1 // Copyright 2006-2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "liveobjectlist-inl.h"
31 #include "macro-assembler.h"
32 #include "mark-compact.h"
33 #include "platform.h"
34
35 namespace v8 {
36 namespace internal {
37
38 // For contiguous spaces, top should be in the space (or at the end) and limit
39 // should be the end of the space.
40 #define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \
41 ASSERT((space).low() <= (info).top \
42 && (info).top <= (space).high() \
43 && (info).limit == (space).high())
44
45 // ----------------------------------------------------------------------------
46 // HeapObjectIterator
47
HeapObjectIterator(PagedSpace * space)48 HeapObjectIterator::HeapObjectIterator(PagedSpace* space) {
49 Initialize(space->bottom(), space->top(), NULL);
50 }
51
52
HeapObjectIterator(PagedSpace * space,HeapObjectCallback size_func)53 HeapObjectIterator::HeapObjectIterator(PagedSpace* space,
54 HeapObjectCallback size_func) {
55 Initialize(space->bottom(), space->top(), size_func);
56 }
57
58
HeapObjectIterator(PagedSpace * space,Address start)59 HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start) {
60 Initialize(start, space->top(), NULL);
61 }
62
63
HeapObjectIterator(PagedSpace * space,Address start,HeapObjectCallback size_func)64 HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start,
65 HeapObjectCallback size_func) {
66 Initialize(start, space->top(), size_func);
67 }
68
69
HeapObjectIterator(Page * page,HeapObjectCallback size_func)70 HeapObjectIterator::HeapObjectIterator(Page* page,
71 HeapObjectCallback size_func) {
72 Initialize(page->ObjectAreaStart(), page->AllocationTop(), size_func);
73 }
74
75
Initialize(Address cur,Address end,HeapObjectCallback size_f)76 void HeapObjectIterator::Initialize(Address cur, Address end,
77 HeapObjectCallback size_f) {
78 cur_addr_ = cur;
79 end_addr_ = end;
80 end_page_ = Page::FromAllocationTop(end);
81 size_func_ = size_f;
82 Page* p = Page::FromAllocationTop(cur_addr_);
83 cur_limit_ = (p == end_page_) ? end_addr_ : p->AllocationTop();
84
85 #ifdef DEBUG
86 Verify();
87 #endif
88 }
89
90
FromNextPage()91 HeapObject* HeapObjectIterator::FromNextPage() {
92 if (cur_addr_ == end_addr_) return NULL;
93
94 Page* cur_page = Page::FromAllocationTop(cur_addr_);
95 cur_page = cur_page->next_page();
96 ASSERT(cur_page->is_valid());
97
98 cur_addr_ = cur_page->ObjectAreaStart();
99 cur_limit_ = (cur_page == end_page_) ? end_addr_ : cur_page->AllocationTop();
100
101 if (cur_addr_ == end_addr_) return NULL;
102 ASSERT(cur_addr_ < cur_limit_);
103 #ifdef DEBUG
104 Verify();
105 #endif
106 return FromCurrentPage();
107 }
108
109
110 #ifdef DEBUG
Verify()111 void HeapObjectIterator::Verify() {
112 Page* p = Page::FromAllocationTop(cur_addr_);
113 ASSERT(p == Page::FromAllocationTop(cur_limit_));
114 ASSERT(p->Offset(cur_addr_) <= p->Offset(cur_limit_));
115 }
116 #endif
117
118
119 // -----------------------------------------------------------------------------
120 // PageIterator
121
PageIterator(PagedSpace * space,Mode mode)122 PageIterator::PageIterator(PagedSpace* space, Mode mode) : space_(space) {
123 prev_page_ = NULL;
124 switch (mode) {
125 case PAGES_IN_USE:
126 stop_page_ = space->AllocationTopPage();
127 break;
128 case PAGES_USED_BY_MC:
129 stop_page_ = space->MCRelocationTopPage();
130 break;
131 case ALL_PAGES:
132 #ifdef DEBUG
133 // Verify that the cached last page in the space is actually the
134 // last page.
135 for (Page* p = space->first_page_; p->is_valid(); p = p->next_page()) {
136 if (!p->next_page()->is_valid()) {
137 ASSERT(space->last_page_ == p);
138 }
139 }
140 #endif
141 stop_page_ = space->last_page_;
142 break;
143 }
144 }
145
146
147 // -----------------------------------------------------------------------------
148 // CodeRange
149
150
CodeRange(Isolate * isolate)151 CodeRange::CodeRange(Isolate* isolate)
152 : isolate_(isolate),
153 code_range_(NULL),
154 free_list_(0),
155 allocation_list_(0),
156 current_allocation_block_index_(0) {
157 }
158
159
Setup(const size_t requested)160 bool CodeRange::Setup(const size_t requested) {
161 ASSERT(code_range_ == NULL);
162
163 code_range_ = new VirtualMemory(requested);
164 CHECK(code_range_ != NULL);
165 if (!code_range_->IsReserved()) {
166 delete code_range_;
167 code_range_ = NULL;
168 return false;
169 }
170
171 // We are sure that we have mapped a block of requested addresses.
172 ASSERT(code_range_->size() == requested);
173 LOG(isolate_, NewEvent("CodeRange", code_range_->address(), requested));
174 allocation_list_.Add(FreeBlock(code_range_->address(), code_range_->size()));
175 current_allocation_block_index_ = 0;
176 return true;
177 }
178
179
CompareFreeBlockAddress(const FreeBlock * left,const FreeBlock * right)180 int CodeRange::CompareFreeBlockAddress(const FreeBlock* left,
181 const FreeBlock* right) {
182 // The entire point of CodeRange is that the difference between two
183 // addresses in the range can be represented as a signed 32-bit int,
184 // so the cast is semantically correct.
185 return static_cast<int>(left->start - right->start);
186 }
187
188
GetNextAllocationBlock(size_t requested)189 void CodeRange::GetNextAllocationBlock(size_t requested) {
190 for (current_allocation_block_index_++;
191 current_allocation_block_index_ < allocation_list_.length();
192 current_allocation_block_index_++) {
193 if (requested <= allocation_list_[current_allocation_block_index_].size) {
194 return; // Found a large enough allocation block.
195 }
196 }
197
198 // Sort and merge the free blocks on the free list and the allocation list.
199 free_list_.AddAll(allocation_list_);
200 allocation_list_.Clear();
201 free_list_.Sort(&CompareFreeBlockAddress);
202 for (int i = 0; i < free_list_.length();) {
203 FreeBlock merged = free_list_[i];
204 i++;
205 // Add adjacent free blocks to the current merged block.
206 while (i < free_list_.length() &&
207 free_list_[i].start == merged.start + merged.size) {
208 merged.size += free_list_[i].size;
209 i++;
210 }
211 if (merged.size > 0) {
212 allocation_list_.Add(merged);
213 }
214 }
215 free_list_.Clear();
216
217 for (current_allocation_block_index_ = 0;
218 current_allocation_block_index_ < allocation_list_.length();
219 current_allocation_block_index_++) {
220 if (requested <= allocation_list_[current_allocation_block_index_].size) {
221 return; // Found a large enough allocation block.
222 }
223 }
224
225 // Code range is full or too fragmented.
226 V8::FatalProcessOutOfMemory("CodeRange::GetNextAllocationBlock");
227 }
228
229
230
AllocateRawMemory(const size_t requested,size_t * allocated)231 void* CodeRange::AllocateRawMemory(const size_t requested, size_t* allocated) {
232 ASSERT(current_allocation_block_index_ < allocation_list_.length());
233 if (requested > allocation_list_[current_allocation_block_index_].size) {
234 // Find an allocation block large enough. This function call may
235 // call V8::FatalProcessOutOfMemory if it cannot find a large enough block.
236 GetNextAllocationBlock(requested);
237 }
238 // Commit the requested memory at the start of the current allocation block.
239 *allocated = RoundUp(requested, Page::kPageSize);
240 FreeBlock current = allocation_list_[current_allocation_block_index_];
241 if (*allocated >= current.size - Page::kPageSize) {
242 // Don't leave a small free block, useless for a large object or chunk.
243 *allocated = current.size;
244 }
245 ASSERT(*allocated <= current.size);
246 if (!code_range_->Commit(current.start, *allocated, true)) {
247 *allocated = 0;
248 return NULL;
249 }
250 allocation_list_[current_allocation_block_index_].start += *allocated;
251 allocation_list_[current_allocation_block_index_].size -= *allocated;
252 if (*allocated == current.size) {
253 GetNextAllocationBlock(0); // This block is used up, get the next one.
254 }
255 return current.start;
256 }
257
258
FreeRawMemory(void * address,size_t length)259 void CodeRange::FreeRawMemory(void* address, size_t length) {
260 free_list_.Add(FreeBlock(address, length));
261 code_range_->Uncommit(address, length);
262 }
263
264
TearDown()265 void CodeRange::TearDown() {
266 delete code_range_; // Frees all memory in the virtual memory range.
267 code_range_ = NULL;
268 free_list_.Free();
269 allocation_list_.Free();
270 }
271
272
273 // -----------------------------------------------------------------------------
274 // MemoryAllocator
275 //
276
277 // 270 is an estimate based on the static default heap size of a pair of 256K
278 // semispaces and a 64M old generation.
279 const int kEstimatedNumberOfChunks = 270;
280
281
MemoryAllocator(Isolate * isolate)282 MemoryAllocator::MemoryAllocator(Isolate* isolate)
283 : isolate_(isolate),
284 capacity_(0),
285 capacity_executable_(0),
286 size_(0),
287 size_executable_(0),
288 initial_chunk_(NULL),
289 chunks_(kEstimatedNumberOfChunks),
290 free_chunk_ids_(kEstimatedNumberOfChunks),
291 max_nof_chunks_(0),
292 top_(0) {
293 }
294
295
Push(int free_chunk_id)296 void MemoryAllocator::Push(int free_chunk_id) {
297 ASSERT(max_nof_chunks_ > 0);
298 ASSERT(top_ < max_nof_chunks_);
299 free_chunk_ids_[top_++] = free_chunk_id;
300 }
301
302
Pop()303 int MemoryAllocator::Pop() {
304 ASSERT(top_ > 0);
305 return free_chunk_ids_[--top_];
306 }
307
308
Setup(intptr_t capacity,intptr_t capacity_executable)309 bool MemoryAllocator::Setup(intptr_t capacity, intptr_t capacity_executable) {
310 capacity_ = RoundUp(capacity, Page::kPageSize);
311 capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize);
312 ASSERT_GE(capacity_, capacity_executable_);
313
314 // Over-estimate the size of chunks_ array. It assumes the expansion of old
315 // space is always in the unit of a chunk (kChunkSize) except the last
316 // expansion.
317 //
318 // Due to alignment, allocated space might be one page less than required
319 // number (kPagesPerChunk) of pages for old spaces.
320 //
321 // Reserve two chunk ids for semispaces, one for map space, one for old
322 // space, and one for code space.
323 max_nof_chunks_ =
324 static_cast<int>((capacity_ / (kChunkSize - Page::kPageSize))) + 5;
325 if (max_nof_chunks_ > kMaxNofChunks) return false;
326
327 size_ = 0;
328 size_executable_ = 0;
329 ChunkInfo info; // uninitialized element.
330 for (int i = max_nof_chunks_ - 1; i >= 0; i--) {
331 chunks_.Add(info);
332 free_chunk_ids_.Add(i);
333 }
334 top_ = max_nof_chunks_;
335 return true;
336 }
337
338
TearDown()339 void MemoryAllocator::TearDown() {
340 for (int i = 0; i < max_nof_chunks_; i++) {
341 if (chunks_[i].address() != NULL) DeleteChunk(i);
342 }
343 chunks_.Clear();
344 free_chunk_ids_.Clear();
345
346 if (initial_chunk_ != NULL) {
347 LOG(isolate_, DeleteEvent("InitialChunk", initial_chunk_->address()));
348 delete initial_chunk_;
349 initial_chunk_ = NULL;
350 }
351
352 ASSERT(top_ == max_nof_chunks_); // all chunks are free
353 top_ = 0;
354 capacity_ = 0;
355 capacity_executable_ = 0;
356 size_ = 0;
357 max_nof_chunks_ = 0;
358 }
359
360
AllocateRawMemory(const size_t requested,size_t * allocated,Executability executable)361 void* MemoryAllocator::AllocateRawMemory(const size_t requested,
362 size_t* allocated,
363 Executability executable) {
364 if (size_ + static_cast<size_t>(requested) > static_cast<size_t>(capacity_)) {
365 return NULL;
366 }
367
368 void* mem;
369 if (executable == EXECUTABLE) {
370 // Check executable memory limit.
371 if (size_executable_ + requested >
372 static_cast<size_t>(capacity_executable_)) {
373 LOG(isolate_,
374 StringEvent("MemoryAllocator::AllocateRawMemory",
375 "V8 Executable Allocation capacity exceeded"));
376 return NULL;
377 }
378 // Allocate executable memory either from code range or from the
379 // OS.
380 if (isolate_->code_range()->exists()) {
381 mem = isolate_->code_range()->AllocateRawMemory(requested, allocated);
382 } else {
383 mem = OS::Allocate(requested, allocated, true);
384 }
385 // Update executable memory size.
386 size_executable_ += static_cast<int>(*allocated);
387 } else {
388 mem = OS::Allocate(requested, allocated, false);
389 }
390 int alloced = static_cast<int>(*allocated);
391 size_ += alloced;
392
393 #ifdef DEBUG
394 ZapBlock(reinterpret_cast<Address>(mem), alloced);
395 #endif
396 isolate_->counters()->memory_allocated()->Increment(alloced);
397 return mem;
398 }
399
400
FreeRawMemory(void * mem,size_t length,Executability executable)401 void MemoryAllocator::FreeRawMemory(void* mem,
402 size_t length,
403 Executability executable) {
404 #ifdef DEBUG
405 ZapBlock(reinterpret_cast<Address>(mem), length);
406 #endif
407 if (isolate_->code_range()->contains(static_cast<Address>(mem))) {
408 isolate_->code_range()->FreeRawMemory(mem, length);
409 } else {
410 OS::Free(mem, length);
411 }
412 isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(length));
413 size_ -= static_cast<int>(length);
414 if (executable == EXECUTABLE) size_executable_ -= static_cast<int>(length);
415
416 ASSERT(size_ >= 0);
417 ASSERT(size_executable_ >= 0);
418 }
419
420
PerformAllocationCallback(ObjectSpace space,AllocationAction action,size_t size)421 void MemoryAllocator::PerformAllocationCallback(ObjectSpace space,
422 AllocationAction action,
423 size_t size) {
424 for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
425 MemoryAllocationCallbackRegistration registration =
426 memory_allocation_callbacks_[i];
427 if ((registration.space & space) == space &&
428 (registration.action & action) == action)
429 registration.callback(space, action, static_cast<int>(size));
430 }
431 }
432
433
MemoryAllocationCallbackRegistered(MemoryAllocationCallback callback)434 bool MemoryAllocator::MemoryAllocationCallbackRegistered(
435 MemoryAllocationCallback callback) {
436 for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
437 if (memory_allocation_callbacks_[i].callback == callback) return true;
438 }
439 return false;
440 }
441
442
AddMemoryAllocationCallback(MemoryAllocationCallback callback,ObjectSpace space,AllocationAction action)443 void MemoryAllocator::AddMemoryAllocationCallback(
444 MemoryAllocationCallback callback,
445 ObjectSpace space,
446 AllocationAction action) {
447 ASSERT(callback != NULL);
448 MemoryAllocationCallbackRegistration registration(callback, space, action);
449 ASSERT(!MemoryAllocator::MemoryAllocationCallbackRegistered(callback));
450 return memory_allocation_callbacks_.Add(registration);
451 }
452
453
RemoveMemoryAllocationCallback(MemoryAllocationCallback callback)454 void MemoryAllocator::RemoveMemoryAllocationCallback(
455 MemoryAllocationCallback callback) {
456 ASSERT(callback != NULL);
457 for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
458 if (memory_allocation_callbacks_[i].callback == callback) {
459 memory_allocation_callbacks_.Remove(i);
460 return;
461 }
462 }
463 UNREACHABLE();
464 }
465
ReserveInitialChunk(const size_t requested)466 void* MemoryAllocator::ReserveInitialChunk(const size_t requested) {
467 ASSERT(initial_chunk_ == NULL);
468
469 initial_chunk_ = new VirtualMemory(requested);
470 CHECK(initial_chunk_ != NULL);
471 if (!initial_chunk_->IsReserved()) {
472 delete initial_chunk_;
473 initial_chunk_ = NULL;
474 return NULL;
475 }
476
477 // We are sure that we have mapped a block of requested addresses.
