedPropertyGetter getter =
7740         v8::ToCData<v8::IndexedPropertyGetter>(interceptor->getter());
7741     LOG(isolate,
7742         ApiIndexedPropertyAccess("interceptor-indexed-get", this, index));
7743     CustomArguments args(isolate, interceptor->data(), receiver, this);
7744     v8::AccessorInfo info(args.end());
7745     v8::Handle<v8::Value> result;
7746     {
7747       // Leaving JavaScript.
7748       VMState state(isolate, EXTERNAL);
7749       result = getter(index, info);
7750     }
7751     RETURN_IF_SCHEDULED_EXCEPTION(isolate);
7752     if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result);
7753   }
7754 
7755   MaybeObject* raw_result =
7756       holder_handle->GetElementPostInterceptor(*this_handle, index);
7757   RETURN_IF_SCHEDULED_EXCEPTION(isolate);
7758   return raw_result;
7759 }
7760 
7761 
GetElementWithReceiver(Object * receiver,uint32_t index)7762 MaybeObject* JSObject::GetElementWithReceiver(Object* receiver,
7763                                               uint32_t index) {
7764   // Check access rights if needed.
7765   if (IsAccessCheckNeeded()) {
7766     Heap* heap = GetHeap();
7767     if (!heap->isolate()->MayIndexedAccess(this, index, v8::ACCESS_GET)) {
7768       heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_GET);
7769       return heap->undefined_value();
7770     }
7771   }
7772 
7773   if (HasIndexedInterceptor()) {
7774     return GetElementWithInterceptor(receiver, index);
7775   }
7776 
7777   // Get element works for both JSObject and JSArray since
7778   // JSArray::length cannot change.
7779   switch (GetElementsKind()) {
7780     case FAST_ELEMENTS: {
7781       FixedArray* elms = FixedArray::cast(elements());
7782       if (index < static_cast<uint32_t>(elms->length())) {
7783         Object* value = elms->get(index);
7784         if (!value->IsTheHole()) return value;
7785       }
7786       break;
7787     }
7788     case EXTERNAL_PIXEL_ELEMENTS:
7789     case EXTERNAL_BYTE_ELEMENTS:
7790     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
7791     case EXTERNAL_SHORT_ELEMENTS:
7792     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
7793     case EXTERNAL_INT_ELEMENTS:
7794     case EXTERNAL_UNSIGNED_INT_ELEMENTS:
7795     case EXTERNAL_FLOAT_ELEMENTS: {
7796       MaybeObject* maybe_value = GetExternalElement(index);
7797       Object* value;
7798       if (!maybe_value->ToObject(&value)) return maybe_value;
7799       if (!value->IsUndefined()) return value;
7800       break;
7801     }
7802     case DICTIONARY_ELEMENTS: {
7803       NumberDictionary* dictionary = element_dictionary();
7804       int entry = dictionary->FindEntry(index);
7805       if (entry != NumberDictionary::kNotFound) {
7806         Object* element = dictionary->ValueAt(entry);
7807         PropertyDetails details = dictionary->DetailsAt(entry);
7808         if (details.type() == CALLBACKS) {
7809           return GetElementWithCallback(receiver,
7810                                         element,
7811                                         index,
7812                                         this);
7813         }
7814         return element;
7815       }
7816       break;
7817     }
7818   }
7819 
7820   Object* pt = GetPrototype();
7821   Heap* heap = GetHeap();
7822   if (pt == heap->null_value()) return heap->undefined_value();
7823   return pt->GetElementWithReceiver(receiver, index);
7824 }
7825 
7826 
GetExternalElement(uint32_t index)7827 MaybeObject* JSObject::GetExternalElement(uint32_t index) {
7828   // Get element works for both JSObject and JSArray since
7829   // JSArray::length cannot change.
7830   switch (GetElementsKind()) {
7831     case EXTERNAL_PIXEL_ELEMENTS: {
7832       ExternalPixelArray* pixels = ExternalPixelArray::cast(elements());
7833       if (index < static_cast<uint32_t>(pixels->length())) {
7834         uint8_t value = pixels->get(index);
7835         return Smi::FromInt(value);
7836       }
7837       break;
7838     }
7839     case EXTERNAL_BYTE_ELEMENTS: {
7840       ExternalByteArray* array = ExternalByteArray::cast(elements());
7841       if (index < static_cast<uint32_t>(array->length())) {
7842         int8_t value = array->get(index);
7843         return Smi::FromInt(value);
7844       }
7845       break;
7846     }
7847     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: {
7848       ExternalUnsignedByteArray* array =
7849           ExternalUnsignedByteArray::cast(elements());
7850       if (index < static_cast<uint32_t>(array->length())) {
7851         uint8_t value = array->get(index);
7852         return Smi::FromInt(value);
7853       }
7854       break;
7855     }
7856     case EXTERNAL_SHORT_ELEMENTS: {
7857       ExternalShortArray* array = ExternalShortArray::cast(elements());
7858       if (index < static_cast<uint32_t>(array->length())) {
7859         int16_t value = array->get(index);
7860         return Smi::FromInt(value);
7861       }
7862       break;
7863     }
7864     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: {
7865       ExternalUnsignedShortArray* array =
7866           ExternalUnsignedShortArray::cast(elements());
7867       if (index < static_cast<uint32_t>(array->length())) {
7868         uint16_t value = array->get(index);
7869         return Smi::FromInt(value);
7870       }
7871       break;
7872     }
7873     case EXTERNAL_INT_ELEMENTS: {
7874       ExternalIntArray* array = ExternalIntArray::cast(elements());
7875       if (index < static_cast<uint32_t>(array->length())) {
7876         int32_t value = array->get(index);
7877         return GetHeap()->NumberFromInt32(value);
7878       }
7879       break;
7880     }
7881     case EXTERNAL_UNSIGNED_INT_ELEMENTS: {
7882       ExternalUnsignedIntArray* array =
7883           ExternalUnsignedIntArray::cast(elements());
7884       if (index < static_cast<uint32_t>(array->length())) {
7885         uint32_t value = array->get(index);
7886         return GetHeap()->NumberFromUint32(value);
7887       }
7888       break;
7889     }
7890     case EXTERNAL_FLOAT_ELEMENTS: {
7891       ExternalFloatArray* array = ExternalFloatArray::cast(elements());
7892       if (index < static_cast<uint32_t>(array->length())) {
7893         float value = array->get(index);
7894         return GetHeap()->AllocateHeapNumber(value);
7895       }
7896       break;
7897     }
7898     case FAST_ELEMENTS:
7899     case DICTIONARY_ELEMENTS:
7900       UNREACHABLE();
7901       break;
7902   }
7903   return GetHeap()->undefined_value();
7904 }
7905 
7906 
HasDenseElements()7907 bool JSObject::HasDenseElements() {
7908   int capacity = 0;
7909   int number_of_elements = 0;
7910 
7911   switch (GetElementsKind()) {
7912     case FAST_ELEMENTS: {
7913       FixedArray* elms = FixedArray::cast(elements());
7914       capacity = elms->length();
7915       for (int i = 0; i < capacity; i++) {
7916         if (!elms->get(i)->IsTheHole()) number_of_elements++;
7917       }
7918       break;
7919     }
7920     case EXTERNAL_PIXEL_ELEMENTS:
7921     case EXTERNAL_BYTE_ELEMENTS:
7922     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
7923     case EXTERNAL_SHORT_ELEMENTS:
7924     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
7925     case EXTERNAL_INT_ELEMENTS:
7926     case EXTERNAL_UNSIGNED_INT_ELEMENTS:
7927     case EXTERNAL_FLOAT_ELEMENTS: {
7928       return true;
7929     }
7930     case DICTIONARY_ELEMENTS: {
7931       NumberDictionary* dictionary = NumberDictionary::cast(elements());
7932       capacity = dictionary->Capacity();
7933       number_of_elements = dictionary->NumberOfElements();
7934       break;
7935     }
7936     default:
7937       UNREACHABLE();
7938       break;
7939   }
7940 
7941   if (capacity == 0) return true;
7942   return (number_of_elements > (capacity / 2));
7943 }
7944 
7945 
ShouldConvertToSlowElements(int new_capacity)7946 bool JSObject::ShouldConvertToSlowElements(int new_capacity) {
7947   ASSERT(HasFastElements());
7948   // Keep the array in fast case if the current backing storage is
7949   // almost filled and if the new capacity is no more than twice the
7950   // old capacity.
7951   int elements_length = FixedArray::cast(elements())->length();
7952   return !HasDenseElements() || ((new_capacity / 2) > elements_length);
7953 }
7954 
7955 
ShouldConvertToFastElements()7956 bool JSObject::ShouldConvertToFastElements() {
7957   ASSERT(HasDictionaryElements());
7958   NumberDictionary* dictionary = NumberDictionary::cast(elements());
7959   // If the elements are sparse, we should not go back to fast case.
7960   if (!HasDenseElements()) return false;
7961   // If an element has been added at a very high index in the elements
7962   // dictionary, we cannot go back to fast case.
7963   if (dictionary->requires_slow_elements()) return false;
7964   // An object requiring access checks is never allowed to have fast
7965   // elements.  If it had fast elements we would skip security checks.
7966   if (IsAccessCheckNeeded()) return false;
7967   // If the dictionary backing storage takes up roughly half as much
7968   // space as a fast-case backing storage would the array should have
7969   // fast elements.
7970   uint32_t length = 0;
7971   if (IsJSArray()) {
7972     CHECK(JSArray::cast(this)->length()->ToArrayIndex(&length));
7973   } else {
7974     length = dictionary->max_number_key();
7975   }
7976   return static_cast<uint32_t>(dictionary->Capacity()) >=
7977       (length / (2 * NumberDictionary::kEntrySize));
7978 }
7979 
7980 
7981 // Certain compilers request function template instantiation when they
7982 // see the definition of the other template functions in the
7983 // class. This requires us to have the template functions put
7984 // together, so even though this function belongs in objects-debug.cc,
7985 // we keep it here instead to satisfy certain compilers.
7986 #ifdef OBJECT_PRINT
7987 template<typename Shape, typename Key>
Print(FILE * out)7988 void Dictionary<Shape, Key>::Print(FILE* out) {
7989   int capacity = HashTable<Shape, Key>::Capacity();
7990   for (int i = 0; i < capacity; i++) {
7991     Object* k = HashTable<Shape, Key>::KeyAt(i);
7992     if (HashTable<Shape, Key>::IsKey(k)) {
7993       PrintF(out, " ");
7994       if (k->IsString()) {
7995         String::cast(k)->StringPrint(out);
7996       } else {
7997         k->ShortPrint(out);
7998       }
7999       PrintF(out, ": ");
8000       ValueAt(i)->ShortPrint(out);
8001       PrintF(out, "\n");
8002     }
8003   }
8004 }
8005 #endif
8006 
8007 
8008 template<typename Shape, typename Key>
CopyValuesTo(FixedArray * elements)8009 void Dictionary<Shape, Key>::CopyValuesTo(FixedArray* elements) {
8010   int pos = 0;
8011   int capacity = HashTable<Shape, Key>::Capacity();
8012   AssertNoAllocation no_gc;
8013   WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
8014   for (int i = 0; i < capacity; i++) {
8015     Object* k =  Dictionary<Shape, Key>::KeyAt(i);
8016     if (Dictionary<Shape, Key>::IsKey(k)) {
8017       elements->set(pos++, ValueAt(i), mode);
8018     }
8019   }
8020   ASSERT(pos == elements->length());
8021 }
8022 
8023 
GetNamedInterceptor()8024 InterceptorInfo* JSObject::GetNamedInterceptor() {
8025   ASSERT(map()->has_named_interceptor());
8026   JSFunction* constructor = JSFunction::cast(map()->constructor());
8027   ASSERT(constructor->shared()->IsApiFunction());
8028   Object* result =
8029       constructor->shared()->get_api_func_data()->named_property_handler();
8030   return InterceptorInfo::cast(result);
8031 }
8032 
8033 
GetIndexedInterceptor()8034 InterceptorInfo* JSObject::GetIndexedInterceptor() {
8035   ASSERT(map()->has_indexed_interceptor());
8036   JSFunction* constructor = JSFunction::cast(map()->constructor());
8037   ASSERT(constructor->shared()->IsApiFunction());
8038   Object* result =
8039       constructor->shared()->get_api_func_data()->indexed_property_handler();
8040   return InterceptorInfo::cast(result);
8041 }
8042 
8043 
GetPropertyPostInterceptor(JSObject * receiver,String * name,PropertyAttributes * attributes)8044 MaybeObject* JSObject::GetPropertyPostInterceptor(
8045     JSObject* receiver,
8046     String* name,
8047     PropertyAttributes* attributes) {
8048   // Check local property in holder, ignore interceptor.
8049   LookupResult result;
8050   LocalLookupRealNamedProperty(name, &result);
8051   if (result.IsProperty()) {
8052     return GetProperty(receiver, &result, name, attributes);
8053   }
8054   // Continue searching via the prototype chain.
8055   Object* pt = GetPrototype();
8056   *attributes = ABSENT;
8057   if (pt->IsNull()) return GetHeap()->undefined_value();
8058   return pt->GetPropertyWithReceiver(receiver, name, attributes);
8059 }
8060 
8061 
GetLocalPropertyPostInterceptor(JSObject * receiver,String * name,PropertyAttributes * attributes)8062 MaybeObject* JSObject::GetLocalPropertyPostInterceptor(
8063     JSObject* receiver,
8064     String* name,
8065     PropertyAttributes* attributes) {
8066   // Check local property in holder, ignore interceptor.
