• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef X86INSTRUCTIONINFO_H
15 #define X86INSTRUCTIONINFO_H
16 
17 #include "llvm/Target/TargetInstrInfo.h"
18 #include "X86.h"
19 #include "X86RegisterInfo.h"
20 #include "llvm/ADT/DenseMap.h"
21 
22 #define GET_INSTRINFO_HEADER
23 #include "X86GenInstrInfo.inc"
24 
25 namespace llvm {
26   class X86RegisterInfo;
27   class X86TargetMachine;
28 
29 namespace X86 {
30   // Enums for memory operand decoding.  Each memory operand is represented with
31   // a 5 operand sequence in the form:
32   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
33   // These enums help decode this.
34   enum {
35     AddrBaseReg = 0,
36     AddrScaleAmt = 1,
37     AddrIndexReg = 2,
38     AddrDisp = 3,
39 
40     /// AddrSegmentReg - The operand # of the segment in the memory operand.
41     AddrSegmentReg = 4,
42 
43     /// AddrNumOperands - Total number of operands in a memory reference.
44     AddrNumOperands = 5
45   };
46 
47 
48   // X86 specific condition code. These correspond to X86_*_COND in
49   // X86InstrInfo.td. They must be kept in synch.
50   enum CondCode {
51     COND_A  = 0,
52     COND_AE = 1,
53     COND_B  = 2,
54     COND_BE = 3,
55     COND_E  = 4,
56     COND_G  = 5,
57     COND_GE = 6,
58     COND_L  = 7,
59     COND_LE = 8,
60     COND_NE = 9,
61     COND_NO = 10,
62     COND_NP = 11,
63     COND_NS = 12,
64     COND_O  = 13,
65     COND_P  = 14,
66     COND_S  = 15,
67 
68     // Artificial condition codes. These are used by AnalyzeBranch
69     // to indicate a block terminated with two conditional branches to
70     // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
71     // which can't be represented on x86 with a single condition. These
72     // are never used in MachineInstrs.
73     COND_NE_OR_P,
74     COND_NP_OR_E,
75 
76     COND_INVALID
77   };
78 
79   // Turn condition code into conditional branch opcode.
80   unsigned GetCondBranchFromCond(CondCode CC);
81 
82   /// GetOppositeBranchCondition - Return the inverse of the specified cond,
83   /// e.g. turning COND_E to COND_NE.
84   CondCode GetOppositeBranchCondition(X86::CondCode CC);
85 
86 }
87 
88 /// X86II - This namespace holds all of the target specific flags that
89 /// instruction info tracks.
90 ///
91 namespace X86II {
92   /// Target Operand Flag enum.
93   enum TOF {
94     //===------------------------------------------------------------------===//
95     // X86 Specific MachineOperand flags.
96 
97     MO_NO_FLAG,
98 
99     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
100     /// relocation of:
101     ///    SYMBOL_LABEL + [. - PICBASELABEL]
102     MO_GOT_ABSOLUTE_ADDRESS,
103 
104     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
105     /// immediate should get the value of the symbol minus the PIC base label:
106     ///    SYMBOL_LABEL - PICBASELABEL
107     MO_PIC_BASE_OFFSET,
108 
109     /// MO_GOT - On a symbol operand this indicates that the immediate is the
110     /// offset to the GOT entry for the symbol name from the base of the GOT.
111     ///
112     /// See the X86-64 ELF ABI supplement for more details.
113     ///    SYMBOL_LABEL @GOT
114     MO_GOT,
115 
116     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
117     /// the offset to the location of the symbol name from the base of the GOT.
118     ///
119     /// See the X86-64 ELF ABI supplement for more details.
120     ///    SYMBOL_LABEL @GOTOFF
121     MO_GOTOFF,
122 
123     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
124     /// offset to the GOT entry for the symbol name from the current code
125     /// location.
126     ///
127     /// See the X86-64 ELF ABI supplement for more details.
