1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/AutoUpgrade.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/OperandTraits.h"
28 using namespace llvm;
29
FreeState()30 void BitcodeReader::FreeState() {
31 if (BufferOwned)
32 delete Buffer;
33 Buffer = 0;
34 std::vector<Type*>().swap(TypeList);
35 ValueList.clear();
36 MDValueList.clear();
37
38 std::vector<AttrListPtr>().swap(MAttributes);
39 std::vector<BasicBlock*>().swap(FunctionBBs);
40 std::vector<Function*>().swap(FunctionsWithBodies);
41 DeferredFunctionInfo.clear();
42 MDKindMap.clear();
43 }
44
45 //===----------------------------------------------------------------------===//
46 // Helper functions to implement forward reference resolution, etc.
47 //===----------------------------------------------------------------------===//
48
49 /// ConvertToString - Convert a string from a record into an std::string, return
50 /// true on failure.
51 template<typename StrTy>
ConvertToString(SmallVector<uint64_t,64> & Record,unsigned Idx,StrTy & Result)52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53 StrTy &Result) {
54 if (Idx > Record.size())
55 return true;
56
57 for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58 Result += (char)Record[i];
59 return false;
60 }
61
GetDecodedLinkage(unsigned Val)62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63 switch (Val) {
64 default: // Map unknown/new linkages to external
65 case 0: return GlobalValue::ExternalLinkage;
66 case 1: return GlobalValue::WeakAnyLinkage;
67 case 2: return GlobalValue::AppendingLinkage;
68 case 3: return GlobalValue::InternalLinkage;
69 case 4: return GlobalValue::LinkOnceAnyLinkage;
70 case 5: return GlobalValue::DLLImportLinkage;
71 case 6: return GlobalValue::DLLExportLinkage;
72 case 7: return GlobalValue::ExternalWeakLinkage;
73 case 8: return GlobalValue::CommonLinkage;
74 case 9: return GlobalValue::PrivateLinkage;
75 case 10: return GlobalValue::WeakODRLinkage;
76 case 11: return GlobalValue::LinkOnceODRLinkage;
77 case 12: return GlobalValue::AvailableExternallyLinkage;
78 case 13: return GlobalValue::LinkerPrivateLinkage;
79 case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80 case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81 }
82 }
83
GetDecodedVisibility(unsigned Val)84 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85 switch (Val) {
86 default: // Map unknown visibilities to default.
87 case 0: return GlobalValue::DefaultVisibility;
88 case 1: return GlobalValue::HiddenVisibility;
89 case 2: return GlobalValue::ProtectedVisibility;
90 }
91 }
92
GetDecodedCastOpcode(unsigned Val)93 static int GetDecodedCastOpcode(unsigned Val) {
94 switch (Val) {
95 default: return -1;
96 case bitc::CAST_TRUNC : return Instruction::Trunc;
97 case bitc::CAST_ZEXT : return Instruction::ZExt;
98 case bitc::CAST_SEXT : return Instruction::SExt;
99 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
100 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
101 case bitc::CAST_UITOFP : return Instruction::UIToFP;
102 case bitc::CAST_SITOFP : return Instruction::SIToFP;
103 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104 case bitc::CAST_FPEXT : return Instruction::FPExt;
105 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107 case bitc::CAST_BITCAST : return Instruction::BitCast;
108 }
109 }
GetDecodedBinaryOpcode(unsigned Val,Type * Ty)110 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
111 switch (Val) {
112 default: return -1;
113 case bitc::BINOP_ADD:
114 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115 case bitc::BINOP_SUB:
116 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117 case bitc::BINOP_MUL:
118 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119 case bitc::BINOP_UDIV: return Instruction::UDiv;
120 case bitc::BINOP_SDIV:
121 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122 case bitc::BINOP_UREM: return Instruction::URem;
123 case bitc::BINOP_SREM:
124 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125 case bitc::BINOP_SHL: return Instruction::Shl;
126 case bitc::BINOP_LSHR: return Instruction::LShr;
127 case bitc::BINOP_ASHR: return Instruction::AShr;
128 case bitc::BINOP_AND: return Instruction::And;
129 case bitc::BINOP_OR: return Instruction::Or;
130 case bitc::BINOP_XOR: return Instruction::Xor;
131 }
132 }
133
134 namespace llvm {
135 namespace {
136 /// @brief A class for maintaining the slot number definition
137 /// as a placeholder for the actual definition for forward constants defs.
138 class ConstantPlaceHolder : public ConstantExpr {
139 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
140 public:
141 // allocate space for exactly one operand
operator new(size_t s)142 void *operator new(size_t s) {
143 return User::operator new(s, 1);
144 }
ConstantPlaceHolder(Type * Ty,LLVMContext & Context)145 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
146 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
147 Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
148 }
149
150 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
151 //static inline bool classof(const ConstantPlaceHolder *) { return true; }
classof(const Value * V)152 static bool classof(const Value *V) {
153 return isa<ConstantExpr>(V) &&
154 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
155 }
156
157
158 /// Provide fast operand accessors
159 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
160 };
161 }
162
163 // FIXME: can we inherit this from ConstantExpr?
164 template <>
165 struct OperandTraits<ConstantPlaceHolder> :
166 public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
167 };
168 }
169
170
AssignValue(Value * V,unsigned Idx)171 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
172 if (Idx == size()) {
173 push_back(V);
174 return;
175 }
176
177 if (Idx >= size())
178 resize(Idx+1);
179
180 WeakVH &OldV = ValuePtrs[Idx];
181 if (OldV == 0) {
182 OldV = V;
183 return;
184 }
185
186 // Handle constants and non-constants (e.g. instrs) differently for
187 // efficiency.
188 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
189 ResolveConstants.push_back(std::make_pair(PHC, Idx));
190 OldV = V;
191 } else {
192 // If there was a forward reference to this value, replace it.
193 Value *PrevVal = OldV;
194 OldV->replaceAllUsesWith(V);
195 delete PrevVal;
196 }
197 }
198
199
getConstantFwdRef(unsigned Idx,Type * Ty)200 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
201 Type *Ty) {
202 if (Idx >= size())
203 resize(Idx + 1);
204
205 if (Value *V = ValuePtrs[Idx]) {
206 assert(Ty == V->getType() && "Type mismatch in constant table!");
207 return cast<Constant>(V);
208 }
209
210 // Create and return a placeholder, which will later be RAUW'd.
211 Constant *C = new ConstantPlaceHolder(Ty, Context);
212 ValuePtrs[Idx] = C;
213 return C;
214 }
215
getValueFwdRef(unsigned Idx,Type * Ty)216 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
217 if (Idx >= size())
218 resize(Idx + 1);
219
220 if (Value *V = ValuePtrs[Idx]) {
221 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
222 return V;
223 }
224
225 // No type specified, must be invalid reference.
226 if (Ty == 0) return 0;
227
228 // Create and return a placeholder, which will later be RAUW'd.
229 Value *V = new Argument(Ty);
230 ValuePtrs[Idx] = V;
231 return V;
232 }
233
234 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
235 /// resolves any forward references. The idea behind this is that we sometimes
236 /// get constants (such as large arrays) which reference *many* forward ref
237 /// constants. Replacing each of these causes a lot of thrashing when
238 /// building/reuniquing the constant. Instead of doing this, we look at all the
239 /// uses and rewrite all the place holders at once for any constant that uses
240 /// a placeholder.
ResolveConstantForwardRefs()241 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
242 // Sort the values by-pointer so that they are efficient to look up with a
243 // binary search.
244 std::sort(ResolveConstants.begin(), ResolveConstants.end());
245
246 SmallVector<Constant*, 64> NewOps;
247
248 while (!ResolveConstants.empty()) {
249 Value *RealVal = operator[](ResolveConstants.back().second);
250 Constant *Placeholder = ResolveConstants.back().first;
251 ResolveConstants.pop_back();
252
253 // Loop over all users of the placeholder, updating them to reference the
254 // new value. If they reference more than one placeholder, update them all
255 // at once.
256 while (!Placeholder->use_empty()) {
257 Value::use_iterator UI = Placeholder->use_begin();
258 User *U = *UI;
259
260 // If the using object isn't uniqued, just update the operands. This
261 // handles instructions and initializers for global variables.
262 if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
263 UI.getUse().set(RealVal);
264 continue;
265 }
266
267 // Otherwise, we have a constant that uses the placeholder. Replace that
268 // constant with a new constant that has *all* placeholder uses updated.
269 Constant *UserC = cast<Constant>(U);
270 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
271 I != E; ++I) {
272 Value *NewOp;
273 if (!isa<ConstantPlaceHolder>(*I)) {
274 // Not a placeholder reference.
275 NewOp = *I;
276 } else if (*I == Placeholder) {
277 // Common case is that it just references this one placeholder.
278 NewOp = RealVal;
279 } else {
280 // Otherwise, look up the placeholder in ResolveConstants.
281 ResolveConstantsTy::iterator It =
282 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
283 std::pair<Constant*, unsigned>(cast<Constant>(*I),
284 0));
285 assert(It != ResolveConstants.end() && It->first == *I);
286 NewOp = operator[](It->second);
287 }
288
289 NewOps.push_back(cast<Constant>(NewOp));
290 }
291
292 // Make the new constant.
293 Constant *NewC;
294 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
295 NewC = ConstantArray::get(UserCA->getType(), NewOps);
296 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
297 NewC = ConstantStruct::get(UserCS->getType(), NewOps);
298 } else if (isa<ConstantVector>(UserC)) {
299 NewC = ConstantVector::get(NewOps);
300 } else {
301 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
302 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
303 }
304
305 UserC->replaceAllUsesWith(NewC);
306 UserC->destroyConstant();
307 NewOps.clear();
308 }
309
310 // Update all ValueHandles, they should be the only users at this point.
311 Placeholder->replaceAllUsesWith(RealVal);
312 delete Placeholder;
313 }
314 }
315
AssignValue(Value * V,unsigned Idx)316 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
317 if (Idx == size()) {
318 push_back(V);
319 return;
320 }
321
322 if (Idx >= size())
323 resize(Idx+1);
324
325 WeakVH &OldV = MDValuePtrs[Idx];
326 if (OldV == 0) {
327 OldV = V;
328 return;
329 }
330
331 // If there was a forward reference to this value, replace it.
332 MDNode *PrevVal = cast<MDNode>(OldV);
333 OldV->replaceAllUsesWith(V);
334 MDNode::deleteTemporary(PrevVal);
335 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
336 // value for Idx.
337 MDValuePtrs[Idx] = V;
338 }
339
getValueFwdRef(unsigned Idx)340 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
341 if (Idx >= size())
342 resize(Idx + 1);
343
344 if (Value *V = MDValuePtrs[Idx]) {
345 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
346 return V;
347 }
348
349 // Create and return a placeholder, which will later be RAUW'd.
350 Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
351 MDValuePtrs[Idx] = V;
352 return V;
353 }
354
getTypeByID(unsigned ID)355 Type *BitcodeReader::getTypeByID(unsigned ID) {
356 // The type table size is always specified correctly.
357 if (ID >= TypeList.size())
358 return 0;
359
360 if (Type *Ty = TypeList[ID])
361 return Ty;
362
363 // If we have a forward reference, the only possible case is when it is to a
364 // named struct. Just create a placeholder for now.
365 return TypeList[ID] = StructType::createNamed(Context, "");
366 }
367
368 /// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
getTypeByIDOrNull(unsigned ID)369 Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
370 if (ID >= TypeList.size())
371 TypeList.resize(ID+1);
372
373 return TypeList[ID];
374 }
375
376
377 //===----------------------------------------------------------------------===//
378 // Functions for parsing blocks from the bitcode file
379 //===----------------------------------------------------------------------===//
380
ParseAttributeBlock()381 bool BitcodeReader::ParseAttributeBlock() {
382 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
383 return Error("Malformed block record");
384
385 if (!MAttributes.empty())
386 return Error("Multiple PARAMATTR blocks found!");
387
388 SmallVector<uint64_t, 64> Record;
389
390 SmallVector<AttributeWithIndex, 8> Attrs;
391
392 // Read all the records.
