• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef CODEGEN_DAGPATTERNS_H
16 #define CODEGEN_DAGPATTERNS_H
17 
18 #include "CodeGenTarget.h"
19 #include "CodeGenIntrinsics.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringMap.h"
22 #include <set>
23 #include <algorithm>
24 #include <vector>
25 #include <map>
26 
27 namespace llvm {
28   class Record;
29   class Init;
30   class ListInit;
31   class DagInit;
32   class SDNodeInfo;
33   class TreePattern;
34   class TreePatternNode;
35   class CodeGenDAGPatterns;
36   class ComplexPattern;
37 
38 /// EEVT::DAGISelGenValueType - These are some extended forms of
39 /// MVT::SimpleValueType that we use as lattice values during type inference.
40 /// The existing MVT iAny, fAny and vAny types suffice to represent
41 /// arbitrary integer, floating-point, and vector types, so only an unknown
42 /// value is needed.
43 namespace EEVT {
44   /// TypeSet - This is either empty if it's completely unknown, or holds a set
45   /// of types.  It is used during type inference because register classes can
46   /// have multiple possible types and we don't know which one they get until
47   /// type inference is complete.
48   ///
49   /// TypeSet can have three states:
50   ///    Vector is empty: The type is completely unknown, it can be any valid
51   ///       target type.
52   ///    Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one
53   ///       of those types only.
54   ///    Vector has one concrete type: The type is completely known.
55   ///
56   class TypeSet {
57     SmallVector<MVT::SimpleValueType, 4> TypeVec;
58   public:
TypeSet()59     TypeSet() {}
60     TypeSet(MVT::SimpleValueType VT, TreePattern &TP);
61     TypeSet(const std::vector<MVT::SimpleValueType> &VTList);
62 
isCompletelyUnknown()63     bool isCompletelyUnknown() const { return TypeVec.empty(); }
64 
isConcrete()65     bool isConcrete() const {
66       if (TypeVec.size() != 1) return false;
67       unsigned char T = TypeVec[0]; (void)T;
68       assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny);
69       return true;
70     }
71 
getConcrete()72     MVT::SimpleValueType getConcrete() const {
73       assert(isConcrete() && "Type isn't concrete yet");
74       return (MVT::SimpleValueType)TypeVec[0];
75     }
76 
isDynamicallyResolved()77     bool isDynamicallyResolved() const {
78       return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny;
79     }
80 
getTypeList()81     const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const {
82       assert(!TypeVec.empty() && "Not a type list!");
83       return TypeVec;
84     }
85 
isVoid()86     bool isVoid() const {
87       return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid;
88     }
89 
90     /// hasIntegerTypes - Return true if this TypeSet contains any integer value
91     /// types.
92     bool hasIntegerTypes() const;
93 
94     /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
95     /// a floating point value type.
96     bool hasFloatingPointTypes() const;
97 
98     /// hasVectorTypes - Return true if this TypeSet contains a vector value
99     /// type.
100     bool hasVectorTypes() const;
101 
102     /// getName() - Return this TypeSet as a string.
103     std::string getName() const;
104 
105     /// MergeInTypeInfo - This merges in type information from the specified
106     /// argument.  If 'this' changes, it returns true.  If the two types are
107     /// contradictory (e.g. merge f32 into i32) then this throws an exception.
108     bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP);
109 
MergeInTypeInfo(MVT::SimpleValueType InVT,TreePattern & TP)110     bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) {
111       return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP);
112     }
113 
114     /// Force this type list to only contain integer types.
115     bool EnforceInteger(TreePattern &TP);
116 
117     /// Force this type list to only contain floating point types.
118     bool EnforceFloatingPoint(TreePattern &TP);
119 
120     /// EnforceScalar - Remove all vector types from this type list.
121     bool EnforceScalar(TreePattern &TP);
122 
123     /// EnforceVector - Remove all non-vector types from this type list.
124     bool EnforceVector(TreePattern &TP);
125 
126     /// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
127     /// this an other based on this information.
