1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #if defined(V8_TARGET_ARCH_IA32)
31
32 #include "bootstrapper.h"
33 #include "codegen.h"
34 #include "debug.h"
35 #include "runtime.h"
36 #include "serialize.h"
37
38 namespace v8 {
39 namespace internal {
40
41 // -------------------------------------------------------------------------
42 // MacroAssembler implementation.
43
MacroAssembler(Isolate * arg_isolate,void * buffer,int size)44 MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
45 : Assembler(arg_isolate, buffer, size),
46 generating_stub_(false),
47 allow_stub_calls_(true) {
48 if (isolate() != NULL) {
49 code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
50 isolate());
51 }
52 }
53
54
RecordWriteHelper(Register object,Register addr,Register scratch)55 void MacroAssembler::RecordWriteHelper(Register object,
56 Register addr,
57 Register scratch) {
58 if (emit_debug_code()) {
59 // Check that the object is not in new space.
60 Label not_in_new_space;
61 InNewSpace(object, scratch, not_equal, ¬_in_new_space);
62 Abort("new-space object passed to RecordWriteHelper");
63 bind(¬_in_new_space);
64 }
65
66 // Compute the page start address from the heap object pointer, and reuse
67 // the 'object' register for it.
68 and_(object, ~Page::kPageAlignmentMask);
69
70 // Compute number of region covering addr. See Page::GetRegionNumberForAddress
71 // method for more details.
72 and_(addr, Page::kPageAlignmentMask);
73 shr(addr, Page::kRegionSizeLog2);
74
75 // Set dirty mark for region.
76 bts(Operand(object, Page::kDirtyFlagOffset), addr);
77 }
78
79
RecordWrite(Register object,int offset,Register value,Register scratch)80 void MacroAssembler::RecordWrite(Register object,
81 int offset,
82 Register value,
83 Register scratch) {
84 // First, check if a write barrier is even needed. The tests below
85 // catch stores of Smis and stores into young gen.
86 NearLabel done;
87
88 // Skip barrier if writing a smi.
89 ASSERT_EQ(0, kSmiTag);
90 test(value, Immediate(kSmiTagMask));
91 j(zero, &done);
92
93 InNewSpace(object, value, equal, &done);
94
95 // The offset is relative to a tagged or untagged HeapObject pointer,
96 // so either offset or offset + kHeapObjectTag must be a
97 // multiple of kPointerSize.
98 ASSERT(IsAligned(offset, kPointerSize) ||
99 IsAligned(offset + kHeapObjectTag, kPointerSize));
100
101 Register dst = scratch;
102 if (offset != 0) {
103 lea(dst, Operand(object, offset));
104 } else {
105 // Array access: calculate the destination address in the same manner as
106 // KeyedStoreIC::GenerateGeneric. Multiply a smi by 2 to get an offset
107 // into an array of words.
108 ASSERT_EQ(1, kSmiTagSize);
109 ASSERT_EQ(0, kSmiTag);
110 lea(dst, Operand(object, dst, times_half_pointer_size,
111 FixedArray::kHeaderSize - kHeapObjectTag));
112 }
113 RecordWriteHelper(object, dst, value);
114
115 bind(&done);
116
117 // Clobber all input registers when running with the debug-code flag
118 // turned on to provoke errors.
119 if (emit_debug_code()) {
120 mov(object, Immediate(BitCast<int32_t>(kZapValue)));
121 mov(value, Immediate(BitCast<int32_t>(kZapValue)));
122 mov(scratch, Immediate(BitCast<int32_t>(kZapValue)));
123 }
124 }
125
126
RecordWrite(Register object,Register address,Register value)127 void MacroAssembler::RecordWrite(Register object,
128 Register address,
129 Register value) {
130 // First, check if a write barrier is even needed. The tests below
131 // catch stores of Smis and stores into young gen.
132 Label done;
133
134 // Skip barrier if writing a smi.
135 ASSERT_EQ(0, kSmiTag);
136 test(value, Immediate(kSmiTagMask));
137 j(zero, &done);
138
139 InNewSpace(object, value, equal, &done);
140
141 RecordWriteHelper(object, address, value);
142
143 bind(&done);
144
145 // Clobber all input registers when running with the debug-code flag
146 // turned on to provoke errors.
147 if (emit_debug_code()) {
148 mov(object, Immediate(BitCast<int32_t>(kZapValue)));
149 mov(address, Immediate(BitCast<int32_t>(kZapValue)));
150 mov(value, Immediate(BitCast<int32_t>(kZapValue)));
151 }
152 }
153
154
155 #ifdef ENABLE_DEBUGGER_SUPPORT
DebugBreak()156 void MacroAssembler::DebugBreak() {
157 Set(eax, Immediate(0));
158 mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak, isolate())));
159 CEntryStub ces(1);
160 call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
161 }
162 #endif
163
164
Set(Register dst,const Immediate & x)165 void MacroAssembler::Set(Register dst, const Immediate& x) {
166 if (x.is_zero()) {
167 xor_(dst, Operand(dst)); // Shorter than mov.
168 } else {
169 mov(dst, x);
170 }
171 }
172
173
Set(const Operand & dst,const Immediate & x)174 void MacroAssembler::Set(const Operand& dst, const Immediate& x) {
175 mov(dst, x);
176 }
177
178
IsUnsafeImmediate(const Immediate & x)179 bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) {
180 static const int kMaxImmediateBits = 17;
181 if (x.rmode_ != RelocInfo::NONE) return false;
182 return !is_intn(x.x_, kMaxImmediateBits);
183 }
184
185
SafeSet(Register dst,const Immediate & x)186 void MacroAssembler::SafeSet(Register dst, const Immediate& x) {
187 if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
188 Set(dst, Immediate(x.x_ ^ jit_cookie()));
189 xor_(dst, jit_cookie());
190 } else {
191 Set(dst, x);
192 }
193 }
194
195
SafePush(const Immediate & x)196 void MacroAssembler::SafePush(const Immediate& x) {
197 if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
198 push(Immediate(x.x_ ^ jit_cookie()));
199 xor_(Operand(esp, 0), Immediate(jit_cookie()));
200 } else {
201 push(x);
202 }
203 }
204
205
CmpObjectType(Register heap_object,InstanceType type,Register map)206 void MacroAssembler::CmpObjectType(Register heap_object,
207 InstanceType type,
208 Register map) {
209 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
210 CmpInstanceType(map, type);
211 }
212
213
CmpInstanceType(Register map,InstanceType type)214 void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
215 cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
216 static_cast<int8_t>(type));
217 }
218
219
CheckMap(Register obj,Handle<Map> map,Label * fail,bool is_heap_object)220 void MacroAssembler::CheckMap(Register obj,
221 Handle<Map> map,
222 Label* fail,
223 bool is_heap_object) {
224 if (!is_heap_object) {
225 test(obj, Immediate(kSmiTagMask));
226 j(zero, fail);
227 }
228 cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map));
229 j(not_equal, fail);
230 }
231
232
IsObjectStringType(Register heap_object,Register map,Register instance_type)233 Condition MacroAssembler::IsObjectStringType(Register heap_object,
234 Register map,
235 Register instance_type) {
236 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
237 movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
238 ASSERT(kNotStringTag != 0);
239 test(instance_type, Immediate(kIsNotStringMask));
240 return zero;
241 }
242
243
IsObjectJSObjectType(Register heap_object,Register map,Register scratch,Label * fail)244 void MacroAssembler::IsObjectJSObjectType(Register heap_object,
245 Register map,
246 Register scratch,
247 Label* fail) {
248 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
249 IsInstanceJSObjectType(map, scratch, fail);
250 }
251
252
IsInstanceJSObjectType(Register map,Register scratch,Label * fail)253 void MacroAssembler::IsInstanceJSObjectType(Register map,
254 Register scratch,
255 Label* fail) {
256 movzx_b(scratch, FieldOperand(map, Map::kInstanceTypeOffset));
257 sub(Operand(scratch), Immediate(FIRST_JS_OBJECT_TYPE));
258 cmp(scratch, LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE);
259 j(above, fail);
260 }
261
262
FCmp()263 void MacroAssembler::FCmp() {
264 if (CpuFeatures::IsSupported(CMOV)) {
265 fucomip();
266 ffree(0);
267 fincstp();
268 } else {
269 fucompp();
270 push(eax);
271 fnstsw_ax();
272 sahf();
273 pop(eax);
274 }
275 }
276
277
AbortIfNotNumber(Register object)278 void MacroAssembler::AbortIfNotNumber(Register object) {
279 Label ok;
280 test(object, Immediate(kSmiTagMask));
281 j(zero, &ok);
282 cmp(FieldOperand(object, HeapObject::kMapOffset),
283 isolate()->factory()->heap_number_map());
284 Assert(equal, "Operand not a number");
285 bind(&ok);
286 }
287
288
AbortIfNotSmi(Register object)289 void MacroAssembler::AbortIfNotSmi(Register object) {
290 test(object, Immediate(kSmiTagMask));
291 Assert(equal, "Operand is not a smi");
292 }
293
294
AbortIfNotString(Register object)295 void MacroAssembler::AbortIfNotString(Register object) {
296 test(object, Immediate(kSmiTagMask));
297 Assert(not_equal, "Operand is not a string");
298 push(object);
299 mov(object, FieldOperand(object, HeapObject::kMapOffset));
300 CmpInstanceType(object, FIRST_NONSTRING_TYPE);
301 pop(object);
302 Assert(below, "Operand is not a string");
303 }
304
305
AbortIfSmi(Register object)306 void MacroAssembler::AbortIfSmi(Register object) {
307 test(object, Immediate(kSmiTagMask));
308 Assert(not_equal, "Operand is a smi");
309 }
310
311
EnterFrame(StackFrame::Type type)312 void MacroAssembler::EnterFrame(StackFrame::Type type) {
313 push(ebp);
314 mov(ebp, Operand(esp));
315 push(esi);
316 push(Immediate(Smi::FromInt(type)));
317 push(Immediate(CodeObject()));
318 if (emit_debug_code()) {
319 cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value()));
320 Check(not_equal, "code object not properly patched");
321 }
322 }
323
324
LeaveFrame(StackFrame::Type type)325 void MacroAssembler::LeaveFrame(StackFrame::Type type) {
326 if (emit_debug_code()) {
327 cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset),
328 Immediate(Smi::FromInt(type)));
329 Check(equal, "stack frame types must match");
330 }
331 leave();
332 }
333
334
EnterExitFramePrologue()335 void MacroAssembler::EnterExitFramePrologue() {
336 // Setup the frame structure on the stack.
