1 // Copyright 2006-2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #ifndef V8_SPACES_INL_H_
29 #define V8_SPACES_INL_H_
30
31 #include "isolate.h"
32 #include "spaces.h"
33 #include "v8memory.h"
34
35 namespace v8 {
36 namespace internal {
37
38
39 // -----------------------------------------------------------------------------
40 // PageIterator
41
has_next()42 bool PageIterator::has_next() {
43 return prev_page_ != stop_page_;
44 }
45
46
next()47 Page* PageIterator::next() {
48 ASSERT(has_next());
49 prev_page_ = (prev_page_ == NULL)
50 ? space_->first_page_
51 : prev_page_->next_page();
52 return prev_page_;
53 }
54
55
56 // -----------------------------------------------------------------------------
57 // Page
58
next_page()59 Page* Page::next_page() {
60 return heap_->isolate()->memory_allocator()->GetNextPage(this);
61 }
62
63
AllocationTop()64 Address Page::AllocationTop() {
65 PagedSpace* owner = heap_->isolate()->memory_allocator()->PageOwner(this);
66 return owner->PageAllocationTop(this);
67 }
68
69
AllocationWatermark()70 Address Page::AllocationWatermark() {
71 PagedSpace* owner = heap_->isolate()->memory_allocator()->PageOwner(this);
72 if (this == owner->AllocationTopPage()) {
73 return owner->top();
74 }
75 return address() + AllocationWatermarkOffset();
76 }
77
78
AllocationWatermarkOffset()79 uint32_t Page::AllocationWatermarkOffset() {
80 return static_cast<uint32_t>((flags_ & kAllocationWatermarkOffsetMask) >>
81 kAllocationWatermarkOffsetShift);
82 }
83
84
SetAllocationWatermark(Address allocation_watermark)85 void Page::SetAllocationWatermark(Address allocation_watermark) {
86 if ((heap_->gc_state() == Heap::SCAVENGE) && IsWatermarkValid()) {
87 // When iterating intergenerational references during scavenge
88 // we might decide to promote an encountered young object.
89 // We will allocate a space for such an object and put it
90 // into the promotion queue to process it later.
91 // If space for object was allocated somewhere beyond allocation
92 // watermark this might cause garbage pointers to appear under allocation
93 // watermark. To avoid visiting them during dirty regions iteration
94 // which might be still in progress we store a valid allocation watermark
95 // value and mark this page as having an invalid watermark.
96 SetCachedAllocationWatermark(AllocationWatermark());
97 InvalidateWatermark(true);
98 }
99
100 flags_ = (flags_ & kFlagsMask) |
101 Offset(allocation_watermark) << kAllocationWatermarkOffsetShift;
102 ASSERT(AllocationWatermarkOffset()
103 == static_cast<uint32_t>(Offset(allocation_watermark)));
104 }
105
106
SetCachedAllocationWatermark(Address allocation_watermark)107 void Page::SetCachedAllocationWatermark(Address allocation_watermark) {
108 mc_first_forwarded = allocation_watermark;
109 }
110
111
CachedAllocationWatermark()112 Address Page::CachedAllocationWatermark() {
113 return mc_first_forwarded;
114 }
115
116
GetRegionMarks()117 uint32_t Page::GetRegionMarks() {
118 return dirty_regions_;
119 }
120
121
SetRegionMarks(uint32_t marks)122 void Page::SetRegionMarks(uint32_t marks) {
123 dirty_regions_ = marks;
124 }
125
126
GetRegionNumberForAddress(Address addr)127 int Page::GetRegionNumberForAddress(Address addr) {
128 // Each page is divided into 256 byte regions. Each region has a corresponding
129 // dirty mark bit in the page header. Region can contain intergenerational
130 // references iff its dirty mark is set.
131 // A normal 8K page contains exactly 32 regions so all region marks fit
132 // into 32-bit integer field. To calculate a region number we just divide
133 // offset inside page by region size.
