• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/AutoUpgrade.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/OperandTraits.h"
28 using namespace llvm;
29 
FreeState()30 void BitcodeReader::FreeState() {
31   if (BufferOwned)
32     delete Buffer;
33   Buffer = 0;
34   std::vector<Type*>().swap(TypeList);
35   ValueList.clear();
36   MDValueList.clear();
37 
38   std::vector<AttrListPtr>().swap(MAttributes);
39   std::vector<BasicBlock*>().swap(FunctionBBs);
40   std::vector<Function*>().swap(FunctionsWithBodies);
41   DeferredFunctionInfo.clear();
42   MDKindMap.clear();
43 }
44 
45 //===----------------------------------------------------------------------===//
46 //  Helper functions to implement forward reference resolution, etc.
47 //===----------------------------------------------------------------------===//
48 
49 /// ConvertToString - Convert a string from a record into an std::string, return
50 /// true on failure.
51 template<typename StrTy>
ConvertToString(SmallVector<uint64_t,64> & Record,unsigned Idx,StrTy & Result)52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                             StrTy &Result) {
54   if (Idx > Record.size())
55     return true;
56 
57   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58     Result += (char)Record[i];
59   return false;
60 }
61 
GetDecodedLinkage(unsigned Val)62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63   switch (Val) {
64   default: // Map unknown/new linkages to external
65   case 0:  return GlobalValue::ExternalLinkage;
66   case 1:  return GlobalValue::WeakAnyLinkage;
67   case 2:  return GlobalValue::AppendingLinkage;
68   case 3:  return GlobalValue::InternalLinkage;
69   case 4:  return GlobalValue::LinkOnceAnyLinkage;
70   case 5:  return GlobalValue::DLLImportLinkage;
71   case 6:  return GlobalValue::DLLExportLinkage;
72   case 7:  return GlobalValue::ExternalWeakLinkage;
73   case 8:  return GlobalValue::CommonLinkage;
74   case 9:  return GlobalValue::PrivateLinkage;
75   case 10: return GlobalValue::WeakODRLinkage;
76   case 11: return GlobalValue::LinkOnceODRLinkage;
77   case 12: return GlobalValue::AvailableExternallyLinkage;
78   case 13: return GlobalValue::LinkerPrivateLinkage;
79   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80   case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81   }
82 }
83 
GetDecodedVisibility(unsigned Val)84 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85   switch (Val) {
86   default: // Map unknown visibilities to default.
87   case 0: return GlobalValue::DefaultVisibility;
88   case 1: return GlobalValue::HiddenVisibility;
89   case 2: return GlobalValue::ProtectedVisibility;
90   }
91 }
92 
GetDecodedCastOpcode(unsigned Val)93 static int GetDecodedCastOpcode(unsigned Val) {
94   switch (Val) {
95   default: return -1;
96   case bitc::CAST_TRUNC   : return Instruction::Trunc;
97   case bitc::CAST_ZEXT    : return Instruction::ZExt;
98   case bitc::CAST_SEXT    : return Instruction::SExt;
99   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104   case bitc::CAST_FPEXT   : return Instruction::FPExt;
105   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107   case bitc::CAST_BITCAST : return Instruction::BitCast;
108   }
109 }
GetDecodedBinaryOpcode(unsigned Val,Type * Ty)110 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
111   switch (Val) {
112   default: return -1;
113   case bitc::BINOP_ADD:
114     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115   case bitc::BINOP_SUB:
116     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117   case bitc::BINOP_MUL:
118     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119   case bitc::BINOP_UDIV: return Instruction::UDiv;
120   case bitc::BINOP_SDIV:
121     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122   case bitc::BINOP_UREM: return Instruction::URem;
123   case bitc::BINOP_SREM:
124     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125   case bitc::BINOP_SHL:  return Instruction::Shl;
126   case bitc::BINOP_LSHR: return Instruction::LShr;
127   case bitc::BINOP_ASHR: return Instruction::AShr;
128   case bitc::BINOP_AND:  return Instruction::And;
129   case bitc::BINOP_OR:   return Instruction::Or;
130   case bitc::BINOP_XOR:  return Instruction::Xor;
131   }
132 }
133 
134 namespace llvm {
135 namespace {
136   /// @brief A class for maintaining the slot number definition
137   /// as a placeholder for the actual definition for forward constants defs.
138   class ConstantPlaceHolder : public ConstantExpr {
139     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
140   public:
141     // allocate space for exactly one operand
operator new(size_t s)142     void *operator new(size_t s) {
143       return User::operator new(s, 1);
144     }
ConstantPlaceHolder(Type * Ty,LLVMContext & Context)145     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
146       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
147       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
148     }
149 
150     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
151     //static inline bool classof(const ConstantPlaceHolder *) { return true; }
classof(const Value * V)152     static bool classof(const Value *V) {
153       return isa<ConstantExpr>(V) &&
154              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
155     }
156 
157 
158     /// Provide fast operand accessors
159     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
160   };
161 }
162 
163 // FIXME: can we inherit this from ConstantExpr?
164 template <>
165 struct OperandTraits<ConstantPlaceHolder> :
166   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
167 };
168 }
169 
170 
AssignValue(Value * V,unsigned Idx)171 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
172   if (Idx == size()) {
173     push_back(V);
174     return;
175   }
176 
177   if (Idx >= size())
178     resize(Idx+1);
179 
180   WeakVH &OldV = ValuePtrs[Idx];
181   if (OldV == 0) {
182     OldV = V;
183     return;
184   }
185 
186   // Handle constants and non-constants (e.g. instrs) differently for
187   // efficiency.
188   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
189     ResolveConstants.push_back(std::make_pair(PHC, Idx));
190     OldV = V;
191   } else {
192     // If there was a forward reference to this value, replace it.