337 ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
338 ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
339 ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize);
340 push(ebp);
341 mov(ebp, Operand(esp));
342
343 // Reserve room for entry stack pointer and push the code object.
344 ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize);
345 push(Immediate(0)); // Saved entry sp, patched before call.
346 push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot.
347
348 // Save the frame pointer and the context in top.
349 ExternalReference c_entry_fp_address(Isolate::k_c_entry_fp_address,
350 isolate());
351 ExternalReference context_address(Isolate::k_context_address,
352 isolate());
353 mov(Operand::StaticVariable(c_entry_fp_address), ebp);
354 mov(Operand::StaticVariable(context_address), esi);
355 }
356
357
EnterExitFrameEpilogue(int argc,bool save_doubles)358 void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) {
359 // Optionally save all XMM registers.
360 if (save_doubles) {
361 CpuFeatures::Scope scope(SSE2);
362 int space = XMMRegister::kNumRegisters * kDoubleSize + argc * kPointerSize;
363 sub(Operand(esp), Immediate(space));
364 const int offset = -2 * kPointerSize;
365 for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
366 XMMRegister reg = XMMRegister::from_code(i);
367 movdbl(Operand(ebp, offset - ((i + 1) * kDoubleSize)), reg);
368 }
369 } else {
370 sub(Operand(esp), Immediate(argc * kPointerSize));
371 }
372
373 // Get the required frame alignment for the OS.
374 const int kFrameAlignment = OS::ActivationFrameAlignment();
375 if (kFrameAlignment > 0) {
376 ASSERT(IsPowerOf2(kFrameAlignment));
377 and_(esp, -kFrameAlignment);
378 }
379
380 // Patch the saved entry sp.
381 mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp);
382 }
383
384
EnterExitFrame(bool save_doubles)385 void MacroAssembler::EnterExitFrame(bool save_doubles) {
386 EnterExitFramePrologue();
387
388 // Setup argc and argv in callee-saved registers.
389 int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
390 mov(edi, Operand(eax));
391 lea(esi, Operand(ebp, eax, times_4, offset));
392
393 // Reserve space for argc, argv and isolate.
394 EnterExitFrameEpilogue(3, save_doubles);
395 }
396
397
EnterApiExitFrame(int argc)398 void MacroAssembler::EnterApiExitFrame(int argc) {
399 EnterExitFramePrologue();
400 EnterExitFrameEpilogue(argc, false);
401 }
402
403
LeaveExitFrame(bool save_doubles)404 void MacroAssembler::LeaveExitFrame(bool save_doubles) {
405 // Optionally restore all XMM registers.
406 if (save_doubles) {
407 CpuFeatures::Scope scope(SSE2);
408 const int offset = -2 * kPointerSize;
409 for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
410 XMMRegister reg = XMMRegister::from_code(i);
411 movdbl(reg, Operand(ebp, offset - ((i + 1) * kDoubleSize)));
412 }
413 }
414
415 // Get the return address from the stack and restore the frame pointer.
416 mov(ecx, Operand(ebp, 1 * kPointerSize));
417 mov(ebp, Operand(ebp, 0 * kPointerSize));
418
419 // Pop the arguments and the receiver from the caller stack.
420 lea(esp, Operand(esi, 1 * kPointerSize));
421
422 // Push the return address to get ready to return.
423 push(ecx);
424
425 LeaveExitFrameEpilogue();
426 }
427
LeaveExitFrameEpilogue()428 void MacroAssembler::LeaveExitFrameEpilogue() {
429 // Restore current context from top and clear it in debug mode.
430 ExternalReference context_address(Isolate::k_context_address, isolate());
431 mov(esi, Operand::StaticVariable(context_address));
432 #ifdef DEBUG
433 mov(Operand::StaticVariable(context_address), Immediate(0));
434 #endif
435
436 // Clear the top frame.
437 ExternalReference c_entry_fp_address(Isolate::k_c_entry_fp_address,
438 isolate());
439 mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0));
440 }
441
442
LeaveApiExitFrame()443 void MacroAssembler::LeaveApiExitFrame() {
444 mov(esp, Operand(ebp));
445 pop(ebp);
446
447 LeaveExitFrameEpilogue();
448 }
449
450
PushTryHandler(CodeLocation try_location,HandlerType type)451 void MacroAssembler::PushTryHandler(CodeLocation try_location,
452 HandlerType type) {
453 // Adjust this code if not the case.
454 ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
455 // The pc (return address) is already on TOS.
456 if (try_location == IN_JAVASCRIPT) {
457 if (type == TRY_CATCH_HANDLER) {
458 push(Immediate(StackHandler::TRY_CATCH));
459 } else {
460 push(Immediate(StackHandler::TRY_FINALLY));
461 }
462 push(ebp);
463 } else {
464 ASSERT(try_location == IN_JS_ENTRY);
465 // The frame pointer does not point to a JS frame so we save NULL
466 // for ebp. We expect the code throwing an exception to check ebp
467 // before dereferencing it to restore the context.
468 push(Immediate(StackHandler::ENTRY));
469 push(Immediate(0)); // NULL frame pointer.
470 }
471 // Save the current handler as the next handler.
472 push(Operand::StaticVariable(ExternalReference(Isolate::k_handler_address,
473 isolate())));
474 // Link this handler as the new current one.
475 mov(Operand::StaticVariable(ExternalReference(Isolate::k_handler_address,
476 isolate())),
477 esp);
478 }
479
480
PopTryHandler()481 void MacroAssembler::PopTryHandler() {
482 ASSERT_EQ(0, StackHandlerConstants::kNextOffset);
483 pop(Operand::StaticVariable(ExternalReference(Isolate::k_handler_address,
484 isolate())));
485 add(Operand(esp), Immediate(StackHandlerConstants::kSize - kPointerSize));
486 }
487
488
Throw(Register value)489 void MacroAssembler::Throw(Register value) {
490 // Adjust this code if not the case.
491 STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
492
493 // eax must hold the exception.
494 if (!value.is(eax)) {
495 mov(eax, value);
496 }
497
498 // Drop the sp to the top of the handler.
499 ExternalReference handler_address(Isolate::k_handler_address,
500 isolate());
501 mov(esp, Operand::StaticVariable(handler_address));
502
503 // Restore next handler and frame pointer, discard handler state.
504 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
505 pop(Operand::StaticVariable(handler_address));
506 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize);
507 pop(ebp);
508 pop(edx); // Remove state.
509
510 // Before returning we restore the context from the frame pointer if
511 // not NULL. The frame pointer is NULL in the exception handler of
512 // a JS entry frame.
513 Set(esi, Immediate(0)); // Tentatively set context pointer to NULL.
514 NearLabel skip;
515 cmp(ebp, 0);
516 j(equal, &skip, not_taken);
517 mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
518 bind(&skip);
519
520 STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
521 ret(0);
522 }
523
524
ThrowUncatchable(UncatchableExceptionType type,Register value)525 void MacroAssembler::ThrowUncatchable(UncatchableExceptionType type,
526 Register value) {
527 // Adjust this code if not the case.
528 STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
529
530 // eax must hold the exception.
531 if (!value.is(eax)) {
532 mov(eax, value);
533 }
534
535 // Drop sp to the top stack handler.
536 ExternalReference handler_address(Isolate::k_handler_address,
537 isolate());
538 mov(esp, Operand::StaticVariable(handler_address));
539
540 // Unwind the handlers until the ENTRY handler is found.
541 NearLabel loop, done;
542 bind(&loop);
543 // Load the type of the current stack handler.
544 const int kStateOffset = StackHandlerConstants::kStateOffset;
545 cmp(Operand(esp, kStateOffset), Immediate(StackHandler::ENTRY));
546 j(equal, &done);
547 // Fetch the next handler in the list.
548 const int kNextOffset = StackHandlerConstants::kNextOffset;
549 mov(esp, Operand(esp, kNextOffset));
550 jmp(&loop);
551 bind(&done);
552
553 // Set the top handler address to next handler past the current ENTRY handler.
554 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
555 pop(Operand::StaticVariable(handler_address));
556
557 if (type == OUT_OF_MEMORY) {
558 // Set external caught exception to false.
559 ExternalReference external_caught(
560 Isolate::k_external_caught_exception_address,
561 isolate());
562 mov(eax, false);
563 mov(Operand::StaticVariable(external_caught), eax);
564
565 // Set pending exception and eax to out of memory exception.
566 ExternalReference pending_exception(Isolate::k_pending_exception_address,
567 isolate());
568 mov(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException()));
569 mov(Operand::StaticVariable(pending_exception), eax);
570 }
571
572 // Clear the context pointer.