128     bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP);
129 
130     /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
131     /// whose element is VT.
132     bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
133 
134     /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to
135     /// be a vector type VT.
136     bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
137 
138     bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; }
139     bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; }
140 
141   private:
142     /// FillWithPossibleTypes - Set to all legal types and return true, only
143     /// valid on completely unknown type sets.  If Pred is non-null, only MVTs
144     /// that pass the predicate are added.
145     bool FillWithPossibleTypes(TreePattern &TP,
146                                bool (*Pred)(MVT::SimpleValueType) = 0,
147                                const char *PredicateName = 0);
148   };
149 }
150 
151 /// Set type used to track multiply used variables in patterns
152 typedef std::set<std::string> MultipleUseVarSet;
153 
154 /// SDTypeConstraint - This is a discriminated union of constraints,
155 /// corresponding to the SDTypeConstraint tablegen class in Target.td.
156 struct SDTypeConstraint {
157   SDTypeConstraint(Record *R);
158 
159   unsigned OperandNo;   // The operand # this constraint applies to.
160   enum {
161     SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
162     SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
163     SDTCisSubVecOfVec
164   } ConstraintType;
165 
166   union {   // The discriminated union.
167     struct {
168       MVT::SimpleValueType VT;
169     } SDTCisVT_Info;
170     struct {
171       unsigned OtherOperandNum;
172     } SDTCisSameAs_Info;
173     struct {
174       unsigned OtherOperandNum;
175     } SDTCisVTSmallerThanOp_Info;
176     struct {
177       unsigned BigOperandNum;
178     } SDTCisOpSmallerThanOp_Info;
179     struct {
180       unsigned OtherOperandNum;
181     } SDTCisEltOfVec_Info;
182     struct {
183       unsigned OtherOperandNum;
184     } SDTCisSubVecOfVec_Info;
185   } x;
186 
187   /// ApplyTypeConstraint - Given a node in a pattern, apply this type
188   /// constraint to the nodes operands.  This returns true if it makes a
189   /// change, false otherwise.  If a type contradiction is found, throw an
190   /// exception.
191   bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
192                            TreePattern &TP) const;
193 };
194 
195 /// SDNodeInfo - One of these records is created for each SDNode instance in
196 /// the target .td file.  This represents the various dag nodes we will be
197 /// processing.
198 class SDNodeInfo {
199   Record *Def;
200   std::string EnumName;
201   std::string SDClassName;
202   unsigned Properties;
203   unsigned NumResults;
204   int NumOperands;
205   std::vector<SDTypeConstraint> TypeConstraints;
206 public:
207   SDNodeInfo(Record *R);  // Parse the specified record.
208 
getNumResults()209   unsigned getNumResults() const { return NumResults; }
210 
211   /// getNumOperands - This is the number of operands required or -1 if
212   /// variadic.
getNumOperands()213   int getNumOperands() const { return NumOperands; }
getRecord()214   Record *getRecord() const { return Def; }
getEnumName()215   const std::string &getEnumName() const { return EnumName; }
getSDClassName()216   const std::string &getSDClassName() const { return SDClassName; }
217 
getTypeConstraints()218   const std::vector<SDTypeConstraint> &getTypeConstraints() const {
219     return TypeConstraints;
220   }
221 
222   /// getKnownType - If the type constraints on this node imply a fixed type
223   /// (e.g. all stores return void, etc), then return it as an
224   /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
225   MVT::SimpleValueType getKnownType(unsigned ResNo) const;
226 
227   /// hasProperty - Return true if this node has the specified property.
228   ///
hasProperty(enum SDNP Prop)229   bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
230 
231   /// ApplyTypeConstraints - Given a node in a pattern, apply the type
232   /// constraints for this node to the operands of the node.  This returns
233   /// true if it makes a change, false otherwise.  If a type contradiction is
234   /// found, throw an exception.