393 while (1) {
394 unsigned Code = Stream.ReadCode();
395 if (Code == bitc::END_BLOCK) {
396 if (Stream.ReadBlockEnd())
397 return Error("Error at end of PARAMATTR block");
398 return false;
399 }
400
401 if (Code == bitc::ENTER_SUBBLOCK) {
402 // No known subblocks, always skip them.
403 Stream.ReadSubBlockID();
404 if (Stream.SkipBlock())
405 return Error("Malformed block record");
406 continue;
407 }
408
409 if (Code == bitc::DEFINE_ABBREV) {
410 Stream.ReadAbbrevRecord();
411 continue;
412 }
413
414 // Read a record.
415 Record.clear();
416 switch (Stream.ReadRecord(Code, Record)) {
417 default: // Default behavior: ignore.
418 break;
419 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
420 if (Record.size() & 1)
421 return Error("Invalid ENTRY record");
422
423 // FIXME : Remove this autoupgrade code in LLVM 3.0.
424 // If Function attributes are using index 0 then transfer them
425 // to index ~0. Index 0 is used for return value attributes but used to be
426 // used for function attributes.
427 Attributes RetAttribute = Attribute::None;
428 Attributes FnAttribute = Attribute::None;
429 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
430 // FIXME: remove in LLVM 3.0
431 // The alignment is stored as a 16-bit raw value from bits 31--16.
432 // We shift the bits above 31 down by 11 bits.
433
434 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
435 if (Alignment && !isPowerOf2_32(Alignment))
436 return Error("Alignment is not a power of two.");
437
438 Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
439 if (Alignment)
440 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
441 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
442 Record[i+1] = ReconstitutedAttr;
443
444 if (Record[i] == 0)
445 RetAttribute = Record[i+1];
446 else if (Record[i] == ~0U)
447 FnAttribute = Record[i+1];
448 }
449
450 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
451 Attribute::ReadOnly|Attribute::ReadNone);
452
453 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
454 (RetAttribute & OldRetAttrs) != 0) {
455 if (FnAttribute == Attribute::None) { // add a slot so they get added.
456 Record.push_back(~0U);
457 Record.push_back(0);
458 }
459
460 FnAttribute |= RetAttribute & OldRetAttrs;
461 RetAttribute &= ~OldRetAttrs;
462 }
463
464 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
465 if (Record[i] == 0) {
466 if (RetAttribute != Attribute::None)
467 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
468 } else if (Record[i] == ~0U) {
469 if (FnAttribute != Attribute::None)
470 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
471 } else if (Record[i+1] != Attribute::None)
472 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
473 }
474
475 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
476 Attrs.clear();
477 break;
478 }
479 }
480 }
481 }
482
ParseTypeTable()483 bool BitcodeReader::ParseTypeTable() {
484 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
485 return Error("Malformed block record");
486
487 return ParseTypeTableBody();
488 }
489
ParseTypeTableBody()490 bool BitcodeReader::ParseTypeTableBody() {
491 if (!TypeList.empty())
492 return Error("Multiple TYPE_BLOCKs found!");
493
494 SmallVector<uint64_t, 64> Record;
495 unsigned NumRecords = 0;
496
497 SmallString<64> TypeName;
498
499 // Read all the records for this type table.
500 while (1) {
501 unsigned Code = Stream.ReadCode();
502 if (Code == bitc::END_BLOCK) {
503 if (NumRecords != TypeList.size())
504 return Error("Invalid type forward reference in TYPE_BLOCK");
505 if (Stream.ReadBlockEnd())
506 return Error("Error at end of type table block");
507 return false;
508 }
509
510 if (Code == bitc::ENTER_SUBBLOCK) {
511 // No known subblocks, always skip them.
512 Stream.ReadSubBlockID();
513 if (Stream.SkipBlock())
514 return Error("Malformed block record");
515 continue;
516 }
517
518 if (Code == bitc::DEFINE_ABBREV) {
519 Stream.ReadAbbrevRecord();
520 continue;
521 }
522
523 // Read a record.
524 Record.clear();
525 Type *ResultTy = 0;
526 switch (Stream.ReadRecord(Code, Record)) {
527 default: return Error("unknown type in type table");
528 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
529 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
530 // type list. This allows us to reserve space.
531 if (Record.size() < 1)
532 return Error("Invalid TYPE_CODE_NUMENTRY record");
533 TypeList.resize(Record[0]);
534 continue;
535 case bitc::TYPE_CODE_VOID: // VOID
536 ResultTy = Type::getVoidTy(Context);
537 break;
538 case bitc::TYPE_CODE_FLOAT: // FLOAT
539 ResultTy = Type::getFloatTy(Context);
540 break;
541 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
542 ResultTy = Type::getDoubleTy(Context);
543 break;
544 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
545 ResultTy = Type::getX86_FP80Ty(Context);
546 break;
547 case bitc::TYPE_CODE_FP128: // FP128
548 ResultTy = Type::getFP128Ty(Context);
549 break;
550 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
551 ResultTy = Type::getPPC_FP128Ty(Context);
552 break;
553 case bitc::TYPE_CODE_LABEL: // LABEL
554 ResultTy = Type::getLabelTy(Context);
555 break;
556 case bitc::TYPE_CODE_METADATA: // METADATA
557 ResultTy = Type::getMetadataTy(Context);
558 break;
559 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
560 ResultTy = Type::getX86_MMXTy(Context);
561 break;
562 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
563 if (Record.size() < 1)
564 return Error("Invalid Integer type record");
565
566 ResultTy = IntegerType::get(Context, Record[0]);
567 break;
568 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
569 // [pointee type, address space]
570 if (Record.size() < 1)
571 return Error("Invalid POINTER type record");
572 unsigned AddressSpace = 0;
573 if (Record.size() == 2)
574 AddressSpace = Record[1];
575 ResultTy = getTypeByID(Record[0]);
576 if (ResultTy == 0) return Error("invalid element type in pointer type");
577 ResultTy = PointerType::get(ResultTy, AddressSpace);
578 break;
579 }
580 case bitc::TYPE_CODE_FUNCTION: {
581 // FIXME: attrid is dead, remove it in LLVM 3.0
582 // FUNCTION: [vararg, attrid, retty, paramty x N]
583 if (Record.size() < 3)
584 return Error("Invalid FUNCTION type record");
585 std::vector<Type*> ArgTys;
586 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
587 if (Type *T = getTypeByID(Record[i]))
588 ArgTys.push_back(T);
589 else
590 break;
591 }
592
593 ResultTy = getTypeByID(Record[2]);
594 if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
595 return Error("invalid type in function type");
596
597 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
598 break;
599 }
600 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
601 if (Record.size() < 1)
602 return Error("Invalid STRUCT type record");
603 std::vector<Type*> EltTys;
604 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
605 if (Type *T = getTypeByID(Record[i]))
606 EltTys.push_back(T);
607 else
608 break;
609 }
610 if (EltTys.size() != Record.size()-1)
611 return Error("invalid type in struct type");
612 ResultTy = StructType::get(Context, EltTys, Record[0]);
613 break;
614 }
615 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
616 if (ConvertToString(Record, 0, TypeName))
617 return Error("Invalid STRUCT_NAME record");
618 continue;
619
620 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
621 if (Record.size() < 1)
622 return Error("Invalid STRUCT type record");
623
624 if (NumRecords >= TypeList.size())
625 return Error("invalid TYPE table");
626
627 // Check to see if this was forward referenced, if so fill in the temp.
628 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
629 if (Res) {
630 Res->setName(TypeName);
631 TypeList[NumRecords] = 0;
632 } else // Otherwise, create a new struct.
633 Res = StructType::createNamed(Context, TypeName);
634 TypeName.clear();
635
636 SmallVector<Type*, 8> EltTys;
637 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
638 if (Type *T = getTypeByID(Record[i]))
639 EltTys.push_back(T);
640 else
641 break;
642 }
643 if (EltTys.size() != Record.size()-1)
644 return Error("invalid STRUCT type record");
645 Res->setBody(EltTys, Record[0]);
646 ResultTy = Res;
647 break;
648 }
649 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
650 if (Record.size() != 1)
651 return Error("Invalid OPAQUE type record");
652
653 if (NumRecords >= TypeList.size())
654 return Error("invalid TYPE table");
655
656 // Check to see if this was forward referenced, if so fill in the temp.
657 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
658 if (Res) {
659 Res->setName(TypeName);
660 TypeList[NumRecords] = 0;
661 } else // Otherwise, create a new struct with no body.
662 Res = StructType::createNamed(Context, TypeName);
663 TypeName.clear();
664 ResultTy = Res;
665 break;
666 }
667 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
668 if (Record.size() < 2)
669 return Error("Invalid ARRAY type record");
670 if ((ResultTy = getTypeByID(Record[1])))
671 ResultTy = ArrayType::get(ResultTy, Record[0]);
672 else
673 return Error("Invalid ARRAY type element");
674 break;
675 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
676 if (Record.size() < 2)
677 return Error("Invalid VECTOR type record");
678 if ((ResultTy = getTypeByID(Record[1])))
679 ResultTy = VectorType::get(ResultTy, Record[0]);
680 else
681 return Error("Invalid ARRAY type element");
682 break;
683 }
684
685 if (NumRecords >= TypeList.size())
686 return Error("invalid TYPE table");
687 assert(ResultTy && "Didn't read a type?");
688 assert(TypeList[NumRecords] == 0 && "Already read type?");
689 TypeList[NumRecords++] = ResultTy;
690 }
691 }
692
693 // FIXME: Remove in LLVM 3.1
ParseOldTypeTable()694 bool BitcodeReader::ParseOldTypeTable() {
695 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_OLD))
696 return Error("Malformed block record");
697
698 if (!TypeList.empty())
699 return Error("Multiple TYPE_BLOCKs found!");
700
701
702 // While horrible, we have no good ordering of types in the bc file. Just
703 // iteratively parse types out of the bc file in multiple passes until we get
704 // them all. Do this by saving a cursor for the start of the type block.
705 BitstreamCursor StartOfTypeBlockCursor(Stream);
706
707 unsigned NumTypesRead = 0;
708
709 SmallVector<uint64_t, 64> Record;
710 RestartScan:
711 unsigned NextTypeID = 0;
712 bool ReadAnyTypes = false;
713
714 // Read all the records for this type table.
715 while (1) {
716 unsigned Code = Stream.ReadCode();
717 if (Code == bitc::END_BLOCK) {
718 if (NextTypeID != TypeList.size())
719 return Error("Invalid type forward reference in TYPE_BLOCK_ID_OLD");
720
721 // If we haven't read all of the types yet, iterate again.
722 if (NumTypesRead != TypeList.size()) {
723 // If we didn't successfully read any types in this pass, then we must
724 // have an unhandled forward reference.
725 if (!ReadAnyTypes)
726 return Error("Obsolete bitcode contains unhandled recursive type");
727
728 Stream = StartOfTypeBlockCursor;
729 goto RestartScan;
730 }
731
732 if (Stream.ReadBlockEnd())
733 return Error("Error at end of type table block");
734 return false;
735 }
736
737 if (Code == bitc::ENTER_SUBBLOCK) {
738 // No known subblocks, always skip them.
739 Stream.ReadSubBlockID();
740 if (Stream.SkipBlock())
741 return Error("Malformed block record");
742 continue;
743 }
744
745 if (Code == bitc::DEFINE_ABBREV) {
746 Stream.ReadAbbrevRecord();
747 continue;
748 }
749
750 // Read a record.