573 Set(esi, Immediate(0));
574
575 // Restore fp from handler and discard handler state.
576 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize);
577 pop(ebp);
578 pop(edx); // State.
579
580 STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
581 ret(0);
582 }
583
584
CheckAccessGlobalProxy(Register holder_reg,Register scratch,Label * miss)585 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
586 Register scratch,
587 Label* miss) {
588 Label same_contexts;
589
590 ASSERT(!holder_reg.is(scratch));
591
592 // Load current lexical context from the stack frame.
593 mov(scratch, Operand(ebp, StandardFrameConstants::kContextOffset));
594
595 // When generating debug code, make sure the lexical context is set.
596 if (emit_debug_code()) {
597 cmp(Operand(scratch), Immediate(0));
598 Check(not_equal, "we should not have an empty lexical context");
599 }
600 // Load the global context of the current context.
601 int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
602 mov(scratch, FieldOperand(scratch, offset));
603 mov(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset));
604
605 // Check the context is a global context.
606 if (emit_debug_code()) {
607 push(scratch);
608 // Read the first word and compare to global_context_map.
609 mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
610 cmp(scratch, isolate()->factory()->global_context_map());
611 Check(equal, "JSGlobalObject::global_context should be a global context.");
612 pop(scratch);
613 }
614
615 // Check if both contexts are the same.
616 cmp(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
617 j(equal, &same_contexts, taken);
618
619 // Compare security tokens, save holder_reg on the stack so we can use it
620 // as a temporary register.
621 //
622 // TODO(119): avoid push(holder_reg)/pop(holder_reg)
623 push(holder_reg);
624 // Check that the security token in the calling global object is
625 // compatible with the security token in the receiving global
626 // object.
627 mov(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
628
629 // Check the context is a global context.
630 if (emit_debug_code()) {
631 cmp(holder_reg, isolate()->factory()->null_value());
632 Check(not_equal, "JSGlobalProxy::context() should not be null.");
633
634 push(holder_reg);
635 // Read the first word and compare to global_context_map(),
636 mov(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset));
637 cmp(holder_reg, isolate()->factory()->global_context_map());
638 Check(equal, "JSGlobalObject::global_context should be a global context.");
639 pop(holder_reg);
640 }
641
642 int token_offset = Context::kHeaderSize +
643 Context::SECURITY_TOKEN_INDEX * kPointerSize;
644 mov(scratch, FieldOperand(scratch, token_offset));
645 cmp(scratch, FieldOperand(holder_reg, token_offset));
646 pop(holder_reg);
647 j(not_equal, miss, not_taken);
648
649 bind(&same_contexts);
650 }
651
652
LoadAllocationTopHelper(Register result,Register scratch,AllocationFlags flags)653 void MacroAssembler::LoadAllocationTopHelper(Register result,
654 Register scratch,
655 AllocationFlags flags) {
656 ExternalReference new_space_allocation_top =
657 ExternalReference::new_space_allocation_top_address(isolate());
658
659 // Just return if allocation top is already known.
660 if ((flags & RESULT_CONTAINS_TOP) != 0) {
661 // No use of scratch if allocation top is provided.
662 ASSERT(scratch.is(no_reg));
663 #ifdef DEBUG
664 // Assert that result actually contains top on entry.
665 cmp(result, Operand::StaticVariable(new_space_allocation_top));
666 Check(equal, "Unexpected allocation top");
667 #endif
668 return;
669 }
670
671 // Move address of new object to result. Use scratch register if available.
672 if (scratch.is(no_reg)) {
673 mov(result, Operand::StaticVariable(new_space_allocation_top));
674 } else {
675 mov(Operand(scratch), Immediate(new_space_allocation_top));
676 mov(result, Operand(scratch, 0));
677 }
678 }
679
680
UpdateAllocationTopHelper(Register result_end,Register scratch)681 void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
682 Register scratch) {
683 if (emit_debug_code()) {
684 test(result_end, Immediate(kObjectAlignmentMask));
685 Check(zero, "Unaligned allocation in new space");
686 }
687
688 ExternalReference new_space_allocation_top =
689 ExternalReference::new_space_allocation_top_address(isolate());
690
691 // Update new top. Use scratch if available.
692 if (scratch.is(no_reg)) {
693 mov(Operand::StaticVariable(new_space_allocation_top), result_end);
694 } else {
695 mov(Operand(scratch, 0), result_end);
696 }
697 }
698
699
AllocateInNewSpace(int object_size,Register result,Register result_end,Register scratch,Label * gc_required,AllocationFlags flags)700 void MacroAssembler::AllocateInNewSpace(int object_size,
701 Register result,
702 Register result_end,
703 Register scratch,
704 Label* gc_required,
705 AllocationFlags flags) {
706 if (!FLAG_inline_new) {
707 if (emit_debug_code()) {
708 // Trash the registers to simulate an allocation failure.
709 mov(result, Immediate(0x7091));
710 if (result_end.is_valid()) {
711 mov(result_end, Immediate(0x7191));
712 }
713 if (scratch.is_valid()) {
714 mov(scratch, Immediate(0x7291));
715 }
716 }
717 jmp(gc_required);
718 return;
719 }
720 ASSERT(!result.is(result_end));
721
722 // Load address of new object into result.
723 LoadAllocationTopHelper(result, scratch, flags);
724
725 Register top_reg = result_end.is_valid() ? result_end : result;
726
727 // Calculate new top and bail out if new space is exhausted.
728 ExternalReference new_space_allocation_limit =
729 ExternalReference::new_space_allocation_limit_address(isolate());
730
731 if (!top_reg.is(result)) {
732 mov(top_reg, result);
733 }
734 add(Operand(top_reg), Immediate(object_size));
735 j(carry, gc_required, not_taken);
736 cmp(top_reg, Operand::StaticVariable(new_space_allocation_limit));
737 j(above, gc_required, not_taken);
738
739 // Update allocation top.
740 UpdateAllocationTopHelper(top_reg, scratch);
741
742 // Tag result if requested.
743 if (top_reg.is(result)) {
744 if ((flags & TAG_OBJECT) != 0) {
745 sub(Operand(result), Immediate(object_size - kHeapObjectTag));
746 } else {
747 sub(Operand(result), Immediate(object_size));
748 }
749 } else if ((flags & TAG_OBJECT) != 0) {
750 add(Operand(result), Immediate(kHeapObjectTag));
751 }
752 }
753
754
AllocateInNewSpace(int header_size,ScaleFactor element_size,Register element_count,Register result,Register result_end,Register scratch,Label * gc_required,AllocationFlags flags)755 void MacroAssembler::AllocateInNewSpace(int header_size,
756 ScaleFactor element_size,
757 Register element_count,
758 Register result,
759 Register result_end,
760 Register scratch,
761 Label* gc_required,
762 AllocationFlags flags) {
763 if (!FLAG_inline_new) {
764 if (emit_debug_code()) {
765 // Trash the registers to simulate an allocation failure.
766 mov(result, Immediate(0x7091));
767 mov(result_end, Immediate(0x7191));
768 if (scratch.is_valid()) {
769 mov(scratch, Immediate(0x7291));
770 }
771 // Register element_count is not modified by the function.
772 }
773 jmp(gc_required);
774 return;
775 }
776 ASSERT(!result.is(result_end));
777
778 // Load address of new object into result.
779 LoadAllocationTopHelper(result, scratch, flags);
780
781 // Calculate new top and bail out if new space is exhausted.
782 ExternalReference new_space_allocation_limit =
783 ExternalReference::new_space_allocation_limit_address(isolate());
784
785 // We assume that element_count*element_size + header_size does not
786 // overflow.
787 lea(result_end, Operand(element_count, element_size, header_size));
788 add(result_end, Operand(result));
789 j(carry, gc_required);
790 cmp(result_end, Operand::StaticVariable(new_space_allocation_limit));
791 j(above, gc_required);
792
793 // Tag result if requested.
794 if ((flags & TAG_OBJECT) != 0) {
795 lea(result, Operand(result, kHeapObjectTag));
796 }
797
798 // Update allocation top.
799 UpdateAllocationTopHelper(result_end, scratch);
800 }
801
802
AllocateInNewSpace(Register object_size,Register result,Register result_end,Register scratch,Label * gc_required,AllocationFlags flags)803 void MacroAssembler::AllocateInNewSpace(Register object_size,
804 Register result,
805 Register result_end,
806 Register scratch,
807 Label* gc_required,
808 AllocationFlags flags) {
809 if (!FLAG_inline_new) {
810 if (emit_debug_code()) {
811 // Trash the registers to simulate an allocation failure.
812 mov(result, Immediate(0x7091));
813 mov(result_end, Immediate(0x7191));
814 if (scratch.is_valid()) {
815 mov(scratch, Immediate(0x7291));
816 }
817 // object_size is left unchanged by this function.
818 }
819 jmp(gc_required);
820 return;
821 }
822 ASSERT(!result.is(result_end));
823
824 // Load address of new object into result.
825 LoadAllocationTopHelper(result, scratch, flags);
826
827 // Calculate new top and bail out if new space is exhausted.
828 ExternalReference new_space_allocation_limit =
829 ExternalReference::new_space_allocation_limit_address(isolate());
830 if (!object_size.is(result_end)) {
831 mov(result_end, object_size);
832 }
833 add(result_end, Operand(result));
834 j(carry, gc_required, not_taken);
835 cmp(result_end, Operand::StaticVariable(new_space_allocation_limit));
836 j(above, gc_required, not_taken);
837
838 // Tag result if requested.