ApplyTypeConstraints(TreePatternNode * N,TreePattern & TP)235   bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const {
236     bool MadeChange = false;
237     for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
238       MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
239     return MadeChange;
240   }
241 };
242 
243 /// TreePredicateFn - This is an abstraction that represents the predicates on
244 /// a PatFrag node.  This is a simple one-word wrapper around a pointer to
245 /// provide nice accessors.
246 class TreePredicateFn {
247   /// PatFragRec - This is the TreePattern for the PatFrag that we
248   /// originally came from.
249   TreePattern *PatFragRec;
250 public:
251   /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
252   TreePredicateFn(TreePattern *N);
253 
254 
getOrigPatFragRecord()255   TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
256 
257   /// isAlwaysTrue - Return true if this is a noop predicate.
258   bool isAlwaysTrue() const;
259 
isImmediatePattern()260   bool isImmediatePattern() const { return !getImmCode().empty(); }
261 
262   /// getImmediatePredicateCode - Return the code that evaluates this pattern if
263   /// this is an immediate predicate.  It is an error to call this on a
264   /// non-immediate pattern.
getImmediatePredicateCode()265   std::string getImmediatePredicateCode() const {
266     std::string Result = getImmCode();
267     assert(!Result.empty() && "Isn't an immediate pattern!");
268     return Result;
269   }
270 
271 
272   bool operator==(const TreePredicateFn &RHS) const {
273     return PatFragRec == RHS.PatFragRec;
274   }
275 
276   bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
277 
278   /// Return the name to use in the generated code to reference this, this is
279   /// "Predicate_foo" if from a pattern fragment "foo".
280   std::string getFnName() const;
281 
282   /// getCodeToRunOnSDNode - Return the code for the function body that
283   /// evaluates this predicate.  The argument is expected to be in "Node",
284   /// not N.  This handles casting and conversion to a concrete node type as
285   /// appropriate.
286   std::string getCodeToRunOnSDNode() const;
287 
288 private:
289   std::string getPredCode() const;
290   std::string getImmCode() const;
291 };
292 
293 
294 /// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped
295 /// patterns), and as such should be ref counted.  We currently just leak all
296 /// TreePatternNode objects!
297 class TreePatternNode {
298   /// The type of each node result.  Before and during type inference, each
299   /// result may be a set of possible types.  After (successful) type inference,
300   /// each is a single concrete type.
301   SmallVector<EEVT::TypeSet, 1> Types;
302 
303   /// Operator - The Record for the operator if this is an interior node (not
304   /// a leaf).
305   Record *Operator;
306 
307   /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
308   ///
309   Init *Val;
310 
311   /// Name - The name given to this node with the :$foo notation.
312   ///
313   std::string Name;
314 
315   /// PredicateFns - The predicate functions to execute on this node to check
316   /// for a match.  If this list is empty, no predicate is involved.
317   std::vector<TreePredicateFn> PredicateFns;
318 
319   /// TransformFn - The transformation function to execute on this node before
320   /// it can be substituted into the resulting instruction on a pattern match.
321   Record *TransformFn;
322 
323   std::vector<TreePatternNode*> Children;
324 public:
TreePatternNode(Record * Op,const std::vector<TreePatternNode * > & Ch,unsigned NumResults)325   TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch,
326                   unsigned NumResults)
327     : Operator(Op), Val(0), TransformFn(0), Children(Ch) {
328     Types.resize(NumResults);
329   }
TreePatternNode(Init * val,unsigned NumResults)330   TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
331     : Operator(0), Val(val), TransformFn(0) {
332     Types.resize(NumResults);
333   }
334   ~TreePatternNode();
335 
getName()336   const std::string &getName() const { return Name; }
setName(StringRef N)337   void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
338 
isLeaf()339   bool isLeaf() const { return Val != 0; }
340 
341   // Type accessors.
