• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 #include "lithium-allocator-inl.h"
30 
31 #include "hydrogen.h"
32 #include "string-stream.h"
33 
34 #if V8_TARGET_ARCH_IA32
35 #include "ia32/lithium-ia32.h"
36 #elif V8_TARGET_ARCH_X64
37 #include "x64/lithium-x64.h"
38 #elif V8_TARGET_ARCH_ARM
39 #include "arm/lithium-arm.h"
40 #elif V8_TARGET_ARCH_MIPS
41 #include "mips/lithium-mips.h"
42 #else
43 #error "Unknown architecture."
44 #endif
45 
46 namespace v8 {
47 namespace internal {
48 
49 
50 #define DEFINE_OPERAND_CACHE(name, type)                      \
51   name name::cache[name::kNumCachedOperands];                 \
52   void name::SetupCache() {                                   \
53     for (int i = 0; i < kNumCachedOperands; i++) {            \
54       cache[i].ConvertTo(type, i);                            \
55     }                                                         \
56   }                                                           \
57   static bool name##_initialize() {                           \
58     name::SetupCache();                                       \
59     return true;                                              \
60   }                                                           \
61   static bool name##_cache_initialized = name##_initialize();
62 
DEFINE_OPERAND_CACHE(LConstantOperand,CONSTANT_OPERAND)63 DEFINE_OPERAND_CACHE(LConstantOperand, CONSTANT_OPERAND)
64 DEFINE_OPERAND_CACHE(LStackSlot,       STACK_SLOT)
65 DEFINE_OPERAND_CACHE(LDoubleStackSlot, DOUBLE_STACK_SLOT)
66 DEFINE_OPERAND_CACHE(LRegister,        REGISTER)
67 DEFINE_OPERAND_CACHE(LDoubleRegister,  DOUBLE_REGISTER)
68 
69 #undef DEFINE_OPERAND_CACHE
70 
71 
72 static inline LifetimePosition Min(LifetimePosition a, LifetimePosition b) {
73   return a.Value() < b.Value() ? a : b;
74 }
75 
76 
Max(LifetimePosition a,LifetimePosition b)77 static inline LifetimePosition Max(LifetimePosition a, LifetimePosition b) {
78   return a.Value() > b.Value() ? a : b;
79 }
80 
81 
UsePosition(LifetimePosition pos,LOperand * operand)82 UsePosition::UsePosition(LifetimePosition pos, LOperand* operand)
83     : operand_(operand),
84       hint_(NULL),
85       pos_(pos),
86       next_(NULL),
87       requires_reg_(false),
88       register_beneficial_(true) {
89   if (operand_ != NULL && operand_->IsUnallocated()) {
90     LUnallocated* unalloc = LUnallocated::cast(operand_);
91     requires_reg_ = unalloc->HasRegisterPolicy();
92     register_beneficial_ = !unalloc->HasAnyPolicy();
93   }
94   ASSERT(pos_.IsValid());
95 }
96 
97 
HasHint() const98 bool UsePosition::HasHint() const {
99   return hint_ != NULL && !hint_->IsUnallocated();
100 }
101 
102 
RequiresRegister() const103 bool UsePosition::RequiresRegister() const {
104   return requires_reg_;
105 }
106 
107 
RegisterIsBeneficial() const108 bool UsePosition::RegisterIsBeneficial() const {
109   return register_beneficial_;
110 }
111 
112 
SplitAt(LifetimePosition pos)113 void UseInterval::SplitAt(LifetimePosition pos) {
114   ASSERT(Contains(pos) && pos.Value() != start().Value());
115   UseInterval* after = new UseInterval(pos, end_);
116   after->next_ = next_;
117   next_ = after;
118   end_ = pos;
119 }
120 
121 
122 #ifdef DEBUG
123 
124 
Verify() const125 void LiveRange::Verify() const {
126   UsePosition* cur = first_pos_;
127   while (cur != NULL) {
128     ASSERT(Start().Value() <= cur->pos().Value() &&
129            cur->pos().Value() <= End().Value());
130     cur = cur->next();
131   }
132 }
133 
134 
HasOverlap(UseInterval * target) const135 bool LiveRange::HasOverlap(UseInterval* target) const {
136   UseInterval* current_interval = first_interval_;
137   while (current_interval != NULL) {
138     // Intervals overlap if the start of one is contained in the other.
139     if (current_interval->Contains(target->start()) ||
140         target->Contains(current_interval->start())) {
141       return true;
142     }
143     current_interval = current_interval->next();
144   }
145   return false;
146 }
147 
148 
149 #endif
150 
151 
LiveRange(int id)152 LiveRange::LiveRange(int id)
153     : id_(id),
154       spilled_(false),
155       assigned_register_(kInvalidAssignment),
156       assigned_register_kind_(NONE),
157       last_interval_(NULL),
158       first_interval_(NULL),
159       first_pos_(NULL),
160       parent_(NULL),
161       next_(NULL),
162       current_interval_(NULL),
163       last_processed_use_(NULL),
164       spill_start_index_(kMaxInt) {
165   spill_operand_ = new LUnallocated(LUnallocated::IGNORE);
166 }
167 
168 
set_assigned_register(int reg,RegisterKind register_kind)169 void LiveRange::set_assigned_register(int reg, RegisterKind register_kind) {
170   ASSERT(!HasRegisterAssigned() && !IsSpilled());
171   assigned_register_ = reg;
172   assigned_register_kind_ = register_kind;
173   ConvertOperands();
174 }
175 
176 
MakeSpilled()177 void LiveRange::MakeSpilled() {
178   ASSERT(!IsSpilled());
179   ASSERT(TopLevel()->HasAllocatedSpillOperand());
180   spilled_ = true;
181   assigned_register_ = kInvalidAssignment;
182   ConvertOperands();
183 }
184 
185 
HasAllocatedSpillOperand() const186 bool LiveRange::HasAllocatedSpillOperand() const {
187   return spill_operand_ != NULL && !spill_operand_->IsUnallocated();
188 }
189 
190 
SetSpillOperand(LOperand * operand)191 void LiveRange::SetSpillOperand(LOperand* operand) {
192   ASSERT(!operand->IsUnallocated());
193   ASSERT(spill_operand_ != NULL);
194   ASSERT(spill_operand_->IsUnallocated());
195   spill_operand_->ConvertTo(operand->kind(), operand->index());
196 }
197 
198 
NextUsePosition(LifetimePosition start)199 UsePosition* LiveRange::NextUsePosition(LifetimePosition start) {
200   UsePosition* use_pos = last_processed_use_;
201   if (use_pos == NULL) use_pos = first_pos();
202   while (use_pos != NULL && use_pos->pos().Value() < start.Value()) {
203     use_pos = use_pos->next();
204   }
205   last_processed_use_ = use_pos;
206   return use_pos;
207 }
208 
209 
NextUsePositionRegisterIsBeneficial(LifetimePosition start)210 UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial(
211     LifetimePosition start) {
212   UsePosition* pos = NextUsePosition(start);
213   while (pos != NULL && !pos->RegisterIsBeneficial()) {
214     pos = pos->next();
215   }
216   return pos;
217 }
218 
219 
NextRegisterPosition(LifetimePosition start)220 UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) {
221   UsePosition* pos = NextUsePosition(start);
222   while (pos != NULL && !pos->RequiresRegister()) {
223     pos = pos->next();
224   }
225   return pos;
226 }
227 
228 
CanBeSpilled(LifetimePosition pos)229 bool LiveRange::CanBeSpilled(LifetimePosition pos) {
230   // TODO(kmillikin): Comment. Now.
231   if (pos.Value() <= Start().Value() && HasRegisterAssigned()) return false;
232 
233   // We cannot spill a live range that has a use requiring a register
234   // at the current or the immediate next position.
235   UsePosition* use_pos = NextRegisterPosition(pos);
236   if (use_pos == NULL) return true;
237   return use_pos->pos().Value() > pos.NextInstruction().Value();
238 }
239 
240 
FirstPosWithHint() const241 UsePosition* LiveRange::FirstPosWithHint() const {
242   UsePosition* pos = first_pos_;
243   while (pos != NULL && !pos->HasHint()) pos = pos->next();
244   return pos;
245 }
246 
247 
CreateAssignedOperand()248 LOperand* LiveRange::CreateAssignedOperand() {
249   LOperand* op = NULL;
250   if (HasRegisterAssigned()) {
251     ASSERT(!IsSpilled());
252     if (IsDouble()) {
253       op = LDoubleRegister::Create(assigned_register());
254     } else {
255       op = LRegister::Create(assigned_register());
256     }
257   } else if (IsSpilled()) {
258     ASSERT(!HasRegisterAssigned());
259     op = TopLevel()->GetSpillOperand();
260     ASSERT(!op->IsUnallocated());
261   } else {
262     LUnallocated* unalloc = new LUnallocated(LUnallocated::NONE);
263     unalloc->set_virtual_register(id_);
264     op = unalloc;
265   }
266   return op;
267 }
268 
269 
FirstSearchIntervalForPosition(LifetimePosition position) const270 UseInterval* LiveRange::FirstSearchIntervalForPosition(
271     LifetimePosition position) const {
272   if (current_interval_ == NULL) return first_interval_;
273   if (current_interval_->start().Value() > position.Value()) {
274     current_interval_ = NULL;
275     return first_interval_;
276   }
277   return current_interval_;
278 }
279 
280 
AdvanceLastProcessedMarker(UseInterval * to_start_of,LifetimePosition but_not_past) const281 void LiveRange::AdvanceLastProcessedMarker(
282     UseInterval* to_start_of, LifetimePosition but_not_past) const {
283   if (to_start_of == NULL) return;
284   if (to_start_of->start().Value() > but_not_past.Value()) return;
285   LifetimePosition start =
286       current_interval_ == NULL ? LifetimePosition::Invalid()
287                                 : current_interval_->start();
288   if (to_start_of->start().Value() > start.Value()) {
289     current_interval_ = to_start_of;
290   }
291 }
292 
293 
SplitAt(LifetimePosition position,LiveRange * result)294 void LiveRange::SplitAt(LifetimePosition position, LiveRange* result) {
295   ASSERT(Start().Value() < position.Value());
296   ASSERT(result->IsEmpty());
297   // Find the last interval that ends before the position. If the
298   // position is contained in one of the intervals in the chain, we
299   // split that interval and use the first part.
300   UseInterval* current = FirstSearchIntervalForPosition(position);
301 
302   // If the split position coincides with the beginning of a use interval
303   // we need to split use positons in a special way.
