• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #include "bignum.h"
31 #include "utils.h"
32 
33 namespace v8 {
34 namespace internal {
35 
Bignum()36 Bignum::Bignum()
37     : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
38   for (int i = 0; i < kBigitCapacity; ++i) {
39     bigits_[i] = 0;
40   }
41 }
42 
43 
44 template<typename S>
BitSize(S value)45 static int BitSize(S value) {
46   return 8 * sizeof(value);
47 }
48 
49 // Guaranteed to lie in one Bigit.
AssignUInt16(uint16_t value)50 void Bignum::AssignUInt16(uint16_t value) {
51   ASSERT(kBigitSize >= BitSize(value));
52   Zero();
53   if (value == 0) return;
54 
55   EnsureCapacity(1);
56   bigits_[0] = value;
57   used_digits_ = 1;
58 }
59 
60 
AssignUInt64(uint64_t value)61 void Bignum::AssignUInt64(uint64_t value) {
62   const int kUInt64Size = 64;
63 
64   Zero();
65   if (value == 0) return;
66 
67   int needed_bigits = kUInt64Size / kBigitSize + 1;
68   EnsureCapacity(needed_bigits);
69   for (int i = 0; i < needed_bigits; ++i) {
70     bigits_[i] = static_cast<Chunk>(value & kBigitMask);
71     value = value >> kBigitSize;
72   }
73   used_digits_ = needed_bigits;
74   Clamp();
75 }
76 
77 
AssignBignum(const Bignum & other)78 void Bignum::AssignBignum(const Bignum& other) {
79   exponent_ = other.exponent_;
80   for (int i = 0; i < other.used_digits_; ++i) {
81     bigits_[i] = other.bigits_[i];
82   }
83   // Clear the excess digits (if there were any).
84   for (int i = other.used_digits_; i < used_digits_; ++i) {
85     bigits_[i] = 0;
86   }
87   used_digits_ = other.used_digits_;
88 }
89 
90 
ReadUInt64(Vector<const char> buffer,int from,int digits_to_read)91 static uint64_t ReadUInt64(Vector<const char> buffer,
92                            int from,
93                            int digits_to_read) {
94   uint64_t result = 0;
95   for (int i = from; i < from + digits_to_read; ++i) {
96     int digit = buffer[i] - '0';
97     ASSERT(0 <= digit && digit <= 9);
98     result = result * 10 + digit;
99   }
100   return result;
101 }
102 
103 
AssignDecimalString(Vector<const char> value)104 void Bignum::AssignDecimalString(Vector<const char> value) {
105   // 2^64 = 18446744073709551616 > 10^19
106   const int kMaxUint64DecimalDigits = 19;
107   Zero();
108   int length = value.length();
109   int pos = 0;
110   // Let's just say that each digit needs 4 bits.
111   while (length >= kMaxUint64DecimalDigits) {
112     uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
113     pos += kMaxUint64DecimalDigits;
114     length -= kMaxUint64DecimalDigits;
115     MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
116     AddUInt64(digits);
117   }
118   uint64_t digits = ReadUInt64(value, pos, length);
119   MultiplyByPowerOfTen(length);
120   AddUInt64(digits);
121   Clamp();
122 }
123 
124 
HexCharValue(char c)125 static int HexCharValue(char c) {
126   if ('0' <= c && c <= '9') return c - '0';
127   if ('a' <= c && c <= 'f') return 10 + c - 'a';
128   if ('A' <= c && c <= 'F') return 10 + c - 'A';
129   UNREACHABLE();
130   return 0;  // To make compiler happy.
131 }
132 
133 
AssignHexString(Vector<const char> value)134 void Bignum::AssignHexString(Vector<const char> value) {
135   Zero();
136   int length = value.length();
137 
138   int needed_bigits = length * 4 / kBigitSize + 1;
139   EnsureCapacity(needed_bigits);
140   int string_index = length - 1;
141   for (int i = 0; i < needed_bigits - 1; ++i) {
142     // These bigits are guaranteed to be "full".