193     Value *PrevVal = OldV;
194     OldV->replaceAllUsesWith(V);
195     delete PrevVal;
196   }
197 }
198 
199 
getConstantFwdRef(unsigned Idx,Type * Ty)200 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
201                                                     Type *Ty) {
202   if (Idx >= size())
203     resize(Idx + 1);
204 
205   if (Value *V = ValuePtrs[Idx]) {
206     assert(Ty == V->getType() && "Type mismatch in constant table!");
207     return cast<Constant>(V);
208   }
209 
210   // Create and return a placeholder, which will later be RAUW'd.
211   Constant *C = new ConstantPlaceHolder(Ty, Context);
212   ValuePtrs[Idx] = C;
213   return C;
214 }
215 
getValueFwdRef(unsigned Idx,Type * Ty)216 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
217   if (Idx >= size())
218     resize(Idx + 1);
219 
220   if (Value *V = ValuePtrs[Idx]) {
221     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
222     return V;
223   }
224 
225   // No type specified, must be invalid reference.
226   if (Ty == 0) return 0;
227 
228   // Create and return a placeholder, which will later be RAUW'd.
229   Value *V = new Argument(Ty);
230   ValuePtrs[Idx] = V;
231   return V;
232 }
233 
234 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
235 /// resolves any forward references.  The idea behind this is that we sometimes
236 /// get constants (such as large arrays) which reference *many* forward ref
237 /// constants.  Replacing each of these causes a lot of thrashing when
238 /// building/reuniquing the constant.  Instead of doing this, we look at all the
239 /// uses and rewrite all the place holders at once for any constant that uses
240 /// a placeholder.
ResolveConstantForwardRefs()241 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
242   // Sort the values by-pointer so that they are efficient to look up with a
243   // binary search.
244   std::sort(ResolveConstants.begin(), ResolveConstants.end());
245 
246   SmallVector<Constant*, 64> NewOps;
247 
248   while (!ResolveConstants.empty()) {
249     Value *RealVal = operator[](ResolveConstants.back().second);
250     Constant *Placeholder = ResolveConstants.back().first;
251     ResolveConstants.pop_back();
252 
253     // Loop over all users of the placeholder, updating them to reference the
254     // new value.  If they reference more than one placeholder, update them all
255     // at once.
256     while (!Placeholder->use_empty()) {
257       Value::use_iterator UI = Placeholder->use_begin();
258       User *U = *UI;
259 
260       // If the using object isn't uniqued, just update the operands.  This
261       // handles instructions and initializers for global variables.
262       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
263         UI.getUse().set(RealVal);
264         continue;
265       }
266 
267       // Otherwise, we have a constant that uses the placeholder.  Replace that
268       // constant with a new constant that has *all* placeholder uses updated.
269       Constant *UserC = cast<Constant>(U);
270       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
271            I != E; ++I) {
272         Value *NewOp;
273         if (!isa<ConstantPlaceHolder>(*I)) {
274           // Not a placeholder reference.
275           NewOp = *I;
276         } else if (*I == Placeholder) {
277           // Common case is that it just references this one placeholder.
278           NewOp = RealVal;
279         } else {
280           // Otherwise, look up the placeholder in ResolveConstants.
281           ResolveConstantsTy::iterator It =
282             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
283                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
284                                                             0));
285           assert(It != ResolveConstants.end() && It->first == *I);
286           NewOp = operator[](It->second);
287         }
288 
289         NewOps.push_back(cast<Constant>(NewOp));
290       }
291 
292       // Make the new constant.
293       Constant *NewC;
294       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
295         NewC = ConstantArray::get(UserCA->getType(), NewOps);
296       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
297         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
298       } else if (isa<ConstantVector>(UserC)) {
299         NewC = ConstantVector::get(NewOps);
300       } else {
301         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
302         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
303       }
304 
305       UserC->replaceAllUsesWith(NewC);
306       UserC->destroyConstant();
307       NewOps.clear();
308     }
309 
310     // Update all ValueHandles, they should be the only users at this point.
311     Placeholder->replaceAllUsesWith(RealVal);
312     delete Placeholder;
313   }
314 }
315 
AssignValue(Value * V,unsigned Idx)316 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
317   if (Idx == size()) {
318     push_back(V);
319     return;
320   }
321 
322   if (Idx >= size())
323     resize(Idx+1);
324 
325   WeakVH &OldV = MDValuePtrs[Idx];
326   if (OldV == 0) {
327     OldV = V;
328     return;
329   }
330 
331   // If there was a forward reference to this value, replace it.
332   MDNode *PrevVal = cast<MDNode>(OldV);
333   OldV->replaceAllUsesWith(V);
334   MDNode::deleteTemporary(PrevVal);
335   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
336   // value for Idx.
337   MDValuePtrs[Idx] = V;
338 }
339 
getValueFwdRef(unsigned Idx)340 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
341   if (Idx >= size())
342     resize(Idx + 1);
343 
344   if (Value *V = MDValuePtrs[Idx]) {
345     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
346     return V;
347   }
348 
349   // Create and return a placeholder, which will later be RAUW'd.
350   Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
351   MDValuePtrs[Idx] = V;
352   return V;
353 }
354 
getTypeByID(unsigned ID)355 Type *BitcodeReader::getTypeByID(unsigned ID) {
356   // The type table size is always specified correctly.
357   if (ID >= TypeList.size())
358     return 0;
359 
360   if (Type *Ty = TypeList[ID])
361     return Ty;
362 
363   // If we have a forward reference, the only possible case is when it is to a
364   // named struct.  Just create a placeholder for now.