getNumTypes()342   unsigned getNumTypes() const { return Types.size(); }
getType(unsigned ResNo)343   MVT::SimpleValueType getType(unsigned ResNo) const {
344     return Types[ResNo].getConcrete();
345   }
getExtTypes()346   const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; }
getExtType(unsigned ResNo)347   const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; }
getExtType(unsigned ResNo)348   EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; }
setType(unsigned ResNo,const EEVT::TypeSet & T)349   void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; }
350 
hasTypeSet(unsigned ResNo)351   bool hasTypeSet(unsigned ResNo) const {
352     return Types[ResNo].isConcrete();
353   }
isTypeCompletelyUnknown(unsigned ResNo)354   bool isTypeCompletelyUnknown(unsigned ResNo) const {
355     return Types[ResNo].isCompletelyUnknown();
356   }
isTypeDynamicallyResolved(unsigned ResNo)357   bool isTypeDynamicallyResolved(unsigned ResNo) const {
358     return Types[ResNo].isDynamicallyResolved();
359   }
360 
getLeafValue()361   Init *getLeafValue() const { assert(isLeaf()); return Val; }
getOperator()362   Record *getOperator() const { assert(!isLeaf()); return Operator; }
363 
getNumChildren()364   unsigned getNumChildren() const { return Children.size(); }
getChild(unsigned N)365   TreePatternNode *getChild(unsigned N) const { return Children[N]; }
setChild(unsigned i,TreePatternNode * N)366   void setChild(unsigned i, TreePatternNode *N) {
367     Children[i] = N;
368   }
369 
370   /// hasChild - Return true if N is any of our children.
hasChild(const TreePatternNode * N)371   bool hasChild(const TreePatternNode *N) const {
372     for (unsigned i = 0, e = Children.size(); i != e; ++i)
373       if (Children[i] == N) return true;
374     return false;
375   }
376 
hasAnyPredicate()377   bool hasAnyPredicate() const { return !PredicateFns.empty(); }
378 
getPredicateFns()379   const std::vector<TreePredicateFn> &getPredicateFns() const {
380     return PredicateFns;
381   }
clearPredicateFns()382   void clearPredicateFns() { PredicateFns.clear(); }
setPredicateFns(const std::vector<TreePredicateFn> & Fns)383   void setPredicateFns(const std::vector<TreePredicateFn> &Fns) {
384     assert(PredicateFns.empty() && "Overwriting non-empty predicate list!");
385     PredicateFns = Fns;
386   }
addPredicateFn(const TreePredicateFn & Fn)387   void addPredicateFn(const TreePredicateFn &Fn) {
388     assert(!Fn.isAlwaysTrue() && "Empty predicate string!");
389     if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) ==
390           PredicateFns.end())
391       PredicateFns.push_back(Fn);
392   }
393 
getTransformFn()394   Record *getTransformFn() const { return TransformFn; }
setTransformFn(Record * Fn)395   void setTransformFn(Record *Fn) { TransformFn = Fn; }
396 
397   /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
398   /// CodeGenIntrinsic information for it, otherwise return a null pointer.
399   const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
400 
401   /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
402   /// return the ComplexPattern information, otherwise return null.
403   const ComplexPattern *
404   getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
405 
406   /// NodeHasProperty - Return true if this node has the specified property.
407   bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
408 
409   /// TreeHasProperty - Return true if any node in this tree has the specified
410   /// property.
411   bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
412 
413   /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
414   /// marked isCommutative.
415   bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
416 
417   void print(raw_ostream &OS) const;
418   void dump() const;
419 
420 public:   // Higher level manipulation routines.
421 
422   /// clone - Return a new copy of this tree.
423   ///
424   TreePatternNode *clone() const;
425 
426   /// RemoveAllTypes - Recursively strip all the types of this tree.
427   void RemoveAllTypes();
428 
429   /// isIsomorphicTo - Return true if this node is recursively isomorphic to
430   /// the specified node.  For this comparison, all of the state of the node
431   /// is considered, except for the assigned name.  Nodes with differing names
432   /// that are otherwise identical are considered isomorphic.
433   bool isIsomorphicTo(const TreePatternNode *N,
434                       const MultipleUseVarSet &DepVars) const;
435 
436   /// SubstituteFormalArguments - Replace the formal arguments in this tree
437   /// with actual values specified by ArgMap.
