1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements name lookup for C, C++, Objective-C, and
11 // Objective-C++.
12 //
13 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/Sema.h"
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/Overload.h"
18 #include "clang/Sema/DeclSpec.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/TemplateDeduction.h"
22 #include "clang/Sema/ExternalSemaSource.h"
23 #include "clang/Sema/TypoCorrection.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CXXInheritance.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Expr.h"
31 #include "clang/AST/ExprCXX.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/LangOptions.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/StringMap.h"
38 #include "llvm/ADT/TinyPtrVector.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include <limits>
41 #include <list>
42 #include <set>
43 #include <vector>
44 #include <iterator>
45 #include <utility>
46 #include <algorithm>
47 #include <map>
48
49 using namespace clang;
50 using namespace sema;
51
52 namespace {
53 class UnqualUsingEntry {
54 const DeclContext *Nominated;
55 const DeclContext *CommonAncestor;
56
57 public:
UnqualUsingEntry(const DeclContext * Nominated,const DeclContext * CommonAncestor)58 UnqualUsingEntry(const DeclContext *Nominated,
59 const DeclContext *CommonAncestor)
60 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
61 }
62
getCommonAncestor() const63 const DeclContext *getCommonAncestor() const {
64 return CommonAncestor;
65 }
66
getNominatedNamespace() const67 const DeclContext *getNominatedNamespace() const {
68 return Nominated;
69 }
70
71 // Sort by the pointer value of the common ancestor.
72 struct Comparator {
operator ()__anon9853ef940111::UnqualUsingEntry::Comparator73 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
74 return L.getCommonAncestor() < R.getCommonAncestor();
75 }
76
operator ()__anon9853ef940111::UnqualUsingEntry::Comparator77 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
78 return E.getCommonAncestor() < DC;
79 }
80
operator ()__anon9853ef940111::UnqualUsingEntry::Comparator81 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
82 return DC < E.getCommonAncestor();
83 }
84 };
85 };
86
87 /// A collection of using directives, as used by C++ unqualified
88 /// lookup.
89 class UnqualUsingDirectiveSet {
90 typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
91
92 ListTy list;
93 llvm::SmallPtrSet<DeclContext*, 8> visited;
94
95 public:
UnqualUsingDirectiveSet()96 UnqualUsingDirectiveSet() {}
97
visitScopeChain(Scope * S,Scope * InnermostFileScope)98 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
99 // C++ [namespace.udir]p1:
100 // During unqualified name lookup, the names appear as if they
101 // were declared in the nearest enclosing namespace which contains
102 // both the using-directive and the nominated namespace.
103 DeclContext *InnermostFileDC
104 = static_cast<DeclContext*>(InnermostFileScope->getEntity());
105 assert(InnermostFileDC && InnermostFileDC->isFileContext());
106
107 for (; S; S = S->getParent()) {
108 if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
109 DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
110 visit(Ctx, EffectiveDC);
111 } else {
112 Scope::udir_iterator I = S->using_directives_begin(),
113 End = S->using_directives_end();
114
115 for (; I != End; ++I)
116 visit(*I, InnermostFileDC);
117 }
118 }
119 }
120
121 // Visits a context and collect all of its using directives
122 // recursively. Treats all using directives as if they were
123 // declared in the context.
124 //
125 // A given context is only every visited once, so it is important
126 // that contexts be visited from the inside out in order to get
127 // the effective DCs right.
visit(DeclContext * DC,DeclContext * EffectiveDC)128 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
129 if (!visited.insert(DC))
130 return;
131
132 addUsingDirectives(DC, EffectiveDC);
133 }
134
135 // Visits a using directive and collects all of its using
136 // directives recursively. Treats all using directives as if they
137 // were declared in the effective DC.
visit(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)138 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
139 DeclContext *NS = UD->getNominatedNamespace();
140 if (!visited.insert(NS))
141 return;
142
143 addUsingDirective(UD, EffectiveDC);
144 addUsingDirectives(NS, EffectiveDC);
145 }
146
147 // Adds all the using directives in a context (and those nominated
148 // by its using directives, transitively) as if they appeared in
149 // the given effective context.
addUsingDirectives(DeclContext * DC,DeclContext * EffectiveDC)150 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
151 llvm::SmallVector<DeclContext*,4> queue;
152 while (true) {
153 DeclContext::udir_iterator I, End;
154 for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
155 UsingDirectiveDecl *UD = *I;
156 DeclContext *NS = UD->getNominatedNamespace();
157 if (visited.insert(NS)) {
158 addUsingDirective(UD, EffectiveDC);
159 queue.push_back(NS);
160 }
161 }
162
163 if (queue.empty())
164 return;
165
166 DC = queue.back();
167 queue.pop_back();
168 }
169 }
170
171 // Add a using directive as if it had been declared in the given
172 // context. This helps implement C++ [namespace.udir]p3:
173 // The using-directive is transitive: if a scope contains a
174 // using-directive that nominates a second namespace that itself
175 // contains using-directives, the effect is as if the
176 // using-directives from the second namespace also appeared in
177 // the first.
addUsingDirective(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)178 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
179 // Find the common ancestor between the effective context and
180 // the nominated namespace.
181 DeclContext *Common = UD->getNominatedNamespace();
182 while (!Common->Encloses(EffectiveDC))
183 Common = Common->getParent();
184 Common = Common->getPrimaryContext();
185
186 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
187 }
188
done()189 void done() {
190 std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
191 }
192
193 typedef ListTy::const_iterator const_iterator;
194
begin() const195 const_iterator begin() const { return list.begin(); }
end() const196 const_iterator end() const { return list.end(); }
197
198 std::pair<const_iterator,const_iterator>
getNamespacesFor(DeclContext * DC) const199 getNamespacesFor(DeclContext *DC) const {
200 return std::equal_range(begin(), end(), DC->getPrimaryContext(),
201 UnqualUsingEntry::Comparator());
202 }
203 };
204 }
205
206 // Retrieve the set of identifier namespaces that correspond to a
207 // specific kind of name lookup.
getIDNS(Sema::LookupNameKind NameKind,bool CPlusPlus,bool Redeclaration)208 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
209 bool CPlusPlus,
210 bool Redeclaration) {
211 unsigned IDNS = 0;
212 switch (NameKind) {
213 case Sema::LookupObjCImplicitSelfParam:
214 case Sema::LookupOrdinaryName:
215 case Sema::LookupRedeclarationWithLinkage:
216 IDNS = Decl::IDNS_Ordinary;
217 if (CPlusPlus) {
218 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
219 if (Redeclaration)
220 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
221 }
222 break;
223
224 case Sema::LookupOperatorName:
225 // Operator lookup is its own crazy thing; it is not the same
226 // as (e.g.) looking up an operator name for redeclaration.
227 assert(!Redeclaration && "cannot do redeclaration operator lookup");
228 IDNS = Decl::IDNS_NonMemberOperator;
229 break;
230
231 case Sema::LookupTagName:
232 if (CPlusPlus) {
233 IDNS = Decl::IDNS_Type;
234
235 // When looking for a redeclaration of a tag name, we add:
236 // 1) TagFriend to find undeclared friend decls
237 // 2) Namespace because they can't "overload" with tag decls.
238 // 3) Tag because it includes class templates, which can't
239 // "overload" with tag decls.
240 if (Redeclaration)
241 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
242 } else {
243 IDNS = Decl::IDNS_Tag;
244 }
245 break;
246 case Sema::LookupLabel:
247 IDNS = Decl::IDNS_Label;
248 break;
249
250 case Sema::LookupMemberName:
251 IDNS = Decl::IDNS_Member;
252 if (CPlusPlus)
253 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
254 break;
255
256 case Sema::LookupNestedNameSpecifierName:
257 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
258 break;
259
260 case Sema::LookupNamespaceName:
261 IDNS = Decl::IDNS_Namespace;
262 break;
263
264 case Sema::LookupUsingDeclName:
265 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
266 | Decl::IDNS_Member | Decl::IDNS_Using;
267 break;
268
269 case Sema::LookupObjCProtocolName:
270 IDNS = Decl::IDNS_ObjCProtocol;
271 break;
272
273 case Sema::LookupAnyName:
274 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
275 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
276 | Decl::IDNS_Type;
277 break;
278 }
279 return IDNS;
280 }
281
configure()282 void LookupResult::configure() {
283 IDNS = getIDNS(LookupKind, SemaRef.getLangOptions().CPlusPlus,
284 isForRedeclaration());
285
286 // If we're looking for one of the allocation or deallocation
287 // operators, make sure that the implicitly-declared new and delete
288 // operators can be found.
289 if (!isForRedeclaration()) {
290 switch (NameInfo.getName().getCXXOverloadedOperator()) {
291 case OO_New:
292 case OO_Delete:
293 case OO_Array_New:
294 case OO_Array_Delete:
295 SemaRef.DeclareGlobalNewDelete();
296 break;
297
298 default:
299 break;
300 }
301 }
302 }
303
sanity() const304 void LookupResult::sanity() const {
305 assert(ResultKind != NotFound || Decls.size() == 0);
306 assert(ResultKind != Found || Decls.size() == 1);
307 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
308 (Decls.size() == 1 &&
309 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
310 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
311 assert(ResultKind != Ambiguous || Decls.size() > 1 ||
312 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
313 Ambiguity == AmbiguousBaseSubobjectTypes)));
314 assert((Paths != NULL) == (ResultKind == Ambiguous &&
315 (Ambiguity == AmbiguousBaseSubobjectTypes ||
316 Ambiguity == AmbiguousBaseSubobjects)));
317 }
318
319 // Necessary because CXXBasePaths is not complete in Sema.h
deletePaths(CXXBasePaths * Paths)320 void LookupResult::deletePaths(CXXBasePaths *Paths) {
321 delete Paths;
322 }
323
324 /// Resolves the result kind of this lookup.
resolveKind()325 void LookupResult::resolveKind() {
326 unsigned N = Decls.size();
327
328 // Fast case: no possible ambiguity.
329 if (N == 0) {
330 assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
331 return;
332 }
333
334 // If there's a single decl, we need to examine it to decide what
335 // kind of lookup this is.
336 if (N == 1) {
337 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
338 if (isa<FunctionTemplateDecl>(D))
339 ResultKind = FoundOverloaded;
340 else if (isa<UnresolvedUsingValueDecl>(D))
341 ResultKind = FoundUnresolvedValue;
342 return;
343 }
344
345 // Don't do any extra resolution if we've already resolved as ambiguous.
346 if (ResultKind == Ambiguous) return;
347
348 llvm::SmallPtrSet<NamedDecl*, 16> Unique;
349 llvm::SmallPtrSet<QualType, 16> UniqueTypes;
350
351 bool Ambiguous = false;
352 bool HasTag = false, HasFunction = false, HasNonFunction = false;
353 bool HasFunctionTemplate = false, HasUnresolved = false;
354
355 unsigned UniqueTagIndex = 0;
356
357 unsigned I = 0;
358 while (I < N) {
359 NamedDecl *D = Decls[I]->getUnderlyingDecl();
360 D = cast<NamedDecl>(D->getCanonicalDecl());
361
362 // Redeclarations of types via typedef can occur both within a scope
363 // and, through using declarations and directives, across scopes. There is
364 // no ambiguity if they all refer to the same type, so unique based on the
365 // canonical type.
366 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
367 if (!TD->getDeclContext()->isRecord()) {
368 QualType T = SemaRef.Context.getTypeDeclType(TD);
369 if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
370 // The type is not unique; pull something off the back and continue
371 // at this index.
372 Decls[I] = Decls[--N];
373 continue;
374 }
375 }
376 }
377
378 if (!Unique.insert(D)) {
379 // If it's not unique, pull something off the back (and
380 // continue at this index).
381 Decls[I] = Decls[--N];
382 continue;
383 }
384
385 // Otherwise, do some decl type analysis and then continue.
386
387 if (isa<UnresolvedUsingValueDecl>(D)) {
388 HasUnresolved = true;
389 } else if (isa<TagDecl>(D)) {
390 if (HasTag)
391 Ambiguous = true;
392 UniqueTagIndex = I;
393 HasTag = true;
394 } else if (isa<FunctionTemplateDecl>(D)) {
395 HasFunction = true;
396 HasFunctionTemplate = true;
397 } else if (isa<FunctionDecl>(D)) {
398 HasFunction = true;
399 } else {
400 if (HasNonFunction)
401 Ambiguous = true;
402 HasNonFunction = true;
403 }
404 I++;
405 }
406
407 // C++ [basic.scope.hiding]p2:
408 // A class name or enumeration name can be hidden by the name of
409 // an object, function, or enumerator declared in the same
410 // scope. If a class or enumeration name and an object, function,
411 // or enumerator are declared in the same scope (in any order)
412 // with the same name, the class or enumeration name is hidden
413 // wherever the object, function, or enumerator name is visible.
414 // But it's still an error if there are distinct tag types found,
415 // even if they're not visible. (ref?)
416 if (HideTags && HasTag && !Ambiguous &&
417 (HasFunction || HasNonFunction || HasUnresolved)) {
418 if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals(
419 Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext()))
420 Decls[UniqueTagIndex] = Decls[--N];
421 else
422 Ambiguous = true;
423 }
424
425 Decls.set_size(N);
426
427 if (HasNonFunction && (HasFunction || HasUnresolved))
428 Ambiguous = true;
429
430 if (Ambiguous)
431 setAmbiguous(LookupResult::AmbiguousReference);
432 else if (HasUnresolved)
433 ResultKind = LookupResult::FoundUnresolvedValue;
434 else if (N > 1 || HasFunctionTemplate)
435 ResultKind = LookupResult::FoundOverloaded;
436 else
437 ResultKind = LookupResult::Found;
438 }
439
addDeclsFromBasePaths(const CXXBasePaths & P)440 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
441 CXXBasePaths::const_paths_iterator I, E;
442 DeclContext::lookup_iterator DI, DE;
443 for (I = P.begin(), E = P.end(); I != E; ++I)
444 for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
445 addDecl(*DI);
446 }
447
setAmbiguousBaseSubobjects(CXXBasePaths & P)448 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
449 Paths = new CXXBasePaths;
450 Paths->swap(P);
451 addDeclsFromBasePaths(*Paths);
452 resolveKind();
453 setAmbiguous(AmbiguousBaseSubobjects);
454 }
455
setAmbiguousBaseSubobjectTypes(CXXBasePaths & P)456 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
457 Paths = new CXXBasePaths;
458 Paths->swap(P);
459 addDeclsFromBasePaths(*Paths);
460 resolveKind();
461 setAmbiguous(AmbiguousBaseSubobjectTypes);
462 }
463
print(llvm::raw_ostream & Out)464 void LookupResult::print(llvm::raw_ostream &Out) {
465 Out << Decls.size() << " result(s)";
466 if (isAmbiguous()) Out << ", ambiguous";
467 if (Paths) Out << ", base paths present";
468
469 for (iterator I = begin(), E = end(); I != E; ++I) {
470 Out << "\n";
471 (*I)->print(Out, 2);
472 }
473 }
474
475 /// \brief Lookup a builtin function, when name lookup would otherwise
476 /// fail.
LookupBuiltin(Sema & S,LookupResult & R)477 static bool LookupBuiltin(Sema &S, LookupResult &R) {
478 Sema::LookupNameKind NameKind = R.getLookupKind();
479
480 // If we didn't find a use of this identifier, and if the identifier
481 // corresponds to a compiler builtin, create the decl object for the builtin
482 // now, injecting it into translation unit scope, and return it.
483 if (NameKind == Sema::LookupOrdinaryName ||
484 NameKind == Sema::LookupRedeclarationWithLinkage) {
485 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
486 if (II) {
487 // If this is a builtin on this (or all) targets, create the decl.
488 if (unsigned BuiltinID = II->getBuiltinID()) {
489 // In C++, we don't have any predefined library functions like
490 // 'malloc'. Instead, we'll just error.
491 if (S.getLangOptions().CPlusPlus &&
492 S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
493 return false;
494
495 if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
496 BuiltinID, S.TUScope,
497 R.isForRedeclaration(),
498 R.getNameLoc())) {
499 R.addDecl(D);
500 return true;
501 }
502
503 if (R.isForRedeclaration()) {
504 // If we're redeclaring this function anyway, forget that
505 // this was a builtin at all.
506 S.Context.BuiltinInfo.ForgetBuiltin(BuiltinID, S.Context.Idents);
507 }
508
509 return false;
510 }
511 }
512 }
513
514 return false;
515 }
516
517 /// \brief Determine whether we can declare a special member function within
518 /// the class at this point.
CanDeclareSpecialMemberFunction(ASTContext & Context,const CXXRecordDecl * Class)519 static bool CanDeclareSpecialMemberFunction(ASTContext &Context,
520 const CXXRecordDecl *Class) {
521 // Don't do it if the class is invalid.
522 if (Class->isInvalidDecl())
523 return false;
524
525 // We need to have a definition for the class.