8067   LookupResult result;
8068   LocalLookupRealNamedProperty(name, &result);
8069   if (result.IsProperty()) {
8070     return GetProperty(receiver, &result, name, attributes);
8071   }
8072   return GetHeap()->undefined_value();
8073 }
8074 
8075 
GetPropertyWithInterceptor(JSObject * receiver,String * name,PropertyAttributes * attributes)8076 MaybeObject* JSObject::GetPropertyWithInterceptor(
8077     JSObject* receiver,
8078     String* name,
8079     PropertyAttributes* attributes) {
8080   Isolate* isolate = GetIsolate();
8081   InterceptorInfo* interceptor = GetNamedInterceptor();
8082   HandleScope scope(isolate);
8083   Handle<JSObject> receiver_handle(receiver);
8084   Handle<JSObject> holder_handle(this);
8085   Handle<String> name_handle(name);
8086 
8087   if (!interceptor->getter()->IsUndefined()) {
8088     v8::NamedPropertyGetter getter =
8089         v8::ToCData<v8::NamedPropertyGetter>(interceptor->getter());
8090     LOG(isolate,
8091         ApiNamedPropertyAccess("interceptor-named-get", *holder_handle, name));
8092     CustomArguments args(isolate, interceptor->data(), receiver, this);
8093     v8::AccessorInfo info(args.end());
8094     v8::Handle<v8::Value> result;
8095     {
8096       // Leaving JavaScript.
8097       VMState state(isolate, EXTERNAL);
8098       result = getter(v8::Utils::ToLocal(name_handle), info);
8099     }
8100     RETURN_IF_SCHEDULED_EXCEPTION(isolate);
8101     if (!result.IsEmpty()) {
8102       *attributes = NONE;
8103       return *v8::Utils::OpenHandle(*result);
8104     }
8105   }
8106 
8107   MaybeObject* result = holder_handle->GetPropertyPostInterceptor(
8108       *receiver_handle,
8109       *name_handle,
8110       attributes);
8111   RETURN_IF_SCHEDULED_EXCEPTION(isolate);
8112   return result;
8113 }
8114 
8115 
HasRealNamedProperty(String * key)8116 bool JSObject::HasRealNamedProperty(String* key) {
8117   // Check access rights if needed.
8118   if (IsAccessCheckNeeded()) {
8119     Heap* heap = GetHeap();
8120     if (!heap->isolate()->MayNamedAccess(this, key, v8::ACCESS_HAS)) {
8121       heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS);
8122       return false;
8123     }
8124   }
8125 
8126   LookupResult result;
8127   LocalLookupRealNamedProperty(key, &result);
8128   return result.IsProperty() && (result.type() != INTERCEPTOR);
8129 }
8130 
8131 
HasRealElementProperty(uint32_t index)8132 bool JSObject::HasRealElementProperty(uint32_t index) {
8133   // Check access rights if needed.
8134   if (IsAccessCheckNeeded()) {
8135     Heap* heap = GetHeap();
8136     if (!heap->isolate()->MayIndexedAccess(this, index, v8::ACCESS_HAS)) {
8137       heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS);
8138       return false;
8139     }
8140   }
8141 
8142   // Handle [] on String objects.
8143   if (this->IsStringObjectWithCharacterAt(index)) return true;
8144 
8145   switch (GetElementsKind()) {
8146     case FAST_ELEMENTS: {
8147       uint32_t length = IsJSArray() ?
8148           static_cast<uint32_t>(
8149               Smi::cast(JSArray::cast(this)->length())->value()) :
8150           static_cast<uint32_t>(FixedArray::cast(elements())->length());
8151       return (index < length) &&
8152           !FixedArray::cast(elements())->get(index)->IsTheHole();
8153     }
8154     case EXTERNAL_PIXEL_ELEMENTS: {
8155       ExternalPixelArray* pixels = ExternalPixelArray::cast(elements());
8156       return index < static_cast<uint32_t>(pixels->length());
8157     }
8158     case EXTERNAL_BYTE_ELEMENTS:
8159     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
8160     case EXTERNAL_SHORT_ELEMENTS:
8161     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
8162     case EXTERNAL_INT_ELEMENTS:
8163     case EXTERNAL_UNSIGNED_INT_ELEMENTS:
8164     case EXTERNAL_FLOAT_ELEMENTS: {
8165       ExternalArray* array = ExternalArray::cast(elements());
8166       return index < static_cast<uint32_t>(array->length());
8167     }
8168     case DICTIONARY_ELEMENTS: {
8169       return element_dictionary()->FindEntry(index)
8170           != NumberDictionary::kNotFound;
8171     }
8172     default:
8173       UNREACHABLE();
8174       break;
8175   }
8176   // All possibilities have been handled above already.
8177   UNREACHABLE();
8178   return GetHeap()->null_value();
8179 }
8180 
8181 
HasRealNamedCallbackProperty(String * key)8182 bool JSObject::HasRealNamedCallbackProperty(String* key) {
8183   // Check access rights if needed.
8184   if (IsAccessCheckNeeded()) {
8185     Heap* heap = GetHeap();
8186     if (!heap->isolate()->MayNamedAccess(this, key, v8::ACCESS_HAS)) {
8187       heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS);
8188       return false;
8189     }
8190   }
8191 
8192   LookupResult result;
8193   LocalLookupRealNamedProperty(key, &result);
8194   return result.IsProperty() && (result.type() == CALLBACKS);
8195 }
8196 
8197 
NumberOfLocalProperties(PropertyAttributes filter)8198 int JSObject::NumberOfLocalProperties(PropertyAttributes filter) {
8199   if (HasFastProperties()) {
8200     DescriptorArray* descs = map()->instance_descriptors();
8201     int result = 0;
8202     for (int i = 0; i < descs->number_of_descriptors(); i++) {
8203       PropertyDetails details(descs->GetDetails(i));
8204       if (details.IsProperty() && (details.attributes() & filter) == 0) {
8205         result++;
8206       }
8207     }
8208     return result;
8209   } else {
8210     return property_dictionary()->NumberOfElementsFilterAttributes(filter);
8211   }
8212 }
8213 
8214 
NumberOfEnumProperties()8215 int JSObject::NumberOfEnumProperties() {
8216   return NumberOfLocalProperties(static_cast<PropertyAttributes>(DONT_ENUM));
8217 }
8218 
8219 
SwapPairs(FixedArray * numbers,int i,int j)8220 void FixedArray::SwapPairs(FixedArray* numbers, int i, int j) {
8221   Object* temp = get(i);
8222   set(i, get(j));
8223   set(j, temp);
8224   if (this != numbers) {
8225     temp = numbers->get(i);
8226     numbers->set(i, numbers->get(j));
8227     numbers->set(j, temp);
8228   }
8229 }
8230 
8231 
InsertionSortPairs(FixedArray * content,FixedArray * numbers,int len)8232 static void InsertionSortPairs(FixedArray* content,
8233                                FixedArray* numbers,
8234                                int len) {
8235   for (int i = 1; i < len; i++) {
8236     int j = i;
8237     while (j > 0 &&
8238            (NumberToUint32(numbers->get(j - 1)) >
8239             NumberToUint32(numbers->get(j)))) {
8240       content->SwapPairs(numbers, j - 1, j);
8241       j--;
8242     }
8243   }
8244 }
8245 
8246 
HeapSortPairs(FixedArray * content,FixedArray * numbers,int len)8247 void HeapSortPairs(FixedArray* content, FixedArray* numbers, int len) {
8248   // In-place heap sort.
8249   ASSERT(content->length() == numbers->length());
8250 
8251   // Bottom-up max-heap construction.
8252   for (int i = 1; i < len; ++i) {
8253     int child_index = i;
8254     while (child_index > 0) {
8255       int parent_index = ((child_index + 1) >> 1) - 1;
8256       uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
8257       uint32_t child_value = NumberToUint32(numbers->get(child_index));
8258       if (parent_value < child_value) {
8259         content->SwapPairs(numbers, parent_index, child_index);
8260       } else {
8261         break;
8262       }
8263       child_index = parent_index;
8264     }
8265   }
8266 
8267   // Extract elements and create sorted array.
8268   for (int i = len - 1; i > 0; --i) {
8269     // Put max element at the back of the array.
8270     content->SwapPairs(numbers, 0, i);
8271     // Sift down the new top element.
8272     int parent_index = 0;
8273     while (true) {
8274       int child_index = ((parent_index + 1) << 1) - 1;
8275       if (child_index >= i) break;
8276       uint32_t child1_value = NumberToUint32(numbers->get(child_index));
8277       uint32_t child2_value = NumberToUint32(numbers->get(child_index + 1));
8278       uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
8279       if (child_index + 1 >= i || child1_value > child2_value) {
8280         if (parent_value > child1_value) break;
8281         content->SwapPairs(numbers, parent_index, child_index);
8282         parent_index = child_index;
8283       } else {
8284         if (parent_value > child2_value) break;
8285         content->SwapPairs(numbers, parent_index, child_index + 1);
8286         parent_index = child_index + 1;
8287       }
8288     }
8289   }
8290 }
8291 
8292 
8293 // Sort this array and the numbers as pairs wrt. the (distinct) numbers.
SortPairs(FixedArray * numbers,uint32_t len)8294 void FixedArray::SortPairs(FixedArray* numbers, uint32_t len) {
8295   ASSERT(this->length() == numbers->length());
8296   // For small arrays, simply use insertion sort.
8297   if (len <= 10) {
8298     InsertionSortPairs(this, numbers, len);
8299     return;
8300   }
8301   // Check the range of indices.
8302   uint32_t min_index = NumberToUint32(numbers->get(0));
8303   uint32_t max_index = min_index;
8304   uint32_t i;
8305   for (i = 1; i < len; i++) {
8306     if (NumberToUint32(numbers->get(i)) < min_index) {
8307       min_index = NumberToUint32(numbers->get(i));
8308     } else if (NumberToUint32(numbers->get(i)) > max_index) {
8309       max_index = NumberToUint32(numbers->get(i));
8310     }
8311   }
8312   if (max_index - min_index + 1 == len) {
8313     // Indices form a contiguous range, unless there are duplicates.
8314     // Do an in-place linear time sort assuming distinct numbers, but
8315     // avoid hanging in case they are not.
8316     for (i = 0; i < len; i++) {
8317       uint32_t p;
8318       uint32_t j = 0;
8319       // While the current element at i is not at its correct position p,
8320       // swap the elements at these two positions.
8321       while ((p = NumberToUint32(numbers->get(i)) - min_index) != i &&
8322              j++ < len) {
8323         SwapPairs(numbers, i, p);
8324       }
8325     }
8326   } else {
8327     HeapSortPairs(this, numbers, len);
8328     return;
8329   }
8330 }
8331 
8332 
8333 // Fill in the names of local properties into the supplied storage. The main
8334 // purpose of this function is to provide reflection information for the object
8335 // mirrors.
GetLocalPropertyNames(FixedArray * storage,int index)8336 void JSObject::GetLocalPropertyNames(FixedArray* storage, int index) {
8337   ASSERT(storage->length() >= (NumberOfLocalProperties(NONE) - index));
8338   if (HasFastProperties()) {
8339     DescriptorArray* descs = map()->instance_descriptors();
8340     for (int i = 0; i < descs->number_of_descriptors(); i++) {
8341       if (descs->IsProperty(i)) storage->set(index++, descs->GetKey(i));
8342     }
8343     ASSERT(storage->length() >= index);
8344   } else {
8345     property_dictionary()->CopyKeysTo(storage,
8346                                       index);
8347   }
8348 }
8349 
8350 
NumberOfLocalElements(PropertyAttributes filter)8351 int JSObject::NumberOfLocalElements(PropertyAttributes filter) {
8352   return GetLocalElementKeys(NULL, filter);
8353 }
8354 
8355 
NumberOfEnumElements()8356 int JSObject::NumberOfEnumElements() {
8357   // Fast case for objects with no elements.
8358   if (!IsJSValue() && HasFastElements()) {
8359     uint32_t length = IsJSArray() ?
8360         static_cast<uint32_t>(
8361             Smi::cast(JSArray::cast(this)->length())->value()) :
8362         static_cast<uint32_t>(FixedArray::cast(elements())->length());
8363     if (length == 0) return 0;
8364   }
8365   // Compute the number of enumerable elements.
8366   return NumberOfLocalElements(static_cast<PropertyAttributes>(DONT_ENUM));
8367 }
8368 
8369 
GetLocalElementKeys(FixedArray * storage,PropertyAttributes filter)8370 int JSObject::GetLocalElementKeys(FixedArray* storage,
8371                                   PropertyAttributes filter) {
8372   int counter = 0;
8373   switch (GetElementsKind()) {
8374     case FAST_ELEMENTS: {
8375       int length = IsJSArray() ?
8376           Smi::cast(JSArray::cast(this)->length())->value() :
8377           FixedArray::cast(elements())->length();
8378       for (int i = 0; i < length; i++) {
8379         if (!FixedArray::cast(elements())->get(i)->IsTheHole()) {
8380           if (storage != NULL) {
8381             storage->set(counter, Smi::FromInt(i));
8382           }
8383           counter++;
8384         }
8385       }
8386       ASSERT(!storage || storage->length() >= counter);
8387       break;
8388     }
8389     case EXTERNAL_PIXEL_ELEMENTS: {
8390       int length = ExternalPixelArray::cast(elements())->length();
8391       while (counter < length) {
8392         if (storage != NULL) {
8393           storage->set(counter, Smi::FromInt(counter));
8394         }
8395         counter++;
8396       }
8397       ASSERT(!storage || storage->length() >= counter);
8398       break;
8399     }
8400     case EXTERNAL_BYTE_ELEMENTS:
8401     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
8402     case EXTERNAL_SHORT_ELEMENTS:
8403     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
8404     case EXTERNAL_INT_ELEMENTS:
8405     case EXTERNAL_UNSIGNED_INT_ELEMENTS:
8406     case EXTERNAL_FLOAT_ELEMENTS: {
8407       int length = ExternalArray::cast(elements())->length();
8408       while (counter < length) {
8409         if (storage != NULL) {
8410           storage->set(counter, Smi::FromInt(counter));
8411         }
8412         counter++;
8413       }
8414       ASSERT(!storage || storage->length() >= counter);
8415       break;
8416     }
8417     case DICTIONARY_ELEMENTS: {
8418       if (storage != NULL) {
8419         element_dictionary()->CopyKeysTo(storage, filter);
8420       }
8421       counter = element_dictionary()->NumberOfElementsFilterAttributes(filter);
8422       break;
8423     }
8424     default:
8425       UNREACHABLE();
8426       break;
8427   }
8428 
8429   if (this->IsJSValue()) {
8430     Object* val = JSValue::cast(this)->value();
8431     if (val->IsString()) {
8432       String* str = String::cast(val);
8433       if (storage) {
8434         for (int i = 0; i < str->length(); i++) {
8435           storage->set(counter + i, Smi::FromInt(i));
8436         }
8437       }
8438       counter += str->length();
8439     }
8440   }
8441   ASSERT(!storage || storage->length() == counter);
8442   return counter;
8443 }
8444 
8445 
GetEnumElementKeys(FixedArray * storage)8446 int JSObject::GetEnumElementKeys(FixedArray* storage) {
8447   return GetLocalElementKeys(storage,
8448                              static_cast<PropertyAttributes>(DONT_ENUM));
8449 }
8450 
8451 
8452 // StringKey simply carries a string object as key.
