• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #include "zone-inl.h"
31 #include "splay-tree-inl.h"
32 
33 namespace v8 {
34 namespace internal {
35 
36 
Zone()37 Zone::Zone()
38     : zone_excess_limit_(256 * MB),
39       segment_bytes_allocated_(0),
40       position_(0),
41       limit_(0),
42       scope_nesting_(0),
43       segment_head_(NULL) {
44 }
45 unsigned Zone::allocation_size_ = 0;
46 
47 
~ZoneScope()48 ZoneScope::~ZoneScope() {
49   ASSERT_EQ(Isolate::Current(), isolate_);
50   if (ShouldDeleteOnExit()) isolate_->zone()->DeleteAll();
51   isolate_->zone()->scope_nesting_--;
52 }
53 
54 
55 // Segments represent chunks of memory: They have starting address
56 // (encoded in the this pointer) and a size in bytes. Segments are
57 // chained together forming a LIFO structure with the newest segment
58 // available as segment_head_. Segments are allocated using malloc()
59 // and de-allocated using free().
60 
61 class Segment {
62  public:
next() const63   Segment* next() const { return next_; }
clear_next()64   void clear_next() { next_ = NULL; }
65 
size() const66   int size() const { return size_; }
capacity() const67   int capacity() const { return size_ - sizeof(Segment); }
68 
start() const69   Address start() const { return address(sizeof(Segment)); }
end() const70   Address end() const { return address(size_); }
71 
72  private:
73   // Computes the address of the nth byte in this segment.
address(int n) const74   Address address(int n) const {
75     return Address(this) + n;
76   }
77 
78   Segment* next_;
79   int size_;
80 
81   friend class Zone;
82 };
83 
84 
85 // Creates a new segment, sets it size, and pushes it to the front
86 // of the segment chain. Returns the new segment.
NewSegment(int size)87 Segment* Zone::NewSegment(int size) {
88   Segment* result = reinterpret_cast<Segment*>(Malloced::New(size));
89   adjust_segment_bytes_allocated(size);
90   if (result != NULL) {
91     result->next_ = segment_head_;
92     result->size_ = size;
93     segment_head_ = result;
94   }
95   return result;
96 }
97 
98 
99 // Deletes the given segment. Does not touch the segment chain.
DeleteSegment(Segment * segment,int size)100 void Zone::DeleteSegment(Segment* segment, int size) {
101   adjust_segment_bytes_allocated(-size);
102   Malloced::Delete(segment);
103 }
104 
105 
DeleteAll()106 void Zone::DeleteAll() {
107 #ifdef DEBUG
108   // Constant byte value used for zapping dead memory in debug mode.
109   static const unsigned char kZapDeadByte = 0xcd;
110 #endif
111 
112   // Find a segment with a suitable size to keep around.
113   Segment* keep = segment_head_;
114   while (keep != NULL && keep->size() > kMaximumKeptSegmentSize) {
115     keep = keep->next();
116   }
117 
118   // Traverse the chained list of segments, zapping (in debug mode)
119   // and freeing every segment except the one we wish to keep.
120   Segment* current = segment_head_;
121   while (current != NULL) {
122     Segment* next = current->next();
123     if (current == keep) {
124       // Unlink the segment we wish to keep from the list.
125       current->clear_next();
126     } else {
127       int size = current->size();
128 #ifdef DEBUG
129       // Zap the entire current segment (including the header).
130       memset(current, kZapDeadByte, size);
131 #endif
132       DeleteSegment(current, size);
133     }
134     current = next;
135   }
136 
137   // If we have found a segment we want to keep, we must recompute the
138   // variables 'position' and 'limit' to prepare for future allocate
139   // attempts. Otherwise, we must clear the position and limit to
140   // force a new segment to be allocated on demand.
141   if (keep != NULL) {
142     Address start = keep->start();
143     position_ = RoundUp(start, kAlignment);
144     limit_ = keep->end();
145 #ifdef DEBUG
146     // Zap the contents of the kept segment (but not the header).
147     memset(start, kZapDeadByte, keep->capacity());
148 #endif
149   } else {
150     position_ = limit_ = 0;
151   }
152 
153   // Update the head segment to be the kept segment (if any).
154   segment_head_ = keep;
155 }
156 
157 
NewExpand(int size)158 Address Zone::NewExpand(int size) {
159   // Make sure the requested size is already properly aligned and that
160   // there isn't enough room in the Zone to satisfy the request.
161   ASSERT(size == RoundDown(size, kAlignment));
162   ASSERT(position_ + size > limit_);
163 
164   // Compute the new segment size. We use a 'high water mark'
165   // strategy, where we increase the segment size every time we expand
166   // except that we employ a maximum segment size when we delete. This
167   // is to avoid excessive malloc() and free() overhead.
168   Segment* head = segment_head_;
169   int old_size = (head == NULL) ? 0 : head->size();
170   static const int kSegmentOverhead = sizeof(Segment) + kAlignment;
171   int new_size = kSegmentOverhead + size + (old_size << 1);
172   if (new_size < kMinimumSegmentSize) {
173     new_size = kMinimumSegmentSize;
174   } else if (new_size > kMaximumSegmentSize) {
175     // Limit the size of new segments to avoid growing the segment size
176     // exponentially, thus putting pressure on contiguous virtual address space.
177     // All the while making sure to allocate a segment large enough to hold the
178     // requested size.
179     new_size = Max(kSegmentOverhead + size, kMaximumSegmentSize);
180   }
181   Segment* segment = NewSegment(new_size);
182   if (segment == NULL) {
183     V8::FatalProcessOutOfMemory("Zone");
184     return NULL;
185   }
186 
187   // Recompute 'top' and 'limit' based on the new segment.
188   Address result = RoundUp(segment->start(), kAlignment);
189   position_ = result + size;
190   limit_ = segment->end();
191   ASSERT(position_ <= limit_);
192   return result;
193 }
194 
195 
196 } }  // namespace v8::internal
197