478 ASSERT(initial_chunk_->size() == requested);
479 LOG(isolate_,
480 NewEvent("InitialChunk", initial_chunk_->address(), requested));
481 size_ += static_cast<int>(requested);
482 return initial_chunk_->address();
483 }
484
485
PagesInChunk(Address start,size_t size)486 static int PagesInChunk(Address start, size_t size) {
487 // The first page starts on the first page-aligned address from start onward
488 // and the last page ends on the last page-aligned address before
489 // start+size. Page::kPageSize is a power of two so we can divide by
490 // shifting.
491 return static_cast<int>((RoundDown(start + size, Page::kPageSize)
492 - RoundUp(start, Page::kPageSize)) >> kPageSizeBits);
493 }
494
495
AllocatePages(int requested_pages,int * allocated_pages,PagedSpace * owner)496 Page* MemoryAllocator::AllocatePages(int requested_pages,
497 int* allocated_pages,
498 PagedSpace* owner) {
499 if (requested_pages <= 0) return Page::FromAddress(NULL);
500 size_t chunk_size = requested_pages * Page::kPageSize;
501
502 void* chunk = AllocateRawMemory(chunk_size, &chunk_size, owner->executable());
503 if (chunk == NULL) return Page::FromAddress(NULL);
504 LOG(isolate_, NewEvent("PagedChunk", chunk, chunk_size));
505
506 *allocated_pages = PagesInChunk(static_cast<Address>(chunk), chunk_size);
507 // We may 'lose' a page due to alignment.
508 ASSERT(*allocated_pages >= kPagesPerChunk - 1);
509 if (*allocated_pages == 0) {
510 FreeRawMemory(chunk, chunk_size, owner->executable());
511 LOG(isolate_, DeleteEvent("PagedChunk", chunk));
512 return Page::FromAddress(NULL);
513 }
514
515 int chunk_id = Pop();
516 chunks_[chunk_id].init(static_cast<Address>(chunk), chunk_size, owner);
517
518 ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity());
519 PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size);
520 Page* new_pages = InitializePagesInChunk(chunk_id, *allocated_pages, owner);
521
522 return new_pages;
523 }
524
525
CommitPages(Address start,size_t size,PagedSpace * owner,int * num_pages)526 Page* MemoryAllocator::CommitPages(Address start, size_t size,
527 PagedSpace* owner, int* num_pages) {
528 ASSERT(start != NULL);
529 *num_pages = PagesInChunk(start, size);
530 ASSERT(*num_pages > 0);
531 ASSERT(initial_chunk_ != NULL);
532 ASSERT(InInitialChunk(start));
533 ASSERT(InInitialChunk(start + size - 1));
534 if (!initial_chunk_->Commit(start, size, owner->executable() == EXECUTABLE)) {
535 return Page::FromAddress(NULL);
536 }
537 #ifdef DEBUG
538 ZapBlock(start, size);
539 #endif
540 isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size));
541
542 // So long as we correctly overestimated the number of chunks we should not
543 // run out of chunk ids.
544 CHECK(!OutOfChunkIds());
545 int chunk_id = Pop();
546 chunks_[chunk_id].init(start, size, owner);
547 return InitializePagesInChunk(chunk_id, *num_pages, owner);
548 }
549
550
CommitBlock(Address start,size_t size,Executability executable)551 bool MemoryAllocator::CommitBlock(Address start,
552 size_t size,
553 Executability executable) {
554 ASSERT(start != NULL);
555 ASSERT(size > 0);
556 ASSERT(initial_chunk_ != NULL);
557 ASSERT(InInitialChunk(start));
558 ASSERT(InInitialChunk(start + size - 1));
559
560 if (!initial_chunk_->Commit(start, size, executable)) return false;
561 #ifdef DEBUG
562 ZapBlock(start, size);
563 #endif
564 isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size));
565 return true;
566 }
567
568
UncommitBlock(Address start,size_t size)569 bool MemoryAllocator::UncommitBlock(Address start, size_t size) {
570 ASSERT(start != NULL);
571 ASSERT(size > 0);
572 ASSERT(initial_chunk_ != NULL);
573 ASSERT(InInitialChunk(start));
574 ASSERT(InInitialChunk(start + size - 1));
575
576 if (!initial_chunk_->Uncommit(start, size)) return false;
577 isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
578 return true;
579 }
580
581
ZapBlock(Address start,size_t size)582 void MemoryAllocator::ZapBlock(Address start, size_t size) {
583 for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) {
584 Memory::Address_at(start + s) = kZapValue;
585 }
586 }
587
588
InitializePagesInChunk(int chunk_id,int pages_in_chunk,PagedSpace * owner)589 Page* MemoryAllocator::InitializePagesInChunk(int chunk_id, int pages_in_chunk,
590 PagedSpace* owner) {
591 ASSERT(IsValidChunk(chunk_id));
592 ASSERT(pages_in_chunk > 0);
593
594 Address chunk_start = chunks_[chunk_id].address();
595
596 Address low = RoundUp(chunk_start, Page::kPageSize);
597
598 #ifdef DEBUG
599 size_t chunk_size = chunks_[chunk_id].size();
600 Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize);
601 ASSERT(pages_in_chunk <=
602 ((OffsetFrom(high) - OffsetFrom(low)) / Page::kPageSize));
603 #endif
604
605 Address page_addr = low;
606 for (int i = 0; i < pages_in_chunk; i++) {
607 Page* p = Page::FromAddress(page_addr);
608 p->heap_ = owner->heap();
609 p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id;
610 p->InvalidateWatermark(true);
611 p->SetIsLargeObjectPage(false);
612 p->SetAllocationWatermark(p->ObjectAreaStart());
613 p->SetCachedAllocationWatermark(p->ObjectAreaStart());
614 page_addr += Page::kPageSize;
615 }
616
617 // Set the next page of the last page to 0.
618 Page* last_page = Page::FromAddress(page_addr - Page::kPageSize);
619 last_page->opaque_header = OffsetFrom(0) | chunk_id;
620
621 return Page::FromAddress(low);
622 }
623
624
FreePages(Page * p)625 Page* MemoryAllocator::FreePages(Page* p) {
626 if (!p->is_valid()) return p;
627
628 // Find the first page in the same chunk as 'p'
629 Page* first_page = FindFirstPageInSameChunk(p);
630 Page* page_to_return = Page::FromAddress(NULL);
631
632 if (p != first_page) {
633 // Find the last page in the same chunk as 'prev'.
634 Page* last_page = FindLastPageInSameChunk(p);
635 first_page = GetNextPage(last_page); // first page in next chunk
636
637 // set the next_page of last_page to NULL
638 SetNextPage(last_page, Page::FromAddress(NULL));
639 page_to_return = p; // return 'p' when exiting
640 }
641
642 while (first_page->is_valid()) {
643 int chunk_id = GetChunkId(first_page);
644 ASSERT(IsValidChunk(chunk_id));
645
646 // Find the first page of the next chunk before deleting this chunk.
647 first_page = GetNextPage(FindLastPageInSameChunk(first_page));
648
649 // Free the current chunk.
650 DeleteChunk(chunk_id);
651 }
652
653 return page_to_return;
654 }
655
656
FreeAllPages(PagedSpace * space)657 void MemoryAllocator::FreeAllPages(PagedSpace* space) {
658 for (int i = 0, length = chunks_.length(); i < length; i++) {
659 if (chunks_[i].owner() == space) {
660 DeleteChunk(i);
661 }
662 }
663 }
664
665
DeleteChunk(int chunk_id)666 void MemoryAllocator::DeleteChunk(int chunk_id) {
667 ASSERT(IsValidChunk(chunk_id));
668
669 ChunkInfo& c = chunks_[chunk_id];
670
671 // We cannot free a chunk contained in the initial chunk because it was not
672 // allocated with AllocateRawMemory. Instead we uncommit the virtual
673 // memory.
674 if (InInitialChunk(c.address())) {
675 // TODO(1240712): VirtualMemory::Uncommit has a return value which
676 // is ignored here.
677 initial_chunk_->Uncommit(c.address(), c.size());
678 Counters* counters = isolate_->counters();
679 counters->memory_allocated()->Decrement(static_cast<int>(c.size()));
680 } else {
681 LOG(isolate_, DeleteEvent("PagedChunk", c.address()));
682 ObjectSpace space = static_cast<ObjectSpace>(1 << c.owner_identity());
683 size_t size = c.size();
684 FreeRawMemory(c.address(), size, c.executable());
685 PerformAllocationCallback(space, kAllocationActionFree, size);
686 }
687 c.init(NULL, 0, NULL);
688 Push(chunk_id);
689 }
690
691
FindFirstPageInSameChunk(Page * p)692 Page* MemoryAllocator::FindFirstPageInSameChunk(Page* p) {
693 int chunk_id = GetChunkId(p);
694 ASSERT(IsValidChunk(chunk_id));
695
696 Address low = RoundUp(chunks_[chunk_id].address(), Page::kPageSize);
697 return Page::FromAddress(low);
698 }
699
700
FindLastPageInSameChunk(Page * p)701 Page* MemoryAllocator::FindLastPageInSameChunk(Page* p) {
702 int chunk_id = GetChunkId(p);
703 ASSERT(IsValidChunk(chunk_id));
704
705 Address chunk_start = chunks_[chunk_id].address();
706 size_t chunk_size = chunks_[chunk_id].size();
707
708 Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize);
709 ASSERT(chunk_start <= p->address() && p->address() < high);
710
711 return Page::FromAddress(high - Page::kPageSize);
712 }
713
714
715 #ifdef DEBUG
ReportStatistics()716 void MemoryAllocator::ReportStatistics() {
717 float pct = static_cast<float>(capacity_ - size_) / capacity_;
718 PrintF(" capacity: %" V8_PTR_PREFIX "d"
719 ", used: %" V8_PTR_PREFIX "d"
720 ", available: %%%d\n\n",
721 capacity_, size_, static_cast<int>(pct*100));
722 }
723 #endif
724
725
RelinkPageListInChunkOrder(PagedSpace * space,Page ** first_page,Page ** last_page,Page ** last_page_in_use)726 void MemoryAllocator::RelinkPageListInChunkOrder(PagedSpace* space,
727 Page** first_page,
728 Page** last_page,
729 Page** last_page_in_use) {
730 Page* first = NULL;
731 Page* last = NULL;
732
733 for (int i = 0, length = chunks_.length(); i < length; i++) {
734 ChunkInfo& chunk = chunks_[i];
735
736 if (chunk.owner() == space) {
737 if (first == NULL) {
738 Address low = RoundUp(chunk.address(), Page::kPageSize);
739 first = Page::FromAddress(low);
740 }
741 last = RelinkPagesInChunk(i,
742 chunk.address(),
743 chunk.size(),
744 last,
745 last_page_in_use);
746 }
747 }
748
749 if (first_page != NULL) {
750 *first_page = first;
751 }
752
753 if (last_page != NULL) {
754 *last_page = last;
755 }
756 }
757
758
RelinkPagesInChunk(int chunk_id,Address chunk_start,size_t chunk_size,Page * prev,Page ** last_page_in_use)759 Page* MemoryAllocator::RelinkPagesInChunk(int chunk_id,
760 Address chunk_start,
761 size_t chunk_size,
762 Page* prev,
763 Page** last_page_in_use) {
764 Address page_addr = RoundUp(chunk_start, Page::kPageSize);
765 int pages_in_chunk = PagesInChunk(chunk_start, chunk_size);
766
767 if (prev->is_valid()) {
768 SetNextPage(prev, Page::FromAddress(page_addr));
769 }
770
771 for (int i = 0; i < pages_in_chunk; i++) {
772 Page* p = Page::FromAddress(page_addr);
773 p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id;
774 page_addr += Page::kPageSize;
775
776 p->InvalidateWatermark(true);
777 if (p->WasInUseBeforeMC()) {
778 *last_page_in_use = p;
779 }
780 }
781
782 // Set the next page of the last page to 0.
783 Page* last_page = Page::FromAddress(page_addr - Page::kPageSize);
784 last_page->opaque_header = OffsetFrom(0) | chunk_id;
785
786 if (last_page->WasInUseBeforeMC()) {
787 *last_page_in_use = last_page;
788 }
789
790 return last_page;
791 }
792
793
794 // -----------------------------------------------------------------------------
795 // PagedSpace implementation
796
PagedSpace(Heap * heap,intptr_t max_capacity,AllocationSpace id,Executability executable)797 PagedSpace::PagedSpace(Heap* heap,
798 intptr_t max_capacity,
799 AllocationSpace id,
800 Executability executable)
801 : Space(heap, id, executable) {
802 max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize)
803 * Page::kObjectAreaSize;
804 accounting_stats_.Clear();
805
806 allocation_info_.top = NULL;
807 allocation_info_.limit = NULL;
808
809 mc_forwarding_info_.top = NULL;
810 mc_forwarding_info_.limit = NULL;
811 }
812
813
Setup(Address start,size_t size)814 bool PagedSpace::Setup(Address start, size_t size) {
815 if (HasBeenSetup()) return false;
816
817 int num_pages = 0;
818 // Try to use the virtual memory range passed to us. If it is too small to
819 // contain at least one page, ignore it and allocate instead.
820 int pages_in_chunk = PagesInChunk(start, size);
821 if (pages_in_chunk > 0) {
822 first_page_ = Isolate::Current()->memory_allocator()->CommitPages(
823 RoundUp(start, Page::kPageSize),
824 Page::kPageSize * pages_in_chunk,
825 this, &num_pages);
826 } else {
827 int requested_pages =
828 Min(MemoryAllocator::kPagesPerChunk,
829 static_cast<int>(max_capacity_ / Page::kObjectAreaSize));
830 first_page_ =
831 Isolate::Current()->memory_allocator()->AllocatePages(
832 requested_pages, &num_pages, this);
833 if (!first_page_->is_valid()) return false;
834 }
835
836 // We are sure that the first page is valid and that we have at least one
837 // page.