143     Chunk current_bigit = 0;
144     for (int j = 0; j < kBigitSize / 4; j++) {
145       current_bigit += HexCharValue(value[string_index--]) << (j * 4);
146     }
147     bigits_[i] = current_bigit;
148   }
149   used_digits_ = needed_bigits - 1;
150 
151   Chunk most_significant_bigit = 0;  // Could be = 0;
152   for (int j = 0; j <= string_index; ++j) {
153     most_significant_bigit <<= 4;
154     most_significant_bigit += HexCharValue(value[j]);
155   }
156   if (most_significant_bigit != 0) {
157     bigits_[used_digits_] = most_significant_bigit;
158     used_digits_++;
159   }
160   Clamp();
161 }
162 
163 
AddUInt64(uint64_t operand)164 void Bignum::AddUInt64(uint64_t operand) {
165   if (operand == 0) return;
166   Bignum other;
167   other.AssignUInt64(operand);
168   AddBignum(other);
169 }
170 
171 
AddBignum(const Bignum & other)172 void Bignum::AddBignum(const Bignum& other) {
173   ASSERT(IsClamped());
174   ASSERT(other.IsClamped());
175 
176   // If this has a greater exponent than other append zero-bigits to this.
177   // After this call exponent_ <= other.exponent_.
178   Align(other);
179 
180   // There are two possibilities:
181   //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
182   //     bbbbb 00000000
183   //   ----------------
184   //   ccccccccccc 0000
185   // or
186   //    aaaaaaaaaa 0000
187   //  bbbbbbbbb 0000000
188   //  -----------------
189   //  cccccccccccc 0000
190   // In both cases we might need a carry bigit.
191 
192   EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
193   Chunk carry = 0;
194   int bigit_pos = other.exponent_ - exponent_;
195   ASSERT(bigit_pos >= 0);
196   for (int i = 0; i < other.used_digits_; ++i) {
197     Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
198     bigits_[bigit_pos] = sum & kBigitMask;
199     carry = sum >> kBigitSize;
200     bigit_pos++;
201   }
202 
203   while (carry != 0) {
204     Chunk sum = bigits_[bigit_pos] + carry;
205     bigits_[bigit_pos] = sum & kBigitMask;
206     carry = sum >> kBigitSize;
207     bigit_pos++;
208   }
209   used_digits_ = Max(bigit_pos, used_digits_);
210   ASSERT(IsClamped());
211 }
212 
213 
SubtractBignum(const Bignum & other)214 void Bignum::SubtractBignum(const Bignum& other) {
215   ASSERT(IsClamped());
216   ASSERT(other.IsClamped());
217   // We require this to be bigger than other.
218   ASSERT(LessEqual(other, *this));
219 
220   Align(other);
221 
222   int offset = other.exponent_ - exponent_;
223   Chunk borrow = 0;
224   int i;
225   for (i = 0; i < other.used_digits_; ++i) {
226     ASSERT((borrow == 0) || (borrow == 1));
227     Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
228     bigits_[i + offset] = difference & kBigitMask;
229     borrow = difference >> (kChunkSize - 1);
230   }
231   while (borrow != 0) {
232     Chunk difference = bigits_[i + offset] - borrow;
233     bigits_[i + offset] = difference & kBigitMask;
234     borrow = difference >> (kChunkSize - 1);
235     ++i;
236   }
237   Clamp();
238 }
239 
240 
ShiftLeft(int shift_amount)241 void Bignum::ShiftLeft(int shift_amount) {
242   if (used_digits_ == 0) return;
243   exponent_ += shift_amount / kBigitSize;
244   int local_shift = shift_amount % kBigitSize;
245   EnsureCapacity(used_digits_ + 1);
246   BigitsShiftLeft(local_shift);
247 }
248 
249 
MultiplyByUInt32(uint32_t factor)250 void Bignum::MultiplyByUInt32(uint32_t factor) {
251   if (factor == 1) return;
252   if (factor == 0) {
253     Zero();
254     return;
255   }
256   if (used_digits_ == 0) return;
257 
258   // The product of a bigit with the factor is of size kBigitSize + 32.
259   // Assert that this number + 1 (for the carry) fits into double chunk.