526 if (!Class->getDefinition() || Class->isDependentContext())
527 return false;
528
529 // We can't be in the middle of defining the class.
530 if (const RecordType *RecordTy
531 = Context.getTypeDeclType(Class)->getAs<RecordType>())
532 return !RecordTy->isBeingDefined();
533
534 return false;
535 }
536
ForceDeclarationOfImplicitMembers(CXXRecordDecl * Class)537 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
538 if (!CanDeclareSpecialMemberFunction(Context, Class))
539 return;
540
541 // If the default constructor has not yet been declared, do so now.
542 if (Class->needsImplicitDefaultConstructor())
543 DeclareImplicitDefaultConstructor(Class);
544
545 // If the copy constructor has not yet been declared, do so now.
546 if (!Class->hasDeclaredCopyConstructor())
547 DeclareImplicitCopyConstructor(Class);
548
549 // If the copy assignment operator has not yet been declared, do so now.
550 if (!Class->hasDeclaredCopyAssignment())
551 DeclareImplicitCopyAssignment(Class);
552
553 // If the destructor has not yet been declared, do so now.
554 if (!Class->hasDeclaredDestructor())
555 DeclareImplicitDestructor(Class);
556 }
557
558 /// \brief Determine whether this is the name of an implicitly-declared
559 /// special member function.
isImplicitlyDeclaredMemberFunctionName(DeclarationName Name)560 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
561 switch (Name.getNameKind()) {
562 case DeclarationName::CXXConstructorName:
563 case DeclarationName::CXXDestructorName:
564 return true;
565
566 case DeclarationName::CXXOperatorName:
567 return Name.getCXXOverloadedOperator() == OO_Equal;
568
569 default:
570 break;
571 }
572
573 return false;
574 }
575
576 /// \brief If there are any implicit member functions with the given name
577 /// that need to be declared in the given declaration context, do so.
DeclareImplicitMemberFunctionsWithName(Sema & S,DeclarationName Name,const DeclContext * DC)578 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
579 DeclarationName Name,
580 const DeclContext *DC) {
581 if (!DC)
582 return;
583
584 switch (Name.getNameKind()) {
585 case DeclarationName::CXXConstructorName:
586 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
587 if (Record->getDefinition() &&
588 CanDeclareSpecialMemberFunction(S.Context, Record)) {
589 if (Record->needsImplicitDefaultConstructor())
590 S.DeclareImplicitDefaultConstructor(
591 const_cast<CXXRecordDecl *>(Record));
592 if (!Record->hasDeclaredCopyConstructor())
593 S.DeclareImplicitCopyConstructor(const_cast<CXXRecordDecl *>(Record));
594 }
595 break;
596
597 case DeclarationName::CXXDestructorName:
598 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
599 if (Record->getDefinition() && !Record->hasDeclaredDestructor() &&
600 CanDeclareSpecialMemberFunction(S.Context, Record))
601 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
602 break;
603
604 case DeclarationName::CXXOperatorName:
605 if (Name.getCXXOverloadedOperator() != OO_Equal)
606 break;
607
608 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
609 if (Record->getDefinition() && !Record->hasDeclaredCopyAssignment() &&
610 CanDeclareSpecialMemberFunction(S.Context, Record))
611 S.DeclareImplicitCopyAssignment(const_cast<CXXRecordDecl *>(Record));
612 break;
613
614 default:
615 break;
616 }
617 }
618
619 // Adds all qualifying matches for a name within a decl context to the
620 // given lookup result. Returns true if any matches were found.
LookupDirect(Sema & S,LookupResult & R,const DeclContext * DC)621 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
622 bool Found = false;
623
624 // Lazily declare C++ special member functions.
625 if (S.getLangOptions().CPlusPlus)
626 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
627
628 // Perform lookup into this declaration context.
629 DeclContext::lookup_const_iterator I, E;
630 for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
631 NamedDecl *D = *I;
632 if (R.isAcceptableDecl(D)) {
633 R.addDecl(D);
634 Found = true;
635 }
636 }
637
638 if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
639 return true;
640
641 if (R.getLookupName().getNameKind()
642 != DeclarationName::CXXConversionFunctionName ||
643 R.getLookupName().getCXXNameType()->isDependentType() ||
644 !isa<CXXRecordDecl>(DC))
645 return Found;
646
647 // C++ [temp.mem]p6:
648 // A specialization of a conversion function template is not found by
649 // name lookup. Instead, any conversion function templates visible in the
650 // context of the use are considered. [...]
651 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
652 if (!Record->isDefinition())
653 return Found;
654
655 const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
656 for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
657 UEnd = Unresolved->end(); U != UEnd; ++U) {
658 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
659 if (!ConvTemplate)
660 continue;
661
662 // When we're performing lookup for the purposes of redeclaration, just
663 // add the conversion function template. When we deduce template
664 // arguments for specializations, we'll end up unifying the return
665 // type of the new declaration with the type of the function template.
666 if (R.isForRedeclaration()) {
667 R.addDecl(ConvTemplate);
668 Found = true;
669 continue;
670 }
671
672 // C++ [temp.mem]p6:
673 // [...] For each such operator, if argument deduction succeeds
674 // (14.9.2.3), the resulting specialization is used as if found by
675 // name lookup.
676 //
677 // When referencing a conversion function for any purpose other than
678 // a redeclaration (such that we'll be building an expression with the
679 // result), perform template argument deduction and place the
680 // specialization into the result set. We do this to avoid forcing all
681 // callers to perform special deduction for conversion functions.
682 TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
683 FunctionDecl *Specialization = 0;
684
685 const FunctionProtoType *ConvProto
686 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
687 assert(ConvProto && "Nonsensical conversion function template type");
688
689 // Compute the type of the function that we would expect the conversion
690 // function to have, if it were to match the name given.
691 // FIXME: Calling convention!
692 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
693 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_Default);
694 EPI.ExceptionSpecType = EST_None;
695 EPI.NumExceptions = 0;
696 QualType ExpectedType
697 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
698 0, 0, EPI);
699
700 // Perform template argument deduction against the type that we would
701 // expect the function to have.
702 if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
703 Specialization, Info)
704 == Sema::TDK_Success) {
705 R.addDecl(Specialization);
706 Found = true;
707 }
708 }
709
710 return Found;
711 }
712
713 // Performs C++ unqualified lookup into the given file context.
714 static bool
CppNamespaceLookup(Sema & S,LookupResult & R,ASTContext & Context,DeclContext * NS,UnqualUsingDirectiveSet & UDirs)715 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
716 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
717
718 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
719
720 // Perform direct name lookup into the LookupCtx.
721 bool Found = LookupDirect(S, R, NS);
722
723 // Perform direct name lookup into the namespaces nominated by the
724 // using directives whose common ancestor is this namespace.
725 UnqualUsingDirectiveSet::const_iterator UI, UEnd;
726 llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
727
728 for (; UI != UEnd; ++UI)
729 if (LookupDirect(S, R, UI->getNominatedNamespace()))
730 Found = true;
731
732 R.resolveKind();
733
734 return Found;
735 }
736
isNamespaceOrTranslationUnitScope(Scope * S)737 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
738 if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
739 return Ctx->isFileContext();
740 return false;
741 }
742
743 // Find the next outer declaration context from this scope. This
744 // routine actually returns the semantic outer context, which may
745 // differ from the lexical context (encoded directly in the Scope
746 // stack) when we are parsing a member of a class template. In this
747 // case, the second element of the pair will be true, to indicate that
748 // name lookup should continue searching in this semantic context when
749 // it leaves the current template parameter scope.
findOuterContext(Scope * S)750 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
751 DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
752 DeclContext *Lexical = 0;
753 for (Scope *OuterS = S->getParent(); OuterS;
754 OuterS = OuterS->getParent()) {
755 if (OuterS->getEntity()) {
756 Lexical = static_cast<DeclContext *>(OuterS->getEntity());
757 break;
758 }
759 }
760
761 // C++ [temp.local]p8:
762 // In the definition of a member of a class template that appears
763 // outside of the namespace containing the class template
764 // definition, the name of a template-parameter hides the name of
765 // a member of this namespace.
766 //
767 // Example:
768 //
769 // namespace N {
770 // class C { };
771 //
772 // template<class T> class B {
773 // void f(T);
774 // };
775 // }
776 //
777 // template<class C> void N::B<C>::f(C) {
778 // C b; // C is the template parameter, not N::C
779 // }
780 //
781 // In this example, the lexical context we return is the
782 // TranslationUnit, while the semantic context is the namespace N.
783 if (!Lexical || !DC || !S->getParent() ||
784 !S->getParent()->isTemplateParamScope())
785 return std::make_pair(Lexical, false);
786
787 // Find the outermost template parameter scope.
788 // For the example, this is the scope for the template parameters of
789 // template<class C>.
790 Scope *OutermostTemplateScope = S->getParent();
791 while (OutermostTemplateScope->getParent() &&
792 OutermostTemplateScope->getParent()->isTemplateParamScope())
793 OutermostTemplateScope = OutermostTemplateScope->getParent();
794
795 // Find the namespace context in which the original scope occurs. In
796 // the example, this is namespace N.
797 DeclContext *Semantic = DC;
798 while (!Semantic->isFileContext())
799 Semantic = Semantic->getParent();
800
801 // Find the declaration context just outside of the template
802 // parameter scope. This is the context in which the template is
803 // being lexically declaration (a namespace context). In the
804 // example, this is the global scope.
805 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
806 Lexical->Encloses(Semantic))
807 return std::make_pair(Semantic, true);
808
809 return std::make_pair(Lexical, false);
810 }
811
CppLookupName(LookupResult & R,Scope * S)812 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
813 assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
814
815 DeclarationName Name = R.getLookupName();
816
817 // If this is the name of an implicitly-declared special member function,
818 // go through the scope stack to implicitly declare
819 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
820 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
821 if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
822 DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
823 }
824
825 // Implicitly declare member functions with the name we're looking for, if in
826 // fact we are in a scope where it matters.
827
828 Scope *Initial = S;
829 IdentifierResolver::iterator
830 I = IdResolver.begin(Name),
831 IEnd = IdResolver.end();
832
833 // First we lookup local scope.
834 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
835 // ...During unqualified name lookup (3.4.1), the names appear as if
836 // they were declared in the nearest enclosing namespace which contains
837 // both the using-directive and the nominated namespace.
838 // [Note: in this context, "contains" means "contains directly or
839 // indirectly".
840 //
841 // For example:
842 // namespace A { int i; }
843 // void foo() {
844 // int i;
845 // {
846 // using namespace A;
847 // ++i; // finds local 'i', A::i appears at global scope
848 // }
849 // }
850 //
851 DeclContext *OutsideOfTemplateParamDC = 0;
852 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
853 DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
854
855 // Check whether the IdResolver has anything in this scope.
856 bool Found = false;
857 for (; I != IEnd && S->isDeclScope(*I); ++I) {
858 if (R.isAcceptableDecl(*I)) {
859 Found = true;
860 R.addDecl(*I);
861 }
862 }
863 if (Found) {
864 R.resolveKind();
865 if (S->isClassScope())
866 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
867 R.setNamingClass(Record);
868 return true;
869 }
870
871 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
872 S->getParent() && !S->getParent()->isTemplateParamScope()) {
873 // We've just searched the last template parameter scope and
874 // found nothing, so look into the the contexts between the
875 // lexical and semantic declaration contexts returned by
876 // findOuterContext(). This implements the name lookup behavior
877 // of C++ [temp.local]p8.
878 Ctx = OutsideOfTemplateParamDC;
879 OutsideOfTemplateParamDC = 0;
880 }
881
882 if (Ctx) {
883 DeclContext *OuterCtx;
884 bool SearchAfterTemplateScope;
885 llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
886 if (SearchAfterTemplateScope)
887 OutsideOfTemplateParamDC = OuterCtx;
888
889 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
890 // We do not directly look into transparent contexts, since
891 // those entities will be found in the nearest enclosing
892 // non-transparent context.
893 if (Ctx->isTransparentContext())
894 continue;
895
896 // We do not look directly into function or method contexts,
897 // since all of the local variables and parameters of the
898 // function/method are present within the Scope.
899 if (Ctx->isFunctionOrMethod()) {
900 // If we have an Objective-C instance method, look for ivars
901 // in the corresponding interface.
902 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
903 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
904 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
905 ObjCInterfaceDecl *ClassDeclared;
906 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
907 Name.getAsIdentifierInfo(),
908 ClassDeclared)) {
909 if (R.isAcceptableDecl(Ivar)) {
910 R.addDecl(Ivar);
911 R.resolveKind();
912 return true;
913 }
914 }
915 }
916 }
917
918 continue;
919 }
920
921 // Perform qualified name lookup into this context.
922 // FIXME: In some cases, we know that every name that could be found by
923 // this qualified name lookup will also be on the identifier chain. For
924 // example, inside a class without any base classes, we never need to
925 // perform qualified lookup because all of the members are on top of the
926 // identifier chain.
927 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
928 return true;
929 }
930 }
931 }
932
933 // Stop if we ran out of scopes.
934 // FIXME: This really, really shouldn't be happening.
935 if (!S) return false;
936
937 // If we are looking for members, no need to look into global/namespace scope.
938 if (R.getLookupKind() == LookupMemberName)
939 return false;
940
941 // Collect UsingDirectiveDecls in all scopes, and recursively all
942 // nominated namespaces by those using-directives.
943 //
944 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
945 // don't build it for each lookup!
946
947 UnqualUsingDirectiveSet UDirs;
948 UDirs.visitScopeChain(Initial, S);
949 UDirs.done();
950
951 // Lookup namespace scope, and global scope.
952 // Unqualified name lookup in C++ requires looking into scopes
953 // that aren't strictly lexical, and therefore we walk through the
954 // context as well as walking through the scopes.
955
956 for (; S; S = S->getParent()) {
957 // Check whether the IdResolver has anything in this scope.
958 bool Found = false;
959 for (; I != IEnd && S->isDeclScope(*I); ++I) {
960 if (R.isAcceptableDecl(*I)) {
961 // We found something. Look for anything else in our scope
962 // with this same name and in an acceptable identifier
963 // namespace, so that we can construct an overload set if we
964 // need to.
965 Found = true;
966 R.addDecl(*I);
967 }
968 }
969
970 if (Found && S->isTemplateParamScope()) {
971 R.resolveKind();
972 return true;
973 }
974
975 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
976 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
977 S->getParent() && !S->getParent()->isTemplateParamScope()) {
978 // We've just searched the last template parameter scope and
979 // found nothing, so look into the the contexts between the
980 // lexical and semantic declaration contexts returned by
981 // findOuterContext(). This implements the name lookup behavior
982 // of C++ [temp.local]p8.
983 Ctx = OutsideOfTemplateParamDC;
984 OutsideOfTemplateParamDC = 0;
985 }
986
987 if (Ctx) {
988 DeclContext *OuterCtx;
989 bool SearchAfterTemplateScope;
990 llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
991 if (SearchAfterTemplateScope)
992 OutsideOfTemplateParamDC = OuterCtx;
993
994 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
995 // We do not directly look into transparent contexts, since
996 // those entities will be found in the nearest enclosing
997 // non-transparent context.
998 if (Ctx->isTransparentContext())
999 continue;
1000
1001 // If we have a context, and it's not a context stashed in the
1002 // template parameter scope for an out-of-line definition, also
1003 // look into that context.
1004 if (!(Found && S && S->isTemplateParamScope())) {
1005 assert(Ctx->isFileContext() &&
1006 "We should have been looking only at file context here already.");
1007
1008 // Look into context considering using-directives.
1009 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1010 Found = true;
1011 }
1012
1013 if (Found) {
1014 R.resolveKind();
1015 return true;
1016 }
1017
1018 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1019 return false;
1020 }
1021 }
1022
1023 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1024 return false;
1025 }
1026
1027 return !R.empty();
1028 }
1029
1030 /// @brief Perform unqualified name lookup starting from a given
1031 /// scope.
1032 ///
1033 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1034 /// used to find names within the current scope. For example, 'x' in
1035 /// @code
1036 /// int x;
1037 /// int f() {
1038 /// return x; // unqualified name look finds 'x' in the global scope
1039 /// }
1040 /// @endcode
1041 ///
1042 /// Different lookup criteria can find different names. For example, a
1043 /// particular scope can have both a struct and a function of the same
1044 /// name, and each can be found by certain lookup criteria. For more
1045 /// information about lookup criteria, see the documentation for the
1046 /// class LookupCriteria.
1047 ///
1048 /// @param S The scope from which unqualified name lookup will
1049 /// begin. If the lookup criteria permits, name lookup may also search
1050 /// in the parent scopes.
1051 ///
1052 /// @param Name The name of the entity that we are searching for.
1053 ///
1054 /// @param Loc If provided, the source location where we're performing
1055 /// name lookup. At present, this is only used to produce diagnostics when
1056 /// C library functions (like "malloc") are implicitly declared.