8453 class StringKey : public HashTableKey {
8454  public:
StringKey(String * string)8455   explicit StringKey(String* string) :
8456       string_(string),
8457       hash_(HashForObject(string)) { }
8458 
IsMatch(Object * string)8459   bool IsMatch(Object* string) {
8460     // We know that all entries in a hash table had their hash keys created.
8461     // Use that knowledge to have fast failure.
8462     if (hash_ != HashForObject(string)) {
8463       return false;
8464     }
8465     return string_->Equals(String::cast(string));
8466   }
8467 
Hash()8468   uint32_t Hash() { return hash_; }
8469 
HashForObject(Object * other)8470   uint32_t HashForObject(Object* other) { return String::cast(other)->Hash(); }
8471 
AsObject()8472   Object* AsObject() { return string_; }
8473 
8474   String* string_;
8475   uint32_t hash_;
8476 };
8477 
8478 
8479 // StringSharedKeys are used as keys in the eval cache.
8480 class StringSharedKey : public HashTableKey {
8481  public:
StringSharedKey(String * source,SharedFunctionInfo * shared,StrictModeFlag strict_mode)8482   StringSharedKey(String* source,
8483                   SharedFunctionInfo* shared,
8484                   StrictModeFlag strict_mode)
8485       : source_(source),
8486         shared_(shared),
8487         strict_mode_(strict_mode) { }
8488 
IsMatch(Object * other)8489   bool IsMatch(Object* other) {
8490     if (!other->IsFixedArray()) return false;
8491     FixedArray* pair = FixedArray::cast(other);
8492     SharedFunctionInfo* shared = SharedFunctionInfo::cast(pair->get(0));
8493     if (shared != shared_) return false;
8494     StrictModeFlag strict_mode = static_cast<StrictModeFlag>(
8495         Smi::cast(pair->get(2))->value());
8496     if (strict_mode != strict_mode_) return false;
8497     String* source = String::cast(pair->get(1));
8498     return source->Equals(source_);
8499   }
8500 
StringSharedHashHelper(String * source,SharedFunctionInfo * shared,StrictModeFlag strict_mode)8501   static uint32_t StringSharedHashHelper(String* source,
8502                                          SharedFunctionInfo* shared,
8503                                          StrictModeFlag strict_mode) {
8504     uint32_t hash = source->Hash();
8505     if (shared->HasSourceCode()) {
8506       // Instead of using the SharedFunctionInfo pointer in the hash
8507       // code computation, we use a combination of the hash of the
8508       // script source code and the start and end positions.  We do
8509       // this to ensure that the cache entries can survive garbage
8510       // collection.
8511       Script* script = Script::cast(shared->script());
8512       hash ^= String::cast(script->source())->Hash();
8513       if (strict_mode == kStrictMode) hash ^= 0x8000;
8514       hash += shared->start_position();
8515     }
8516     return hash;
8517   }
8518 
Hash()8519   uint32_t Hash() {
8520     return StringSharedHashHelper(source_, shared_, strict_mode_);
8521   }
8522 
HashForObject(Object * obj)8523   uint32_t HashForObject(Object* obj) {
8524     FixedArray* pair = FixedArray::cast(obj);
8525     SharedFunctionInfo* shared = SharedFunctionInfo::cast(pair->get(0));
8526     String* source = String::cast(pair->get(1));
8527     StrictModeFlag strict_mode = static_cast<StrictModeFlag>(
8528         Smi::cast(pair->get(2))->value());
8529     return StringSharedHashHelper(source, shared, strict_mode);
8530   }
8531 
AsObject()8532   MUST_USE_RESULT MaybeObject* AsObject() {
8533     Object* obj;
8534     { MaybeObject* maybe_obj = source_->GetHeap()->AllocateFixedArray(3);
8535       if (!maybe_obj->ToObject(&obj)) return maybe_obj;
8536     }
8537     FixedArray* pair = FixedArray::cast(obj);
8538     pair->set(0, shared_);
8539     pair->set(1, source_);
8540     pair->set(2, Smi::FromInt(strict_mode_));
8541     return pair;
8542   }
8543 
8544  private:
8545   String* source_;
8546   SharedFunctionInfo* shared_;
8547   StrictModeFlag strict_mode_;
8548 };
8549 
8550 
8551 // RegExpKey carries the source and flags of a regular expression as key.
8552 class RegExpKey : public HashTableKey {
8553  public:
RegExpKey(String * string,JSRegExp::Flags flags)8554   RegExpKey(String* string, JSRegExp::Flags flags)
8555       : string_(string),
8556         flags_(Smi::FromInt(flags.value())) { }
8557 
8558   // Rather than storing the key in the hash table, a pointer to the
8559   // stored value is stored where the key should be.  IsMatch then
8560   // compares the search key to the found object, rather than comparing
8561   // a key to a key.
IsMatch(Object * obj)8562   bool IsMatch(Object* obj) {
8563     FixedArray* val = FixedArray::cast(obj);
8564     return string_->Equals(String::cast(val->get(JSRegExp::kSourceIndex)))
8565         && (flags_ == val->get(JSRegExp::kFlagsIndex));
8566   }
8567 
Hash()8568   uint32_t Hash() { return RegExpHash(string_, flags_); }
8569 
AsObject()8570   Object* AsObject() {
8571     // Plain hash maps, which is where regexp keys are used, don't
8572     // use this function.
8573     UNREACHABLE();
8574     return NULL;
8575   }
8576 
HashForObject(Object * obj)8577   uint32_t HashForObject(Object* obj) {
8578     FixedArray* val = FixedArray::cast(obj);
8579     return RegExpHash(String::cast(val->get(JSRegExp::kSourceIndex)),
8580                       Smi::cast(val->get(JSRegExp::kFlagsIndex)));
8581   }
8582 
RegExpHash(String * string,Smi * flags)8583   static uint32_t RegExpHash(String* string, Smi* flags) {
8584     return string->Hash() + flags->value();
8585   }
8586 
8587   String* string_;
8588   Smi* flags_;
8589 };
8590 
8591 // Utf8SymbolKey carries a vector of chars as key.
8592 class Utf8SymbolKey : public HashTableKey {
8593  public:
Utf8SymbolKey(Vector<const char> string)8594   explicit Utf8SymbolKey(Vector<const char> string)
8595       : string_(string), hash_field_(0) { }
8596 
IsMatch(Object * string)8597   bool IsMatch(Object* string) {
8598     return String::cast(string)->IsEqualTo(string_);
8599   }
8600 
Hash()8601   uint32_t Hash() {
8602     if (hash_field_ != 0) return hash_field_ >> String::kHashShift;
8603     unibrow::Utf8InputBuffer<> buffer(string_.start(),
8604                                       static_cast<unsigned>(string_.length()));
8605     chars_ = buffer.Length();
8606     hash_field_ = String::ComputeHashField(&buffer, chars_);
8607     uint32_t result = hash_field_ >> String::kHashShift;
8608     ASSERT(result != 0);  // Ensure that the hash value of 0 is never computed.
8609     return result;
8610   }
8611 
HashForObject(Object * other)8612   uint32_t HashForObject(Object* other) {
8613     return String::cast(other)->Hash();
8614   }
8615 
AsObject()8616   MaybeObject* AsObject() {
8617     if (hash_field_ == 0) Hash();
8618     return Isolate::Current()->heap()->AllocateSymbol(
8619         string_, chars_, hash_field_);
8620   }
8621 
8622   Vector<const char> string_;
8623   uint32_t hash_field_;
8624   int chars_;  // Caches the number of characters when computing the hash code.
8625 };
8626 
8627 
8628 template <typename Char>
8629 class SequentialSymbolKey : public HashTableKey {
8630  public:
SequentialSymbolKey(Vector<const Char> string)8631   explicit SequentialSymbolKey(Vector<const Char> string)
8632       : string_(string), hash_field_(0) { }
8633 
Hash()8634   uint32_t Hash() {
8635     StringHasher hasher(string_.length());
8636 
8637     // Very long strings have a trivial hash that doesn't inspect the
8638     // string contents.
8639     if (hasher.has_trivial_hash()) {
8640       hash_field_ = hasher.GetHashField();
8641     } else {
8642       int i = 0;
8643       // Do the iterative array index computation as long as there is a
8644       // chance this is an array index.
8645       while (i < string_.length() && hasher.is_array_index()) {
8646         hasher.AddCharacter(static_cast<uc32>(string_[i]));
8647         i++;
8648       }
8649 
8650       // Process the remaining characters without updating the array
8651       // index.
8652       while (i < string_.length()) {
8653         hasher.AddCharacterNoIndex(static_cast<uc32>(string_[i]));
8654         i++;
8655       }
8656       hash_field_ = hasher.GetHashField();
8657     }
8658 
8659     uint32_t result = hash_field_ >> String::kHashShift;
8660     ASSERT(result != 0);  // Ensure that the hash value of 0 is never computed.
8661     return result;
8662   }
8663 
8664 
HashForObject(Object * other)8665   uint32_t HashForObject(Object* other) {
8666     return String::cast(other)->Hash();
8667   }
8668 
8669   Vector<const Char> string_;
8670   uint32_t hash_field_;
8671 };
8672 
8673 
8674 
8675 class AsciiSymbolKey : public SequentialSymbolKey<char> {
8676  public:
AsciiSymbolKey(Vector<const char> str)8677   explicit AsciiSymbolKey(Vector<const char> str)
8678       : SequentialSymbolKey<char>(str) { }
8679 
IsMatch(Object * string)8680   bool IsMatch(Object* string) {
8681     return String::cast(string)->IsAsciiEqualTo(string_);
8682   }
8683 
AsObject()8684   MaybeObject* AsObject() {
8685     if (hash_field_ == 0) Hash();
8686     return HEAP->AllocateAsciiSymbol(string_, hash_field_);
8687   }
8688 };
8689 
8690 
8691 class TwoByteSymbolKey : public SequentialSymbolKey<uc16> {
8692  public:
TwoByteSymbolKey(Vector<const uc16> str)8693   explicit TwoByteSymbolKey(Vector<const uc16> str)
8694       : SequentialSymbolKey<uc16>(str) { }
8695 
IsMatch(Object * string)8696   bool IsMatch(Object* string) {
8697     return String::cast(string)->IsTwoByteEqualTo(string_);
8698   }
8699 
AsObject()8700   MaybeObject* AsObject() {
8701     if (hash_field_ == 0) Hash();
8702     return HEAP->AllocateTwoByteSymbol(string_, hash_field_);
8703   }
8704 };
8705 
8706 
8707 // SymbolKey carries a string/symbol object as key.
8708 class SymbolKey : public HashTableKey {
8709  public:
SymbolKey(String * string)8710   explicit SymbolKey(String* string)
8711       : string_(string) { }
8712 
IsMatch(Object * string)8713   bool IsMatch(Object* string) {
8714     return String::cast(string)->Equals(string_);
8715   }
8716 
Hash()8717   uint32_t Hash() { return string_->Hash(); }
8718 
HashForObject(Object * other)8719   uint32_t HashForObject(Object* other) {
8720     return String::cast(other)->Hash();
8721   }
8722 
AsObject()8723   MaybeObject* AsObject() {
8724     // Attempt to flatten the string, so that symbols will most often
8725     // be flat strings.
8726     string_ = string_->TryFlattenGetString();
8727     Heap* heap = string_->GetHeap();
8728     // Transform string to symbol if possible.
8729     Map* map = heap->SymbolMapForString(string_);
8730     if (map != NULL) {
8731       string_->set_map(map);
8732       ASSERT(string_->IsSymbol());
8733       return string_;
8734     }
8735     // Otherwise allocate a new symbol.
8736     StringInputBuffer buffer(string_);
8737     return heap->AllocateInternalSymbol(&buffer,
8738                                         string_->length(),
8739                                         string_->hash_field());
8740   }
8741 
StringHash(Object * obj)8742   static uint32_t StringHash(Object* obj) {
8743     return String::cast(obj)->Hash();
8744   }
8745 
8746   String* string_;
8747 };
8748 
8749 
8750 template<typename Shape, typename Key>
IteratePrefix(ObjectVisitor * v)8751 void HashTable<Shape, Key>::IteratePrefix(ObjectVisitor* v) {
8752   IteratePointers(v, 0, kElementsStartOffset);
8753 }
8754 
8755 
8756 template<typename Shape, typename Key>
IterateElements(ObjectVisitor * v)8757 void HashTable<Shape, Key>::IterateElements(ObjectVisitor* v) {
8758   IteratePointers(v,
8759                   kElementsStartOffset,
8760                   kHeaderSize + length() * kPointerSize);
8761 }
8762 
8763 
8764 template<typename Shape, typename Key>
Allocate(int at_least_space_for,PretenureFlag pretenure)8765 MaybeObject* HashTable<Shape, Key>::Allocate(int at_least_space_for,
8766                                              PretenureFlag pretenure) {
8767   const int kMinCapacity = 32;
8768   int capacity = RoundUpToPowerOf2(at_least_space_for * 2);
8769   if (capacity < kMinCapacity) {
8770     capacity = kMinCapacity;  // Guarantee min capacity.