751 Record.clear();
752 Type *ResultTy = 0;
753 switch (Stream.ReadRecord(Code, Record)) {
754 default: return Error("unknown type in type table");
755 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
756 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
757 // type list. This allows us to reserve space.
758 if (Record.size() < 1)
759 return Error("Invalid TYPE_CODE_NUMENTRY record");
760 TypeList.resize(Record[0]);
761 continue;
762 case bitc::TYPE_CODE_VOID: // VOID
763 ResultTy = Type::getVoidTy(Context);
764 break;
765 case bitc::TYPE_CODE_FLOAT: // FLOAT
766 ResultTy = Type::getFloatTy(Context);
767 break;
768 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
769 ResultTy = Type::getDoubleTy(Context);
770 break;
771 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
772 ResultTy = Type::getX86_FP80Ty(Context);
773 break;
774 case bitc::TYPE_CODE_FP128: // FP128
775 ResultTy = Type::getFP128Ty(Context);
776 break;
777 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
778 ResultTy = Type::getPPC_FP128Ty(Context);
779 break;
780 case bitc::TYPE_CODE_LABEL: // LABEL
781 ResultTy = Type::getLabelTy(Context);
782 break;
783 case bitc::TYPE_CODE_METADATA: // METADATA
784 ResultTy = Type::getMetadataTy(Context);
785 break;
786 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
787 ResultTy = Type::getX86_MMXTy(Context);
788 break;
789 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
790 if (Record.size() < 1)
791 return Error("Invalid Integer type record");
792 ResultTy = IntegerType::get(Context, Record[0]);
793 break;
794 case bitc::TYPE_CODE_OPAQUE: // OPAQUE
795 if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
796 ResultTy = StructType::createNamed(Context, "");
797 break;
798 case bitc::TYPE_CODE_STRUCT_OLD: {// STRUCT_OLD
799 if (NextTypeID >= TypeList.size()) break;
800 // If we already read it, don't reprocess.
801 if (TypeList[NextTypeID] &&
802 !cast<StructType>(TypeList[NextTypeID])->isOpaque())
803 break;
804
805 // Set a type.
806 if (TypeList[NextTypeID] == 0)
807 TypeList[NextTypeID] = StructType::createNamed(Context, "");
808
809 std::vector<Type*> EltTys;
810 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
811 if (Type *Elt = getTypeByIDOrNull(Record[i]))
812 EltTys.push_back(Elt);
813 else
814 break;
815 }
816
817 if (EltTys.size() != Record.size()-1)
818 break; // Not all elements are ready.
819
820 cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
821 ResultTy = TypeList[NextTypeID];
822 TypeList[NextTypeID] = 0;
823 break;
824 }
825 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
826 // [pointee type, address space]
827 if (Record.size() < 1)
828 return Error("Invalid POINTER type record");
829 unsigned AddressSpace = 0;
830 if (Record.size() == 2)
831 AddressSpace = Record[1];
832 if ((ResultTy = getTypeByIDOrNull(Record[0])))
833 ResultTy = PointerType::get(ResultTy, AddressSpace);
834 break;
835 }
836 case bitc::TYPE_CODE_FUNCTION: {
837 // FIXME: attrid is dead, remove it in LLVM 3.0
838 // FUNCTION: [vararg, attrid, retty, paramty x N]
839 if (Record.size() < 3)
840 return Error("Invalid FUNCTION type record");
841 std::vector<Type*> ArgTys;
842 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
843 if (Type *Elt = getTypeByIDOrNull(Record[i]))
844 ArgTys.push_back(Elt);
845 else
846 break;
847 }
848 if (ArgTys.size()+3 != Record.size())
849 break; // Something was null.
850 if ((ResultTy = getTypeByIDOrNull(Record[2])))
851 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
852 break;
853 }
854 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
855 if (Record.size() < 2)
856 return Error("Invalid ARRAY type record");
857 if ((ResultTy = getTypeByIDOrNull(Record[1])))
858 ResultTy = ArrayType::get(ResultTy, Record[0]);
859 break;
860 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
861 if (Record.size() < 2)
862 return Error("Invalid VECTOR type record");
863 if ((ResultTy = getTypeByIDOrNull(Record[1])))
864 ResultTy = VectorType::get(ResultTy, Record[0]);
865 break;
866 }
867
868 if (NextTypeID >= TypeList.size())
869 return Error("invalid TYPE table");
870
871 if (ResultTy && TypeList[NextTypeID] == 0) {
872 ++NumTypesRead;
873 ReadAnyTypes = true;
874
875 TypeList[NextTypeID] = ResultTy;
876 }
877
878 ++NextTypeID;
879 }
880 }
881
882
ParseOldTypeSymbolTable()883 bool BitcodeReader::ParseOldTypeSymbolTable() {
884 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID_OLD))
885 return Error("Malformed block record");
886
887 SmallVector<uint64_t, 64> Record;
888
889 // Read all the records for this type table.
890 std::string TypeName;
891 while (1) {
892 unsigned Code = Stream.ReadCode();
893 if (Code == bitc::END_BLOCK) {
894 if (Stream.ReadBlockEnd())
895 return Error("Error at end of type symbol table block");
896 return false;
897 }
898
899 if (Code == bitc::ENTER_SUBBLOCK) {
900 // No known subblocks, always skip them.
901 Stream.ReadSubBlockID();
902 if (Stream.SkipBlock())
903 return Error("Malformed block record");
904 continue;
905 }
906
907 if (Code == bitc::DEFINE_ABBREV) {
908 Stream.ReadAbbrevRecord();
909 continue;
910 }
911
912 // Read a record.
913 Record.clear();
914 switch (Stream.ReadRecord(Code, Record)) {
915 default: // Default behavior: unknown type.
916 break;
917 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N]
918 if (ConvertToString(Record, 1, TypeName))
919 return Error("Invalid TST_ENTRY record");
920 unsigned TypeID = Record[0];
921 if (TypeID >= TypeList.size())
922 return Error("Invalid Type ID in TST_ENTRY record");
923
924 // Only apply the type name to a struct type with no name.
925 if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
926 if (!STy->isAnonymous() && !STy->hasName())
927 STy->setName(TypeName);
928 TypeName.clear();
929 break;
930 }
931 }
932 }
933
ParseValueSymbolTable()934 bool BitcodeReader::ParseValueSymbolTable() {
935 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
936 return Error("Malformed block record");
937
938 SmallVector<uint64_t, 64> Record;
939
940 // Read all the records for this value table.
941 SmallString<128> ValueName;
942 while (1) {
943 unsigned Code = Stream.ReadCode();
944 if (Code == bitc::END_BLOCK) {
945 if (Stream.ReadBlockEnd())
946 return Error("Error at end of value symbol table block");
947 return false;
948 }
949 if (Code == bitc::ENTER_SUBBLOCK) {
950 // No known subblocks, always skip them.
951 Stream.ReadSubBlockID();
952 if (Stream.SkipBlock())
953 return Error("Malformed block record");
954 continue;
955 }
956
957 if (Code == bitc::DEFINE_ABBREV) {
958 Stream.ReadAbbrevRecord();
959 continue;
960 }
961
962 // Read a record.
963 Record.clear();
964 switch (Stream.ReadRecord(Code, Record)) {
965 default: // Default behavior: unknown type.
966 break;
967 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
968 if (ConvertToString(Record, 1, ValueName))
969 return Error("Invalid VST_ENTRY record");
970 unsigned ValueID = Record[0];
971 if (ValueID >= ValueList.size())
972 return Error("Invalid Value ID in VST_ENTRY record");
973 Value *V = ValueList[ValueID];
974
975 V->setName(StringRef(ValueName.data(), ValueName.size()));
976 ValueName.clear();
977 break;
978 }
979 case bitc::VST_CODE_BBENTRY: {
980 if (ConvertToString(Record, 1, ValueName))
981 return Error("Invalid VST_BBENTRY record");
982 BasicBlock *BB = getBasicBlock(Record[0]);
983 if (BB == 0)
984 return Error("Invalid BB ID in VST_BBENTRY record");
985
986 BB->setName(StringRef(ValueName.data(), ValueName.size()));
987 ValueName.clear();
988 break;
989 }
990 }
991 }
992 }
993
ParseMetadata()994 bool BitcodeReader::ParseMetadata() {
995 unsigned NextMDValueNo = MDValueList.size();
996
997 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
998 return Error("Malformed block record");
999
1000 SmallVector<uint64_t, 64> Record;
1001
1002 // Read all the records.
1003 while (1) {
1004 unsigned Code = Stream.ReadCode();
1005 if (Code == bitc::END_BLOCK) {
1006 if (Stream.ReadBlockEnd())
1007 return Error("Error at end of PARAMATTR block");
1008 return false;
1009 }
1010
1011 if (Code == bitc::ENTER_SUBBLOCK) {
1012 // No known subblocks, always skip them.
1013 Stream.ReadSubBlockID();
1014 if (Stream.SkipBlock())
1015 return Error("Malformed block record");
1016 continue;
1017 }
1018
1019 if (Code == bitc::DEFINE_ABBREV) {
1020 Stream.ReadAbbrevRecord();
1021 continue;
1022 }
1023
1024 bool IsFunctionLocal = false;
1025 // Read a record.
1026 Record.clear();
1027 Code = Stream.ReadRecord(Code, Record);
1028 switch (Code) {
1029 default: // Default behavior: ignore.
1030 break;
1031 case bitc::METADATA_NAME: {
1032 // Read named of the named metadata.
1033 unsigned NameLength = Record.size();
1034 SmallString<8> Name;
1035 Name.resize(NameLength);
1036 for (unsigned i = 0; i != NameLength; ++i)
1037 Name[i] = Record[i];
1038 Record.clear();
1039 Code = Stream.ReadCode();
1040
1041 // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1042 unsigned NextBitCode = Stream.ReadRecord(Code, Record);
1043 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1044
1045 // Read named metadata elements.
1046 unsigned Size = Record.size();
1047 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1048 for (unsigned i = 0; i != Size; ++i) {
1049 MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1050 if (MD == 0)
1051 return Error("Malformed metadata record");
1052 NMD->addOperand(MD);
1053 }
1054 break;
1055 }
1056 case bitc::METADATA_FN_NODE:
1057 IsFunctionLocal = true;
1058 // fall-through
1059 case bitc::METADATA_NODE: {
1060 if (Record.size() % 2 == 1)
1061 return Error("Invalid METADATA_NODE record");
1062
1063 unsigned Size = Record.size();
1064 SmallVector<Value*, 8> Elts;
1065 for (unsigned i = 0; i != Size; i += 2) {
1066 Type *Ty = getTypeByID(Record[i]);
1067 if (!Ty) return Error("Invalid METADATA_NODE record");
1068 if (Ty->isMetadataTy())
1069 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1070 else if (!Ty->isVoidTy())
1071 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1072 else
1073 Elts.push_back(NULL);
1074 }
1075 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1076 IsFunctionLocal = false;
1077 MDValueList.AssignValue(V, NextMDValueNo++);
1078 break;
1079 }
1080 case bitc::METADATA_STRING: {
1081 unsigned MDStringLength = Record.size();
1082 SmallString<8> String;
1083 String.resize(MDStringLength);
1084 for (unsigned i = 0; i != MDStringLength; ++i)
1085 String[i] = Record[i];
1086 Value *V = MDString::get(Context,
1087 StringRef(String.data(), String.size()));
1088 MDValueList.AssignValue(V, NextMDValueNo++);
1089 break;
1090 }
1091 case bitc::METADATA_KIND: {
1092 unsigned RecordLength = Record.size();
1093 if (Record.empty() || RecordLength < 2)
1094 return Error("Invalid METADATA_KIND record");
1095 SmallString<8> Name;
1096 Name.resize(RecordLength-1);
1097 unsigned Kind = Record[0];
1098 for (unsigned i = 1; i != RecordLength; ++i)
1099 Name[i-1] = Record[i];
1100
1101 unsigned NewKind = TheModule->getMDKindID(Name.str());
1102 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1103 return Error("Conflicting METADATA_KIND records");
1104 break;
1105 }
1106 }
1107 }
1108 }
1109
1110 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
1111 /// the LSB for dense VBR encoding.