1057 ///
1058 /// @returns The result of name lookup, which includes zero or more
1059 /// declarations and possibly additional information used to diagnose
1060 /// ambiguities.
LookupName(LookupResult & R,Scope * S,bool AllowBuiltinCreation)1061 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1062 DeclarationName Name = R.getLookupName();
1063 if (!Name) return false;
1064
1065 LookupNameKind NameKind = R.getLookupKind();
1066
1067 if (!getLangOptions().CPlusPlus) {
1068 // Unqualified name lookup in C/Objective-C is purely lexical, so
1069 // search in the declarations attached to the name.
1070 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1071 // Find the nearest non-transparent declaration scope.
1072 while (!(S->getFlags() & Scope::DeclScope) ||
1073 (S->getEntity() &&
1074 static_cast<DeclContext *>(S->getEntity())
1075 ->isTransparentContext()))
1076 S = S->getParent();
1077 }
1078
1079 unsigned IDNS = R.getIdentifierNamespace();
1080
1081 // Scan up the scope chain looking for a decl that matches this
1082 // identifier that is in the appropriate namespace. This search
1083 // should not take long, as shadowing of names is uncommon, and
1084 // deep shadowing is extremely uncommon.
1085 bool LeftStartingScope = false;
1086
1087 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1088 IEnd = IdResolver.end();
1089 I != IEnd; ++I)
1090 if ((*I)->isInIdentifierNamespace(IDNS)) {
1091 if (NameKind == LookupRedeclarationWithLinkage) {
1092 // Determine whether this (or a previous) declaration is
1093 // out-of-scope.
1094 if (!LeftStartingScope && !S->isDeclScope(*I))
1095 LeftStartingScope = true;
1096
1097 // If we found something outside of our starting scope that
1098 // does not have linkage, skip it.
1099 if (LeftStartingScope && !((*I)->hasLinkage()))
1100 continue;
1101 }
1102 else if (NameKind == LookupObjCImplicitSelfParam &&
1103 !isa<ImplicitParamDecl>(*I))
1104 continue;
1105
1106 R.addDecl(*I);
1107
1108 if ((*I)->getAttr<OverloadableAttr>()) {
1109 // If this declaration has the "overloadable" attribute, we
1110 // might have a set of overloaded functions.
1111
1112 // Figure out what scope the identifier is in.
1113 while (!(S->getFlags() & Scope::DeclScope) ||
1114 !S->isDeclScope(*I))
1115 S = S->getParent();
1116
1117 // Find the last declaration in this scope (with the same
1118 // name, naturally).
1119 IdentifierResolver::iterator LastI = I;
1120 for (++LastI; LastI != IEnd; ++LastI) {
1121 if (!S->isDeclScope(*LastI))
1122 break;
1123 R.addDecl(*LastI);
1124 }
1125 }
1126
1127 R.resolveKind();
1128
1129 return true;
1130 }
1131 } else {
1132 // Perform C++ unqualified name lookup.
1133 if (CppLookupName(R, S))
1134 return true;
1135 }
1136
1137 // If we didn't find a use of this identifier, and if the identifier
1138 // corresponds to a compiler builtin, create the decl object for the builtin
1139 // now, injecting it into translation unit scope, and return it.
1140 if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1141 return true;
1142
1143 // If we didn't find a use of this identifier, the ExternalSource
1144 // may be able to handle the situation.
1145 // Note: some lookup failures are expected!
1146 // See e.g. R.isForRedeclaration().
1147 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1148 }
1149
1150 /// @brief Perform qualified name lookup in the namespaces nominated by
1151 /// using directives by the given context.
1152 ///
1153 /// C++98 [namespace.qual]p2:
1154 /// Given X::m (where X is a user-declared namespace), or given ::m
1155 /// (where X is the global namespace), let S be the set of all
1156 /// declarations of m in X and in the transitive closure of all
1157 /// namespaces nominated by using-directives in X and its used
1158 /// namespaces, except that using-directives are ignored in any
1159 /// namespace, including X, directly containing one or more
1160 /// declarations of m. No namespace is searched more than once in
1161 /// the lookup of a name. If S is the empty set, the program is
1162 /// ill-formed. Otherwise, if S has exactly one member, or if the
1163 /// context of the reference is a using-declaration
1164 /// (namespace.udecl), S is the required set of declarations of
1165 /// m. Otherwise if the use of m is not one that allows a unique
1166 /// declaration to be chosen from S, the program is ill-formed.
1167 /// C++98 [namespace.qual]p5:
1168 /// During the lookup of a qualified namespace member name, if the
1169 /// lookup finds more than one declaration of the member, and if one
1170 /// declaration introduces a class name or enumeration name and the
1171 /// other declarations either introduce the same object, the same
1172 /// enumerator or a set of functions, the non-type name hides the
1173 /// class or enumeration name if and only if the declarations are
1174 /// from the same namespace; otherwise (the declarations are from
1175 /// different namespaces), the program is ill-formed.
LookupQualifiedNameInUsingDirectives(Sema & S,LookupResult & R,DeclContext * StartDC)1176 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1177 DeclContext *StartDC) {
1178 assert(StartDC->isFileContext() && "start context is not a file context");
1179
1180 DeclContext::udir_iterator I = StartDC->using_directives_begin();
1181 DeclContext::udir_iterator E = StartDC->using_directives_end();
1182
1183 if (I == E) return false;
1184
1185 // We have at least added all these contexts to the queue.
1186 llvm::DenseSet<DeclContext*> Visited;
1187 Visited.insert(StartDC);
1188
1189 // We have not yet looked into these namespaces, much less added
1190 // their "using-children" to the queue.
1191 llvm::SmallVector<NamespaceDecl*, 8> Queue;
1192
1193 // We have already looked into the initial namespace; seed the queue
1194 // with its using-children.
1195 for (; I != E; ++I) {
1196 NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1197 if (Visited.insert(ND).second)
1198 Queue.push_back(ND);
1199 }
1200
1201 // The easiest way to implement the restriction in [namespace.qual]p5
1202 // is to check whether any of the individual results found a tag
1203 // and, if so, to declare an ambiguity if the final result is not
1204 // a tag.
1205 bool FoundTag = false;
1206 bool FoundNonTag = false;
1207
1208 LookupResult LocalR(LookupResult::Temporary, R);
1209
1210 bool Found = false;
1211 while (!Queue.empty()) {
1212 NamespaceDecl *ND = Queue.back();
1213 Queue.pop_back();
1214
1215 // We go through some convolutions here to avoid copying results
1216 // between LookupResults.
1217 bool UseLocal = !R.empty();
1218 LookupResult &DirectR = UseLocal ? LocalR : R;
1219 bool FoundDirect = LookupDirect(S, DirectR, ND);
1220
1221 if (FoundDirect) {
1222 // First do any local hiding.
1223 DirectR.resolveKind();
1224
1225 // If the local result is a tag, remember that.
1226 if (DirectR.isSingleTagDecl())
1227 FoundTag = true;
1228 else
1229 FoundNonTag = true;
1230
1231 // Append the local results to the total results if necessary.
1232 if (UseLocal) {
1233 R.addAllDecls(LocalR);
1234 LocalR.clear();
1235 }
1236 }
1237
1238 // If we find names in this namespace, ignore its using directives.
1239 if (FoundDirect) {
1240 Found = true;
1241 continue;
1242 }
1243
1244 for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1245 NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1246 if (Visited.insert(Nom).second)
1247 Queue.push_back(Nom);
1248 }
1249 }
1250
1251 if (Found) {
1252 if (FoundTag && FoundNonTag)
1253 R.setAmbiguousQualifiedTagHiding();
1254 else
1255 R.resolveKind();
1256 }
1257
1258 return Found;
1259 }
1260
1261 /// \brief Callback that looks for any member of a class with the given name.
LookupAnyMember(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * Name)1262 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1263 CXXBasePath &Path,
1264 void *Name) {
1265 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1266
1267 DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1268 Path.Decls = BaseRecord->lookup(N);
1269 return Path.Decls.first != Path.Decls.second;
1270 }
1271
1272 /// \brief Determine whether the given set of member declarations contains only
1273 /// static members, nested types, and enumerators.
1274 template<typename InputIterator>
HasOnlyStaticMembers(InputIterator First,InputIterator Last)1275 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1276 Decl *D = (*First)->getUnderlyingDecl();
1277 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1278 return true;
1279
1280 if (isa<CXXMethodDecl>(D)) {
1281 // Determine whether all of the methods are static.
1282 bool AllMethodsAreStatic = true;
1283 for(; First != Last; ++First) {
1284 D = (*First)->getUnderlyingDecl();
1285
1286 if (!isa<CXXMethodDecl>(D)) {
1287 assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1288 break;
1289 }
1290
1291 if (!cast<CXXMethodDecl>(D)->isStatic()) {
1292 AllMethodsAreStatic = false;
1293 break;
1294 }
1295 }
1296
1297 if (AllMethodsAreStatic)
1298 return true;
1299 }
1300
1301 return false;
1302 }
1303
1304 /// \brief Perform qualified name lookup into a given context.
1305 ///
1306 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1307 /// names when the context of those names is explicit specified, e.g.,
1308 /// "std::vector" or "x->member", or as part of unqualified name lookup.
1309 ///
1310 /// Different lookup criteria can find different names. For example, a
1311 /// particular scope can have both a struct and a function of the same
1312 /// name, and each can be found by certain lookup criteria. For more
1313 /// information about lookup criteria, see the documentation for the
1314 /// class LookupCriteria.
1315 ///
1316 /// \param R captures both the lookup criteria and any lookup results found.
1317 ///
1318 /// \param LookupCtx The context in which qualified name lookup will
1319 /// search. If the lookup criteria permits, name lookup may also search
1320 /// in the parent contexts or (for C++ classes) base classes.
1321 ///
1322 /// \param InUnqualifiedLookup true if this is qualified name lookup that
1323 /// occurs as part of unqualified name lookup.
1324 ///
1325 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,bool InUnqualifiedLookup)1326 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1327 bool InUnqualifiedLookup) {
1328 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1329
1330 if (!R.getLookupName())
1331 return false;
1332
1333 // Make sure that the declaration context is complete.
1334 assert((!isa<TagDecl>(LookupCtx) ||
1335 LookupCtx->isDependentContext() ||
1336 cast<TagDecl>(LookupCtx)->isDefinition() ||
1337 Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
1338 ->isBeingDefined()) &&
1339 "Declaration context must already be complete!");
1340
1341 // Perform qualified name lookup into the LookupCtx.
1342 if (LookupDirect(*this, R, LookupCtx)) {
1343 R.resolveKind();
1344 if (isa<CXXRecordDecl>(LookupCtx))
1345 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1346 return true;
1347 }
1348
1349 // Don't descend into implied contexts for redeclarations.
1350 // C++98 [namespace.qual]p6:
1351 // In a declaration for a namespace member in which the
1352 // declarator-id is a qualified-id, given that the qualified-id
1353 // for the namespace member has the form
1354 // nested-name-specifier unqualified-id
1355 // the unqualified-id shall name a member of the namespace
1356 // designated by the nested-name-specifier.
1357 // See also [class.mfct]p5 and [class.static.data]p2.
1358 if (R.isForRedeclaration())
1359 return false;
1360
1361 // If this is a namespace, look it up in the implied namespaces.
1362 if (LookupCtx->isFileContext())
1363 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1364
1365 // If this isn't a C++ class, we aren't allowed to look into base
1366 // classes, we're done.
1367 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1368 if (!LookupRec || !LookupRec->getDefinition())
1369 return false;
1370
1371 // If we're performing qualified name lookup into a dependent class,
1372 // then we are actually looking into a current instantiation. If we have any
1373 // dependent base classes, then we either have to delay lookup until
1374 // template instantiation time (at which point all bases will be available)
1375 // or we have to fail.
1376 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1377 LookupRec->hasAnyDependentBases()) {
1378 R.setNotFoundInCurrentInstantiation();
1379 return false;
1380 }
1381
1382 // Perform lookup into our base classes.
1383 CXXBasePaths Paths;
1384 Paths.setOrigin(LookupRec);
1385
1386 // Look for this member in our base classes
1387 CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1388 switch (R.getLookupKind()) {
1389 case LookupObjCImplicitSelfParam:
1390 case LookupOrdinaryName:
1391 case LookupMemberName:
1392 case LookupRedeclarationWithLinkage:
1393 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1394 break;
1395
1396 case LookupTagName:
1397 BaseCallback = &CXXRecordDecl::FindTagMember;
1398 break;
1399
1400 case LookupAnyName:
1401 BaseCallback = &LookupAnyMember;
1402 break;
1403
1404 case LookupUsingDeclName:
1405 // This lookup is for redeclarations only.
1406
1407 case LookupOperatorName:
1408 case LookupNamespaceName:
1409 case LookupObjCProtocolName:
1410 case LookupLabel:
1411 // These lookups will never find a member in a C++ class (or base class).
1412 return false;
1413
1414 case LookupNestedNameSpecifierName:
1415 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1416 break;
1417 }
1418
1419 if (!LookupRec->lookupInBases(BaseCallback,
1420 R.getLookupName().getAsOpaquePtr(), Paths))
1421 return false;
1422
1423 R.setNamingClass(LookupRec);
1424
1425 // C++ [class.member.lookup]p2:
1426 // [...] If the resulting set of declarations are not all from
1427 // sub-objects of the same type, or the set has a nonstatic member
1428 // and includes members from distinct sub-objects, there is an
1429 // ambiguity and the program is ill-formed. Otherwise that set is
1430 // the result of the lookup.
1431 QualType SubobjectType;
1432 int SubobjectNumber = 0;
1433 AccessSpecifier SubobjectAccess = AS_none;
1434
1435 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1436 Path != PathEnd; ++Path) {
1437 const CXXBasePathElement &PathElement = Path->back();
1438
1439 // Pick the best (i.e. most permissive i.e. numerically lowest) access
1440 // across all paths.
1441 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1442
1443 // Determine whether we're looking at a distinct sub-object or not.
1444 if (SubobjectType.isNull()) {
1445 // This is the first subobject we've looked at. Record its type.
1446 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1447 SubobjectNumber = PathElement.SubobjectNumber;
1448 continue;
1449 }
1450
1451 if (SubobjectType
1452 != Context.getCanonicalType(PathElement.Base->getType())) {
1453 // We found members of the given name in two subobjects of
1454 // different types. If the declaration sets aren't the same, this
1455 // this lookup is ambiguous.
1456 if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) {
1457 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1458 DeclContext::lookup_iterator FirstD = FirstPath->Decls.first;
1459 DeclContext::lookup_iterator CurrentD = Path->Decls.first;
1460
1461 while (FirstD != FirstPath->Decls.second &&
1462 CurrentD != Path->Decls.second) {
1463 if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1464 (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1465 break;
1466
1467 ++FirstD;
1468 ++CurrentD;
1469 }
1470
1471 if (FirstD == FirstPath->Decls.second &&
1472 CurrentD == Path->Decls.second)
1473 continue;
1474 }
1475
1476 R.setAmbiguousBaseSubobjectTypes(Paths);
1477 return true;
1478 }
1479
1480 if (SubobjectNumber != PathElement.SubobjectNumber) {
1481 // We have a different subobject of the same type.
1482
1483 // C++ [class.member.lookup]p5:
1484 // A static member, a nested type or an enumerator defined in
1485 // a base class T can unambiguously be found even if an object
1486 // has more than one base class subobject of type T.
1487 if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second))
1488 continue;
1489
1490 // We have found a nonstatic member name in multiple, distinct
1491 // subobjects. Name lookup is ambiguous.
1492 R.setAmbiguousBaseSubobjects(Paths);
1493 return true;
1494 }
1495 }
1496
1497 // Lookup in a base class succeeded; return these results.
1498
1499 DeclContext::lookup_iterator I, E;
1500 for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
1501 NamedDecl *D = *I;
1502 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1503 D->getAccess());
1504 R.addDecl(D, AS);
1505 }
1506 R.resolveKind();
1507 return true;
1508 }
1509
1510 /// @brief Performs name lookup for a name that was parsed in the
1511 /// source code, and may contain a C++ scope specifier.
1512 ///
1513 /// This routine is a convenience routine meant to be called from
1514 /// contexts that receive a name and an optional C++ scope specifier
1515 /// (e.g., "N::M::x"). It will then perform either qualified or
1516 /// unqualified name lookup (with LookupQualifiedName or LookupName,
1517 /// respectively) on the given name and return those results.
1518 ///
1519 /// @param S The scope from which unqualified name lookup will
1520 /// begin.
1521 ///
1522 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
1523 ///
1524 /// @param EnteringContext Indicates whether we are going to enter the
1525 /// context of the scope-specifier SS (if present).
1526 ///
1527 /// @returns True if any decls were found (but possibly ambiguous)
LookupParsedName(LookupResult & R,Scope * S,CXXScopeSpec * SS,bool AllowBuiltinCreation,bool EnteringContext)1528 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1529 bool AllowBuiltinCreation, bool EnteringContext) {
1530 if (SS && SS->isInvalid()) {
1531 // When the scope specifier is invalid, don't even look for
1532 // anything.