838 ASSERT(first_page_->is_valid());
839 ASSERT(num_pages > 0);
840 accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize);
841 ASSERT(Capacity() <= max_capacity_);
842
843 // Sequentially clear region marks in the newly allocated
844 // pages and cache the current last page in the space.
845 for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
846 p->SetRegionMarks(Page::kAllRegionsCleanMarks);
847 last_page_ = p;
848 }
849
850 // Use first_page_ for allocation.
851 SetAllocationInfo(&allocation_info_, first_page_);
852
853 page_list_is_chunk_ordered_ = true;
854
855 return true;
856 }
857
858
HasBeenSetup()859 bool PagedSpace::HasBeenSetup() {
860 return (Capacity() > 0);
861 }
862
863
TearDown()864 void PagedSpace::TearDown() {
865 Isolate::Current()->memory_allocator()->FreeAllPages(this);
866 first_page_ = NULL;
867 accounting_stats_.Clear();
868 }
869
870
871 #ifdef ENABLE_HEAP_PROTECTION
872
Protect()873 void PagedSpace::Protect() {
874 Page* page = first_page_;
875 while (page->is_valid()) {
876 Isolate::Current()->memory_allocator()->ProtectChunkFromPage(page);
877 page = Isolate::Current()->memory_allocator()->
878 FindLastPageInSameChunk(page)->next_page();
879 }
880 }
881
882
Unprotect()883 void PagedSpace::Unprotect() {
884 Page* page = first_page_;
885 while (page->is_valid()) {
886 Isolate::Current()->memory_allocator()->UnprotectChunkFromPage(page);
887 page = Isolate::Current()->memory_allocator()->
888 FindLastPageInSameChunk(page)->next_page();
889 }
890 }
891
892 #endif
893
894
MarkAllPagesClean()895 void PagedSpace::MarkAllPagesClean() {
896 PageIterator it(this, PageIterator::ALL_PAGES);
897 while (it.has_next()) {
898 it.next()->SetRegionMarks(Page::kAllRegionsCleanMarks);
899 }
900 }
901
902
FindObject(Address addr)903 MaybeObject* PagedSpace::FindObject(Address addr) {
904 // Note: this function can only be called before or after mark-compact GC
905 // because it accesses map pointers.
906 ASSERT(!heap()->mark_compact_collector()->in_use());
907
908 if (!Contains(addr)) return Failure::Exception();
909
910 Page* p = Page::FromAddress(addr);
911 ASSERT(IsUsed(p));
912 Address cur = p->ObjectAreaStart();
913 Address end = p->AllocationTop();
914 while (cur < end) {
915 HeapObject* obj = HeapObject::FromAddress(cur);
916 Address next = cur + obj->Size();
917 if ((cur <= addr) && (addr < next)) return obj;
918 cur = next;
919 }
920
921 UNREACHABLE();
922 return Failure::Exception();
923 }
924
925
IsUsed(Page * page)926 bool PagedSpace::IsUsed(Page* page) {
927 PageIterator it(this, PageIterator::PAGES_IN_USE);
928 while (it.has_next()) {
929 if (page == it.next()) return true;
930 }
931 return false;
932 }
933
934
SetAllocationInfo(AllocationInfo * alloc_info,Page * p)935 void PagedSpace::SetAllocationInfo(AllocationInfo* alloc_info, Page* p) {
936 alloc_info->top = p->ObjectAreaStart();
937 alloc_info->limit = p->ObjectAreaEnd();
938 ASSERT(alloc_info->VerifyPagedAllocation());
939 }
940
941
MCResetRelocationInfo()942 void PagedSpace::MCResetRelocationInfo() {
943 // Set page indexes.
944 int i = 0;
945 PageIterator it(this, PageIterator::ALL_PAGES);
946 while (it.has_next()) {
947 Page* p = it.next();
948 p->mc_page_index = i++;
949 }
950
951 // Set mc_forwarding_info_ to the first page in the space.
952 SetAllocationInfo(&mc_forwarding_info_, first_page_);
953 // All the bytes in the space are 'available'. We will rediscover
954 // allocated and wasted bytes during GC.
955 accounting_stats_.Reset();
956 }
957
958
MCSpaceOffsetForAddress(Address addr)959 int PagedSpace::MCSpaceOffsetForAddress(Address addr) {
960 #ifdef DEBUG
961 // The Contains function considers the address at the beginning of a
962 // page in the page, MCSpaceOffsetForAddress considers it is in the
963 // previous page.
964 if (Page::IsAlignedToPageSize(addr)) {
965 ASSERT(Contains(addr - kPointerSize));
966 } else {
967 ASSERT(Contains(addr));
968 }
969 #endif
970
971 // If addr is at the end of a page, it belongs to previous page
972 Page* p = Page::IsAlignedToPageSize(addr)
973 ? Page::FromAllocationTop(addr)
974 : Page::FromAddress(addr);
975 int index = p->mc_page_index;
976 return (index * Page::kPageSize) + p->Offset(addr);
977 }
978
979
980 // Slow case for reallocating and promoting objects during a compacting
981 // collection. This function is not space-specific.
SlowMCAllocateRaw(int size_in_bytes)982 HeapObject* PagedSpace::SlowMCAllocateRaw(int size_in_bytes) {
983 Page* current_page = TopPageOf(mc_forwarding_info_);
984 if (!current_page->next_page()->is_valid()) {
985 if (!Expand(current_page)) {
986 return NULL;
987 }
988 }
989
990 // There are surely more pages in the space now.
991 ASSERT(current_page->next_page()->is_valid());
992 // We do not add the top of page block for current page to the space's
993 // free list---the block may contain live objects so we cannot write
994 // bookkeeping information to it. Instead, we will recover top of page
995 // blocks when we move objects to their new locations.
996 //
997 // We do however write the allocation pointer to the page. The encoding
998 // of forwarding addresses is as an offset in terms of live bytes, so we
999 // need quick access to the allocation top of each page to decode
1000 // forwarding addresses.
1001 current_page->SetAllocationWatermark(mc_forwarding_info_.top);
1002 current_page->next_page()->InvalidateWatermark(true);
1003 SetAllocationInfo(&mc_forwarding_info_, current_page->next_page());
1004 return AllocateLinearly(&mc_forwarding_info_, size_in_bytes);
1005 }
1006
1007
Expand(Page * last_page)1008 bool PagedSpace::Expand(Page* last_page) {
1009 ASSERT(max_capacity_ % Page::kObjectAreaSize == 0);
1010 ASSERT(Capacity() % Page::kObjectAreaSize == 0);
1011
1012 if (Capacity() == max_capacity_) return false;
1013
1014 ASSERT(Capacity() < max_capacity_);
1015 // Last page must be valid and its next page is invalid.
1016 ASSERT(last_page->is_valid() && !last_page->next_page()->is_valid());
1017
1018 int available_pages =
1019 static_cast<int>((max_capacity_ - Capacity()) / Page::kObjectAreaSize);
1020 // We don't want to have to handle small chunks near the end so if there are
1021 // not kPagesPerChunk pages available without exceeding the max capacity then
1022 // act as if memory has run out.
1023 if (available_pages < MemoryAllocator::kPagesPerChunk) return false;
1024
1025 int desired_pages = Min(available_pages, MemoryAllocator::kPagesPerChunk);
1026 Page* p = heap()->isolate()->memory_allocator()->AllocatePages(
1027 desired_pages, &desired_pages, this);
1028 if (!p->is_valid()) return false;
1029
1030 accounting_stats_.ExpandSpace(desired_pages * Page::kObjectAreaSize);
1031 ASSERT(Capacity() <= max_capacity_);
1032
1033 heap()->isolate()->memory_allocator()->SetNextPage(last_page, p);
1034
1035 // Sequentially clear region marks of new pages and and cache the
1036 // new last page in the space.
1037 while (p->is_valid()) {
1038 p->SetRegionMarks(Page::kAllRegionsCleanMarks);
1039 last_page_ = p;
1040 p = p->next_page();
1041 }
1042
1043 return true;
1044 }
1045
1046
1047 #ifdef DEBUG
CountTotalPages()1048 int PagedSpace::CountTotalPages() {
1049 int count = 0;
1050 for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
1051 count++;
1052 }
1053 return count;
1054 }
1055 #endif
1056
1057
Shrink()1058 void PagedSpace::Shrink() {
1059 if (!page_list_is_chunk_ordered_) {
1060 // We can't shrink space if pages is not chunk-ordered
1061 // (see comment for class MemoryAllocator for definition).
1062 return;
1063 }
1064
1065 // Release half of free pages.
1066 Page* top_page = AllocationTopPage();
1067 ASSERT(top_page->is_valid());
1068
1069 // Count the number of pages we would like to free.
1070 int pages_to_free = 0;
1071 for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) {
1072 pages_to_free++;
1073 }
1074
1075 // Free pages after top_page.
1076 Page* p = heap()->isolate()->memory_allocator()->
1077 FreePages(top_page->next_page());
1078 heap()->isolate()->memory_allocator()->SetNextPage(top_page, p);
1079
1080 // Find out how many pages we failed to free and update last_page_.
1081 // Please note pages can only be freed in whole chunks.
1082 last_page_ = top_page;
1083 for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) {
1084 pages_to_free--;
1085 last_page_ = p;
1086 }
1087
1088 accounting_stats_.ShrinkSpace(pages_to_free * Page::kObjectAreaSize);
1089 ASSERT(Capacity() == CountTotalPages() * Page::kObjectAreaSize);
1090 }
1091
1092
EnsureCapacity(int capacity)1093 bool PagedSpace::EnsureCapacity(int capacity) {
1094 if (Capacity() >= capacity) return true;
1095
1096 // Start from the allocation top and loop to the last page in the space.
1097 Page* last_page = AllocationTopPage();
1098 Page* next_page = last_page->next_page();
1099 while (next_page->is_valid()) {
1100 last_page = heap()->isolate()->memory_allocator()->
1101 FindLastPageInSameChunk(next_page);
1102 next_page = last_page->next_page();
1103 }
1104
1105 // Expand the space until it has the required capacity or expansion fails.
1106 do {
1107 if (!Expand(last_page)) return false;
1108 ASSERT(last_page->next_page()->is_valid());
1109 last_page =
1110 heap()->isolate()->memory_allocator()->FindLastPageInSameChunk(
1111 last_page->next_page());
1112 } while (Capacity() < capacity);
1113
1114 return true;
1115 }
1116
1117
1118 #ifdef DEBUG
Print()1119 void PagedSpace::Print() { }
1120 #endif
1121
1122
1123 #ifdef DEBUG
1124 // We do not assume that the PageIterator works, because it depends on the
1125 // invariants we are checking during verification.
Verify(ObjectVisitor * visitor)1126 void PagedSpace::Verify(ObjectVisitor* visitor) {
1127 // The allocation pointer should be valid, and it should be in a page in the
1128 // space.
1129 ASSERT(allocation_info_.VerifyPagedAllocation());
1130 Page* top_page = Page::FromAllocationTop(allocation_info_.top);
1131 ASSERT(heap()->isolate()->memory_allocator()->IsPageInSpace(top_page, this));
1132
1133 // Loop over all the pages.
1134 bool above_allocation_top = false;
1135 Page* current_page = first_page_;
1136 while (current_page->is_valid()) {
1137 if (above_allocation_top) {
1138 // We don't care what's above the allocation top.
1139 } else {
1140 Address top = current_page->AllocationTop();
1141 if (current_page == top_page) {
1142 ASSERT(top == allocation_info_.top);
1143 // The next page will be above the allocation top.
1144 above_allocation_top = true;
1145 }
1146
1147 // It should be packed with objects from the bottom to the top.
1148 Address current = current_page->ObjectAreaStart();
1149 while (current < top) {
1150 HeapObject* object = HeapObject::FromAddress(current);
1151
1152 // The first word should be a map, and we expect all map pointers to
1153 // be in map space.
1154 Map* map = object->map();
1155 ASSERT(map->IsMap());
1156 ASSERT(heap()->map_space()->Contains(map));
1157
1158 // Perform space-specific object verification.
1159 VerifyObject(object);
1160
1161 // The object itself should look OK.
1162 object->Verify();
1163
1164 // All the interior pointers should be contained in the heap and
1165 // have page regions covering intergenerational references should be
1166 // marked dirty.
1167 int size = object->Size();
1168 object->IterateBody(map->instance_type(), size, visitor);
1169
1170 current += size;
1171 }
1172
1173 // The allocation pointer should not be in the middle of an object.
1174 ASSERT(current == top);
1175 }
1176
1177 current_page = current_page->next_page();
1178 }
1179 }
1180 #endif
1181
1182
1183 // -----------------------------------------------------------------------------
1184 // NewSpace implementation
1185
1186
Setup(Address start,int size)1187 bool NewSpace::Setup(Address start, int size) {
1188 // Setup new space based on the preallocated memory block defined by
1189 // start and size. The provided space is divided into two semi-spaces.
1190 // To support fast containment testing in the new space, the size of
1191 // this chunk must be a power of two and it must be aligned to its size.
1192 int initial_semispace_capacity = heap()->InitialSemiSpaceSize();
1193 int maximum_semispace_capacity = heap()->MaxSemiSpaceSize();
1194
1195 ASSERT(initial_semispace_capacity <= maximum_semispace_capacity);
1196 ASSERT(IsPowerOf2(maximum_semispace_capacity));
1197
1198 // Allocate and setup the histogram arrays if necessary.