128     ///    SYMBOL_LABEL @GOTPCREL
129     MO_GOTPCREL,
130 
131     /// MO_PLT - On a symbol operand this indicates that the immediate is
132     /// offset to the PLT entry of symbol name from the current code location.
133     ///
134     /// See the X86-64 ELF ABI supplement for more details.
135     ///    SYMBOL_LABEL @PLT
136     MO_PLT,
137 
138     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
139     /// some TLS offset.
140     ///
141     /// See 'ELF Handling for Thread-Local Storage' for more details.
142     ///    SYMBOL_LABEL @TLSGD
143     MO_TLSGD,
144 
145     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
146     /// some TLS offset.
147     ///
148     /// See 'ELF Handling for Thread-Local Storage' for more details.
149     ///    SYMBOL_LABEL @GOTTPOFF
150     MO_GOTTPOFF,
151 
152     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
153     /// some TLS offset.
154     ///
155     /// See 'ELF Handling for Thread-Local Storage' for more details.
156     ///    SYMBOL_LABEL @INDNTPOFF
157     MO_INDNTPOFF,
158 
159     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
160     /// some TLS offset.
161     ///
162     /// See 'ELF Handling for Thread-Local Storage' for more details.
163     ///    SYMBOL_LABEL @TPOFF
164     MO_TPOFF,
165 
166     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
167     /// some TLS offset.
168     ///
169     /// See 'ELF Handling for Thread-Local Storage' for more details.
170     ///    SYMBOL_LABEL @NTPOFF
171     MO_NTPOFF,
172 
173     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
174     /// reference is actually to the "__imp_FOO" symbol.  This is used for
175     /// dllimport linkage on windows.
176     MO_DLLIMPORT,
177 
178     /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
179     /// reference is actually to the "FOO$stub" symbol.  This is used for calls
180     /// and jumps to external functions on Tiger and earlier.
181     MO_DARWIN_STUB,
182 
183     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
184     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
185     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
186     MO_DARWIN_NONLAZY,
187 
188     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
189     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
190     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
191     MO_DARWIN_NONLAZY_PIC_BASE,
192 
193     /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
194     /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
195     /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
196     /// stub.
197     MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
198 
199     /// MO_TLVP - On a symbol operand this indicates that the immediate is
200     /// some TLS offset.
201     ///
202     /// This is the TLS offset for the Darwin TLS mechanism.
203     MO_TLVP,
204 
205     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
206     /// is some TLS offset from the picbase.
207     ///
208     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
209     MO_TLVP_PIC_BASE
210   };
211 }
212 
213 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
214 /// a reference to a stub for a global, not the global itself.
isGlobalStubReference(unsigned char TargetFlag)215 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
216   switch (TargetFlag) {
217   case X86II::MO_DLLIMPORT: // dllimport stub.
218   case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
219   case X86II::MO_GOT:       // normal GOT reference.
220   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
221   case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
222   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
223     return true;
224   default:
225     return false;
226   }
227 }
228 
229 /// isGlobalRelativeToPICBase - Return true if the specified global value
230 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
231 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
isGlobalRelativeToPICBase(unsigned char TargetFlag)232 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
233   switch (TargetFlag) {
234   case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
235   case X86II::MO_GOT:                            // isPICStyleGOT: other global.
236   case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
237   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
238   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
239   case X86II::MO_TLVP:                           // ??? Pretty sure..
240     return true;
241   default:
242     return false;
243   }
244 }
245 
246 /// X86II - This namespace holds all of the target specific flags that
247 /// instruction info tracks.
248 ///
249 namespace X86II {
250   enum {
251     //===------------------------------------------------------------------===//
252     // Instruction encodings.  These are the standard/most common forms for X86
253     // instructions.
254     //
255 
256     // PseudoFrm - This represents an instruction that is a pseudo instruction
257     // or one that has not been implemented yet.  It is illegal to code generate
258     // it, but tolerated for intermediate implementation stages.
259     Pseudo         = 0,
260 
261     /// Raw - This form is for instructions that don't have any operands, so
262     /// they are just a fixed opcode value, like 'leave'.