1533 return false;
1534 }
1535
1536 if (SS && SS->isSet()) {
1537 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1538 // We have resolved the scope specifier to a particular declaration
1539 // contex, and will perform name lookup in that context.
1540 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1541 return false;
1542
1543 R.setContextRange(SS->getRange());
1544
1545 return LookupQualifiedName(R, DC);
1546 }
1547
1548 // We could not resolve the scope specified to a specific declaration
1549 // context, which means that SS refers to an unknown specialization.
1550 // Name lookup can't find anything in this case.
1551 return false;
1552 }
1553
1554 // Perform unqualified name lookup starting in the given scope.
1555 return LookupName(R, S, AllowBuiltinCreation);
1556 }
1557
1558
1559 /// @brief Produce a diagnostic describing the ambiguity that resulted
1560 /// from name lookup.
1561 ///
1562 /// @param Result The ambiguous name lookup result.
1563 ///
1564 /// @param Name The name of the entity that name lookup was
1565 /// searching for.
1566 ///
1567 /// @param NameLoc The location of the name within the source code.
1568 ///
1569 /// @param LookupRange A source range that provides more
1570 /// source-location information concerning the lookup itself. For
1571 /// example, this range might highlight a nested-name-specifier that
1572 /// precedes the name.
1573 ///
1574 /// @returns true
DiagnoseAmbiguousLookup(LookupResult & Result)1575 bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1576 assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1577
1578 DeclarationName Name = Result.getLookupName();
1579 SourceLocation NameLoc = Result.getNameLoc();
1580 SourceRange LookupRange = Result.getContextRange();
1581
1582 switch (Result.getAmbiguityKind()) {
1583 case LookupResult::AmbiguousBaseSubobjects: {
1584 CXXBasePaths *Paths = Result.getBasePaths();
1585 QualType SubobjectType = Paths->front().back().Base->getType();
1586 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1587 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1588 << LookupRange;
1589
1590 DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1591 while (isa<CXXMethodDecl>(*Found) &&
1592 cast<CXXMethodDecl>(*Found)->isStatic())
1593 ++Found;
1594
1595 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1596
1597 return true;
1598 }
1599
1600 case LookupResult::AmbiguousBaseSubobjectTypes: {
1601 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1602 << Name << LookupRange;
1603
1604 CXXBasePaths *Paths = Result.getBasePaths();
1605 std::set<Decl *> DeclsPrinted;
1606 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1607 PathEnd = Paths->end();
1608 Path != PathEnd; ++Path) {
1609 Decl *D = *Path->Decls.first;
1610 if (DeclsPrinted.insert(D).second)
1611 Diag(D->getLocation(), diag::note_ambiguous_member_found);
1612 }
1613
1614 return true;
1615 }
1616
1617 case LookupResult::AmbiguousTagHiding: {
1618 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1619
1620 llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1621
1622 LookupResult::iterator DI, DE = Result.end();
1623 for (DI = Result.begin(); DI != DE; ++DI)
1624 if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1625 TagDecls.insert(TD);
1626 Diag(TD->getLocation(), diag::note_hidden_tag);
1627 }
1628
1629 for (DI = Result.begin(); DI != DE; ++DI)
1630 if (!isa<TagDecl>(*DI))
1631 Diag((*DI)->getLocation(), diag::note_hiding_object);
1632
1633 // For recovery purposes, go ahead and implement the hiding.
1634 LookupResult::Filter F = Result.makeFilter();
1635 while (F.hasNext()) {
1636 if (TagDecls.count(F.next()))
1637 F.erase();
1638 }
1639 F.done();
1640
1641 return true;
1642 }
1643
1644 case LookupResult::AmbiguousReference: {
1645 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1646
1647 LookupResult::iterator DI = Result.begin(), DE = Result.end();
1648 for (; DI != DE; ++DI)
1649 Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1650
1651 return true;
1652 }
1653 }
1654
1655 llvm_unreachable("unknown ambiguity kind");
1656 return true;
1657 }
1658
1659 namespace {
1660 struct AssociatedLookup {
AssociatedLookup__anon9853ef940211::AssociatedLookup1661 AssociatedLookup(Sema &S,
1662 Sema::AssociatedNamespaceSet &Namespaces,
1663 Sema::AssociatedClassSet &Classes)
1664 : S(S), Namespaces(Namespaces), Classes(Classes) {
1665 }
1666
1667 Sema &S;
1668 Sema::AssociatedNamespaceSet &Namespaces;
1669 Sema::AssociatedClassSet &Classes;
1670 };
1671 }
1672
1673 static void
1674 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1675
CollectEnclosingNamespace(Sema::AssociatedNamespaceSet & Namespaces,DeclContext * Ctx)1676 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1677 DeclContext *Ctx) {
1678 // Add the associated namespace for this class.
1679
1680 // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1681 // be a locally scoped record.
1682
1683 // We skip out of inline namespaces. The innermost non-inline namespace
1684 // contains all names of all its nested inline namespaces anyway, so we can
1685 // replace the entire inline namespace tree with its root.
1686 while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1687 Ctx->isInlineNamespace())
1688 Ctx = Ctx->getParent();
1689
1690 if (Ctx->isFileContext())
1691 Namespaces.insert(Ctx->getPrimaryContext());
1692 }
1693
1694 // \brief Add the associated classes and namespaces for argument-dependent
1695 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1696 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,const TemplateArgument & Arg)1697 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1698 const TemplateArgument &Arg) {
1699 // C++ [basic.lookup.koenig]p2, last bullet:
1700 // -- [...] ;
1701 switch (Arg.getKind()) {
1702 case TemplateArgument::Null:
1703 break;
1704
1705 case TemplateArgument::Type:
1706 // [...] the namespaces and classes associated with the types of the
1707 // template arguments provided for template type parameters (excluding
1708 // template template parameters)
1709 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1710 break;
1711
1712 case TemplateArgument::Template:
1713 case TemplateArgument::TemplateExpansion: {
1714 // [...] the namespaces in which any template template arguments are
1715 // defined; and the classes in which any member templates used as
1716 // template template arguments are defined.
1717 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
1718 if (ClassTemplateDecl *ClassTemplate
1719 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1720 DeclContext *Ctx = ClassTemplate->getDeclContext();
1721 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1722 Result.Classes.insert(EnclosingClass);
1723 // Add the associated namespace for this class.
1724 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1725 }
1726 break;
1727 }
1728
1729 case TemplateArgument::Declaration:
1730 case TemplateArgument::Integral:
1731 case TemplateArgument::Expression:
1732 // [Note: non-type template arguments do not contribute to the set of
1733 // associated namespaces. ]
1734 break;
1735
1736 case TemplateArgument::Pack:
1737 for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1738 PEnd = Arg.pack_end();
1739 P != PEnd; ++P)
1740 addAssociatedClassesAndNamespaces(Result, *P);
1741 break;
1742 }
1743 }
1744
1745 // \brief Add the associated classes and namespaces for
1746 // argument-dependent lookup with an argument of class type
1747 // (C++ [basic.lookup.koenig]p2).
1748 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,CXXRecordDecl * Class)1749 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1750 CXXRecordDecl *Class) {
1751
1752 // Just silently ignore anything whose name is __va_list_tag.
1753 if (Class->getDeclName() == Result.S.VAListTagName)
1754 return;
1755
1756 // C++ [basic.lookup.koenig]p2:
1757 // [...]
1758 // -- If T is a class type (including unions), its associated
1759 // classes are: the class itself; the class of which it is a
1760 // member, if any; and its direct and indirect base
1761 // classes. Its associated namespaces are the namespaces in
1762 // which its associated classes are defined.
1763
1764 // Add the class of which it is a member, if any.
1765 DeclContext *Ctx = Class->getDeclContext();
1766 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1767 Result.Classes.insert(EnclosingClass);
1768 // Add the associated namespace for this class.
1769 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1770
1771 // Add the class itself. If we've already seen this class, we don't
1772 // need to visit base classes.
1773 if (!Result.Classes.insert(Class))
1774 return;
1775
1776 // -- If T is a template-id, its associated namespaces and classes are
1777 // the namespace in which the template is defined; for member
1778 // templates, the member template's class; the namespaces and classes
1779 // associated with the types of the template arguments provided for
1780 // template type parameters (excluding template template parameters); the
1781 // namespaces in which any template template arguments are defined; and
1782 // the classes in which any member templates used as template template
1783 // arguments are defined. [Note: non-type template arguments do not
1784 // contribute to the set of associated namespaces. ]
1785 if (ClassTemplateSpecializationDecl *Spec
1786 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1787 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1788 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1789 Result.Classes.insert(EnclosingClass);
1790 // Add the associated namespace for this class.
1791 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1792
1793 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1794 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1795 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1796 }
1797
1798 // Only recurse into base classes for complete types.
1799 if (!Class->hasDefinition()) {
1800 // FIXME: we might need to instantiate templates here
1801 return;
1802 }
1803
1804 // Add direct and indirect base classes along with their associated
1805 // namespaces.
1806 llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1807 Bases.push_back(Class);
1808 while (!Bases.empty()) {
1809 // Pop this class off the stack.
1810 Class = Bases.back();
1811 Bases.pop_back();
1812
1813 // Visit the base classes.
1814 for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1815 BaseEnd = Class->bases_end();
1816 Base != BaseEnd; ++Base) {
1817 const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1818 // In dependent contexts, we do ADL twice, and the first time around,
1819 // the base type might be a dependent TemplateSpecializationType, or a
1820 // TemplateTypeParmType. If that happens, simply ignore it.
1821 // FIXME: If we want to support export, we probably need to add the
1822 // namespace of the template in a TemplateSpecializationType, or even
1823 // the classes and namespaces of known non-dependent arguments.
1824 if (!BaseType)
1825 continue;
1826 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1827 if (Result.Classes.insert(BaseDecl)) {
1828 // Find the associated namespace for this base class.
1829 DeclContext *BaseCtx = BaseDecl->getDeclContext();
1830 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
1831
1832 // Make sure we visit the bases of this base class.
1833 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1834 Bases.push_back(BaseDecl);
1835 }
1836 }
1837 }
1838 }
1839
1840 // \brief Add the associated classes and namespaces for
1841 // argument-dependent lookup with an argument of type T
1842 // (C++ [basic.lookup.koenig]p2).
1843 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,QualType Ty)1844 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
1845 // C++ [basic.lookup.koenig]p2:
1846 //
1847 // For each argument type T in the function call, there is a set
1848 // of zero or more associated namespaces and a set of zero or more
1849 // associated classes to be considered. The sets of namespaces and
1850 // classes is determined entirely by the types of the function
1851 // arguments (and the namespace of any template template
1852 // argument). Typedef names and using-declarations used to specify
1853 // the types do not contribute to this set. The sets of namespaces
1854 // and classes are determined in the following way:
1855
1856 llvm::SmallVector<const Type *, 16> Queue;
1857 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
1858
1859 while (true) {
1860 switch (T->getTypeClass()) {
1861
1862 #define TYPE(Class, Base)
1863 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1864 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1865 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
1866 #define ABSTRACT_TYPE(Class, Base)
1867 #include "clang/AST/TypeNodes.def"
1868 // T is canonical. We can also ignore dependent types because
1869 // we don't need to do ADL at the definition point, but if we
1870 // wanted to implement template export (or if we find some other
1871 // use for associated classes and namespaces...) this would be
1872 // wrong.
1873 break;
1874
1875 // -- If T is a pointer to U or an array of U, its associated
1876 // namespaces and classes are those associated with U.
1877 case Type::Pointer:
1878 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
1879 continue;
1880 case Type::ConstantArray:
1881 case Type::IncompleteArray:
1882 case Type::VariableArray:
1883 T = cast<ArrayType>(T)->getElementType().getTypePtr();
1884 continue;
1885
1886 // -- If T is a fundamental type, its associated sets of
1887 // namespaces and classes are both empty.
1888 case Type::Builtin:
1889 break;
1890
1891 // -- If T is a class type (including unions), its associated
1892 // classes are: the class itself; the class of which it is a
1893 // member, if any; and its direct and indirect base
1894 // classes. Its associated namespaces are the namespaces in
1895 // which its associated classes are defined.
1896 case Type::Record: {
1897 CXXRecordDecl *Class
1898 = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
1899 addAssociatedClassesAndNamespaces(Result, Class);
1900 break;
1901 }
1902
1903 // -- If T is an enumeration type, its associated namespace is
1904 // the namespace in which it is defined. If it is class
1905 // member, its associated class is the member's class; else
1906 // it has no associated class.
1907 case Type::Enum: {
1908 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
1909
1910 DeclContext *Ctx = Enum->getDeclContext();
1911 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1912 Result.Classes.insert(EnclosingClass);
1913
1914 // Add the associated namespace for this class.
1915 CollectEnclosingNamespace(Result.Namespaces, Ctx);
1916
1917 break;
1918 }
1919
1920 // -- If T is a function type, its associated namespaces and
1921 // classes are those associated with the function parameter
1922 // types and those associated with the return type.
1923 case Type::FunctionProto: {
1924 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1925 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1926 ArgEnd = Proto->arg_type_end();
1927 Arg != ArgEnd; ++Arg)
1928 Queue.push_back(Arg->getTypePtr());
1929 // fallthrough
1930 }
1931 case Type::FunctionNoProto: {
1932 const FunctionType *FnType = cast<FunctionType>(T);
1933 T = FnType->getResultType().getTypePtr();
1934 continue;
1935 }
1936
1937 // -- If T is a pointer to a member function of a class X, its
1938 // associated namespaces and classes are those associated
1939 // with the function parameter types and return type,
1940 // together with those associated with X.
1941 //
1942 // -- If T is a pointer to a data member of class X, its
1943 // associated namespaces and classes are those associated
1944 // with the member type together with those associated with
1945 // X.
1946 case Type::MemberPointer: {
1947 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
1948
1949 // Queue up the class type into which this points.
1950 Queue.push_back(MemberPtr->getClass());
1951
1952 // And directly continue with the pointee type.
1953 T = MemberPtr->getPointeeType().getTypePtr();
1954 continue;
1955 }
1956
1957 // As an extension, treat this like a normal pointer.
1958 case Type::BlockPointer:
1959 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
1960 continue;
1961
1962 // References aren't covered by the standard, but that's such an
1963 // obvious defect that we cover them anyway.
1964 case Type::LValueReference:
1965 case Type::RValueReference:
1966 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
1967 continue;
1968
1969 // These are fundamental types.
1970 case Type::Vector:
1971 case Type::ExtVector:
1972 case Type::Complex:
1973 break;
1974
1975 // If T is an Objective-C object or interface type, or a pointer to an
1976 // object or interface type, the associated namespace is the global
1977 // namespace.
1978 case Type::ObjCObject:
1979 case Type::ObjCInterface:
1980 case Type::ObjCObjectPointer:
1981 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
1982 break;
1983 }
1984
1985 if (Queue.empty()) break;
1986 T = Queue.back();
1987 Queue.pop_back();
1988 }
1989 }
1990
1991 /// \brief Find the associated classes and namespaces for
1992 /// argument-dependent lookup for a call with the given set of
1993 /// arguments.
1994 ///
1995 /// This routine computes the sets of associated classes and associated
1996 /// namespaces searched by argument-dependent lookup
1997 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
1998 void
FindAssociatedClassesAndNamespaces(Expr ** Args,unsigned NumArgs,AssociatedNamespaceSet & AssociatedNamespaces,AssociatedClassSet & AssociatedClasses)1999 Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
2000 AssociatedNamespaceSet &AssociatedNamespaces,
2001 AssociatedClassSet &AssociatedClasses) {
2002 AssociatedNamespaces.clear();
2003 AssociatedClasses.clear();
2004
2005 AssociatedLookup Result(*this, AssociatedNamespaces, AssociatedClasses);
2006
2007 // C++ [basic.lookup.koenig]p2:
2008 // For each argument type T in the function call, there is a set
2009 // of zero or more associated namespaces and a set of zero or more
2010 // associated classes to be considered. The sets of namespaces and
2011 // classes is determined entirely by the types of the function
2012 // arguments (and the namespace of any template template
2013 // argument).
2014 for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
2015 Expr *Arg = Args[ArgIdx];
2016
2017 if (Arg->getType() != Context.OverloadTy) {
2018 addAssociatedClassesAndNamespaces(Result, Arg->getType());
2019 continue;
2020 }
2021
2022 // [...] In addition, if the argument is the name or address of a
2023 // set of overloaded functions and/or function templates, its
2024 // associated classes and namespaces are the union of those
2025 // associated with each of the members of the set: the namespace
2026 // in which the function or function template is defined and the
2027 // classes and namespaces associated with its (non-dependent)
2028 // parameter types and return type.