260   ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
261   DoubleChunk carry = 0;
262   for (int i = 0; i < used_digits_; ++i) {
263     DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
264     bigits_[i] = static_cast<Chunk>(product & kBigitMask);
265     carry = (product >> kBigitSize);
266   }
267   while (carry != 0) {
268     EnsureCapacity(used_digits_ + 1);
269     bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
270     used_digits_++;
271     carry >>= kBigitSize;
272   }
273 }
274 
275 
MultiplyByUInt64(uint64_t factor)276 void Bignum::MultiplyByUInt64(uint64_t factor) {
277   if (factor == 1) return;
278   if (factor == 0) {
279     Zero();
280     return;
281   }
282   ASSERT(kBigitSize < 32);
283   uint64_t carry = 0;
284   uint64_t low = factor & 0xFFFFFFFF;
285   uint64_t high = factor >> 32;
286   for (int i = 0; i < used_digits_; ++i) {
287     uint64_t product_low = low * bigits_[i];
288     uint64_t product_high = high * bigits_[i];
289     uint64_t tmp = (carry & kBigitMask) + product_low;
290     bigits_[i] = static_cast<Chunk>(tmp & kBigitMask);
291     carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
292         (product_high << (32 - kBigitSize));
293   }
294   while (carry != 0) {
295     EnsureCapacity(used_digits_ + 1);
296     bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
297     used_digits_++;
298     carry >>= kBigitSize;
299   }
300 }
301 
302 
MultiplyByPowerOfTen(int exponent)303 void Bignum::MultiplyByPowerOfTen(int exponent) {
304   const uint64_t kFive27 = V8_2PART_UINT64_C(0x6765c793, fa10079d);
305   const uint16_t kFive1 = 5;
306   const uint16_t kFive2 = kFive1 * 5;
307   const uint16_t kFive3 = kFive2 * 5;
308   const uint16_t kFive4 = kFive3 * 5;
309   const uint16_t kFive5 = kFive4 * 5;
310   const uint16_t kFive6 = kFive5 * 5;
311   const uint32_t kFive7 = kFive6 * 5;
312   const uint32_t kFive8 = kFive7 * 5;
313   const uint32_t kFive9 = kFive8 * 5;
314   const uint32_t kFive10 = kFive9 * 5;
315   const uint32_t kFive11 = kFive10 * 5;
316   const uint32_t kFive12 = kFive11 * 5;
317   const uint32_t kFive13 = kFive12 * 5;
318   const uint32_t kFive1_to_12[] =
319       { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
320         kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
321 
322   ASSERT(exponent >= 0);
323   if (exponent == 0) return;
324   if (used_digits_ == 0) return;
325 
326   // We shift by exponent at the end just before returning.
327   int remaining_exponent = exponent;
328   while (remaining_exponent >= 27) {
329     MultiplyByUInt64(kFive27);
330     remaining_exponent -= 27;
331   }
332   while (remaining_exponent >= 13) {
333     MultiplyByUInt32(kFive13);
334     remaining_exponent -= 13;
335   }
336   if (remaining_exponent > 0) {
337     MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
338   }
339   ShiftLeft(exponent);
340 }
341 
342 
Square()343 void Bignum::Square() {
344   ASSERT(IsClamped());
345   int product_length = 2 * used_digits_;
346   EnsureCapacity(product_length);
347 
348   // Comba multiplication: compute each column separately.
349   // Example: r = a2a1a0 * b2b1b0.
350   //    r =  1    * a0b0 +
351   //        10    * (a1b0 + a0b1) +
352   //        100   * (a2b0 + a1b1 + a0b2) +
353   //        1000  * (a2b1 + a1b2) +
354   //        10000 * a2b2
355   //
356   // In the worst case we have to accumulate nb-digits products of digit*digit.
357   //
358   // Assert that the additional number of bits in a DoubleChunk are enough to
359   // sum up used_digits of Bigit*Bigit.
360   if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
361     UNIMPLEMENTED();
362   }
363   DoubleChunk accumulator = 0;
364   // First shift the digits so we don't overwrite them.
365   int copy_offset = used_digits_;
366   for (int i = 0; i < used_digits_; ++i) {
367     bigits_[copy_offset + i] = bigits_[i];
368   }
369   // We have two loops to avoid some 'if's in the loop.
370   for (int i = 0; i < used_digits_; ++i) {
371     // Process temporary digit i with power i.
372     // The sum of the two indices must be equal to i.
373     int bigit_index1 = i;
374     int bigit_index2 = 0;
375     // Sum all of the sub-products.
376     while (bigit_index1 >= 0) {
377       Chunk chunk1 = bigits_[copy_offset + bigit_index1];
378       Chunk chunk2 = bigits_[copy_offset + bigit_index2];
379       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
380       bigit_index1--;
381       bigit_index2++;
382     }
383     bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
384     accumulator >>= kBigitSize;
385   }
386   for (int i = used_digits_; i < product_length; ++i) {
387     int bigit_index1 = used_digits_ - 1;
388     int bigit_index2 = i - bigit_index1;
389     // Invariant: sum of both indices is again equal to i.