438   void SubstituteFormalArguments(std::map<std::string,
439                                           TreePatternNode*> &ArgMap);
440 
441   /// InlinePatternFragments - If this pattern refers to any pattern
442   /// fragments, inline them into place, giving us a pattern without any
443   /// PatFrag references.
444   TreePatternNode *InlinePatternFragments(TreePattern &TP);
445 
446   /// ApplyTypeConstraints - Apply all of the type constraints relevant to
447   /// this node and its children in the tree.  This returns true if it makes a
448   /// change, false otherwise.  If a type contradiction is found, throw an
449   /// exception.
450   bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
451 
452   /// UpdateNodeType - Set the node type of N to VT if VT contains
453   /// information.  If N already contains a conflicting type, then throw an
454   /// exception.  This returns true if any information was updated.
455   ///
UpdateNodeType(unsigned ResNo,const EEVT::TypeSet & InTy,TreePattern & TP)456   bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy,
457                       TreePattern &TP) {
458     return Types[ResNo].MergeInTypeInfo(InTy, TP);
459   }
460 
UpdateNodeType(unsigned ResNo,MVT::SimpleValueType InTy,TreePattern & TP)461   bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
462                       TreePattern &TP) {
463     return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP);
464   }
465 
466   /// ContainsUnresolvedType - Return true if this tree contains any
467   /// unresolved types.
ContainsUnresolvedType()468   bool ContainsUnresolvedType() const {
469     for (unsigned i = 0, e = Types.size(); i != e; ++i)
470       if (!Types[i].isConcrete()) return true;
471 
472     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
473       if (getChild(i)->ContainsUnresolvedType()) return true;
474     return false;
475   }
476 
477   /// canPatternMatch - If it is impossible for this pattern to match on this
478   /// target, fill in Reason and return false.  Otherwise, return true.
479   bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
480 };
481 
482 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
483   TPN.print(OS);
484   return OS;
485 }
486 
487 
488 /// TreePattern - Represent a pattern, used for instructions, pattern
489 /// fragments, etc.
490 ///
491 class TreePattern {
492   /// Trees - The list of pattern trees which corresponds to this pattern.
493   /// Note that PatFrag's only have a single tree.
494   ///
495   std::vector<TreePatternNode*> Trees;
496 
497   /// NamedNodes - This is all of the nodes that have names in the trees in this
498   /// pattern.
499   StringMap<SmallVector<TreePatternNode*,1> > NamedNodes;
500 
501   /// TheRecord - The actual TableGen record corresponding to this pattern.
502   ///
503   Record *TheRecord;
504 
505   /// Args - This is a list of all of the arguments to this pattern (for
506   /// PatFrag patterns), which are the 'node' markers in this pattern.
507   std::vector<std::string> Args;
508 
509   /// CDP - the top-level object coordinating this madness.
510   ///
511   CodeGenDAGPatterns &CDP;
512 
513   /// isInputPattern - True if this is an input pattern, something to match.
514   /// False if this is an output pattern, something to emit.
515   bool isInputPattern;
516 public:
517 
518   /// TreePattern constructor - Parse the specified DagInits into the
519   /// current record.
520   TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
521               CodeGenDAGPatterns &ise);
522   TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
523               CodeGenDAGPatterns &ise);
524   TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
525               CodeGenDAGPatterns &ise);
526 
527   /// getTrees - Return the tree patterns which corresponds to this pattern.
528   ///
getTrees()529   const std::vector<TreePatternNode*> &getTrees() const { return Trees; }
getNumTrees()530   unsigned getNumTrees() const { return Trees.size(); }
getTree(unsigned i)531   TreePatternNode *getTree(unsigned i) const { return Trees[i]; }
getOnlyTree()532   TreePatternNode *getOnlyTree() const {
533     assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
534     return Trees[0];
535   }
536 
getNamedNodesMap()537   const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() {
538     if (NamedNodes.empty())
539       ComputeNamedNodes();
540     return NamedNodes;
541   }
542 
543   /// getRecord - Return the actual TableGen record corresponding to this
544   /// pattern.