2029 Arg = Arg->IgnoreParens();
2030 if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2031 if (unaryOp->getOpcode() == UO_AddrOf)
2032 Arg = unaryOp->getSubExpr();
2033
2034 UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2035 if (!ULE) continue;
2036
2037 for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
2038 I != E; ++I) {
2039 // Look through any using declarations to find the underlying function.
2040 NamedDecl *Fn = (*I)->getUnderlyingDecl();
2041
2042 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
2043 if (!FDecl)
2044 FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
2045
2046 // Add the classes and namespaces associated with the parameter
2047 // types and return type of this function.
2048 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2049 }
2050 }
2051 }
2052
2053 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2054 /// an acceptable non-member overloaded operator for a call whose
2055 /// arguments have types T1 (and, if non-empty, T2). This routine
2056 /// implements the check in C++ [over.match.oper]p3b2 concerning
2057 /// enumeration types.
2058 static bool
IsAcceptableNonMemberOperatorCandidate(FunctionDecl * Fn,QualType T1,QualType T2,ASTContext & Context)2059 IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2060 QualType T1, QualType T2,
2061 ASTContext &Context) {
2062 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
2063 return true;
2064
2065 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2066 return true;
2067
2068 const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
2069 if (Proto->getNumArgs() < 1)
2070 return false;
2071
2072 if (T1->isEnumeralType()) {
2073 QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2074 if (Context.hasSameUnqualifiedType(T1, ArgType))
2075 return true;
2076 }
2077
2078 if (Proto->getNumArgs() < 2)
2079 return false;
2080
2081 if (!T2.isNull() && T2->isEnumeralType()) {
2082 QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2083 if (Context.hasSameUnqualifiedType(T2, ArgType))
2084 return true;
2085 }
2086
2087 return false;
2088 }
2089
LookupSingleName(Scope * S,DeclarationName Name,SourceLocation Loc,LookupNameKind NameKind,RedeclarationKind Redecl)2090 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2091 SourceLocation Loc,
2092 LookupNameKind NameKind,
2093 RedeclarationKind Redecl) {
2094 LookupResult R(*this, Name, Loc, NameKind, Redecl);
2095 LookupName(R, S);
2096 return R.getAsSingle<NamedDecl>();
2097 }
2098
2099 /// \brief Find the protocol with the given name, if any.
LookupProtocol(IdentifierInfo * II,SourceLocation IdLoc)2100 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2101 SourceLocation IdLoc) {
2102 Decl *D = LookupSingleName(TUScope, II, IdLoc,
2103 LookupObjCProtocolName);
2104 return cast_or_null<ObjCProtocolDecl>(D);
2105 }
2106
LookupOverloadedOperatorName(OverloadedOperatorKind Op,Scope * S,QualType T1,QualType T2,UnresolvedSetImpl & Functions)2107 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2108 QualType T1, QualType T2,
2109 UnresolvedSetImpl &Functions) {
2110 // C++ [over.match.oper]p3:
2111 // -- The set of non-member candidates is the result of the
2112 // unqualified lookup of operator@ in the context of the
2113 // expression according to the usual rules for name lookup in
2114 // unqualified function calls (3.4.2) except that all member
2115 // functions are ignored. However, if no operand has a class
2116 // type, only those non-member functions in the lookup set
2117 // that have a first parameter of type T1 or "reference to
2118 // (possibly cv-qualified) T1", when T1 is an enumeration
2119 // type, or (if there is a right operand) a second parameter
2120 // of type T2 or "reference to (possibly cv-qualified) T2",
2121 // when T2 is an enumeration type, are candidate functions.
2122 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2123 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2124 LookupName(Operators, S);
2125
2126 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2127
2128 if (Operators.empty())
2129 return;
2130
2131 for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2132 Op != OpEnd; ++Op) {
2133 NamedDecl *Found = (*Op)->getUnderlyingDecl();
2134 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
2135 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2136 Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
2137 } else if (FunctionTemplateDecl *FunTmpl
2138 = dyn_cast<FunctionTemplateDecl>(Found)) {
2139 // FIXME: friend operators?
2140 // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
2141 // later?
2142 if (!FunTmpl->getDeclContext()->isRecord())
2143 Functions.addDecl(*Op, Op.getAccess());
2144 }
2145 }
2146 }
2147
LookupSpecialMember(CXXRecordDecl * RD,CXXSpecialMember SM,bool ConstArg,bool VolatileArg,bool RValueThis,bool ConstThis,bool VolatileThis)2148 Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
2149 CXXSpecialMember SM,
2150 bool ConstArg,
2151 bool VolatileArg,
2152 bool RValueThis,
2153 bool ConstThis,
2154 bool VolatileThis) {
2155 RD = RD->getDefinition();
2156 assert((RD && !RD->isBeingDefined()) &&
2157 "doing special member lookup into record that isn't fully complete");
2158 if (RValueThis || ConstThis || VolatileThis)
2159 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2160 "constructors and destructors always have unqualified lvalue this");
2161 if (ConstArg || VolatileArg)
2162 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2163 "parameter-less special members can't have qualified arguments");
2164
2165 llvm::FoldingSetNodeID ID;
2166 ID.AddPointer(RD);
2167 ID.AddInteger(SM);
2168 ID.AddInteger(ConstArg);
2169 ID.AddInteger(VolatileArg);
2170 ID.AddInteger(RValueThis);
2171 ID.AddInteger(ConstThis);
2172 ID.AddInteger(VolatileThis);
2173
2174 void *InsertPoint;
2175 SpecialMemberOverloadResult *Result =
2176 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2177
2178 // This was already cached
2179 if (Result)
2180 return Result;
2181
2182 Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
2183 Result = new (Result) SpecialMemberOverloadResult(ID);
2184 SpecialMemberCache.InsertNode(Result, InsertPoint);
2185
2186 if (SM == CXXDestructor) {
2187 if (!RD->hasDeclaredDestructor())
2188 DeclareImplicitDestructor(RD);
2189 CXXDestructorDecl *DD = RD->getDestructor();
2190 assert(DD && "record without a destructor");
2191 Result->setMethod(DD);
2192 Result->setSuccess(DD->isDeleted());
2193 Result->setConstParamMatch(false);
2194 return Result;
2195 }
2196
2197 // Prepare for overload resolution. Here we construct a synthetic argument
2198 // if necessary and make sure that implicit functions are declared.
2199 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2200 DeclarationName Name;
2201 Expr *Arg = 0;
2202 unsigned NumArgs;
2203
2204 if (SM == CXXDefaultConstructor) {
2205 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2206 NumArgs = 0;
2207 if (RD->needsImplicitDefaultConstructor())
2208 DeclareImplicitDefaultConstructor(RD);
2209 } else {
2210 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2211 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2212 if (!RD->hasDeclaredCopyConstructor())
2213 DeclareImplicitCopyConstructor(RD);
2214 // TODO: Move constructors
2215 } else {
2216 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2217 if (!RD->hasDeclaredCopyAssignment())
2218 DeclareImplicitCopyAssignment(RD);
2219 // TODO: Move assignment
2220 }
2221
2222 QualType ArgType = CanTy;
2223 if (ConstArg)
2224 ArgType.addConst();
2225 if (VolatileArg)
2226 ArgType.addVolatile();
2227
2228 // This isn't /really/ specified by the standard, but it's implied
2229 // we should be working from an RValue in the case of move to ensure
2230 // that we prefer to bind to rvalue references, and an LValue in the
2231 // case of copy to ensure we don't bind to rvalue references.
2232 // Possibly an XValue is actually correct in the case of move, but
2233 // there is no semantic difference for class types in this restricted
2234 // case.
2235 ExprValueKind VK;
2236 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2237 VK = VK_LValue;
2238 else
2239 VK = VK_RValue;
2240
2241 NumArgs = 1;
2242 Arg = new (Context) OpaqueValueExpr(SourceLocation(), ArgType, VK);
2243 }
2244
2245 // Create the object argument
2246 QualType ThisTy = CanTy;
2247 if (ConstThis)
2248 ThisTy.addConst();
2249 if (VolatileThis)
2250 ThisTy.addVolatile();
2251 Expr::Classification Classification =
2252 (new (Context) OpaqueValueExpr(SourceLocation(), ThisTy,
2253 RValueThis ? VK_RValue : VK_LValue))->
2254 Classify(Context);
2255
2256 // Now we perform lookup on the name we computed earlier and do overload
2257 // resolution. Lookup is only performed directly into the class since there
2258 // will always be a (possibly implicit) declaration to shadow any others.
2259 OverloadCandidateSet OCS((SourceLocation()));
2260 DeclContext::lookup_iterator I, E;
2261 Result->setConstParamMatch(false);
2262
2263 llvm::tie(I, E) = RD->lookup(Name);
2264 assert((I != E) &&
2265 "lookup for a constructor or assignment operator was empty");
2266 for ( ; I != E; ++I) {
2267 Decl *Cand = *I;
2268
2269 if (Cand->isInvalidDecl())
2270 continue;
2271
2272 if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
2273 // FIXME: [namespace.udecl]p15 says that we should only consider a
2274 // using declaration here if it does not match a declaration in the
2275 // derived class. We do not implement this correctly in other cases
2276 // either.
2277 Cand = U->getTargetDecl();
2278
2279 if (Cand->isInvalidDecl())
2280 continue;
2281 }
2282
2283 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
2284 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2285 AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
2286 Classification, &Arg, NumArgs, OCS, true);
2287 else
2288 AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public), &Arg,
2289 NumArgs, OCS, true);
2290
2291 // Here we're looking for a const parameter to speed up creation of
2292 // implicit copy methods.
2293 if ((SM == CXXCopyAssignment && M->isCopyAssignmentOperator()) ||
2294 (SM == CXXCopyConstructor &&
2295 cast<CXXConstructorDecl>(M)->isCopyConstructor())) {
2296 QualType ArgType = M->getType()->getAs<FunctionProtoType>()->getArgType(0);
2297 if (!ArgType->isReferenceType() ||
2298 ArgType->getPointeeType().isConstQualified())
2299 Result->setConstParamMatch(true);
2300 }
2301 } else if (FunctionTemplateDecl *Tmpl =
2302 dyn_cast<FunctionTemplateDecl>(Cand)) {
2303 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2304 AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2305 RD, 0, ThisTy, Classification, &Arg, NumArgs,
2306 OCS, true);
2307 else
2308 AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2309 0, &Arg, NumArgs, OCS, true);
2310 } else {
2311 assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
2312 }
2313 }
2314
2315 OverloadCandidateSet::iterator Best;
2316 switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
2317 case OR_Success:
2318 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2319 Result->setSuccess(true);
2320 break;
2321
2322 case OR_Deleted:
2323 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2324 Result->setSuccess(false);
2325 break;
2326
2327 case OR_Ambiguous:
2328 case OR_No_Viable_Function:
2329 Result->setMethod(0);
2330 Result->setSuccess(false);
2331 break;
2332 }
2333
2334 return Result;
2335 }
2336
2337 /// \brief Look up the default constructor for the given class.
LookupDefaultConstructor(CXXRecordDecl * Class)2338 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2339 SpecialMemberOverloadResult *Result =
2340 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2341 false, false);
2342
2343 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2344 }
2345
2346 /// \brief Look up the copying constructor for the given class.
LookupCopyingConstructor(CXXRecordDecl * Class,unsigned Quals,bool * ConstParamMatch)2347 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2348 unsigned Quals,
2349 bool *ConstParamMatch) {
2350 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2351 "non-const, non-volatile qualifiers for copy ctor arg");
2352 SpecialMemberOverloadResult *Result =
2353 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2354 Quals & Qualifiers::Volatile, false, false, false);
2355
2356 if (ConstParamMatch)
2357 *ConstParamMatch = Result->hasConstParamMatch();
2358
2359 return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2360 }
2361
2362 /// \brief Look up the constructors for the given class.
LookupConstructors(CXXRecordDecl * Class)2363 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2364 // If the implicit constructors have not yet been declared, do so now.
2365 if (CanDeclareSpecialMemberFunction(Context, Class)) {
2366 if (Class->needsImplicitDefaultConstructor())
2367 DeclareImplicitDefaultConstructor(Class);
2368 if (!Class->hasDeclaredCopyConstructor())
2369 DeclareImplicitCopyConstructor(Class);
2370 }
2371
2372 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2373 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2374 return Class->lookup(Name);
2375 }
2376
2377 /// \brief Look up the copying assignment operator for the given class.
LookupCopyingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals,bool * ConstParamMatch)2378 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
2379 unsigned Quals, bool RValueThis,
2380 unsigned ThisQuals,
2381 bool *ConstParamMatch) {
2382 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2383 "non-const, non-volatile qualifiers for copy assignment arg");
2384 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2385 "non-const, non-volatile qualifiers for copy assignment this");
2386 SpecialMemberOverloadResult *Result =
2387 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
2388 Quals & Qualifiers::Volatile, RValueThis,
2389 ThisQuals & Qualifiers::Const,
2390 ThisQuals & Qualifiers::Volatile);
2391
2392 if (ConstParamMatch)
2393 *ConstParamMatch = Result->hasConstParamMatch();
2394
2395 return Result->getMethod();
2396 }
2397
2398 /// \brief Look for the destructor of the given class.
2399 ///
2400 /// During semantic analysis, this routine should be used in lieu of
2401 /// CXXRecordDecl::getDestructor().
2402 ///
2403 /// \returns The destructor for this class.
LookupDestructor(CXXRecordDecl * Class)2404 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2405 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
2406 false, false, false,
2407 false, false)->getMethod());
2408 }
2409
insert(NamedDecl * New)2410 void ADLResult::insert(NamedDecl *New) {
2411 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2412
2413 // If we haven't yet seen a decl for this key, or the last decl
2414 // was exactly this one, we're done.
2415 if (Old == 0 || Old == New) {
2416 Old = New;
2417 return;
2418 }
2419
2420 // Otherwise, decide which is a more recent redeclaration.
2421 FunctionDecl *OldFD, *NewFD;
2422 if (isa<FunctionTemplateDecl>(New)) {
2423 OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
2424 NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
2425 } else {
2426 OldFD = cast<FunctionDecl>(Old);
2427 NewFD = cast<FunctionDecl>(New);
2428 }
2429
2430 FunctionDecl *Cursor = NewFD;
2431 while (true) {
2432 Cursor = Cursor->getPreviousDeclaration();
2433
2434 // If we got to the end without finding OldFD, OldFD is the newer
2435 // declaration; leave things as they are.
2436 if (!Cursor) return;
2437
2438 // If we do find OldFD, then NewFD is newer.
2439 if (Cursor == OldFD) break;
2440
2441 // Otherwise, keep looking.
2442 }
2443
2444 Old = New;
2445 }
2446
ArgumentDependentLookup(DeclarationName Name,bool Operator,Expr ** Args,unsigned NumArgs,ADLResult & Result,bool StdNamespaceIsAssociated)2447 void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
2448 Expr **Args, unsigned NumArgs,
2449 ADLResult &Result,
2450 bool StdNamespaceIsAssociated) {
2451 // Find all of the associated namespaces and classes based on the
2452 // arguments we have.
2453 AssociatedNamespaceSet AssociatedNamespaces;
2454 AssociatedClassSet AssociatedClasses;
2455 FindAssociatedClassesAndNamespaces(Args, NumArgs,
2456 AssociatedNamespaces,
2457 AssociatedClasses);
2458 if (StdNamespaceIsAssociated && StdNamespace)
2459 AssociatedNamespaces.insert(getStdNamespace());
2460
2461 QualType T1, T2;
2462 if (Operator) {
2463 T1 = Args[0]->getType();
2464 if (NumArgs >= 2)
2465 T2 = Args[1]->getType();
2466 }
2467
2468 // C++ [basic.lookup.argdep]p3:
2469 // Let X be the lookup set produced by unqualified lookup (3.4.1)
2470 // and let Y be the lookup set produced by argument dependent
2471 // lookup (defined as follows). If X contains [...] then Y is
2472 // empty. Otherwise Y is the set of declarations found in the
2473 // namespaces associated with the argument types as described
2474 // below. The set of declarations found by the lookup of the name
2475 // is the union of X and Y.
2476 //
2477 // Here, we compute Y and add its members to the overloaded
2478 // candidate set.
2479 for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2480 NSEnd = AssociatedNamespaces.end();
2481 NS != NSEnd; ++NS) {
2482 // When considering an associated namespace, the lookup is the
2483 // same as the lookup performed when the associated namespace is
2484 // used as a qualifier (3.4.3.2) except that:
2485 //
2486 // -- Any using-directives in the associated namespace are
2487 // ignored.
2488 //
2489 // -- Any namespace-scope friend functions declared in
2490 // associated classes are visible within their respective
2491 // namespaces even if they are not visible during an ordinary
2492 // lookup (11.4).
2493 DeclContext::lookup_iterator I, E;
2494 for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
2495 NamedDecl *D = *I;
2496 // If the only declaration here is an ordinary friend, consider
2497 // it only if it was declared in an associated classes.