8771   } else if (capacity > HashTable::kMaxCapacity) {
8772     return Failure::OutOfMemoryException();
8773   }
8774 
8775   Object* obj;
8776   { MaybeObject* maybe_obj = Isolate::Current()->heap()->
8777         AllocateHashTable(EntryToIndex(capacity), pretenure);
8778     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
8779   }
8780   HashTable::cast(obj)->SetNumberOfElements(0);
8781   HashTable::cast(obj)->SetNumberOfDeletedElements(0);
8782   HashTable::cast(obj)->SetCapacity(capacity);
8783   return obj;
8784 }
8785 
8786 
8787 // Find entry for key otherwise return kNotFound.
FindEntry(String * key)8788 int StringDictionary::FindEntry(String* key) {
8789   if (!key->IsSymbol()) {
8790     return HashTable<StringDictionaryShape, String*>::FindEntry(key);
8791   }
8792 
8793   // Optimized for symbol key. Knowledge of the key type allows:
8794   // 1. Move the check if the key is a symbol out of the loop.
8795   // 2. Avoid comparing hash codes in symbol to symbol comparision.
8796   // 3. Detect a case when a dictionary key is not a symbol but the key is.
8797   //    In case of positive result the dictionary key may be replaced by
8798   //    the symbol with minimal performance penalty. It gives a chance to
8799   //    perform further lookups in code stubs (and significant performance boost
8800   //    a certain style of code).
8801 
8802   // EnsureCapacity will guarantee the hash table is never full.
8803   uint32_t capacity = Capacity();
8804   uint32_t entry = FirstProbe(key->Hash(), capacity);
8805   uint32_t count = 1;
8806 
8807   while (true) {
8808     int index = EntryToIndex(entry);
8809     Object* element = get(index);
8810     if (element->IsUndefined()) break;  // Empty entry.
8811     if (key == element) return entry;
8812     if (!element->IsSymbol() &&
8813         !element->IsNull() &&
8814         String::cast(element)->Equals(key)) {
8815       // Replace a non-symbol key by the equivalent symbol for faster further
8816       // lookups.
8817       set(index, key);
8818       return entry;
8819     }
8820     ASSERT(element->IsNull() || !String::cast(element)->Equals(key));
8821     entry = NextProbe(entry, count++, capacity);
8822   }
8823   return kNotFound;
8824 }
8825 
8826 
8827 template<typename Shape, typename Key>
EnsureCapacity(int n,Key key)8828 MaybeObject* HashTable<Shape, Key>::EnsureCapacity(int n, Key key) {
8829   int capacity = Capacity();
8830   int nof = NumberOfElements() + n;
8831   int nod = NumberOfDeletedElements();
8832   // Return if:
8833   //   50% is still free after adding n elements and
8834   //   at most 50% of the free elements are deleted elements.
8835   if (nod <= (capacity - nof) >> 1) {
8836     int needed_free = nof >> 1;
8837     if (nof + needed_free <= capacity) return this;
8838   }
8839 
8840   const int kMinCapacityForPretenure = 256;
8841   bool pretenure =
8842       (capacity > kMinCapacityForPretenure) && !GetHeap()->InNewSpace(this);
8843   Object* obj;
8844   { MaybeObject* maybe_obj =
8845         Allocate(nof * 2, pretenure ? TENURED : NOT_TENURED);
8846     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
8847   }
8848 
8849   AssertNoAllocation no_gc;
8850   HashTable* table = HashTable::cast(obj);
8851   WriteBarrierMode mode = table->GetWriteBarrierMode(no_gc);
8852 
8853   // Copy prefix to new array.
8854   for (int i = kPrefixStartIndex;
8855        i < kPrefixStartIndex + Shape::kPrefixSize;
8856        i++) {
8857     table->set(i, get(i), mode);
8858   }
8859   // Rehash the elements.
8860   for (int i = 0; i < capacity; i++) {
8861     uint32_t from_index = EntryToIndex(i);
8862     Object* k = get(from_index);
8863     if (IsKey(k)) {
8864       uint32_t hash = Shape::HashForObject(key, k);
8865       uint32_t insertion_index =
8866           EntryToIndex(table->FindInsertionEntry(hash));
8867       for (int j = 0; j < Shape::kEntrySize; j++) {
8868         table->set(insertion_index + j, get(from_index + j), mode);
8869       }
8870     }
8871   }
8872   table->SetNumberOfElements(NumberOfElements());
8873   table->SetNumberOfDeletedElements(0);
8874   return table;
8875 }
8876 
8877 
8878 template<typename Shape, typename Key>
FindInsertionEntry(uint32_t hash)8879 uint32_t HashTable<Shape, Key>::FindInsertionEntry(uint32_t hash) {
8880   uint32_t capacity = Capacity();
8881   uint32_t entry = FirstProbe(hash, capacity);
8882   uint32_t count = 1;
8883   // EnsureCapacity will guarantee the hash table is never full.
8884   while (true) {
8885     Object* element = KeyAt(entry);
8886     if (element->IsUndefined() || element->IsNull()) break;
8887     entry = NextProbe(entry, count++, capacity);
8888   }
8889   return entry;
8890 }
8891 
8892 // Force instantiation of template instances class.
8893 // Please note this list is compiler dependent.
8894 
8895 template class HashTable<SymbolTableShape, HashTableKey*>;
8896 
8897 template class HashTable<CompilationCacheShape, HashTableKey*>;
8898 
8899 template class HashTable<MapCacheShape, HashTableKey*>;
8900 
8901 template class Dictionary<StringDictionaryShape, String*>;
8902 
8903 template class Dictionary<NumberDictionaryShape, uint32_t>;
8904 
8905 template MaybeObject* Dictionary<NumberDictionaryShape, uint32_t>::Allocate(
8906     int);
8907 
8908 template MaybeObject* Dictionary<StringDictionaryShape, String*>::Allocate(
8909     int);
8910 
8911 template MaybeObject* Dictionary<NumberDictionaryShape, uint32_t>::AtPut(
8912     uint32_t, Object*);
8913 
8914 template Object* Dictionary<NumberDictionaryShape, uint32_t>::SlowReverseLookup(
8915     Object*);
8916 
8917 template Object* Dictionary<StringDictionaryShape, String*>::SlowReverseLookup(
8918     Object*);
8919 
8920 template void Dictionary<NumberDictionaryShape, uint32_t>::CopyKeysTo(
8921     FixedArray*, PropertyAttributes);
8922 
8923 template Object* Dictionary<StringDictionaryShape, String*>::DeleteProperty(
8924     int, JSObject::DeleteMode);
8925 
8926 template Object* Dictionary<NumberDictionaryShape, uint32_t>::DeleteProperty(
8927     int, JSObject::DeleteMode);
8928 
8929 template void Dictionary<StringDictionaryShape, String*>::CopyKeysTo(
8930     FixedArray*, int);
8931 
8932 template int
8933 Dictionary<StringDictionaryShape, String*>::NumberOfElementsFilterAttributes(
8934     PropertyAttributes);
8935 
8936 template MaybeObject* Dictionary<StringDictionaryShape, String*>::Add(
8937     String*, Object*, PropertyDetails);
8938 
8939 template MaybeObject*
8940 Dictionary<StringDictionaryShape, String*>::GenerateNewEnumerationIndices();
8941 
8942 template int
8943 Dictionary<NumberDictionaryShape, uint32_t>::NumberOfElementsFilterAttributes(
8944     PropertyAttributes);
8945 
8946 template MaybeObject* Dictionary<NumberDictionaryShape, uint32_t>::Add(
8947     uint32_t, Object*, PropertyDetails);
8948 
8949 template MaybeObject* Dictionary<NumberDictionaryShape, uint32_t>::
8950     EnsureCapacity(int, uint32_t);
8951 
8952 template MaybeObject* Dictionary<StringDictionaryShape, String*>::
8953     EnsureCapacity(int, String*);
8954 
8955 template MaybeObject* Dictionary<NumberDictionaryShape, uint32_t>::AddEntry(
8956     uint32_t, Object*, PropertyDetails, uint32_t);
8957 
8958 template MaybeObject* Dictionary<StringDictionaryShape, String*>::AddEntry(
8959     String*, Object*, PropertyDetails, uint32_t);
8960 
8961 template
8962 int Dictionary<NumberDictionaryShape, uint32_t>::NumberOfEnumElements();
8963 
8964 template
8965 int Dictionary<StringDictionaryShape, String*>::NumberOfEnumElements();
8966 
8967 template
8968 int HashTable<NumberDictionaryShape, uint32_t>::FindEntry(uint32_t);
8969 
8970 
8971 // Collates undefined and unexisting elements below limit from position
8972 // zero of the elements. The object stays in Dictionary mode.
PrepareSlowElementsForSort(uint32_t limit)8973 MaybeObject* JSObject::PrepareSlowElementsForSort(uint32_t limit) {
8974   ASSERT(HasDictionaryElements());
8975   // Must stay in dictionary mode, either because of requires_slow_elements,
8976   // or because we are not going to sort (and therefore compact) all of the
8977   // elements.
8978   NumberDictionary* dict = element_dictionary();
8979   HeapNumber* result_double = NULL;
8980   if (limit > static_cast<uint32_t>(Smi::kMaxValue)) {
8981     // Allocate space for result before we start mutating the object.
8982     Object* new_double;
8983     { MaybeObject* maybe_new_double = GetHeap()->AllocateHeapNumber(0.0);
8984       if (!maybe_new_double->ToObject(&new_double)) return maybe_new_double;
8985     }
8986     result_double = HeapNumber::cast(new_double);
8987   }
8988 
8989   Object* obj;
8990   { MaybeObject* maybe_obj =
8991         NumberDictionary::Allocate(dict->NumberOfElements());
8992     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
8993   }
8994   NumberDictionary* new_dict = NumberDictionary::cast(obj);
8995 
8996   AssertNoAllocation no_alloc;
8997 
8998   uint32_t pos = 0;
8999   uint32_t undefs = 0;
9000   int capacity = dict->Capacity();
9001   for (int i = 0; i < capacity; i++) {
9002     Object* k = dict->KeyAt(i);
9003     if (dict->IsKey(k)) {
9004       ASSERT(k->IsNumber());
9005       ASSERT(!k->IsSmi() || Smi::cast(k)->value() >= 0);
9006       ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() >= 0);
9007       ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() <= kMaxUInt32);
9008       Object* value = dict->ValueAt(i);
9009       PropertyDetails details = dict->DetailsAt(i);
9010       if (details.type() == CALLBACKS) {
9011         // Bail out and do the sorting of undefineds and array holes in JS.
9012         return Smi::FromInt(-1);
9013       }
9014       uint32_t key = NumberToUint32(k);
9015       // In the following we assert that adding the entry to the new dictionary
9016       // does not cause GC.  This is the case because we made sure to allocate
9017       // the dictionary big enough above, so it need not grow.
9018       if (key < limit) {
9019         if (value->IsUndefined()) {
9020           undefs++;
9021         } else {
9022           if (pos > static_cast<uint32_t>(Smi::kMaxValue)) {
9023             // Adding an entry with the key beyond smi-range requires
9024             // allocation. Bailout.
9025             return Smi::FromInt(-1);
9026           }
9027           new_dict->AddNumberEntry(pos, value, details)->ToObjectUnchecked();
9028           pos++;
9029         }
9030       } else {
9031         if (key > static_cast<uint32_t>(Smi::kMaxValue)) {
9032           // Adding an entry with the key beyond smi-range requires
9033           // allocation. Bailout.
9034           return Smi::FromInt(-1);
9035         }
9036         new_dict->AddNumberEntry(key, value, details)->ToObjectUnchecked();
9037       }
9038     }
9039   }
9040 
9041   uint32_t result = pos;
9042   PropertyDetails no_details = PropertyDetails(NONE, NORMAL);
9043   Heap* heap = GetHeap();
9044   while (undefs > 0) {
9045     if (pos > static_cast<uint32_t>(Smi::kMaxValue)) {
9046       // Adding an entry with the key beyond smi-range requires
9047       // allocation. Bailout.
9048       return Smi::FromInt(-1);
9049     }
9050     new_dict->AddNumberEntry(pos, heap->undefined_value(), no_details)->
9051         ToObjectUnchecked();
9052     pos++;
9053     undefs--;
9054   }
9055 
9056   set_elements(new_dict);
9057 
9058   if (result <= static_cast<uint32_t>(Smi::kMaxValue)) {
9059     return Smi::FromInt(static_cast<int>(result));
9060   }
9061 
9062   ASSERT_NE(NULL, result_double);
9063   result_double->set_value(static_cast<double>(result));
9064   return result_double;
9065 }
9066 
9067 
9068 // Collects all defined (non-hole) and non-undefined (array) elements at
9069 // the start of the elements array.
9070 // If the object is in dictionary mode, it is converted to fast elements
9071 // mode.
PrepareElementsForSort(uint32_t limit)9072 MaybeObject* JSObject::PrepareElementsForSort(uint32_t limit) {
9073   ASSERT(!HasExternalArrayElements());
9074 
9075   Heap* heap = GetHeap();
9076 
9077   if (HasDictionaryElements()) {
9078     // Convert to fast elements containing only the existing properties.
9079     // Ordering is irrelevant, since we are going to sort anyway.
9080     NumberDictionary* dict = element_dictionary();
9081     if (IsJSArray() || dict->requires_slow_elements() ||
9082         dict->max_number_key() >= limit) {
9083       return PrepareSlowElementsForSort(limit);
9084     }
9085     // Convert to fast elements.