365   return TypeList[ID] = StructType::createNamed(Context, "");
366 }
367 
368 /// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
getTypeByIDOrNull(unsigned ID)369 Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
370   if (ID >= TypeList.size())
371     TypeList.resize(ID+1);
372 
373   return TypeList[ID];
374 }
375 
376 
377 //===----------------------------------------------------------------------===//
378 //  Functions for parsing blocks from the bitcode file
379 //===----------------------------------------------------------------------===//
380 
ParseAttributeBlock()381 bool BitcodeReader::ParseAttributeBlock() {
382   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
383     return Error("Malformed block record");
384 
385   if (!MAttributes.empty())
386     return Error("Multiple PARAMATTR blocks found!");
387 
388   SmallVector<uint64_t, 64> Record;
389 
390   SmallVector<AttributeWithIndex, 8> Attrs;
391 
392   // Read all the records.
393   while (1) {
394     unsigned Code = Stream.ReadCode();
395     if (Code == bitc::END_BLOCK) {
396       if (Stream.ReadBlockEnd())
397         return Error("Error at end of PARAMATTR block");
398       return false;
399     }
400 
401     if (Code == bitc::ENTER_SUBBLOCK) {
402       // No known subblocks, always skip them.
403       Stream.ReadSubBlockID();
404       if (Stream.SkipBlock())
405         return Error("Malformed block record");
406       continue;
407     }
408 
409     if (Code == bitc::DEFINE_ABBREV) {
410       Stream.ReadAbbrevRecord();
411       continue;
412     }
413 
414     // Read a record.
415     Record.clear();
416     switch (Stream.ReadRecord(Code, Record)) {
417     default:  // Default behavior: ignore.
418       break;
419     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
420       if (Record.size() & 1)
421         return Error("Invalid ENTRY record");
422 
423       // FIXME : Remove this autoupgrade code in LLVM 3.0.
424       // If Function attributes are using index 0 then transfer them
425       // to index ~0. Index 0 is used for return value attributes but used to be
426       // used for function attributes.
427       Attributes RetAttribute = Attribute::None;
428       Attributes FnAttribute = Attribute::None;
429       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
430         // FIXME: remove in LLVM 3.0
431         // The alignment is stored as a 16-bit raw value from bits 31--16.
432         // We shift the bits above 31 down by 11 bits.
433 
434         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
435         if (Alignment && !isPowerOf2_32(Alignment))
436           return Error("Alignment is not a power of two.");
437 
438         Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
439         if (Alignment)
440           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
441         ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
442         Record[i+1] = ReconstitutedAttr;
443 
444         if (Record[i] == 0)
445           RetAttribute = Record[i+1];
446         else if (Record[i] == ~0U)
447           FnAttribute = Record[i+1];
448       }
449 
450       unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
451                               Attribute::ReadOnly|Attribute::ReadNone);
452 
453       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
454           (RetAttribute & OldRetAttrs) != 0) {
455         if (FnAttribute == Attribute::None) { // add a slot so they get added.
456           Record.push_back(~0U);
457           Record.push_back(0);
458         }
459 
460         FnAttribute  |= RetAttribute & OldRetAttrs;
461         RetAttribute &= ~OldRetAttrs;
462       }
463 
464       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
465         if (Record[i] == 0) {
466           if (RetAttribute != Attribute::None)
467             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
468         } else if (Record[i] == ~0U) {
469           if (FnAttribute != Attribute::None)
470             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
471         } else if (Record[i+1] != Attribute::None)
472           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
473       }
474 
475       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
476       Attrs.clear();
477       break;
478     }
479     }
480   }
481 }
482 
ParseTypeTable()483 bool BitcodeReader::ParseTypeTable() {
484   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
485     return Error("Malformed block record");
486 
487   return ParseTypeTableBody();
488 }
489 
ParseTypeTableBody()490 bool BitcodeReader::ParseTypeTableBody() {
491   if (!TypeList.empty())
492     return Error("Multiple TYPE_BLOCKs found!");
493 
494   SmallVector<uint64_t, 64> Record;
495   unsigned NumRecords = 0;
496 
497   SmallString<64> TypeName;
498 
499   // Read all the records for this type table.
500   while (1) {
501     unsigned Code = Stream.ReadCode();
502     if (Code == bitc::END_BLOCK) {
503       if (NumRecords != TypeList.size())
504         return Error("Invalid type forward reference in TYPE_BLOCK");
505       if (Stream.ReadBlockEnd())
506         return Error("Error at end of type table block");
507       return false;
508     }
509 
510     if (Code == bitc::ENTER_SUBBLOCK) {
511       // No known subblocks, always skip them.
512       Stream.ReadSubBlockID();
513       if (Stream.SkipBlock())
514         return Error("Malformed block record");
515       continue;
516     }
517 
518     if (Code == bitc::DEFINE_ABBREV) {
519       Stream.ReadAbbrevRecord();
520       continue;
521     }
522 
523     // Read a record.
524     Record.clear();
525     Type *ResultTy = 0;
526     switch (Stream.ReadRecord(Code, Record)) {
527     default: return Error("unknown type in type table");
528     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
529       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
530       // type list.  This allows us to reserve space.