2498 if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
2499 DeclContext *LexDC = D->getLexicalDeclContext();
2500 if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
2501 continue;
2502 }
2503
2504 if (isa<UsingShadowDecl>(D))
2505 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2506
2507 if (isa<FunctionDecl>(D)) {
2508 if (Operator &&
2509 !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
2510 T1, T2, Context))
2511 continue;
2512 } else if (!isa<FunctionTemplateDecl>(D))
2513 continue;
2514
2515 Result.insert(D);
2516 }
2517 }
2518 }
2519
2520 //----------------------------------------------------------------------------
2521 // Search for all visible declarations.
2522 //----------------------------------------------------------------------------
~VisibleDeclConsumer()2523 VisibleDeclConsumer::~VisibleDeclConsumer() { }
2524
2525 namespace {
2526
2527 class ShadowContextRAII;
2528
2529 class VisibleDeclsRecord {
2530 public:
2531 /// \brief An entry in the shadow map, which is optimized to store a
2532 /// single declaration (the common case) but can also store a list
2533 /// of declarations.
2534 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
2535
2536 private:
2537 /// \brief A mapping from declaration names to the declarations that have
2538 /// this name within a particular scope.
2539 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2540
2541 /// \brief A list of shadow maps, which is used to model name hiding.
2542 std::list<ShadowMap> ShadowMaps;
2543
2544 /// \brief The declaration contexts we have already visited.
2545 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2546
2547 friend class ShadowContextRAII;
2548
2549 public:
2550 /// \brief Determine whether we have already visited this context
2551 /// (and, if not, note that we are going to visit that context now).
visitedContext(DeclContext * Ctx)2552 bool visitedContext(DeclContext *Ctx) {
2553 return !VisitedContexts.insert(Ctx);
2554 }
2555
alreadyVisitedContext(DeclContext * Ctx)2556 bool alreadyVisitedContext(DeclContext *Ctx) {
2557 return VisitedContexts.count(Ctx);
2558 }
2559
2560 /// \brief Determine whether the given declaration is hidden in the
2561 /// current scope.
2562 ///
2563 /// \returns the declaration that hides the given declaration, or
2564 /// NULL if no such declaration exists.
2565 NamedDecl *checkHidden(NamedDecl *ND);
2566
2567 /// \brief Add a declaration to the current shadow map.
add(NamedDecl * ND)2568 void add(NamedDecl *ND) {
2569 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
2570 }
2571 };
2572
2573 /// \brief RAII object that records when we've entered a shadow context.
2574 class ShadowContextRAII {
2575 VisibleDeclsRecord &Visible;
2576
2577 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2578
2579 public:
ShadowContextRAII(VisibleDeclsRecord & Visible)2580 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2581 Visible.ShadowMaps.push_back(ShadowMap());
2582 }
2583
~ShadowContextRAII()2584 ~ShadowContextRAII() {
2585 Visible.ShadowMaps.pop_back();
2586 }
2587 };
2588
2589 } // end anonymous namespace
2590
checkHidden(NamedDecl * ND)2591 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2592 // Look through using declarations.
2593 ND = ND->getUnderlyingDecl();
2594
2595 unsigned IDNS = ND->getIdentifierNamespace();
2596 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2597 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2598 SM != SMEnd; ++SM) {
2599 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2600 if (Pos == SM->end())
2601 continue;
2602
2603 for (ShadowMapEntry::iterator I = Pos->second.begin(),
2604 IEnd = Pos->second.end();
2605 I != IEnd; ++I) {
2606 // A tag declaration does not hide a non-tag declaration.
2607 if ((*I)->hasTagIdentifierNamespace() &&
2608 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2609 Decl::IDNS_ObjCProtocol)))
2610 continue;
2611
2612 // Protocols are in distinct namespaces from everything else.
2613 if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2614 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2615 (*I)->getIdentifierNamespace() != IDNS)
2616 continue;
2617
2618 // Functions and function templates in the same scope overload
2619 // rather than hide. FIXME: Look for hiding based on function
2620 // signatures!
2621 if ((*I)->isFunctionOrFunctionTemplate() &&
2622 ND->isFunctionOrFunctionTemplate() &&
2623 SM == ShadowMaps.rbegin())
2624 continue;
2625
2626 // We've found a declaration that hides this one.
2627 return *I;
2628 }
2629 }
2630
2631 return 0;
2632 }
2633
LookupVisibleDecls(DeclContext * Ctx,LookupResult & Result,bool QualifiedNameLookup,bool InBaseClass,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)2634 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2635 bool QualifiedNameLookup,
2636 bool InBaseClass,
2637 VisibleDeclConsumer &Consumer,
2638 VisibleDeclsRecord &Visited) {
2639 if (!Ctx)
2640 return;
2641
2642 // Make sure we don't visit the same context twice.
2643 if (Visited.visitedContext(Ctx->getPrimaryContext()))
2644 return;
2645
2646 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2647 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2648
2649 // Enumerate all of the results in this context.
2650 for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
2651 CurCtx = CurCtx->getNextContext()) {
2652 for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
2653 DEnd = CurCtx->decls_end();
2654 D != DEnd; ++D) {
2655 if (NamedDecl *ND = dyn_cast<NamedDecl>(*D)) {
2656 if (Result.isAcceptableDecl(ND)) {
2657 Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass);
2658 Visited.add(ND);
2659 }
2660 } else if (ObjCForwardProtocolDecl *ForwardProto
2661 = dyn_cast<ObjCForwardProtocolDecl>(*D)) {
2662 for (ObjCForwardProtocolDecl::protocol_iterator
2663 P = ForwardProto->protocol_begin(),
2664 PEnd = ForwardProto->protocol_end();
2665 P != PEnd;
2666 ++P) {
2667 if (Result.isAcceptableDecl(*P)) {
2668 Consumer.FoundDecl(*P, Visited.checkHidden(*P), InBaseClass);
2669 Visited.add(*P);
2670 }
2671 }
2672 } else if (ObjCClassDecl *Class = dyn_cast<ObjCClassDecl>(*D)) {
2673 for (ObjCClassDecl::iterator I = Class->begin(), IEnd = Class->end();
2674 I != IEnd; ++I) {
2675 ObjCInterfaceDecl *IFace = I->getInterface();
2676 if (Result.isAcceptableDecl(IFace)) {
2677 Consumer.FoundDecl(IFace, Visited.checkHidden(IFace), InBaseClass);
2678 Visited.add(IFace);
2679 }
2680 }
2681 }
2682
2683 // Visit transparent contexts and inline namespaces inside this context.
2684 if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
2685 if (InnerCtx->isTransparentContext() || InnerCtx->isInlineNamespace())
2686 LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass,
2687 Consumer, Visited);
2688 }
2689 }
2690 }
2691
2692 // Traverse using directives for qualified name lookup.
2693 if (QualifiedNameLookup) {
2694 ShadowContextRAII Shadow(Visited);
2695 DeclContext::udir_iterator I, E;
2696 for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2697 LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2698 QualifiedNameLookup, InBaseClass, Consumer, Visited);
2699 }
2700 }
2701
2702 // Traverse the contexts of inherited C++ classes.
2703 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2704 if (!Record->hasDefinition())
2705 return;
2706
2707 for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2708 BEnd = Record->bases_end();
2709 B != BEnd; ++B) {
2710 QualType BaseType = B->getType();
2711
2712 // Don't look into dependent bases, because name lookup can't look
2713 // there anyway.
2714 if (BaseType->isDependentType())
2715 continue;
2716
2717 const RecordType *Record = BaseType->getAs<RecordType>();
2718 if (!Record)
2719 continue;
2720
2721 // FIXME: It would be nice to be able to determine whether referencing
2722 // a particular member would be ambiguous. For example, given
2723 //
2724 // struct A { int member; };
2725 // struct B { int member; };
2726 // struct C : A, B { };
2727 //
2728 // void f(C *c) { c->### }
2729 //
2730 // accessing 'member' would result in an ambiguity. However, we
2731 // could be smart enough to qualify the member with the base
2732 // class, e.g.,
2733 //
2734 // c->B::member
2735 //
2736 // or
2737 //
2738 // c->A::member
2739
2740 // Find results in this base class (and its bases).
2741 ShadowContextRAII Shadow(Visited);
2742 LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2743 true, Consumer, Visited);
2744 }
2745 }
2746
2747 // Traverse the contexts of Objective-C classes.
2748 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2749 // Traverse categories.
2750 for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2751 Category; Category = Category->getNextClassCategory()) {
2752 ShadowContextRAII Shadow(Visited);
2753 LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2754 Consumer, Visited);
2755 }
2756
2757 // Traverse protocols.
2758 for (ObjCInterfaceDecl::all_protocol_iterator
2759 I = IFace->all_referenced_protocol_begin(),
2760 E = IFace->all_referenced_protocol_end(); I != E; ++I) {
2761 ShadowContextRAII Shadow(Visited);
2762 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2763 Visited);
2764 }
2765
2766 // Traverse the superclass.
2767 if (IFace->getSuperClass()) {
2768 ShadowContextRAII Shadow(Visited);
2769 LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2770 true, Consumer, Visited);
2771 }
2772
2773 // If there is an implementation, traverse it. We do this to find
2774 // synthesized ivars.
2775 if (IFace->getImplementation()) {
2776 ShadowContextRAII Shadow(Visited);
2777 LookupVisibleDecls(IFace->getImplementation(), Result,
2778 QualifiedNameLookup, true, Consumer, Visited);
2779 }
2780 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2781 for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2782 E = Protocol->protocol_end(); I != E; ++I) {
2783 ShadowContextRAII Shadow(Visited);
2784 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2785 Visited);
2786 }
2787 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2788 for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2789 E = Category->protocol_end(); I != E; ++I) {
2790 ShadowContextRAII Shadow(Visited);
2791 LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2792 Visited);
2793 }
2794
2795 // If there is an implementation, traverse it.
2796 if (Category->getImplementation()) {
2797 ShadowContextRAII Shadow(Visited);
2798 LookupVisibleDecls(Category->getImplementation(), Result,
2799 QualifiedNameLookup, true, Consumer, Visited);
2800 }
2801 }
2802 }
2803
LookupVisibleDecls(Scope * S,LookupResult & Result,UnqualUsingDirectiveSet & UDirs,VisibleDeclConsumer & Consumer,VisibleDeclsRecord & Visited)2804 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2805 UnqualUsingDirectiveSet &UDirs,
2806 VisibleDeclConsumer &Consumer,
2807 VisibleDeclsRecord &Visited) {
2808 if (!S)
2809 return;
2810
2811 if (!S->getEntity() ||
2812 (!S->getParent() &&
2813 !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
2814 ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2815 // Walk through the declarations in this Scope.
2816 for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2817 D != DEnd; ++D) {
2818 if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2819 if (Result.isAcceptableDecl(ND)) {
2820 Consumer.FoundDecl(ND, Visited.checkHidden(ND), false);
2821 Visited.add(ND);
2822 }
2823 }
2824 }
2825
2826 // FIXME: C++ [temp.local]p8
2827 DeclContext *Entity = 0;
2828 if (S->getEntity()) {
2829 // Look into this scope's declaration context, along with any of its
2830 // parent lookup contexts (e.g., enclosing classes), up to the point
2831 // where we hit the context stored in the next outer scope.
2832 Entity = (DeclContext *)S->getEntity();
2833 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
2834
2835 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
2836 Ctx = Ctx->getLookupParent()) {
2837 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
2838 if (Method->isInstanceMethod()) {
2839 // For instance methods, look for ivars in the method's interface.
2840 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
2841 Result.getNameLoc(), Sema::LookupMemberName);
2842 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
2843 LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
2844 /*InBaseClass=*/false, Consumer, Visited);
2845
2846 // Look for properties from which we can synthesize ivars, if
2847 // permitted.
2848 if (Result.getSema().getLangOptions().ObjCNonFragileABI2 &&
2849 IFace->getImplementation() &&
2850 Result.getLookupKind() == Sema::LookupOrdinaryName) {
2851 for (ObjCInterfaceDecl::prop_iterator
2852 P = IFace->prop_begin(),
2853 PEnd = IFace->prop_end();
2854 P != PEnd; ++P) {
2855 if (Result.getSema().canSynthesizeProvisionalIvar(*P) &&
2856 !IFace->lookupInstanceVariable((*P)->getIdentifier())) {
2857 Consumer.FoundDecl(*P, Visited.checkHidden(*P), false);
2858 Visited.add(*P);
2859 }
2860 }
2861 }
2862 }
2863 }
2864
2865 // We've already performed all of the name lookup that we need
2866 // to for Objective-C methods; the next context will be the
2867 // outer scope.
2868 break;
2869 }
2870
2871 if (Ctx->isFunctionOrMethod())
2872 continue;
2873
2874 LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
2875 /*InBaseClass=*/false, Consumer, Visited);
2876 }
2877 } else if (!S->getParent()) {
2878 // Look into the translation unit scope. We walk through the translation
2879 // unit's declaration context, because the Scope itself won't have all of
2880 // the declarations if we loaded a precompiled header.
2881 // FIXME: We would like the translation unit's Scope object to point to the
2882 // translation unit, so we don't need this special "if" branch. However,
2883 // doing so would force the normal C++ name-lookup code to look into the
2884 // translation unit decl when the IdentifierInfo chains would suffice.
2885 // Once we fix that problem (which is part of a more general "don't look
2886 // in DeclContexts unless we have to" optimization), we can eliminate this.
2887 Entity = Result.getSema().Context.getTranslationUnitDecl();
2888 LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
2889 /*InBaseClass=*/false, Consumer, Visited);
2890 }
2891
2892 if (Entity) {
2893 // Lookup visible declarations in any namespaces found by using
2894 // directives.
2895 UnqualUsingDirectiveSet::const_iterator UI, UEnd;
2896 llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
2897 for (; UI != UEnd; ++UI)
2898 LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
2899 Result, /*QualifiedNameLookup=*/false,
2900 /*InBaseClass=*/false, Consumer, Visited);
2901 }
2902
2903 // Lookup names in the parent scope.
2904 ShadowContextRAII Shadow(Visited);
2905 LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
2906 }
2907
LookupVisibleDecls(Scope * S,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)2908 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
2909 VisibleDeclConsumer &Consumer,
2910 bool IncludeGlobalScope) {
2911 // Determine the set of using directives available during
2912 // unqualified name lookup.
2913 Scope *Initial = S;
2914 UnqualUsingDirectiveSet UDirs;
2915 if (getLangOptions().CPlusPlus) {
2916 // Find the first namespace or translation-unit scope.
2917 while (S && !isNamespaceOrTranslationUnitScope(S))
2918 S = S->getParent();
2919
2920 UDirs.visitScopeChain(Initial, S);
2921 }
2922 UDirs.done();
2923
2924 // Look for visible declarations.
2925 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2926 VisibleDeclsRecord Visited;
2927 if (!IncludeGlobalScope)
2928 Visited.visitedContext(Context.getTranslationUnitDecl());
2929 ShadowContextRAII Shadow(Visited);
2930 ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
2931 }
2932
LookupVisibleDecls(DeclContext * Ctx,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope)2933 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
2934 VisibleDeclConsumer &Consumer,
2935 bool IncludeGlobalScope) {
2936 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2937 VisibleDeclsRecord Visited;
2938 if (!IncludeGlobalScope)
2939 Visited.visitedContext(Context.getTranslationUnitDecl());
2940 ShadowContextRAII Shadow(Visited);
2941 ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
2942 /*InBaseClass=*/false, Consumer, Visited);
2943 }
2944
2945 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
2946 /// If GnuLabelLoc is a valid source location, then this is a definition
2947 /// of an __label__ label name, otherwise it is a normal label definition
2948 /// or use.
LookupOrCreateLabel(IdentifierInfo * II,SourceLocation Loc,SourceLocation GnuLabelLoc)2949 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
2950 SourceLocation GnuLabelLoc) {
2951 // Do a lookup to see if we have a label with this name already.
2952 NamedDecl *Res = 0;
2953
2954 if (GnuLabelLoc.isValid()) {
2955 // Local label definitions always shadow existing labels.
2956 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
2957 Scope *S = CurScope;
2958 PushOnScopeChains(Res, S, true);
2959 return cast<LabelDecl>(Res);
2960 }
2961
2962 // Not a GNU local label.
2963 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
2964 // If we found a label, check to see if it is in the same context as us.
2965 // When in a Block, we don't want to reuse a label in an enclosing function.
2966 if (Res && Res->getDeclContext() != CurContext)
2967 Res = 0;
2968 if (Res == 0) {
2969 // If not forward referenced or defined already, create the backing decl.