839 if ((flags & TAG_OBJECT) != 0) {
840 lea(result, Operand(result, kHeapObjectTag));
841 }
842
843 // Update allocation top.
844 UpdateAllocationTopHelper(result_end, scratch);
845 }
846
847
UndoAllocationInNewSpace(Register object)848 void MacroAssembler::UndoAllocationInNewSpace(Register object) {
849 ExternalReference new_space_allocation_top =
850 ExternalReference::new_space_allocation_top_address(isolate());
851
852 // Make sure the object has no tag before resetting top.
853 and_(Operand(object), Immediate(~kHeapObjectTagMask));
854 #ifdef DEBUG
855 cmp(object, Operand::StaticVariable(new_space_allocation_top));
856 Check(below, "Undo allocation of non allocated memory");
857 #endif
858 mov(Operand::StaticVariable(new_space_allocation_top), object);
859 }
860
861
AllocateHeapNumber(Register result,Register scratch1,Register scratch2,Label * gc_required)862 void MacroAssembler::AllocateHeapNumber(Register result,
863 Register scratch1,
864 Register scratch2,
865 Label* gc_required) {
866 // Allocate heap number in new space.
867 AllocateInNewSpace(HeapNumber::kSize,
868 result,
869 scratch1,
870 scratch2,
871 gc_required,
872 TAG_OBJECT);
873
874 // Set the map.
875 mov(FieldOperand(result, HeapObject::kMapOffset),
876 Immediate(isolate()->factory()->heap_number_map()));
877 }
878
879
AllocateTwoByteString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)880 void MacroAssembler::AllocateTwoByteString(Register result,
881 Register length,
882 Register scratch1,
883 Register scratch2,
884 Register scratch3,
885 Label* gc_required) {
886 // Calculate the number of bytes needed for the characters in the string while
887 // observing object alignment.
888 ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
889 ASSERT(kShortSize == 2);
890 // scratch1 = length * 2 + kObjectAlignmentMask.
891 lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask));
892 and_(Operand(scratch1), Immediate(~kObjectAlignmentMask));
893
894 // Allocate two byte string in new space.
895 AllocateInNewSpace(SeqTwoByteString::kHeaderSize,
896 times_1,
897 scratch1,
898 result,
899 scratch2,
900 scratch3,
901 gc_required,
902 TAG_OBJECT);
903
904 // Set the map, length and hash field.
905 mov(FieldOperand(result, HeapObject::kMapOffset),
906 Immediate(isolate()->factory()->string_map()));
907 mov(scratch1, length);
908 SmiTag(scratch1);
909 mov(FieldOperand(result, String::kLengthOffset), scratch1);
910 mov(FieldOperand(result, String::kHashFieldOffset),
911 Immediate(String::kEmptyHashField));
912 }
913
914
AllocateAsciiString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)915 void MacroAssembler::AllocateAsciiString(Register result,
916 Register length,
917 Register scratch1,
918 Register scratch2,
919 Register scratch3,
920 Label* gc_required) {
921 // Calculate the number of bytes needed for the characters in the string while
922 // observing object alignment.
923 ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
924 mov(scratch1, length);
925 ASSERT(kCharSize == 1);
926 add(Operand(scratch1), Immediate(kObjectAlignmentMask));
927 and_(Operand(scratch1), Immediate(~kObjectAlignmentMask));
928
929 // Allocate ascii string in new space.
930 AllocateInNewSpace(SeqAsciiString::kHeaderSize,
931 times_1,
932 scratch1,
933 result,
934 scratch2,
935 scratch3,
936 gc_required,
937 TAG_OBJECT);
938
939 // Set the map, length and hash field.
940 mov(FieldOperand(result, HeapObject::kMapOffset),
941 Immediate(isolate()->factory()->ascii_string_map()));
942 mov(scratch1, length);
943 SmiTag(scratch1);
944 mov(FieldOperand(result, String::kLengthOffset), scratch1);
945 mov(FieldOperand(result, String::kHashFieldOffset),
946 Immediate(String::kEmptyHashField));
947 }
948
949
AllocateAsciiString(Register result,int length,Register scratch1,Register scratch2,Label * gc_required)950 void MacroAssembler::AllocateAsciiString(Register result,
951 int length,
952 Register scratch1,
953 Register scratch2,
954 Label* gc_required) {
955 ASSERT(length > 0);
956
957 // Allocate ascii string in new space.
958 AllocateInNewSpace(SeqAsciiString::SizeFor(length),
959 result,
960 scratch1,
961 scratch2,
962 gc_required,
963 TAG_OBJECT);
964
965 // Set the map, length and hash field.
966 mov(FieldOperand(result, HeapObject::kMapOffset),
967 Immediate(isolate()->factory()->ascii_string_map()));
968 mov(FieldOperand(result, String::kLengthOffset),
969 Immediate(Smi::FromInt(length)));
970 mov(FieldOperand(result, String::kHashFieldOffset),
971 Immediate(String::kEmptyHashField));
972 }
973
974
AllocateConsString(Register result,Register scratch1,Register scratch2,Label * gc_required)975 void MacroAssembler::AllocateConsString(Register result,
976 Register scratch1,
977 Register scratch2,
978 Label* gc_required) {
979 // Allocate heap number in new space.
980 AllocateInNewSpace(ConsString::kSize,
981 result,
982 scratch1,
983 scratch2,
984 gc_required,
985 TAG_OBJECT);
986
987 // Set the map. The other fields are left uninitialized.
988 mov(FieldOperand(result, HeapObject::kMapOffset),
989 Immediate(isolate()->factory()->cons_string_map()));
990 }
991
992
AllocateAsciiConsString(Register result,Register scratch1,Register scratch2,Label * gc_required)993 void MacroAssembler::AllocateAsciiConsString(Register result,
994 Register scratch1,
995 Register scratch2,
996 Label* gc_required) {
997 // Allocate heap number in new space.
998 AllocateInNewSpace(ConsString::kSize,
999 result,
1000 scratch1,
1001 scratch2,
1002 gc_required,
1003 TAG_OBJECT);
1004
1005 // Set the map. The other fields are left uninitialized.
1006 mov(FieldOperand(result, HeapObject::kMapOffset),
1007 Immediate(isolate()->factory()->cons_ascii_string_map()));
1008 }
1009
1010
1011 // Copy memory, byte-by-byte, from source to destination. Not optimized for
1012 // long or aligned copies. The contents of scratch and length are destroyed.
1013 // Source and destination are incremented by length.
1014 // Many variants of movsb, loop unrolling, word moves, and indexed operands
1015 // have been tried here already, and this is fastest.
1016 // A simpler loop is faster on small copies, but 30% slower on large ones.
1017 // The cld() instruction must have been emitted, to set the direction flag(),
1018 // before calling this function.
CopyBytes(Register source,Register destination,Register length,Register scratch)1019 void MacroAssembler::CopyBytes(Register source,
1020 Register destination,
1021 Register length,
1022 Register scratch) {
1023 Label loop, done, short_string, short_loop;
1024 // Experimentation shows that the short string loop is faster if length < 10.
1025 cmp(Operand(length), Immediate(10));
1026 j(less_equal, &short_string);
1027
1028 ASSERT(source.is(esi));
1029 ASSERT(destination.is(edi));
1030 ASSERT(length.is(ecx));
1031
1032 // Because source is 4-byte aligned in our uses of this function,
1033 // we keep source aligned for the rep_movs call by copying the odd bytes
1034 // at the end of the ranges.
1035 mov(scratch, Operand(source, length, times_1, -4));
1036 mov(Operand(destination, length, times_1, -4), scratch);
1037 mov(scratch, ecx);
1038 shr(ecx, 2);
1039 rep_movs();
1040 and_(Operand(scratch), Immediate(0x3));
1041 add(destination, Operand(scratch));
1042 jmp(&done);
1043
1044 bind(&short_string);
1045 test(length, Operand(length));
1046 j(zero, &done);
1047
1048 bind(&short_loop);
1049 mov_b(scratch, Operand(source, 0));
1050 mov_b(Operand(destination, 0), scratch);
1051 inc(source);
1052 inc(destination);
1053 dec(length);
1054 j(not_zero, &short_loop);
1055
1056 bind(&done);
1057 }
1058
1059
NegativeZeroTest(Register result,Register op,Label * then_label)1060 void MacroAssembler::NegativeZeroTest(Register result,
1061 Register op,
1062 Label* then_label) {
1063 Label ok;
1064 test(result, Operand(result));
1065 j(not_zero, &ok, taken);
1066 test(op, Operand(op));
1067 j(sign, then_label, not_taken);
1068 bind(&ok);
1069 }
1070
1071
NegativeZeroTest(Register result,Register op1,Register op2,Register scratch,Label * then_label)1072 void MacroAssembler::NegativeZeroTest(Register result,
1073 Register op1,
1074 Register op2,
1075 Register scratch,
1076 Label* then_label) {
1077 Label ok;
1078 test(result, Operand(result));
1079 j(not_zero, &ok, taken);
1080 mov(scratch, Operand(op1));
1081 or_(scratch, Operand(op2));
1082 j(sign, then_label, not_taken);
1083 bind(&ok);
1084 }
1085
1086
TryGetFunctionPrototype(Register function,Register result,Register scratch,Label * miss)1087 void MacroAssembler::TryGetFunctionPrototype(Register function,
1088 Register result,
1089 Register scratch,
1090 Label* miss) {
1091 // Check that the receiver isn't a smi.
1092 test(function, Immediate(kSmiTagMask));
1093 j(zero, miss, not_taken);
1094
1095 // Check that the function really is a function.