134 // A large page can contain more then 32 regions. But we want to avoid
135 // additional write barrier code for distinguishing between large and normal
136 // pages so we just ignore the fact that addr points into a large page and
137 // calculate region number as if addr pointed into a normal 8K page. This way
138 // we get a region number modulo 32 so for large pages several regions might
139 // be mapped to a single dirty mark.
140 ASSERT_PAGE_ALIGNED(this->address());
141 STATIC_ASSERT((kPageAlignmentMask >> kRegionSizeLog2) < kBitsPerInt);
142
143 // We are using masking with kPageAlignmentMask instead of Page::Offset()
144 // to get an offset to the beginning of 8K page containing addr not to the
145 // beginning of actual page which can be bigger then 8K.
146 intptr_t offset_inside_normal_page = OffsetFrom(addr) & kPageAlignmentMask;
147 return static_cast<int>(offset_inside_normal_page >> kRegionSizeLog2);
148 }
149
150
GetRegionMaskForAddress(Address addr)151 uint32_t Page::GetRegionMaskForAddress(Address addr) {
152 return 1 << GetRegionNumberForAddress(addr);
153 }
154
155
GetRegionMaskForSpan(Address start,int length_in_bytes)156 uint32_t Page::GetRegionMaskForSpan(Address start, int length_in_bytes) {
157 uint32_t result = 0;
158 if (length_in_bytes >= kPageSize) {
159 result = kAllRegionsDirtyMarks;
160 } else if (length_in_bytes > 0) {
161 int start_region = GetRegionNumberForAddress(start);
162 int end_region =
163 GetRegionNumberForAddress(start + length_in_bytes - kPointerSize);
164 uint32_t start_mask = (~0) << start_region;
165 uint32_t end_mask = ~((~1) << end_region);
166 result = start_mask & end_mask;
167 // if end_region < start_region, the mask is ored.
168 if (result == 0) result = start_mask | end_mask;
169 }
170 #ifdef DEBUG
171 if (FLAG_enable_slow_asserts) {
172 uint32_t expected = 0;
173 for (Address a = start; a < start + length_in_bytes; a += kPointerSize) {
174 expected |= GetRegionMaskForAddress(a);
175 }
176 ASSERT(expected == result);
177 }
178 #endif
179 return result;
180 }
181
182
MarkRegionDirty(Address address)183 void Page::MarkRegionDirty(Address address) {
184 SetRegionMarks(GetRegionMarks() | GetRegionMaskForAddress(address));
185 }
186
187
IsRegionDirty(Address address)188 bool Page::IsRegionDirty(Address address) {
189 return GetRegionMarks() & GetRegionMaskForAddress(address);
190 }
191
192
ClearRegionMarks(Address start,Address end,bool reaches_limit)193 void Page::ClearRegionMarks(Address start, Address end, bool reaches_limit) {
194 int rstart = GetRegionNumberForAddress(start);
195 int rend = GetRegionNumberForAddress(end);
196
197 if (reaches_limit) {
198 end += 1;
199 }
200
201 if ((rend - rstart) == 0) {
202 return;
203 }
204
205 uint32_t bitmask = 0;
206
207 if ((OffsetFrom(start) & kRegionAlignmentMask) == 0
208 || (start == ObjectAreaStart())) {
209 // First region is fully covered
210 bitmask = 1 << rstart;
211 }
212
213 while (++rstart < rend) {
214 bitmask |= 1 << rstart;
215 }
216
217 if (bitmask) {
218 SetRegionMarks(GetRegionMarks() & ~bitmask);
219 }
220 }
221
222
FlipMeaningOfInvalidatedWatermarkFlag(Heap * heap)223 void Page::FlipMeaningOfInvalidatedWatermarkFlag(Heap* heap) {
224 heap->page_watermark_invalidated_mark_ ^= 1 << WATERMARK_INVALIDATED;
225 }
226
227