390     // Inner loop runs 0 times on last iteration, emptying accumulator.
391     while (bigit_index2 < used_digits_) {
392       Chunk chunk1 = bigits_[copy_offset + bigit_index1];
393       Chunk chunk2 = bigits_[copy_offset + bigit_index2];
394       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
395       bigit_index1--;
396       bigit_index2++;
397     }
398     // The overwritten bigits_[i] will never be read in further loop iterations,
399     // because bigit_index1 and bigit_index2 are always greater
400     // than i - used_digits_.
401     bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
402     accumulator >>= kBigitSize;
403   }
404   // Since the result was guaranteed to lie inside the number the
405   // accumulator must be 0 now.
406   ASSERT(accumulator == 0);
407 
408   // Don't forget to update the used_digits and the exponent.
409   used_digits_ = product_length;
410   exponent_ *= 2;
411   Clamp();
412 }
413 
414 
AssignPowerUInt16(uint16_t base,int power_exponent)415 void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
416   ASSERT(base != 0);
417   ASSERT(power_exponent >= 0);
418   if (power_exponent == 0) {
419     AssignUInt16(1);
420     return;
421   }
422   Zero();
423   int shifts = 0;
424   // We expect base to be in range 2-32, and most often to be 10.
425   // It does not make much sense to implement different algorithms for counting
426   // the bits.
427   while ((base & 1) == 0) {
428     base >>= 1;
429     shifts++;
430   }
431   int bit_size = 0;
432   int tmp_base = base;
433   while (tmp_base != 0) {
434     tmp_base >>= 1;
435     bit_size++;
436   }
437   int final_size = bit_size * power_exponent;
438   // 1 extra bigit for the shifting, and one for rounded final_size.
439   EnsureCapacity(final_size / kBigitSize + 2);
440 
441   // Left to Right exponentiation.
442   int mask = 1;
443   while (power_exponent >= mask) mask <<= 1;
444 
445   // The mask is now pointing to the bit above the most significant 1-bit of
446   // power_exponent.
447   // Get rid of first 1-bit;
448   mask >>= 2;
449   uint64_t this_value = base;
450 
451   bool delayed_multipliciation = false;
452   const uint64_t max_32bits = 0xFFFFFFFF;
453   while (mask != 0 && this_value <= max_32bits) {
454     this_value = this_value * this_value;
455     // Verify that there is enough space in this_value to perform the
456     // multiplication.  The first bit_size bits must be 0.
457     if ((power_exponent & mask) != 0) {
458       uint64_t base_bits_mask =
459           ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
460       bool high_bits_zero = (this_value & base_bits_mask) == 0;
461       if (high_bits_zero) {
462         this_value *= base;
463       } else {
464         delayed_multipliciation = true;
465       }
466     }
467     mask >>= 1;
468   }
469   AssignUInt64(this_value);
470   if (delayed_multipliciation) {
471     MultiplyByUInt32(base);
472   }
473 
474   // Now do the same thing as a bignum.
475   while (mask != 0) {
476     Square();
477     if ((power_exponent & mask) != 0) {
478       MultiplyByUInt32(base);
479     }
480     mask >>= 1;
481   }
482 
483   // And finally add the saved shifts.
484   ShiftLeft(shifts * power_exponent);
485 }
486 
487 
488 // Precondition: this/other < 16bit.
DivideModuloIntBignum(const Bignum & other)489 uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
490   ASSERT(IsClamped());
491   ASSERT(other.IsClamped());
492   ASSERT(other.used_digits_ > 0);
493 
494   // Easy case: if we have less digits than the divisor than the result is 0.
495   // Note: this handles the case where this == 0, too.
496   if (BigitLength() < other.BigitLength()) {
497     return 0;
498   }
499 
500   Align(other);
501 
502   uint16_t result = 0;
503 
504   // Start by removing multiples of 'other' until both numbers have the same
505   // number of digits.
506   while (BigitLength() > other.BigitLength()) {
507     // This naive approach is extremely inefficient if the this divided other
508     // might be big. This function is implemented for doubleToString where
509     // the result should be small (less than 10).
510     ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
511     // Remove the multiples of the first digit.
512     // Example this = 23 and other equals 9. -> Remove 2 multiples.