1096 CmpObjectType(function, JS_FUNCTION_TYPE, result);
1097 j(not_equal, miss, not_taken);
1098
1099 // Make sure that the function has an instance prototype.
1100 Label non_instance;
1101 movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset));
1102 test(scratch, Immediate(1 << Map::kHasNonInstancePrototype));
1103 j(not_zero, &non_instance, not_taken);
1104
1105 // Get the prototype or initial map from the function.
1106 mov(result,
1107 FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
1108
1109 // If the prototype or initial map is the hole, don't return it and
1110 // simply miss the cache instead. This will allow us to allocate a
1111 // prototype object on-demand in the runtime system.
1112 cmp(Operand(result), Immediate(isolate()->factory()->the_hole_value()));
1113 j(equal, miss, not_taken);
1114
1115 // If the function does not have an initial map, we're done.
1116 Label done;
1117 CmpObjectType(result, MAP_TYPE, scratch);
1118 j(not_equal, &done);
1119
1120 // Get the prototype from the initial map.
1121 mov(result, FieldOperand(result, Map::kPrototypeOffset));
1122 jmp(&done);
1123
1124 // Non-instance prototype: Fetch prototype from constructor field
1125 // in initial map.
1126 bind(&non_instance);
1127 mov(result, FieldOperand(result, Map::kConstructorOffset));
1128
1129 // All done.
1130 bind(&done);
1131 }
1132
1133
CallStub(CodeStub * stub)1134 void MacroAssembler::CallStub(CodeStub* stub) {
1135 ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs.
1136 call(stub->GetCode(), RelocInfo::CODE_TARGET);
1137 }
1138
1139
TryCallStub(CodeStub * stub)1140 MaybeObject* MacroAssembler::TryCallStub(CodeStub* stub) {
1141 ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs.
1142 Object* result;
1143 { MaybeObject* maybe_result = stub->TryGetCode();
1144 if (!maybe_result->ToObject(&result)) return maybe_result;
1145 }
1146 call(Handle<Code>(Code::cast(result)), RelocInfo::CODE_TARGET);
1147 return result;
1148 }
1149
1150
TailCallStub(CodeStub * stub)1151 void MacroAssembler::TailCallStub(CodeStub* stub) {
1152 ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs.
1153 jmp(stub->GetCode(), RelocInfo::CODE_TARGET);
1154 }
1155
1156
TryTailCallStub(CodeStub * stub)1157 MaybeObject* MacroAssembler::TryTailCallStub(CodeStub* stub) {
1158 ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs.
1159 Object* result;
1160 { MaybeObject* maybe_result = stub->TryGetCode();
1161 if (!maybe_result->ToObject(&result)) return maybe_result;
1162 }
1163 jmp(Handle<Code>(Code::cast(result)), RelocInfo::CODE_TARGET);
1164 return result;
1165 }
1166
1167
StubReturn(int argc)1168 void MacroAssembler::StubReturn(int argc) {
1169 ASSERT(argc >= 1 && generating_stub());
1170 ret((argc - 1) * kPointerSize);
1171 }
1172
1173
IllegalOperation(int num_arguments)1174 void MacroAssembler::IllegalOperation(int num_arguments) {
1175 if (num_arguments > 0) {
1176 add(Operand(esp), Immediate(num_arguments * kPointerSize));
1177 }
1178 mov(eax, Immediate(isolate()->factory()->undefined_value()));
1179 }
1180
1181
IndexFromHash(Register hash,Register index)1182 void MacroAssembler::IndexFromHash(Register hash, Register index) {
1183 // The assert checks that the constants for the maximum number of digits
1184 // for an array index cached in the hash field and the number of bits
1185 // reserved for it does not conflict.
1186 ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
1187 (1 << String::kArrayIndexValueBits));
1188 // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in
1189 // the low kHashShift bits.
1190 and_(hash, String::kArrayIndexValueMask);
1191 STATIC_ASSERT(String::kHashShift >= kSmiTagSize && kSmiTag == 0);
1192 if (String::kHashShift > kSmiTagSize) {
1193 shr(hash, String::kHashShift - kSmiTagSize);
1194 }
1195 if (!index.is(hash)) {
1196 mov(index, hash);
1197 }
1198 }
1199
1200
CallRuntime(Runtime::FunctionId id,int num_arguments)1201 void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) {
1202 CallRuntime(Runtime::FunctionForId(id), num_arguments);
1203 }
1204
1205
CallRuntimeSaveDoubles(Runtime::FunctionId id)1206 void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1207 const Runtime::Function* function = Runtime::FunctionForId(id);
1208 Set(eax, Immediate(function->nargs));
1209 mov(ebx, Immediate(ExternalReference(function, isolate())));
1210 CEntryStub ces(1);
1211 ces.SaveDoubles();
1212 CallStub(&ces);
1213 }
1214
1215
TryCallRuntime(Runtime::FunctionId id,int num_arguments)1216 MaybeObject* MacroAssembler::TryCallRuntime(Runtime::FunctionId id,
1217 int num_arguments) {
1218 return TryCallRuntime(Runtime::FunctionForId(id), num_arguments);
1219 }
1220
1221
CallRuntime(const Runtime::Function * f,int num_arguments)1222 void MacroAssembler::CallRuntime(const Runtime::Function* f,
1223 int num_arguments) {
1224 // If the expected number of arguments of the runtime function is
1225 // constant, we check that the actual number of arguments match the
1226 // expectation.
1227 if (f->nargs >= 0 && f->nargs != num_arguments) {
1228 IllegalOperation(num_arguments);
1229 return;
1230 }
1231
1232 // TODO(1236192): Most runtime routines don't need the number of
1233 // arguments passed in because it is constant. At some point we
1234 // should remove this need and make the runtime routine entry code
1235 // smarter.
1236 Set(eax, Immediate(num_arguments));
1237 mov(ebx, Immediate(ExternalReference(f, isolate())));
1238 CEntryStub ces(1);
1239 CallStub(&ces);
1240 }
1241
1242
TryCallRuntime(const Runtime::Function * f,int num_arguments)1243 MaybeObject* MacroAssembler::TryCallRuntime(const Runtime::Function* f,
1244 int num_arguments) {
1245 if (f->nargs >= 0 && f->nargs != num_arguments) {
1246 IllegalOperation(num_arguments);
1247 // Since we did not call the stub, there was no allocation failure.
1248 // Return some non-failure object.
1249 return isolate()->heap()->undefined_value();
1250 }
1251
1252 // TODO(1236192): Most runtime routines don't need the number of
1253 // arguments passed in because it is constant. At some point we
1254 // should remove this need and make the runtime routine entry code
1255 // smarter.
1256 Set(eax, Immediate(num_arguments));
1257 mov(ebx, Immediate(ExternalReference(f, isolate())));
1258 CEntryStub ces(1);
1259 return TryCallStub(&ces);
1260 }
1261
1262
CallExternalReference(ExternalReference ref,int num_arguments)1263 void MacroAssembler::CallExternalReference(ExternalReference ref,
1264 int num_arguments) {
1265 mov(eax, Immediate(num_arguments));
1266 mov(ebx, Immediate(ref));
1267
1268 CEntryStub stub(1);
1269 CallStub(&stub);
1270 }
1271
1272
TailCallExternalReference(const ExternalReference & ext,int num_arguments,int result_size)1273 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
1274 int num_arguments,
1275 int result_size) {
1276 // TODO(1236192): Most runtime routines don't need the number of
1277 // arguments passed in because it is constant. At some point we
1278 // should remove this need and make the runtime routine entry code
1279 // smarter.
1280 Set(eax, Immediate(num_arguments));
1281 JumpToExternalReference(ext);
1282 }
1283
1284
TryTailCallExternalReference(const ExternalReference & ext,int num_arguments,int result_size)1285 MaybeObject* MacroAssembler::TryTailCallExternalReference(
1286 const ExternalReference& ext, int num_arguments, int result_size) {
1287 // TODO(1236192): Most runtime routines don't need the number of
1288 // arguments passed in because it is constant. At some point we
1289 // should remove this need and make the runtime routine entry code
1290 // smarter.
1291 Set(eax, Immediate(num_arguments));
1292 return TryJumpToExternalReference(ext);
1293 }
1294
1295
TailCallRuntime(Runtime::FunctionId fid,int num_arguments,int result_size)1296 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
1297 int num_arguments,
1298 int result_size) {
1299 TailCallExternalReference(ExternalReference(fid, isolate()),
1300 num_arguments,
1301 result_size);
1302 }
1303
1304
TryTailCallRuntime(Runtime::FunctionId fid,int num_arguments,int result_size)1305 MaybeObject* MacroAssembler::TryTailCallRuntime(Runtime::FunctionId fid,
1306 int num_arguments,
1307 int result_size) {
1308 return TryTailCallExternalReference(
1309 ExternalReference(fid, isolate()), num_arguments, result_size);
1310 }
1311
1312
1313 // If true, a Handle<T> returned by value from a function with cdecl calling
1314 // convention will be returned directly as a value of location_ field in a
1315 // register eax.
1316 // If false, it is returned as a pointer to a preallocated by caller memory
1317 // region. Pointer to this region should be passed to a function as an
1318 // implicit first argument.
1319 #if defined(USING_BSD_ABI) || defined(__MINGW32__) || defined(__CYGWIN__)
1320 static const bool kReturnHandlesDirectly = true;
1321 #else
1322 static const bool kReturnHandlesDirectly = false;
1323 #endif
1324
1325
ApiParameterOperand(int index)1326 Operand ApiParameterOperand(int index) {
1327 return Operand(
1328 esp, (index + (kReturnHandlesDirectly ? 0 : 1)) * kPointerSize);
1329 }
1330
1331
PrepareCallApiFunction(int argc,Register scratch)1332 void MacroAssembler::PrepareCallApiFunction(int argc, Register scratch) {
1333 if (kReturnHandlesDirectly) {
1334 EnterApiExitFrame(argc);
1335 // When handles are returned directly we don't have to allocate extra
1336 // space for and pass an out parameter.