IsWatermarkValid()228 bool Page::IsWatermarkValid() {
229 return (flags_ & (1 << WATERMARK_INVALIDATED)) !=
230 heap_->page_watermark_invalidated_mark_;
231 }
232
233
InvalidateWatermark(bool value)234 void Page::InvalidateWatermark(bool value) {
235 if (value) {
236 flags_ = (flags_ & ~(1 << WATERMARK_INVALIDATED)) |
237 heap_->page_watermark_invalidated_mark_;
238 } else {
239 flags_ =
240 (flags_ & ~(1 << WATERMARK_INVALIDATED)) |
241 (heap_->page_watermark_invalidated_mark_ ^
242 (1 << WATERMARK_INVALIDATED));
243 }
244
245 ASSERT(IsWatermarkValid() == !value);
246 }
247
248
GetPageFlag(PageFlag flag)249 bool Page::GetPageFlag(PageFlag flag) {
250 return (flags_ & static_cast<intptr_t>(1 << flag)) != 0;
251 }
252
253
SetPageFlag(PageFlag flag,bool value)254 void Page::SetPageFlag(PageFlag flag, bool value) {
255 if (value) {
256 flags_ |= static_cast<intptr_t>(1 << flag);
257 } else {
258 flags_ &= ~static_cast<intptr_t>(1 << flag);
259 }
260 }
261
262
ClearPageFlags()263 void Page::ClearPageFlags() {
264 flags_ = 0;
265 }
266
267
ClearGCFields()268 void Page::ClearGCFields() {
269 InvalidateWatermark(true);
270 SetAllocationWatermark(ObjectAreaStart());
271 if (heap_->gc_state() == Heap::SCAVENGE) {
272 SetCachedAllocationWatermark(ObjectAreaStart());
273 }
274 SetRegionMarks(kAllRegionsCleanMarks);
275 }
276
277
WasInUseBeforeMC()278 bool Page::WasInUseBeforeMC() {
279 return GetPageFlag(WAS_IN_USE_BEFORE_MC);
280 }
281
282
SetWasInUseBeforeMC(bool was_in_use)283 void Page::SetWasInUseBeforeMC(bool was_in_use) {
284 SetPageFlag(WAS_IN_USE_BEFORE_MC, was_in_use);
285 }
286
287
IsLargeObjectPage()288 bool Page::IsLargeObjectPage() {
289 return !GetPageFlag(IS_NORMAL_PAGE);
290 }
291
292
SetIsLargeObjectPage(bool is_large_object_page)293 void Page::SetIsLargeObjectPage(bool is_large_object_page) {
294 SetPageFlag(IS_NORMAL_PAGE, !is_large_object_page);
295 }
296
IsPageExecutable()297 bool Page::IsPageExecutable() {
298 return GetPageFlag(IS_EXECUTABLE);
299 }
300
301
SetIsPageExecutable(bool is_page_executable)302 void Page::SetIsPageExecutable(bool is_page_executable) {
303 SetPageFlag(IS_EXECUTABLE, is_page_executable);
304 }
305
306
307 // -----------------------------------------------------------------------------
308 // MemoryAllocator
309
init(Address a,size_t s,PagedSpace * o)310 void MemoryAllocator::ChunkInfo::init(Address a, size_t s, PagedSpace* o) {
311 address_ = a;
312 size_ = s;
313 owner_ = o;
314 executable_ = (o == NULL) ? NOT_EXECUTABLE : o->executable();
315 owner_identity_ = (o == NULL) ? FIRST_SPACE : o->identity();
316 }
317
318
IsValidChunk(int chunk_id)319 bool MemoryAllocator::IsValidChunk(int chunk_id) {
320 if (!IsValidChunkId(chunk_id)) return false;
321
322 ChunkInfo& c = chunks_[chunk_id];
323 return (c.address() != NULL) && (c.size() != 0) && (c.owner() != NULL);
324 }
325
326
IsValidChunkId(int chunk_id)327 bool MemoryAllocator::IsValidChunkId(int chunk_id) {
328 return (0 <= chunk_id) && (chunk_id < max_nof_chunks_);
329 }
330
331
IsPageInSpace(Page * p,PagedSpace * space)332 bool MemoryAllocator::IsPageInSpace(Page* p, PagedSpace* space) {
333 ASSERT(p->is_valid());
334
335 int chunk_id = GetChunkId(p);
336 if (!IsValidChunkId(chunk_id)) return false;
337
338 ChunkInfo& c = chunks_[chunk_id];
339 return (c.address() <= p->address()) &&