263     RawFrm         = 1,
264 
265     /// AddRegFrm - This form is used for instructions like 'push r32' that have
266     /// their one register operand added to their opcode.
267     AddRegFrm      = 2,
268 
269     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
270     /// to specify a destination, which in this case is a register.
271     ///
272     MRMDestReg     = 3,
273 
274     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
275     /// to specify a destination, which in this case is memory.
276     ///
277     MRMDestMem     = 4,
278 
279     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
280     /// to specify a source, which in this case is a register.
281     ///
282     MRMSrcReg      = 5,
283 
284     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
285     /// to specify a source, which in this case is memory.
286     ///
287     MRMSrcMem      = 6,
288 
289     /// MRM[0-7][rm] - These forms are used to represent instructions that use
290     /// a Mod/RM byte, and use the middle field to hold extended opcode
291     /// information.  In the intel manual these are represented as /0, /1, ...
292     ///
293 
294     // First, instructions that operate on a register r/m operand...
295     MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
296     MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
297 
298     // Next, instructions that operate on a memory r/m operand...
299     MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
300     MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
301 
302     // MRMInitReg - This form is used for instructions whose source and
303     // destinations are the same register.
304     MRMInitReg = 32,
305 
306     //// MRM_C1 - A mod/rm byte of exactly 0xC1.
307     MRM_C1 = 33,
308     MRM_C2 = 34,
309     MRM_C3 = 35,
310     MRM_C4 = 36,
311     MRM_C8 = 37,
312     MRM_C9 = 38,
313     MRM_E8 = 39,
314     MRM_F0 = 40,
315     MRM_F8 = 41,
316     MRM_F9 = 42,
317     MRM_D0 = 45,
318     MRM_D1 = 46,
319 
320     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
321     /// immediates, the first of which is a 16-bit immediate (specified by
322     /// the imm encoding) and the second is a 8-bit fixed value.
323     RawFrmImm8 = 43,
324 
325     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
326     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
327     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
328     /// manual, this operand is described as pntr16:32 and pntr16:16
329     RawFrmImm16 = 44,
330 
331     FormMask       = 63,
332 
333     //===------------------------------------------------------------------===//
334     // Actual flags...
335 
336     // OpSize - Set if this instruction requires an operand size prefix (0x66),
337     // which most often indicates that the instruction operates on 16 bit data
338     // instead of 32 bit data.
339     OpSize      = 1 << 6,
340 
341     // AsSize - Set if this instruction requires an operand size prefix (0x67),
342     // which most often indicates that the instruction address 16 bit address
343     // instead of 32 bit address (or 32 bit address in 64 bit mode).
344     AdSize      = 1 << 7,
345 
346     //===------------------------------------------------------------------===//
347     // Op0Mask - There are several prefix bytes that are used to form two byte
348     // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
349     // used to obtain the setting of this field.  If no bits in this field is
350     // set, there is no prefix byte for obtaining a multibyte opcode.
351     //
352     Op0Shift    = 8,
353     Op0Mask     = 0x1F << Op0Shift,
354 
355     // TB - TwoByte - Set if this instruction has a two byte opcode, which
356     // starts with a 0x0F byte before the real opcode.
357     TB          = 1 << Op0Shift,
358 
359     // REP - The 0xF3 prefix byte indicating repetition of the following
360     // instruction.
361     REP         = 2 << Op0Shift,
362 
363     // D8-DF - These escape opcodes are used by the floating point unit.  These
364     // values must remain sequential.
365     D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
366     DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
367     DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
368     DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
369 
370     // XS, XD - These prefix codes are for single and double precision scalar
371     // floating point operations performed in the SSE registers.
372     XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
373 
374     // T8, TA, A6, A7 - Prefix after the 0x0F prefix.
375     T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
376     A6 = 15 << Op0Shift,  A7 = 16 << Op0Shift,
377 
378     // TF - Prefix before and after 0x0F
379     TF = 17 << Op0Shift,
380 
381     //===------------------------------------------------------------------===//
382     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
383     // They are used to specify GPRs and SSE registers, 64-bit operand size,
384     // etc. We only cares about REX.W and REX.R bits and only the former is
385     // statically determined.