304   bool split_at_start = false;
305 
306   while (current != NULL) {
307     if (current->Contains(position)) {
308       current->SplitAt(position);
309       break;
310     }
311     UseInterval* next = current->next();
312     if (next->start().Value() >= position.Value()) {
313       split_at_start = (next->start().Value() == position.Value());
314       break;
315     }
316     current = next;
317   }
318 
319   // Partition original use intervals to the two live ranges.
320   UseInterval* before = current;
321   UseInterval* after = before->next();
322   result->last_interval_ = (last_interval_ == before)
323       ? after            // Only interval in the range after split.
324       : last_interval_;  // Last interval of the original range.
325   result->first_interval_ = after;
326   last_interval_ = before;
327 
328   // Find the last use position before the split and the first use
329   // position after it.
330   UsePosition* use_after = first_pos_;
331   UsePosition* use_before = NULL;
332   if (split_at_start) {
333     // The split position coincides with the beginning of a use interval (the
334     // end of a lifetime hole). Use at this position should be attributed to
335     // the split child because split child owns use interval covering it.
336     while (use_after != NULL && use_after->pos().Value() < position.Value()) {
337       use_before = use_after;
338       use_after = use_after->next();
339     }
340   } else {
341     while (use_after != NULL && use_after->pos().Value() <= position.Value()) {
342       use_before = use_after;
343       use_after = use_after->next();
344     }
345   }
346 
347   // Partition original use positions to the two live ranges.
348   if (use_before != NULL) {
349     use_before->next_ = NULL;
350   } else {
351     first_pos_ = NULL;
352   }
353   result->first_pos_ = use_after;
354 
355   // Link the new live range in the chain before any of the other
356   // ranges linked from the range before the split.
357   result->parent_ = (parent_ == NULL) ? this : parent_;
358   result->next_ = next_;
359   next_ = result;
360 
361 #ifdef DEBUG
362   Verify();
363   result->Verify();
364 #endif
365 }
366 
367 
368 // This implements an ordering on live ranges so that they are ordered by their
369 // start positions.  This is needed for the correctness of the register
370 // allocation algorithm.  If two live ranges start at the same offset then there
371 // is a tie breaker based on where the value is first used.  This part of the
372 // ordering is merely a heuristic.
ShouldBeAllocatedBefore(const LiveRange * other) const373 bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const {
374   LifetimePosition start = Start();
375   LifetimePosition other_start = other->Start();
376   if (start.Value() == other_start.Value()) {
377     UsePosition* pos = FirstPosWithHint();
378     if (pos == NULL) return false;
379     UsePosition* other_pos = other->first_pos();
380     if (other_pos == NULL) return true;
381     return pos->pos().Value() < other_pos->pos().Value();
382   }
383   return start.Value() < other_start.Value();
384 }
385 
386 
ShortenTo(LifetimePosition start)387 void LiveRange::ShortenTo(LifetimePosition start) {
388   LAllocator::TraceAlloc("Shorten live range %d to [%d\n", id_, start.Value());
389   ASSERT(first_interval_ != NULL);
390   ASSERT(first_interval_->start().Value() <= start.Value());
391   ASSERT(start.Value() < first_interval_->end().Value());
392   first_interval_->set_start(start);
393 }
394 
395 
EnsureInterval(LifetimePosition start,LifetimePosition end)396 void LiveRange::EnsureInterval(LifetimePosition start, LifetimePosition end) {
397   LAllocator::TraceAlloc("Ensure live range %d in interval [%d %d[\n",
398                          id_,
399                          start.Value(),
400                          end.Value());
401   LifetimePosition new_end = end;
402   while (first_interval_ != NULL &&
403          first_interval_->start().Value() <= end.Value()) {
404     if (first_interval_->end().Value() > end.Value()) {
405       new_end = first_interval_->end();
406     }
407     first_interval_ = first_interval_->next();
408   }
409 
410   UseInterval* new_interval = new UseInterval(start, new_end);
411   new_interval->next_ = first_interval_;
412   first_interval_ = new_interval;
413   if (new_interval->next() == NULL) {
414     last_interval_ = new_interval;
415   }
416 }
417 
418 
AddUseInterval(LifetimePosition start,LifetimePosition end)419 void LiveRange::AddUseInterval(LifetimePosition start, LifetimePosition end) {
420   LAllocator::TraceAlloc("Add to live range %d interval [%d %d[\n",
421                          id_,
422                          start.Value(),
423                          end.Value());
424   if (first_interval_ == NULL) {
425     UseInterval* interval = new UseInterval(start, end);
426     first_interval_ = interval;
427     last_interval_ = interval;
428   } else {
429     if (end.Value() == first_interval_->start().Value()) {
430       first_interval_->set_start(start);
431     } else if (end.Value() < first_interval_->start().Value()) {
432       UseInterval* interval = new UseInterval(start, end);
433       interval->set_next(first_interval_);
434       first_interval_ = interval;
435     } else {
436       // Order of instruction's processing (see ProcessInstructions) guarantees
437       // that each new use interval either precedes or intersects with
438       // last added interval.
439       ASSERT(start.Value() < first_interval_->end().Value());
440       first_interval_->start_ = Min(start, first_interval_->start_);
441       first_interval_->end_ = Max(end, first_interval_->end_);
442     }
443   }
444 }
445 
446 
AddUsePosition(LifetimePosition pos,LOperand * operand)447 UsePosition* LiveRange::AddUsePosition(LifetimePosition pos,
448                                        LOperand* operand) {
449   LAllocator::TraceAlloc("Add to live range %d use position %d\n",
450                          id_,
451                          pos.Value());
452   UsePosition* use_pos = new UsePosition(pos, operand);
453   UsePosition* prev = NULL;
454   UsePosition* current = first_pos_;
455   while (current != NULL && current->pos().Value() < pos.Value()) {
456     prev = current;
457     current = current->next();
458   }
459 
460   if (prev == NULL) {
461     use_pos->set_next(first_pos_);
462     first_pos_ = use_pos;
463   } else {
464     use_pos->next_ = prev->next_;
465     prev->next_ = use_pos;
466   }
467 
468   return use_pos;
469 }
470 
471 
ConvertOperands()472 void LiveRange::ConvertOperands() {
473   LOperand* op = CreateAssignedOperand();
474   UsePosition* use_pos = first_pos();
475   while (use_pos != NULL) {
476     ASSERT(Start().Value() <= use_pos->pos().Value() &&
477            use_pos->pos().Value() <= End().Value());
478 
479     if (use_pos->HasOperand()) {
480       ASSERT(op->IsRegister() || op->IsDoubleRegister() ||
481              !use_pos->RequiresRegister());
482       use_pos->operand()->ConvertTo(op->kind(), op->index());
483     }
484     use_pos = use_pos->next();
485   }
486 }
487 
488 
CanCover(LifetimePosition position) const489 bool LiveRange::CanCover(LifetimePosition position) const {
490   if (IsEmpty()) return false;
491   return Start().Value() <= position.Value() &&
492          position.Value() < End().Value();
493 }
494 
495 
Covers(LifetimePosition position)496 bool LiveRange::Covers(LifetimePosition position) {
497   if (!CanCover(position)) return false;
498   UseInterval* start_search = FirstSearchIntervalForPosition(position);
499   for (UseInterval* interval = start_search;
500        interval != NULL;
501        interval = interval->next()) {
502     ASSERT(interval->next() == NULL ||
503            interval->next()->start().Value() >= interval->start().Value());
504     AdvanceLastProcessedMarker(interval, position);
505     if (interval->Contains(position)) return true;
506     if (interval->start().Value() > position.Value()) return false;
507   }
508   return false;
509 }
510 
511 
FirstIntersection(LiveRange * other)512 LifetimePosition LiveRange::FirstIntersection(LiveRange* other) {
513   UseInterval* b = other->first_interval();
514   if (b == NULL) return LifetimePosition::Invalid();
515   LifetimePosition advance_last_processed_up_to = b->start();
516   UseInterval* a = FirstSearchIntervalForPosition(b->start());
517   while (a != NULL && b != NULL) {
518     if (a->start().Value() > other->End().Value()) break;
519     if (b->start().Value() > End().Value()) break;
520     LifetimePosition cur_intersection = a->Intersect(b);
521     if (cur_intersection.IsValid()) {
522       return cur_intersection;
523     }
524     if (a->start().Value() < b->start().Value()) {
525       a = a->next();
526       if (a == NULL || a->start().Value() > other->End().Value()) break;
527       AdvanceLastProcessedMarker(a, advance_last_processed_up_to);
528     } else {
529       b = b->next();
530     }
531   }
532   return LifetimePosition::Invalid();
533 }
534 
535 
LAllocator(int num_values,HGraph * graph)536 LAllocator::LAllocator(int num_values, HGraph* graph)
537     : chunk_(NULL),
538       live_in_sets_(graph->blocks()->length()),
539       live_ranges_(num_values * 2),
540       fixed_live_ranges_(NULL),
541       fixed_double_live_ranges_(NULL),
542       unhandled_live_ranges_(num_values * 2),
543       active_live_ranges_(8),
544       inactive_live_ranges_(8),
545       reusable_slots_(8),
546       next_virtual_register_(num_values),
547       first_artificial_register_(num_values),
548       mode_(NONE),
549       num_registers_(-1),
550       graph_(graph),
551       has_osr_entry_(false) {}
552 
553 
InitializeLivenessAnalysis()554 void LAllocator::InitializeLivenessAnalysis() {
555   // Initialize the live_in sets for each block to NULL.
556   int block_count = graph_->blocks()->length();
557   live_in_sets_.Initialize(block_count);
558   live_in_sets_.AddBlock(NULL, block_count);
559 }
560 
561 
ComputeLiveOut(HBasicBlock * block)562 BitVector* LAllocator::ComputeLiveOut(HBasicBlock* block) {
563   // Compute live out for the given block, except not including backward
564   // successor edges.
565   BitVector* live_out = new BitVector(next_virtual_register_);
566 
567   // Process all successor blocks.
568   HBasicBlock* successor = block->end()->FirstSuccessor();
569   while (successor != NULL) {
570     // Add values live on entry to the successor. Note the successor's
571     // live_in will not be computed yet for backwards edges.
572     BitVector* live_in = live_in_sets_[successor->block_id()];
573     if (live_in != NULL) live_out->Union(*live_in);
574 
575     // All phi input operands corresponding to this successor edge are live
576     // out from this block.