531       if (Record.size() < 1)
532         return Error("Invalid TYPE_CODE_NUMENTRY record");
533       TypeList.resize(Record[0]);
534       continue;
535     case bitc::TYPE_CODE_VOID:      // VOID
536       ResultTy = Type::getVoidTy(Context);
537       break;
538     case bitc::TYPE_CODE_FLOAT:     // FLOAT
539       ResultTy = Type::getFloatTy(Context);
540       break;
541     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
542       ResultTy = Type::getDoubleTy(Context);
543       break;
544     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
545       ResultTy = Type::getX86_FP80Ty(Context);
546       break;
547     case bitc::TYPE_CODE_FP128:     // FP128
548       ResultTy = Type::getFP128Ty(Context);
549       break;
550     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
551       ResultTy = Type::getPPC_FP128Ty(Context);
552       break;
553     case bitc::TYPE_CODE_LABEL:     // LABEL
554       ResultTy = Type::getLabelTy(Context);
555       break;
556     case bitc::TYPE_CODE_METADATA:  // METADATA
557       ResultTy = Type::getMetadataTy(Context);
558       break;
559     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
560       ResultTy = Type::getX86_MMXTy(Context);
561       break;
562     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
563       if (Record.size() < 1)
564         return Error("Invalid Integer type record");
565 
566       ResultTy = IntegerType::get(Context, Record[0]);
567       break;
568     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
569                                     //          [pointee type, address space]
570       if (Record.size() < 1)
571         return Error("Invalid POINTER type record");
572       unsigned AddressSpace = 0;
573       if (Record.size() == 2)
574         AddressSpace = Record[1];
575       ResultTy = getTypeByID(Record[0]);
576       if (ResultTy == 0) return Error("invalid element type in pointer type");
577       ResultTy = PointerType::get(ResultTy, AddressSpace);
578       break;
579     }
580     case bitc::TYPE_CODE_FUNCTION: {
581       // FIXME: attrid is dead, remove it in LLVM 3.0
582       // FUNCTION: [vararg, attrid, retty, paramty x N]
583       if (Record.size() < 3)
584         return Error("Invalid FUNCTION type record");
585       std::vector<Type*> ArgTys;
586       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
587         if (Type *T = getTypeByID(Record[i]))
588           ArgTys.push_back(T);
589         else
590           break;
591       }
592 
593       ResultTy = getTypeByID(Record[2]);
594       if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
595         return Error("invalid type in function type");
596 
597       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
598       break;
599     }
600     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
601       if (Record.size() < 1)
602         return Error("Invalid STRUCT type record");
603       std::vector<Type*> EltTys;
604       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
605         if (Type *T = getTypeByID(Record[i]))
606           EltTys.push_back(T);
607         else
608           break;
609       }
610       if (EltTys.size() != Record.size()-1)
611         return Error("invalid type in struct type");
612       ResultTy = StructType::get(Context, EltTys, Record[0]);
613       break;
614     }
615     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
616       if (ConvertToString(Record, 0, TypeName))
617         return Error("Invalid STRUCT_NAME record");
618       continue;
619 
620     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
621       if (Record.size() < 1)
622         return Error("Invalid STRUCT type record");
623 
624       if (NumRecords >= TypeList.size())
625         return Error("invalid TYPE table");
626 
627       // Check to see if this was forward referenced, if so fill in the temp.
628       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
629       if (Res) {
630         Res->setName(TypeName);
631         TypeList[NumRecords] = 0;
632       } else  // Otherwise, create a new struct.
633         Res = StructType::createNamed(Context, TypeName);
634       TypeName.clear();
635 
636       SmallVector<Type*, 8> EltTys;
637       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
638         if (Type *T = getTypeByID(Record[i]))
639           EltTys.push_back(T);
640         else
641           break;
642       }
643       if (EltTys.size() != Record.size()-1)
644         return Error("invalid STRUCT type record");
645       Res->setBody(EltTys, Record[0]);
646       ResultTy = Res;
647       break;
648     }
649     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
650       if (Record.size() != 1)
651         return Error("Invalid OPAQUE type record");
652 
653       if (NumRecords >= TypeList.size())
654         return Error("invalid TYPE table");
655 
656       // Check to see if this was forward referenced, if so fill in the temp.
657       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
658       if (Res) {
659         Res->setName(TypeName);
660         TypeList[NumRecords] = 0;
661       } else  // Otherwise, create a new struct with no body.
662         Res = StructType::createNamed(Context, TypeName);
663       TypeName.clear();
664       ResultTy = Res;
665       break;
666     }
667     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
668       if (Record.size() < 2)
669         return Error("Invalid ARRAY type record");
670       if ((ResultTy = getTypeByID(Record[1])))
671         ResultTy = ArrayType::get(ResultTy, Record[0]);
672       else
673         return Error("Invalid ARRAY type element");
674       break;
675     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
676       if (Record.size() < 2)
677         return Error("Invalid VECTOR type record");
678       if ((ResultTy = getTypeByID(Record[1])))
679         ResultTy = VectorType::get(ResultTy, Record[0]);
680       else
681         return Error("Invalid ARRAY type element");
682       break;
683     }
684 
685     if (NumRecords >= TypeList.size())
686       return Error("invalid TYPE table");
687     assert(ResultTy && "Didn't read a type?");
688     assert(TypeList[NumRecords] == 0 && "Already read type?");
689     TypeList[NumRecords++] = ResultTy;
690   }
691 }
692 
693 // FIXME: Remove in LLVM 3.1
ParseOldTypeTable()694 bool BitcodeReader::ParseOldTypeTable() {
695   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_OLD))
696     return Error("Malformed block record");
697 
698   if (!TypeList.empty())
699     return Error("Multiple TYPE_BLOCKs found!");
700 
701 
702   // While horrible, we have no good ordering of types in the bc file.  Just
703   // iteratively parse types out of the bc file in multiple passes until we get
704   // them all.  Do this by saving a cursor for the start of the type block.
705   BitstreamCursor StartOfTypeBlockCursor(Stream);
706 
707   unsigned NumTypesRead = 0;
708 
709   SmallVector<uint64_t, 64> Record;
710 RestartScan:
711   unsigned NextTypeID = 0;
712   bool ReadAnyTypes = false;
713 
714   // Read all the records for this type table.