386     //
387     REXShift    = Op0Shift + 5,
388     REX_W       = 1 << REXShift,
389 
390     //===------------------------------------------------------------------===//
391     // This three-bit field describes the size of an immediate operand.  Zero is
392     // unused so that we can tell if we forgot to set a value.
393     ImmShift = REXShift + 1,
394     ImmMask    = 7 << ImmShift,
395     Imm8       = 1 << ImmShift,
396     Imm8PCRel  = 2 << ImmShift,
397     Imm16      = 3 << ImmShift,
398     Imm16PCRel = 4 << ImmShift,
399     Imm32      = 5 << ImmShift,
400     Imm32PCRel = 6 << ImmShift,
401     Imm64      = 7 << ImmShift,
402 
403     //===------------------------------------------------------------------===//
404     // FP Instruction Classification...  Zero is non-fp instruction.
405 
406     // FPTypeMask - Mask for all of the FP types...
407     FPTypeShift = ImmShift + 3,
408     FPTypeMask  = 7 << FPTypeShift,
409 
410     // NotFP - The default, set for instructions that do not use FP registers.
411     NotFP      = 0 << FPTypeShift,
412 
413     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
414     ZeroArgFP  = 1 << FPTypeShift,
415 
416     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
417     OneArgFP   = 2 << FPTypeShift,
418 
419     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
420     // result back to ST(0).  For example, fcos, fsqrt, etc.
421     //
422     OneArgFPRW = 3 << FPTypeShift,
423 
424     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
425     // explicit argument, storing the result to either ST(0) or the implicit
426     // argument.  For example: fadd, fsub, fmul, etc...
427     TwoArgFP   = 4 << FPTypeShift,
428 
429     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
430     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
431     CompareFP  = 5 << FPTypeShift,
432 
433     // CondMovFP - "2 operand" floating point conditional move instructions.
434     CondMovFP  = 6 << FPTypeShift,
435 
436     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
437     SpecialFP  = 7 << FPTypeShift,
438 
439     // Lock prefix
440     LOCKShift = FPTypeShift + 3,
441     LOCK = 1 << LOCKShift,
442 
443     // Segment override prefixes. Currently we just need ability to address
444     // stuff in gs and fs segments.
445     SegOvrShift = LOCKShift + 1,
446     SegOvrMask  = 3 << SegOvrShift,
447     FS          = 1 << SegOvrShift,
448     GS          = 2 << SegOvrShift,
449 
450     // Execution domain for SSE instructions in bits 23, 24.
451     // 0 in bits 23-24 means normal, non-SSE instruction.
452     SSEDomainShift = SegOvrShift + 2,
453 
454     OpcodeShift   = SSEDomainShift + 2,
455 
456     //===------------------------------------------------------------------===//
457     /// VEX - The opcode prefix used by AVX instructions
458     VEXShift = OpcodeShift + 8,
459     VEX         = 1U << 0,
460 
461     /// VEX_W - Has a opcode specific functionality, but is used in the same
462     /// way as REX_W is for regular SSE instructions.
463     VEX_W       = 1U << 1,
464 
465     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
466     /// address instructions in SSE are represented as 3 address ones in AVX
467     /// and the additional register is encoded in VEX_VVVV prefix.
468     VEX_4V      = 1U << 2,
469 
470     /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
471     /// must be encoded in the i8 immediate field. This usually happens in
472     /// instructions with 4 operands.
473     VEX_I8IMM   = 1U << 3,
474 
475     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
476     /// instruction uses 256-bit wide registers. This is usually auto detected
477     /// if a VR256 register is used, but some AVX instructions also have this
478     /// field marked when using a f256 memory references.