1199 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1200 allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
1201 promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
1202
1203 #define SET_NAME(name) allocated_histogram_[name].set_name(#name); \
1204 promoted_histogram_[name].set_name(#name);
1205 INSTANCE_TYPE_LIST(SET_NAME)
1206 #undef SET_NAME
1207 #endif
1208
1209 ASSERT(size == 2 * heap()->ReservedSemiSpaceSize());
1210 ASSERT(IsAddressAligned(start, size, 0));
1211
1212 if (!to_space_.Setup(start,
1213 initial_semispace_capacity,
1214 maximum_semispace_capacity)) {
1215 return false;
1216 }
1217 if (!from_space_.Setup(start + maximum_semispace_capacity,
1218 initial_semispace_capacity,
1219 maximum_semispace_capacity)) {
1220 return false;
1221 }
1222
1223 start_ = start;
1224 address_mask_ = ~(size - 1);
1225 object_mask_ = address_mask_ | kHeapObjectTagMask;
1226 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
1227
1228 allocation_info_.top = to_space_.low();
1229 allocation_info_.limit = to_space_.high();
1230 mc_forwarding_info_.top = NULL;
1231 mc_forwarding_info_.limit = NULL;
1232
1233 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1234 return true;
1235 }
1236
1237
TearDown()1238 void NewSpace::TearDown() {
1239 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1240 if (allocated_histogram_) {
1241 DeleteArray(allocated_histogram_);
1242 allocated_histogram_ = NULL;
1243 }
1244 if (promoted_histogram_) {
1245 DeleteArray(promoted_histogram_);
1246 promoted_histogram_ = NULL;
1247 }
1248 #endif
1249
1250 start_ = NULL;
1251 allocation_info_.top = NULL;
1252 allocation_info_.limit = NULL;
1253 mc_forwarding_info_.top = NULL;
1254 mc_forwarding_info_.limit = NULL;
1255
1256 to_space_.TearDown();
1257 from_space_.TearDown();
1258 }
1259
1260
1261 #ifdef ENABLE_HEAP_PROTECTION
1262
Protect()1263 void NewSpace::Protect() {
1264 heap()->isolate()->memory_allocator()->Protect(ToSpaceLow(), Capacity());
1265 heap()->isolate()->memory_allocator()->Protect(FromSpaceLow(), Capacity());
1266 }
1267
1268
Unprotect()1269 void NewSpace::Unprotect() {
1270 heap()->isolate()->memory_allocator()->Unprotect(ToSpaceLow(), Capacity(),
1271 to_space_.executable());
1272 heap()->isolate()->memory_allocator()->Unprotect(FromSpaceLow(), Capacity(),
1273 from_space_.executable());
1274 }
1275
1276 #endif
1277
1278
Flip()1279 void NewSpace::Flip() {
1280 SemiSpace tmp = from_space_;
1281 from_space_ = to_space_;
1282 to_space_ = tmp;
1283 }
1284
1285
Grow()1286 void NewSpace::Grow() {
1287 ASSERT(Capacity() < MaximumCapacity());
1288 if (to_space_.Grow()) {
1289 // Only grow from space if we managed to grow to space.
1290 if (!from_space_.Grow()) {
1291 // If we managed to grow to space but couldn't grow from space,
1292 // attempt to shrink to space.
1293 if (!to_space_.ShrinkTo(from_space_.Capacity())) {
1294 // We are in an inconsistent state because we could not
1295 // commit/uncommit memory from new space.
1296 V8::FatalProcessOutOfMemory("Failed to grow new space.");
1297 }
1298 }
1299 }
1300 allocation_info_.limit = to_space_.high();
1301 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1302 }
1303
1304
Shrink()1305 void NewSpace::Shrink() {
1306 int new_capacity = Max(InitialCapacity(), 2 * SizeAsInt());
1307 int rounded_new_capacity =
1308 RoundUp(new_capacity, static_cast<int>(OS::AllocateAlignment()));
1309 if (rounded_new_capacity < Capacity() &&
1310 to_space_.ShrinkTo(rounded_new_capacity)) {
1311 // Only shrink from space if we managed to shrink to space.
1312 if (!from_space_.ShrinkTo(rounded_new_capacity)) {
1313 // If we managed to shrink to space but couldn't shrink from
1314 // space, attempt to grow to space again.
1315 if (!to_space_.GrowTo(from_space_.Capacity())) {
1316 // We are in an inconsistent state because we could not
1317 // commit/uncommit memory from new space.
1318 V8::FatalProcessOutOfMemory("Failed to shrink new space.");
1319 }
1320 }
1321 }
1322 allocation_info_.limit = to_space_.high();
1323 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1324 }
1325
1326
ResetAllocationInfo()1327 void NewSpace::ResetAllocationInfo() {
1328 allocation_info_.top = to_space_.low();
1329 allocation_info_.limit = to_space_.high();
1330 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1331 }
1332
1333
MCResetRelocationInfo()1334 void NewSpace::MCResetRelocationInfo() {
1335 mc_forwarding_info_.top = from_space_.low();
1336 mc_forwarding_info_.limit = from_space_.high();
1337 ASSERT_SEMISPACE_ALLOCATION_INFO(mc_forwarding_info_, from_space_);
1338 }
1339
1340
MCCommitRelocationInfo()1341 void NewSpace::MCCommitRelocationInfo() {
1342 // Assumes that the spaces have been flipped so that mc_forwarding_info_ is
1343 // valid allocation info for the to space.
1344 allocation_info_.top = mc_forwarding_info_.top;
1345 allocation_info_.limit = to_space_.high();
1346 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1347 }
1348
1349
1350 #ifdef DEBUG
1351 // We do not use the SemispaceIterator because verification doesn't assume
1352 // that it works (it depends on the invariants we are checking).
Verify()1353 void NewSpace::Verify() {
1354 // The allocation pointer should be in the space or at the very end.
1355 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1356
1357 // There should be objects packed in from the low address up to the
1358 // allocation pointer.
1359 Address current = to_space_.low();
1360 while (current < top()) {
1361 HeapObject* object = HeapObject::FromAddress(current);
1362
1363 // The first word should be a map, and we expect all map pointers to
1364 // be in map space.
1365 Map* map = object->map();
1366 ASSERT(map->IsMap());
1367 ASSERT(heap()->map_space()->Contains(map));
1368
1369 // The object should not be code or a map.
1370 ASSERT(!object->IsMap());
1371 ASSERT(!object->IsCode());
1372
1373 // The object itself should look OK.
1374 object->Verify();
1375
1376 // All the interior pointers should be contained in the heap.
1377 VerifyPointersVisitor visitor;
1378 int size = object->Size();
1379 object->IterateBody(map->instance_type(), size, &visitor);
1380
1381 current += size;
1382 }
1383
1384 // The allocation pointer should not be in the middle of an object.
1385 ASSERT(current == top());
1386 }
1387 #endif
1388
1389
Commit()1390 bool SemiSpace::Commit() {
1391 ASSERT(!is_committed());
1392 if (!heap()->isolate()->memory_allocator()->CommitBlock(
1393 start_, capacity_, executable())) {
1394 return false;
1395 }
1396 committed_ = true;
1397 return true;
1398 }
1399
1400
Uncommit()1401 bool SemiSpace::Uncommit() {
1402 ASSERT(is_committed());
1403 if (!heap()->isolate()->memory_allocator()->UncommitBlock(
1404 start_, capacity_)) {
1405 return false;
1406 }
1407 committed_ = false;
1408 return true;
1409 }
1410
1411
1412 // -----------------------------------------------------------------------------
1413 // SemiSpace implementation
1414
Setup(Address start,int initial_capacity,int maximum_capacity)1415 bool SemiSpace::Setup(Address start,
1416 int initial_capacity,
1417 int maximum_capacity) {
1418 // Creates a space in the young generation. The constructor does not
1419 // allocate memory from the OS. A SemiSpace is given a contiguous chunk of
1420 // memory of size 'capacity' when set up, and does not grow or shrink
1421 // otherwise. In the mark-compact collector, the memory region of the from
1422 // space is used as the marking stack. It requires contiguous memory
1423 // addresses.
1424 initial_capacity_ = initial_capacity;
1425 capacity_ = initial_capacity;
1426 maximum_capacity_ = maximum_capacity;
1427 committed_ = false;
1428
1429 start_ = start;
1430 address_mask_ = ~(maximum_capacity - 1);
1431 object_mask_ = address_mask_ | kHeapObjectTagMask;
1432 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
1433 age_mark_ = start_;
1434
1435 return Commit();
1436 }
1437
1438
TearDown()1439 void SemiSpace::TearDown() {
1440 start_ = NULL;
1441 capacity_ = 0;
1442 }
1443
1444
Grow()1445 bool SemiSpace::Grow() {
1446 // Double the semispace size but only up to maximum capacity.
1447 int maximum_extra = maximum_capacity_ - capacity_;
1448 int extra = Min(RoundUp(capacity_, static_cast<int>(OS::AllocateAlignment())),
1449 maximum_extra);
1450 if (!heap()->isolate()->memory_allocator()->CommitBlock(
1451 high(), extra, executable())) {
1452 return false;
1453 }
1454 capacity_ += extra;
1455 return true;
1456 }
1457
1458
GrowTo(int new_capacity)1459 bool SemiSpace::GrowTo(int new_capacity) {
1460 ASSERT(new_capacity <= maximum_capacity_);
1461 ASSERT(new_capacity > capacity_);
1462 size_t delta = new_capacity - capacity_;
1463 ASSERT(IsAligned(delta, OS::AllocateAlignment()));
1464 if (!heap()->isolate()->memory_allocator()->CommitBlock(
1465 high(), delta, executable())) {
1466 return false;
1467 }
1468 capacity_ = new_capacity;
1469 return true;
1470 }
1471
1472
ShrinkTo(int new_capacity)1473 bool SemiSpace::ShrinkTo(int new_capacity) {
1474 ASSERT(new_capacity >= initial_capacity_);
1475 ASSERT(new_capacity < capacity_);
1476 size_t delta = capacity_ - new_capacity;
1477 ASSERT(IsAligned(delta, OS::AllocateAlignment()));
1478 if (!heap()->isolate()->memory_allocator()->UncommitBlock(
1479 high() - delta, delta)) {
1480 return false;
1481 }
1482 capacity_ = new_capacity;
1483 return true;
1484 }
1485
1486
1487 #ifdef DEBUG
Print()1488 void SemiSpace::Print() { }
1489
1490
Verify()1491 void SemiSpace::Verify() { }
1492 #endif
1493
1494
1495 // -----------------------------------------------------------------------------
1496 // SemiSpaceIterator implementation.
SemiSpaceIterator(NewSpace * space)1497 SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) {
1498 Initialize(space, space->bottom(), space->top(), NULL);
1499 }
1500
1501
SemiSpaceIterator(NewSpace * space,HeapObjectCallback size_func)1502 SemiSpaceIterator::SemiSpaceIterator(NewSpace* space,
1503 HeapObjectCallback size_func) {
1504 Initialize(space, space->bottom(), space->top(), size_func);
1505 }
1506
1507
SemiSpaceIterator(NewSpace * space,Address start)1508 SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) {
1509 Initialize(space, start, space->top(), NULL);
1510 }
1511
1512
Initialize(NewSpace * space,Address start,Address end,HeapObjectCallback size_func)1513 void SemiSpaceIterator::Initialize(NewSpace* space, Address start,
1514 Address end,
1515 HeapObjectCallback size_func) {
1516 ASSERT(space->ToSpaceContains(start));
1517 ASSERT(space->ToSpaceLow() <= end
1518 && end <= space->ToSpaceHigh());
1519 space_ = &space->to_space_;
1520 current_ = start;
1521 limit_ = end;
1522 size_func_ = size_func;
1523 }
1524
1525
1526 #ifdef DEBUG
1527 // heap_histograms is shared, always clear it before using it.
ClearHistograms()1528 static void ClearHistograms() {
1529 Isolate* isolate = Isolate::Current();
1530 // We reset the name each time, though it hasn't changed.
1531 #define DEF_TYPE_NAME(name) isolate->heap_histograms()[name].set_name(#name);
1532 INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
1533 #undef DEF_TYPE_NAME
1534
1535 #define CLEAR_HISTOGRAM(name) isolate->heap_histograms()[name].clear();
1536 INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM)
1537 #undef CLEAR_HISTOGRAM
1538
1539 isolate->js_spill_information()->Clear();
1540 }
1541
1542
ClearCodeKindStatistics()1543 static void ClearCodeKindStatistics() {
1544 Isolate* isolate = Isolate::Current();
1545 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
1546 isolate->code_kind_statistics()[i] = 0;
1547 }
1548 }
1549
1550
ReportCodeKindStatistics()1551 static void ReportCodeKindStatistics() {
1552 Isolate* isolate = Isolate::Current();
1553 const char* table[Code::NUMBER_OF_KINDS] = { NULL };
1554
1555 #define CASE(name) \
1556 case Code::name: table[Code::name] = #name; \
1557 break
1558
1559 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
1560 switch (static_cast<Code::Kind>(i)) {
1561 CASE(FUNCTION);
1562 CASE(OPTIMIZED_FUNCTION);
1563 CASE(STUB);
1564 CASE(BUILTIN);
1565 CASE(LOAD_IC);
1566 CASE(KEYED_LOAD_IC);
1567 CASE(KEYED_EXTERNAL_ARRAY_LOAD_IC);
1568 CASE(STORE_IC);
1569 CASE(KEYED_STORE_IC);
1570 CASE(KEYED_EXTERNAL_ARRAY_STORE_IC);
1571 CASE(CALL_IC);
1572 CASE(KEYED_CALL_IC);
1573 CASE(TYPE_RECORDING_BINARY_OP_IC);
1574 CASE(COMPARE_IC);
1575 }
1576 }
1577
1578 #undef CASE
1579
1580 PrintF("\n Code kind histograms: \n");
1581 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
1582 if (isolate->code_kind_statistics()[i] > 0) {
1583 PrintF(" %-20s: %10d bytes\n", table[i],
1584 isolate->code_kind_statistics()[i]);
1585 }
1586 }
1587 PrintF("\n");
1588 }
1589
1590
CollectHistogramInfo(HeapObject * obj)1591 static int CollectHistogramInfo(HeapObject* obj) {
1592 Isolate* isolate = Isolate::Current();
1593 InstanceType type = obj->map()->instance_type();
1594 ASSERT(0 <= type && type <= LAST_TYPE);
1595 ASSERT(isolate->heap_histograms()[type].name() != NULL);
1596 isolate->heap_histograms()[type].increment_number(1);
1597 isolate->heap_histograms()[type].increment_bytes(obj->Size());
1598
1599 if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) {
1600 JSObject::cast(obj)->IncrementSpillStatistics(
1601 isolate->js_spill_information());
1602 }
1603
1604 return obj->Size();
1605 }
1606
1607
ReportHistogram(bool print_spill)1608 static void ReportHistogram(bool print_spill) {
1609 Isolate* isolate = Isolate::Current();
1610 PrintF("\n Object Histogram:\n");
1611 for (int i = 0; i <= LAST_TYPE; i++) {
1612 if (isolate->heap_histograms()[i].number() > 0) {
1613 PrintF(" %-34s%10d (%10d bytes)\n",
1614 isolate->heap_histograms()[i].name(),
1615 isolate->heap_histograms()[i].number(),
1616 isolate->heap_histograms()[i].bytes());
1617 }
1618 }
1619 PrintF("\n");
1620
1621 // Summarize string types.
1622 int string_number = 0;
1623 int string_bytes = 0;
1624 #define INCREMENT(type, size, name, camel_name) \
1625 string_number += isolate->heap_histograms()[type].number(); \
1626 string_bytes += isolate->heap_histograms()[type].bytes();
1627 STRING_TYPE_LIST(INCREMENT)
1628 #undef INCREMENT
1629 if (string_number > 0) {
1630 PrintF(" %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number,
1631 string_bytes);
1632 }
1633
1634 if (FLAG_collect_heap_spill_statistics && print_spill) {
1635 isolate->js_spill_information()->Print();
1636 }
1637 }
1638 #endif // DEBUG
1639
1640
1641 // Support for statistics gathering for --heap-stats and --log-gc.
1642 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
ClearHistograms()1643 void NewSpace::ClearHistograms() {
1644 for (int i = 0; i <= LAST_TYPE; i++) {
1645 allocated_histogram_[i].clear();
1646 promoted_histogram_[i].clear();
1647 }
1648 }
1649
1650 // Because the copying collector does not touch garbage objects, we iterate
1651 // the new space before a collection to get a histogram of allocated objects.