715   while (1) {
716     unsigned Code = Stream.ReadCode();
717     if (Code == bitc::END_BLOCK) {
718       if (NextTypeID != TypeList.size())
719         return Error("Invalid type forward reference in TYPE_BLOCK_ID_OLD");
720 
721       // If we haven't read all of the types yet, iterate again.
722       if (NumTypesRead != TypeList.size()) {
723         // If we didn't successfully read any types in this pass, then we must
724         // have an unhandled forward reference.
725         if (!ReadAnyTypes)
726           return Error("Obsolete bitcode contains unhandled recursive type");
727 
728         Stream = StartOfTypeBlockCursor;
729         goto RestartScan;
730       }
731 
732       if (Stream.ReadBlockEnd())
733         return Error("Error at end of type table block");
734       return false;
735     }
736 
737     if (Code == bitc::ENTER_SUBBLOCK) {
738       // No known subblocks, always skip them.
739       Stream.ReadSubBlockID();
740       if (Stream.SkipBlock())
741         return Error("Malformed block record");
742       continue;
743     }
744 
745     if (Code == bitc::DEFINE_ABBREV) {
746       Stream.ReadAbbrevRecord();
747       continue;
748     }
749 
750     // Read a record.
751     Record.clear();
752     Type *ResultTy = 0;
753     switch (Stream.ReadRecord(Code, Record)) {
754     default: return Error("unknown type in type table");
755     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
756       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
757       // type list.  This allows us to reserve space.
758       if (Record.size() < 1)
759         return Error("Invalid TYPE_CODE_NUMENTRY record");
760       TypeList.resize(Record[0]);
761       continue;
762     case bitc::TYPE_CODE_VOID:      // VOID
763       ResultTy = Type::getVoidTy(Context);
764       break;
765     case bitc::TYPE_CODE_FLOAT:     // FLOAT
766       ResultTy = Type::getFloatTy(Context);
767       break;
768     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
769       ResultTy = Type::getDoubleTy(Context);
770       break;
771     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
772       ResultTy = Type::getX86_FP80Ty(Context);
773       break;
774     case bitc::TYPE_CODE_FP128:     // FP128
775       ResultTy = Type::getFP128Ty(Context);
776       break;
777     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
778       ResultTy = Type::getPPC_FP128Ty(Context);
779       break;
780     case bitc::TYPE_CODE_LABEL:     // LABEL
781       ResultTy = Type::getLabelTy(Context);
782       break;
783     case bitc::TYPE_CODE_METADATA:  // METADATA
784       ResultTy = Type::getMetadataTy(Context);
785       break;
786     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
787       ResultTy = Type::getX86_MMXTy(Context);
788       break;
789     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
790       if (Record.size() < 1)
791         return Error("Invalid Integer type record");
792       ResultTy = IntegerType::get(Context, Record[0]);
793       break;
794     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
795       if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
796         ResultTy = StructType::createNamed(Context, "");
797       break;
798     case bitc::TYPE_CODE_STRUCT_OLD: {// STRUCT_OLD
799       if (NextTypeID >= TypeList.size()) break;
800       // If we already read it, don't reprocess.
801       if (TypeList[NextTypeID] &&
802           !cast<StructType>(TypeList[NextTypeID])->isOpaque())
803         break;
804 
805       // Set a type.
806       if (TypeList[NextTypeID] == 0)
807         TypeList[NextTypeID] = StructType::createNamed(Context, "");
808 
809       std::vector<Type*> EltTys;
810       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
811         if (Type *Elt = getTypeByIDOrNull(Record[i]))
812           EltTys.push_back(Elt);
813         else
814           break;
815       }
816 
817       if (EltTys.size() != Record.size()-1)
818         break;      // Not all elements are ready.
819 
820       cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
821       ResultTy = TypeList[NextTypeID];
822       TypeList[NextTypeID] = 0;
823       break;
824     }
825     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
826       //          [pointee type, address space]
827       if (Record.size() < 1)
828         return Error("Invalid POINTER type record");
829       unsigned AddressSpace = 0;
830       if (Record.size() == 2)
831         AddressSpace = Record[1];
832       if ((ResultTy = getTypeByIDOrNull(Record[0])))
833         ResultTy = PointerType::get(ResultTy, AddressSpace);
834       break;
835     }
836     case bitc::TYPE_CODE_FUNCTION: {
837       // FIXME: attrid is dead, remove it in LLVM 3.0
838       // FUNCTION: [vararg, attrid, retty, paramty x N]
839       if (Record.size() < 3)
840         return Error("Invalid FUNCTION type record");
841       std::vector<Type*> ArgTys;
842       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
843         if (Type *Elt = getTypeByIDOrNull(Record[i]))
844           ArgTys.push_back(Elt);
845         else
846           break;
847       }
848       if (ArgTys.size()+3 != Record.size())
849         break;  // Something was null.
850       if ((ResultTy = getTypeByIDOrNull(Record[2])))
851         ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
852       break;
853     }
854     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
855       if (Record.size() < 2)
856         return Error("Invalid ARRAY type record");
857       if ((ResultTy = getTypeByIDOrNull(Record[1])))
858         ResultTy = ArrayType::get(ResultTy, Record[0]);
859       break;
860     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
861       if (Record.size() < 2)
862         return Error("Invalid VECTOR type record");
863       if ((ResultTy = getTypeByIDOrNull(Record[1])))
864         ResultTy = VectorType::get(ResultTy, Record[0]);
865       break;
866     }
867 
868     if (NextTypeID >= TypeList.size())
869       return Error("invalid TYPE table");
870 
871     if (ResultTy && TypeList[NextTypeID] == 0) {
872       ++NumTypesRead;
873       ReadAnyTypes = true;
874 
875       TypeList[NextTypeID] = ResultTy;
876     }
877 
878     ++NextTypeID;
879   }
880 }
881 
882 
ParseOldTypeSymbolTable()883 bool BitcodeReader::ParseOldTypeSymbolTable() {
884   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID_OLD))
885     return Error("Malformed block record");
886 
887   SmallVector<uint64_t, 64> Record;
888 
889   // Read all the records for this type table.