479     VEX_L       = 1U << 4,
480 
481     /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
482     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
483     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
484     /// storing a classifier in the imm8 field.  To simplify our implementation,
485     /// we handle this by storeing the classifier in the opcode field and using
486     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
487     Has3DNow0F0FOpcode = 1U << 5
488   };
489 
490   // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
491   // specified machine instruction.
492   //
getBaseOpcodeFor(uint64_t TSFlags)493   static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
494     return TSFlags >> X86II::OpcodeShift;
495   }
496 
hasImm(uint64_t TSFlags)497   static inline bool hasImm(uint64_t TSFlags) {
498     return (TSFlags & X86II::ImmMask) != 0;
499   }
500 
501   /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
502   /// of the specified instruction.
getSizeOfImm(uint64_t TSFlags)503   static inline unsigned getSizeOfImm(uint64_t TSFlags) {
504     switch (TSFlags & X86II::ImmMask) {
505     default: assert(0 && "Unknown immediate size");
506     case X86II::Imm8:
507     case X86II::Imm8PCRel:  return 1;
508     case X86II::Imm16:
509     case X86II::Imm16PCRel: return 2;
510     case X86II::Imm32:
511     case X86II::Imm32PCRel: return 4;
512     case X86II::Imm64:      return 8;
513     }
514   }
515 
516   /// isImmPCRel - Return true if the immediate of the specified instruction's
517   /// TSFlags indicates that it is pc relative.
isImmPCRel(uint64_t TSFlags)518   static inline unsigned isImmPCRel(uint64_t TSFlags) {
519     switch (TSFlags & X86II::ImmMask) {
520     default: assert(0 && "Unknown immediate size");
521     case X86II::Imm8PCRel:
522     case X86II::Imm16PCRel:
523     case X86II::Imm32PCRel:
524       return true;
525     case X86II::Imm8:
526     case X86II::Imm16:
527     case X86II::Imm32:
528     case X86II::Imm64:
529       return false;
530     }
531   }
532 
533   /// getMemoryOperandNo - The function returns the MCInst operand # for the
534   /// first field of the memory operand.  If the instruction doesn't have a
535   /// memory operand, this returns -1.
536   ///
537   /// Note that this ignores tied operands.  If there is a tied register which
538   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
539   /// counted as one operand.
540   ///
getMemoryOperandNo(uint64_t TSFlags)541   static inline int getMemoryOperandNo(uint64_t TSFlags) {
542     switch (TSFlags & X86II::FormMask) {
543     case X86II::MRMInitReg:  assert(0 && "FIXME: Remove this form");
544     default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!");
545     case X86II::Pseudo:
546     case X86II::RawFrm:
547     case X86II::AddRegFrm:
548     case X86II::MRMDestReg:
549     case X86II::MRMSrcReg:
550     case X86II::RawFrmImm8:
551     case X86II::RawFrmImm16:
552        return -1;
553     case X86II::MRMDestMem:
554       return 0;
555     case X86II::MRMSrcMem: {
556       bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
557       unsigned FirstMemOp = 1;
558       if (HasVEX_4V)
559         ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
560 
561       // FIXME: Maybe lea should have its own form?  This is a horrible hack.