2970 Res = LabelDecl::Create(Context, CurContext, Loc, II);
2971 Scope *S = CurScope->getFnParent();
2972 assert(S && "Not in a function?");
2973 PushOnScopeChains(Res, S, true);
2974 }
2975 return cast<LabelDecl>(Res);
2976 }
2977
2978 //===----------------------------------------------------------------------===//
2979 // Typo correction
2980 //===----------------------------------------------------------------------===//
2981
2982 namespace {
2983
2984 typedef llvm::StringMap<TypoCorrection, llvm::BumpPtrAllocator> TypoResultsMap;
2985 typedef std::map<unsigned, TypoResultsMap *> TypoEditDistanceMap;
2986
2987 static const unsigned MaxTypoDistanceResultSets = 5;
2988
2989 class TypoCorrectionConsumer : public VisibleDeclConsumer {
2990 /// \brief The name written that is a typo in the source.
2991 llvm::StringRef Typo;
2992
2993 /// \brief The results found that have the smallest edit distance
2994 /// found (so far) with the typo name.
2995 ///
2996 /// The pointer value being set to the current DeclContext indicates
2997 /// whether there is a keyword with this name.
2998 TypoEditDistanceMap BestResults;
2999
3000 /// \brief The worst of the best N edit distances found so far.
3001 unsigned MaxEditDistance;
3002
3003 Sema &SemaRef;
3004
3005 public:
TypoCorrectionConsumer(Sema & SemaRef,IdentifierInfo * Typo)3006 explicit TypoCorrectionConsumer(Sema &SemaRef, IdentifierInfo *Typo)
3007 : Typo(Typo->getName()),
3008 MaxEditDistance((std::numeric_limits<unsigned>::max)()),
3009 SemaRef(SemaRef) { }
3010
~TypoCorrectionConsumer()3011 ~TypoCorrectionConsumer() {
3012 for (TypoEditDistanceMap::iterator I = BestResults.begin(),
3013 IEnd = BestResults.end();
3014 I != IEnd;
3015 ++I)
3016 delete I->second;
3017 }
3018
3019 virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass);
3020 void FoundName(llvm::StringRef Name);
3021 void addKeywordResult(llvm::StringRef Keyword);
3022 void addName(llvm::StringRef Name, NamedDecl *ND, unsigned Distance,
3023 NestedNameSpecifier *NNS=NULL);
3024 void addCorrection(TypoCorrection Correction);
3025
3026 typedef TypoResultsMap::iterator result_iterator;
3027 typedef TypoEditDistanceMap::iterator distance_iterator;
begin()3028 distance_iterator begin() { return BestResults.begin(); }
end()3029 distance_iterator end() { return BestResults.end(); }
erase(distance_iterator I)3030 void erase(distance_iterator I) { BestResults.erase(I); }
size() const3031 unsigned size() const { return BestResults.size(); }
empty() const3032 bool empty() const { return BestResults.empty(); }
3033
operator [](llvm::StringRef Name)3034 TypoCorrection &operator[](llvm::StringRef Name) {
3035 return (*BestResults.begin()->second)[Name];
3036 }
3037
getMaxEditDistance() const3038 unsigned getMaxEditDistance() const {
3039 return MaxEditDistance;
3040 }
3041
getBestEditDistance()3042 unsigned getBestEditDistance() {
3043 return (BestResults.empty()) ? MaxEditDistance : BestResults.begin()->first;
3044 }
3045 };
3046
3047 }
3048
FoundDecl(NamedDecl * ND,NamedDecl * Hiding,bool InBaseClass)3049 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3050 bool InBaseClass) {
3051 // Don't consider hidden names for typo correction.
3052 if (Hiding)
3053 return;
3054
3055 // Only consider entities with identifiers for names, ignoring
3056 // special names (constructors, overloaded operators, selectors,
3057 // etc.).
3058 IdentifierInfo *Name = ND->getIdentifier();
3059 if (!Name)
3060 return;
3061
3062 FoundName(Name->getName());
3063 }
3064
FoundName(llvm::StringRef Name)3065 void TypoCorrectionConsumer::FoundName(llvm::StringRef Name) {
3066 // Use a simple length-based heuristic to determine the minimum possible
3067 // edit distance. If the minimum isn't good enough, bail out early.
3068 unsigned MinED = abs((int)Name.size() - (int)Typo.size());
3069 if (MinED > MaxEditDistance || (MinED && Typo.size() / MinED < 3))
3070 return;
3071
3072 // Compute an upper bound on the allowable edit distance, so that the
3073 // edit-distance algorithm can short-circuit.
3074 unsigned UpperBound =
3075 std::min(unsigned((Typo.size() + 2) / 3), MaxEditDistance);
3076
3077 // Compute the edit distance between the typo and the name of this
3078 // entity. If this edit distance is not worse than the best edit
3079 // distance we've seen so far, add it to the list of results.
3080 unsigned ED = Typo.edit_distance(Name, true, UpperBound);
3081
3082 if (ED > MaxEditDistance) {
3083 // This result is worse than the best results we've seen so far;
3084 // ignore it.
3085 return;
3086 }
3087
3088 addName(Name, NULL, ED);
3089 }
3090
addKeywordResult(llvm::StringRef Keyword)3091 void TypoCorrectionConsumer::addKeywordResult(llvm::StringRef Keyword) {
3092 // Compute the edit distance between the typo and this keyword.
3093 // If this edit distance is not worse than the best edit
3094 // distance we've seen so far, add it to the list of results.
3095 unsigned ED = Typo.edit_distance(Keyword);
3096 if (ED > MaxEditDistance) {
3097 // This result is worse than the best results we've seen so far;
3098 // ignore it.
3099 return;
3100 }
3101
3102 addName(Keyword, TypoCorrection::KeywordDecl(), ED);
3103 }
3104
addName(llvm::StringRef Name,NamedDecl * ND,unsigned Distance,NestedNameSpecifier * NNS)3105 void TypoCorrectionConsumer::addName(llvm::StringRef Name,
3106 NamedDecl *ND,
3107 unsigned Distance,
3108 NestedNameSpecifier *NNS) {
3109 addCorrection(TypoCorrection(&SemaRef.Context.Idents.get(Name),
3110 ND, NNS, Distance));
3111 }
3112
addCorrection(TypoCorrection Correction)3113 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3114 llvm::StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3115 TypoResultsMap *& Map = BestResults[Correction.getEditDistance()];
3116 if (!Map)
3117 Map = new TypoResultsMap;
3118
3119 TypoCorrection &CurrentCorrection = (*Map)[Name];
3120 if (!CurrentCorrection ||
3121 // FIXME: The following should be rolled up into an operator< on
3122 // TypoCorrection with a more principled definition.
3123 CurrentCorrection.isKeyword() < Correction.isKeyword() ||
3124 Correction.getAsString(SemaRef.getLangOptions()) <
3125 CurrentCorrection.getAsString(SemaRef.getLangOptions()))
3126 CurrentCorrection = Correction;
3127
3128 while (BestResults.size() > MaxTypoDistanceResultSets) {
3129 TypoEditDistanceMap::iterator Last = BestResults.end();
3130 --Last;
3131 delete Last->second;
3132 BestResults.erase(Last);
3133 }
3134 }
3135
3136 namespace {
3137
3138 class SpecifierInfo {
3139 public:
3140 DeclContext* DeclCtx;
3141 NestedNameSpecifier* NameSpecifier;
3142 unsigned EditDistance;
3143
SpecifierInfo(DeclContext * Ctx,NestedNameSpecifier * NNS,unsigned ED)3144 SpecifierInfo(DeclContext *Ctx, NestedNameSpecifier *NNS, unsigned ED)
3145 : DeclCtx(Ctx), NameSpecifier(NNS), EditDistance(ED) {}
3146 };
3147
3148 typedef llvm::SmallVector<DeclContext*, 4> DeclContextList;
3149 typedef llvm::SmallVector<SpecifierInfo, 16> SpecifierInfoList;
3150
3151 class NamespaceSpecifierSet {
3152 ASTContext &Context;
3153 DeclContextList CurContextChain;
3154 bool isSorted;
3155
3156 SpecifierInfoList Specifiers;
3157 llvm::SmallSetVector<unsigned, 4> Distances;
3158 llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap;
3159
3160 /// \brief Helper for building the list of DeclContexts between the current
3161 /// context and the top of the translation unit
3162 static DeclContextList BuildContextChain(DeclContext *Start);
3163
3164 void SortNamespaces();
3165
3166 public:
NamespaceSpecifierSet(ASTContext & Context,DeclContext * CurContext)3167 explicit NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext)
3168 : Context(Context), CurContextChain(BuildContextChain(CurContext)),
3169 isSorted(true) {}
3170
3171 /// \brief Add the namespace to the set, computing the corresponding
3172 /// NestedNameSpecifier and its distance in the process.
3173 void AddNamespace(NamespaceDecl *ND);
3174
3175 typedef SpecifierInfoList::iterator iterator;
begin()3176 iterator begin() {
3177 if (!isSorted) SortNamespaces();
3178 return Specifiers.begin();
3179 }
end()3180 iterator end() { return Specifiers.end(); }
3181 };
3182
3183 }
3184
BuildContextChain(DeclContext * Start)3185 DeclContextList NamespaceSpecifierSet::BuildContextChain(DeclContext *Start) {
3186 assert(Start && "Bulding a context chain from a null context");
3187 DeclContextList Chain;
3188 for (DeclContext *DC = Start->getPrimaryContext(); DC != NULL;
3189 DC = DC->getLookupParent()) {
3190 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
3191 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
3192 !(ND && ND->isAnonymousNamespace()))
3193 Chain.push_back(DC->getPrimaryContext());
3194 }
3195 return Chain;
3196 }
3197
SortNamespaces()3198 void NamespaceSpecifierSet::SortNamespaces() {
3199 llvm::SmallVector<unsigned, 4> sortedDistances;
3200 sortedDistances.append(Distances.begin(), Distances.end());
3201
3202 if (sortedDistances.size() > 1)
3203 std::sort(sortedDistances.begin(), sortedDistances.end());
3204
3205 Specifiers.clear();
3206 for (llvm::SmallVector<unsigned, 4>::iterator DI = sortedDistances.begin(),
3207 DIEnd = sortedDistances.end();
3208 DI != DIEnd; ++DI) {
3209 SpecifierInfoList &SpecList = DistanceMap[*DI];
3210 Specifiers.append(SpecList.begin(), SpecList.end());
3211 }
3212
3213 isSorted = true;
3214 }
3215
AddNamespace(NamespaceDecl * ND)3216 void NamespaceSpecifierSet::AddNamespace(NamespaceDecl *ND) {
3217 DeclContext *Ctx = cast<DeclContext>(ND);
3218 NestedNameSpecifier *NNS = NULL;
3219 unsigned NumSpecifiers = 0;
3220 DeclContextList NamespaceDeclChain(BuildContextChain(Ctx));
3221
3222 // Eliminate common elements from the two DeclContext chains
3223 for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3224 CEnd = CurContextChain.rend();
3225 C != CEnd && !NamespaceDeclChain.empty() &&
3226 NamespaceDeclChain.back() == *C; ++C) {
3227 NamespaceDeclChain.pop_back();
3228 }
3229
3230 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
3231 for (DeclContextList::reverse_iterator C = NamespaceDeclChain.rbegin(),
3232 CEnd = NamespaceDeclChain.rend();
3233 C != CEnd; ++C) {
3234 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C);
3235 if (ND) {
3236 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
3237 ++NumSpecifiers;
3238 }
3239 }
3240
3241 isSorted = false;
3242 Distances.insert(NumSpecifiers);
3243 DistanceMap[NumSpecifiers].push_back(SpecifierInfo(Ctx, NNS, NumSpecifiers));
3244 }
3245
3246 /// \brief Perform name lookup for a possible result for typo correction.
LookupPotentialTypoResult(Sema & SemaRef,LookupResult & Res,IdentifierInfo * Name,Scope * S,CXXScopeSpec * SS,DeclContext * MemberContext,bool EnteringContext,Sema::CorrectTypoContext CTC)3247 static void LookupPotentialTypoResult(Sema &SemaRef,
3248 LookupResult &Res,
3249 IdentifierInfo *Name,
3250 Scope *S, CXXScopeSpec *SS,
3251 DeclContext *MemberContext,
3252 bool EnteringContext,
3253 Sema::CorrectTypoContext CTC) {
3254 Res.suppressDiagnostics();
3255 Res.clear();
3256 Res.setLookupName(Name);
3257 if (MemberContext) {
3258 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
3259 if (CTC == Sema::CTC_ObjCIvarLookup) {
3260 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
3261 Res.addDecl(Ivar);
3262 Res.resolveKind();
3263 return;
3264 }
3265 }
3266
3267 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
3268 Res.addDecl(Prop);
3269 Res.resolveKind();
3270 return;
3271 }
3272 }
3273
3274 SemaRef.LookupQualifiedName(Res, MemberContext);
3275 return;
3276 }
3277
3278 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3279 EnteringContext);
3280
3281 // Fake ivar lookup; this should really be part of
3282 // LookupParsedName.
3283 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
3284 if (Method->isInstanceMethod() && Method->getClassInterface() &&
3285 (Res.empty() ||
3286 (Res.isSingleResult() &&
3287 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
3288 if (ObjCIvarDecl *IV
3289 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
3290 Res.addDecl(IV);
3291 Res.resolveKind();
3292 }
3293 }
3294 }
3295 }
3296
3297 /// \brief Add keywords to the consumer as possible typo corrections.
AddKeywordsToConsumer(Sema & SemaRef,TypoCorrectionConsumer & Consumer,Scope * S,Sema::CorrectTypoContext CTC)3298 static void AddKeywordsToConsumer(Sema &SemaRef,
3299 TypoCorrectionConsumer &Consumer,
3300 Scope *S, Sema::CorrectTypoContext CTC) {
3301 // Add context-dependent keywords.
3302 bool WantTypeSpecifiers = false;
3303 bool WantExpressionKeywords = false;
3304 bool WantCXXNamedCasts = false;
3305 bool WantRemainingKeywords = false;
3306 switch (CTC) {
3307 case Sema::CTC_Unknown:
3308 WantTypeSpecifiers = true;
3309 WantExpressionKeywords = true;
3310 WantCXXNamedCasts = true;
3311 WantRemainingKeywords = true;
3312
3313 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl())
3314 if (Method->getClassInterface() &&
3315 Method->getClassInterface()->getSuperClass())
3316 Consumer.addKeywordResult("super");
3317
3318 break;
3319
3320 case Sema::CTC_NoKeywords:
3321 break;
3322
3323 case Sema::CTC_Type:
3324 WantTypeSpecifiers = true;
3325 break;
3326
3327 case Sema::CTC_ObjCMessageReceiver:
3328 Consumer.addKeywordResult("super");
3329 // Fall through to handle message receivers like expressions.
3330
3331 case Sema::CTC_Expression:
3332 if (SemaRef.getLangOptions().CPlusPlus)
3333 WantTypeSpecifiers = true;
3334 WantExpressionKeywords = true;
3335 // Fall through to get C++ named casts.
3336
3337 case Sema::CTC_CXXCasts:
3338 WantCXXNamedCasts = true;
3339 break;
3340
3341 case Sema::CTC_ObjCPropertyLookup:
3342 // FIXME: Add "isa"?
3343 break;
3344
3345 case Sema::CTC_MemberLookup:
3346 if (SemaRef.getLangOptions().CPlusPlus)
3347 Consumer.addKeywordResult("template");
3348 break;
3349
3350 case Sema::CTC_ObjCIvarLookup:
3351 break;
3352 }
3353
3354 if (WantTypeSpecifiers) {
3355 // Add type-specifier keywords to the set of results.
3356 const char *CTypeSpecs[] = {
3357 "char", "const", "double", "enum", "float", "int", "long", "short",
3358 "signed", "struct", "union", "unsigned", "void", "volatile",
3359 "_Complex", "_Imaginary",
3360 // storage-specifiers as well
3361 "extern", "inline", "static", "typedef"
3362 };
3363
3364 const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
3365 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3366 Consumer.addKeywordResult(CTypeSpecs[I]);
3367
3368 if (SemaRef.getLangOptions().C99)
3369 Consumer.addKeywordResult("restrict");
3370 if (SemaRef.getLangOptions().Bool || SemaRef.getLangOptions().CPlusPlus)
3371 Consumer.addKeywordResult("bool");
3372 else if (SemaRef.getLangOptions().C99)
3373 Consumer.addKeywordResult("_Bool");
3374
3375 if (SemaRef.getLangOptions().CPlusPlus) {
3376 Consumer.addKeywordResult("class");
3377 Consumer.addKeywordResult("typename");
3378 Consumer.addKeywordResult("wchar_t");
3379
3380 if (SemaRef.getLangOptions().CPlusPlus0x) {
3381 Consumer.addKeywordResult("char16_t");
3382 Consumer.addKeywordResult("char32_t");
3383 Consumer.addKeywordResult("constexpr");
3384 Consumer.addKeywordResult("decltype");
3385 Consumer.addKeywordResult("thread_local");
3386 }
3387 }
3388
3389 if (SemaRef.getLangOptions().GNUMode)
3390 Consumer.addKeywordResult("typeof");
3391 }
3392
3393 if (WantCXXNamedCasts && SemaRef.getLangOptions().CPlusPlus) {
3394 Consumer.addKeywordResult("const_cast");
3395 Consumer.addKeywordResult("dynamic_cast");
3396 Consumer.addKeywordResult("reinterpret_cast");
3397 Consumer.addKeywordResult("static_cast");
3398 }
3399
3400 if (WantExpressionKeywords) {
3401 Consumer.addKeywordResult("sizeof");
3402 if (SemaRef.getLangOptions().Bool || SemaRef.getLangOptions().CPlusPlus) {
3403 Consumer.addKeywordResult("false");
3404 Consumer.addKeywordResult("true");
3405 }
3406
3407 if (SemaRef.getLangOptions().CPlusPlus) {
3408 const char *CXXExprs[] = {
3409 "delete", "new", "operator", "throw", "typeid"
3410 };
3411 const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
3412 for (unsigned I = 0; I != NumCXXExprs; ++I)
3413 Consumer.addKeywordResult(CXXExprs[I]);
3414
3415 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
3416 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
3417 Consumer.addKeywordResult("this");
3418
3419 if (SemaRef.getLangOptions().CPlusPlus0x) {
3420 Consumer.addKeywordResult("alignof");
3421 Consumer.addKeywordResult("nullptr");
3422 }
3423 }
3424 }
3425
3426 if (WantRemainingKeywords) {
3427 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
3428 // Statements.