1337 } else {
1338 // We allocate two additional slots: return value and pointer to it.
1339 EnterApiExitFrame(argc + 2);
1340
1341 // The argument slots are filled as follows:
1342 //
1343 // n + 1: output cell
1344 // n: arg n
1345 // ...
1346 // 1: arg1
1347 // 0: pointer to the output cell
1348 //
1349 // Note that this is one more "argument" than the function expects
1350 // so the out cell will have to be popped explicitly after returning
1351 // from the function. The out cell contains Handle.
1352
1353 // pointer to out cell.
1354 lea(scratch, Operand(esp, (argc + 1) * kPointerSize));
1355 mov(Operand(esp, 0 * kPointerSize), scratch); // output.
1356 if (emit_debug_code()) {
1357 mov(Operand(esp, (argc + 1) * kPointerSize), Immediate(0)); // out cell.
1358 }
1359 }
1360 }
1361
1362
TryCallApiFunctionAndReturn(ApiFunction * function,int stack_space)1363 MaybeObject* MacroAssembler::TryCallApiFunctionAndReturn(ApiFunction* function,
1364 int stack_space) {
1365 ExternalReference next_address =
1366 ExternalReference::handle_scope_next_address();
1367 ExternalReference limit_address =
1368 ExternalReference::handle_scope_limit_address();
1369 ExternalReference level_address =
1370 ExternalReference::handle_scope_level_address();
1371
1372 // Allocate HandleScope in callee-save registers.
1373 mov(ebx, Operand::StaticVariable(next_address));
1374 mov(edi, Operand::StaticVariable(limit_address));
1375 add(Operand::StaticVariable(level_address), Immediate(1));
1376
1377 // Call the api function!
1378 call(function->address(), RelocInfo::RUNTIME_ENTRY);
1379
1380 if (!kReturnHandlesDirectly) {
1381 // The returned value is a pointer to the handle holding the result.
1382 // Dereference this to get to the location.
1383 mov(eax, Operand(eax, 0));
1384 }
1385
1386 Label empty_handle;
1387 Label prologue;
1388 Label promote_scheduled_exception;
1389 Label delete_allocated_handles;
1390 Label leave_exit_frame;
1391
1392 // Check if the result handle holds 0.
1393 test(eax, Operand(eax));
1394 j(zero, &empty_handle, not_taken);
1395 // It was non-zero. Dereference to get the result value.
1396 mov(eax, Operand(eax, 0));
1397 bind(&prologue);
1398 // No more valid handles (the result handle was the last one). Restore
1399 // previous handle scope.
1400 mov(Operand::StaticVariable(next_address), ebx);
1401 sub(Operand::StaticVariable(level_address), Immediate(1));
1402 Assert(above_equal, "Invalid HandleScope level");
1403 cmp(edi, Operand::StaticVariable(limit_address));
1404 j(not_equal, &delete_allocated_handles, not_taken);
1405 bind(&leave_exit_frame);
1406
1407 // Check if the function scheduled an exception.
1408 ExternalReference scheduled_exception_address =
1409 ExternalReference::scheduled_exception_address(isolate());
1410 cmp(Operand::StaticVariable(scheduled_exception_address),
1411 Immediate(isolate()->factory()->the_hole_value()));
1412 j(not_equal, &promote_scheduled_exception, not_taken);
1413 LeaveApiExitFrame();
1414 ret(stack_space * kPointerSize);
1415 bind(&promote_scheduled_exception);
1416 MaybeObject* result =
1417 TryTailCallRuntime(Runtime::kPromoteScheduledException, 0, 1);
1418 if (result->IsFailure()) {
1419 return result;
1420 }
1421 bind(&empty_handle);
1422 // It was zero; the result is undefined.
1423 mov(eax, isolate()->factory()->undefined_value());
1424 jmp(&prologue);
1425
1426 // HandleScope limit has changed. Delete allocated extensions.
1427 ExternalReference delete_extensions =
1428 ExternalReference::delete_handle_scope_extensions(isolate());
1429 bind(&delete_allocated_handles);
1430 mov(Operand::StaticVariable(limit_address), edi);
1431 mov(edi, eax);
1432 mov(Operand(esp, 0), Immediate(ExternalReference::isolate_address()));
1433 mov(eax, Immediate(delete_extensions));
1434 call(Operand(eax));
1435 mov(eax, edi);
1436 jmp(&leave_exit_frame);
1437
1438 return result;
1439 }
1440
1441
JumpToExternalReference(const ExternalReference & ext)1442 void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) {
1443 // Set the entry point and jump to the C entry runtime stub.
1444 mov(ebx, Immediate(ext));
1445 CEntryStub ces(1);
1446 jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
1447 }
1448
1449
TryJumpToExternalReference(const ExternalReference & ext)1450 MaybeObject* MacroAssembler::TryJumpToExternalReference(
1451 const ExternalReference& ext) {
1452 // Set the entry point and jump to the C entry runtime stub.
1453 mov(ebx, Immediate(ext));
1454 CEntryStub ces(1);
1455 return TryTailCallStub(&ces);
1456 }
1457
1458
InvokePrologue(const ParameterCount & expected,const ParameterCount & actual,Handle<Code> code_constant,const Operand & code_operand,NearLabel * done,InvokeFlag flag,PostCallGenerator * post_call_generator)1459 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
1460 const ParameterCount& actual,
1461 Handle<Code> code_constant,
1462 const Operand& code_operand,
1463 NearLabel* done,
1464 InvokeFlag flag,
1465 PostCallGenerator* post_call_generator) {
1466 bool definitely_matches = false;
1467 Label invoke;
1468 if (expected.is_immediate()) {
1469 ASSERT(actual.is_immediate());
1470 if (expected.immediate() == actual.immediate()) {
1471 definitely_matches = true;
1472 } else {
1473 mov(eax, actual.immediate());
1474 const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
1475 if (expected.immediate() == sentinel) {
1476 // Don't worry about adapting arguments for builtins that
1477 // don't want that done. Skip adaption code by making it look
1478 // like we have a match between expected and actual number of
1479 // arguments.
1480 definitely_matches = true;
1481 } else {
1482 mov(ebx, expected.immediate());
1483 }
1484 }
1485 } else {
1486 if (actual.is_immediate()) {
1487 // Expected is in register, actual is immediate. This is the
1488 // case when we invoke function values without going through the
1489 // IC mechanism.
1490 cmp(expected.reg(), actual.immediate());
1491 j(equal, &invoke);
1492 ASSERT(expected.reg().is(ebx));
1493 mov(eax, actual.immediate());
1494 } else if (!expected.reg().is(actual.reg())) {
1495 // Both expected and actual are in (different) registers. This
1496 // is the case when we invoke functions using call and apply.
1497 cmp(expected.reg(), Operand(actual.reg()));
1498 j(equal, &invoke);
1499 ASSERT(actual.reg().is(eax));
1500 ASSERT(expected.reg().is(ebx));
1501 }
1502 }
1503
1504 if (!definitely_matches) {
1505 Handle<Code> adaptor =
1506 isolate()->builtins()->ArgumentsAdaptorTrampoline();
1507 if (!code_constant.is_null()) {
1508 mov(edx, Immediate(code_constant));
1509 add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag));
1510 } else if (!code_operand.is_reg(edx)) {
1511 mov(edx, code_operand);
1512 }
1513
1514 if (flag == CALL_FUNCTION) {
1515 call(adaptor, RelocInfo::CODE_TARGET);
1516 if (post_call_generator != NULL) post_call_generator->Generate();
1517 jmp(done);
1518 } else {
1519 jmp(adaptor, RelocInfo::CODE_TARGET);
1520 }
1521 bind(&invoke);
1522 }
1523 }
1524
1525
InvokeCode(const Operand & code,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,PostCallGenerator * post_call_generator)1526 void MacroAssembler::InvokeCode(const Operand& code,
1527 const ParameterCount& expected,
1528 const ParameterCount& actual,
1529 InvokeFlag flag,
1530 PostCallGenerator* post_call_generator) {
1531 NearLabel done;
1532 InvokePrologue(expected, actual, Handle<Code>::null(), code,
1533 &done, flag, post_call_generator);
1534 if (flag == CALL_FUNCTION) {
1535 call(code);
1536 if (post_call_generator != NULL) post_call_generator->Generate();
1537 } else {
1538 ASSERT(flag == JUMP_FUNCTION);
1539 jmp(code);
1540 }
1541 bind(&done);
1542 }
1543
1544
InvokeCode(Handle<Code> code,const ParameterCount & expected,const ParameterCount & actual,RelocInfo::Mode rmode,InvokeFlag flag,PostCallGenerator * post_call_generator)1545 void MacroAssembler::InvokeCode(Handle<Code> code,
1546 const ParameterCount& expected,
1547 const ParameterCount& actual,
1548 RelocInfo::Mode rmode,
1549 InvokeFlag flag,
1550 PostCallGenerator* post_call_generator) {
1551 NearLabel done;
1552 Operand dummy(eax);
1553 InvokePrologue(expected, actual, code, dummy, &done,
1554 flag, post_call_generator);
1555 if (flag == CALL_FUNCTION) {
1556 call(code, rmode);
1557 if (post_call_generator != NULL) post_call_generator->Generate();
1558 } else {
1559 ASSERT(flag == JUMP_FUNCTION);
1560 jmp(code, rmode);
1561 }
1562 bind(&done);
1563 }
1564
1565
InvokeFunction(Register fun,const ParameterCount & actual,InvokeFlag flag,PostCallGenerator * post_call_generator)1566 void MacroAssembler::InvokeFunction(Register fun,
1567 const ParameterCount& actual,
1568 InvokeFlag flag,
1569 PostCallGenerator* post_call_generator) {
1570 ASSERT(fun.is(edi));
1571 mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
1572 mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
1573 mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
1574 SmiUntag(ebx);
1575
1576 ParameterCount expected(ebx);
1577 InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
1578 expected, actual, flag, post_call_generator);
1579 }
1580
1581
InvokeFunction(JSFunction * function,const ParameterCount & actual,InvokeFlag flag,PostCallGenerator * post_call_generator)1582 void MacroAssembler::InvokeFunction(JSFunction* function,
1583 const ParameterCount& actual,
1584 InvokeFlag flag,
1585 PostCallGenerator* post_call_generator) {
1586 ASSERT(function->is_compiled());
1587 // Get the function and setup the context.