562       //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
563       //    Opcode == X86::LEA16r || Opcode == X86::LEA32r)
564       return FirstMemOp;
565     }
566     case X86II::MRM0r: case X86II::MRM1r:
567     case X86II::MRM2r: case X86II::MRM3r:
568     case X86II::MRM4r: case X86II::MRM5r:
569     case X86II::MRM6r: case X86II::MRM7r:
570       return -1;
571     case X86II::MRM0m: case X86II::MRM1m:
572     case X86II::MRM2m: case X86II::MRM3m:
573     case X86II::MRM4m: case X86II::MRM5m:
574     case X86II::MRM6m: case X86II::MRM7m:
575       return 0;
576     case X86II::MRM_C1:
577     case X86II::MRM_C2:
578     case X86II::MRM_C3:
579     case X86II::MRM_C4:
580     case X86II::MRM_C8:
581     case X86II::MRM_C9:
582     case X86II::MRM_E8:
583     case X86II::MRM_F0:
584     case X86II::MRM_F8:
585     case X86II::MRM_F9:
586     case X86II::MRM_D0:
587     case X86II::MRM_D1:
588       return -1;
589     }
590   }
591 }
592 
isScale(const MachineOperand & MO)593 inline static bool isScale(const MachineOperand &MO) {
594   return MO.isImm() &&
595     (MO.getImm() == 1 || MO.getImm() == 2 ||
596      MO.getImm() == 4 || MO.getImm() == 8);
597 }
598 
isLeaMem(const MachineInstr * MI,unsigned Op)599 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
600   if (MI->getOperand(Op).isFI()) return true;
601   return Op+4 <= MI->getNumOperands() &&
602     MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
603     MI->getOperand(Op+2).isReg() &&
604     (MI->getOperand(Op+3).isImm() ||
605      MI->getOperand(Op+3).isGlobal() ||
606      MI->getOperand(Op+3).isCPI() ||
607      MI->getOperand(Op+3).isJTI());
608 }
609 
isMem(const MachineInstr * MI,unsigned Op)610 inline static bool isMem(const MachineInstr *MI, unsigned Op) {
611   if (MI->getOperand(Op).isFI()) return true;
612   return Op+5 <= MI->getNumOperands() &&
613     MI->getOperand(Op+4).isReg() &&
614     isLeaMem(MI, Op);
615 }
616 
617 class X86InstrInfo : public X86GenInstrInfo {
618   X86TargetMachine &TM;
619   const X86RegisterInfo RI;
620 
621   /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
622   /// RegOp2MemOpTable2 - Load / store folding opcode maps.
623   ///
624   DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
625   DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
626   DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
627   DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
628 
629   /// MemOp2RegOpTable - Load / store unfolding opcode map.
630   ///
631   DenseMap<unsigned, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
632 
633 public:
634   explicit X86InstrInfo(X86TargetMachine &tm);
635 
636   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
637   /// such, whenever a client has an instance of instruction info, it should
638   /// always be able to get register info as well (through this method).
639   ///
getRegisterInfo()640   virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
641 
642   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
643   /// extension instruction. That is, it's like a copy where it's legal for the
644   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
645   /// true, then it's expected the pre-extension value is available as a subreg
646   /// of the result register. This also returns the sub-register index in
647   /// SubIdx.
648   virtual bool isCoalescableExtInstr(const MachineInstr &MI,
649                                      unsigned &SrcReg, unsigned &DstReg,
650                                      unsigned &SubIdx) const;
651 
652   unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
653   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
654   /// stack locations as well.  This uses a heuristic so it isn't
655   /// reliable for correctness.
656   unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
657                                      int &FrameIndex) const;
658 
659   /// hasLoadFromStackSlot - If the specified machine instruction has
660   /// a load from a stack slot, return true along with the FrameIndex
661   /// of the loaded stack slot and the machine mem operand containing
662   /// the reference.  If not, return false.  Unlike
663   /// isLoadFromStackSlot, this returns true for any instructions that
664   /// loads from the stack.  This is a hint only and may not catch all
665   /// cases.
666   bool hasLoadFromStackSlot(const MachineInstr *MI,
667                             const MachineMemOperand *&MMO,
668                             int &FrameIndex) const;
669 
670   unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
671   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
672   /// stack locations as well.  This uses a heuristic so it isn't
673   /// reliable for correctness.
674   unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
675                                     int &FrameIndex) const;
676 
677   /// hasStoreToStackSlot - If the specified machine instruction has a
678   /// store to a stack slot, return true along with the FrameIndex of
679   /// the loaded stack slot and the machine mem operand containing the
680   /// reference.  If not, return false.  Unlike isStoreToStackSlot,
681   /// this returns true for any instructions that loads from the
682   /// stack.  This is a hint only and may not catch all cases.