3429 const char *CStmts[] = {
3430 "do", "else", "for", "goto", "if", "return", "switch", "while" };
3431 const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
3432 for (unsigned I = 0; I != NumCStmts; ++I)
3433 Consumer.addKeywordResult(CStmts[I]);
3434
3435 if (SemaRef.getLangOptions().CPlusPlus) {
3436 Consumer.addKeywordResult("catch");
3437 Consumer.addKeywordResult("try");
3438 }
3439
3440 if (S && S->getBreakParent())
3441 Consumer.addKeywordResult("break");
3442
3443 if (S && S->getContinueParent())
3444 Consumer.addKeywordResult("continue");
3445
3446 if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
3447 Consumer.addKeywordResult("case");
3448 Consumer.addKeywordResult("default");
3449 }
3450 } else {
3451 if (SemaRef.getLangOptions().CPlusPlus) {
3452 Consumer.addKeywordResult("namespace");
3453 Consumer.addKeywordResult("template");
3454 }
3455
3456 if (S && S->isClassScope()) {
3457 Consumer.addKeywordResult("explicit");
3458 Consumer.addKeywordResult("friend");
3459 Consumer.addKeywordResult("mutable");
3460 Consumer.addKeywordResult("private");
3461 Consumer.addKeywordResult("protected");
3462 Consumer.addKeywordResult("public");
3463 Consumer.addKeywordResult("virtual");
3464 }
3465 }
3466
3467 if (SemaRef.getLangOptions().CPlusPlus) {
3468 Consumer.addKeywordResult("using");
3469
3470 if (SemaRef.getLangOptions().CPlusPlus0x)
3471 Consumer.addKeywordResult("static_assert");
3472 }
3473 }
3474 }
3475
3476 /// \brief Try to "correct" a typo in the source code by finding
3477 /// visible declarations whose names are similar to the name that was
3478 /// present in the source code.
3479 ///
3480 /// \param TypoName the \c DeclarationNameInfo structure that contains
3481 /// the name that was present in the source code along with its location.
3482 ///
3483 /// \param LookupKind the name-lookup criteria used to search for the name.
3484 ///
3485 /// \param S the scope in which name lookup occurs.
3486 ///
3487 /// \param SS the nested-name-specifier that precedes the name we're
3488 /// looking for, if present.
3489 ///
3490 /// \param MemberContext if non-NULL, the context in which to look for
3491 /// a member access expression.
3492 ///
3493 /// \param EnteringContext whether we're entering the context described by
3494 /// the nested-name-specifier SS.
3495 ///
3496 /// \param CTC The context in which typo correction occurs, which impacts the
3497 /// set of keywords permitted.
3498 ///
3499 /// \param OPT when non-NULL, the search for visible declarations will
3500 /// also walk the protocols in the qualified interfaces of \p OPT.
3501 ///
3502 /// \returns a \c TypoCorrection containing the corrected name if the typo
3503 /// along with information such as the \c NamedDecl where the corrected name
3504 /// was declared, and any additional \c NestedNameSpecifier needed to access
3505 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
CorrectTypo(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,DeclContext * MemberContext,bool EnteringContext,CorrectTypoContext CTC,const ObjCObjectPointerType * OPT)3506 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
3507 Sema::LookupNameKind LookupKind,
3508 Scope *S, CXXScopeSpec *SS,
3509 DeclContext *MemberContext,
3510 bool EnteringContext,
3511 CorrectTypoContext CTC,
3512 const ObjCObjectPointerType *OPT) {
3513 if (Diags.hasFatalErrorOccurred() || !getLangOptions().SpellChecking)
3514 return TypoCorrection();
3515
3516 // We only attempt to correct typos for identifiers.
3517 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
3518 if (!Typo)
3519 return TypoCorrection();
3520
3521 // If the scope specifier itself was invalid, don't try to correct
3522 // typos.
3523 if (SS && SS->isInvalid())
3524 return TypoCorrection();
3525
3526 // Never try to correct typos during template deduction or
3527 // instantiation.
3528 if (!ActiveTemplateInstantiations.empty())
3529 return TypoCorrection();
3530
3531 NamespaceSpecifierSet Namespaces(Context, CurContext);
3532
3533 TypoCorrectionConsumer Consumer(*this, Typo);
3534
3535 // Perform name lookup to find visible, similarly-named entities.
3536 bool IsUnqualifiedLookup = false;
3537 if (MemberContext) {
3538 LookupVisibleDecls(MemberContext, LookupKind, Consumer);
3539
3540 // Look in qualified interfaces.
3541 if (OPT) {
3542 for (ObjCObjectPointerType::qual_iterator
3543 I = OPT->qual_begin(), E = OPT->qual_end();
3544 I != E; ++I)
3545 LookupVisibleDecls(*I, LookupKind, Consumer);
3546 }
3547 } else if (SS && SS->isSet()) {
3548 DeclContext *DC = computeDeclContext(*SS, EnteringContext);
3549 if (!DC)
3550 return TypoCorrection();
3551
3552 // Provide a stop gap for files that are just seriously broken. Trying
3553 // to correct all typos can turn into a HUGE performance penalty, causing
3554 // some files to take minutes to get rejected by the parser.
3555 if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3556 return TypoCorrection();
3557 ++TyposCorrected;
3558
3559 LookupVisibleDecls(DC, LookupKind, Consumer);
3560 } else {
3561 IsUnqualifiedLookup = true;
3562 UnqualifiedTyposCorrectedMap::iterator Cached
3563 = UnqualifiedTyposCorrected.find(Typo);
3564 if (Cached == UnqualifiedTyposCorrected.end()) {
3565 // Provide a stop gap for files that are just seriously broken. Trying
3566 // to correct all typos can turn into a HUGE performance penalty, causing
3567 // some files to take minutes to get rejected by the parser.
3568 if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3569 return TypoCorrection();
3570
3571 // For unqualified lookup, look through all of the names that we have
3572 // seen in this translation unit.
3573 for (IdentifierTable::iterator I = Context.Idents.begin(),
3574 IEnd = Context.Idents.end();
3575 I != IEnd; ++I)
3576 Consumer.FoundName(I->getKey());
3577
3578 // Walk through identifiers in external identifier sources.
3579 if (IdentifierInfoLookup *External
3580 = Context.Idents.getExternalIdentifierLookup()) {
3581 llvm::OwningPtr<IdentifierIterator> Iter(External->getIdentifiers());
3582 do {
3583 llvm::StringRef Name = Iter->Next();
3584 if (Name.empty())
3585 break;
3586
3587 Consumer.FoundName(Name);
3588 } while (true);
3589 }
3590 } else {
3591 // Use the cached value, unless it's a keyword. In the keyword case, we'll
3592 // end up adding the keyword below.
3593 if (!Cached->second)
3594 return TypoCorrection();
3595
3596 if (!Cached->second.isKeyword())
3597 Consumer.addCorrection(Cached->second);
3598 }
3599 }
3600
3601 AddKeywordsToConsumer(*this, Consumer, S, CTC);
3602
3603 // If we haven't found anything, we're done.
3604 if (Consumer.empty()) {
3605 // If this was an unqualified lookup, note that no correction was found.
3606 if (IsUnqualifiedLookup)
3607 (void)UnqualifiedTyposCorrected[Typo];
3608
3609 return TypoCorrection();
3610 }
3611
3612 // Make sure that the user typed at least 3 characters for each correction
3613 // made. Otherwise, we don't even both looking at the results.
3614 unsigned ED = Consumer.getBestEditDistance();
3615 if (ED > 0 && Typo->getName().size() / ED < 3) {
3616 // If this was an unqualified lookup, note that no correction was found.
3617 if (IsUnqualifiedLookup)
3618 (void)UnqualifiedTyposCorrected[Typo];
3619
3620 return TypoCorrection();
3621 }
3622
3623 // Build the NestedNameSpecifiers for the KnownNamespaces
3624 if (getLangOptions().CPlusPlus) {
3625 // Load any externally-known namespaces.
3626 if (ExternalSource && !LoadedExternalKnownNamespaces) {
3627 llvm::SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
3628 LoadedExternalKnownNamespaces = true;
3629 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
3630 for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I)
3631 KnownNamespaces[ExternalKnownNamespaces[I]] = true;
3632 }
3633
3634 for (llvm::DenseMap<NamespaceDecl*, bool>::iterator
3635 KNI = KnownNamespaces.begin(),
3636 KNIEnd = KnownNamespaces.end();
3637 KNI != KNIEnd; ++KNI)
3638 Namespaces.AddNamespace(KNI->first);
3639 }
3640
3641 // Weed out any names that could not be found by name lookup.
3642 llvm::SmallPtrSet<IdentifierInfo*, 16> QualifiedResults;
3643 LookupResult TmpRes(*this, TypoName, LookupKind);
3644 TmpRes.suppressDiagnostics();
3645 while (!Consumer.empty()) {
3646 TypoCorrectionConsumer::distance_iterator DI = Consumer.begin();
3647 unsigned ED = DI->first;
3648 for (TypoCorrectionConsumer::result_iterator I = DI->second->begin(),
3649 IEnd = DI->second->end();
3650 I != IEnd; /* Increment in loop. */) {
3651 // If the item already has been looked up or is a keyword, keep it
3652 if (I->second.isResolved()) {
3653 ++I;
3654 continue;
3655 }
3656
3657 // Perform name lookup on this name.
3658 IdentifierInfo *Name = I->second.getCorrectionAsIdentifierInfo();
3659 LookupPotentialTypoResult(*this, TmpRes, Name, S, SS, MemberContext,
3660 EnteringContext, CTC);
3661
3662 switch (TmpRes.getResultKind()) {
3663 case LookupResult::NotFound:
3664 case LookupResult::NotFoundInCurrentInstantiation:
3665 QualifiedResults.insert(Name);
3666 // We didn't find this name in our scope, or didn't like what we found;
3667 // ignore it.
3668 {
3669 TypoCorrectionConsumer::result_iterator Next = I;
3670 ++Next;
3671 DI->second->erase(I);
3672 I = Next;
3673 }
3674 break;
3675
3676 case LookupResult::Ambiguous:
3677 // We don't deal with ambiguities.
3678 return TypoCorrection();
3679
3680 case LookupResult::Found:
3681 case LookupResult::FoundOverloaded:
3682 case LookupResult::FoundUnresolvedValue:
3683 I->second.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
3684 // FIXME: This sets the CorrectionDecl to NULL for overloaded functions.
3685 // It would be nice to find the right one with overload resolution.
3686 ++I;
3687 break;
3688 }
3689 }
3690
3691 if (DI->second->empty())
3692 Consumer.erase(DI);
3693 else if (!getLangOptions().CPlusPlus || QualifiedResults.empty() || !ED)
3694 // If there are results in the closest possible bucket, stop
3695 break;
3696
3697 // Only perform the qualified lookups for C++
3698 if (getLangOptions().CPlusPlus) {
3699 TmpRes.suppressDiagnostics();
3700 for (llvm::SmallPtrSet<IdentifierInfo*,
3701 16>::iterator QRI = QualifiedResults.begin(),
3702 QRIEnd = QualifiedResults.end();
3703 QRI != QRIEnd; ++QRI) {
3704 for (NamespaceSpecifierSet::iterator NI = Namespaces.begin(),
3705 NIEnd = Namespaces.end();
3706 NI != NIEnd; ++NI) {
3707 DeclContext *Ctx = NI->DeclCtx;
3708 unsigned QualifiedED = ED + NI->EditDistance;
3709
3710 // Stop searching once the namespaces are too far away to create
3711 // acceptable corrections for this identifier (since the namespaces
3712 // are sorted in ascending order by edit distance)
3713 if (QualifiedED > Consumer.getMaxEditDistance()) break;
3714
3715 TmpRes.clear();
3716 TmpRes.setLookupName(*QRI);
3717 if (!LookupQualifiedName(TmpRes, Ctx)) continue;
3718
3719 switch (TmpRes.getResultKind()) {
3720 case LookupResult::Found:
3721 case LookupResult::FoundOverloaded:
3722 case LookupResult::FoundUnresolvedValue:
3723 Consumer.addName((*QRI)->getName(), TmpRes.getAsSingle<NamedDecl>(),
3724 QualifiedED, NI->NameSpecifier);
3725 break;
3726 case LookupResult::NotFound:
3727 case LookupResult::NotFoundInCurrentInstantiation:
3728 case LookupResult::Ambiguous:
3729 break;
3730 }
3731 }
3732 }
3733 }
3734
3735 QualifiedResults.clear();
3736 }
3737
3738 // No corrections remain...
3739 if (Consumer.empty()) return TypoCorrection();
3740
3741 TypoResultsMap &BestResults = *Consumer.begin()->second;
3742 ED = Consumer.begin()->first;
3743
3744 if (ED > 0 && Typo->getName().size() / ED < 3) {
3745 // If this was an unqualified lookup, note that no correction was found.
3746 if (IsUnqualifiedLookup)
3747 (void)UnqualifiedTyposCorrected[Typo];
3748
3749 return TypoCorrection();
3750 }
3751
3752 // If we have multiple possible corrections, eliminate the ones where we
3753 // added namespace qualifiers to try to resolve the ambiguity (and to favor
3754 // corrections without additional namespace qualifiers)
3755 if (getLangOptions().CPlusPlus && BestResults.size() > 1) {
3756 TypoCorrectionConsumer::distance_iterator DI = Consumer.begin();
3757 for (TypoCorrectionConsumer::result_iterator I = DI->second->begin(),
3758 IEnd = DI->second->end();
3759 I != IEnd; /* Increment in loop. */) {
3760 if (I->second.getCorrectionSpecifier() != NULL) {
3761 TypoCorrectionConsumer::result_iterator Cur = I;
3762 ++I;
3763 DI->second->erase(Cur);
3764 } else ++I;
3765 }
3766 }
3767
3768 // If only a single name remains, return that result.
3769 if (BestResults.size() == 1) {
3770 const llvm::StringMapEntry<TypoCorrection> &Correction = *(BestResults.begin());
3771 const TypoCorrection &Result = Correction.second;
3772
3773 // Don't correct to a keyword that's the same as the typo; the keyword
3774 // wasn't actually in scope.
3775 if (ED == 0 && Result.isKeyword()) return TypoCorrection();
3776
3777 // Record the correction for unqualified lookup.
3778 if (IsUnqualifiedLookup)
3779 UnqualifiedTyposCorrected[Typo] = Result;
3780
3781 return Result;
3782 }
3783 else if (BestResults.size() > 1 && CTC == CTC_ObjCMessageReceiver
3784 && BestResults["super"].isKeyword()) {
3785 // Prefer 'super' when we're completing in a message-receiver
3786 // context.
3787
3788 // Don't correct to a keyword that's the same as the typo; the keyword
3789 // wasn't actually in scope.
3790 if (ED == 0) return TypoCorrection();
3791
3792 // Record the correction for unqualified lookup.
3793 if (IsUnqualifiedLookup)
3794 UnqualifiedTyposCorrected[Typo] = BestResults["super"];
3795
3796 return BestResults["super"];
3797 }
3798
3799 if (IsUnqualifiedLookup)
3800 (void)UnqualifiedTyposCorrected[Typo];
3801
3802 return TypoCorrection();
3803 }
3804
getAsString(const LangOptions & LO) const3805 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
3806 if (CorrectionNameSpec) {
3807 std::string tmpBuffer;
3808 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
3809 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
3810 return PrefixOStream.str() + CorrectionName.getAsString();
3811 }
3812
3813 return CorrectionName.getAsString();
3814 }
3815