1652 // This only happens (1) when compiled with DEBUG and the --heap-stats flag is
1653 // set, or when compiled with ENABLE_LOGGING_AND_PROFILING and the --log-gc
1654 // flag is set.
CollectStatistics()1655 void NewSpace::CollectStatistics() {
1656 ClearHistograms();
1657 SemiSpaceIterator it(this);
1658 for (HeapObject* obj = it.next(); obj != NULL; obj = it.next())
1659 RecordAllocation(obj);
1660 }
1661
1662
1663 #ifdef ENABLE_LOGGING_AND_PROFILING
DoReportStatistics(Isolate * isolate,HistogramInfo * info,const char * description)1664 static void DoReportStatistics(Isolate* isolate,
1665 HistogramInfo* info, const char* description) {
1666 LOG(isolate, HeapSampleBeginEvent("NewSpace", description));
1667 // Lump all the string types together.
1668 int string_number = 0;
1669 int string_bytes = 0;
1670 #define INCREMENT(type, size, name, camel_name) \
1671 string_number += info[type].number(); \
1672 string_bytes += info[type].bytes();
1673 STRING_TYPE_LIST(INCREMENT)
1674 #undef INCREMENT
1675 if (string_number > 0) {
1676 LOG(isolate,
1677 HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
1678 }
1679
1680 // Then do the other types.
1681 for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
1682 if (info[i].number() > 0) {
1683 LOG(isolate,
1684 HeapSampleItemEvent(info[i].name(), info[i].number(),
1685 info[i].bytes()));
1686 }
1687 }
1688 LOG(isolate, HeapSampleEndEvent("NewSpace", description));
1689 }
1690 #endif // ENABLE_LOGGING_AND_PROFILING
1691
1692
ReportStatistics()1693 void NewSpace::ReportStatistics() {
1694 #ifdef DEBUG
1695 if (FLAG_heap_stats) {
1696 float pct = static_cast<float>(Available()) / Capacity();
1697 PrintF(" capacity: %" V8_PTR_PREFIX "d"
1698 ", available: %" V8_PTR_PREFIX "d, %%%d\n",
1699 Capacity(), Available(), static_cast<int>(pct*100));
1700 PrintF("\n Object Histogram:\n");
1701 for (int i = 0; i <= LAST_TYPE; i++) {
1702 if (allocated_histogram_[i].number() > 0) {
1703 PrintF(" %-34s%10d (%10d bytes)\n",
1704 allocated_histogram_[i].name(),
1705 allocated_histogram_[i].number(),
1706 allocated_histogram_[i].bytes());
1707 }
1708 }
1709 PrintF("\n");
1710 }
1711 #endif // DEBUG
1712
1713 #ifdef ENABLE_LOGGING_AND_PROFILING
1714 if (FLAG_log_gc) {
1715 Isolate* isolate = ISOLATE;
1716 DoReportStatistics(isolate, allocated_histogram_, "allocated");
1717 DoReportStatistics(isolate, promoted_histogram_, "promoted");
1718 }
1719 #endif // ENABLE_LOGGING_AND_PROFILING
1720 }
1721
1722
RecordAllocation(HeapObject * obj)1723 void NewSpace::RecordAllocation(HeapObject* obj) {
1724 InstanceType type = obj->map()->instance_type();
1725 ASSERT(0 <= type && type <= LAST_TYPE);
1726 allocated_histogram_[type].increment_number(1);
1727 allocated_histogram_[type].increment_bytes(obj->Size());
1728 }
1729
1730
RecordPromotion(HeapObject * obj)1731 void NewSpace::RecordPromotion(HeapObject* obj) {
1732 InstanceType type = obj->map()->instance_type();
1733 ASSERT(0 <= type && type <= LAST_TYPE);
1734 promoted_histogram_[type].increment_number(1);
1735 promoted_histogram_[type].increment_bytes(obj->Size());
1736 }
1737 #endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1738
1739
1740 // -----------------------------------------------------------------------------
1741 // Free lists for old object spaces implementation
1742
set_size(Heap * heap,int size_in_bytes)1743 void FreeListNode::set_size(Heap* heap, int size_in_bytes) {
1744 ASSERT(size_in_bytes > 0);
1745 ASSERT(IsAligned(size_in_bytes, kPointerSize));
1746
1747 // We write a map and possibly size information to the block. If the block
1748 // is big enough to be a ByteArray with at least one extra word (the next
1749 // pointer), we set its map to be the byte array map and its size to an
1750 // appropriate array length for the desired size from HeapObject::Size().
1751 // If the block is too small (eg, one or two words), to hold both a size
1752 // field and a next pointer, we give it a filler map that gives it the
1753 // correct size.
1754 if (size_in_bytes > ByteArray::kHeaderSize) {
1755 set_map(heap->raw_unchecked_byte_array_map());
1756 // Can't use ByteArray::cast because it fails during deserialization.
1757 ByteArray* this_as_byte_array = reinterpret_cast<ByteArray*>(this);
1758 this_as_byte_array->set_length(ByteArray::LengthFor(size_in_bytes));
1759 } else if (size_in_bytes == kPointerSize) {
1760 set_map(heap->raw_unchecked_one_pointer_filler_map());
1761 } else if (size_in_bytes == 2 * kPointerSize) {
1762 set_map(heap->raw_unchecked_two_pointer_filler_map());
1763 } else {
1764 UNREACHABLE();
1765 }
1766 // We would like to ASSERT(Size() == size_in_bytes) but this would fail during
1767 // deserialization because the byte array map is not done yet.
1768 }
1769
1770
next(Heap * heap)1771 Address FreeListNode::next(Heap* heap) {
1772 ASSERT(IsFreeListNode(this));
1773 if (map() == heap->raw_unchecked_byte_array_map()) {
1774 ASSERT(Size() >= kNextOffset + kPointerSize);
1775 return Memory::Address_at(address() + kNextOffset);
1776 } else {
1777 return Memory::Address_at(address() + kPointerSize);
1778 }
1779 }
1780
1781
set_next(Heap * heap,Address next)1782 void FreeListNode::set_next(Heap* heap, Address next) {
1783 ASSERT(IsFreeListNode(this));
1784 if (map() == heap->raw_unchecked_byte_array_map()) {
1785 ASSERT(Size() >= kNextOffset + kPointerSize);
1786 Memory::Address_at(address() + kNextOffset) = next;
1787 } else {
1788 Memory::Address_at(address() + kPointerSize) = next;
1789 }
1790 }
1791
1792
OldSpaceFreeList(Heap * heap,AllocationSpace owner)1793 OldSpaceFreeList::OldSpaceFreeList(Heap* heap, AllocationSpace owner)
1794 : heap_(heap),
1795 owner_(owner) {
1796 Reset();
1797 }
1798
1799
Reset()1800 void OldSpaceFreeList::Reset() {
1801 available_ = 0;
1802 for (int i = 0; i < kFreeListsLength; i++) {
1803 free_[i].head_node_ = NULL;
1804 }
1805 needs_rebuild_ = false;
1806 finger_ = kHead;
1807 free_[kHead].next_size_ = kEnd;
1808 }
1809
1810
RebuildSizeList()1811 void OldSpaceFreeList::RebuildSizeList() {
1812 ASSERT(needs_rebuild_);
1813 int cur = kHead;
1814 for (int i = cur + 1; i < kFreeListsLength; i++) {
1815 if (free_[i].head_node_ != NULL) {
1816 free_[cur].next_size_ = i;
1817 cur = i;
1818 }
1819 }
1820 free_[cur].next_size_ = kEnd;
1821 needs_rebuild_ = false;
1822 }
1823
1824
Free(Address start,int size_in_bytes)1825 int OldSpaceFreeList::Free(Address start, int size_in_bytes) {
1826 #ifdef DEBUG
1827 Isolate::Current()->memory_allocator()->ZapBlock(start, size_in_bytes);
1828 #endif
1829 FreeListNode* node = FreeListNode::FromAddress(start);
1830 node->set_size(heap_, size_in_bytes);
1831
1832 // We don't use the freelists in compacting mode. This makes it more like a
1833 // GC that only has mark-sweep-compact and doesn't have a mark-sweep
1834 // collector.
1835 if (FLAG_always_compact) {
1836 return size_in_bytes;
1837 }
1838
1839 // Early return to drop too-small blocks on the floor (one or two word
1840 // blocks cannot hold a map pointer, a size field, and a pointer to the
1841 // next block in the free list).
1842 if (size_in_bytes < kMinBlockSize) {
1843 return size_in_bytes;
1844 }
1845
1846 // Insert other blocks at the head of an exact free list.
1847 int index = size_in_bytes >> kPointerSizeLog2;
1848 node->set_next(heap_, free_[index].head_node_);
1849 free_[index].head_node_ = node->address();
1850 available_ += size_in_bytes;
1851 needs_rebuild_ = true;
1852 return 0;
1853 }
1854
1855
Allocate(int size_in_bytes,int * wasted_bytes)1856 MaybeObject* OldSpaceFreeList::Allocate(int size_in_bytes, int* wasted_bytes) {
1857 ASSERT(0 < size_in_bytes);
1858 ASSERT(size_in_bytes <= kMaxBlockSize);
1859 ASSERT(IsAligned(size_in_bytes, kPointerSize));
1860
1861 if (needs_rebuild_) RebuildSizeList();
1862 int index = size_in_bytes >> kPointerSizeLog2;
1863 // Check for a perfect fit.
1864 if (free_[index].head_node_ != NULL) {
1865 FreeListNode* node = FreeListNode::FromAddress(free_[index].head_node_);
1866 // If this was the last block of its size, remove the size.
1867 if ((free_[index].head_node_ = node->next(heap_)) == NULL)
1868 RemoveSize(index);
1869 available_ -= size_in_bytes;
1870 *wasted_bytes = 0;
1871 ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
1872 return node;
1873 }
1874 // Search the size list for the best fit.
1875 int prev = finger_ < index ? finger_ : kHead;
1876 int cur = FindSize(index, &prev);
1877 ASSERT(index < cur);
1878 if (cur == kEnd) {
1879 // No large enough size in list.
1880 *wasted_bytes = 0;
1881 return Failure::RetryAfterGC(owner_);
1882 }
1883 ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
1884 int rem = cur - index;
1885 int rem_bytes = rem << kPointerSizeLog2;
1886 FreeListNode* cur_node = FreeListNode::FromAddress(free_[cur].head_node_);
1887 ASSERT(cur_node->Size() == (cur << kPointerSizeLog2));
1888 FreeListNode* rem_node = FreeListNode::FromAddress(free_[cur].head_node_ +
1889 size_in_bytes);
1890 // Distinguish the cases prev < rem < cur and rem <= prev < cur
1891 // to avoid many redundant tests and calls to Insert/RemoveSize.
1892 if (prev < rem) {
1893 // Simple case: insert rem between prev and cur.
1894 finger_ = prev;
1895 free_[prev].next_size_ = rem;
1896 // If this was the last block of size cur, remove the size.
1897 if ((free_[cur].head_node_ = cur_node->next(heap_)) == NULL) {
1898 free_[rem].next_size_ = free_[cur].next_size_;
1899 } else {
1900 free_[rem].next_size_ = cur;
1901 }
1902 // Add the remainder block.
1903 rem_node->set_size(heap_, rem_bytes);
1904 rem_node->set_next(heap_, free_[rem].head_node_);
1905 free_[rem].head_node_ = rem_node->address();
1906 } else {
1907 // If this was the last block of size cur, remove the size.
1908 if ((free_[cur].head_node_ = cur_node->next(heap_)) == NULL) {
1909 finger_ = prev;
1910 free_[prev].next_size_ = free_[cur].next_size_;
1911 }
1912 if (rem_bytes < kMinBlockSize) {
1913 // Too-small remainder is wasted.
1914 rem_node->set_size(heap_, rem_bytes);
1915 available_ -= size_in_bytes + rem_bytes;
1916 *wasted_bytes = rem_bytes;
1917 return cur_node;
1918 }
1919 // Add the remainder block and, if needed, insert its size.
1920 rem_node->set_size(heap_, rem_bytes);
1921 rem_node->set_next(heap_, free_[rem].head_node_);
1922 free_[rem].head_node_ = rem_node->address();
1923 if (rem_node->next(heap_) == NULL) InsertSize(rem);
1924 }
1925 available_ -= size_in_bytes;
1926 *wasted_bytes = 0;
1927 return cur_node;
1928 }
1929
1930
MarkNodes()1931 void OldSpaceFreeList::MarkNodes() {
1932 for (int i = 0; i < kFreeListsLength; i++) {
1933 Address cur_addr = free_[i].head_node_;
1934 while (cur_addr != NULL) {
1935 FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
1936 cur_addr = cur_node->next(heap_);
1937 cur_node->SetMark();
1938 }
1939 }
1940 }
1941
1942
1943 #ifdef DEBUG
Contains(FreeListNode * node)1944 bool OldSpaceFreeList::Contains(FreeListNode* node) {
1945 for (int i = 0; i < kFreeListsLength; i++) {
1946 Address cur_addr = free_[i].head_node_;
1947 while (cur_addr != NULL) {
1948 FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
1949 if (cur_node == node) return true;
1950 cur_addr = cur_node->next(heap_);
1951 }
1952 }
1953 return false;
1954 }
1955 #endif
1956
1957
FixedSizeFreeList(Heap * heap,AllocationSpace owner,int object_size)1958 FixedSizeFreeList::FixedSizeFreeList(Heap* heap,
1959 AllocationSpace owner,
1960 int object_size)
1961 : heap_(heap), owner_(owner), object_size_(object_size) {
1962 Reset();
1963 }
1964
1965
Reset()1966 void FixedSizeFreeList::Reset() {
1967 available_ = 0;
1968 head_ = tail_ = NULL;
1969 }
1970
1971
Free(Address start)1972 void FixedSizeFreeList::Free(Address start) {
1973 #ifdef DEBUG
1974 Isolate::Current()->memory_allocator()->ZapBlock(start, object_size_);
1975 #endif
1976 // We only use the freelists with mark-sweep.
1977 ASSERT(!HEAP->mark_compact_collector()->IsCompacting());
1978 FreeListNode* node = FreeListNode::FromAddress(start);
1979 node->set_size(heap_, object_size_);
1980 node->set_next(heap_, NULL);
1981 if (head_ == NULL) {
1982 tail_ = head_ = node->address();
1983 } else {
1984 FreeListNode::FromAddress(tail_)->set_next(heap_, node->address());
1985 tail_ = node->address();
1986 }
1987 available_ += object_size_;
1988 }
1989
1990
Allocate()1991 MaybeObject* FixedSizeFreeList::Allocate() {
1992 if (head_ == NULL) {
1993 return Failure::RetryAfterGC(owner_);
1994 }
1995
1996 ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
1997 FreeListNode* node = FreeListNode::FromAddress(head_);
1998 head_ = node->next(heap_);
1999 available_ -= object_size_;
2000 return node;
2001 }
2002
2003
MarkNodes()2004 void FixedSizeFreeList::MarkNodes() {
2005 Address cur_addr = head_;
2006 while (cur_addr != NULL && cur_addr != tail_) {
2007 FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
2008 cur_addr = cur_node->next(heap_);
2009 cur_node->SetMark();
2010 }
2011 }
2012
2013
2014 // -----------------------------------------------------------------------------
2015 // OldSpace implementation
2016
PrepareForMarkCompact(bool will_compact)2017 void OldSpace::PrepareForMarkCompact(bool will_compact) {
2018 // Call prepare of the super class.