577     int index = successor->PredecessorIndexOf(block);
578     const ZoneList<HPhi*>* phis = successor->phis();
579     for (int i = 0; i < phis->length(); ++i) {
580       HPhi* phi = phis->at(i);
581       if (!phi->OperandAt(index)->IsConstant()) {
582         live_out->Add(phi->OperandAt(index)->id());
583       }
584     }
585 
586     // Check if we are done with second successor.
587     if (successor == block->end()->SecondSuccessor()) break;
588 
589     successor = block->end()->SecondSuccessor();
590   }
591 
592   return live_out;
593 }
594 
595 
AddInitialIntervals(HBasicBlock * block,BitVector * live_out)596 void LAllocator::AddInitialIntervals(HBasicBlock* block,
597                                      BitVector* live_out) {
598   // Add an interval that includes the entire block to the live range for
599   // each live_out value.
600   LifetimePosition start = LifetimePosition::FromInstructionIndex(
601       block->first_instruction_index());
602   LifetimePosition end = LifetimePosition::FromInstructionIndex(
603       block->last_instruction_index()).NextInstruction();
604   BitVector::Iterator iterator(live_out);
605   while (!iterator.Done()) {
606     int operand_index = iterator.Current();
607     LiveRange* range = LiveRangeFor(operand_index);
608     range->AddUseInterval(start, end);
609     iterator.Advance();
610   }
611 }
612 
613 
FixedDoubleLiveRangeID(int index)614 int LAllocator::FixedDoubleLiveRangeID(int index) {
615   return -index - 1 - Register::kNumAllocatableRegisters;
616 }
617 
618 
AllocateFixed(LUnallocated * operand,int pos,bool is_tagged)619 LOperand* LAllocator::AllocateFixed(LUnallocated* operand,
620                                     int pos,
621                                     bool is_tagged) {
622   TraceAlloc("Allocating fixed reg for op %d\n", operand->virtual_register());
623   ASSERT(operand->HasFixedPolicy());
624   if (operand->policy() == LUnallocated::FIXED_SLOT) {
625     operand->ConvertTo(LOperand::STACK_SLOT, operand->fixed_index());
626   } else if (operand->policy() == LUnallocated::FIXED_REGISTER) {
627     int reg_index = operand->fixed_index();
628     operand->ConvertTo(LOperand::REGISTER, reg_index);
629   } else if (operand->policy() == LUnallocated::FIXED_DOUBLE_REGISTER) {
630     int reg_index = operand->fixed_index();
631     operand->ConvertTo(LOperand::DOUBLE_REGISTER, reg_index);
632   } else {
633     UNREACHABLE();
634   }
635   if (is_tagged) {
636     TraceAlloc("Fixed reg is tagged at %d\n", pos);
637     LInstruction* instr = InstructionAt(pos);
638     if (instr->HasPointerMap()) {
639       instr->pointer_map()->RecordPointer(operand);
640     }
641   }
642   return operand;
643 }
644 
645 
FixedLiveRangeFor(int index)646 LiveRange* LAllocator::FixedLiveRangeFor(int index) {
647   ASSERT(index < Register::kNumAllocatableRegisters);
648   LiveRange* result = fixed_live_ranges_[index];
649   if (result == NULL) {
650     result = new LiveRange(FixedLiveRangeID(index));
651     ASSERT(result->IsFixed());
652     result->set_assigned_register(index, GENERAL_REGISTERS);
653     fixed_live_ranges_[index] = result;
654   }
655   return result;
656 }
657 
658 
FixedDoubleLiveRangeFor(int index)659 LiveRange* LAllocator::FixedDoubleLiveRangeFor(int index) {
660   ASSERT(index < DoubleRegister::kNumAllocatableRegisters);
661   LiveRange* result = fixed_double_live_ranges_[index];
662   if (result == NULL) {
663     result = new LiveRange(FixedDoubleLiveRangeID(index));
664     ASSERT(result->IsFixed());
665     result->set_assigned_register(index, DOUBLE_REGISTERS);
666     fixed_double_live_ranges_[index] = result;
667   }
668   return result;
669 }
670 
671 
LiveRangeFor(int index)672 LiveRange* LAllocator::LiveRangeFor(int index) {
673   if (index >= live_ranges_.length()) {
674     live_ranges_.AddBlock(NULL, index - live_ranges_.length() + 1);
675   }
676   LiveRange* result = live_ranges_[index];
677   if (result == NULL) {
678     result = new LiveRange(index);
679     live_ranges_[index] = result;
680   }
681   return result;
682 }
683 
684 
GetLastGap(HBasicBlock * block)685 LGap* LAllocator::GetLastGap(HBasicBlock* block) {
686   int last_instruction = block->last_instruction_index();
687   int index = chunk_->NearestGapPos(last_instruction);
688   return GapAt(index);
689 }
690 
691 
LookupPhi(LOperand * operand) const692 HPhi* LAllocator::LookupPhi(LOperand* operand) const {
693   if (!operand->IsUnallocated()) return NULL;
694   int index = operand->VirtualRegister();
695   HValue* instr = graph_->LookupValue(index);
696   if (instr != NULL && instr->IsPhi()) {
697     return HPhi::cast(instr);
698   }
699   return NULL;
700 }
701 
702 
LiveRangeFor(LOperand * operand)703 LiveRange* LAllocator::LiveRangeFor(LOperand* operand) {
704   if (operand->IsUnallocated()) {
705     return LiveRangeFor(LUnallocated::cast(operand)->virtual_register());
706   } else if (operand->IsRegister()) {
707     return FixedLiveRangeFor(operand->index());
708   } else if (operand->IsDoubleRegister()) {
709     return FixedDoubleLiveRangeFor(operand->index());
710   } else {
711     return NULL;
712   }
713 }
714 
715 
Define(LifetimePosition position,LOperand * operand,LOperand * hint)716 void LAllocator::Define(LifetimePosition position,
717                         LOperand* operand,
718                         LOperand* hint) {
719   LiveRange* range = LiveRangeFor(operand);
720   if (range == NULL) return;
721 
722   if (range->IsEmpty() || range->Start().Value() > position.Value()) {
723     // Can happen if there is a definition without use.
724     range->AddUseInterval(position, position.NextInstruction());
725     range->AddUsePosition(position.NextInstruction(), NULL);
726   } else {
727     range->ShortenTo(position);
728   }
729 
730   if (operand->IsUnallocated()) {
731     LUnallocated* unalloc_operand = LUnallocated::cast(operand);
732     range->AddUsePosition(position, unalloc_operand)->set_hint(hint);
733   }
734 }
735 
736 
Use(LifetimePosition block_start,LifetimePosition position,LOperand * operand,LOperand * hint)737 void LAllocator::Use(LifetimePosition block_start,
738                      LifetimePosition position,
739                      LOperand* operand,
740                      LOperand* hint) {
741   LiveRange* range = LiveRangeFor(operand);
742   if (range == NULL) return;
743   if (operand->IsUnallocated()) {
744     LUnallocated* unalloc_operand = LUnallocated::cast(operand);
745     range->AddUsePosition(position, unalloc_operand)->set_hint(hint);
746   }
747   range->AddUseInterval(block_start, position);
748 }
749 
750 
AddConstraintsGapMove(int index,LOperand * from,LOperand * to)751 void LAllocator::AddConstraintsGapMove(int index,
752                                        LOperand* from,
753                                        LOperand* to) {
754   LGap* gap = GapAt(index);
755   LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START);
756   if (from->IsUnallocated()) {
757     const ZoneList<LMoveOperands>* move_operands = move->move_operands();
758     for (int i = 0; i < move_operands->length(); ++i) {
759       LMoveOperands cur = move_operands->at(i);
760       LOperand* cur_to = cur.destination();
761       if (cur_to->IsUnallocated()) {
762         if (cur_to->VirtualRegister() == from->VirtualRegister()) {
763           move->AddMove(cur.source(), to);
764           return;
765         }
766       }
767     }
768   }
769   move->AddMove(from, to);
770 }
771 
772 
MeetRegisterConstraints(HBasicBlock * block)773 void LAllocator::MeetRegisterConstraints(HBasicBlock* block) {
774   int start = block->first_instruction_index();
775   int end = block->last_instruction_index();
776   for (int i = start; i <= end; ++i) {
777     if (IsGapAt(i)) {
778       LInstruction* instr = NULL;
779       LInstruction* prev_instr = NULL;
780       if (i < end) instr = InstructionAt(i + 1);
781       if (i > start) prev_instr = InstructionAt(i - 1);
782       MeetConstraintsBetween(prev_instr, instr, i);
783     }
784   }
785 }
786 
787 
MeetConstraintsBetween(LInstruction * first,LInstruction * second,int gap_index)788 void LAllocator::MeetConstraintsBetween(LInstruction* first,
789                                         LInstruction* second,
790                                         int gap_index) {
791   // Handle fixed temporaries.
792   if (first != NULL) {
793     for (TempIterator it(first); it.HasNext(); it.Advance()) {
794       LUnallocated* temp = LUnallocated::cast(it.Next());
795       if (temp->HasFixedPolicy()) {
796         AllocateFixed(temp, gap_index - 1, false);
797       }
798     }
799   }
800 
801   // Handle fixed output operand.
802   if (first != NULL && first->Output() != NULL) {
803     LUnallocated* first_output = LUnallocated::cast(first->Output());
804     LiveRange* range = LiveRangeFor(first_output->VirtualRegister());
805     bool assigned = false;
806     if (first_output->HasFixedPolicy()) {
807       LUnallocated* output_copy = first_output->CopyUnconstrained();
808       bool is_tagged = HasTaggedValue(first_output->VirtualRegister());
809       AllocateFixed(first_output, gap_index, is_tagged);
810 
811       // This value is produced on the stack, we never need to spill it.
812       if (first_output->IsStackSlot()) {
813         range->SetSpillOperand(first_output);
814         range->SetSpillStartIndex(gap_index - 1);
815         assigned = true;
816       }
817       chunk_->AddGapMove(gap_index, first_output, output_copy);
818     }
819 
820     if (!assigned) {
821       range->SetSpillStartIndex(gap_index);
822 
823       // This move to spill operand is not a real use. Liveness analysis
824       // and splitting of live ranges do not account for it.
825       // Thus it should be inserted to a lifetime position corresponding to
826       // the instruction end.
827       LGap* gap = GapAt(gap_index);
828       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::BEFORE);
829       move->AddMove(first_output, range->GetSpillOperand());
830     }
831   }
832 
833   // Handle fixed input operands of second instruction.