683   bool hasStoreToStackSlot(const MachineInstr *MI,
684                            const MachineMemOperand *&MMO,
685                            int &FrameIndex) const;
686 
687   bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
688                                          AliasAnalysis *AA) const;
689   void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
690                      unsigned DestReg, unsigned SubIdx,
691                      const MachineInstr *Orig,
692                      const TargetRegisterInfo &TRI) const;
693 
694   /// convertToThreeAddress - This method must be implemented by targets that
695   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
696   /// may be able to convert a two-address instruction into a true
697   /// three-address instruction on demand.  This allows the X86 target (for
698   /// example) to convert ADD and SHL instructions into LEA instructions if they
699   /// would require register copies due to two-addressness.
700   ///
701   /// This method returns a null pointer if the transformation cannot be
702   /// performed, otherwise it returns the new instruction.
703   ///
704   virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
705                                               MachineBasicBlock::iterator &MBBI,
706                                               LiveVariables *LV) const;
707 
708   /// commuteInstruction - We have a few instructions that must be hacked on to
709   /// commute them.
710   ///
711   virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
712 
713   // Branch analysis.
714   virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
715   virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
716                              MachineBasicBlock *&FBB,
717                              SmallVectorImpl<MachineOperand> &Cond,
718                              bool AllowModify) const;
719   virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
720   virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
721                                 MachineBasicBlock *FBB,
722                                 const SmallVectorImpl<MachineOperand> &Cond,
723                                 DebugLoc DL) const;
724   virtual void copyPhysReg(MachineBasicBlock &MBB,
725                            MachineBasicBlock::iterator MI, DebugLoc DL,
726                            unsigned DestReg, unsigned SrcReg,
727                            bool KillSrc) const;
728   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
729                                    MachineBasicBlock::iterator MI,
730                                    unsigned SrcReg, bool isKill, int FrameIndex,
731                                    const TargetRegisterClass *RC,
732                                    const TargetRegisterInfo *TRI) const;
733 
734   virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
735                               SmallVectorImpl<MachineOperand> &Addr,
736                               const TargetRegisterClass *RC,
737                               MachineInstr::mmo_iterator MMOBegin,
738                               MachineInstr::mmo_iterator MMOEnd,
739                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
740 
741   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
742                                     MachineBasicBlock::iterator MI,
743                                     unsigned DestReg, int FrameIndex,
744                                     const TargetRegisterClass *RC,
745                                     const TargetRegisterInfo *TRI) const;
746 
747   virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
748                                SmallVectorImpl<MachineOperand> &Addr,
749                                const TargetRegisterClass *RC,
750                                MachineInstr::mmo_iterator MMOBegin,
751                                MachineInstr::mmo_iterator MMOEnd,
752                                SmallVectorImpl<MachineInstr*> &NewMIs) const;
753   virtual
754   MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
755                                          int FrameIx, uint64_t Offset,
756                                          const MDNode *MDPtr,
757                                          DebugLoc DL) const;
758 
759   /// foldMemoryOperand - If this target supports it, fold a load or store of
760   /// the specified stack slot into the specified machine instruction for the
761   /// specified operand(s).  If this is possible, the target should perform the
762   /// folding and return true, otherwise it should return false.  If it folds
763   /// the instruction, it is likely that the MachineInstruction the iterator
764   /// references has been changed.
765   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
766                                               MachineInstr* MI,
767                                            const SmallVectorImpl<unsigned> &Ops,
768                                               int FrameIndex) const;
769 
770   /// foldMemoryOperand - Same as the previous version except it allows folding
771   /// of any load and store from / to any address, not just from a specific
772   /// stack slot.
773   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
774                                               MachineInstr* MI,
775                                            const SmallVectorImpl<unsigned> &Ops,
776                                               MachineInstr* LoadMI) const;
777 
778   /// canFoldMemoryOperand - Returns true if the specified load / store is
779   /// folding is possible.
780   virtual bool canFoldMemoryOperand(const MachineInstr*,
781                                     const SmallVectorImpl<unsigned> &) const;
782 
783   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
784   /// a store or a load and a store into two or more instruction. If this is
785   /// possible, returns true as well as the new instructions by reference.