890   std::string TypeName;
891   while (1) {
892     unsigned Code = Stream.ReadCode();
893     if (Code == bitc::END_BLOCK) {
894       if (Stream.ReadBlockEnd())
895         return Error("Error at end of type symbol table block");
896       return false;
897     }
898 
899     if (Code == bitc::ENTER_SUBBLOCK) {
900       // No known subblocks, always skip them.
901       Stream.ReadSubBlockID();
902       if (Stream.SkipBlock())
903         return Error("Malformed block record");
904       continue;
905     }
906 
907     if (Code == bitc::DEFINE_ABBREV) {
908       Stream.ReadAbbrevRecord();
909       continue;
910     }
911 
912     // Read a record.
913     Record.clear();
914     switch (Stream.ReadRecord(Code, Record)) {
915     default:  // Default behavior: unknown type.
916       break;
917     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
918       if (ConvertToString(Record, 1, TypeName))
919         return Error("Invalid TST_ENTRY record");
920       unsigned TypeID = Record[0];
921       if (TypeID >= TypeList.size())
922         return Error("Invalid Type ID in TST_ENTRY record");
923 
924       // Only apply the type name to a struct type with no name.
925       if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
926         if (!STy->isAnonymous() && !STy->hasName())
927           STy->setName(TypeName);
928       TypeName.clear();
929       break;
930     }
931   }
932 }
933 
ParseValueSymbolTable()934 bool BitcodeReader::ParseValueSymbolTable() {
935   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
936     return Error("Malformed block record");
937 
938   SmallVector<uint64_t, 64> Record;
939 
940   // Read all the records for this value table.
941   SmallString<128> ValueName;
942   while (1) {
943     unsigned Code = Stream.ReadCode();
944     if (Code == bitc::END_BLOCK) {
945       if (Stream.ReadBlockEnd())
946         return Error("Error at end of value symbol table block");
947       return false;
948     }
949     if (Code == bitc::ENTER_SUBBLOCK) {
950       // No known subblocks, always skip them.
951       Stream.ReadSubBlockID();
952       if (Stream.SkipBlock())
953         return Error("Malformed block record");
954       continue;
955     }
956 
957     if (Code == bitc::DEFINE_ABBREV) {
958       Stream.ReadAbbrevRecord();
959       continue;
960     }
961 
962     // Read a record.
963     Record.clear();
964     switch (Stream.ReadRecord(Code, Record)) {
965     default:  // Default behavior: unknown type.
966       break;
967     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
968       if (ConvertToString(Record, 1, ValueName))
969         return Error("Invalid VST_ENTRY record");
970       unsigned ValueID = Record[0];
971       if (ValueID >= ValueList.size())
972         return Error("Invalid Value ID in VST_ENTRY record");
973       Value *V = ValueList[ValueID];
974 
975       V->setName(StringRef(ValueName.data(), ValueName.size()));
976       ValueName.clear();
977       break;
978     }
979     case bitc::VST_CODE_BBENTRY: {
980       if (ConvertToString(Record, 1, ValueName))
981         return Error("Invalid VST_BBENTRY record");
982       BasicBlock *BB = getBasicBlock(Record[0]);
983       if (BB == 0)
984         return Error("Invalid BB ID in VST_BBENTRY record");
985 
986       BB->setName(StringRef(ValueName.data(), ValueName.size()));
987       ValueName.clear();
988       break;
989     }
990     }
991   }
992 }
993 
ParseMetadata()994 bool BitcodeReader::ParseMetadata() {
995   unsigned NextMDValueNo = MDValueList.size();
996 
997   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
998     return Error("Malformed block record");
999 
1000   SmallVector<uint64_t, 64> Record;
1001 
1002   // Read all the records.
1003   while (1) {
1004     unsigned Code = Stream.ReadCode();
1005     if (Code == bitc::END_BLOCK) {
1006       if (Stream.ReadBlockEnd())
1007         return Error("Error at end of PARAMATTR block");
1008       return false;
1009     }
1010 
1011     if (Code == bitc::ENTER_SUBBLOCK) {
1012       // No known subblocks, always skip them.
1013       Stream.ReadSubBlockID();
1014       if (Stream.SkipBlock())
1015         return Error("Malformed block record");
1016       continue;
1017     }
1018 
1019     if (Code == bitc::DEFINE_ABBREV) {
1020       Stream.ReadAbbrevRecord();
1021       continue;
1022     }
1023 
1024     bool IsFunctionLocal = false;
1025     // Read a record.
1026     Record.clear();
1027     Code = Stream.ReadRecord(Code, Record);
1028     switch (Code) {
1029     default:  // Default behavior: ignore.
1030       break;
1031     case bitc::METADATA_NAME: {
1032       // Read named of the named metadata.
1033       unsigned NameLength = Record.size();
1034       SmallString<8> Name;
1035       Name.resize(NameLength);
1036       for (unsigned i = 0; i != NameLength; ++i)
1037         Name[i] = Record[i];
1038       Record.clear();
1039       Code = Stream.ReadCode();
1040 
1041       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1042       unsigned NextBitCode = Stream.ReadRecord(Code, Record);
1043       assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1044 
1045       // Read named metadata elements.