834   if (second != NULL) {
835     for (UseIterator it(second); it.HasNext(); it.Advance()) {
836       LUnallocated* cur_input = LUnallocated::cast(it.Next());
837       if (cur_input->HasFixedPolicy()) {
838         LUnallocated* input_copy = cur_input->CopyUnconstrained();
839         bool is_tagged = HasTaggedValue(cur_input->VirtualRegister());
840         AllocateFixed(cur_input, gap_index + 1, is_tagged);
841         AddConstraintsGapMove(gap_index, input_copy, cur_input);
842       } else if (cur_input->policy() == LUnallocated::WRITABLE_REGISTER) {
843         // The live range of writable input registers always goes until the end
844         // of the instruction.
845         ASSERT(!cur_input->IsUsedAtStart());
846 
847         LUnallocated* input_copy = cur_input->CopyUnconstrained();
848         cur_input->set_virtual_register(next_virtual_register_++);
849 
850         if (RequiredRegisterKind(input_copy->virtual_register()) ==
851             DOUBLE_REGISTERS) {
852           double_artificial_registers_.Add(
853               cur_input->virtual_register() - first_artificial_register_);
854         }
855 
856         AddConstraintsGapMove(gap_index, input_copy, cur_input);
857       }
858     }
859   }
860 
861   // Handle "output same as input" for second instruction.
862   if (second != NULL && second->Output() != NULL) {
863     LUnallocated* second_output = LUnallocated::cast(second->Output());
864     if (second_output->HasSameAsInputPolicy()) {
865       LUnallocated* cur_input = LUnallocated::cast(second->FirstInput());
866       int output_vreg = second_output->VirtualRegister();
867       int input_vreg = cur_input->VirtualRegister();
868 
869       LUnallocated* input_copy = cur_input->CopyUnconstrained();
870       cur_input->set_virtual_register(second_output->virtual_register());
871       AddConstraintsGapMove(gap_index, input_copy, cur_input);
872 
873       if (HasTaggedValue(input_vreg) && !HasTaggedValue(output_vreg)) {
874         int index = gap_index + 1;
875         LInstruction* instr = InstructionAt(index);
876         if (instr->HasPointerMap()) {
877           instr->pointer_map()->RecordPointer(input_copy);
878         }
879       } else if (!HasTaggedValue(input_vreg) && HasTaggedValue(output_vreg)) {
880         // The input is assumed to immediately have a tagged representation,
881         // before the pointer map can be used. I.e. the pointer map at the
882         // instruction will include the output operand (whose value at the
883         // beginning of the instruction is equal to the input operand). If
884         // this is not desired, then the pointer map at this instruction needs
885         // to be adjusted manually.
886       }
887     }
888   }
889 }
890 
891 
ProcessInstructions(HBasicBlock * block,BitVector * live)892 void LAllocator::ProcessInstructions(HBasicBlock* block, BitVector* live) {
893   int block_start = block->first_instruction_index();
894   int index = block->last_instruction_index();
895 
896   LifetimePosition block_start_position =
897       LifetimePosition::FromInstructionIndex(block_start);
898 
899   while (index >= block_start) {
900     LifetimePosition curr_position =
901         LifetimePosition::FromInstructionIndex(index);
902 
903     if (IsGapAt(index)) {
904       // We have a gap at this position.
905       LGap* gap = GapAt(index);
906       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START);
907       const ZoneList<LMoveOperands>* move_operands = move->move_operands();
908       for (int i = 0; i < move_operands->length(); ++i) {
909         LMoveOperands* cur = &move_operands->at(i);
910         if (cur->IsIgnored()) continue;
911         LOperand* from = cur->source();
912         LOperand* to = cur->destination();
913         HPhi* phi = LookupPhi(to);
914         LOperand* hint = to;
915         if (phi != NULL) {
916           // This is a phi resolving move.
917           if (!phi->block()->IsLoopHeader()) {
918             hint = LiveRangeFor(phi->id())->FirstHint();
919           }
920         } else {
921           if (to->IsUnallocated()) {
922             if (live->Contains(to->VirtualRegister())) {
923               Define(curr_position, to, from);
924               live->Remove(to->VirtualRegister());
925             } else {
926               cur->Eliminate();
927               continue;
928             }
929           } else {
930             Define(curr_position, to, from);
931           }
932         }
933         Use(block_start_position, curr_position, from, hint);
934         if (from->IsUnallocated()) {
935           live->Add(from->VirtualRegister());
936         }
937       }
938     } else {
939       ASSERT(!IsGapAt(index));
940       LInstruction* instr = InstructionAt(index);
941 
942       if (instr != NULL) {
943         LOperand* output = instr->Output();
944         if (output != NULL) {
945           if (output->IsUnallocated()) live->Remove(output->VirtualRegister());
946           Define(curr_position, output, NULL);
947         }
948 
949         if (instr->IsMarkedAsCall()) {
950           for (int i = 0; i < Register::kNumAllocatableRegisters; ++i) {
951             if (output == NULL || !output->IsRegister() ||
952                 output->index() != i) {
953               LiveRange* range = FixedLiveRangeFor(i);
954               range->AddUseInterval(curr_position,
955                                     curr_position.InstructionEnd());
956             }
957           }
958         }
959 
960         if (instr->IsMarkedAsCall() || instr->IsMarkedAsSaveDoubles()) {
961           for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; ++i) {
962             if (output == NULL || !output->IsDoubleRegister() ||
963                 output->index() != i) {
964               LiveRange* range = FixedDoubleLiveRangeFor(i);
965               range->AddUseInterval(curr_position,
966                                     curr_position.InstructionEnd());
967             }
968           }
969         }
970 
971         for (UseIterator it(instr); it.HasNext(); it.Advance()) {
972           LOperand* input = it.Next();
973 
974           LifetimePosition use_pos;
975           if (input->IsUnallocated() &&
976               LUnallocated::cast(input)->IsUsedAtStart()) {
977             use_pos = curr_position;
978           } else {
979             use_pos = curr_position.InstructionEnd();
980           }
981 
982           Use(block_start_position, use_pos, input, NULL);
983           if (input->IsUnallocated()) live->Add(input->VirtualRegister());
984         }
985 
986         for (TempIterator it(instr); it.HasNext(); it.Advance()) {
987           LOperand* temp = it.Next();
988           if (instr->IsMarkedAsCall()) {
989             if (temp->IsRegister()) continue;
990             if (temp->IsUnallocated()) {
991               LUnallocated* temp_unalloc = LUnallocated::cast(temp);
992               if (temp_unalloc->HasFixedPolicy()) {
993                 continue;
994               }
995             }
996           }
997           Use(block_start_position, curr_position.InstructionEnd(), temp, NULL);
998           Define(curr_position, temp, NULL);
999         }
1000       }
1001     }
1002 
1003     index = index - 1;
1004   }
1005 }
1006 
1007 
ResolvePhis(HBasicBlock * block)1008 void LAllocator::ResolvePhis(HBasicBlock* block) {
1009   const ZoneList<HPhi*>* phis = block->phis();
1010   for (int i = 0; i < phis->length(); ++i) {
1011     HPhi* phi = phis->at(i);
1012     LUnallocated* phi_operand = new LUnallocated(LUnallocated::NONE);
1013     phi_operand->set_virtual_register(phi->id());
1014     for (int j = 0; j < phi->OperandCount(); ++j) {
1015       HValue* op = phi->OperandAt(j);
1016       LOperand* operand = NULL;
1017       if (op->IsConstant() && op->EmitAtUses()) {
1018         HConstant* constant = HConstant::cast(op);
1019         operand = chunk_->DefineConstantOperand(constant);
1020       } else {
1021         ASSERT(!op->EmitAtUses());
1022         LUnallocated* unalloc = new LUnallocated(LUnallocated::NONE);
1023         unalloc->set_virtual_register(op->id());
1024         operand = unalloc;
1025       }
1026       HBasicBlock* cur_block = block->predecessors()->at(j);
1027       // The gap move must be added without any special processing as in
1028       // the AddConstraintsGapMove.
1029       chunk_->AddGapMove(cur_block->last_instruction_index() - 1,
1030                          operand,
1031                          phi_operand);
1032     }
1033 
1034     LiveRange* live_range = LiveRangeFor(phi->id());
1035     LLabel* label = chunk_->GetLabel(phi->block()->block_id());
1036     label->GetOrCreateParallelMove(LGap::START)->
1037         AddMove(phi_operand, live_range->GetSpillOperand());
1038     live_range->SetSpillStartIndex(phi->block()->first_instruction_index());
1039   }
1040 }
1041 
1042 
Allocate(LChunk * chunk)1043 void LAllocator::Allocate(LChunk* chunk) {
1044   ASSERT(chunk_ == NULL);
1045   chunk_ = chunk;
1046   MeetRegisterConstraints();
1047   ResolvePhis();
1048   BuildLiveRanges();
1049   AllocateGeneralRegisters();
1050   AllocateDoubleRegisters();
1051   PopulatePointerMaps();
1052   if (has_osr_entry_) ProcessOsrEntry();
1053   ConnectRanges();
1054   ResolveControlFlow();
1055 }
1056 
1057 
MeetRegisterConstraints()1058 void LAllocator::MeetRegisterConstraints() {
1059   HPhase phase("Register constraints", chunk_);
1060   first_artificial_register_ = next_virtual_register_;
1061   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1062   for (int i = 0; i < blocks->length(); ++i) {
1063     HBasicBlock* block = blocks->at(i);
1064     MeetRegisterConstraints(block);
1065   }
1066 }
1067 
1068 
ResolvePhis()1069 void LAllocator::ResolvePhis() {
1070   HPhase phase("Resolve phis", chunk_);
1071 
1072   // Process the blocks in reverse order.