786   virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
787                            unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
788                            SmallVectorImpl<MachineInstr*> &NewMIs) const;
789 
790   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
791                            SmallVectorImpl<SDNode*> &NewNodes) const;
792 
793   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
794   /// instruction after load / store are unfolded from an instruction of the
795   /// specified opcode. It returns zero if the specified unfolding is not
796   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
797   /// index of the operand which will hold the register holding the loaded
798   /// value.
799   virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
800                                       bool UnfoldLoad, bool UnfoldStore,
801                                       unsigned *LoadRegIndex = 0) const;
802 
803   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
804   /// to determine if two loads are loading from the same base address. It
805   /// should only return true if the base pointers are the same and the
806   /// only differences between the two addresses are the offset. It also returns
807   /// the offsets by reference.
808   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
809                                        int64_t &Offset1, int64_t &Offset2) const;
810 
811   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
812   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
813   /// be scheduled togther. On some targets if two loads are loading from
814   /// addresses in the same cache line, it's better if they are scheduled
815   /// together. This function takes two integers that represent the load offsets
816   /// from the common base address. It returns true if it decides it's desirable
817   /// to schedule the two loads together. "NumLoads" is the number of loads that
818   /// have already been scheduled after Load1.
819   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
820                                        int64_t Offset1, int64_t Offset2,
821                                        unsigned NumLoads) const;
822 
823   virtual void getNoopForMachoTarget(MCInst &NopInst) const;
824 
825   virtual
826   bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
827 
828   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
829   /// instruction that defines the specified register class.
830   bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
831 
isX86_64NonExtLowByteReg(unsigned reg)832   static bool isX86_64NonExtLowByteReg(unsigned reg) {
833     return (reg == X86::SPL || reg == X86::BPL ||
834           reg == X86::SIL || reg == X86::DIL);
835   }
836 
isX86_64ExtendedReg(const MachineOperand & MO)837   static bool isX86_64ExtendedReg(const MachineOperand &MO) {
838     if (!MO.isReg()) return false;
839     return isX86_64ExtendedReg(MO.getReg());
840   }
841 
842   /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
843   /// higher) register?  e.g. r8, xmm8, xmm13, etc.
844   static bool isX86_64ExtendedReg(unsigned RegNo);
845 
846   /// getGlobalBaseReg - Return a virtual register initialized with the
847   /// the global base register value. Output instructions required to
848   /// initialize the register in the function entry block, if necessary.
849   ///
850   unsigned getGlobalBaseReg(MachineFunction *MF) const;
851 
852   /// GetSSEDomain - Return the SSE execution domain of MI as the first element,
853   /// and a bitmask of possible arguments to SetSSEDomain ase the second.
854   std::pair<uint16_t, uint16_t> GetSSEDomain(const MachineInstr *MI) const;
855 
856   /// SetSSEDomain - Set the SSEDomain of MI.
857   void SetSSEDomain(MachineInstr *MI, unsigned Domain) const;
858 
859   MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
860                                       MachineInstr* MI,
861                                       unsigned OpNum,
862                                       const SmallVectorImpl<MachineOperand> &MOs,
863                                       unsigned Size, unsigned Alignment) const;
864 
865   bool isHighLatencyDef(int opc) const;
866 
867   bool hasHighOperandLatency(const InstrItineraryData *ItinData,
868                              const MachineRegisterInfo *MRI,
869                              const MachineInstr *DefMI, unsigned DefIdx,
870                              const MachineInstr *UseMI, unsigned UseIdx) const;
871 
872 private:
873   MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
874                                               MachineFunction::iterator &MFI,
875                                               MachineBasicBlock::iterator &MBBI,
876                                               LiveVariables *LV) const;
877 
878   /// isFrameOperand - Return true and the FrameIndex if the specified
879   /// operand and follow operands form a reference to the stack frame.
880   bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
881                       int &FrameIndex) const;
882 };
883 
884 } // End llvm namespace
885 
886 #endif
887