9086 
9087     Object* obj;
9088     { MaybeObject* maybe_obj = map()->GetFastElementsMap();
9089       if (!maybe_obj->ToObject(&obj)) return maybe_obj;
9090     }
9091     Map* new_map = Map::cast(obj);
9092 
9093     PretenureFlag tenure = heap->InNewSpace(this) ? NOT_TENURED: TENURED;
9094     Object* new_array;
9095     { MaybeObject* maybe_new_array =
9096           heap->AllocateFixedArray(dict->NumberOfElements(), tenure);
9097       if (!maybe_new_array->ToObject(&new_array)) return maybe_new_array;
9098     }
9099     FixedArray* fast_elements = FixedArray::cast(new_array);
9100     dict->CopyValuesTo(fast_elements);
9101 
9102     set_map(new_map);
9103     set_elements(fast_elements);
9104   } else {
9105     Object* obj;
9106     { MaybeObject* maybe_obj = EnsureWritableFastElements();
9107       if (!maybe_obj->ToObject(&obj)) return maybe_obj;
9108     }
9109   }
9110   ASSERT(HasFastElements());
9111 
9112   // Collect holes at the end, undefined before that and the rest at the
9113   // start, and return the number of non-hole, non-undefined values.
9114 
9115   FixedArray* elements = FixedArray::cast(this->elements());
9116   uint32_t elements_length = static_cast<uint32_t>(elements->length());
9117   if (limit > elements_length) {
9118     limit = elements_length ;
9119   }
9120   if (limit == 0) {
9121     return Smi::FromInt(0);
9122   }
9123 
9124   HeapNumber* result_double = NULL;
9125   if (limit > static_cast<uint32_t>(Smi::kMaxValue)) {
9126     // Pessimistically allocate space for return value before
9127     // we start mutating the array.
9128     Object* new_double;
9129     { MaybeObject* maybe_new_double = heap->AllocateHeapNumber(0.0);
9130       if (!maybe_new_double->ToObject(&new_double)) return maybe_new_double;
9131     }
9132     result_double = HeapNumber::cast(new_double);
9133   }
9134 
9135   AssertNoAllocation no_alloc;
9136 
9137   // Split elements into defined, undefined and the_hole, in that order.
9138   // Only count locations for undefined and the hole, and fill them afterwards.
9139   WriteBarrierMode write_barrier = elements->GetWriteBarrierMode(no_alloc);
9140   unsigned int undefs = limit;
9141   unsigned int holes = limit;
9142   // Assume most arrays contain no holes and undefined values, so minimize the
9143   // number of stores of non-undefined, non-the-hole values.
9144   for (unsigned int i = 0; i < undefs; i++) {
9145     Object* current = elements->get(i);
9146     if (current->IsTheHole()) {
9147       holes--;
9148       undefs--;
9149     } else if (current->IsUndefined()) {
9150       undefs--;
9151     } else {
9152       continue;
9153     }
9154     // Position i needs to be filled.
9155     while (undefs > i) {
9156       current = elements->get(undefs);
9157       if (current->IsTheHole()) {
9158         holes--;
9159         undefs--;
9160       } else if (current->IsUndefined()) {
9161         undefs--;
9162       } else {
9163         elements->set(i, current, write_barrier);
9164         break;
9165       }
9166     }
9167   }
9168   uint32_t result = undefs;
9169   while (undefs < holes) {
9170     elements->set_undefined(undefs);
9171     undefs++;
9172   }
9173   while (holes < limit) {
9174     elements->set_the_hole(holes);
9175     holes++;
9176   }
9177 
9178   if (result <= static_cast<uint32_t>(Smi::kMaxValue)) {
9179     return Smi::FromInt(static_cast<int>(result));
9180   }
9181   ASSERT_NE(NULL, result_double);
9182   result_double->set_value(static_cast<double>(result));
9183   return result_double;
9184 }
9185 
9186 
SetValue(uint32_t index,Object * value)9187 Object* ExternalPixelArray::SetValue(uint32_t index, Object* value) {
9188   uint8_t clamped_value = 0;
9189   if (index < static_cast<uint32_t>(length())) {
9190     if (value->IsSmi()) {
9191       int int_value = Smi::cast(value)->value();
9192       if (int_value < 0) {
9193         clamped_value = 0;
9194       } else if (int_value > 255) {
9195         clamped_value = 255;
9196       } else {
9197         clamped_value = static_cast<uint8_t>(int_value);
9198       }
9199     } else if (value->IsHeapNumber()) {
9200       double double_value = HeapNumber::cast(value)->value();
9201       if (!(double_value > 0)) {
9202         // NaN and less than zero clamp to zero.
9203         clamped_value = 0;
9204       } else if (double_value > 255) {
9205         // Greater than 255 clamp to 255.
9206         clamped_value = 255;
9207       } else {
9208         // Other doubles are rounded to the nearest integer.
9209         clamped_value = static_cast<uint8_t>(double_value + 0.5);
9210       }
9211     } else {
9212       // Clamp undefined to zero (default). All other types have been
9213       // converted to a number type further up in the call chain.
9214       ASSERT(value->IsUndefined());
9215     }
9216     set(index, clamped_value);
9217   }
9218   return Smi::FromInt(clamped_value);
9219 }
9220 
9221 
9222 template<typename ExternalArrayClass, typename ValueType>
ExternalArrayIntSetter(Heap * heap,ExternalArrayClass * receiver,uint32_t index,Object * value)9223 static MaybeObject* ExternalArrayIntSetter(Heap* heap,
9224                                            ExternalArrayClass* receiver,
9225                                            uint32_t index,
9226                                            Object* value) {
9227   ValueType cast_value = 0;
9228   if (index < static_cast<uint32_t>(receiver->length())) {
9229     if (value->IsSmi()) {
9230       int int_value = Smi::cast(value)->value();
9231       cast_value = static_cast<ValueType>(int_value);
9232     } else if (value->IsHeapNumber()) {
9233       double double_value = HeapNumber::cast(value)->value();
9234       cast_value = static_cast<ValueType>(DoubleToInt32(double_value));
9235     } else {
9236       // Clamp undefined to zero (default). All other types have been
9237       // converted to a number type further up in the call chain.
9238       ASSERT(value->IsUndefined());
9239     }
9240     receiver->set(index, cast_value);
9241   }
9242   return heap->NumberFromInt32(cast_value);
9243 }
9244 
9245 
SetValue(uint32_t index,Object * value)9246 MaybeObject* ExternalByteArray::SetValue(uint32_t index, Object* value) {
9247   return ExternalArrayIntSetter<ExternalByteArray, int8_t>
9248       (GetHeap(), this, index, value);
9249 }
9250 
9251 
SetValue(uint32_t index,Object * value)9252 MaybeObject* ExternalUnsignedByteArray::SetValue(uint32_t index,
9253                                                  Object* value) {
9254   return ExternalArrayIntSetter<ExternalUnsignedByteArray, uint8_t>
9255       (GetHeap(), this, index, value);
9256 }
9257 
9258 
SetValue(uint32_t index,Object * value)9259 MaybeObject* ExternalShortArray::SetValue(uint32_t index,
9260                                           Object* value) {
9261   return ExternalArrayIntSetter<ExternalShortArray, int16_t>
9262       (GetHeap(), this, index, value);
9263 }
9264 
9265 
SetValue(uint32_t index,Object * value)9266 MaybeObject* ExternalUnsignedShortArray::SetValue(uint32_t index,
9267                                                   Object* value) {
9268   return ExternalArrayIntSetter<ExternalUnsignedShortArray, uint16_t>
9269       (GetHeap(), this, index, value);
9270 }
9271 
9272 
SetValue(uint32_t index,Object * value)9273 MaybeObject* ExternalIntArray::SetValue(uint32_t index, Object* value) {
9274   return ExternalArrayIntSetter<ExternalIntArray, int32_t>
9275       (GetHeap(), this, index, value);
9276 }
9277 
9278 
SetValue(uint32_t index,Object * value)9279 MaybeObject* ExternalUnsignedIntArray::SetValue(uint32_t index, Object* value) {
9280   uint32_t cast_value = 0;
9281   Heap* heap = GetHeap();
9282   if (index < static_cast<uint32_t>(length())) {
9283     if (value->IsSmi()) {
9284       int int_value = Smi::cast(value)->value();
9285       cast_value = static_cast<uint32_t>(int_value);
9286     } else if (value->IsHeapNumber()) {
9287       double double_value = HeapNumber::cast(value)->value();
9288       cast_value = static_cast<uint32_t>(DoubleToUint32(double_value));
9289     } else {
9290       // Clamp undefined to zero (default). All other types have been
9291       // converted to a number type further up in the call chain.
9292       ASSERT(value->IsUndefined());
9293     }
9294     set(index, cast_value);
9295   }
9296   return heap->NumberFromUint32(cast_value);
9297 }
9298 
9299 
SetValue(uint32_t index,Object * value)9300 MaybeObject* ExternalFloatArray::SetValue(uint32_t index, Object* value) {
9301   float cast_value = 0;
9302   Heap* heap = GetHeap();
9303   if (index < static_cast<uint32_t>(length())) {
9304     if (value->IsSmi()) {
9305       int int_value = Smi::cast(value)->value();
9306       cast_value = static_cast<float>(int_value);
9307     } else if (value->IsHeapNumber()) {
9308       double double_value = HeapNumber::cast(value)->value();
9309       cast_value = static_cast<float>(double_value);
9310     } else {
9311       // Clamp undefined to zero (default). All other types have been
9312       // converted to a number type further up in the call chain.
9313       ASSERT(value->IsUndefined());
9314     }
9315     set(index, cast_value);
9316   }
9317   return heap->AllocateHeapNumber(cast_value);
9318 }
9319 
9320 
GetPropertyCell(LookupResult * result)9321 JSGlobalPropertyCell* GlobalObject::GetPropertyCell(LookupResult* result) {
9322   ASSERT(!HasFastProperties());
9323   Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry());
9324   return JSGlobalPropertyCell::cast(value);
9325 }
9326 
9327 
EnsurePropertyCell(String * name)9328 MaybeObject* GlobalObject::EnsurePropertyCell(String* name) {
9329   ASSERT(!HasFastProperties());
9330   int entry = property_dictionary()->FindEntry(name);
9331   if (entry == StringDictionary::kNotFound) {
9332     Heap* heap = GetHeap();
9333     Object* cell;
9334     { MaybeObject* maybe_cell =
9335           heap->AllocateJSGlobalPropertyCell(heap->the_hole_value());
9336       if (!maybe_cell->ToObject(&cell)) return maybe_cell;
9337     }
9338     PropertyDetails details(NONE, NORMAL);
9339     details = details.AsDeleted();
9340     Object* dictionary;
9341     { MaybeObject* maybe_dictionary =
9342           property_dictionary()->Add(name, cell, details);
9343       if (!maybe_dictionary->ToObject(&dictionary)) return maybe_dictionary;
9344     }
9345     set_properties(StringDictionary::cast(dictionary));
9346     return cell;
9347   } else {
9348     Object* value = property_dictionary()->ValueAt(entry);
9349     ASSERT(value->IsJSGlobalPropertyCell());
9350     return value;
9351   }
9352 }
9353 
9354 
LookupString(String * string,Object ** s)9355 MaybeObject* SymbolTable::LookupString(String* string, Object** s) {
9356   SymbolKey key(string);
9357   return LookupKey(&key, s);
9358 }
9359 
9360 
9361 // This class is used for looking up two character strings in the symbol table.
9362 // If we don't have a hit we don't want to waste much time so we unroll the
9363 // string hash calculation loop here for speed.  Doesn't work if the two
9364 // characters form a decimal integer, since such strings have a different hash
9365 // algorithm.
9366 class TwoCharHashTableKey : public HashTableKey {
9367  public:
TwoCharHashTableKey(uint32_t c1,uint32_t c2)9368   TwoCharHashTableKey(uint32_t c1, uint32_t c2)
9369     : c1_(c1), c2_(c2) {
9370     // Char 1.
9371     uint32_t hash = c1 + (c1 << 10);
9372     hash ^= hash >> 6;
9373     // Char 2.
9374     hash += c2;
9375     hash += hash << 10;
9376     hash ^= hash >> 6;
9377     // GetHash.
9378     hash += hash << 3;
9379     hash ^= hash >> 11;
9380     hash += hash << 15;
9381     if (hash == 0) hash = 27;
9382 #ifdef DEBUG
9383     StringHasher hasher(2);
9384     hasher.AddCharacter(c1);
9385     hasher.AddCharacter(c2);
9386     // If this assert fails then we failed to reproduce the two-character
9387     // version of the string hashing algorithm above.  One reason could be
9388     // that we were passed two digits as characters, since the hash
9389     // algorithm is different in that case.
9390     ASSERT_EQ(static_cast<int>(hasher.GetHash()), static_cast<int>(hash));
9391 #endif
9392     hash_ = hash;
9393   }
9394 
IsMatch(Object * o)9395   bool IsMatch(Object* o) {
9396     if (!o->IsString()) return false;
9397     String* other = String::cast(o);
9398     if (other->length() != 2) return false;
9399     if (other->Get(0) != c1_) return false;
9400     return other->Get(1) == c2_;
9401   }
9402 
Hash()9403   uint32_t Hash() { return hash_; }
HashForObject(Object * key)9404   uint32_t HashForObject(Object* key) {
9405     if (!key->IsString()) return 0;
9406     return String::cast(key)->Hash();
9407   }
9408 
AsObject()9409   Object* AsObject() {
9410     // The TwoCharHashTableKey is only used for looking in the symbol
9411     // table, not for adding to it.