2019 PagedSpace::PrepareForMarkCompact(will_compact);
2020
2021 if (will_compact) {
2022 // Reset relocation info. During a compacting collection, everything in
2023 // the space is considered 'available' and we will rediscover live data
2024 // and waste during the collection.
2025 MCResetRelocationInfo();
2026 ASSERT(Available() == Capacity());
2027 } else {
2028 // During a non-compacting collection, everything below the linear
2029 // allocation pointer is considered allocated (everything above is
2030 // available) and we will rediscover available and wasted bytes during
2031 // the collection.
2032 accounting_stats_.AllocateBytes(free_list_.available());
2033 accounting_stats_.FillWastedBytes(Waste());
2034 }
2035
2036 // Clear the free list before a full GC---it will be rebuilt afterward.
2037 free_list_.Reset();
2038 }
2039
2040
MCCommitRelocationInfo()2041 void OldSpace::MCCommitRelocationInfo() {
2042 // Update fast allocation info.
2043 allocation_info_.top = mc_forwarding_info_.top;
2044 allocation_info_.limit = mc_forwarding_info_.limit;
2045 ASSERT(allocation_info_.VerifyPagedAllocation());
2046
2047 // The space is compacted and we haven't yet built free lists or
2048 // wasted any space.
2049 ASSERT(Waste() == 0);
2050 ASSERT(AvailableFree() == 0);
2051
2052 // Build the free list for the space.
2053 int computed_size = 0;
2054 PageIterator it(this, PageIterator::PAGES_USED_BY_MC);
2055 while (it.has_next()) {
2056 Page* p = it.next();
2057 // Space below the relocation pointer is allocated.
2058 computed_size +=
2059 static_cast<int>(p->AllocationWatermark() - p->ObjectAreaStart());
2060 if (it.has_next()) {
2061 // Free the space at the top of the page.
2062 int extra_size =
2063 static_cast<int>(p->ObjectAreaEnd() - p->AllocationWatermark());
2064 if (extra_size > 0) {
2065 int wasted_bytes = free_list_.Free(p->AllocationWatermark(),
2066 extra_size);
2067 // The bytes we have just "freed" to add to the free list were
2068 // already accounted as available.
2069 accounting_stats_.WasteBytes(wasted_bytes);
2070 }
2071 }
2072 }
2073
2074 // Make sure the computed size - based on the used portion of the pages in
2075 // use - matches the size obtained while computing forwarding addresses.
2076 ASSERT(computed_size == Size());
2077 }
2078
2079
ReserveSpace(int bytes)2080 bool NewSpace::ReserveSpace(int bytes) {
2081 // We can't reliably unpack a partial snapshot that needs more new space
2082 // space than the minimum NewSpace size.
2083 ASSERT(bytes <= InitialCapacity());
2084 Address limit = allocation_info_.limit;
2085 Address top = allocation_info_.top;
2086 return limit - top >= bytes;
2087 }
2088
2089
FreePages(Page * prev,Page * last)2090 void PagedSpace::FreePages(Page* prev, Page* last) {
2091 if (last == AllocationTopPage()) {
2092 // Pages are already at the end of used pages.
2093 return;
2094 }
2095
2096 Page* first = NULL;
2097
2098 // Remove pages from the list.
2099 if (prev == NULL) {
2100 first = first_page_;
2101 first_page_ = last->next_page();
2102 } else {
2103 first = prev->next_page();
2104 heap()->isolate()->memory_allocator()->SetNextPage(
2105 prev, last->next_page());
2106 }
2107
2108 // Attach it after the last page.
2109 heap()->isolate()->memory_allocator()->SetNextPage(last_page_, first);
2110 last_page_ = last;
2111 heap()->isolate()->memory_allocator()->SetNextPage(last, NULL);
2112
2113 // Clean them up.
2114 do {
2115 first->InvalidateWatermark(true);
2116 first->SetAllocationWatermark(first->ObjectAreaStart());
2117 first->SetCachedAllocationWatermark(first->ObjectAreaStart());
2118 first->SetRegionMarks(Page::kAllRegionsCleanMarks);
2119 first = first->next_page();
2120 } while (first != NULL);
2121
2122 // Order of pages in this space might no longer be consistent with
2123 // order of pages in chunks.
2124 page_list_is_chunk_ordered_ = false;
2125 }
2126
2127
RelinkPageListInChunkOrder(bool deallocate_blocks)2128 void PagedSpace::RelinkPageListInChunkOrder(bool deallocate_blocks) {
2129 const bool add_to_freelist = true;
2130
2131 // Mark used and unused pages to properly fill unused pages
2132 // after reordering.
2133 PageIterator all_pages_iterator(this, PageIterator::ALL_PAGES);
2134 Page* last_in_use = AllocationTopPage();
2135 bool in_use = true;
2136
2137 while (all_pages_iterator.has_next()) {
2138 Page* p = all_pages_iterator.next();
2139 p->SetWasInUseBeforeMC(in_use);
2140 if (p == last_in_use) {
2141 // We passed a page containing allocation top. All consequent
2142 // pages are not used.
2143 in_use = false;
2144 }
2145 }
2146
2147 if (page_list_is_chunk_ordered_) return;
2148
2149 Page* new_last_in_use = Page::FromAddress(NULL);
2150 heap()->isolate()->memory_allocator()->RelinkPageListInChunkOrder(
2151 this, &first_page_, &last_page_, &new_last_in_use);
2152 ASSERT(new_last_in_use->is_valid());
2153
2154 if (new_last_in_use != last_in_use) {
2155 // Current allocation top points to a page which is now in the middle
2156 // of page list. We should move allocation top forward to the new last
2157 // used page so various object iterators will continue to work properly.
2158 int size_in_bytes = static_cast<int>(PageAllocationLimit(last_in_use) -
2159 last_in_use->AllocationTop());
2160
2161 last_in_use->SetAllocationWatermark(last_in_use->AllocationTop());
2162 if (size_in_bytes > 0) {
2163 Address start = last_in_use->AllocationTop();
2164 if (deallocate_blocks) {
2165 accounting_stats_.AllocateBytes(size_in_bytes);
2166 DeallocateBlock(start, size_in_bytes, add_to_freelist);
2167 } else {
2168 heap()->CreateFillerObjectAt(start, size_in_bytes);
2169 }
2170 }
2171
2172 // New last in use page was in the middle of the list before
2173 // sorting so it full.
2174 SetTop(new_last_in_use->AllocationTop());
2175
2176 ASSERT(AllocationTopPage() == new_last_in_use);
2177 ASSERT(AllocationTopPage()->WasInUseBeforeMC());
2178 }
2179
2180 PageIterator pages_in_use_iterator(this, PageIterator::PAGES_IN_USE);
2181 while (pages_in_use_iterator.has_next()) {
2182 Page* p = pages_in_use_iterator.next();
2183 if (!p->WasInUseBeforeMC()) {
2184 // Empty page is in the middle of a sequence of used pages.
2185 // Allocate it as a whole and deallocate immediately.
2186 int size_in_bytes = static_cast<int>(PageAllocationLimit(p) -
2187 p->ObjectAreaStart());
2188
2189 p->SetAllocationWatermark(p->ObjectAreaStart());
2190 Address start = p->ObjectAreaStart();
2191 if (deallocate_blocks) {
2192 accounting_stats_.AllocateBytes(size_in_bytes);
2193 DeallocateBlock(start, size_in_bytes, add_to_freelist);
2194 } else {
2195 heap()->CreateFillerObjectAt(start, size_in_bytes);
2196 }
2197 }
2198 }
2199
2200 page_list_is_chunk_ordered_ = true;
2201 }
2202
2203
PrepareForMarkCompact(bool will_compact)2204 void PagedSpace::PrepareForMarkCompact(bool will_compact) {
2205 if (will_compact) {
2206 RelinkPageListInChunkOrder(false);
2207 }
2208 }
2209
2210
ReserveSpace(int bytes)2211 bool PagedSpace::ReserveSpace(int bytes) {
2212 Address limit = allocation_info_.limit;
2213 Address top = allocation_info_.top;
2214 if (limit - top >= bytes) return true;
2215
2216 // There wasn't enough space in the current page. Lets put the rest
2217 // of the page on the free list and start a fresh page.
2218 PutRestOfCurrentPageOnFreeList(TopPageOf(allocation_info_));
2219
2220 Page* reserved_page = TopPageOf(allocation_info_);
2221 int bytes_left_to_reserve = bytes;
2222 while (bytes_left_to_reserve > 0) {
2223 if (!reserved_page->next_page()->is_valid()) {
2224 if (heap()->OldGenerationAllocationLimitReached()) return false;
2225 Expand(reserved_page);
2226 }
2227 bytes_left_to_reserve -= Page::kPageSize;
2228 reserved_page = reserved_page->next_page();
2229 if (!reserved_page->is_valid()) return false;
2230 }
2231 ASSERT(TopPageOf(allocation_info_)->next_page()->is_valid());
2232 TopPageOf(allocation_info_)->next_page()->InvalidateWatermark(true);
2233 SetAllocationInfo(&allocation_info_,
2234 TopPageOf(allocation_info_)->next_page());
2235 return true;
2236 }
2237
2238
2239 // You have to call this last, since the implementation from PagedSpace
2240 // doesn't know that memory was 'promised' to large object space.
ReserveSpace(int bytes)2241 bool LargeObjectSpace::ReserveSpace(int bytes) {
2242 return heap()->OldGenerationSpaceAvailable() >= bytes;
2243 }
2244
2245
2246 // Slow case for normal allocation. Try in order: (1) allocate in the next
2247 // page in the space, (2) allocate off the space's free list, (3) expand the
2248 // space, (4) fail.
SlowAllocateRaw(int size_in_bytes)2249 HeapObject* OldSpace::SlowAllocateRaw(int size_in_bytes) {
2250 // Linear allocation in this space has failed. If there is another page
2251 // in the space, move to that page and allocate there. This allocation
2252 // should succeed (size_in_bytes should not be greater than a page's
2253 // object area size).
2254 Page* current_page = TopPageOf(allocation_info_);
2255 if (current_page->next_page()->is_valid()) {
2256 return AllocateInNextPage(current_page, size_in_bytes);
2257 }
2258
2259 // There is no next page in this space. Try free list allocation unless that
2260 // is currently forbidden.
2261 if (!heap()->linear_allocation()) {
2262 int wasted_bytes;
2263 Object* result;
2264 MaybeObject* maybe = free_list_.Allocate(size_in_bytes, &wasted_bytes);
2265 accounting_stats_.WasteBytes(wasted_bytes);
2266 if (maybe->ToObject(&result)) {
2267 accounting_stats_.AllocateBytes(size_in_bytes);
2268
2269 HeapObject* obj = HeapObject::cast(result);
2270 Page* p = Page::FromAddress(obj->address());
2271
2272 if (obj->address() >= p->AllocationWatermark()) {
2273 // There should be no hole between the allocation watermark
2274 // and allocated object address.
2275 // Memory above the allocation watermark was not swept and
2276 // might contain garbage pointers to new space.
2277 ASSERT(obj->address() == p->AllocationWatermark());
2278 p->SetAllocationWatermark(obj->address() + size_in_bytes);
2279 }
2280
2281 return obj;
2282 }
2283 }
2284
2285 // Free list allocation failed and there is no next page. Fail if we have
2286 // hit the old generation size limit that should cause a garbage
2287 // collection.
2288 if (!heap()->always_allocate() &&
2289 heap()->OldGenerationAllocationLimitReached()) {
2290 return NULL;
2291 }
2292
2293 // Try to expand the space and allocate in the new next page.
2294 ASSERT(!current_page->next_page()->is_valid());
2295 if (Expand(current_page)) {
2296 return AllocateInNextPage(current_page, size_in_bytes);
2297 }
2298
2299 // Finally, fail.
2300 return NULL;
2301 }
2302
2303
PutRestOfCurrentPageOnFreeList(Page * current_page)2304 void OldSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) {
2305 current_page->SetAllocationWatermark(allocation_info_.top);
2306 int free_size =
2307 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top);
2308 if (free_size > 0) {
2309 int wasted_bytes = free_list_.Free(allocation_info_.top, free_size);
2310 accounting_stats_.WasteBytes(wasted_bytes);
2311 }
2312 }
2313
2314
PutRestOfCurrentPageOnFreeList(Page * current_page)2315 void FixedSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) {
2316 current_page->SetAllocationWatermark(allocation_info_.top);
2317 int free_size =
2318 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top);
2319 // In the fixed space free list all the free list items have the right size.
2320 // We use up the rest of the page while preserving this invariant.
2321 while (free_size >= object_size_in_bytes_) {
2322 free_list_.Free(allocation_info_.top);
2323 allocation_info_.top += object_size_in_bytes_;
2324 free_size -= object_size_in_bytes_;
2325 accounting_stats_.WasteBytes(object_size_in_bytes_);
2326 }
2327 }
2328
2329
2330 // Add the block at the top of the page to the space's free list, set the
2331 // allocation info to the next page (assumed to be one), and allocate
2332 // linearly there.
AllocateInNextPage(Page * current_page,int size_in_bytes)2333 HeapObject* OldSpace::AllocateInNextPage(Page* current_page,
2334 int size_in_bytes) {
2335 ASSERT(current_page->next_page()->is_valid());
2336 Page* next_page = current_page->next_page();
2337 next_page->ClearGCFields();
2338 PutRestOfCurrentPageOnFreeList(current_page);
2339 SetAllocationInfo(&allocation_info_, next_page);
2340 return AllocateLinearly(&allocation_info_, size_in_bytes);
2341 }
2342
2343
DeallocateBlock(Address start,int size_in_bytes,bool add_to_freelist)2344 void OldSpace::DeallocateBlock(Address start,
2345 int size_in_bytes,
2346 bool add_to_freelist) {
2347 Free(start, size_in_bytes, add_to_freelist);
2348 }
2349
2350
2351 #ifdef DEBUG
ReportCodeStatistics()2352 void PagedSpace::ReportCodeStatistics() {
2353 Isolate* isolate = Isolate::Current();
2354 CommentStatistic* comments_statistics =
2355 isolate->paged_space_comments_statistics();
2356 ReportCodeKindStatistics();
2357 PrintF("Code comment statistics (\" [ comment-txt : size/ "
2358 "count (average)\"):\n");
2359 for (int i = 0; i <= CommentStatistic::kMaxComments; i++) {
2360 const CommentStatistic& cs = comments_statistics[i];
2361 if (cs.size > 0) {
2362 PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count,
2363 cs.size/cs.count);
2364 }
2365 }
2366 PrintF("\n");
2367 }
2368
2369
ResetCodeStatistics()2370 void PagedSpace::ResetCodeStatistics() {
2371 Isolate* isolate = Isolate::Current();
2372 CommentStatistic* comments_statistics =
2373 isolate->paged_space_comments_statistics();
2374 ClearCodeKindStatistics();
2375 for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
2376 comments_statistics[i].Clear();
2377 }
2378 comments_statistics[CommentStatistic::kMaxComments].comment = "Unknown";
2379 comments_statistics[CommentStatistic::kMaxComments].size = 0;
2380 comments_statistics[CommentStatistic::kMaxComments].count = 0;
2381 }
2382
2383
2384 // Adds comment to 'comment_statistics' table. Performance OK as long as
2385 // 'kMaxComments' is small
EnterComment(Isolate * isolate,const char * comment,int delta)2386 static void EnterComment(Isolate* isolate, const char* comment, int delta) {
2387 CommentStatistic* comments_statistics =
2388 isolate->paged_space_comments_statistics();
2389 // Do not count empty comments
2390 if (delta <= 0) return;
2391 CommentStatistic* cs = &comments_statistics[CommentStatistic::kMaxComments];
2392 // Search for a free or matching entry in 'comments_statistics': 'cs'
2393 // points to result.