513     result += bigits_[used_digits_ - 1];
514     SubtractTimes(other, bigits_[used_digits_ - 1]);
515   }
516 
517   ASSERT(BigitLength() == other.BigitLength());
518 
519   // Both bignums are at the same length now.
520   // Since other has more than 0 digits we know that the access to
521   // bigits_[used_digits_ - 1] is safe.
522   Chunk this_bigit = bigits_[used_digits_ - 1];
523   Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
524 
525   if (other.used_digits_ == 1) {
526     // Shortcut for easy (and common) case.
527     int quotient = this_bigit / other_bigit;
528     bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
529     result += quotient;
530     Clamp();
531     return result;
532   }
533 
534   int division_estimate = this_bigit / (other_bigit + 1);
535   result += division_estimate;
536   SubtractTimes(other, division_estimate);
537 
538   if (other_bigit * (division_estimate + 1) > this_bigit) {
539     // No need to even try to subtract. Even if other's remaining digits were 0
540     // another subtraction would be too much.
541     return result;
542   }
543 
544   while (LessEqual(other, *this)) {
545     SubtractBignum(other);
546     result++;
547   }
548   return result;
549 }
550 
551 
552 template<typename S>
SizeInHexChars(S number)553 static int SizeInHexChars(S number) {
554   ASSERT(number > 0);
555   int result = 0;
556   while (number != 0) {
557     number >>= 4;
558     result++;
559   }
560   return result;
561 }
562 
563 
HexCharOfValue(int value)564 static char HexCharOfValue(int value) {
565   ASSERT(0 <= value && value <= 16);
566   if (value < 10) return value + '0';
567   return value - 10 + 'A';
568 }
569 
570 
ToHexString(char * buffer,int buffer_size) const571 bool Bignum::ToHexString(char* buffer, int buffer_size) const {
572   ASSERT(IsClamped());
573   // Each bigit must be printable as separate hex-character.
574   ASSERT(kBigitSize % 4 == 0);
575   const int kHexCharsPerBigit = kBigitSize / 4;
576 
577   if (used_digits_ == 0) {
578     if (buffer_size < 2) return false;
579     buffer[0] = '0';
580     buffer[1] = '\0';
581     return true;
582   }
583   // We add 1 for the terminating '\0' character.
584   int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
585       SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
586   if (needed_chars > buffer_size) return false;
587   int string_index = needed_chars - 1;
588   buffer[string_index--] = '\0';
589   for (int i = 0; i < exponent_; ++i) {
590     for (int j = 0; j < kHexCharsPerBigit; ++j) {
591       buffer[string_index--] = '0';
592     }
593   }
594   for (int i = 0; i < used_digits_ - 1; ++i) {
595     Chunk current_bigit = bigits_[i];
596     for (int j = 0; j < kHexCharsPerBigit; ++j) {
597       buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
598       current_bigit >>= 4;
599     }
600   }
601   // And finally the last bigit.
602   Chunk most_significant_bigit = bigits_[used_digits_ - 1];
603   while (most_significant_bigit != 0) {
604     buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
605     most_significant_bigit >>= 4;
606   }
607   return true;
608 }
609 
610 
BigitAt(int index) const611 Bignum::Chunk Bignum::BigitAt(int index) const {
612   if (index >= BigitLength()) return 0;
613   if (index < exponent_) return 0;
614   return bigits_[index - exponent_];
615 }
616 
617 
Compare(const Bignum & a,const Bignum & b)618 int Bignum::Compare(const Bignum& a, const Bignum& b) {
619   ASSERT(a.IsClamped());
620   ASSERT(b.IsClamped());
621   int bigit_length_a = a.BigitLength();
622   int bigit_length_b = b.BigitLength();
623   if (bigit_length_a < bigit_length_b) return -1;
624   if (bigit_length_a > bigit_length_b) return +1;
625   for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
626     Chunk bigit_a = a.BigitAt(i);
627     Chunk bigit_b = b.BigitAt(i);
628     if (bigit_a < bigit_b) return -1;
629     if (bigit_a > bigit_b) return +1;
630     // Otherwise they are equal up to this digit. Try the next digit.