9412     UNREACHABLE();
9413     return NULL;
9414   }
9415  private:
9416   uint32_t c1_;
9417   uint32_t c2_;
9418   uint32_t hash_;
9419 };
9420 
9421 
LookupSymbolIfExists(String * string,String ** symbol)9422 bool SymbolTable::LookupSymbolIfExists(String* string, String** symbol) {
9423   SymbolKey key(string);
9424   int entry = FindEntry(&key);
9425   if (entry == kNotFound) {
9426     return false;
9427   } else {
9428     String* result = String::cast(KeyAt(entry));
9429     ASSERT(StringShape(result).IsSymbol());
9430     *symbol = result;
9431     return true;
9432   }
9433 }
9434 
9435 
LookupTwoCharsSymbolIfExists(uint32_t c1,uint32_t c2,String ** symbol)9436 bool SymbolTable::LookupTwoCharsSymbolIfExists(uint32_t c1,
9437                                                uint32_t c2,
9438                                                String** symbol) {
9439   TwoCharHashTableKey key(c1, c2);
9440   int entry = FindEntry(&key);
9441   if (entry == kNotFound) {
9442     return false;
9443   } else {
9444     String* result = String::cast(KeyAt(entry));
9445     ASSERT(StringShape(result).IsSymbol());
9446     *symbol = result;
9447     return true;
9448   }
9449 }
9450 
9451 
LookupSymbol(Vector<const char> str,Object ** s)9452 MaybeObject* SymbolTable::LookupSymbol(Vector<const char> str, Object** s) {
9453   Utf8SymbolKey key(str);
9454   return LookupKey(&key, s);
9455 }
9456 
9457 
LookupAsciiSymbol(Vector<const char> str,Object ** s)9458 MaybeObject* SymbolTable::LookupAsciiSymbol(Vector<const char> str,
9459                                             Object** s) {
9460   AsciiSymbolKey key(str);
9461   return LookupKey(&key, s);
9462 }
9463 
9464 
LookupTwoByteSymbol(Vector<const uc16> str,Object ** s)9465 MaybeObject* SymbolTable::LookupTwoByteSymbol(Vector<const uc16> str,
9466                                               Object** s) {
9467   TwoByteSymbolKey key(str);
9468   return LookupKey(&key, s);
9469 }
9470 
LookupKey(HashTableKey * key,Object ** s)9471 MaybeObject* SymbolTable::LookupKey(HashTableKey* key, Object** s) {
9472   int entry = FindEntry(key);
9473 
9474   // Symbol already in table.
9475   if (entry != kNotFound) {
9476     *s = KeyAt(entry);
9477     return this;
9478   }
9479 
9480   // Adding new symbol. Grow table if needed.
9481   Object* obj;
9482   { MaybeObject* maybe_obj = EnsureCapacity(1, key);
9483     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
9484   }
9485 
9486   // Create symbol object.
9487   Object* symbol;
9488   { MaybeObject* maybe_symbol = key->AsObject();
9489     if (!maybe_symbol->ToObject(&symbol)) return maybe_symbol;
9490   }
9491 
9492   // If the symbol table grew as part of EnsureCapacity, obj is not
9493   // the current symbol table and therefore we cannot use
9494   // SymbolTable::cast here.
9495   SymbolTable* table = reinterpret_cast<SymbolTable*>(obj);
9496 
9497   // Add the new symbol and return it along with the symbol table.
9498   entry = table->FindInsertionEntry(key->Hash());
9499   table->set(EntryToIndex(entry), symbol);
9500   table->ElementAdded();
9501   *s = symbol;
9502   return table;
9503 }
9504 
9505 
Lookup(String * src)9506 Object* CompilationCacheTable::Lookup(String* src) {
9507   StringKey key(src);
9508   int entry = FindEntry(&key);
9509   if (entry == kNotFound) return GetHeap()->undefined_value();
9510   return get(EntryToIndex(entry) + 1);
9511 }
9512 
9513 
LookupEval(String * src,Context * context,StrictModeFlag strict_mode)9514 Object* CompilationCacheTable::LookupEval(String* src,
9515                                           Context* context,
9516                                           StrictModeFlag strict_mode) {
9517   StringSharedKey key(src, context->closure()->shared(), strict_mode);
9518   int entry = FindEntry(&key);
9519   if (entry == kNotFound) return GetHeap()->undefined_value();
9520   return get(EntryToIndex(entry) + 1);
9521 }
9522 
9523 
LookupRegExp(String * src,JSRegExp::Flags flags)9524 Object* CompilationCacheTable::LookupRegExp(String* src,
9525                                             JSRegExp::Flags flags) {
9526   RegExpKey key(src, flags);
9527   int entry = FindEntry(&key);
9528   if (entry == kNotFound) return GetHeap()->undefined_value();
9529   return get(EntryToIndex(entry) + 1);
9530 }
9531 
9532 
Put(String * src,Object * value)9533 MaybeObject* CompilationCacheTable::Put(String* src, Object* value) {
9534   StringKey key(src);
9535   Object* obj;
9536   { MaybeObject* maybe_obj = EnsureCapacity(1, &key);
9537     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
9538   }
9539 
9540   CompilationCacheTable* cache =
9541       reinterpret_cast<CompilationCacheTable*>(obj);
9542   int entry = cache->FindInsertionEntry(key.Hash());
9543   cache->set(EntryToIndex(entry), src);
9544   cache->set(EntryToIndex(entry) + 1, value);
9545   cache->ElementAdded();
9546   return cache;
9547 }
9548 
9549 
PutEval(String * src,Context * context,SharedFunctionInfo * value)9550 MaybeObject* CompilationCacheTable::PutEval(String* src,
9551                                             Context* context,
9552                                             SharedFunctionInfo* value) {
9553   StringSharedKey key(src,
9554                       context->closure()->shared(),
9555                       value->strict_mode() ? kStrictMode : kNonStrictMode);
9556   Object* obj;
9557   { MaybeObject* maybe_obj = EnsureCapacity(1, &key);
9558     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
9559   }
9560 
9561   CompilationCacheTable* cache =
9562       reinterpret_cast<CompilationCacheTable*>(obj);
9563   int entry = cache->FindInsertionEntry(key.Hash());
9564 
9565   Object* k;
9566   { MaybeObject* maybe_k = key.AsObject();
9567     if (!maybe_k->ToObject(&k)) return maybe_k;
9568   }
9569 
9570   cache->set(EntryToIndex(entry), k);
9571   cache->set(EntryToIndex(entry) + 1, value);
9572   cache->ElementAdded();
9573   return cache;
9574 }
9575 
9576 
PutRegExp(String * src,JSRegExp::Flags flags,FixedArray * value)9577 MaybeObject* CompilationCacheTable::PutRegExp(String* src,
9578                                               JSRegExp::Flags flags,
9579                                               FixedArray* value) {
9580   RegExpKey key(src, flags);
9581   Object* obj;
9582   { MaybeObject* maybe_obj = EnsureCapacity(1, &key);
9583     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
9584   }
9585 
9586   CompilationCacheTable* cache =
9587       reinterpret_cast<CompilationCacheTable*>(obj);
9588   int entry = cache->FindInsertionEntry(key.Hash());
9589   // We store the value in the key slot, and compare the search key
9590   // to the stored value with a custon IsMatch function during lookups.
9591   cache->set(EntryToIndex(entry), value);
9592   cache->set(EntryToIndex(entry) + 1, value);
9593   cache->ElementAdded();
9594   return cache;
9595 }
9596 
9597 
Remove(Object * value)9598 void CompilationCacheTable::Remove(Object* value) {
9599   Object* null_value = GetHeap()->null_value();
9600   for (int entry = 0, size = Capacity(); entry < size; entry++) {
9601     int entry_index = EntryToIndex(entry);
9602     int value_index = entry_index + 1;
9603     if (get(value_index) == value) {
9604       fast_set(this, entry_index, null_value);
9605       fast_set(this, value_index, null_value);
9606       ElementRemoved();
9607     }
9608   }
9609   return;
9610 }
9611 
9612 
9613 // SymbolsKey used for HashTable where key is array of symbols.
9614 class SymbolsKey : public HashTableKey {
9615  public:
SymbolsKey(FixedArray * symbols)9616   explicit SymbolsKey(FixedArray* symbols) : symbols_(symbols) { }
9617 
IsMatch(Object * symbols)9618   bool IsMatch(Object* symbols) {
9619     FixedArray* o = FixedArray::cast(symbols);
9620     int len = symbols_->length();
9621     if (o->length() != len) return false;
9622     for (int i = 0; i < len; i++) {
9623       if (o->get(i) != symbols_->get(i)) return false;
9624     }
9625     return true;
9626   }
9627 
Hash()9628   uint32_t Hash() { return HashForObject(symbols_); }
9629 
HashForObject(Object * obj)9630   uint32_t HashForObject(Object* obj) {
9631     FixedArray* symbols = FixedArray::cast(obj);
9632     int len = symbols->length();
9633     uint32_t hash = 0;
9634     for (int i = 0; i < len; i++) {
9635       hash ^= String::cast(symbols->get(i))->Hash();
9636     }
9637     return hash;
9638   }
9639 
AsObject()9640   Object* AsObject() { return symbols_; }
9641 
9642  private:
9643   FixedArray* symbols_;
9644 };
9645 
9646 
Lookup(FixedArray * array)9647 Object* MapCache::Lookup(FixedArray* array) {
9648   SymbolsKey key(array);
9649   int entry = FindEntry(&key);
9650   if (entry == kNotFound) return GetHeap()->undefined_value();
9651   return get(EntryToIndex(entry) + 1);
9652 }
9653 
9654 
Put(FixedArray * array,Map * value)9655 MaybeObject* MapCache::Put(FixedArray* array, Map* value) {
9656   SymbolsKey key(array);
9657   Object* obj;
9658   { MaybeObject* maybe_obj = EnsureCapacity(1, &key);
9659     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
9660   }
9661 
9662   MapCache* cache = reinterpret_cast<MapCache*>(obj);
9663   int entry = cache->FindInsertionEntry(key.Hash());
9664   cache->set(EntryToIndex(entry), array);
9665   cache->set(EntryToIndex(entry) + 1, value);
9666   cache->ElementAdded();
9667   return cache;
9668 }
9669 
9670 
9671 template<typename Shape, typename Key>
Allocate(int at_least_space_for)9672 MaybeObject* Dictionary<Shape, Key>::Allocate(int at_least_space_for) {
9673   Object* obj;
9674   { MaybeObject* maybe_obj =
9675         HashTable<Shape, Key>::Allocate(at_least_space_for);
9676     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
9677   }
9678   // Initialize the next enumeration index.
9679   Dictionary<Shape, Key>::cast(obj)->
9680       SetNextEnumerationIndex(PropertyDetails::kInitialIndex);
9681   return obj;
9682 }
9683 
9684 
9685 template<typename Shape, typename Key>
GenerateNewEnumerationIndices()9686 MaybeObject* Dictionary<Shape, Key>::GenerateNewEnumerationIndices() {
9687   Heap* heap = Dictionary<Shape, Key>::GetHeap();
9688   int length = HashTable<Shape, Key>::NumberOfElements();
9689 
9690   // Allocate and initialize iteration order array.
9691   Object* obj;
9692   { MaybeObject* maybe_obj = heap->AllocateFixedArray(length);
9693     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
9694   }
9695   FixedArray* iteration_order = FixedArray::cast(obj);
9696   for (int i = 0; i < length; i++) {
9697     iteration_order->set(i, Smi::FromInt(i));
9698   }
9699 
9700   // Allocate array with enumeration order.
9701   { MaybeObject* maybe_obj = heap->AllocateFixedArray(length);
9702     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
9703   }
9704   FixedArray* enumeration_order = FixedArray::cast(obj);
9705 
9706   // Fill the enumeration order array with property details.
9707   int capacity = HashTable<Shape, Key>::Capacity();
9708   int pos = 0;
9709   for (int i = 0; i < capacity; i++) {
9710     if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) {
9711       enumeration_order->set(pos++, Smi::FromInt(DetailsAt(i).index()));
9712     }
9713   }
9714 
9715   // Sort the arrays wrt. enumeration order.
9716   iteration_order->SortPairs(enumeration_order, enumeration_order->length());
9717 
9718   // Overwrite the enumeration_order with the enumeration indices.
9719   for (int i = 0; i < length; i++) {
9720     int index = Smi::cast(iteration_order->get(i))->value();
9721     int enum_index = PropertyDetails::kInitialIndex + i;
9722     enumeration_order->set(index, Smi::FromInt(enum_index));
9723   }
9724 
9725   // Update the dictionary with new indices.
9726   capacity = HashTable<Shape, Key>::Capacity();
9727   pos = 0;
9728   for (int i = 0; i < capacity; i++) {
9729     if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) {
9730       int enum_index = Smi::cast(enumeration_order->get(pos++))->value();
9731       PropertyDetails details = DetailsAt(i);
9732       PropertyDetails new_details =
9733           PropertyDetails(details.attributes(), details.type(), enum_index);
9734       DetailsAtPut(i, new_details);
9735     }
9736   }
9737 
9738   // Set the next enumeration index.
9739   SetNextEnumerationIndex(PropertyDetails::kInitialIndex+length);
9740   return this;
9741 }
9742 
9743 template<typename Shape, typename Key>
EnsureCapacity(int n,Key key)9744 MaybeObject* Dictionary<Shape, Key>::EnsureCapacity(int n, Key key) {
9745   // Check whether there are enough enumeration indices to add n elements.
9746   if (Shape::kIsEnumerable &&
9747       !PropertyDetails::IsValidIndex(NextEnumerationIndex() + n)) {
9748     // If not, we generate new indices for the properties.
9749     Object* result;
9750     { MaybeObject* maybe_result = GenerateNewEnumerationIndices();
9751       if (!maybe_result->ToObject(&result)) return maybe_result;
9752     }
9753   }
9754   return HashTable<Shape, Key>::EnsureCapacity(n, key);
9755 }
9756 
9757 
RemoveNumberEntries(uint32_t from,uint32_t to)9758 void NumberDictionary::RemoveNumberEntries(uint32_t from, uint32_t to) {
9759   // Do nothing if the interval [from, to) is empty.
9760   if (from >= to) return;
9761 
9762   Heap* heap = GetHeap();
9763   int removed_entries = 0;
9764   Object* sentinel = heap->null_value();
9765   int capacity = Capacity();
9766   for (int i = 0; i < capacity; i++) {
9767     Object* key = KeyAt(i);
9768     if (key->IsNumber()) {
9769       uint32_t number = static_cast<uint32_t>(key->Number());
9770       if (from <= number && number < to) {
9771         SetEntry(i, sentinel, sentinel);
9772         removed_entries++;
9773       }
9774     }
9775   }
9776 
9777   // Update the number of elements.