545   ///
getRecord()546   Record *getRecord() const { return TheRecord; }
547 
getNumArgs()548   unsigned getNumArgs() const { return Args.size(); }
getArgName(unsigned i)549   const std::string &getArgName(unsigned i) const {
550     assert(i < Args.size() && "Argument reference out of range!");
551     return Args[i];
552   }
getArgList()553   std::vector<std::string> &getArgList() { return Args; }
554 
getDAGPatterns()555   CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
556 
557   /// InlinePatternFragments - If this pattern refers to any pattern
558   /// fragments, inline them into place, giving us a pattern without any
559   /// PatFrag references.
InlinePatternFragments()560   void InlinePatternFragments() {
561     for (unsigned i = 0, e = Trees.size(); i != e; ++i)
562       Trees[i] = Trees[i]->InlinePatternFragments(*this);
563   }
564 
565   /// InferAllTypes - Infer/propagate as many types throughout the expression
566   /// patterns as possible.  Return true if all types are inferred, false
567   /// otherwise.  Throw an exception if a type contradiction is found.
568   bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> >
569                           *NamedTypes=0);
570 
571   /// error - Throw an exception, prefixing it with information about this
572   /// pattern.
573   void error(const std::string &Msg) const;
574 
575   void print(raw_ostream &OS) const;
576   void dump() const;
577 
578 private:
579   TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName);
580   void ComputeNamedNodes();
581   void ComputeNamedNodes(TreePatternNode *N);
582 };
583 
584 /// DAGDefaultOperand - One of these is created for each PredicateOperand
585 /// or OptionalDefOperand that has a set ExecuteAlways / DefaultOps field.
586 struct DAGDefaultOperand {
587   std::vector<TreePatternNode*> DefaultOps;
588 };
589 
590 class DAGInstruction {
591   TreePattern *Pattern;
592   std::vector<Record*> Results;
593   std::vector<Record*> Operands;
594   std::vector<Record*> ImpResults;
595   TreePatternNode *ResultPattern;
596 public:
DAGInstruction(TreePattern * TP,const std::vector<Record * > & results,const std::vector<Record * > & operands,const std::vector<Record * > & impresults)597   DAGInstruction(TreePattern *TP,
598                  const std::vector<Record*> &results,
599                  const std::vector<Record*> &operands,
600                  const std::vector<Record*> &impresults)
601     : Pattern(TP), Results(results), Operands(operands),
602       ImpResults(impresults), ResultPattern(0) {}
603 
getPattern()604   const TreePattern *getPattern() const { return Pattern; }
getNumResults()605   unsigned getNumResults() const { return Results.size(); }
getNumOperands()606   unsigned getNumOperands() const { return Operands.size(); }
getNumImpResults()607   unsigned getNumImpResults() const { return ImpResults.size(); }
getImpResults()608   const std::vector<Record*>& getImpResults() const { return ImpResults; }
609 
setResultPattern(TreePatternNode * R)610   void setResultPattern(TreePatternNode *R) { ResultPattern = R; }
611 
getResult(unsigned RN)612   Record *getResult(unsigned RN) const {
613     assert(RN < Results.size());
614     return Results[RN];
615   }
616 
getOperand(unsigned ON)617   Record *getOperand(unsigned ON) const {
618     assert(ON < Operands.size());
619     return Operands[ON];
620   }
621 
getImpResult(unsigned RN)622   Record *getImpResult(unsigned RN) const {
623     assert(RN < ImpResults.size());
624     return ImpResults[RN];
625   }
626 
getResultPattern()627   TreePatternNode *getResultPattern() const { return ResultPattern; }
628 };
629 
630 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
631 /// processed to produce isel.