DecodeSignRotatedValue(uint64_t V)1112 static uint64_t DecodeSignRotatedValue(uint64_t V) {
1113 if ((V & 1) == 0)
1114 return V >> 1;
1115 if (V != 1)
1116 return -(V >> 1);
1117 // There is no such thing as -0 with integers. "-0" really means MININT.
1118 return 1ULL << 63;
1119 }
1120
1121 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1122 /// values and aliases that we can.
ResolveGlobalAndAliasInits()1123 bool BitcodeReader::ResolveGlobalAndAliasInits() {
1124 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1125 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1126
1127 GlobalInitWorklist.swap(GlobalInits);
1128 AliasInitWorklist.swap(AliasInits);
1129
1130 while (!GlobalInitWorklist.empty()) {
1131 unsigned ValID = GlobalInitWorklist.back().second;
1132 if (ValID >= ValueList.size()) {
1133 // Not ready to resolve this yet, it requires something later in the file.
1134 GlobalInits.push_back(GlobalInitWorklist.back());
1135 } else {
1136 if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1137 GlobalInitWorklist.back().first->setInitializer(C);
1138 else
1139 return Error("Global variable initializer is not a constant!");
1140 }
1141 GlobalInitWorklist.pop_back();
1142 }
1143
1144 while (!AliasInitWorklist.empty()) {
1145 unsigned ValID = AliasInitWorklist.back().second;
1146 if (ValID >= ValueList.size()) {
1147 AliasInits.push_back(AliasInitWorklist.back());
1148 } else {
1149 if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1150 AliasInitWorklist.back().first->setAliasee(C);
1151 else
1152 return Error("Alias initializer is not a constant!");
1153 }
1154 AliasInitWorklist.pop_back();
1155 }
1156 return false;
1157 }
1158
ParseConstants()1159 bool BitcodeReader::ParseConstants() {
1160 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1161 return Error("Malformed block record");
1162
1163 SmallVector<uint64_t, 64> Record;
1164
1165 // Read all the records for this value table.
1166 Type *CurTy = Type::getInt32Ty(Context);
1167 unsigned NextCstNo = ValueList.size();
1168 while (1) {
1169 unsigned Code = Stream.ReadCode();
1170 if (Code == bitc::END_BLOCK)
1171 break;
1172
1173 if (Code == bitc::ENTER_SUBBLOCK) {
1174 // No known subblocks, always skip them.
1175 Stream.ReadSubBlockID();
1176 if (Stream.SkipBlock())
1177 return Error("Malformed block record");
1178 continue;
1179 }
1180
1181 if (Code == bitc::DEFINE_ABBREV) {
1182 Stream.ReadAbbrevRecord();
1183 continue;
1184 }
1185
1186 // Read a record.
1187 Record.clear();
1188 Value *V = 0;
1189 unsigned BitCode = Stream.ReadRecord(Code, Record);
1190 switch (BitCode) {
1191 default: // Default behavior: unknown constant
1192 case bitc::CST_CODE_UNDEF: // UNDEF
1193 V = UndefValue::get(CurTy);
1194 break;
1195 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
1196 if (Record.empty())
1197 return Error("Malformed CST_SETTYPE record");
1198 if (Record[0] >= TypeList.size())
1199 return Error("Invalid Type ID in CST_SETTYPE record");
1200 CurTy = TypeList[Record[0]];
1201 continue; // Skip the ValueList manipulation.
1202 case bitc::CST_CODE_NULL: // NULL
1203 V = Constant::getNullValue(CurTy);
1204 break;
1205 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
1206 if (!CurTy->isIntegerTy() || Record.empty())
1207 return Error("Invalid CST_INTEGER record");
1208 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
1209 break;
1210 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1211 if (!CurTy->isIntegerTy() || Record.empty())
1212 return Error("Invalid WIDE_INTEGER record");
1213
1214 unsigned NumWords = Record.size();
1215 SmallVector<uint64_t, 8> Words;
1216 Words.resize(NumWords);
1217 for (unsigned i = 0; i != NumWords; ++i)
1218 Words[i] = DecodeSignRotatedValue(Record[i]);
1219 V = ConstantInt::get(Context,
1220 APInt(cast<IntegerType>(CurTy)->getBitWidth(),
1221 Words));
1222 break;
1223 }
1224 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
1225 if (Record.empty())
1226 return Error("Invalid FLOAT record");
1227 if (CurTy->isFloatTy())
1228 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1229 else if (CurTy->isDoubleTy())
1230 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1231 else if (CurTy->isX86_FP80Ty()) {
1232 // Bits are not stored the same way as a normal i80 APInt, compensate.
1233 uint64_t Rearrange[2];
1234 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1235 Rearrange[1] = Record[0] >> 48;
1236 V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
1237 } else if (CurTy->isFP128Ty())
1238 V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
1239 else if (CurTy->isPPC_FP128Ty())
1240 V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
1241 else
1242 V = UndefValue::get(CurTy);
1243 break;
1244 }
1245
1246 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1247 if (Record.empty())
1248 return Error("Invalid CST_AGGREGATE record");
1249
1250 unsigned Size = Record.size();
1251 std::vector<Constant*> Elts;
1252
1253 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1254 for (unsigned i = 0; i != Size; ++i)
1255 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1256 STy->getElementType(i)));
1257 V = ConstantStruct::get(STy, Elts);
1258 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1259 Type *EltTy = ATy->getElementType();
1260 for (unsigned i = 0; i != Size; ++i)
1261 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1262 V = ConstantArray::get(ATy, Elts);
1263 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1264 Type *EltTy = VTy->getElementType();
1265 for (unsigned i = 0; i != Size; ++i)
1266 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1267 V = ConstantVector::get(Elts);
1268 } else {
1269 V = UndefValue::get(CurTy);
1270 }
1271 break;
1272 }
1273 case bitc::CST_CODE_STRING: { // STRING: [values]
1274 if (Record.empty())
1275 return Error("Invalid CST_AGGREGATE record");
1276
1277 ArrayType *ATy = cast<ArrayType>(CurTy);
1278 Type *EltTy = ATy->getElementType();
1279
1280 unsigned Size = Record.size();
1281 std::vector<Constant*> Elts;
1282 for (unsigned i = 0; i != Size; ++i)
1283 Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1284 V = ConstantArray::get(ATy, Elts);
1285 break;
1286 }
1287 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1288 if (Record.empty())
1289 return Error("Invalid CST_AGGREGATE record");
1290
1291 ArrayType *ATy = cast<ArrayType>(CurTy);
1292 Type *EltTy = ATy->getElementType();
1293
1294 unsigned Size = Record.size();
1295 std::vector<Constant*> Elts;
1296 for (unsigned i = 0; i != Size; ++i)
1297 Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1298 Elts.push_back(Constant::getNullValue(EltTy));
1299 V = ConstantArray::get(ATy, Elts);
1300 break;
1301 }
1302 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
1303 if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1304 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1305 if (Opc < 0) {
1306 V = UndefValue::get(CurTy); // Unknown binop.
1307 } else {
1308 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1309 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1310 unsigned Flags = 0;
1311 if (Record.size() >= 4) {
1312 if (Opc == Instruction::Add ||
1313 Opc == Instruction::Sub ||
1314 Opc == Instruction::Mul ||
1315 Opc == Instruction::Shl) {
1316 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1317 Flags |= OverflowingBinaryOperator::NoSignedWrap;
1318 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1319 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1320 } else if (Opc == Instruction::SDiv ||
1321 Opc == Instruction::UDiv ||
1322 Opc == Instruction::LShr ||
1323 Opc == Instruction::AShr) {
1324 if (Record[3] & (1 << bitc::PEO_EXACT))
1325 Flags |= SDivOperator::IsExact;
1326 }
1327 }
1328 V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1329 }
1330 break;
1331 }
1332 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
1333 if (Record.size() < 3) return Error("Invalid CE_CAST record");
1334 int Opc = GetDecodedCastOpcode(Record[0]);
1335 if (Opc < 0) {
1336 V = UndefValue::get(CurTy); // Unknown cast.
1337 } else {
1338 Type *OpTy = getTypeByID(Record[1]);
1339 if (!OpTy) return Error("Invalid CE_CAST record");
1340 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1341 V = ConstantExpr::getCast(Opc, Op, CurTy);
1342 }
1343 break;
1344 }
1345 case bitc::CST_CODE_CE_INBOUNDS_GEP:
1346 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
1347 if (Record.size() & 1) return Error("Invalid CE_GEP record");
1348 SmallVector<Constant*, 16> Elts;
1349 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1350 Type *ElTy = getTypeByID(Record[i]);
1351 if (!ElTy) return Error("Invalid CE_GEP record");
1352 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1353 }
1354 if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1355 V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1356 Elts.size()-1);
1357 else
1358 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1359 Elts.size()-1);
1360 break;
1361 }
1362 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#]
1363 if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1364 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1365 Type::getInt1Ty(Context)),
1366 ValueList.getConstantFwdRef(Record[1],CurTy),
1367 ValueList.getConstantFwdRef(Record[2],CurTy));
1368 break;
1369 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1370 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1371 VectorType *OpTy =
1372 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1373 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1374 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1375 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1376 V = ConstantExpr::getExtractElement(Op0, Op1);
1377 break;
1378 }
1379 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1380 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1381 if (Record.size() < 3 || OpTy == 0)
1382 return Error("Invalid CE_INSERTELT record");
1383 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1384 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1385 OpTy->getElementType());
1386 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1387 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1388 break;
1389 }
1390 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1391 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1392 if (Record.size() < 3 || OpTy == 0)
1393 return Error("Invalid CE_SHUFFLEVEC record");
1394 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1395 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1396 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1397 OpTy->getNumElements());
1398 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1399 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1400 break;
1401 }
1402 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1403 VectorType *RTy = dyn_cast<VectorType>(CurTy);
1404 VectorType *OpTy =
1405 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1406 if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1407 return Error("Invalid CE_SHUFVEC_EX record");
1408 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1409 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1410 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1411 RTy->getNumElements());
1412 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1413 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1414 break;
1415 }
1416 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
1417 if (Record.size() < 4) return Error("Invalid CE_CMP record");
1418 Type *OpTy = getTypeByID(Record[0]);
1419 if (OpTy == 0) return Error("Invalid CE_CMP record");
1420 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1421 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1422
1423 if (OpTy->isFPOrFPVectorTy())
1424 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1425 else
1426 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1427 break;
1428 }
1429 case bitc::CST_CODE_INLINEASM: {
1430 if (Record.size() < 2) return Error("Invalid INLINEASM record");
1431 std::string AsmStr, ConstrStr;
1432 bool HasSideEffects = Record[0] & 1;
1433 bool IsAlignStack = Record[0] >> 1;
1434 unsigned AsmStrSize = Record[1];
1435 if (2+AsmStrSize >= Record.size())
1436 return Error("Invalid INLINEASM record");
1437 unsigned ConstStrSize = Record[2+AsmStrSize];
1438 if (3+AsmStrSize+ConstStrSize > Record.size())
1439 return Error("Invalid INLINEASM record");
1440
1441 for (unsigned i = 0; i != AsmStrSize; ++i)
1442 AsmStr += (char)Record[2+i];
1443 for (unsigned i = 0; i != ConstStrSize; ++i)
1444 ConstrStr += (char)Record[3+AsmStrSize+i];
1445 PointerType *PTy = cast<PointerType>(CurTy);
1446 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1447 AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1448 break;
1449 }
1450 case bitc::CST_CODE_BLOCKADDRESS:{
1451 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1452 Type *FnTy = getTypeByID(Record[0]);
1453 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1454 Function *Fn =
1455 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1456 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1457
1458 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1459 Type::getInt8Ty(Context),
1460 false, GlobalValue::InternalLinkage,
1461 0, "");
1462 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1463 V = FwdRef;
1464 break;
1465 }
1466 }
1467
1468 ValueList.AssignValue(V, NextCstNo);
1469 ++NextCstNo;
1470 }
1471
1472 if (NextCstNo != ValueList.size())
1473 return Error("Invalid constant reference!");
1474
1475 if (Stream.ReadBlockEnd())
1476 return Error("Error at end of constants block");
1477
1478 // Once all the constants have been read, go through and resolve forward
1479 // references.