1073   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1074   for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
1075     HBasicBlock* block = blocks->at(block_id);
1076     ResolvePhis(block);
1077   }
1078 }
1079 
1080 
ResolveControlFlow(LiveRange * range,HBasicBlock * block,HBasicBlock * pred)1081 void LAllocator::ResolveControlFlow(LiveRange* range,
1082                                     HBasicBlock* block,
1083                                     HBasicBlock* pred) {
1084   LifetimePosition pred_end =
1085       LifetimePosition::FromInstructionIndex(pred->last_instruction_index());
1086   LifetimePosition cur_start =
1087       LifetimePosition::FromInstructionIndex(block->first_instruction_index());
1088   LiveRange* pred_cover = NULL;
1089   LiveRange* cur_cover = NULL;
1090   LiveRange* cur_range = range;
1091   while (cur_range != NULL && (cur_cover == NULL || pred_cover == NULL)) {
1092     if (cur_range->CanCover(cur_start)) {
1093       ASSERT(cur_cover == NULL);
1094       cur_cover = cur_range;
1095     }
1096     if (cur_range->CanCover(pred_end)) {
1097       ASSERT(pred_cover == NULL);
1098       pred_cover = cur_range;
1099     }
1100     cur_range = cur_range->next();
1101   }
1102 
1103   if (cur_cover->IsSpilled()) return;
1104   ASSERT(pred_cover != NULL && cur_cover != NULL);
1105   if (pred_cover != cur_cover) {
1106     LOperand* pred_op = pred_cover->CreateAssignedOperand();
1107     LOperand* cur_op = cur_cover->CreateAssignedOperand();
1108     if (!pred_op->Equals(cur_op)) {
1109       LGap* gap = NULL;
1110       if (block->predecessors()->length() == 1) {
1111         gap = GapAt(block->first_instruction_index());
1112       } else {
1113         ASSERT(pred->end()->SecondSuccessor() == NULL);
1114         gap = GetLastGap(pred);
1115 
1116         // We are going to insert a move before the branch instruction.
1117         // Some branch instructions (e.g. loops' back edges)
1118         // can potentially cause a GC so they have a pointer map.
1119         // By insterting a move we essentially create a copy of a
1120         // value which is invisible to PopulatePointerMaps(), because we store
1121         // it into a location different from the operand of a live range
1122         // covering a branch instruction.
1123         // Thus we need to manually record a pointer.
1124         if (HasTaggedValue(range->id())) {
1125           LInstruction* branch = InstructionAt(pred->last_instruction_index());
1126           if (branch->HasPointerMap()) {
1127             branch->pointer_map()->RecordPointer(cur_op);
1128           }
1129         }
1130       }
1131       gap->GetOrCreateParallelMove(LGap::START)->AddMove(pred_op, cur_op);
1132     }
1133   }
1134 }
1135 
1136 
GetConnectingParallelMove(LifetimePosition pos)1137 LParallelMove* LAllocator::GetConnectingParallelMove(LifetimePosition pos) {
1138   int index = pos.InstructionIndex();
1139   if (IsGapAt(index)) {
1140     LGap* gap = GapAt(index);
1141     return gap->GetOrCreateParallelMove(
1142         pos.IsInstructionStart() ? LGap::START : LGap::END);
1143   }
1144   int gap_pos = pos.IsInstructionStart() ? (index - 1) : (index + 1);
1145   return GapAt(gap_pos)->GetOrCreateParallelMove(
1146       (gap_pos < index) ? LGap::AFTER : LGap::BEFORE);
1147 }
1148 
1149 
GetBlock(LifetimePosition pos)1150 HBasicBlock* LAllocator::GetBlock(LifetimePosition pos) {
1151   LGap* gap = GapAt(chunk_->NearestGapPos(pos.InstructionIndex()));
1152   return gap->block();
1153 }
1154 
1155 
ConnectRanges()1156 void LAllocator::ConnectRanges() {
1157   HPhase phase("Connect ranges", this);
1158   for (int i = 0; i < live_ranges()->length(); ++i) {
1159     LiveRange* first_range = live_ranges()->at(i);
1160     if (first_range == NULL || first_range->parent() != NULL) continue;
1161 
1162     LiveRange* second_range = first_range->next();
1163     while (second_range != NULL) {
1164       LifetimePosition pos = second_range->Start();
1165 
1166       if (!second_range->IsSpilled()) {
1167         // Add gap move if the two live ranges touch and there is no block
1168         // boundary.
1169         if (first_range->End().Value() == pos.Value()) {
1170           bool should_insert = true;
1171           if (IsBlockBoundary(pos)) {
1172             should_insert = CanEagerlyResolveControlFlow(GetBlock(pos));
1173           }
1174           if (should_insert) {
1175             LParallelMove* move = GetConnectingParallelMove(pos);
1176             LOperand* prev_operand = first_range->CreateAssignedOperand();
1177             LOperand* cur_operand = second_range->CreateAssignedOperand();
1178             move->AddMove(prev_operand, cur_operand);
1179           }
1180         }
1181       }
1182 
1183       first_range = second_range;
1184       second_range = second_range->next();
1185     }
1186   }
1187 }
1188 
1189 
CanEagerlyResolveControlFlow(HBasicBlock * block) const1190 bool LAllocator::CanEagerlyResolveControlFlow(HBasicBlock* block) const {
1191   if (block->predecessors()->length() != 1) return false;
1192   return block->predecessors()->first()->block_id() == block->block_id() - 1;
1193 }
1194 
1195 
ResolveControlFlow()1196 void LAllocator::ResolveControlFlow() {
1197   HPhase phase("Resolve control flow", this);
1198   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1199   for (int block_id = 1; block_id < blocks->length(); ++block_id) {
1200     HBasicBlock* block = blocks->at(block_id);
1201     if (CanEagerlyResolveControlFlow(block)) continue;
1202     BitVector* live = live_in_sets_[block->block_id()];
1203     BitVector::Iterator iterator(live);
1204     while (!iterator.Done()) {
1205       int operand_index = iterator.Current();
1206       for (int i = 0; i < block->predecessors()->length(); ++i) {
1207         HBasicBlock* cur = block->predecessors()->at(i);
1208         LiveRange* cur_range = LiveRangeFor(operand_index);
1209         ResolveControlFlow(cur_range, block, cur);
1210       }
1211       iterator.Advance();
1212     }
1213   }
1214 }
1215 
1216 
BuildLiveRanges()1217 void LAllocator::BuildLiveRanges() {
1218   HPhase phase("Build live ranges", this);
1219   InitializeLivenessAnalysis();
1220   // Process the blocks in reverse order.
1221   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1222   for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
1223     HBasicBlock* block = blocks->at(block_id);
1224     BitVector* live = ComputeLiveOut(block);
1225     // Initially consider all live_out values live for the entire block. We
1226     // will shorten these intervals if necessary.
1227     AddInitialIntervals(block, live);
1228 
1229     // Process the instructions in reverse order, generating and killing
1230     // live values.
1231     ProcessInstructions(block, live);
1232     // All phi output operands are killed by this block.
1233     const ZoneList<HPhi*>* phis = block->phis();
1234     for (int i = 0; i < phis->length(); ++i) {
1235       // The live range interval already ends at the first instruction of the
1236       // block.
1237       HPhi* phi = phis->at(i);
1238       live->Remove(phi->id());
1239 
1240       LOperand* hint = NULL;
1241       LOperand* phi_operand = NULL;
1242       LGap* gap = GetLastGap(phi->block()->predecessors()->at(0));
1243       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START);
1244       for (int j = 0; j < move->move_operands()->length(); ++j) {
1245         LOperand* to = move->move_operands()->at(j).destination();
1246         if (to->IsUnallocated() && to->VirtualRegister() == phi->id()) {
1247           hint = move->move_operands()->at(j).source();
1248           phi_operand = to;
1249           break;
1250         }
1251       }
1252       ASSERT(hint != NULL);
1253 
1254       LifetimePosition block_start = LifetimePosition::FromInstructionIndex(
1255               block->first_instruction_index());
1256       Define(block_start, phi_operand, hint);
1257     }
1258 
1259     // Now live is live_in for this block except not including values live
1260     // out on backward successor edges.
1261     live_in_sets_[block_id] = live;
1262 
1263     // If this block is a loop header go back and patch up the necessary
1264     // predecessor blocks.
1265     if (block->IsLoopHeader()) {
1266       // TODO(kmillikin): Need to be able to get the last block of the loop
1267       // in the loop information. Add a live range stretching from the first
1268       // loop instruction to the last for each value live on entry to the
1269       // header.
1270       HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge();
1271       BitVector::Iterator iterator(live);
1272       LifetimePosition start = LifetimePosition::FromInstructionIndex(
1273           block->first_instruction_index());
1274       LifetimePosition end = LifetimePosition::FromInstructionIndex(
1275           back_edge->last_instruction_index()).NextInstruction();
1276       while (!iterator.Done()) {
1277         int operand_index = iterator.Current();
1278         LiveRange* range = LiveRangeFor(operand_index);
1279         range->EnsureInterval(start, end);
1280         iterator.Advance();
1281       }
1282 
1283       for (int i = block->block_id() + 1; i <= back_edge->block_id(); ++i) {
1284         live_in_sets_[i]->Union(*live);
1285       }
1286     }
1287 
1288 #ifdef DEBUG
1289     if (block_id == 0) {
1290       BitVector::Iterator iterator(live);
1291       bool found = false;
1292       while (!iterator.Done()) {
1293         found = true;
1294         int operand_index = iterator.Current();
1295         PrintF("Function: %s\n",
1296                *chunk_->info()->function()->debug_name()->ToCString());
1297         PrintF("Value %d used before first definition!\n", operand_index);
1298         LiveRange* range = LiveRangeFor(operand_index);
1299         PrintF("First use is at %d\n", range->first_pos()->pos().Value());
1300         iterator.Advance();
1301       }
1302       ASSERT(!found);
1303     }
1304 #endif
1305   }
1306 }
1307 
1308 
SafePointsAreInOrder() const1309 bool LAllocator::SafePointsAreInOrder() const {
1310   const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
1311   int safe_point = 0;
1312   for (int i = 0; i < pointer_maps->length(); ++i) {
1313     LPointerMap* map = pointer_maps->at(i);
1314     if (safe_point > map->lithium_position()) return false;
1315     safe_point = map->lithium_position();
1316   }
1317   return true;
1318 }
1319 
1320 
PopulatePointerMaps()1321 void LAllocator::PopulatePointerMaps() {
1322   HPhase phase("Populate pointer maps", this);
1323   const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
1324 
1325   ASSERT(SafePointsAreInOrder());
1326 
1327   // Iterate over all safe point positions and record a pointer
1328   // for all spilled live ranges at this point.
1329   int first_safe_point_index = 0;
1330   int last_range_start = 0;
1331   for (int range_idx = 0; range_idx < live_ranges()->length(); ++range_idx) {
1332     LiveRange* range = live_ranges()->at(range_idx);
1333     if (range == NULL) continue;
1334     // Iterate over the first parts of multi-part live ranges.
1335     if (range->parent() != NULL) continue;
1336     // Skip non-pointer values.
1337     if (!HasTaggedValue(range->id())) continue;
1338     // Skip empty live ranges.
1339     if (range->IsEmpty()) continue;
1340 
1341     // Find the extent of the range and its children.