631   }
632   return 0;
633 }
634 
635 
PlusCompare(const Bignum & a,const Bignum & b,const Bignum & c)636 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
637   ASSERT(a.IsClamped());
638   ASSERT(b.IsClamped());
639   ASSERT(c.IsClamped());
640   if (a.BigitLength() < b.BigitLength()) {
641     return PlusCompare(b, a, c);
642   }
643   if (a.BigitLength() + 1 < c.BigitLength()) return -1;
644   if (a.BigitLength() > c.BigitLength()) return +1;
645   // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
646   // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
647   // of 'a'.
648   if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
649     return -1;
650   }
651 
652   Chunk borrow = 0;
653   // Starting at min_exponent all digits are == 0. So no need to compare them.
654   int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
655   for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
656     Chunk chunk_a = a.BigitAt(i);
657     Chunk chunk_b = b.BigitAt(i);
658     Chunk chunk_c = c.BigitAt(i);
659     Chunk sum = chunk_a + chunk_b;
660     if (sum > chunk_c + borrow) {
661       return +1;
662     } else {
663       borrow = chunk_c + borrow - sum;
664       if (borrow > 1) return -1;
665       borrow <<= kBigitSize;
666     }
667   }
668   if (borrow == 0) return 0;
669   return -1;
670 }
671 
672 
Clamp()673 void Bignum::Clamp() {
674   while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
675     used_digits_--;
676   }
677   if (used_digits_ == 0) {
678     // Zero.
679     exponent_ = 0;
680   }
681 }
682 
683 
IsClamped() const684 bool Bignum::IsClamped() const {
685   return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
686 }
687 
688 
Zero()689 void Bignum::Zero() {
690   for (int i = 0; i < used_digits_; ++i) {
691     bigits_[i] = 0;
692   }
693   used_digits_ = 0;
694   exponent_ = 0;
695 }
696 
697 
Align(const Bignum & other)698 void Bignum::Align(const Bignum& other) {
699   if (exponent_ > other.exponent_) {
700     // If "X" represents a "hidden" digit (by the exponent) then we are in the
701     // following case (a == this, b == other):
702     // a:  aaaaaaXXXX   or a:   aaaaaXXX
703     // b:     bbbbbbX      b: bbbbbbbbXX
704     // We replace some of the hidden digits (X) of a with 0 digits.
705     // a:  aaaaaa000X   or a:   aaaaa0XX
706     int zero_digits = exponent_ - other.exponent_;
707     EnsureCapacity(used_digits_ + zero_digits);
708     for (int i = used_digits_ - 1; i >= 0; --i) {
709       bigits_[i + zero_digits] = bigits_[i];
710     }
711     for (int i = 0; i < zero_digits; ++i) {
712       bigits_[i] = 0;
713     }
714     used_digits_ += zero_digits;
715     exponent_ -= zero_digits;
716     ASSERT(used_digits_ >= 0);
717     ASSERT(exponent_ >= 0);
718   }
719 }
720 
721 
BigitsShiftLeft(int shift_amount)722 void Bignum::BigitsShiftLeft(int shift_amount) {
723   ASSERT(shift_amount < kBigitSize);
724   ASSERT(shift_amount >= 0);
725   Chunk carry = 0;
726   for (int i = 0; i < used_digits_; ++i) {
727     Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
728     bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
729     carry = new_carry;
730   }
731   if (carry != 0) {
732     bigits_[used_digits_] = carry;
733     used_digits_++;
734   }
735 }
736 
737 
SubtractTimes(const Bignum & other,int factor)738 void Bignum::SubtractTimes(const Bignum& other, int factor) {
739   ASSERT(exponent_ <= other.exponent_);
740   if (factor < 3) {
741     for (int i = 0; i < factor; ++i) {
742       SubtractBignum(other);
743     }
744     return;
745   }
746   Chunk borrow = 0;
747   int exponent_diff = other.exponent_ - exponent_;
748   for (int i = 0; i < other.used_digits_; ++i) {
749     DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
750     DoubleChunk remove = borrow + product;
751     Chunk difference =
752         bigits_[i + exponent_diff] - static_cast<Chunk>(remove & kBigitMask);
753     bigits_[i + exponent_diff] = difference & kBigitMask;
754     borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
755                                 (remove >> kBigitSize));
756   }
757   for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
758     if (borrow == 0) return;
759     Chunk difference = bigits_[i] - borrow;
760     bigits_[i] = difference & kBigitMask;
761     borrow = difference >> (kChunkSize - 1);
762     ++i;
763   }
764   Clamp();
765 }
766 
767 
768 } }  // namespace v8::internal
769