1588 mov(edi, Immediate(Handle<JSFunction>(function)));
1589 mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
1590
1591 ParameterCount expected(function->shared()->formal_parameter_count());
1592 if (V8::UseCrankshaft()) {
1593 // TODO(kasperl): For now, we always call indirectly through the
1594 // code field in the function to allow recompilation to take effect
1595 // without changing any of the call sites.
1596 InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
1597 expected, actual, flag, post_call_generator);
1598 } else {
1599 Handle<Code> code(function->code());
1600 InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET,
1601 flag, post_call_generator);
1602 }
1603 }
1604
1605
InvokeBuiltin(Builtins::JavaScript id,InvokeFlag flag,PostCallGenerator * post_call_generator)1606 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
1607 InvokeFlag flag,
1608 PostCallGenerator* post_call_generator) {
1609 // Calls are not allowed in some stubs.
1610 ASSERT(flag == JUMP_FUNCTION || allow_stub_calls());
1611
1612 // Rely on the assertion to check that the number of provided
1613 // arguments match the expected number of arguments. Fake a
1614 // parameter count to avoid emitting code to do the check.
1615 ParameterCount expected(0);
1616 GetBuiltinFunction(edi, id);
1617 InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
1618 expected, expected, flag, post_call_generator);
1619 }
1620
GetBuiltinFunction(Register target,Builtins::JavaScript id)1621 void MacroAssembler::GetBuiltinFunction(Register target,
1622 Builtins::JavaScript id) {
1623 // Load the JavaScript builtin function from the builtins object.
1624 mov(target, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
1625 mov(target, FieldOperand(target, GlobalObject::kBuiltinsOffset));
1626 mov(target, FieldOperand(target,
1627 JSBuiltinsObject::OffsetOfFunctionWithId(id)));
1628 }
1629
GetBuiltinEntry(Register target,Builtins::JavaScript id)1630 void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
1631 ASSERT(!target.is(edi));
1632 // Load the JavaScript builtin function from the builtins object.
1633 GetBuiltinFunction(edi, id);
1634 // Load the code entry point from the function into the target register.
1635 mov(target, FieldOperand(edi, JSFunction::kCodeEntryOffset));
1636 }
1637
1638
LoadContext(Register dst,int context_chain_length)1639 void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
1640 if (context_chain_length > 0) {
1641 // Move up the chain of contexts to the context containing the slot.
1642 mov(dst, Operand(esi, Context::SlotOffset(Context::CLOSURE_INDEX)));
1643 // Load the function context (which is the incoming, outer context).
1644 mov(dst, FieldOperand(dst, JSFunction::kContextOffset));
1645 for (int i = 1; i < context_chain_length; i++) {
1646 mov(dst, Operand(dst, Context::SlotOffset(Context::CLOSURE_INDEX)));
1647 mov(dst, FieldOperand(dst, JSFunction::kContextOffset));
1648 }
1649 } else {
1650 // Slot is in the current function context. Move it into the
1651 // destination register in case we store into it (the write barrier
1652 // cannot be allowed to destroy the context in esi).
1653 mov(dst, esi);
1654 }
1655
1656 // We should not have found a 'with' context by walking the context chain
1657 // (i.e., the static scope chain and runtime context chain do not agree).
1658 // A variable occurring in such a scope should have slot type LOOKUP and
1659 // not CONTEXT.
1660 if (emit_debug_code()) {
1661 cmp(dst, Operand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX)));
1662 Check(equal, "Yo dawg, I heard you liked function contexts "
1663 "so I put function contexts in all your contexts");
1664 }
1665 }
1666
1667
LoadGlobalFunction(int index,Register function)1668 void MacroAssembler::LoadGlobalFunction(int index, Register function) {
1669 // Load the global or builtins object from the current context.
1670 mov(function, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
1671 // Load the global context from the global or builtins object.
1672 mov(function, FieldOperand(function, GlobalObject::kGlobalContextOffset));
1673 // Load the function from the global context.
1674 mov(function, Operand(function, Context::SlotOffset(index)));
1675 }
1676
1677
LoadGlobalFunctionInitialMap(Register function,Register map)1678 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
1679 Register map) {
1680 // Load the initial map. The global functions all have initial maps.
1681 mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
1682 if (emit_debug_code()) {
1683 Label ok, fail;
1684 CheckMap(map, isolate()->factory()->meta_map(), &fail, false);
1685 jmp(&ok);
1686 bind(&fail);
1687 Abort("Global functions must have initial map");
1688 bind(&ok);
1689 }
1690 }
1691
1692
1693 // Store the value in register src in the safepoint register stack
1694 // slot for register dst.
StoreToSafepointRegisterSlot(Register dst,Register src)1695 void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
1696 mov(SafepointRegisterSlot(dst), src);
1697 }
1698
1699
StoreToSafepointRegisterSlot(Register dst,Immediate src)1700 void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) {
1701 mov(SafepointRegisterSlot(dst), src);
1702 }
1703
1704
LoadFromSafepointRegisterSlot(Register dst,Register src)1705 void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
1706 mov(dst, SafepointRegisterSlot(src));
1707 }
1708
1709
SafepointRegisterSlot(Register reg)1710 Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
1711 return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
1712 }
1713
1714
SafepointRegisterStackIndex(int reg_code)1715 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
1716 // The registers are pushed starting with the lowest encoding,
1717 // which means that lowest encodings are furthest away from
1718 // the stack pointer.
1719 ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters);
1720 return kNumSafepointRegisters - reg_code - 1;
1721 }
1722
1723
Ret()1724 void MacroAssembler::Ret() {
1725 ret(0);
1726 }
1727
1728
Ret(int bytes_dropped,Register scratch)1729 void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
1730 if (is_uint16(bytes_dropped)) {
1731 ret(bytes_dropped);
1732 } else {
1733 pop(scratch);
1734 add(Operand(esp), Immediate(bytes_dropped));
1735 push(scratch);
1736 ret(0);
1737 }
1738 }
1739
1740
1741
1742
Drop(int stack_elements)1743 void MacroAssembler::Drop(int stack_elements) {
1744 if (stack_elements > 0) {
1745 add(Operand(esp), Immediate(stack_elements * kPointerSize));
1746 }
1747 }
1748
1749
Move(Register dst,Register src)1750 void MacroAssembler::Move(Register dst, Register src) {
1751 if (!dst.is(src)) {
1752 mov(dst, src);
1753 }
1754 }
1755
1756
Move(Register dst,Handle<Object> value)1757 void MacroAssembler::Move(Register dst, Handle<Object> value) {
1758 mov(dst, value);
1759 }
1760
1761
SetCounter(StatsCounter * counter,int value)1762 void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
1763 if (FLAG_native_code_counters && counter->Enabled()) {
1764 mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value));
1765 }
1766 }
1767
1768
IncrementCounter(StatsCounter * counter,int value)1769 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
1770 ASSERT(value > 0);
1771 if (FLAG_native_code_counters && counter->Enabled()) {
1772 Operand operand = Operand::StaticVariable(ExternalReference(counter));
1773 if (value == 1) {
1774 inc(operand);
1775 } else {
1776 add(operand, Immediate(value));
1777 }
1778 }
1779 }
1780
1781
DecrementCounter(StatsCounter * counter,int value)1782 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
1783 ASSERT(value > 0);
1784 if (FLAG_native_code_counters && counter->Enabled()) {
1785 Operand operand = Operand::StaticVariable(ExternalReference(counter));
1786 if (value == 1) {
1787 dec(operand);
1788 } else {
1789 sub(operand, Immediate(value));
1790 }
1791 }
1792 }
1793
1794
IncrementCounter(Condition cc,StatsCounter * counter,int value)1795 void MacroAssembler::IncrementCounter(Condition cc,
1796 StatsCounter* counter,
1797 int value) {
1798 ASSERT(value > 0);
1799 if (FLAG_native_code_counters && counter->Enabled()) {
1800 Label skip;
1801 j(NegateCondition(cc), &skip);
1802 pushfd();
1803 IncrementCounter(counter, value);
1804 popfd();
1805 bind(&skip);
1806 }
1807 }
1808
1809
DecrementCounter(Condition cc,StatsCounter * counter,int value)1810 void MacroAssembler::DecrementCounter(Condition cc,
1811 StatsCounter* counter,
1812 int value) {
1813 ASSERT(value > 0);
1814 if (FLAG_native_code_counters && counter->Enabled()) {
1815 Label skip;
1816 j(NegateCondition(cc), &skip);
1817 pushfd();
1818 DecrementCounter(counter, value);
1819 popfd();
1820 bind(&skip);
1821 }
1822 }
1823
1824
Assert(Condition cc,const char * msg)1825 void MacroAssembler::Assert(Condition cc, const char* msg) {
1826 if (emit_debug_code()) Check(cc, msg);
1827 }
1828
1829
AssertFastElements(Register elements)1830 void MacroAssembler::AssertFastElements(Register elements) {
1831 if (emit_debug_code()) {
1832 Factory* factory = isolate()->factory();
1833 Label ok;
1834 cmp(FieldOperand(elements, HeapObject::kMapOffset),
1835 Immediate(factory->fixed_array_map()));
1836 j(equal, &ok);
1837 cmp(FieldOperand(elements, HeapObject::kMapOffset),
1838 Immediate(factory->fixed_cow_array_map()));
1839 j(equal, &ok);
1840 Abort("JSObject with fast elements map has slow elements");
1841 bind(&ok);
1842 }
1843 }
1844
1845
Check(Condition cc,const char * msg)1846 void MacroAssembler::Check(Condition cc, const char* msg) {
1847 Label L;
1848 j(cc, &L, taken);
1849 Abort(msg);
1850 // will not return here
1851 bind(&L);
1852 }
1853
1854
CheckStackAlignment()1855 void MacroAssembler::CheckStackAlignment() {
1856 int frame_alignment = OS::ActivationFrameAlignment();
1857 int frame_alignment_mask = frame_alignment - 1;
1858 if (frame_alignment > kPointerSize) {
1859 ASSERT(IsPowerOf2(frame_alignment));
1860 Label alignment_as_expected;
1861 test(esp, Immediate(frame_alignment_mask));
1862 j(zero, &alignment_as_expected);
1863 // Abort if stack is not aligned.