2394 for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
2395 if (comments_statistics[i].comment == NULL) {
2396 cs = &comments_statistics[i];
2397 cs->comment = comment;
2398 break;
2399 } else if (strcmp(comments_statistics[i].comment, comment) == 0) {
2400 cs = &comments_statistics[i];
2401 break;
2402 }
2403 }
2404 // Update entry for 'comment'
2405 cs->size += delta;
2406 cs->count += 1;
2407 }
2408
2409
2410 // Call for each nested comment start (start marked with '[ xxx', end marked
2411 // with ']'. RelocIterator 'it' must point to a comment reloc info.
CollectCommentStatistics(Isolate * isolate,RelocIterator * it)2412 static void CollectCommentStatistics(Isolate* isolate, RelocIterator* it) {
2413 ASSERT(!it->done());
2414 ASSERT(it->rinfo()->rmode() == RelocInfo::COMMENT);
2415 const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data());
2416 if (tmp[0] != '[') {
2417 // Not a nested comment; skip
2418 return;
2419 }
2420
2421 // Search for end of nested comment or a new nested comment
2422 const char* const comment_txt =
2423 reinterpret_cast<const char*>(it->rinfo()->data());
2424 const byte* prev_pc = it->rinfo()->pc();
2425 int flat_delta = 0;
2426 it->next();
2427 while (true) {
2428 // All nested comments must be terminated properly, and therefore exit
2429 // from loop.
2430 ASSERT(!it->done());
2431 if (it->rinfo()->rmode() == RelocInfo::COMMENT) {
2432 const char* const txt =
2433 reinterpret_cast<const char*>(it->rinfo()->data());
2434 flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc);
2435 if (txt[0] == ']') break; // End of nested comment
2436 // A new comment
2437 CollectCommentStatistics(isolate, it);
2438 // Skip code that was covered with previous comment
2439 prev_pc = it->rinfo()->pc();
2440 }
2441 it->next();
2442 }
2443 EnterComment(isolate, comment_txt, flat_delta);
2444 }
2445
2446
2447 // Collects code size statistics:
2448 // - by code kind
2449 // - by code comment
CollectCodeStatistics()2450 void PagedSpace::CollectCodeStatistics() {
2451 Isolate* isolate = heap()->isolate();
2452 HeapObjectIterator obj_it(this);
2453 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) {
2454 if (obj->IsCode()) {
2455 Code* code = Code::cast(obj);
2456 isolate->code_kind_statistics()[code->kind()] += code->Size();
2457 RelocIterator it(code);
2458 int delta = 0;
2459 const byte* prev_pc = code->instruction_start();
2460 while (!it.done()) {
2461 if (it.rinfo()->rmode() == RelocInfo::COMMENT) {
2462 delta += static_cast<int>(it.rinfo()->pc() - prev_pc);
2463 CollectCommentStatistics(isolate, &it);
2464 prev_pc = it.rinfo()->pc();
2465 }
2466 it.next();
2467 }
2468
2469 ASSERT(code->instruction_start() <= prev_pc &&
2470 prev_pc <= code->instruction_end());
2471 delta += static_cast<int>(code->instruction_end() - prev_pc);
2472 EnterComment(isolate, "NoComment", delta);
2473 }
2474 }
2475 }
2476
2477
ReportStatistics()2478 void OldSpace::ReportStatistics() {
2479 int pct = static_cast<int>(Available() * 100 / Capacity());
2480 PrintF(" capacity: %" V8_PTR_PREFIX "d"
2481 ", waste: %" V8_PTR_PREFIX "d"
2482 ", available: %" V8_PTR_PREFIX "d, %%%d\n",
2483 Capacity(), Waste(), Available(), pct);
2484
2485 ClearHistograms();
2486 HeapObjectIterator obj_it(this);
2487 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next())
2488 CollectHistogramInfo(obj);
2489 ReportHistogram(true);
2490 }
2491 #endif
2492
2493 // -----------------------------------------------------------------------------
2494 // FixedSpace implementation
2495
PrepareForMarkCompact(bool will_compact)2496 void FixedSpace::PrepareForMarkCompact(bool will_compact) {
2497 // Call prepare of the super class.
2498 PagedSpace::PrepareForMarkCompact(will_compact);
2499
2500 if (will_compact) {
2501 // Reset relocation info.
2502 MCResetRelocationInfo();
2503
2504 // During a compacting collection, everything in the space is considered
2505 // 'available' (set by the call to MCResetRelocationInfo) and we will
2506 // rediscover live and wasted bytes during the collection.
2507 ASSERT(Available() == Capacity());
2508 } else {
2509 // During a non-compacting collection, everything below the linear
2510 // allocation pointer except wasted top-of-page blocks is considered
2511 // allocated and we will rediscover available bytes during the
2512 // collection.
2513 accounting_stats_.AllocateBytes(free_list_.available());
2514 }
2515
2516 // Clear the free list before a full GC---it will be rebuilt afterward.
2517 free_list_.Reset();
2518 }
2519
2520
MCCommitRelocationInfo()2521 void FixedSpace::MCCommitRelocationInfo() {
2522 // Update fast allocation info.
2523 allocation_info_.top = mc_forwarding_info_.top;
2524 allocation_info_.limit = mc_forwarding_info_.limit;
2525 ASSERT(allocation_info_.VerifyPagedAllocation());
2526
2527 // The space is compacted and we haven't yet wasted any space.
2528 ASSERT(Waste() == 0);
2529
2530 // Update allocation_top of each page in use and compute waste.
2531 int computed_size = 0;
2532 PageIterator it(this, PageIterator::PAGES_USED_BY_MC);
2533 while (it.has_next()) {
2534 Page* page = it.next();
2535 Address page_top = page->AllocationTop();
2536 computed_size += static_cast<int>(page_top - page->ObjectAreaStart());
2537 if (it.has_next()) {
2538 accounting_stats_.WasteBytes(
2539 static_cast<int>(page->ObjectAreaEnd() - page_top));
2540 page->SetAllocationWatermark(page_top);
2541 }
2542 }
2543
2544 // Make sure the computed size - based on the used portion of the
2545 // pages in use - matches the size we adjust during allocation.
2546 ASSERT(computed_size == Size());
2547 }
2548
2549
2550 // Slow case for normal allocation. Try in order: (1) allocate in the next
2551 // page in the space, (2) allocate off the space's free list, (3) expand the
2552 // space, (4) fail.
SlowAllocateRaw(int size_in_bytes)2553 HeapObject* FixedSpace::SlowAllocateRaw(int size_in_bytes) {
2554 ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
2555 // Linear allocation in this space has failed. If there is another page
2556 // in the space, move to that page and allocate there. This allocation
2557 // should succeed.
2558 Page* current_page = TopPageOf(allocation_info_);
2559 if (current_page->next_page()->is_valid()) {
2560 return AllocateInNextPage(current_page, size_in_bytes);
2561 }
2562
2563 // There is no next page in this space. Try free list allocation unless
2564 // that is currently forbidden. The fixed space free list implicitly assumes
2565 // that all free blocks are of the fixed size.
2566 if (!heap()->linear_allocation()) {
2567 Object* result;
2568 MaybeObject* maybe = free_list_.Allocate();
2569 if (maybe->ToObject(&result)) {
2570 accounting_stats_.AllocateBytes(size_in_bytes);
2571 HeapObject* obj = HeapObject::cast(result);
2572 Page* p = Page::FromAddress(obj->address());
2573
2574 if (obj->address() >= p->AllocationWatermark()) {
2575 // There should be no hole between the allocation watermark
2576 // and allocated object address.
2577 // Memory above the allocation watermark was not swept and
2578 // might contain garbage pointers to new space.
2579 ASSERT(obj->address() == p->AllocationWatermark());
2580 p->SetAllocationWatermark(obj->address() + size_in_bytes);
2581 }
2582
2583 return obj;
2584 }
2585 }
2586
2587 // Free list allocation failed and there is no next page. Fail if we have
2588 // hit the old generation size limit that should cause a garbage
2589 // collection.
2590 if (!heap()->always_allocate() &&
2591 heap()->OldGenerationAllocationLimitReached()) {
2592 return NULL;
2593 }
2594
2595 // Try to expand the space and allocate in the new next page.
2596 ASSERT(!current_page->next_page()->is_valid());
2597 if (Expand(current_page)) {
2598 return AllocateInNextPage(current_page, size_in_bytes);
2599 }
2600
2601 // Finally, fail.
2602 return NULL;
2603 }
2604
2605
2606 // Move to the next page (there is assumed to be one) and allocate there.
2607 // The top of page block is always wasted, because it is too small to hold a
2608 // map.
AllocateInNextPage(Page * current_page,int size_in_bytes)2609 HeapObject* FixedSpace::AllocateInNextPage(Page* current_page,
2610 int size_in_bytes) {
2611 ASSERT(current_page->next_page()->is_valid());
2612 ASSERT(allocation_info_.top == PageAllocationLimit(current_page));
2613 ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
2614 Page* next_page = current_page->next_page();
2615 next_page->ClearGCFields();
2616 current_page->SetAllocationWatermark(allocation_info_.top);
2617 accounting_stats_.WasteBytes(page_extra_);
2618 SetAllocationInfo(&allocation_info_, next_page);
2619 return AllocateLinearly(&allocation_info_, size_in_bytes);
2620 }
2621
2622
DeallocateBlock(Address start,int size_in_bytes,bool add_to_freelist)2623 void FixedSpace::DeallocateBlock(Address start,
2624 int size_in_bytes,
2625 bool add_to_freelist) {
2626 // Free-list elements in fixed space are assumed to have a fixed size.
2627 // We break the free block into chunks and add them to the free list
2628 // individually.
2629 int size = object_size_in_bytes();
2630 ASSERT(size_in_bytes % size == 0);
2631 Address end = start + size_in_bytes;
2632 for (Address a = start; a < end; a += size) {
2633 Free(a, add_to_freelist);
2634 }
2635 }
2636
2637
2638 #ifdef DEBUG
ReportStatistics()2639 void FixedSpace::ReportStatistics() {
2640 int pct = static_cast<int>(Available() * 100 / Capacity());
2641 PrintF(" capacity: %" V8_PTR_PREFIX "d"
2642 ", waste: %" V8_PTR_PREFIX "d"
2643 ", available: %" V8_PTR_PREFIX "d, %%%d\n",
2644 Capacity(), Waste(), Available(), pct);
2645
2646 ClearHistograms();
2647 HeapObjectIterator obj_it(this);
2648 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next())
2649 CollectHistogramInfo(obj);
2650 ReportHistogram(false);
2651 }
2652 #endif
2653
2654
2655 // -----------------------------------------------------------------------------
2656 // MapSpace implementation
2657
PrepareForMarkCompact(bool will_compact)2658 void MapSpace::PrepareForMarkCompact(bool will_compact) {
2659 // Call prepare of the super class.
2660 FixedSpace::PrepareForMarkCompact(will_compact);
2661
2662 if (will_compact) {
2663 // Initialize map index entry.
2664 int page_count = 0;
2665 PageIterator it(this, PageIterator::ALL_PAGES);
2666 while (it.has_next()) {
2667 ASSERT_MAP_PAGE_INDEX(page_count);
2668
2669 Page* p = it.next();
2670 ASSERT(p->mc_page_index == page_count);
2671
2672 page_addresses_[page_count++] = p->address();
2673 }
2674 }
2675 }
2676
2677
2678 #ifdef DEBUG
VerifyObject(HeapObject * object)2679 void MapSpace::VerifyObject(HeapObject* object) {
2680 // The object should be a map or a free-list node.
2681 ASSERT(object->IsMap() || object->IsByteArray());
2682 }
2683 #endif
2684
2685
2686 // -----------------------------------------------------------------------------
2687 // GlobalPropertyCellSpace implementation
2688
2689 #ifdef DEBUG
VerifyObject(HeapObject * object)2690 void CellSpace::VerifyObject(HeapObject* object) {
2691 // The object should be a global object property cell or a free-list node.
2692 ASSERT(object->IsJSGlobalPropertyCell() ||
2693 object->map() == heap()->two_pointer_filler_map());
2694 }
2695 #endif
2696
2697
2698 // -----------------------------------------------------------------------------
2699 // LargeObjectIterator
2700
LargeObjectIterator(LargeObjectSpace * space)2701 LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) {
2702 current_ = space->first_chunk_;
2703 size_func_ = NULL;
2704 }
2705
2706
LargeObjectIterator(LargeObjectSpace * space,HeapObjectCallback size_func)2707 LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space,
2708 HeapObjectCallback size_func) {
2709 current_ = space->first_chunk_;
2710 size_func_ = size_func;
2711 }
2712
2713
next()2714 HeapObject* LargeObjectIterator::next() {
2715 if (current_ == NULL) return NULL;
2716
2717 HeapObject* object = current_->GetObject();
2718 current_ = current_->next();
2719 return object;
2720 }
2721
2722
2723 // -----------------------------------------------------------------------------
2724 // LargeObjectChunk
2725
New(int size_in_bytes,Executability executable)2726 LargeObjectChunk* LargeObjectChunk::New(int size_in_bytes,
2727 Executability executable) {
2728 size_t requested = ChunkSizeFor(size_in_bytes);
2729 size_t size;
2730 Isolate* isolate = Isolate::Current();
2731 void* mem = isolate->memory_allocator()->AllocateRawMemory(
2732 requested, &size, executable);
2733 if (mem == NULL) return NULL;
2734
2735 // The start of the chunk may be overlayed with a page so we have to
2736 // make sure that the page flags fit in the size field.