9778   ElementsRemoved(removed_entries);
9779 }
9780 
9781 
9782 template<typename Shape, typename Key>
DeleteProperty(int entry,JSObject::DeleteMode mode)9783 Object* Dictionary<Shape, Key>::DeleteProperty(int entry,
9784                                                JSObject::DeleteMode mode) {
9785   Heap* heap = Dictionary<Shape, Key>::GetHeap();
9786   PropertyDetails details = DetailsAt(entry);
9787   // Ignore attributes if forcing a deletion.
9788   if (details.IsDontDelete() && mode != JSObject::FORCE_DELETION) {
9789     return heap->false_value();
9790   }
9791   SetEntry(entry, heap->null_value(), heap->null_value());
9792   HashTable<Shape, Key>::ElementRemoved();
9793   return heap->true_value();
9794 }
9795 
9796 
9797 template<typename Shape, typename Key>
AtPut(Key key,Object * value)9798 MaybeObject* Dictionary<Shape, Key>::AtPut(Key key, Object* value) {
9799   int entry = this->FindEntry(key);
9800 
9801   // If the entry is present set the value;
9802   if (entry != Dictionary<Shape, Key>::kNotFound) {
9803     ValueAtPut(entry, value);
9804     return this;
9805   }
9806 
9807   // Check whether the dictionary should be extended.
9808   Object* obj;
9809   { MaybeObject* maybe_obj = EnsureCapacity(1, key);
9810     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
9811   }
9812 
9813   Object* k;
9814   { MaybeObject* maybe_k = Shape::AsObject(key);
9815     if (!maybe_k->ToObject(&k)) return maybe_k;
9816   }
9817   PropertyDetails details = PropertyDetails(NONE, NORMAL);
9818   return Dictionary<Shape, Key>::cast(obj)->
9819       AddEntry(key, value, details, Shape::Hash(key));
9820 }
9821 
9822 
9823 template<typename Shape, typename Key>
Add(Key key,Object * value,PropertyDetails details)9824 MaybeObject* Dictionary<Shape, Key>::Add(Key key,
9825                                          Object* value,
9826                                          PropertyDetails details) {
9827   // Valdate key is absent.
9828   SLOW_ASSERT((this->FindEntry(key) == Dictionary<Shape, Key>::kNotFound));
9829   // Check whether the dictionary should be extended.
9830   Object* obj;
9831   { MaybeObject* maybe_obj = EnsureCapacity(1, key);
9832     if (!maybe_obj->ToObject(&obj)) return maybe_obj;
9833   }
9834   return Dictionary<Shape, Key>::cast(obj)->
9835       AddEntry(key, value, details, Shape::Hash(key));
9836 }
9837 
9838 
9839 // Add a key, value pair to the dictionary.
9840 template<typename Shape, typename Key>
AddEntry(Key key,Object * value,PropertyDetails details,uint32_t hash)9841 MaybeObject* Dictionary<Shape, Key>::AddEntry(Key key,
9842                                               Object* value,
9843                                               PropertyDetails details,
9844                                               uint32_t hash) {
9845   // Compute the key object.
9846   Object* k;
9847   { MaybeObject* maybe_k = Shape::AsObject(key);
9848     if (!maybe_k->ToObject(&k)) return maybe_k;
9849   }
9850 
9851   uint32_t entry = Dictionary<Shape, Key>::FindInsertionEntry(hash);
9852   // Insert element at empty or deleted entry
9853   if (!details.IsDeleted() && details.index() == 0 && Shape::kIsEnumerable) {
9854     // Assign an enumeration index to the property and update
9855     // SetNextEnumerationIndex.
9856     int index = NextEnumerationIndex();
9857     details = PropertyDetails(details.attributes(), details.type(), index);
9858     SetNextEnumerationIndex(index + 1);
9859   }
9860   SetEntry(entry, k, value, details);
9861   ASSERT((Dictionary<Shape, Key>::KeyAt(entry)->IsNumber()
9862           || Dictionary<Shape, Key>::KeyAt(entry)->IsString()));
9863   HashTable<Shape, Key>::ElementAdded();
9864   return this;
9865 }
9866 
9867 
UpdateMaxNumberKey(uint32_t key)9868 void NumberDictionary::UpdateMaxNumberKey(uint32_t key) {
9869   // If the dictionary requires slow elements an element has already
9870   // been added at a high index.
9871   if (requires_slow_elements()) return;
9872   // Check if this index is high enough that we should require slow
9873   // elements.
9874   if (key > kRequiresSlowElementsLimit) {
9875     set_requires_slow_elements();
9876     return;
9877   }
9878   // Update max key value.
9879   Object* max_index_object = get(kMaxNumberKeyIndex);
9880   if (!max_index_object->IsSmi() || max_number_key() < key) {
9881     FixedArray::set(kMaxNumberKeyIndex,
9882                     Smi::FromInt(key << kRequiresSlowElementsTagSize));
9883   }
9884 }
9885 
9886 
AddNumberEntry(uint32_t key,Object * value,PropertyDetails details)9887 MaybeObject* NumberDictionary::AddNumberEntry(uint32_t key,
9888                                               Object* value,
9889                                               PropertyDetails details) {
9890   UpdateMaxNumberKey(key);
9891   SLOW_ASSERT(this->FindEntry(key) == kNotFound);
9892   return Add(key, value, details);
9893 }
9894 
9895 
AtNumberPut(uint32_t key,Object * value)9896 MaybeObject* NumberDictionary::AtNumberPut(uint32_t key, Object* value) {
9897   UpdateMaxNumberKey(key);
9898   return AtPut(key, value);
9899 }
9900 
9901 
Set(uint32_t key,Object * value,PropertyDetails details)9902 MaybeObject* NumberDictionary::Set(uint32_t key,
9903                                    Object* value,
9904                                    PropertyDetails details) {
9905   int entry = FindEntry(key);
9906   if (entry == kNotFound) return AddNumberEntry(key, value, details);
9907   // Preserve enumeration index.
9908   details = PropertyDetails(details.attributes(),
9909                             details.type(),
9910                             DetailsAt(entry).index());
9911   MaybeObject* maybe_object_key = NumberDictionaryShape::AsObject(key);
9912   Object* object_key;
9913   if (!maybe_object_key->ToObject(&object_key)) return maybe_object_key;
9914   SetEntry(entry, object_key, value, details);
9915   return this;
9916 }
9917 
9918 
9919 
9920 template<typename Shape, typename Key>
NumberOfElementsFilterAttributes(PropertyAttributes filter)9921 int Dictionary<Shape, Key>::NumberOfElementsFilterAttributes(
9922     PropertyAttributes filter) {
9923   int capacity = HashTable<Shape, Key>::Capacity();
9924   int result = 0;
9925   for (int i = 0; i < capacity; i++) {
9926     Object* k = HashTable<Shape, Key>::KeyAt(i);
9927     if (HashTable<Shape, Key>::IsKey(k)) {
9928       PropertyDetails details = DetailsAt(i);
9929       if (details.IsDeleted()) continue;
9930       PropertyAttributes attr = details.attributes();
9931       if ((attr & filter) == 0) result++;
9932     }
9933   }
9934   return result;
9935 }
9936 
9937 
9938 template<typename Shape, typename Key>
NumberOfEnumElements()9939 int Dictionary<Shape, Key>::NumberOfEnumElements() {
9940   return NumberOfElementsFilterAttributes(
9941       static_cast<PropertyAttributes>(DONT_ENUM));
9942 }
9943 
9944 
9945 template<typename Shape, typename Key>
CopyKeysTo(FixedArray * storage,PropertyAttributes filter)9946 void Dictionary<Shape, Key>::CopyKeysTo(FixedArray* storage,
9947                                         PropertyAttributes filter) {
9948   ASSERT(storage->length() >= NumberOfEnumElements());
9949   int capacity = HashTable<Shape, Key>::Capacity();
9950   int index = 0;
9951   for (int i = 0; i < capacity; i++) {
9952      Object* k = HashTable<Shape, Key>::KeyAt(i);
9953      if (HashTable<Shape, Key>::IsKey(k)) {
9954        PropertyDetails details = DetailsAt(i);
9955        if (details.IsDeleted()) continue;
9956        PropertyAttributes attr = details.attributes();
9957        if ((attr & filter) == 0) storage->set(index++, k);
9958      }
9959   }
9960   storage->SortPairs(storage, index);
9961   ASSERT(storage->length() >= index);
9962 }
9963 
9964 
CopyEnumKeysTo(FixedArray * storage,FixedArray * sort_array)9965 void StringDictionary::CopyEnumKeysTo(FixedArray* storage,
9966                                       FixedArray* sort_array) {
9967   ASSERT(storage->length() >= NumberOfEnumElements());
9968   int capacity = Capacity();
9969   int index = 0;
9970   for (int i = 0; i < capacity; i++) {
9971      Object* k = KeyAt(i);
9972      if (IsKey(k)) {
9973        PropertyDetails details = DetailsAt(i);
9974        if (details.IsDeleted() || details.IsDontEnum()) continue;
9975        storage->set(index, k);
9976        sort_array->set(index, Smi::FromInt(details.index()));
9977        index++;
9978      }
9979   }
9980   storage->SortPairs(sort_array, sort_array->length());
9981   ASSERT(storage->length() >= index);
9982 }
9983 
9984 
9985 template<typename Shape, typename Key>
CopyKeysTo(FixedArray * storage,int index)9986 void Dictionary<Shape, Key>::CopyKeysTo(
9987     FixedArray* storage, int index) {
9988   ASSERT(storage->length() >= NumberOfElementsFilterAttributes(
9989       static_cast<PropertyAttributes>(NONE)));
9990   int capacity = HashTable<Shape, Key>::Capacity();
9991   for (int i = 0; i < capacity; i++) {
9992     Object* k = HashTable<Shape, Key>::KeyAt(i);
9993     if (HashTable<Shape, Key>::IsKey(k)) {
9994       PropertyDetails details = DetailsAt(i);
9995       if (details.IsDeleted()) continue;
9996       storage->set(index++, k);
9997     }
9998   }
9999   ASSERT(storage->length() >= index);
10000 }
10001 
10002 
10003 // Backwards lookup (slow).
10004 template<typename Shape, typename Key>
SlowReverseLookup(Object * value)10005 Object* Dictionary<Shape, Key>::SlowReverseLookup(Object* value) {
10006   int capacity = HashTable<Shape, Key>::Capacity();
10007   for (int i = 0; i < capacity; i++) {
10008     Object* k =  HashTable<Shape, Key>::KeyAt(i);
10009     if (Dictionary<Shape, Key>::IsKey(k)) {
10010       Object* e = ValueAt(i);
10011       if (e->IsJSGlobalPropertyCell()) {
10012         e = JSGlobalPropertyCell::cast(e)->value();
10013       }
10014       if (e == value) return k;
10015     }
10016   }
10017   Heap* heap = Dictionary<Shape, Key>::GetHeap();
10018   return heap->undefined_value();
10019 }
10020 
10021 
TransformPropertiesToFastFor(JSObject * obj,int unused_property_fields)10022 MaybeObject* StringDictionary::TransformPropertiesToFastFor(
10023     JSObject* obj, int unused_property_fields) {
10024   // Make sure we preserve dictionary representation if there are too many
10025   // descriptors.
10026   if (NumberOfElements() > DescriptorArray::kMaxNumberOfDescriptors) return obj;
10027 
10028   // Figure out if it is necessary to generate new enumeration indices.
10029   int max_enumeration_index =
10030       NextEnumerationIndex() +
10031           (DescriptorArray::kMaxNumberOfDescriptors -
10032            NumberOfElements());
10033   if (!PropertyDetails::IsValidIndex(max_enumeration_index)) {
10034     Object* result;
10035     { MaybeObject* maybe_result = GenerateNewEnumerationIndices();
10036       if (!maybe_result->ToObject(&result)) return maybe_result;
10037     }
10038   }
10039 
10040   int instance_descriptor_length = 0;
10041   int number_of_fields = 0;
10042 
10043   Heap* heap = GetHeap();
10044 
10045   // Compute the length of the instance descriptor.
10046   int capacity = Capacity();
10047   for (int i = 0; i < capacity; i++) {
10048     Object* k = KeyAt(i);
10049     if (IsKey(k)) {
10050       Object* value = ValueAt(i);
10051       PropertyType type = DetailsAt(i).type();
10052       ASSERT(type != FIELD);
10053       instance_descriptor_length++;
10054       if (type == NORMAL &&
10055           (!value->IsJSFunction() || heap->InNewSpace(value))) {
10056         number_of_fields += 1;
10057       }
10058     }
10059   }
10060 
10061   // Allocate the instance descriptor.
10062   Object* descriptors_unchecked;
10063   { MaybeObject* maybe_descriptors_unchecked =
10064         DescriptorArray::Allocate(instance_descriptor_length);
10065     if (!maybe_descriptors_unchecked->ToObject(&descriptors_unchecked)) {
10066       return maybe_descriptors_unchecked;
10067     }
10068   }
10069   DescriptorArray* descriptors = DescriptorArray::cast(descriptors_unchecked);
10070 
10071   int inobject_props = obj->map()->inobject_properties();
10072   int number_of_allocated_fields =
10073       number_of_fields + unused_property_fields - inobject_props;
10074   if (number_of_allocated_fields < 0) {
10075     // There is enough inobject space for all fields (including unused).
10076     number_of_allocated_fields = 0;
10077     unused_property_fields = inobject_props - number_of_fields;
10078   }
10079 
10080   // Allocate the fixed array for the fields.
10081   Object* fields;
10082   { MaybeObject* maybe_fields =
10083         heap->AllocateFixedArray(number_of_allocated_fields);
10084     if (!maybe_fields->ToObject(&fields)) return maybe_fields;
10085   }
10086 
10087   // Fill in the instance descriptor and the fields.