340 (p->address() < c.address() + c.size()) &&
341 (space == c.owner());
342 }
343
344
GetNextPage(Page * p)345 Page* MemoryAllocator::GetNextPage(Page* p) {
346 ASSERT(p->is_valid());
347 intptr_t raw_addr = p->opaque_header & ~Page::kPageAlignmentMask;
348 return Page::FromAddress(AddressFrom<Address>(raw_addr));
349 }
350
351
GetChunkId(Page * p)352 int MemoryAllocator::GetChunkId(Page* p) {
353 ASSERT(p->is_valid());
354 return static_cast<int>(p->opaque_header & Page::kPageAlignmentMask);
355 }
356
357
SetNextPage(Page * prev,Page * next)358 void MemoryAllocator::SetNextPage(Page* prev, Page* next) {
359 ASSERT(prev->is_valid());
360 int chunk_id = GetChunkId(prev);
361 ASSERT_PAGE_ALIGNED(next->address());
362 prev->opaque_header = OffsetFrom(next->address()) | chunk_id;
363 }
364
365
PageOwner(Page * page)366 PagedSpace* MemoryAllocator::PageOwner(Page* page) {
367 int chunk_id = GetChunkId(page);
368 ASSERT(IsValidChunk(chunk_id));
369 return chunks_[chunk_id].owner();
370 }
371
372
InInitialChunk(Address address)373 bool MemoryAllocator::InInitialChunk(Address address) {
374 if (initial_chunk_ == NULL) return false;
375
376 Address start = static_cast<Address>(initial_chunk_->address());
377 return (start <= address) && (address < start + initial_chunk_->size());
378 }
379
380
381 #ifdef ENABLE_HEAP_PROTECTION
382
Protect(Address start,size_t size)383 void MemoryAllocator::Protect(Address start, size_t size) {
384 OS::Protect(start, size);
385 }
386
387
Unprotect(Address start,size_t size,Executability executable)388 void MemoryAllocator::Unprotect(Address start,
389 size_t size,
390 Executability executable) {
391 OS::Unprotect(start, size, executable);
392 }
393
394
ProtectChunkFromPage(Page * page)395 void MemoryAllocator::ProtectChunkFromPage(Page* page) {
396 int id = GetChunkId(page);
397 OS::Protect(chunks_[id].address(), chunks_[id].size());
398 }
399
400
UnprotectChunkFromPage(Page * page)401 void MemoryAllocator::UnprotectChunkFromPage(Page* page) {
402 int id = GetChunkId(page);
403 OS::Unprotect(chunks_[id].address(), chunks_[id].size(),
404 chunks_[id].owner()->executable() == EXECUTABLE);
405 }
406
407 #endif
408
409
410 // --------------------------------------------------------------------------
411 // PagedSpace
412
Contains(Address addr)413 bool PagedSpace::Contains(Address addr) {
414 Page* p = Page::FromAddress(addr);
415 if (!p->is_valid()) return false;
416 return heap()->isolate()->memory_allocator()->IsPageInSpace(p, this);
417 }
418
419
420 // Try linear allocation in the page of alloc_info's allocation top. Does
421 // not contain slow case logic (eg, move to the next page or try free list
422 // allocation) so it can be used by all the allocation functions and for all
423 // the paged spaces.
AllocateLinearly(AllocationInfo * alloc_info,int size_in_bytes)424 HeapObject* PagedSpace::AllocateLinearly(AllocationInfo* alloc_info,
425 int size_in_bytes) {
426 Address current_top = alloc_info->top;
427 Address new_top = current_top + size_in_bytes;
428 if (new_top > alloc_info->limit) return NULL;
429
430 alloc_info->top = new_top;
431 ASSERT(alloc_info->VerifyPagedAllocation());
432 accounting_stats_.AllocateBytes(size_in_bytes);
433 return HeapObject::FromAddress(current_top);
434 }
435
436
437 // Raw allocation.