2737 ASSERT((size & Page::kPageFlagMask) == 0);
2738
2739 LOG(isolate, NewEvent("LargeObjectChunk", mem, size));
2740 if (size < requested) {
2741 isolate->memory_allocator()->FreeRawMemory(
2742 mem, size, executable);
2743 LOG(isolate, DeleteEvent("LargeObjectChunk", mem));
2744 return NULL;
2745 }
2746
2747 ObjectSpace space = (executable == EXECUTABLE)
2748 ? kObjectSpaceCodeSpace
2749 : kObjectSpaceLoSpace;
2750 isolate->memory_allocator()->PerformAllocationCallback(
2751 space, kAllocationActionAllocate, size);
2752
2753 LargeObjectChunk* chunk = reinterpret_cast<LargeObjectChunk*>(mem);
2754 chunk->size_ = size;
2755 Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize));
2756 page->heap_ = isolate->heap();
2757 return chunk;
2758 }
2759
2760
ChunkSizeFor(int size_in_bytes)2761 int LargeObjectChunk::ChunkSizeFor(int size_in_bytes) {
2762 int os_alignment = static_cast<int>(OS::AllocateAlignment());
2763 if (os_alignment < Page::kPageSize) {
2764 size_in_bytes += (Page::kPageSize - os_alignment);
2765 }
2766 return size_in_bytes + Page::kObjectStartOffset;
2767 }
2768
2769 // -----------------------------------------------------------------------------
2770 // LargeObjectSpace
2771
LargeObjectSpace(Heap * heap,AllocationSpace id)2772 LargeObjectSpace::LargeObjectSpace(Heap* heap, AllocationSpace id)
2773 : Space(heap, id, NOT_EXECUTABLE), // Managed on a per-allocation basis
2774 first_chunk_(NULL),
2775 size_(0),
2776 page_count_(0),
2777 objects_size_(0) {}
2778
2779
Setup()2780 bool LargeObjectSpace::Setup() {
2781 first_chunk_ = NULL;
2782 size_ = 0;
2783 page_count_ = 0;
2784 objects_size_ = 0;
2785 return true;
2786 }
2787
2788
TearDown()2789 void LargeObjectSpace::TearDown() {
2790 while (first_chunk_ != NULL) {
2791 LargeObjectChunk* chunk = first_chunk_;
2792 first_chunk_ = first_chunk_->next();
2793 LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", chunk->address()));
2794 Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize));
2795 Executability executable =
2796 page->IsPageExecutable() ? EXECUTABLE : NOT_EXECUTABLE;
2797 ObjectSpace space = kObjectSpaceLoSpace;
2798 if (executable == EXECUTABLE) space = kObjectSpaceCodeSpace;
2799 size_t size = chunk->size();
2800 heap()->isolate()->memory_allocator()->FreeRawMemory(chunk->address(),
2801 size,
2802 executable);
2803 heap()->isolate()->memory_allocator()->PerformAllocationCallback(
2804 space, kAllocationActionFree, size);
2805 }
2806
2807 size_ = 0;
2808 page_count_ = 0;
2809 objects_size_ = 0;
2810 }
2811
2812
2813 #ifdef ENABLE_HEAP_PROTECTION
2814
Protect()2815 void LargeObjectSpace::Protect() {
2816 LargeObjectChunk* chunk = first_chunk_;
2817 while (chunk != NULL) {
2818 heap()->isolate()->memory_allocator()->Protect(chunk->address(),
2819 chunk->size());
2820 chunk = chunk->next();
2821 }
2822 }
2823
2824
Unprotect()2825 void LargeObjectSpace::Unprotect() {
2826 LargeObjectChunk* chunk = first_chunk_;
2827 while (chunk != NULL) {
2828 bool is_code = chunk->GetObject()->IsCode();
2829 heap()->isolate()->memory_allocator()->Unprotect(chunk->address(),
2830 chunk->size(), is_code ? EXECUTABLE : NOT_EXECUTABLE);
2831 chunk = chunk->next();
2832 }
2833 }
2834
2835 #endif
2836
2837
AllocateRawInternal(int requested_size,int object_size,Executability executable)2838 MaybeObject* LargeObjectSpace::AllocateRawInternal(int requested_size,
2839 int object_size,
2840 Executability executable) {
2841 ASSERT(0 < object_size && object_size <= requested_size);
2842
2843 // Check if we want to force a GC before growing the old space further.
2844 // If so, fail the allocation.
2845 if (!heap()->always_allocate() &&
2846 heap()->OldGenerationAllocationLimitReached()) {
2847 return Failure::RetryAfterGC(identity());
2848 }
2849
2850 LargeObjectChunk* chunk = LargeObjectChunk::New(requested_size, executable);
2851 if (chunk == NULL) {
2852 return Failure::RetryAfterGC(identity());
2853 }
2854
2855 size_ += static_cast<int>(chunk->size());
2856 objects_size_ += requested_size;
2857 page_count_++;
2858 chunk->set_next(first_chunk_);
2859 first_chunk_ = chunk;
2860
2861 // Initialize page header.
2862 Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize));
2863 Address object_address = page->ObjectAreaStart();
2864
2865 // Clear the low order bit of the second word in the page to flag it as a
2866 // large object page. If the chunk_size happened to be written there, its
2867 // low order bit should already be clear.
2868 page->SetIsLargeObjectPage(true);
2869 page->SetIsPageExecutable(executable);
2870 page->SetRegionMarks(Page::kAllRegionsCleanMarks);
2871 return HeapObject::FromAddress(object_address);
2872 }
2873
2874
AllocateRawCode(int size_in_bytes)2875 MaybeObject* LargeObjectSpace::AllocateRawCode(int size_in_bytes) {
2876 ASSERT(0 < size_in_bytes);
2877 return AllocateRawInternal(size_in_bytes,
2878 size_in_bytes,
2879 EXECUTABLE);
2880 }
2881
2882
AllocateRawFixedArray(int size_in_bytes)2883 MaybeObject* LargeObjectSpace::AllocateRawFixedArray(int size_in_bytes) {
2884 ASSERT(0 < size_in_bytes);
2885 return AllocateRawInternal(size_in_bytes,
2886 size_in_bytes,
2887 NOT_EXECUTABLE);
2888 }
2889
2890
AllocateRaw(int size_in_bytes)2891 MaybeObject* LargeObjectSpace::AllocateRaw(int size_in_bytes) {
2892 ASSERT(0 < size_in_bytes);
2893 return AllocateRawInternal(size_in_bytes,
2894 size_in_bytes,
2895 NOT_EXECUTABLE);
2896 }
2897
2898
2899 // GC support
FindObject(Address a)2900 MaybeObject* LargeObjectSpace::FindObject(Address a) {
2901 for (LargeObjectChunk* chunk = first_chunk_;
2902 chunk != NULL;
2903 chunk = chunk->next()) {
2904 Address chunk_address = chunk->address();
2905 if (chunk_address <= a && a < chunk_address + chunk->size()) {
2906 return chunk->GetObject();
2907 }
2908 }
2909 return Failure::Exception();
2910 }
2911
2912
FindChunkContainingPc(Address pc)2913 LargeObjectChunk* LargeObjectSpace::FindChunkContainingPc(Address pc) {
2914 // TODO(853): Change this implementation to only find executable
2915 // chunks and use some kind of hash-based approach to speed it up.
2916 for (LargeObjectChunk* chunk = first_chunk_;
2917 chunk != NULL;
2918 chunk = chunk->next()) {
2919 Address chunk_address = chunk->address();
2920 if (chunk_address <= pc && pc < chunk_address + chunk->size()) {
2921 return chunk;
2922 }
2923 }
2924 return NULL;
2925 }
2926
2927
IterateDirtyRegions(ObjectSlotCallback copy_object)2928 void LargeObjectSpace::IterateDirtyRegions(ObjectSlotCallback copy_object) {
2929 LargeObjectIterator it(this);
2930 for (HeapObject* object = it.next(); object != NULL; object = it.next()) {
2931 // We only have code, sequential strings, or fixed arrays in large
2932 // object space, and only fixed arrays can possibly contain pointers to
2933 // the young generation.
2934 if (object->IsFixedArray()) {
2935 Page* page = Page::FromAddress(object->address());
2936 uint32_t marks = page->GetRegionMarks();
2937 uint32_t newmarks = Page::kAllRegionsCleanMarks;
2938
2939 if (marks != Page::kAllRegionsCleanMarks) {
2940 // For a large page a single dirty mark corresponds to several
2941 // regions (modulo 32). So we treat a large page as a sequence of
2942 // normal pages of size Page::kPageSize having same dirty marks
2943 // and subsequently iterate dirty regions on each of these pages.
2944 Address start = object->address();
2945 Address end = page->ObjectAreaEnd();
2946 Address object_end = start + object->Size();
2947
2948 // Iterate regions of the first normal page covering object.
2949 uint32_t first_region_number = page->GetRegionNumberForAddress(start);
2950 newmarks |=
2951 heap()->IterateDirtyRegions(marks >> first_region_number,
2952 start,
2953 end,
2954 &Heap::IteratePointersInDirtyRegion,
2955 copy_object) << first_region_number;
2956
2957 start = end;
2958 end = start + Page::kPageSize;
2959 while (end <= object_end) {
2960 // Iterate next 32 regions.
2961 newmarks |=
2962 heap()->IterateDirtyRegions(marks,
2963 start,
2964 end,
2965 &Heap::IteratePointersInDirtyRegion,
2966 copy_object);
2967 start = end;
2968 end = start + Page::kPageSize;
2969 }
2970
2971 if (start != object_end) {
2972 // Iterate the last piece of an object which is less than
2973 // Page::kPageSize.
2974 newmarks |=
2975 heap()->IterateDirtyRegions(marks,
2976 start,
2977 object_end,
2978 &Heap::IteratePointersInDirtyRegion,
2979 copy_object);
2980 }
2981
2982 page->SetRegionMarks(newmarks);
2983 }
2984 }
2985 }
2986 }
2987
2988
FreeUnmarkedObjects()2989 void LargeObjectSpace::FreeUnmarkedObjects() {
2990 LargeObjectChunk* previous = NULL;
2991 LargeObjectChunk* current = first_chunk_;
2992 while (current != NULL) {
2993 HeapObject* object = current->GetObject();
2994 if (object->IsMarked()) {
2995 object->ClearMark();
2996 heap()->mark_compact_collector()->tracer()->decrement_marked_count();
2997 previous = current;
2998 current = current->next();
2999 } else {
3000 Page* page = Page::FromAddress(RoundUp(current->address(),
3001 Page::kPageSize));
3002 Executability executable =
3003 page->IsPageExecutable() ? EXECUTABLE : NOT_EXECUTABLE;
3004 Address chunk_address = current->address();
3005 size_t chunk_size = current->size();
3006
3007 // Cut the chunk out from the chunk list.
3008 current = current->next();
3009 if (previous == NULL) {
3010 first_chunk_ = current;
3011 } else {
3012 previous->set_next(current);
3013 }
3014
3015 // Free the chunk.
3016 heap()->mark_compact_collector()->ReportDeleteIfNeeded(
3017 object, heap()->isolate());
3018 LiveObjectList::ProcessNonLive(object);
3019
3020 size_ -= static_cast<int>(chunk_size);
3021 objects_size_ -= object->Size();
3022 page_count_--;
3023 ObjectSpace space = kObjectSpaceLoSpace;
3024 if (executable == EXECUTABLE) space = kObjectSpaceCodeSpace;
3025 heap()->isolate()->memory_allocator()->FreeRawMemory(chunk_address,
3026 chunk_size,
3027 executable);
3028 heap()->isolate()->memory_allocator()->PerformAllocationCallback(
3029 space, kAllocationActionFree, size_);
3030 LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", chunk_address));
3031 }
3032 }
3033 }
3034
3035
Contains(HeapObject * object)3036 bool LargeObjectSpace::Contains(HeapObject* object) {
3037 Address address = object->address();
3038 if (heap()->new_space()->Contains(address)) {
3039 return false;
3040 }
3041 Page* page = Page::FromAddress(address);
3042
3043 SLOW_ASSERT(!page->IsLargeObjectPage()
3044 || !FindObject(address)->IsFailure());
3045
3046 return page->IsLargeObjectPage();
3047 }
3048
3049
3050 #ifdef DEBUG
3051 // We do not assume that the large object iterator works, because it depends
3052 // on the invariants we are checking during verification.
Verify()3053 void LargeObjectSpace::Verify() {
3054 for (LargeObjectChunk* chunk = first_chunk_;
3055 chunk != NULL;
3056 chunk = chunk->next()) {
3057 // Each chunk contains an object that starts at the large object page's
3058 // object area start.
3059 HeapObject* object = chunk->GetObject();
3060 Page* page = Page::FromAddress(object->address());
3061 ASSERT(object->address() == page->ObjectAreaStart());
3062
3063 // The first word should be a map, and we expect all map pointers to be
3064 // in map space.
3065 Map* map = object->map();
3066 ASSERT(map->IsMap());
3067 ASSERT(heap()->map_space()->Contains(map));
3068
3069 // We have only code, sequential strings, external strings
3070 // (sequential strings that have been morphed into external
3071 // strings), fixed arrays, and byte arrays in large object space.
3072 ASSERT(object->IsCode() || object->IsSeqString() ||
3073 object->IsExternalString() || object->IsFixedArray() ||
3074 object->IsByteArray());
3075
3076 // The object itself should look OK.
3077 object->Verify();
3078
3079 // Byte arrays and strings don't have interior pointers.
3080 if (object->IsCode()) {
3081 VerifyPointersVisitor code_visitor;
3082 object->IterateBody(map->instance_type(),
3083 object->Size(),
3084 &code_visitor);
3085 } else if (object->IsFixedArray()) {
3086 // We loop over fixed arrays ourselves, rather then using the visitor,
3087 // because the visitor doesn't support the start/offset iteration
3088 // needed for IsRegionDirty.
3089 FixedArray* array = FixedArray::cast(object);
3090 for (int j = 0; j < array->length(); j++) {
3091 Object* element = array->get(j);
3092 if (element->IsHeapObject()) {
3093 HeapObject* element_object = HeapObject::cast(element);
3094 ASSERT(heap()->Contains(element_object));
3095 ASSERT(element_object->map()->IsMap());
3096 if (heap()->InNewSpace(element_object)) {
3097 Address array_addr = object->address();
3098 Address element_addr = array_addr + FixedArray::kHeaderSize +
3099 j * kPointerSize;
3100
3101 ASSERT(Page::FromAddress(array_addr)->IsRegionDirty(element_addr));
3102 }
3103 }
3104 }
3105 }
3106 }
3107 }
3108
3109
Print()3110 void LargeObjectSpace::Print() {
3111 LargeObjectIterator it(this);
3112 for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) {
3113 obj->Print();
3114 }
3115 }
3116
3117
ReportStatistics()3118 void LargeObjectSpace::ReportStatistics() {
3119 PrintF(" size: %" V8_PTR_PREFIX "d\n", size_);
3120 int num_objects = 0;
3121 ClearHistograms();
3122 LargeObjectIterator it(this);
3123 for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) {
3124 num_objects++;
3125 CollectHistogramInfo(obj);
3126 }
3127
3128 PrintF(" number of objects %d, "
3129 "size of objects %" V8_PTR_PREFIX "d\n", num_objects, objects_size_);
3130 if (num_objects > 0) ReportHistogram(false);
3131 }
3132
3133
CollectCodeStatistics()3134 void LargeObjectSpace::CollectCodeStatistics() {
3135 Isolate* isolate = heap()->isolate();
3136 LargeObjectIterator obj_it(this);
3137 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) {
3138 if (obj->IsCode()) {
3139 Code* code = Code::cast(obj);
3140 isolate->code_kind_statistics()[code->kind()] += code->Size();
3141 }
3142 }
3143 }
3144 #endif // DEBUG
3145
3146 } } // namespace v8::internal
3147