1480 ValueList.ResolveConstantForwardRefs();
1481 return false;
1482 }
1483
1484 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1485 /// remember where it is and then skip it. This lets us lazily deserialize the
1486 /// functions.
RememberAndSkipFunctionBody()1487 bool BitcodeReader::RememberAndSkipFunctionBody() {
1488 // Get the function we are talking about.
1489 if (FunctionsWithBodies.empty())
1490 return Error("Insufficient function protos");
1491
1492 Function *Fn = FunctionsWithBodies.back();
1493 FunctionsWithBodies.pop_back();
1494
1495 // Save the current stream state.
1496 uint64_t CurBit = Stream.GetCurrentBitNo();
1497 DeferredFunctionInfo[Fn] = CurBit;
1498
1499 // Skip over the function block for now.
1500 if (Stream.SkipBlock())
1501 return Error("Malformed block record");
1502 return false;
1503 }
1504
ParseModule()1505 bool BitcodeReader::ParseModule() {
1506 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1507 return Error("Malformed block record");
1508
1509 SmallVector<uint64_t, 64> Record;
1510 std::vector<std::string> SectionTable;
1511 std::vector<std::string> GCTable;
1512
1513 // Read all the records for this module.
1514 while (!Stream.AtEndOfStream()) {
1515 unsigned Code = Stream.ReadCode();
1516 if (Code == bitc::END_BLOCK) {
1517 if (Stream.ReadBlockEnd())
1518 return Error("Error at end of module block");
1519
1520 // Patch the initializers for globals and aliases up.
1521 ResolveGlobalAndAliasInits();
1522 if (!GlobalInits.empty() || !AliasInits.empty())
1523 return Error("Malformed global initializer set");
1524 if (!FunctionsWithBodies.empty())
1525 return Error("Too few function bodies found");
1526
1527 // Look for intrinsic functions which need to be upgraded at some point
1528 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1529 FI != FE; ++FI) {
1530 Function* NewFn;
1531 if (UpgradeIntrinsicFunction(FI, NewFn))
1532 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1533 }
1534
1535 // Look for global variables which need to be renamed.
1536 for (Module::global_iterator
1537 GI = TheModule->global_begin(), GE = TheModule->global_end();
1538 GI != GE; ++GI)
1539 UpgradeGlobalVariable(GI);
1540
1541 // Force deallocation of memory for these vectors to favor the client that
1542 // want lazy deserialization.
1543 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1544 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1545 std::vector<Function*>().swap(FunctionsWithBodies);
1546 return false;
1547 }
1548
1549 if (Code == bitc::ENTER_SUBBLOCK) {
1550 switch (Stream.ReadSubBlockID()) {
1551 default: // Skip unknown content.
1552 if (Stream.SkipBlock())
1553 return Error("Malformed block record");
1554 break;
1555 case bitc::BLOCKINFO_BLOCK_ID:
1556 if (Stream.ReadBlockInfoBlock())
1557 return Error("Malformed BlockInfoBlock");
1558 break;
1559 case bitc::PARAMATTR_BLOCK_ID:
1560 if (ParseAttributeBlock())
1561 return true;
1562 break;
1563 case bitc::TYPE_BLOCK_ID_NEW:
1564 if (ParseTypeTable())
1565 return true;
1566 break;
1567 case bitc::TYPE_BLOCK_ID_OLD:
1568 if (ParseOldTypeTable())
1569 return true;
1570 break;
1571 case bitc::TYPE_SYMTAB_BLOCK_ID_OLD:
1572 if (ParseOldTypeSymbolTable())
1573 return true;
1574 break;
1575 case bitc::VALUE_SYMTAB_BLOCK_ID:
1576 if (ParseValueSymbolTable())
1577 return true;
1578 break;
1579 case bitc::CONSTANTS_BLOCK_ID:
1580 if (ParseConstants() || ResolveGlobalAndAliasInits())
1581 return true;
1582 break;
1583 case bitc::METADATA_BLOCK_ID:
1584 if (ParseMetadata())
1585 return true;
1586 break;
1587 case bitc::FUNCTION_BLOCK_ID:
1588 // If this is the first function body we've seen, reverse the
1589 // FunctionsWithBodies list.
1590 if (!HasReversedFunctionsWithBodies) {
1591 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1592 HasReversedFunctionsWithBodies = true;
1593 }
1594
1595 if (RememberAndSkipFunctionBody())
1596 return true;
1597 break;
1598 }
1599 continue;
1600 }
1601
1602 if (Code == bitc::DEFINE_ABBREV) {
1603 Stream.ReadAbbrevRecord();
1604 continue;
1605 }
1606
1607 // Read a record.
1608 switch (Stream.ReadRecord(Code, Record)) {
1609 default: break; // Default behavior, ignore unknown content.
1610 case bitc::MODULE_CODE_VERSION: // VERSION: [version#]
1611 if (Record.size() < 1)
1612 return Error("Malformed MODULE_CODE_VERSION");
1613 // Only version #0 is supported so far.
1614 if (Record[0] != 0)
1615 return Error("Unknown bitstream version!");
1616 break;
1617 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
1618 std::string S;
1619 if (ConvertToString(Record, 0, S))
1620 return Error("Invalid MODULE_CODE_TRIPLE record");
1621 TheModule->setTargetTriple(S);
1622 break;
1623 }
1624 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
1625 std::string S;
1626 if (ConvertToString(Record, 0, S))
1627 return Error("Invalid MODULE_CODE_DATALAYOUT record");
1628 TheModule->setDataLayout(S);
1629 break;
1630 }
1631 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
1632 std::string S;
1633 if (ConvertToString(Record, 0, S))
1634 return Error("Invalid MODULE_CODE_ASM record");
1635 TheModule->setModuleInlineAsm(S);
1636 break;
1637 }
1638 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
1639 std::string S;
1640 if (ConvertToString(Record, 0, S))
1641 return Error("Invalid MODULE_CODE_DEPLIB record");
1642 TheModule->addLibrary(S);
1643 break;
1644 }
1645 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
1646 std::string S;
1647 if (ConvertToString(Record, 0, S))
1648 return Error("Invalid MODULE_CODE_SECTIONNAME record");
1649 SectionTable.push_back(S);
1650 break;
1651 }
1652 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
1653 std::string S;
1654 if (ConvertToString(Record, 0, S))
1655 return Error("Invalid MODULE_CODE_GCNAME record");
1656 GCTable.push_back(S);
1657 break;
1658 }
1659 // GLOBALVAR: [pointer type, isconst, initid,
1660 // linkage, alignment, section, visibility, threadlocal,
1661 // unnamed_addr]
1662 case bitc::MODULE_CODE_GLOBALVAR: {
1663 if (Record.size() < 6)
1664 return Error("Invalid MODULE_CODE_GLOBALVAR record");
1665 Type *Ty = getTypeByID(Record[0]);
1666 if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1667 if (!Ty->isPointerTy())
1668 return Error("Global not a pointer type!");
1669 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1670 Ty = cast<PointerType>(Ty)->getElementType();
1671
1672 bool isConstant = Record[1];
1673 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1674 unsigned Alignment = (1 << Record[4]) >> 1;
1675 std::string Section;
1676 if (Record[5]) {
1677 if (Record[5]-1 >= SectionTable.size())
1678 return Error("Invalid section ID");
1679 Section = SectionTable[Record[5]-1];
1680 }
1681 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1682 if (Record.size() > 6)
1683 Visibility = GetDecodedVisibility(Record[6]);
1684 bool isThreadLocal = false;
1685 if (Record.size() > 7)
1686 isThreadLocal = Record[7];
1687
1688 bool UnnamedAddr = false;
1689 if (Record.size() > 8)
1690 UnnamedAddr = Record[8];
1691
1692 GlobalVariable *NewGV =
1693 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1694 isThreadLocal, AddressSpace);
1695 NewGV->setAlignment(Alignment);
1696 if (!Section.empty())
1697 NewGV->setSection(Section);
1698 NewGV->setVisibility(Visibility);
1699 NewGV->setThreadLocal(isThreadLocal);
1700 NewGV->setUnnamedAddr(UnnamedAddr);
1701
1702 ValueList.push_back(NewGV);
1703
1704 // Remember which value to use for the global initializer.
1705 if (unsigned InitID = Record[2])
1706 GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1707 break;
1708 }
1709 // FUNCTION: [type, callingconv, isproto, linkage, paramattr,
1710 // alignment, section, visibility, gc, unnamed_addr]
1711 case bitc::MODULE_CODE_FUNCTION: {
1712 if (Record.size() < 8)
1713 return Error("Invalid MODULE_CODE_FUNCTION record");
1714 Type *Ty = getTypeByID(Record[0]);
1715 if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1716 if (!Ty->isPointerTy())
1717 return Error("Function not a pointer type!");
1718 FunctionType *FTy =
1719 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1720 if (!FTy)
1721 return Error("Function not a pointer to function type!");
1722
1723 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1724 "", TheModule);
1725
1726 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1727 bool isProto = Record[2];
1728 Func->setLinkage(GetDecodedLinkage(Record[3]));
1729 Func->setAttributes(getAttributes(Record[4]));
1730
1731 Func->setAlignment((1 << Record[5]) >> 1);
1732 if (Record[6]) {
1733 if (Record[6]-1 >= SectionTable.size())
1734 return Error("Invalid section ID");
1735 Func->setSection(SectionTable[Record[6]-1]);
1736 }
1737 Func->setVisibility(GetDecodedVisibility(Record[7]));
1738 if (Record.size() > 8 && Record[8]) {
1739 if (Record[8]-1 > GCTable.size())
1740 return Error("Invalid GC ID");
1741 Func->setGC(GCTable[Record[8]-1].c_str());
1742 }
1743 bool UnnamedAddr = false;
1744 if (Record.size() > 9)
1745 UnnamedAddr = Record[9];
1746 Func->setUnnamedAddr(UnnamedAddr);
1747 ValueList.push_back(Func);
1748
1749 // If this is a function with a body, remember the prototype we are
1750 // creating now, so that we can match up the body with them later.
1751 if (!isProto)
1752 FunctionsWithBodies.push_back(Func);
1753 break;
1754 }
1755 // ALIAS: [alias type, aliasee val#, linkage]
1756 // ALIAS: [alias type, aliasee val#, linkage, visibility]
1757 case bitc::MODULE_CODE_ALIAS: {
1758 if (Record.size() < 3)
1759 return Error("Invalid MODULE_ALIAS record");
1760 Type *Ty = getTypeByID(Record[0]);
1761 if (!Ty) return Error("Invalid MODULE_ALIAS record");
1762 if (!Ty->isPointerTy())
1763 return Error("Function not a pointer type!");
1764
1765 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1766 "", 0, TheModule);
1767 // Old bitcode files didn't have visibility field.