632 class PatternToMatch {
633 public:
PatternToMatch(Record * srcrecord,ListInit * preds,TreePatternNode * src,TreePatternNode * dst,const std::vector<Record * > & dstregs,unsigned complexity,unsigned uid)634   PatternToMatch(Record *srcrecord, ListInit *preds,
635                  TreePatternNode *src, TreePatternNode *dst,
636                  const std::vector<Record*> &dstregs,
637                  unsigned complexity, unsigned uid)
638     : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), DstPattern(dst),
639       Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {}
640 
641   Record          *SrcRecord;   // Originating Record for the pattern.
642   ListInit        *Predicates;  // Top level predicate conditions to match.
643   TreePatternNode *SrcPattern;  // Source pattern to match.
644   TreePatternNode *DstPattern;  // Resulting pattern.
645   std::vector<Record*> Dstregs; // Physical register defs being matched.
646   unsigned         AddedComplexity; // Add to matching pattern complexity.
647   unsigned         ID;          // Unique ID for the record.
648 
getSrcRecord()649   Record          *getSrcRecord()  const { return SrcRecord; }
getPredicates()650   ListInit        *getPredicates() const { return Predicates; }
getSrcPattern()651   TreePatternNode *getSrcPattern() const { return SrcPattern; }
getDstPattern()652   TreePatternNode *getDstPattern() const { return DstPattern; }
getDstRegs()653   const std::vector<Record*> &getDstRegs() const { return Dstregs; }
getAddedComplexity()654   unsigned         getAddedComplexity() const { return AddedComplexity; }
655 
656   std::string getPredicateCheck() const;
657 
658   /// Compute the complexity metric for the input pattern.  This roughly
659   /// corresponds to the number of nodes that are covered.
660   unsigned getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
661 };
662 
663 // Deterministic comparison of Record*.
664 struct RecordPtrCmp {
665   bool operator()(const Record *LHS, const Record *RHS) const;
666 };
667 
668 class CodeGenDAGPatterns {
669   RecordKeeper &Records;
670   CodeGenTarget Target;
671   std::vector<CodeGenIntrinsic> Intrinsics;
672   std::vector<CodeGenIntrinsic> TgtIntrinsics;
673 
674   std::map<Record*, SDNodeInfo, RecordPtrCmp> SDNodes;
675   std::map<Record*, std::pair<Record*, std::string>, RecordPtrCmp> SDNodeXForms;
676   std::map<Record*, ComplexPattern, RecordPtrCmp> ComplexPatterns;
677   std::map<Record*, TreePattern*, RecordPtrCmp> PatternFragments;
678   std::map<Record*, DAGDefaultOperand, RecordPtrCmp> DefaultOperands;
679   std::map<Record*, DAGInstruction, RecordPtrCmp> Instructions;
680 
681   // Specific SDNode definitions:
682   Record *intrinsic_void_sdnode;
683   Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
684 
685   /// PatternsToMatch - All of the things we are matching on the DAG.  The first
686   /// value is the pattern to match, the second pattern is the result to
687   /// emit.
688   std::vector<PatternToMatch> PatternsToMatch;
689 public:
690   CodeGenDAGPatterns(RecordKeeper &R);
691   ~CodeGenDAGPatterns();
692 
getTargetInfo()693   CodeGenTarget &getTargetInfo() { return Target; }
getTargetInfo()694   const CodeGenTarget &getTargetInfo() const { return Target; }
695 
696   Record *getSDNodeNamed(const std::string &Name) const;
697 
getSDNodeInfo(Record * R)698   const SDNodeInfo &getSDNodeInfo(Record *R) const {
699     assert(SDNodes.count(R) && "Unknown node!");
700     return SDNodes.find(R)->second;
701   }
702 
703   // Node transformation lookups.