1046       unsigned Size = Record.size();
1047       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1048       for (unsigned i = 0; i != Size; ++i) {
1049         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1050         if (MD == 0)
1051           return Error("Malformed metadata record");
1052         NMD->addOperand(MD);
1053       }
1054       break;
1055     }
1056     case bitc::METADATA_FN_NODE:
1057       IsFunctionLocal = true;
1058       // fall-through
1059     case bitc::METADATA_NODE: {
1060       if (Record.size() % 2 == 1)
1061         return Error("Invalid METADATA_NODE record");
1062 
1063       unsigned Size = Record.size();
1064       SmallVector<Value*, 8> Elts;
1065       for (unsigned i = 0; i != Size; i += 2) {
1066         Type *Ty = getTypeByID(Record[i]);
1067         if (!Ty) return Error("Invalid METADATA_NODE record");
1068         if (Ty->isMetadataTy())
1069           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1070         else if (!Ty->isVoidTy())
1071           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1072         else
1073           Elts.push_back(NULL);
1074       }
1075       Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1076       IsFunctionLocal = false;
1077       MDValueList.AssignValue(V, NextMDValueNo++);
1078       break;
1079     }
1080     case bitc::METADATA_STRING: {
1081       unsigned MDStringLength = Record.size();
1082       SmallString<8> String;
1083       String.resize(MDStringLength);
1084       for (unsigned i = 0; i != MDStringLength; ++i)
1085         String[i] = Record[i];
1086       Value *V = MDString::get(Context,
1087                                StringRef(String.data(), String.size()));
1088       MDValueList.AssignValue(V, NextMDValueNo++);
1089       break;
1090     }
1091     case bitc::METADATA_KIND: {
1092       unsigned RecordLength = Record.size();
1093       if (Record.empty() || RecordLength < 2)
1094         return Error("Invalid METADATA_KIND record");
1095       SmallString<8> Name;
1096       Name.resize(RecordLength-1);
1097       unsigned Kind = Record[0];
1098       for (unsigned i = 1; i != RecordLength; ++i)
1099         Name[i-1] = Record[i];
1100 
1101       unsigned NewKind = TheModule->getMDKindID(Name.str());
1102       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1103         return Error("Conflicting METADATA_KIND records");
1104       break;
1105     }
1106     }
1107   }
1108 }
1109 
1110 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
1111 /// the LSB for dense VBR encoding.
DecodeSignRotatedValue(uint64_t V)1112 static uint64_t DecodeSignRotatedValue(uint64_t V) {
1113   if ((V & 1) == 0)
1114     return V >> 1;
1115   if (V != 1)
1116     return -(V >> 1);
1117   // There is no such thing as -0 with integers.  "-0" really means MININT.
1118   return 1ULL << 63;
1119 }
1120 
1121 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1122 /// values and aliases that we can.
ResolveGlobalAndAliasInits()1123 bool BitcodeReader::ResolveGlobalAndAliasInits() {
1124   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1125   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1126 
1127   GlobalInitWorklist.swap(GlobalInits);
1128   AliasInitWorklist.swap(AliasInits);
1129 
1130   while (!GlobalInitWorklist.empty()) {
1131     unsigned ValID = GlobalInitWorklist.back().second;
1132     if (ValID >= ValueList.size()) {
1133       // Not ready to resolve this yet, it requires something later in the file.
1134       GlobalInits.push_back(GlobalInitWorklist.back());
1135     } else {
1136       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1137         GlobalInitWorklist.back().first->setInitializer(C);
1138       else
1139         return Error("Global variable initializer is not a constant!");
1140     }
1141     GlobalInitWorklist.pop_back();
1142   }
1143 
1144   while (!AliasInitWorklist.empty()) {
1145     unsigned ValID = AliasInitWorklist.back().second;
1146     if (ValID >= ValueList.size()) {
1147       AliasInits.push_back(AliasInitWorklist.back());
1148     } else {
1149       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1150         AliasInitWorklist.back().first->setAliasee(C);
1151       else
1152         return Error("Alias initializer is not a constant!");
1153     }
1154     AliasInitWorklist.pop_back();
1155   }
1156   return false;
1157 }
1158 
ParseConstants()1159 bool BitcodeReader::ParseConstants() {
1160   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1161     return Error("Malformed block record");
1162 
1163   SmallVector<uint64_t, 64> Record;
1164 
1165   // Read all the records for this value table.
1166   Type *CurTy = Type::getInt32Ty(Context);
1167   unsigned NextCstNo = ValueList.size();
1168   while (1) {
1169     unsigned Code = Stream.ReadCode();
1170     if (Code == bitc::END_BLOCK)
1171       break;
1172 
1173     if (Code == bitc::ENTER_SUBBLOCK) {
1174       // No known subblocks, always skip them.
1175       Stream.ReadSubBlockID();
1176       if (Stream.SkipBlock())
1177         return Error("Malformed block record");
1178       continue;
1179     }
1180 
1181     if (Code == bitc::DEFINE_ABBREV) {
1182       Stream.ReadAbbrevRecord();
1183       continue;
1184     }
1185 
1186     // Read a record.
1187     Record.clear();
1188     Value *V = 0;
1189     unsigned BitCode = Stream.ReadRecord(Code, Record);
1190     switch (BitCode) {
1191     default:  // Default behavior: unknown constant
1192     case bitc::CST_CODE_UNDEF:     // UNDEF
1193       V = UndefValue::get(CurTy);
1194       break;
1195     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1196       if (Record.empty())
1197         return Error("Malformed CST_SETTYPE record");
1198       if (Record[0] >= TypeList.size())
1199         return Error("Invalid Type ID in CST_SETTYPE record");
1200       CurTy = TypeList[Record[0]];
1201       continue;  // Skip the ValueList manipulation.