1768 if (Record.size() > 3)
1769 NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1770 ValueList.push_back(NewGA);
1771 AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1772 break;
1773 }
1774 /// MODULE_CODE_PURGEVALS: [numvals]
1775 case bitc::MODULE_CODE_PURGEVALS:
1776 // Trim down the value list to the specified size.
1777 if (Record.size() < 1 || Record[0] > ValueList.size())
1778 return Error("Invalid MODULE_PURGEVALS record");
1779 ValueList.shrinkTo(Record[0]);
1780 break;
1781 }
1782 Record.clear();
1783 }
1784
1785 return Error("Premature end of bitstream");
1786 }
1787
ParseBitcodeInto(Module * M)1788 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1789 TheModule = 0;
1790
1791 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1792 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1793
1794 if (Buffer->getBufferSize() & 3) {
1795 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1796 return Error("Invalid bitcode signature");
1797 else
1798 return Error("Bitcode stream should be a multiple of 4 bytes in length");
1799 }
1800
1801 // If we have a wrapper header, parse it and ignore the non-bc file contents.
1802 // The magic number is 0x0B17C0DE stored in little endian.
1803 if (isBitcodeWrapper(BufPtr, BufEnd))
1804 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1805 return Error("Invalid bitcode wrapper header");
1806
1807 StreamFile.init(BufPtr, BufEnd);
1808 Stream.init(StreamFile);
1809
1810 // Sniff for the signature.
1811 if (Stream.Read(8) != 'B' ||
1812 Stream.Read(8) != 'C' ||
1813 Stream.Read(4) != 0x0 ||
1814 Stream.Read(4) != 0xC ||
1815 Stream.Read(4) != 0xE ||
1816 Stream.Read(4) != 0xD)
1817 return Error("Invalid bitcode signature");
1818
1819 // We expect a number of well-defined blocks, though we don't necessarily
1820 // need to understand them all.
1821 while (!Stream.AtEndOfStream()) {
1822 unsigned Code = Stream.ReadCode();
1823
1824 if (Code != bitc::ENTER_SUBBLOCK) {
1825
1826 // The ranlib in xcode 4 will align archive members by appending newlines to the
1827 // end of them. If this file size is a multiple of 4 but not 8, we have to read and
1828 // ignore these final 4 bytes :-(
1829 if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1830 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1831 Stream.AtEndOfStream())
1832 return false;
1833
1834 return Error("Invalid record at top-level");
1835 }
1836
1837 unsigned BlockID = Stream.ReadSubBlockID();
1838
1839 // We only know the MODULE subblock ID.
1840 switch (BlockID) {
1841 case bitc::BLOCKINFO_BLOCK_ID:
1842 if (Stream.ReadBlockInfoBlock())
1843 return Error("Malformed BlockInfoBlock");
1844 break;
1845 case bitc::MODULE_BLOCK_ID:
1846 // Reject multiple MODULE_BLOCK's in a single bitstream.
1847 if (TheModule)
1848 return Error("Multiple MODULE_BLOCKs in same stream");
1849 TheModule = M;
1850 if (ParseModule())
1851 return true;
1852 break;
1853 default:
1854 if (Stream.SkipBlock())
1855 return Error("Malformed block record");
1856 break;
1857 }
1858 }
1859
1860 return false;
1861 }
1862
ParseModuleTriple(std::string & Triple)1863 bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1864 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1865 return Error("Malformed block record");
1866
1867 SmallVector<uint64_t, 64> Record;
1868
1869 // Read all the records for this module.
1870 while (!Stream.AtEndOfStream()) {
1871 unsigned Code = Stream.ReadCode();
1872 if (Code == bitc::END_BLOCK) {
1873 if (Stream.ReadBlockEnd())
1874 return Error("Error at end of module block");
1875
1876 return false;
1877 }
1878
1879 if (Code == bitc::ENTER_SUBBLOCK) {
1880 switch (Stream.ReadSubBlockID()) {
1881 default: // Skip unknown content.
1882 if (Stream.SkipBlock())
1883 return Error("Malformed block record");
1884 break;
1885 }
1886 continue;
1887 }
1888
1889 if (Code == bitc::DEFINE_ABBREV) {
1890 Stream.ReadAbbrevRecord();
1891 continue;
1892 }
1893
1894 // Read a record.
1895 switch (Stream.ReadRecord(Code, Record)) {
1896 default: break; // Default behavior, ignore unknown content.
1897 case bitc::MODULE_CODE_VERSION: // VERSION: [version#]
1898 if (Record.size() < 1)
1899 return Error("Malformed MODULE_CODE_VERSION");
1900 // Only version #0 is supported so far.
1901 if (Record[0] != 0)
1902 return Error("Unknown bitstream version!");
1903 break;
1904 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
1905 std::string S;
1906 if (ConvertToString(Record, 0, S))
1907 return Error("Invalid MODULE_CODE_TRIPLE record");
1908 Triple = S;
1909 break;
1910 }
1911 }
1912 Record.clear();
1913 }
1914
1915 return Error("Premature end of bitstream");
1916 }
1917
ParseTriple(std::string & Triple)1918 bool BitcodeReader::ParseTriple(std::string &Triple) {
1919 if (Buffer->getBufferSize() & 3)
1920 return Error("Bitcode stream should be a multiple of 4 bytes in length");
1921
1922 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1923 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1924
1925 // If we have a wrapper header, parse it and ignore the non-bc file contents.
1926 // The magic number is 0x0B17C0DE stored in little endian.
1927 if (isBitcodeWrapper(BufPtr, BufEnd))
1928 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1929 return Error("Invalid bitcode wrapper header");
1930
1931 StreamFile.init(BufPtr, BufEnd);
1932 Stream.init(StreamFile);
1933
1934 // Sniff for the signature.
1935 if (Stream.Read(8) != 'B' ||
1936 Stream.Read(8) != 'C' ||
1937 Stream.Read(4) != 0x0 ||
1938 Stream.Read(4) != 0xC ||
1939 Stream.Read(4) != 0xE ||
1940 Stream.Read(4) != 0xD)
1941 return Error("Invalid bitcode signature");
1942
1943 // We expect a number of well-defined blocks, though we don't necessarily
1944 // need to understand them all.
1945 while (!Stream.AtEndOfStream()) {
1946 unsigned Code = Stream.ReadCode();
1947
1948 if (Code != bitc::ENTER_SUBBLOCK)
1949 return Error("Invalid record at top-level");
1950
1951 unsigned BlockID = Stream.ReadSubBlockID();
1952
1953 // We only know the MODULE subblock ID.
1954 switch (BlockID) {
1955 case bitc::MODULE_BLOCK_ID:
1956 if (ParseModuleTriple(Triple))
1957 return true;
1958 break;
1959 default:
1960 if (Stream.SkipBlock())
1961 return Error("Malformed block record");
1962 break;
1963 }
1964 }
1965
1966 return false;
1967 }
1968
1969 /// ParseMetadataAttachment - Parse metadata attachments.
ParseMetadataAttachment()1970 bool BitcodeReader::ParseMetadataAttachment() {
1971 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1972 return Error("Malformed block record");
1973
1974 SmallVector<uint64_t, 64> Record;
1975 while(1) {
1976 unsigned Code = Stream.ReadCode();
1977 if (Code == bitc::END_BLOCK) {
1978 if (Stream.ReadBlockEnd())
1979 return Error("Error at end of PARAMATTR block");
1980 break;
1981 }
1982 if (Code == bitc::DEFINE_ABBREV) {
1983 Stream.ReadAbbrevRecord();
1984 continue;
1985 }
1986 // Read a metadata attachment record.
1987 Record.clear();
1988 switch (Stream.ReadRecord(Code, Record)) {
1989 default: // Default behavior: ignore.
1990 break;
1991 case bitc::METADATA_ATTACHMENT: {
1992 unsigned RecordLength = Record.size();
1993 if (Record.empty() || (RecordLength - 1) % 2 == 1)
1994 return Error ("Invalid METADATA_ATTACHMENT reader!");
1995 Instruction *Inst = InstructionList[Record[0]];
1996 for (unsigned i = 1; i != RecordLength; i = i+2) {
1997 unsigned Kind = Record[i];
1998 DenseMap<unsigned, unsigned>::iterator I =
1999 MDKindMap.find(Kind);
2000 if (I == MDKindMap.end())
2001 return Error("Invalid metadata kind ID");
2002 Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2003 Inst->setMetadata(I->second, cast<MDNode>(Node));
2004 }
2005 break;
2006 }
2007 }
2008 }
2009 return false;
2010 }
2011
2012 /// ParseFunctionBody - Lazily parse the specified function body block.
ParseFunctionBody(Function * F)2013 bool BitcodeReader::ParseFunctionBody(Function *F) {
2014 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2015 return Error("Malformed block record");
2016
2017 InstructionList.clear();
2018 unsigned ModuleValueListSize = ValueList.size();
2019 unsigned ModuleMDValueListSize = MDValueList.size();
2020
2021 // Add all the function arguments to the value table.
2022 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2023 ValueList.push_back(I);
2024
2025 unsigned NextValueNo = ValueList.size();
2026 BasicBlock *CurBB = 0;
2027 unsigned CurBBNo = 0;
2028
2029 DebugLoc LastLoc;
2030
2031 // Read all the records.
2032 SmallVector<uint64_t, 64> Record;
2033 while (1) {
2034 unsigned Code = Stream.ReadCode();
2035 if (Code == bitc::END_BLOCK) {
2036 if (Stream.ReadBlockEnd())
2037 return Error("Error at end of function block");
2038 break;
2039 }
2040
2041 if (Code == bitc::ENTER_SUBBLOCK) {
2042 switch (Stream.ReadSubBlockID()) {
2043 default: // Skip unknown content.
2044 if (Stream.SkipBlock())
2045 return Error("Malformed block record");
2046 break;
2047 case bitc::CONSTANTS_BLOCK_ID:
2048 if (ParseConstants()) return true;
2049 NextValueNo = ValueList.size();
2050 break;
2051 case bitc::VALUE_SYMTAB_BLOCK_ID:
2052 if (ParseValueSymbolTable()) return true;
2053 break;
2054 case bitc::METADATA_ATTACHMENT_ID:
2055 if (ParseMetadataAttachment()) return true;
2056 break;
2057 case bitc::METADATA_BLOCK_ID:
2058 if (ParseMetadata()) return true;
2059 break;
2060 }
2061 continue;
2062 }
2063
2064 if (Code == bitc::DEFINE_ABBREV) {
2065 Stream.ReadAbbrevRecord();
2066 continue;
2067 }
2068
2069 // Read a record.
2070 Record.clear();
2071 Instruction *I = 0;
2072 unsigned BitCode = Stream.ReadRecord(Code, Record);
2073 switch (BitCode) {
2074 default: // Default behavior: reject
2075 return Error("Unknown instruction");
2076 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks]
2077 if (Record.size() < 1 || Record[0] == 0)
2078 return Error("Invalid DECLAREBLOCKS record");
2079 // Create all the basic blocks for the function.
2080 FunctionBBs.resize(Record[0]);
2081 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2082 FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2083 CurBB = FunctionBBs[0];
2084 continue;
2085
2086 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
2087 // This record indicates that the last instruction is at the same
2088 // location as the previous instruction with a location.
2089 I = 0;
2090
2091 // Get the last instruction emitted.