704   typedef std::pair<Record*, std::string> NodeXForm;
getSDNodeTransform(Record * R)705   const NodeXForm &getSDNodeTransform(Record *R) const {
706     assert(SDNodeXForms.count(R) && "Invalid transform!");
707     return SDNodeXForms.find(R)->second;
708   }
709 
710   typedef std::map<Record*, NodeXForm, RecordPtrCmp>::const_iterator
711           nx_iterator;
nx_begin()712   nx_iterator nx_begin() const { return SDNodeXForms.begin(); }
nx_end()713   nx_iterator nx_end() const { return SDNodeXForms.end(); }
714 
715 
getComplexPattern(Record * R)716   const ComplexPattern &getComplexPattern(Record *R) const {
717     assert(ComplexPatterns.count(R) && "Unknown addressing mode!");
718     return ComplexPatterns.find(R)->second;
719   }
720 
getIntrinsic(Record * R)721   const CodeGenIntrinsic &getIntrinsic(Record *R) const {
722     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
723       if (Intrinsics[i].TheDef == R) return Intrinsics[i];
724     for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
725       if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i];
726     assert(0 && "Unknown intrinsic!");
727     abort();
728   }
729 
getIntrinsicInfo(unsigned IID)730   const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
731     if (IID-1 < Intrinsics.size())
732       return Intrinsics[IID-1];
733     if (IID-Intrinsics.size()-1 < TgtIntrinsics.size())
734       return TgtIntrinsics[IID-Intrinsics.size()-1];
735     assert(0 && "Bad intrinsic ID!");
736     abort();
737   }
738 
getIntrinsicID(Record * R)739   unsigned getIntrinsicID(Record *R) const {
740     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
741       if (Intrinsics[i].TheDef == R) return i;
742     for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
743       if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size();
744     assert(0 && "Unknown intrinsic!");
745     abort();
746   }
747 
getDefaultOperand(Record * R)748   const DAGDefaultOperand &getDefaultOperand(Record *R) const {
749     assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!");
750     return DefaultOperands.find(R)->second;
751   }
752 
753   // Pattern Fragment information.
getPatternFragment(Record * R)754   TreePattern *getPatternFragment(Record *R) const {
755     assert(PatternFragments.count(R) && "Invalid pattern fragment request!");
756     return PatternFragments.find(R)->second;
757   }
getPatternFragmentIfRead(Record * R)758   TreePattern *getPatternFragmentIfRead(Record *R) const {
759     if (!PatternFragments.count(R)) return 0;
760     return PatternFragments.find(R)->second;
761   }
762 
763   typedef std::map<Record*, TreePattern*, RecordPtrCmp>::const_iterator
764           pf_iterator;
pf_begin()765   pf_iterator pf_begin() const { return PatternFragments.begin(); }
pf_end()766   pf_iterator pf_end() const { return PatternFragments.end(); }
767 
768   // Patterns to match information.
769   typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
ptm_begin()770   ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
ptm_end()771   ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
772 
773 
774 
getInstruction(Record * R)775   const DAGInstruction &getInstruction(Record *R) const {
776     assert(Instructions.count(R) && "Unknown instruction!");
777     return Instructions.find(R)->second;
778   }
779 
get_intrinsic_void_sdnode()780   Record *get_intrinsic_void_sdnode() const {
781     return intrinsic_void_sdnode;
782   }
get_intrinsic_w_chain_sdnode()783   Record *get_intrinsic_w_chain_sdnode() const {
784     return intrinsic_w_chain_sdnode;
785   }
get_intrinsic_wo_chain_sdnode()786   Record *get_intrinsic_wo_chain_sdnode() const {
787     return intrinsic_wo_chain_sdnode;
788   }
789 
hasTargetIntrinsics()790   bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); }
791 
792 private:
793   void ParseNodeInfo();
794   void ParseNodeTransforms();
795   void ParseComplexPatterns();
796   void ParsePatternFragments();
797   void ParseDefaultOperands();
798   void ParseInstructions();
799   void ParsePatterns();
800   void InferInstructionFlags();
801   void GenerateVariants();
802 
803   void AddPatternToMatch(const TreePattern *Pattern, const PatternToMatch &PTM);
804   void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
805                                    std::map<std::string,
806                                    TreePatternNode*> &InstInputs,
807                                    std::map<std::string,
808                                    TreePatternNode*> &InstResults,
809                                    std::vector<Record*> &InstImpResults);
810 };
811 } // end namespace llvm
812 
813 #endif
814