1864 int3();
1865 bind(&alignment_as_expected);
1866 }
1867 }
1868
1869
Abort(const char * msg)1870 void MacroAssembler::Abort(const char* msg) {
1871 // We want to pass the msg string like a smi to avoid GC
1872 // problems, however msg is not guaranteed to be aligned
1873 // properly. Instead, we pass an aligned pointer that is
1874 // a proper v8 smi, but also pass the alignment difference
1875 // from the real pointer as a smi.
1876 intptr_t p1 = reinterpret_cast<intptr_t>(msg);
1877 intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
1878 ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
1879 #ifdef DEBUG
1880 if (msg != NULL) {
1881 RecordComment("Abort message: ");
1882 RecordComment(msg);
1883 }
1884 #endif
1885 // Disable stub call restrictions to always allow calls to abort.
1886 AllowStubCallsScope allow_scope(this, true);
1887
1888 push(eax);
1889 push(Immediate(p0));
1890 push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(p1 - p0))));
1891 CallRuntime(Runtime::kAbort, 2);
1892 // will not return here
1893 int3();
1894 }
1895
1896
JumpIfNotNumber(Register reg,TypeInfo info,Label * on_not_number)1897 void MacroAssembler::JumpIfNotNumber(Register reg,
1898 TypeInfo info,
1899 Label* on_not_number) {
1900 if (emit_debug_code()) AbortIfSmi(reg);
1901 if (!info.IsNumber()) {
1902 cmp(FieldOperand(reg, HeapObject::kMapOffset),
1903 isolate()->factory()->heap_number_map());
1904 j(not_equal, on_not_number);
1905 }
1906 }
1907
1908
ConvertToInt32(Register dst,Register source,Register scratch,TypeInfo info,Label * on_not_int32)1909 void MacroAssembler::ConvertToInt32(Register dst,
1910 Register source,
1911 Register scratch,
1912 TypeInfo info,
1913 Label* on_not_int32) {
1914 if (emit_debug_code()) {
1915 AbortIfSmi(source);
1916 AbortIfNotNumber(source);
1917 }
1918 if (info.IsInteger32()) {
1919 cvttsd2si(dst, FieldOperand(source, HeapNumber::kValueOffset));
1920 } else {
1921 Label done;
1922 bool push_pop = (scratch.is(no_reg) && dst.is(source));
1923 ASSERT(!scratch.is(source));
1924 if (push_pop) {
1925 push(dst);
1926 scratch = dst;
1927 }
1928 if (scratch.is(no_reg)) scratch = dst;
1929 cvttsd2si(scratch, FieldOperand(source, HeapNumber::kValueOffset));
1930 cmp(scratch, 0x80000000u);
1931 if (push_pop) {
1932 j(not_equal, &done);
1933 pop(dst);
1934 jmp(on_not_int32);
1935 } else {
1936 j(equal, on_not_int32);
1937 }
1938
1939 bind(&done);
1940 if (push_pop) {
1941 add(Operand(esp), Immediate(kPointerSize)); // Pop.
1942 }
1943 if (!scratch.is(dst)) {
1944 mov(dst, scratch);
1945 }
1946 }
1947 }
1948
1949
LoadPowerOf2(XMMRegister dst,Register scratch,int power)1950 void MacroAssembler::LoadPowerOf2(XMMRegister dst,
1951 Register scratch,
1952 int power) {
1953 ASSERT(is_uintn(power + HeapNumber::kExponentBias,
1954 HeapNumber::kExponentBits));
1955 mov(scratch, Immediate(power + HeapNumber::kExponentBias));
1956 movd(dst, Operand(scratch));
1957 psllq(dst, HeapNumber::kMantissaBits);
1958 }
1959
1960
JumpIfInstanceTypeIsNotSequentialAscii(Register instance_type,Register scratch,Label * failure)1961 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(
1962 Register instance_type,
1963 Register scratch,
1964 Label* failure) {
1965 if (!scratch.is(instance_type)) {
1966 mov(scratch, instance_type);
1967 }
1968 and_(scratch,
1969 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
1970 cmp(scratch, kStringTag | kSeqStringTag | kAsciiStringTag);
1971 j(not_equal, failure);
1972 }
1973
1974
JumpIfNotBothSequentialAsciiStrings(Register object1,Register object2,Register scratch1,Register scratch2,Label * failure)1975 void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register object1,
1976 Register object2,
1977 Register scratch1,
1978 Register scratch2,
1979 Label* failure) {
1980 // Check that both objects are not smis.
1981 ASSERT_EQ(0, kSmiTag);
1982 mov(scratch1, Operand(object1));
1983 and_(scratch1, Operand(object2));
1984 test(scratch1, Immediate(kSmiTagMask));
1985 j(zero, failure);
1986
1987 // Load instance type for both strings.
1988 mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset));
1989 mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset));
1990 movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
1991 movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
1992
1993 // Check that both are flat ascii strings.
1994 const int kFlatAsciiStringMask =
1995 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
1996 const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
1997 // Interleave bits from both instance types and compare them in one check.
1998 ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
1999 and_(scratch1, kFlatAsciiStringMask);
2000 and_(scratch2, kFlatAsciiStringMask);
2001 lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
2002 cmp(scratch1, kFlatAsciiStringTag | (kFlatAsciiStringTag << 3));
2003 j(not_equal, failure);
2004 }
2005
2006
PrepareCallCFunction(int num_arguments,Register scratch)2007 void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) {
2008 int frame_alignment = OS::ActivationFrameAlignment();
2009 if (frame_alignment != 0) {
2010 // Make stack end at alignment and make room for num_arguments words
2011 // and the original value of esp.
2012 mov(scratch, esp);
2013 sub(Operand(esp), Immediate((num_arguments + 1) * kPointerSize));
2014 ASSERT(IsPowerOf2(frame_alignment));
2015 and_(esp, -frame_alignment);
2016 mov(Operand(esp, num_arguments * kPointerSize), scratch);
2017 } else {
2018 sub(Operand(esp), Immediate(num_arguments * kPointerSize));
2019 }
2020 }
2021
2022
CallCFunction(ExternalReference function,int num_arguments)2023 void MacroAssembler::CallCFunction(ExternalReference function,
2024 int num_arguments) {
2025 // Trashing eax is ok as it will be the return value.
2026 mov(Operand(eax), Immediate(function));
2027 CallCFunction(eax, num_arguments);
2028 }
2029
2030
CallCFunction(Register function,int num_arguments)2031 void MacroAssembler::CallCFunction(Register function,
2032 int num_arguments) {
2033 // Check stack alignment.
2034 if (emit_debug_code()) {
2035 CheckStackAlignment();
2036 }
2037
2038 call(Operand(function));
2039 if (OS::ActivationFrameAlignment() != 0) {
2040 mov(esp, Operand(esp, num_arguments * kPointerSize));
2041 } else {
2042 add(Operand(esp), Immediate(num_arguments * kPointerSize));
2043 }
2044 }
2045
2046
CodePatcher(byte * address,int size)2047 CodePatcher::CodePatcher(byte* address, int size)
2048 : address_(address),
2049 size_(size),
2050 masm_(Isolate::Current(), address, size + Assembler::kGap) {
2051 // Create a new macro assembler pointing to the address of the code to patch.
2052 // The size is adjusted with kGap on order for the assembler to generate size
2053 // bytes of instructions without failing with buffer size constraints.
2054 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
2055 }
2056
2057
~CodePatcher()2058 CodePatcher::~CodePatcher() {
2059 // Indicate that code has changed.
2060 CPU::FlushICache(address_, size_);
2061
2062 // Check that the code was patched as expected.
2063 ASSERT(masm_.pc_ == address_ + size_);
2064 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
2065 }
2066
2067
2068 } } // namespace v8::internal
2069
2070 #endif // V8_TARGET_ARCH_IA32
2071