1342     int start = range->Start().InstructionIndex();
1343     int end = 0;
1344     for (LiveRange* cur = range; cur != NULL; cur = cur->next()) {
1345       LifetimePosition this_end = cur->End();
1346       if (this_end.InstructionIndex() > end) end = this_end.InstructionIndex();
1347       ASSERT(cur->Start().InstructionIndex() >= start);
1348     }
1349 
1350     // Most of the ranges are in order, but not all.  Keep an eye on when
1351     // they step backwards and reset the first_safe_point_index so we don't
1352     // miss any safe points.
1353     if (start < last_range_start) {
1354       first_safe_point_index = 0;
1355     }
1356     last_range_start = start;
1357 
1358     // Step across all the safe points that are before the start of this range,
1359     // recording how far we step in order to save doing this for the next range.
1360     while (first_safe_point_index < pointer_maps->length()) {
1361       LPointerMap* map = pointer_maps->at(first_safe_point_index);
1362       int safe_point = map->lithium_position();
1363       if (safe_point >= start) break;
1364       first_safe_point_index++;
1365     }
1366 
1367     // Step through the safe points to see whether they are in the range.
1368     for (int safe_point_index = first_safe_point_index;
1369          safe_point_index < pointer_maps->length();
1370          ++safe_point_index) {
1371       LPointerMap* map = pointer_maps->at(safe_point_index);
1372       int safe_point = map->lithium_position();
1373 
1374       // The safe points are sorted so we can stop searching here.
1375       if (safe_point - 1 > end) break;
1376 
1377       // Advance to the next active range that covers the current
1378       // safe point position.
1379       LifetimePosition safe_point_pos =
1380           LifetimePosition::FromInstructionIndex(safe_point);
1381       LiveRange* cur = range;
1382       while (cur != NULL && !cur->Covers(safe_point_pos.PrevInstruction())) {
1383         cur = cur->next();
1384       }
1385       if (cur == NULL) continue;
1386 
1387       // Check if the live range is spilled and the safe point is after
1388       // the spill position.
1389       if (range->HasAllocatedSpillOperand() &&
1390           safe_point >= range->spill_start_index()) {
1391         TraceAlloc("Pointer for range %d (spilled at %d) at safe point %d\n",
1392                    range->id(), range->spill_start_index(), safe_point);
1393         map->RecordPointer(range->GetSpillOperand());
1394       }
1395 
1396       if (!cur->IsSpilled()) {
1397         TraceAlloc("Pointer in register for range %d (start at %d) "
1398                    "at safe point %d\n",
1399                    cur->id(), cur->Start().Value(), safe_point);
1400         LOperand* operand = cur->CreateAssignedOperand();
1401         ASSERT(!operand->IsStackSlot());
1402         map->RecordPointer(operand);
1403       }
1404     }
1405   }
1406 }
1407 
1408 
ProcessOsrEntry()1409 void LAllocator::ProcessOsrEntry() {
1410   const ZoneList<LInstruction*>* instrs = chunk_->instructions();
1411 
1412   // Linear search for the OSR entry instruction in the chunk.
1413   int index = -1;
1414   while (++index < instrs->length() &&
1415          !instrs->at(index)->IsOsrEntry()) {
1416   }
1417   ASSERT(index < instrs->length());
1418   LOsrEntry* instruction = LOsrEntry::cast(instrs->at(index));
1419 
1420   LifetimePosition position = LifetimePosition::FromInstructionIndex(index);
1421   for (int i = 0; i < live_ranges()->length(); ++i) {
1422     LiveRange* range = live_ranges()->at(i);
1423     if (range != NULL) {
1424       if (range->Covers(position) &&
1425           range->HasRegisterAssigned() &&
1426           range->TopLevel()->HasAllocatedSpillOperand()) {
1427         int reg_index = range->assigned_register();
1428         LOperand* spill_operand = range->TopLevel()->GetSpillOperand();
1429         if (range->IsDouble()) {
1430           instruction->MarkSpilledDoubleRegister(reg_index, spill_operand);
1431         } else {
1432           instruction->MarkSpilledRegister(reg_index, spill_operand);
1433         }
1434       }
1435     }
1436   }
1437 }
1438 
1439 
AllocateGeneralRegisters()1440 void LAllocator::AllocateGeneralRegisters() {
1441   HPhase phase("Allocate general registers", this);
1442   num_registers_ = Register::kNumAllocatableRegisters;
1443   mode_ = GENERAL_REGISTERS;
1444   AllocateRegisters();
1445 }
1446 
1447 
AllocateDoubleRegisters()1448 void LAllocator::AllocateDoubleRegisters() {
1449   HPhase phase("Allocate double registers", this);
1450   num_registers_ = DoubleRegister::kNumAllocatableRegisters;
1451   mode_ = DOUBLE_REGISTERS;
1452   AllocateRegisters();
1453 }
1454 
1455 
AllocateRegisters()1456 void LAllocator::AllocateRegisters() {
1457   ASSERT(mode_ != NONE);
1458   ASSERT(unhandled_live_ranges_.is_empty());
1459 
1460   for (int i = 0; i < live_ranges_.length(); ++i) {
1461     if (live_ranges_[i] != NULL) {
1462       if (RequiredRegisterKind(live_ranges_[i]->id()) == mode_) {
1463         AddToUnhandledUnsorted(live_ranges_[i]);
1464       }
1465     }
1466   }
1467   SortUnhandled();
1468   ASSERT(UnhandledIsSorted());
1469 
1470   ASSERT(reusable_slots_.is_empty());
1471   ASSERT(active_live_ranges_.is_empty());
1472   ASSERT(inactive_live_ranges_.is_empty());
1473 
1474   if (mode_ == DOUBLE_REGISTERS) {
1475     for (int i = 0; i < fixed_double_live_ranges_.length(); ++i) {
1476       LiveRange* current = fixed_double_live_ranges_.at(i);
1477       if (current != NULL) {
1478         AddToInactive(current);
1479       }
1480     }
1481   } else {
1482     for (int i = 0; i < fixed_live_ranges_.length(); ++i) {
1483       LiveRange* current = fixed_live_ranges_.at(i);
1484       if (current != NULL) {
1485         AddToInactive(current);
1486       }
1487     }
1488   }
1489 
1490   while (!unhandled_live_ranges_.is_empty()) {
1491     ASSERT(UnhandledIsSorted());
1492     LiveRange* current = unhandled_live_ranges_.RemoveLast();
1493     ASSERT(UnhandledIsSorted());
1494     LifetimePosition position = current->Start();
1495     TraceAlloc("Processing interval %d start=%d\n",
1496                current->id(),
1497                position.Value());
1498 
1499     if (current->HasAllocatedSpillOperand()) {
1500       TraceAlloc("Live range %d already has a spill operand\n", current->id());
1501       LifetimePosition next_pos = position;
1502       if (IsGapAt(next_pos.InstructionIndex())) {
1503         next_pos = next_pos.NextInstruction();
1504       }
1505       UsePosition* pos = current->NextUsePositionRegisterIsBeneficial(next_pos);
1506       // If the range already has a spill operand and it doesn't need a
1507       // register immediately, split it and spill the first part of the range.
1508       if (pos == NULL) {
1509         Spill(current);
1510         continue;
1511       } else if (pos->pos().Value() >
1512                  current->Start().NextInstruction().Value()) {
1513         // Do not spill live range eagerly if use position that can benefit from
1514         // the register is too close to the start of live range.
1515         SpillBetween(current, current->Start(), pos->pos());
1516         ASSERT(UnhandledIsSorted());
1517         continue;
1518       }
1519     }
1520 
1521     for (int i = 0; i < active_live_ranges_.length(); ++i) {
1522       LiveRange* cur_active = active_live_ranges_.at(i);
1523       if (cur_active->End().Value() <= position.Value()) {
1524         ActiveToHandled(cur_active);
1525         --i;  // The live range was removed from the list of active live ranges.
1526       } else if (!cur_active->Covers(position)) {
1527         ActiveToInactive(cur_active);
1528         --i;  // The live range was removed from the list of active live ranges.
1529       }
1530     }
1531 
1532     for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1533       LiveRange* cur_inactive = inactive_live_ranges_.at(i);
1534       if (cur_inactive->End().Value() <= position.Value()) {
1535         InactiveToHandled(cur_inactive);
1536         --i;  // Live range was removed from the list of inactive live ranges.
1537       } else if (cur_inactive->Covers(position)) {
1538         InactiveToActive(cur_inactive);
1539         --i;  // Live range was removed from the list of inactive live ranges.