2092 if (CurBB && !CurBB->empty())
2093 I = &CurBB->back();
2094 else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2095 !FunctionBBs[CurBBNo-1]->empty())
2096 I = &FunctionBBs[CurBBNo-1]->back();
2097
2098 if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2099 I->setDebugLoc(LastLoc);
2100 I = 0;
2101 continue;
2102
2103 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
2104 I = 0; // Get the last instruction emitted.
2105 if (CurBB && !CurBB->empty())
2106 I = &CurBB->back();
2107 else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2108 !FunctionBBs[CurBBNo-1]->empty())
2109 I = &FunctionBBs[CurBBNo-1]->back();
2110 if (I == 0 || Record.size() < 4)
2111 return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2112
2113 unsigned Line = Record[0], Col = Record[1];
2114 unsigned ScopeID = Record[2], IAID = Record[3];
2115
2116 MDNode *Scope = 0, *IA = 0;
2117 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2118 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2119 LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2120 I->setDebugLoc(LastLoc);
2121 I = 0;
2122 continue;
2123 }
2124
2125 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
2126 unsigned OpNum = 0;
2127 Value *LHS, *RHS;
2128 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2129 getValue(Record, OpNum, LHS->getType(), RHS) ||
2130 OpNum+1 > Record.size())
2131 return Error("Invalid BINOP record");
2132
2133 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2134 if (Opc == -1) return Error("Invalid BINOP record");
2135 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2136 InstructionList.push_back(I);
2137 if (OpNum < Record.size()) {
2138 if (Opc == Instruction::Add ||
2139 Opc == Instruction::Sub ||
2140 Opc == Instruction::Mul ||
2141 Opc == Instruction::Shl) {
2142 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2143 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2144 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2145 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2146 } else if (Opc == Instruction::SDiv ||
2147 Opc == Instruction::UDiv ||
2148 Opc == Instruction::LShr ||
2149 Opc == Instruction::AShr) {
2150 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2151 cast<BinaryOperator>(I)->setIsExact(true);
2152 }
2153 }
2154 break;
2155 }
2156 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
2157 unsigned OpNum = 0;
2158 Value *Op;
2159 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2160 OpNum+2 != Record.size())
2161 return Error("Invalid CAST record");
2162
2163 Type *ResTy = getTypeByID(Record[OpNum]);
2164 int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2165 if (Opc == -1 || ResTy == 0)
2166 return Error("Invalid CAST record");
2167 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2168 InstructionList.push_back(I);
2169 break;
2170 }
2171 case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2172 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2173 unsigned OpNum = 0;
2174 Value *BasePtr;
2175 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2176 return Error("Invalid GEP record");
2177
2178 SmallVector<Value*, 16> GEPIdx;
2179 while (OpNum != Record.size()) {
2180 Value *Op;
2181 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2182 return Error("Invalid GEP record");
2183 GEPIdx.push_back(Op);
2184 }
2185
2186 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
2187 InstructionList.push_back(I);
2188 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2189 cast<GetElementPtrInst>(I)->setIsInBounds(true);
2190 break;
2191 }
2192
2193 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2194 // EXTRACTVAL: [opty, opval, n x indices]
2195 unsigned OpNum = 0;
2196 Value *Agg;
2197 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2198 return Error("Invalid EXTRACTVAL record");
2199
2200 SmallVector<unsigned, 4> EXTRACTVALIdx;
2201 for (unsigned RecSize = Record.size();
2202 OpNum != RecSize; ++OpNum) {
2203 uint64_t Index = Record[OpNum];
2204 if ((unsigned)Index != Index)
2205 return Error("Invalid EXTRACTVAL index");
2206 EXTRACTVALIdx.push_back((unsigned)Index);
2207 }
2208
2209 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2210 InstructionList.push_back(I);
2211 break;
2212 }
2213
2214 case bitc::FUNC_CODE_INST_INSERTVAL: {
2215 // INSERTVAL: [opty, opval, opty, opval, n x indices]
2216 unsigned OpNum = 0;
2217 Value *Agg;
2218 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2219 return Error("Invalid INSERTVAL record");
2220 Value *Val;
2221 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2222 return Error("Invalid INSERTVAL record");
2223
2224 SmallVector<unsigned, 4> INSERTVALIdx;
2225 for (unsigned RecSize = Record.size();
2226 OpNum != RecSize; ++OpNum) {
2227 uint64_t Index = Record[OpNum];
2228 if ((unsigned)Index != Index)
2229 return Error("Invalid INSERTVAL index");
2230 INSERTVALIdx.push_back((unsigned)Index);
2231 }
2232
2233 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2234 InstructionList.push_back(I);
2235 break;
2236 }
2237
2238 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2239 // obsolete form of select
2240 // handles select i1 ... in old bitcode
2241 unsigned OpNum = 0;
2242 Value *TrueVal, *FalseVal, *Cond;
2243 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2244 getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2245 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2246 return Error("Invalid SELECT record");
2247
2248 I = SelectInst::Create(Cond, TrueVal, FalseVal);
2249 InstructionList.push_back(I);
2250 break;
2251 }
2252
2253 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2254 // new form of select
2255 // handles select i1 or select [N x i1]
2256 unsigned OpNum = 0;
2257 Value *TrueVal, *FalseVal, *Cond;
2258 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2259 getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2260 getValueTypePair(Record, OpNum, NextValueNo, Cond))
2261 return Error("Invalid SELECT record");
2262
2263 // select condition can be either i1 or [N x i1]
2264 if (VectorType* vector_type =
2265 dyn_cast<VectorType>(Cond->getType())) {
2266 // expect <n x i1>
2267 if (vector_type->getElementType() != Type::getInt1Ty(Context))
2268 return Error("Invalid SELECT condition type");
2269 } else {
2270 // expect i1
2271 if (Cond->getType() != Type::getInt1Ty(Context))
2272 return Error("Invalid SELECT condition type");
2273 }
2274
2275 I = SelectInst::Create(Cond, TrueVal, FalseVal);
2276 InstructionList.push_back(I);
2277 break;
2278 }
2279
2280 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2281 unsigned OpNum = 0;
2282 Value *Vec, *Idx;
2283 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2284 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2285 return Error("Invalid EXTRACTELT record");
2286 I = ExtractElementInst::Create(Vec, Idx);
2287 InstructionList.push_back(I);
2288 break;
2289 }
2290
2291 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2292 unsigned OpNum = 0;
2293 Value *Vec, *Elt, *Idx;
2294 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2295 getValue(Record, OpNum,
2296 cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2297 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2298 return Error("Invalid INSERTELT record");
2299 I = InsertElementInst::Create(Vec, Elt, Idx);
2300 InstructionList.push_back(I);
2301 break;
2302 }
2303
2304 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2305 unsigned OpNum = 0;
2306 Value *Vec1, *Vec2, *Mask;
2307 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2308 getValue(Record, OpNum, Vec1->getType(), Vec2))
2309 return Error("Invalid SHUFFLEVEC record");
2310
2311 if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2312 return Error("Invalid SHUFFLEVEC record");
2313 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2314 InstructionList.push_back(I);
2315 break;
2316 }
2317
2318 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
2319 // Old form of ICmp/FCmp returning bool
2320 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2321 // both legal on vectors but had different behaviour.
2322 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2323 // FCmp/ICmp returning bool or vector of bool
2324
2325 unsigned OpNum = 0;
2326 Value *LHS, *RHS;
2327 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2328 getValue(Record, OpNum, LHS->getType(), RHS) ||
2329 OpNum+1 != Record.size())
2330 return Error("Invalid CMP record");
2331
2332 if (LHS->getType()->isFPOrFPVectorTy())
2333 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2334 else
2335 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2336 InstructionList.push_back(I);
2337 break;
2338 }
2339
2340 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2341 {
2342 unsigned Size = Record.size();
2343 if (Size == 0) {
2344 I = ReturnInst::Create(Context);
2345 InstructionList.push_back(I);
2346 break;
2347 }
2348
2349 unsigned OpNum = 0;
2350 Value *Op = NULL;
2351 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2352 return Error("Invalid RET record");
2353 if (OpNum != Record.size())
2354 return Error("Invalid RET record");
2355
2356 I = ReturnInst::Create(Context, Op);
2357 InstructionList.push_back(I);
2358 break;
2359 }
2360 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2361 if (Record.size() != 1 && Record.size() != 3)
2362 return Error("Invalid BR record");
2363 BasicBlock *TrueDest = getBasicBlock(Record[0]);
2364 if (TrueDest == 0)
2365 return Error("Invalid BR record");
2366
2367 if (Record.size() == 1) {
2368 I = BranchInst::Create(TrueDest);
2369 InstructionList.push_back(I);
2370 }
2371 else {
2372 BasicBlock *FalseDest = getBasicBlock(Record[1]);
2373 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2374 if (FalseDest == 0 || Cond == 0)
2375 return Error("Invalid BR record");
2376 I = BranchInst::Create(TrueDest, FalseDest, Cond);
2377 InstructionList.push_back(I);
2378 }
2379 break;
2380 }
2381 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2382 if (Record.size() < 3 || (Record.size() & 1) == 0)
2383 return Error("Invalid SWITCH record");
2384 Type *OpTy = getTypeByID(Record[0]);
2385 Value *Cond = getFnValueByID(Record[1], OpTy);
2386 BasicBlock *Default = getBasicBlock(Record[2]);
2387 if (OpTy == 0 || Cond == 0 || Default == 0)
2388 return Error("Invalid SWITCH record");
2389 unsigned NumCases = (Record.size()-3)/2;
2390 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2391 InstructionList.push_back(SI);
2392 for (unsigned i = 0, e = NumCases; i != e; ++i) {
2393 ConstantInt *CaseVal =
2394 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2395 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2396 if (CaseVal == 0 || DestBB == 0) {
2397 delete SI;
2398 return Error("Invalid SWITCH record!");
2399 }
2400 SI->addCase(CaseVal, DestBB);
2401 }
2402 I = SI;
2403 break;
2404 }
2405 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2406 if (Record.size() < 2)
2407 return Error("Invalid INDIRECTBR record");
2408 Type *OpTy = getTypeByID(Record[0]);
2409 Value *Address = getFnValueByID(Record[1], OpTy);
2410 if (OpTy == 0 || Address == 0)
2411 return Error("Invalid INDIRECTBR record");
2412 unsigned NumDests = Record.size()-2;
2413 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2414 InstructionList.push_back(IBI);
2415 for (unsigned i = 0, e = NumDests; i != e; ++i) {
2416 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2417 IBI->addDestination(DestBB);
2418 } else {
2419 delete IBI;
2420 return Error("Invalid INDIRECTBR record!");
2421 }
2422 }
2423 I = IBI;
2424 break;
2425 }
2426
2427 case bitc::FUNC_CODE_INST_INVOKE: {
2428 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2429 if (Record.size() < 4) return Error("Invalid INVOKE record");
2430 AttrListPtr PAL = getAttributes(Record[0]);
2431 unsigned CCInfo = Record[1];
2432 BasicBlock *NormalBB = getBasicBlock(Record[2]);
2433 BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2434
2435 unsigned OpNum = 4;
2436 Value *Callee;
2437 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2438 return Error("Invalid INVOKE record");
2439
2440 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2441 FunctionType *FTy = !CalleeTy ? 0 :
2442 dyn_cast<FunctionType>(CalleeTy->getElementType());
2443
2444 // Check that the right number of fixed parameters are here.
2445 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2446 Record.size() < OpNum+FTy->getNumParams())
2447 return Error("Invalid INVOKE record");
2448
2449 SmallVector<Value*, 16> Ops;
2450 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2451 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2452 if (Ops.back() == 0) return Error("Invalid INVOKE record");
2453 }
2454
2455 if (!FTy->isVarArg()) {
2456 if (Record.size() != OpNum)
2457 return Error("Invalid INVOKE record");
2458 } else {
2459 // Read type/value pairs for varargs params.