10088   int next_descriptor = 0;
10089   int current_offset = 0;
10090   for (int i = 0; i < capacity; i++) {
10091     Object* k = KeyAt(i);
10092     if (IsKey(k)) {
10093       Object* value = ValueAt(i);
10094       // Ensure the key is a symbol before writing into the instance descriptor.
10095       Object* key;
10096       { MaybeObject* maybe_key = heap->LookupSymbol(String::cast(k));
10097         if (!maybe_key->ToObject(&key)) return maybe_key;
10098       }
10099       PropertyDetails details = DetailsAt(i);
10100       PropertyType type = details.type();
10101 
10102       if (value->IsJSFunction() && !heap->InNewSpace(value)) {
10103         ConstantFunctionDescriptor d(String::cast(key),
10104                                      JSFunction::cast(value),
10105                                      details.attributes(),
10106                                      details.index());
10107         descriptors->Set(next_descriptor++, &d);
10108       } else if (type == NORMAL) {
10109         if (current_offset < inobject_props) {
10110           obj->InObjectPropertyAtPut(current_offset,
10111                                      value,
10112                                      UPDATE_WRITE_BARRIER);
10113         } else {
10114           int offset = current_offset - inobject_props;
10115           FixedArray::cast(fields)->set(offset, value);
10116         }
10117         FieldDescriptor d(String::cast(key),
10118                           current_offset++,
10119                           details.attributes(),
10120                           details.index());
10121         descriptors->Set(next_descriptor++, &d);
10122       } else if (type == CALLBACKS) {
10123         CallbacksDescriptor d(String::cast(key),
10124                               value,
10125                               details.attributes(),
10126                               details.index());
10127         descriptors->Set(next_descriptor++, &d);
10128       } else {
10129         UNREACHABLE();
10130       }
10131     }
10132   }
10133   ASSERT(current_offset == number_of_fields);
10134 
10135   descriptors->Sort();
10136   // Allocate new map.
10137   Object* new_map;
10138   { MaybeObject* maybe_new_map = obj->map()->CopyDropDescriptors();
10139     if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map;
10140   }
10141 
10142   // Transform the object.
10143   obj->set_map(Map::cast(new_map));
10144   obj->map()->set_instance_descriptors(descriptors);
10145   obj->map()->set_unused_property_fields(unused_property_fields);
10146 
10147   obj->set_properties(FixedArray::cast(fields));
10148   ASSERT(obj->IsJSObject());
10149 
10150   descriptors->SetNextEnumerationIndex(NextEnumerationIndex());
10151   // Check that it really works.
10152   ASSERT(obj->HasFastProperties());
10153 
10154   return obj;
10155 }
10156 
10157 
10158 #ifdef ENABLE_DEBUGGER_SUPPORT
10159 // Check if there is a break point at this code position.
HasBreakPoint(int code_position)10160 bool DebugInfo::HasBreakPoint(int code_position) {
10161   // Get the break point info object for this code position.
10162   Object* break_point_info = GetBreakPointInfo(code_position);
10163 
10164   // If there is no break point info object or no break points in the break
10165   // point info object there is no break point at this code position.
10166   if (break_point_info->IsUndefined()) return false;
10167   return BreakPointInfo::cast(break_point_info)->GetBreakPointCount() > 0;
10168 }
10169 
10170 
10171 // Get the break point info object for this code position.
GetBreakPointInfo(int code_position)10172 Object* DebugInfo::GetBreakPointInfo(int code_position) {
10173   // Find the index of the break point info object for this code position.
10174   int index = GetBreakPointInfoIndex(code_position);
10175 
10176   // Return the break point info object if any.
10177   if (index == kNoBreakPointInfo) return GetHeap()->undefined_value();
10178   return BreakPointInfo::cast(break_points()->get(index));
10179 }
10180 
10181 
10182 // Clear a break point at the specified code position.
ClearBreakPoint(Handle<DebugInfo> debug_info,int code_position,Handle<Object> break_point_object)10183 void DebugInfo::ClearBreakPoint(Handle<DebugInfo> debug_info,
10184                                 int code_position,
10185                                 Handle<Object> break_point_object) {
10186   Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position));
10187   if (break_point_info->IsUndefined()) return;
10188   BreakPointInfo::ClearBreakPoint(
10189       Handle<BreakPointInfo>::cast(break_point_info),
10190       break_point_object);
10191 }
10192 
10193 
SetBreakPoint(Handle<DebugInfo> debug_info,int code_position,int source_position,int statement_position,Handle<Object> break_point_object)10194 void DebugInfo::SetBreakPoint(Handle<DebugInfo> debug_info,
10195                               int code_position,
10196                               int source_position,
10197                               int statement_position,
10198                               Handle<Object> break_point_object) {
10199   Isolate* isolate = Isolate::Current();
10200   Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position));
10201   if (!break_point_info->IsUndefined()) {
10202     BreakPointInfo::SetBreakPoint(
10203         Handle<BreakPointInfo>::cast(break_point_info),
10204         break_point_object);
10205     return;
10206   }
10207 
10208   // Adding a new break point for a code position which did not have any
10209   // break points before. Try to find a free slot.
10210   int index = kNoBreakPointInfo;
10211   for (int i = 0; i < debug_info->break_points()->length(); i++) {
10212     if (debug_info->break_points()->get(i)->IsUndefined()) {
10213       index = i;
10214       break;
10215     }
10216   }
10217   if (index == kNoBreakPointInfo) {
10218     // No free slot - extend break point info array.
10219     Handle<FixedArray> old_break_points =
10220         Handle<FixedArray>(FixedArray::cast(debug_info->break_points()));
10221     Handle<FixedArray> new_break_points =
10222         isolate->factory()->NewFixedArray(
10223             old_break_points->length() +
10224             Debug::kEstimatedNofBreakPointsInFunction);
10225 
10226     debug_info->set_break_points(*new_break_points);
10227     for (int i = 0; i < old_break_points->length(); i++) {
10228       new_break_points->set(i, old_break_points->get(i));
10229     }
10230     index = old_break_points->length();
10231   }
10232   ASSERT(index != kNoBreakPointInfo);
10233 
10234   // Allocate new BreakPointInfo object and set the break point.
10235   Handle<BreakPointInfo> new_break_point_info = Handle<BreakPointInfo>::cast(
10236       isolate->factory()->NewStruct(BREAK_POINT_INFO_TYPE));
10237   new_break_point_info->set_code_position(Smi::FromInt(code_position));
10238   new_break_point_info->set_source_position(Smi::FromInt(source_position));
10239   new_break_point_info->
10240       set_statement_position(Smi::FromInt(statement_position));
10241   new_break_point_info->set_break_point_objects(
10242       isolate->heap()->undefined_value());
10243   BreakPointInfo::SetBreakPoint(new_break_point_info, break_point_object);
10244   debug_info->break_points()->set(index, *new_break_point_info);
10245 }
10246 
10247 
10248 // Get the break point objects for a code position.
GetBreakPointObjects(int code_position)10249 Object* DebugInfo::GetBreakPointObjects(int code_position) {
10250   Object* break_point_info = GetBreakPointInfo(code_position);
10251   if (break_point_info->IsUndefined()) {
10252     return GetHeap()->undefined_value();
10253   }
10254   return BreakPointInfo::cast(break_point_info)->break_point_objects();
10255 }
10256 
10257 
10258 // Get the total number of break points.
GetBreakPointCount()10259 int DebugInfo::GetBreakPointCount() {
10260   if (break_points()->IsUndefined()) return 0;
10261   int count = 0;
10262   for (int i = 0; i < break_points()->length(); i++) {
10263     if (!break_points()->get(i)->IsUndefined()) {
10264       BreakPointInfo* break_point_info =
10265           BreakPointInfo::cast(break_points()->get(i));
10266       count += break_point_info->GetBreakPointCount();
10267     }
10268   }
10269   return count;
10270 }
10271 
10272 
FindBreakPointInfo(Handle<DebugInfo> debug_info,Handle<Object> break_point_object)10273 Object* DebugInfo::FindBreakPointInfo(Handle<DebugInfo> debug_info,
10274                                       Handle<Object> break_point_object) {
10275   Heap* heap = debug_info->GetHeap();
10276   if (debug_info->break_points()->IsUndefined()) return heap->undefined_value();
10277   for (int i = 0; i < debug_info->break_points()->length(); i++) {
10278     if (!debug_info->break_points()->get(i)->IsUndefined()) {
10279       Handle<BreakPointInfo> break_point_info =
10280           Handle<BreakPointInfo>(BreakPointInfo::cast(
10281               debug_info->break_points()->get(i)));
10282       if (BreakPointInfo::HasBreakPointObject(break_point_info,
10283                                               break_point_object)) {
10284         return *break_point_info;
10285       }
10286     }
10287   }
10288   return heap->undefined_value();
10289 }
10290 
10291 
10292 // Find the index of the break point info object for the specified code
10293 // position.
GetBreakPointInfoIndex(int code_position)10294 int DebugInfo::GetBreakPointInfoIndex(int code_position) {
10295   if (break_points()->IsUndefined()) return kNoBreakPointInfo;
10296   for (int i = 0; i < break_points()->length(); i++) {
10297     if (!break_points()->get(i)->IsUndefined()) {
10298       BreakPointInfo* break_point_info =
10299           BreakPointInfo::cast(break_points()->get(i));
10300       if (break_point_info->code_position()->value() == code_position) {
10301         return i;
10302       }
10303     }
10304   }
10305   return kNoBreakPointInfo;
10306 }
10307 
10308 
10309 // Remove the specified break point object.
ClearBreakPoint(Handle<BreakPointInfo> break_point_info,Handle<Object> break_point_object)10310 void BreakPointInfo::ClearBreakPoint(Handle<BreakPointInfo> break_point_info,
10311                                      Handle<Object> break_point_object) {
10312   Isolate* isolate = Isolate::Current();
10313   // If there are no break points just ignore.
10314   if (break_point_info->break_point_objects()->IsUndefined()) return;
10315   // If there is a single break point clear it if it is the same.
10316   if (!break_point_info->break_point_objects()->IsFixedArray()) {
10317     if (break_point_info->break_point_objects() == *break_point_object) {
10318       break_point_info->set_break_point_objects(
10319           isolate->heap()->undefined_value());
10320     }
10321     return;
10322   }
10323   // If there are multiple break points shrink the array
10324   ASSERT(break_point_info->break_point_objects()->IsFixedArray());
10325   Handle<FixedArray> old_array =
10326       Handle<FixedArray>(
10327           FixedArray::cast(break_point_info->break_point_objects()));
10328   Handle<FixedArray> new_array =
10329       isolate->factory()->NewFixedArray(old_array->length() - 1);
10330   int found_count = 0;
10331   for (int i = 0; i < old_array->length(); i++) {
10332     if (old_array->get(i) == *break_point_object) {
10333       ASSERT(found_count == 0);
10334       found_count++;
10335     } else {
10336       new_array->set(i - found_count, old_array->get(i));
10337     }
10338   }
10339   // If the break point was found in the list change it.
10340   if (found_count > 0) break_point_info->set_break_point_objects(*new_array);
10341 }
10342 
10343 
10344 // Add the specified break point object.
SetBreakPoint(Handle<BreakPointInfo> break_point_info,Handle<Object> break_point_object)10345 void BreakPointInfo::SetBreakPoint(Handle<BreakPointInfo> break_point_info,
10346                                    Handle<Object> break_point_object) {
10347   // If there was no break point objects before just set it.
10348   if (break_point_info->break_point_objects()->IsUndefined()) {
10349     break_point_info->set_break_point_objects(*break_point_object);
10350     return;
10351   }
10352   // If the break point object is the same as before just ignore.
10353   if (break_point_info->break_point_objects() == *break_point_object) return;
10354   // If there was one break point object before replace with array.
10355   if (!break_point_info->break_point_objects()->IsFixedArray()) {
10356     Handle<FixedArray> array = FACTORY->NewFixedArray(2);
10357     array->set(0, break_point_info->break_point_objects());
10358     array->set(1, *break_point_object);
10359     break_point_info->set_break_point_objects(*array);
10360     return;
10361   }
10362   // If there was more than one break point before extend array.
10363   Handle<FixedArray> old_array =
10364       Handle<FixedArray>(
10365           FixedArray::cast(break_point_info->break_point_objects()));
10366   Handle<FixedArray> new_array =
10367       FACTORY->NewFixedArray(old_array->length() + 1);
10368   for (int i = 0; i < old_array->length(); i++) {
10369     // If the break point was there before just ignore.
10370     if (old_array->get(i) == *break_point_object) return;
10371     new_array->set(i, old_array->get(i));
10372   }
10373   // Add the new break point.
10374   new_array->set(old_array->length(), *break_point_object);
10375   break_point_info->set_break_point_objects(*new_array);
10376 }
10377 
10378 
HasBreakPointObject(Handle<BreakPointInfo> break_point_info,Handle<Object> break_point_object)10379 bool BreakPointInfo::HasBreakPointObject(
10380     Handle<BreakPointInfo> break_point_info,
10381     Handle<Object> break_point_object) {
10382   // No break point.
10383   if (break_point_info->break_point_objects()->IsUndefined()) return false;
10384   // Single beak point.
10385   if (!break_point_info->break_point_objects()->IsFixedArray()) {
10386     return break_point_info->break_point_objects() == *break_point_object;
10387   }
10388   // Multiple break points.
10389   FixedArray* array = FixedArray::cast(break_point_info->break_point_objects());
10390   for (int i = 0; i < array->length(); i++) {
10391     if (array->get(i) == *break_point_object) {
10392       return true;
10393     }
10394   }
10395   return false;
10396 }
10397 
10398 
10399 // Get the number of break points.
GetBreakPointCount()10400 int BreakPointInfo::GetBreakPointCount() {
10401   // No break point.
10402   if (break_point_objects()->IsUndefined()) return 0;
10403   // Single beak point.
10404   if (!break_point_objects()->IsFixedArray()) return 1;
10405   // Multiple break points.
10406   return FixedArray::cast(break_point_objects())->length();
10407 }
10408 #endif
10409 
10410 
10411 } }  // namespace v8::internal
10412