1540       }
1541     }
1542 
1543     ASSERT(!current->HasRegisterAssigned() && !current->IsSpilled());
1544 
1545     bool result = TryAllocateFreeReg(current);
1546     if (!result) {
1547       AllocateBlockedReg(current);
1548     }
1549 
1550     if (current->HasRegisterAssigned()) {
1551       AddToActive(current);
1552     }
1553   }
1554 
1555   reusable_slots_.Rewind(0);
1556   active_live_ranges_.Rewind(0);
1557   inactive_live_ranges_.Rewind(0);
1558 }
1559 
1560 
RegisterName(int allocation_index)1561 const char* LAllocator::RegisterName(int allocation_index) {
1562   ASSERT(mode_ != NONE);
1563   if (mode_ == GENERAL_REGISTERS) {
1564     return Register::AllocationIndexToString(allocation_index);
1565   } else {
1566     return DoubleRegister::AllocationIndexToString(allocation_index);
1567   }
1568 }
1569 
1570 
TraceAlloc(const char * msg,...)1571 void LAllocator::TraceAlloc(const char* msg, ...) {
1572   if (FLAG_trace_alloc) {
1573     va_list arguments;
1574     va_start(arguments, msg);
1575     OS::VPrint(msg, arguments);
1576     va_end(arguments);
1577   }
1578 }
1579 
1580 
HasTaggedValue(int virtual_register) const1581 bool LAllocator::HasTaggedValue(int virtual_register) const {
1582   HValue* value = graph_->LookupValue(virtual_register);
1583   if (value == NULL) return false;
1584   return value->representation().IsTagged();
1585 }
1586 
1587 
RequiredRegisterKind(int virtual_register) const1588 RegisterKind LAllocator::RequiredRegisterKind(int virtual_register) const {
1589   if (virtual_register < first_artificial_register_) {
1590     HValue* value = graph_->LookupValue(virtual_register);
1591     if (value != NULL && value->representation().IsDouble()) {
1592       return DOUBLE_REGISTERS;
1593     }
1594   } else if (double_artificial_registers_.Contains(
1595       virtual_register - first_artificial_register_)) {
1596     return DOUBLE_REGISTERS;
1597   }
1598 
1599   return GENERAL_REGISTERS;
1600 }
1601 
1602 
RecordDefinition(HInstruction * instr,LUnallocated * operand)1603 void LAllocator::RecordDefinition(HInstruction* instr, LUnallocated* operand) {
1604   operand->set_virtual_register(instr->id());
1605 }
1606 
1607 
RecordTemporary(LUnallocated * operand)1608 void LAllocator::RecordTemporary(LUnallocated* operand) {
1609   ASSERT(next_virtual_register_ < LUnallocated::kMaxVirtualRegisters);
1610   if (!operand->HasFixedPolicy()) {
1611     operand->set_virtual_register(next_virtual_register_++);
1612   }
1613 }
1614 
1615 
RecordUse(HValue * value,LUnallocated * operand)1616 void LAllocator::RecordUse(HValue* value, LUnallocated* operand) {
1617   operand->set_virtual_register(value->id());
1618 }
1619 
1620 
max_initial_value_ids()1621 int LAllocator::max_initial_value_ids() {
1622   return LUnallocated::kMaxVirtualRegisters / 32;
1623 }
1624 
1625 
AddToActive(LiveRange * range)1626 void LAllocator::AddToActive(LiveRange* range) {
1627   TraceAlloc("Add live range %d to active\n", range->id());
1628   active_live_ranges_.Add(range);
1629 }
1630 
1631 
AddToInactive(LiveRange * range)1632 void LAllocator::AddToInactive(LiveRange* range) {
1633   TraceAlloc("Add live range %d to inactive\n", range->id());
1634   inactive_live_ranges_.Add(range);
1635 }
1636 
1637 
AddToUnhandledSorted(LiveRange * range)1638 void LAllocator::AddToUnhandledSorted(LiveRange* range) {
1639   if (range == NULL || range->IsEmpty()) return;
1640   ASSERT(!range->HasRegisterAssigned() && !range->IsSpilled());
1641   for (int i = unhandled_live_ranges_.length() - 1; i >= 0; --i) {
1642     LiveRange* cur_range = unhandled_live_ranges_.at(i);
1643     if (range->ShouldBeAllocatedBefore(cur_range)) {
1644       TraceAlloc("Add live range %d to unhandled at %d\n", range->id(), i + 1);
1645       unhandled_live_ranges_.InsertAt(i + 1, range);
1646       ASSERT(UnhandledIsSorted());
1647       return;
1648     }
1649   }
1650   TraceAlloc("Add live range %d to unhandled at start\n", range->id());
1651   unhandled_live_ranges_.InsertAt(0, range);
1652   ASSERT(UnhandledIsSorted());
1653 }
1654 
1655 
AddToUnhandledUnsorted(LiveRange * range)1656 void LAllocator::AddToUnhandledUnsorted(LiveRange* range) {
1657   if (range == NULL || range->IsEmpty()) return;
1658   ASSERT(!range->HasRegisterAssigned() && !range->IsSpilled());
1659   TraceAlloc("Add live range %d to unhandled unsorted at end\n", range->id());
1660   unhandled_live_ranges_.Add(range);
1661 }
1662 
1663 
UnhandledSortHelper(LiveRange * const * a,LiveRange * const * b)1664 static int UnhandledSortHelper(LiveRange* const* a, LiveRange* const* b) {
1665   ASSERT(!(*a)->ShouldBeAllocatedBefore(*b) ||
1666          !(*b)->ShouldBeAllocatedBefore(*a));
1667   if ((*a)->ShouldBeAllocatedBefore(*b)) return 1;
1668   if ((*b)->ShouldBeAllocatedBefore(*a)) return -1;
1669   return (*a)->id() - (*b)->id();
1670 }
1671 
1672 
1673 // Sort the unhandled live ranges so that the ranges to be processed first are
1674 // at the end of the array list.  This is convenient for the register allocation
1675 // algorithm because it is efficient to remove elements from the end.
SortUnhandled()1676 void LAllocator::SortUnhandled() {
1677   TraceAlloc("Sort unhandled\n");
1678   unhandled_live_ranges_.Sort(&UnhandledSortHelper);
1679 }
1680 
1681 
UnhandledIsSorted()1682 bool LAllocator::UnhandledIsSorted() {
1683   int len = unhandled_live_ranges_.length();
1684   for (int i = 1; i < len; i++) {
1685     LiveRange* a = unhandled_live_ranges_.at(i - 1);
1686     LiveRange* b = unhandled_live_ranges_.at(i);
1687     if (a->Start().Value() < b->Start().Value()) return false;
1688   }
1689   return true;
1690 }
1691 
1692 
FreeSpillSlot(LiveRange * range)1693 void LAllocator::FreeSpillSlot(LiveRange* range) {
1694   // Check that we are the last range.
1695   if (range->next() != NULL) return;
1696 
1697   if (!range->TopLevel()->HasAllocatedSpillOperand()) return;
1698 
1699   int index = range->TopLevel()->GetSpillOperand()->index();
1700   if (index >= 0) {
1701     reusable_slots_.Add(range);
1702   }
1703 }
1704 
1705 
TryReuseSpillSlot(LiveRange * range)1706 LOperand* LAllocator::TryReuseSpillSlot(LiveRange* range) {
1707   if (reusable_slots_.is_empty()) return NULL;
1708   if (reusable_slots_.first()->End().Value() >
1709       range->TopLevel()->Start().Value()) {
1710     return NULL;
1711   }
1712   LOperand* result = reusable_slots_.first()->TopLevel()->GetSpillOperand();
1713   reusable_slots_.Remove(0);
1714   return result;
1715 }
1716 
1717 
ActiveToHandled(LiveRange * range)1718 void LAllocator::ActiveToHandled(LiveRange* range) {
1719   ASSERT(active_live_ranges_.Contains(range));
1720   active_live_ranges_.RemoveElement(range);
1721   TraceAlloc("Moving live range %d from active to handled\n", range->id());
1722   FreeSpillSlot(range);
1723 }
1724 
1725 
ActiveToInactive(LiveRange * range)1726 void LAllocator::ActiveToInactive(LiveRange* range) {
1727   ASSERT(active_live_ranges_.Contains(range));
1728   active_live_ranges_.RemoveElement(range);
1729   inactive_live_ranges_.Add(range);
1730   TraceAlloc("Moving live range %d from active to inactive\n", range->id());
1731 }
1732 
1733 
InactiveToHandled(LiveRange * range)1734 void LAllocator::InactiveToHandled(LiveRange* range) {
1735   ASSERT(inactive_live_ranges_.Contains(range));
1736   inactive_live_ranges_.RemoveElement(range);
1737   TraceAlloc("Moving live range %d from inactive to handled\n", range->id());
1738   FreeSpillSlot(range);
1739 }
1740 
1741 
InactiveToActive(LiveRange * range)1742 void LAllocator::InactiveToActive(LiveRange* range) {
1743   ASSERT(inactive_live_ranges_.Contains(range));
1744   inactive_live_ranges_.RemoveElement(range);
1745   active_live_ranges_.Add(range);
1746   TraceAlloc("Moving live range %d from inactive to active\n", range->id());
1747 }
1748 
1749 
1750 // TryAllocateFreeReg and AllocateBlockedReg assume this
1751 // when allocating local arrays.
1752 STATIC_ASSERT(DoubleRegister::kNumAllocatableRegisters >=
1753               Register::kNumAllocatableRegisters);
1754 
1755 
TryAllocateFreeReg(LiveRange * current)1756 bool LAllocator::TryAllocateFreeReg(LiveRange* current) {
1757   LifetimePosition free_until_pos[DoubleRegister::kNumAllocatableRegisters];
1758 
1759   for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; i++) {
1760     free_until_pos[i] = LifetimePosition::MaxPosition();
1761   }
1762 
1763   for (int i = 0; i < active_live_ranges_.length(); ++i) {
1764     LiveRange* cur_active = active_live_ranges_.at(i);
1765     free_until_pos[cur_active->assigned_register()] =
1766         LifetimePosition::FromInstructionIndex(0);
1767   }
1768 
1769   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1770     LiveRange* cur_inactive = inactive_live_ranges_.at(i);
1771     ASSERT(cur_inactive->End().Value() > current->Start().Value());
1772     LifetimePosition next_intersection =
1773         cur_inactive->FirstIntersection(current);
1774     if (!next_intersection.IsValid()) continue;
1775     int cur_reg = cur_inactive->assigned_register();
1776     free_until_pos[cur_reg] = Min(free_until_pos[cur_reg], next_intersection);
1777   }
1778 
1779   UsePosition* hinted_use = current->FirstPosWithHint();
1780   if (hinted_use != NULL) {
1781     LOperand* hint = hinted_use->hint();
1782     if (hint->IsRegister() || hint->IsDoubleRegister()) {
1783       int register_index = hint->index();
1784       TraceAlloc(
1785           "Found reg hint %s (free until [%d) for live range %d (end %d[).\n",
1786           RegisterName(register_index),
1787           free_until_pos[register_index].Value(),
1788           current->id(),
1789           current->End().Value());
1790 
1791       // The desired register is free until the end of the current live range.
1792       if (free_until_pos[register_index].Value() >= current->End().Value()) {
1793         TraceAlloc("Assigning preferred reg %s to live range %d\n",
1794                    RegisterName(register_index),
1795                    current->id());
1796         current->set_assigned_register(register_index, mode_);
1797         return true;
1798       }
1799     }
1800   }
1801 
1802   // Find the register which stays free for the longest time.
1803   int reg = 0;
1804   for (int i = 1; i < RegisterCount(); ++i) {
1805     if (free_until_pos[i].Value() > free_until_pos[reg].Value()) {
1806       reg = i;
1807     }
1808   }
1809 
1810   LifetimePosition pos = free_until_pos[reg];
1811 
1812   if (pos.Value() <= current->Start().Value()) {
1813     // All registers are blocked.
1814     return false;
1815   }
1816 
1817   if (pos.Value() < current->End().Value()) {
1818     // Register reg is available at the range start but becomes blocked before
1819     // the range end. Split current at position where it becomes blocked.
1820     LiveRange* tail = SplitAt(current, pos);
1821     AddToUnhandledSorted(tail);
1822   }
1823 
1824 
1825   // Register reg is available at the range start and is free until
1826   // the range end.