2460 while (OpNum != Record.size()) {
2461 Value *Op;
2462 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2463 return Error("Invalid INVOKE record");
2464 Ops.push_back(Op);
2465 }
2466 }
2467
2468 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2469 InstructionList.push_back(I);
2470 cast<InvokeInst>(I)->setCallingConv(
2471 static_cast<CallingConv::ID>(CCInfo));
2472 cast<InvokeInst>(I)->setAttributes(PAL);
2473 break;
2474 }
2475 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2476 I = new UnwindInst(Context);
2477 InstructionList.push_back(I);
2478 break;
2479 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2480 I = new UnreachableInst(Context);
2481 InstructionList.push_back(I);
2482 break;
2483 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2484 if (Record.size() < 1 || ((Record.size()-1)&1))
2485 return Error("Invalid PHI record");
2486 Type *Ty = getTypeByID(Record[0]);
2487 if (!Ty) return Error("Invalid PHI record");
2488
2489 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2490 InstructionList.push_back(PN);
2491
2492 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2493 Value *V = getFnValueByID(Record[1+i], Ty);
2494 BasicBlock *BB = getBasicBlock(Record[2+i]);
2495 if (!V || !BB) return Error("Invalid PHI record");
2496 PN->addIncoming(V, BB);
2497 }
2498 I = PN;
2499 break;
2500 }
2501
2502 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2503 if (Record.size() != 4)
2504 return Error("Invalid ALLOCA record");
2505 PointerType *Ty =
2506 dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2507 Type *OpTy = getTypeByID(Record[1]);
2508 Value *Size = getFnValueByID(Record[2], OpTy);
2509 unsigned Align = Record[3];
2510 if (!Ty || !Size) return Error("Invalid ALLOCA record");
2511 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2512 InstructionList.push_back(I);
2513 break;
2514 }
2515 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2516 unsigned OpNum = 0;
2517 Value *Op;
2518 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2519 OpNum+2 != Record.size())
2520 return Error("Invalid LOAD record");
2521
2522 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2523 InstructionList.push_back(I);
2524 break;
2525 }
2526 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2527 unsigned OpNum = 0;
2528 Value *Val, *Ptr;
2529 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2530 getValue(Record, OpNum,
2531 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2532 OpNum+2 != Record.size())
2533 return Error("Invalid STORE record");
2534
2535 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2536 InstructionList.push_back(I);
2537 break;
2538 }
2539 case bitc::FUNC_CODE_INST_CALL: {
2540 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2541 if (Record.size() < 3)
2542 return Error("Invalid CALL record");
2543
2544 AttrListPtr PAL = getAttributes(Record[0]);
2545 unsigned CCInfo = Record[1];
2546
2547 unsigned OpNum = 2;
2548 Value *Callee;
2549 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2550 return Error("Invalid CALL record");
2551
2552 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2553 FunctionType *FTy = 0;
2554 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2555 if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2556 return Error("Invalid CALL record");
2557
2558 SmallVector<Value*, 16> Args;
2559 // Read the fixed params.
2560 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2561 if (FTy->getParamType(i)->isLabelTy())
2562 Args.push_back(getBasicBlock(Record[OpNum]));
2563 else
2564 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2565 if (Args.back() == 0) return Error("Invalid CALL record");
2566 }
2567
2568 // Read type/value pairs for varargs params.
2569 if (!FTy->isVarArg()) {
2570 if (OpNum != Record.size())
2571 return Error("Invalid CALL record");
2572 } else {
2573 while (OpNum != Record.size()) {
2574 Value *Op;
2575 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2576 return Error("Invalid CALL record");
2577 Args.push_back(Op);
2578 }
2579 }
2580
2581 I = CallInst::Create(Callee, Args);
2582 InstructionList.push_back(I);
2583 cast<CallInst>(I)->setCallingConv(
2584 static_cast<CallingConv::ID>(CCInfo>>1));
2585 cast<CallInst>(I)->setTailCall(CCInfo & 1);
2586 cast<CallInst>(I)->setAttributes(PAL);
2587 break;
2588 }
2589 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2590 if (Record.size() < 3)
2591 return Error("Invalid VAARG record");
2592 Type *OpTy = getTypeByID(Record[0]);
2593 Value *Op = getFnValueByID(Record[1], OpTy);
2594 Type *ResTy = getTypeByID(Record[2]);
2595 if (!OpTy || !Op || !ResTy)
2596 return Error("Invalid VAARG record");
2597 I = new VAArgInst(Op, ResTy);
2598 InstructionList.push_back(I);
2599 break;
2600 }
2601 }
2602
2603 // Add instruction to end of current BB. If there is no current BB, reject
2604 // this file.
2605 if (CurBB == 0) {
2606 delete I;
2607 return Error("Invalid instruction with no BB");
2608 }
2609 CurBB->getInstList().push_back(I);
2610
2611 // If this was a terminator instruction, move to the next block.
2612 if (isa<TerminatorInst>(I)) {
2613 ++CurBBNo;
2614 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2615 }
2616
2617 // Non-void values get registered in the value table for future use.
2618 if (I && !I->getType()->isVoidTy())
2619 ValueList.AssignValue(I, NextValueNo++);
2620 }
2621
2622 // Check the function list for unresolved values.
2623 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2624 if (A->getParent() == 0) {
2625 // We found at least one unresolved value. Nuke them all to avoid leaks.
2626 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2627 if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2628 A->replaceAllUsesWith(UndefValue::get(A->getType()));
2629 delete A;
2630 }
2631 }
2632 return Error("Never resolved value found in function!");
2633 }
2634 }
2635
2636 // FIXME: Check for unresolved forward-declared metadata references
2637 // and clean up leaks.
2638
2639 // See if anything took the address of blocks in this function. If so,
2640 // resolve them now.
2641 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2642 BlockAddrFwdRefs.find(F);
2643 if (BAFRI != BlockAddrFwdRefs.end()) {
2644 std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2645 for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2646 unsigned BlockIdx = RefList[i].first;
2647 if (BlockIdx >= FunctionBBs.size())
2648 return Error("Invalid blockaddress block #");
2649
2650 GlobalVariable *FwdRef = RefList[i].second;
2651 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2652 FwdRef->eraseFromParent();
2653 }
2654
2655 BlockAddrFwdRefs.erase(BAFRI);
2656 }
2657
2658 // Trim the value list down to the size it was before we parsed this function.
2659 ValueList.shrinkTo(ModuleValueListSize);
2660 MDValueList.shrinkTo(ModuleMDValueListSize);
2661 std::vector<BasicBlock*>().swap(FunctionBBs);
2662 return false;
2663 }
2664
2665 //===----------------------------------------------------------------------===//
2666 // GVMaterializer implementation
2667 //===----------------------------------------------------------------------===//
2668
2669
isMaterializable(const GlobalValue * GV) const2670 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2671 if (const Function *F = dyn_cast<Function>(GV)) {
2672 return F->isDeclaration() &&
2673 DeferredFunctionInfo.count(const_cast<Function*>(F));
2674 }
2675 return false;
2676 }
2677
Materialize(GlobalValue * GV,std::string * ErrInfo)2678 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2679 Function *F = dyn_cast<Function>(GV);
2680 // If it's not a function or is already material, ignore the request.
2681 if (!F || !F->isMaterializable()) return false;
2682
2683 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2684 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2685
2686 // Move the bit stream to the saved position of the deferred function body.
2687 Stream.JumpToBit(DFII->second);
2688
2689 if (ParseFunctionBody(F)) {
2690 if (ErrInfo) *ErrInfo = ErrorString;
2691 return true;
2692 }
2693
2694 // Upgrade any old intrinsic calls in the function.
2695 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2696 E = UpgradedIntrinsics.end(); I != E; ++I) {
2697 if (I->first != I->second) {
2698 for (Value::use_iterator UI = I->first->use_begin(),
2699 UE = I->first->use_end(); UI != UE; ) {
2700 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2701 UpgradeIntrinsicCall(CI, I->second);
2702 }
2703 }
2704 }
2705
2706 return false;
2707 }
2708
isDematerializable(const GlobalValue * GV) const2709 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2710 const Function *F = dyn_cast<Function>(GV);
2711 if (!F || F->isDeclaration())
2712 return false;
2713 return DeferredFunctionInfo.count(const_cast<Function*>(F));
2714 }
2715
Dematerialize(GlobalValue * GV)2716 void BitcodeReader::Dematerialize(GlobalValue *GV) {
2717 Function *F = dyn_cast<Function>(GV);
2718 // If this function isn't dematerializable, this is a noop.
2719 if (!F || !isDematerializable(F))
2720 return;
2721
2722 assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2723
2724 // Just forget the function body, we can remat it later.
2725 F->deleteBody();
2726 }
2727
2728
MaterializeModule(Module * M,std::string * ErrInfo)2729 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2730 assert(M == TheModule &&
2731 "Can only Materialize the Module this BitcodeReader is attached to.");
2732 // Iterate over the module, deserializing any functions that are still on
2733 // disk.
2734 for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2735 F != E; ++F)
2736 if (F->isMaterializable() &&
2737 Materialize(F, ErrInfo))
2738 return true;
2739
2740 // Upgrade any intrinsic calls that slipped through (should not happen!) and
2741 // delete the old functions to clean up. We can't do this unless the entire
2742 // module is materialized because there could always be another function body
2743 // with calls to the old function.
2744 for (std::vector<std::pair<Function*, Function*> >::iterator I =
2745 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2746 if (I->first != I->second) {
2747 for (Value::use_iterator UI = I->first->use_begin(),
2748 UE = I->first->use_end(); UI != UE; ) {
2749 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2750 UpgradeIntrinsicCall(CI, I->second);
2751 }
2752 if (!I->first->use_empty())
2753 I->first->replaceAllUsesWith(I->second);
2754 I->first->eraseFromParent();
2755 }
2756 }
2757 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2758
2759 // Check debug info intrinsics.
2760 CheckDebugInfoIntrinsics(TheModule);
2761
2762 return false;
2763 }
2764
2765
2766 //===----------------------------------------------------------------------===//
2767 // External interface
2768 //===----------------------------------------------------------------------===//
2769
2770 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2771 ///
getLazyBitcodeModule(MemoryBuffer * Buffer,LLVMContext & Context,std::string * ErrMsg)2772 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2773 LLVMContext& Context,
2774 std::string *ErrMsg) {
2775 Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2776 BitcodeReader *R = new BitcodeReader(Buffer, Context);
2777 M->setMaterializer(R);
2778 if (R->ParseBitcodeInto(M)) {
2779 if (ErrMsg)
2780 *ErrMsg = R->getErrorString();
2781
2782 delete M; // Also deletes R.
2783 return 0;
2784 }
2785 // Have the BitcodeReader dtor delete 'Buffer'.
2786 R->setBufferOwned(true);
2787 return M;
2788 }
2789
2790 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2791 /// If an error occurs, return null and fill in *ErrMsg if non-null.
ParseBitcodeFile(MemoryBuffer * Buffer,LLVMContext & Context,std::string * ErrMsg)2792 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2793 std::string *ErrMsg){
2794 Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2795 if (!M) return 0;
2796
2797 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2798 // there was an error.
2799 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2800
2801 // Read in the entire module, and destroy the BitcodeReader.
2802 if (M->MaterializeAllPermanently(ErrMsg)) {
2803 delete M;
2804 return 0;
2805 }
2806
2807 return M;
2808 }
2809
getBitcodeTargetTriple(MemoryBuffer * Buffer,LLVMContext & Context,std::string * ErrMsg)2810 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2811 LLVMContext& Context,
2812 std::string *ErrMsg) {
2813 BitcodeReader *R = new BitcodeReader(Buffer, Context);
2814 // Don't let the BitcodeReader dtor delete 'Buffer'.
2815 R->setBufferOwned(false);
2816
2817 std::string Triple("");
2818 if (R->ParseTriple(Triple))
2819 if (ErrMsg)
2820 *ErrMsg = R->getErrorString();
2821
2822 delete R;
2823 return Triple;
2824 }
2825