AllocateRaw(int size_in_bytes)438 MaybeObject* PagedSpace::AllocateRaw(int size_in_bytes) {
439 ASSERT(HasBeenSetup());
440 ASSERT_OBJECT_SIZE(size_in_bytes);
441 HeapObject* object = AllocateLinearly(&allocation_info_, size_in_bytes);
442 if (object != NULL) return object;
443
444 object = SlowAllocateRaw(size_in_bytes);
445 if (object != NULL) return object;
446
447 return Failure::RetryAfterGC(identity());
448 }
449
450
451 // Reallocating (and promoting) objects during a compacting collection.
MCAllocateRaw(int size_in_bytes)452 MaybeObject* PagedSpace::MCAllocateRaw(int size_in_bytes) {
453 ASSERT(HasBeenSetup());
454 ASSERT_OBJECT_SIZE(size_in_bytes);
455 HeapObject* object = AllocateLinearly(&mc_forwarding_info_, size_in_bytes);
456 if (object != NULL) return object;
457
458 object = SlowMCAllocateRaw(size_in_bytes);
459 if (object != NULL) return object;
460
461 return Failure::RetryAfterGC(identity());
462 }
463
464
465 // -----------------------------------------------------------------------------
466 // LargeObjectChunk
467
GetStartAddress()468 Address LargeObjectChunk::GetStartAddress() {
469 // Round the chunk address up to the nearest page-aligned address
470 // and return the heap object in that page.
471 Page* page = Page::FromAddress(RoundUp(address(), Page::kPageSize));
472 return page->ObjectAreaStart();
473 }
474
475
Free(Executability executable)476 void LargeObjectChunk::Free(Executability executable) {
477 Isolate* isolate =
478 Page::FromAddress(RoundUp(address(), Page::kPageSize))->heap_->isolate();
479 isolate->memory_allocator()->FreeRawMemory(address(), size(), executable);
480 }
481
482 // -----------------------------------------------------------------------------
483 // NewSpace
484
AllocateRawInternal(int size_in_bytes,AllocationInfo * alloc_info)485 MaybeObject* NewSpace::AllocateRawInternal(int size_in_bytes,
486 AllocationInfo* alloc_info) {
487 Address new_top = alloc_info->top + size_in_bytes;
488 if (new_top > alloc_info->limit) return Failure::RetryAfterGC();
489
490 Object* obj = HeapObject::FromAddress(alloc_info->top);
491 alloc_info->top = new_top;
492 #ifdef DEBUG
493 SemiSpace* space =
494 (alloc_info == &allocation_info_) ? &to_space_ : &from_space_;
495 ASSERT(space->low() <= alloc_info->top
496 && alloc_info->top <= space->high()
497 && alloc_info->limit == space->high());
498 #endif
499 return obj;
500 }
501
502
Available()503 intptr_t LargeObjectSpace::Available() {
504 return LargeObjectChunk::ObjectSizeFor(
505 heap()->isolate()->memory_allocator()->Available());
506 }
507
508
509 template <typename StringType>
ShrinkStringAtAllocationBoundary(String * string,int length)510 void NewSpace::ShrinkStringAtAllocationBoundary(String* string, int length) {
511 ASSERT(length <= string->length());
512 ASSERT(string->IsSeqString());
513 ASSERT(string->address() + StringType::SizeFor(string->length()) ==
514 allocation_info_.top);
515 allocation_info_.top =
516 string->address() + StringType::SizeFor(length);
517 string->set_length(length);
518 }
519
520
IsFreeListNode(HeapObject * object)521 bool FreeListNode::IsFreeListNode(HeapObject* object) {
522 return object->map() == HEAP->raw_unchecked_byte_array_map()
523 || object->map() == HEAP->raw_unchecked_one_pointer_filler_map()
524 || object->map() == HEAP->raw_unchecked_two_pointer_filler_map();
525 }
526
527 } } // namespace v8::internal
528
529 #endif // V8_SPACES_INL_H_
530