1827   ASSERT(pos.Value() >= current->End().Value());
1828   TraceAlloc("Assigning free reg %s to live range %d\n",
1829              RegisterName(reg),
1830              current->id());
1831   current->set_assigned_register(reg, mode_);
1832 
1833   return true;
1834 }
1835 
1836 
AllocateBlockedReg(LiveRange * current)1837 void LAllocator::AllocateBlockedReg(LiveRange* current) {
1838   UsePosition* register_use = current->NextRegisterPosition(current->Start());
1839   if (register_use == NULL) {
1840     // There is no use in the current live range that requires a register.
1841     // We can just spill it.
1842     Spill(current);
1843     return;
1844   }
1845 
1846 
1847   LifetimePosition use_pos[DoubleRegister::kNumAllocatableRegisters];
1848   LifetimePosition block_pos[DoubleRegister::kNumAllocatableRegisters];
1849 
1850   for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; i++) {
1851     use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition();
1852   }
1853 
1854   for (int i = 0; i < active_live_ranges_.length(); ++i) {
1855     LiveRange* range = active_live_ranges_[i];
1856     int cur_reg = range->assigned_register();
1857     if (range->IsFixed() || !range->CanBeSpilled(current->Start())) {
1858       block_pos[cur_reg] = use_pos[cur_reg] =
1859           LifetimePosition::FromInstructionIndex(0);
1860     } else {
1861       UsePosition* next_use = range->NextUsePositionRegisterIsBeneficial(
1862           current->Start());
1863       if (next_use == NULL) {
1864         use_pos[cur_reg] = range->End();
1865       } else {
1866         use_pos[cur_reg] = next_use->pos();
1867       }
1868     }
1869   }
1870 
1871   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1872     LiveRange* range = inactive_live_ranges_.at(i);
1873     ASSERT(range->End().Value() > current->Start().Value());
1874     LifetimePosition next_intersection = range->FirstIntersection(current);
1875     if (!next_intersection.IsValid()) continue;
1876     int cur_reg = range->assigned_register();
1877     if (range->IsFixed()) {
1878       block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection);
1879       use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]);
1880     } else {
1881       use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection);
1882     }
1883   }
1884 
1885   int reg = 0;
1886   for (int i = 1; i < RegisterCount(); ++i) {
1887     if (use_pos[i].Value() > use_pos[reg].Value()) {
1888       reg = i;
1889     }
1890   }
1891 
1892   LifetimePosition pos = use_pos[reg];
1893 
1894   if (pos.Value() < register_use->pos().Value()) {
1895     // All registers are blocked before the first use that requires a register.
1896     // Spill starting part of live range up to that use.
1897     //
1898     // Corner case: the first use position is equal to the start of the range.
1899     // In this case we have nothing to spill and SpillBetween will just return
1900     // this range to the list of unhandled ones. This will lead to the infinite
1901     // loop.
1902     ASSERT(current->Start().Value() < register_use->pos().Value());
1903     SpillBetween(current, current->Start(), register_use->pos());
1904     return;
1905   }
1906 
1907   if (block_pos[reg].Value() < current->End().Value()) {
1908     // Register becomes blocked before the current range end. Split before that
1909     // position.
1910     LiveRange* tail = SplitBetween(current,
1911                                    current->Start(),
1912                                    block_pos[reg].InstructionStart());
1913     AddToUnhandledSorted(tail);
1914   }
1915 
1916   // Register reg is not blocked for the whole range.
1917   ASSERT(block_pos[reg].Value() >= current->End().Value());
1918   TraceAlloc("Assigning blocked reg %s to live range %d\n",
1919              RegisterName(reg),
1920              current->id());
1921   current->set_assigned_register(reg, mode_);
1922 
1923   // This register was not free. Thus we need to find and spill
1924   // parts of active and inactive live regions that use the same register
1925   // at the same lifetime positions as current.
1926   SplitAndSpillIntersecting(current);
1927 }
1928 
1929 
SplitAndSpillIntersecting(LiveRange * current)1930 void LAllocator::SplitAndSpillIntersecting(LiveRange* current) {
1931   ASSERT(current->HasRegisterAssigned());
1932   int reg = current->assigned_register();
1933   LifetimePosition split_pos = current->Start();
1934   for (int i = 0; i < active_live_ranges_.length(); ++i) {
1935     LiveRange* range = active_live_ranges_[i];
1936     if (range->assigned_register() == reg) {
1937       UsePosition* next_pos = range->NextRegisterPosition(current->Start());
1938       if (next_pos == NULL) {
1939         SpillAfter(range, split_pos);
1940       } else {
1941         SpillBetween(range, split_pos, next_pos->pos());
1942       }
1943       ActiveToHandled(range);
1944       --i;
1945     }
1946   }
1947 
1948   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1949     LiveRange* range = inactive_live_ranges_[i];
1950     ASSERT(range->End().Value() > current->Start().Value());
1951     if (range->assigned_register() == reg && !range->IsFixed()) {
1952       LifetimePosition next_intersection = range->FirstIntersection(current);
1953       if (next_intersection.IsValid()) {
1954         UsePosition* next_pos = range->NextRegisterPosition(current->Start());
1955         if (next_pos == NULL) {
1956           SpillAfter(range, split_pos);
1957         } else {
1958           next_intersection = Min(next_intersection, next_pos->pos());
1959           SpillBetween(range, split_pos, next_intersection);
1960         }
1961         InactiveToHandled(range);
1962         --i;
1963       }
1964     }
1965   }
1966 }
1967 
1968 
IsBlockBoundary(LifetimePosition pos)1969 bool LAllocator::IsBlockBoundary(LifetimePosition pos) {
1970   return pos.IsInstructionStart() &&
1971       InstructionAt(pos.InstructionIndex())->IsLabel();
1972 }
1973 
1974 
SplitAt(LiveRange * range,LifetimePosition pos)1975 LiveRange* LAllocator::SplitAt(LiveRange* range, LifetimePosition pos) {
1976   ASSERT(!range->IsFixed());
1977   TraceAlloc("Splitting live range %d at %d\n", range->id(), pos.Value());
1978 
1979   if (pos.Value() <= range->Start().Value()) return range;
1980 
1981   // We can't properly connect liveranges if split occured at the end
1982   // of control instruction.
1983   ASSERT(pos.IsInstructionStart() ||
1984          !chunk_->instructions()->at(pos.InstructionIndex())->IsControl());
1985 
1986   LiveRange* result = LiveRangeFor(next_virtual_register_++);
1987   range->SplitAt(pos, result);
1988   return result;
1989 }
1990 
1991 
SplitBetween(LiveRange * range,LifetimePosition start,LifetimePosition end)1992 LiveRange* LAllocator::SplitBetween(LiveRange* range,
1993                                     LifetimePosition start,
1994                                     LifetimePosition end) {
1995   ASSERT(!range->IsFixed());
1996   TraceAlloc("Splitting live range %d in position between [%d, %d]\n",
1997              range->id(),
1998              start.Value(),
1999              end.Value());
2000 
2001   LifetimePosition split_pos = FindOptimalSplitPos(start, end);
2002   ASSERT(split_pos.Value() >= start.Value());
2003   return SplitAt(range, split_pos);
2004 }
2005 
2006 
FindOptimalSplitPos(LifetimePosition start,LifetimePosition end)2007 LifetimePosition LAllocator::FindOptimalSplitPos(LifetimePosition start,
2008                                                  LifetimePosition end) {
2009   int start_instr = start.InstructionIndex();
2010   int end_instr = end.InstructionIndex();
2011   ASSERT(start_instr <= end_instr);
2012 
2013   // We have no choice
2014   if (start_instr == end_instr) return end;
2015 
2016   HBasicBlock* end_block = GetBlock(start);
2017   HBasicBlock* start_block = GetBlock(end);
2018 
2019   if (end_block == start_block) {
2020     // The interval is split in the same basic block. Split at latest possible
2021     // position.
2022     return end;
2023   }
2024 
2025   HBasicBlock* block = end_block;
2026   // Find header of outermost loop.
2027   while (block->parent_loop_header() != NULL &&
2028       block->parent_loop_header()->block_id() > start_block->block_id()) {
2029     block = block->parent_loop_header();
2030   }
2031 
2032   if (block == end_block) return end;
2033 
2034   return LifetimePosition::FromInstructionIndex(
2035       block->first_instruction_index());
2036 }
2037 
2038 
SpillAfter(LiveRange * range,LifetimePosition pos)2039 void LAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) {
2040   LiveRange* second_part = SplitAt(range, pos);
2041   Spill(second_part);
2042 }
2043 
2044 
SpillBetween(LiveRange * range,LifetimePosition start,LifetimePosition end)2045 void LAllocator::SpillBetween(LiveRange* range,
2046                               LifetimePosition start,
2047                               LifetimePosition end) {
2048   ASSERT(start.Value() < end.Value());
2049   LiveRange* second_part = SplitAt(range, start);
2050 
2051   if (second_part->Start().Value() < end.Value()) {
2052     // The split result intersects with [start, end[.
2053     // Split it at position between ]start+1, end[, spill the middle part
2054     // and put the rest to unhandled.
2055     LiveRange* third_part = SplitBetween(
2056         second_part,
2057         second_part->Start().InstructionEnd(),
2058         end.PrevInstruction().InstructionEnd());
2059 
2060     ASSERT(third_part != second_part);
2061 
2062     Spill(second_part);
2063     AddToUnhandledSorted(third_part);
2064   } else {
2065     // The split result does not intersect with [start, end[.
2066     // Nothing to spill. Just put it to unhandled as whole.
2067     AddToUnhandledSorted(second_part);
2068   }
2069 }
2070 
2071 
Spill(LiveRange * range)2072 void LAllocator::Spill(LiveRange* range) {
2073   ASSERT(!range->IsSpilled());
2074   TraceAlloc("Spilling live range %d\n", range->id());
2075   LiveRange* first = range->TopLevel();
2076 
2077   if (!first->HasAllocatedSpillOperand()) {
2078     LOperand* op = TryReuseSpillSlot(range);
2079     if (op == NULL) op = chunk_->GetNextSpillSlot(mode_ == DOUBLE_REGISTERS);
2080     first->SetSpillOperand(op);
2081   }
2082   range->MakeSpilled();
2083 }
2084 
2085 
RegisterCount() const2086 int LAllocator::RegisterCount() const {
2087   return num_registers_;
2088 }
2089 
2090 
2091 #ifdef DEBUG
2092 
2093 
Verify() const2094 void LAllocator::Verify() const {
2095   for (int i = 0; i < live_ranges()->length(); ++i) {
2096     LiveRange* current = live_ranges()->at(i);
2097     if (current != NULL) current->Verify();
2098   }
2099 }
2100 
2101 
2102 #endif
2103 
2104 
2105 } }  // namespace v8::internal
2106