1202     case bitc::CST_CODE_NULL:      // NULL
1203       V = Constant::getNullValue(CurTy);
1204       break;
1205     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1206       if (!CurTy->isIntegerTy() || Record.empty())
1207         return Error("Invalid CST_INTEGER record");
1208       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
1209       break;
1210     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1211       if (!CurTy->isIntegerTy() || Record.empty())
1212         return Error("Invalid WIDE_INTEGER record");
1213 
1214       unsigned NumWords = Record.size();
1215       SmallVector<uint64_t, 8> Words;
1216       Words.resize(NumWords);
1217       for (unsigned i = 0; i != NumWords; ++i)
1218         Words[i] = DecodeSignRotatedValue(Record[i]);
1219       V = ConstantInt::get(Context,
1220                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
1221                                  Words));
1222       break;
1223     }
1224     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1225       if (Record.empty())
1226         return Error("Invalid FLOAT record");
1227       if (CurTy->isFloatTy())
1228         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1229       else if (CurTy->isDoubleTy())
1230         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1231       else if (CurTy->isX86_FP80Ty()) {
1232         // Bits are not stored the same way as a normal i80 APInt, compensate.
1233         uint64_t Rearrange[2];
1234         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1235         Rearrange[1] = Record[0] >> 48;
1236         V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
1237       } else if (CurTy->isFP128Ty())
1238         V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
1239       else if (CurTy->isPPC_FP128Ty())
1240         V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
1241       else
1242         V = UndefValue::get(CurTy);
1243       break;
1244     }
1245 
1246     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1247       if (Record.empty())
1248         return Error("Invalid CST_AGGREGATE record");
1249 
1250       unsigned Size = Record.size();
1251       std::vector<Constant*> Elts;
1252 
1253       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1254         for (unsigned i = 0; i != Size; ++i)
1255           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1256                                                      STy->getElementType(i)));
1257         V = ConstantStruct::get(STy, Elts);
1258       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1259         Type *EltTy = ATy->getElementType();
1260         for (unsigned i = 0; i != Size; ++i)
1261           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1262         V = ConstantArray::get(ATy, Elts);
1263       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1264         Type *EltTy = VTy->getElementType();
1265         for (unsigned i = 0; i != Size; ++i)
1266           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1267         V = ConstantVector::get(Elts);
1268       } else {
1269         V = UndefValue::get(CurTy);
1270       }
1271       break;
1272     }
1273     case bitc::CST_CODE_STRING: { // STRING: [values]
1274       if (Record.empty())
1275         return Error("Invalid CST_AGGREGATE record");
1276 
1277       ArrayType *ATy = cast<ArrayType>(CurTy);
1278       Type *EltTy = ATy->getElementType();
1279 
1280       unsigned Size = Record.size();
1281       std::vector<Constant*> Elts;
1282       for (unsigned i = 0; i != Size; ++i)
1283         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1284       V = ConstantArray::get(ATy, Elts);
1285       break;
1286     }
1287     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1288       if (Record.empty())
1289         return Error("Invalid CST_AGGREGATE record");
1290 
1291       ArrayType *ATy = cast<ArrayType>(CurTy);
1292       Type *EltTy = ATy->getElementType();
1293 
1294       unsigned Size = Record.size();
1295       std::vector<Constant*> Elts;
1296       for (unsigned i = 0; i != Size; ++i)
1297         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1298       Elts.push_back(Constant::getNullValue(EltTy));
1299       V = ConstantArray::get(ATy, Elts);
1300       break;
1301     }
1302     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1303       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1304       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1305       if (Opc < 0) {
1306         V = UndefValue::get(CurTy);  // Unknown binop.
1307       } else {
1308         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1309         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1310         unsigned Flags = 0;
1311         if (Record.size() >= 4) {
1312           if (Opc == Instruction::Add ||
1313               Opc == Instruction::Sub ||
1314               Opc == Instruction::Mul ||
1315               Opc == Instruction::Shl) {
1316             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1317               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1318             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1319               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1320           } else if (Opc == Instruction::SDiv ||
1321                      Opc == Instruction::UDiv ||
1322                      Opc == Instruction::LShr ||
1323                      Opc == Instruction::AShr) {
1324             if (Record[3] & (1 << bitc::PEO_EXACT))
1325               Flags |= SDivOperator::IsExact;
1326           }
1327         }
1328         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1329       }
1330       break;
1331     }
1332     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1333       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1334       int Opc = GetDecodedCastOpcode(Record[0]);
1335       if (Opc < 0) {
1336         V = UndefValue::get(CurTy);  // Unknown cast.
1337       } else {
1338         Type *OpTy = getTypeByID(Record[1]);
1339         if (!OpTy) return Error("Invalid CE_CAST record");
1340         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1341         V = ConstantExpr::getCast(Opc, Op, CurTy);
1342       }
1343       break;
1344     }
1345     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1346     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1347       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1348       SmallVector<Constant*, 16> Elts;
1349       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1350         Type *ElTy = getTypeByID(Record[i]);
1351         if (!ElTy) return Error("Invalid CE_GEP record");
1352         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1353       }
1354       if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1355         V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1356                                                    Elts.size()-1);
1357       else
1358         V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1359                                            Elts.size()-1);
1360       break;
1361     }
1362     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1363       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1364       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1365                                                               Type::getInt1Ty(Context)),
1366                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1367                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1368       break;
1369     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1370       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1371       VectorType *OpTy =
1372         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1373       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1374       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1375       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1376       V = ConstantExpr::getExtractElement(Op0, Op1);
1377       break;
1378     }
1379     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1380       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1381       if (Record.size() < 3 || OpTy == 0)
1382         return Error("Invalid CE_INSERTELT record");
1383       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1384       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1385                                                   OpTy->getElementType());
1386       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1387       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1388       break;
1389     }
1390     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1391       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1392       if (Record.size() < 3 || OpTy == 0)
1393         return Error("Invalid CE_SHUFFLEVEC record");
1394       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1395       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1396       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1397                                                  OpTy->getNumElements());
1398       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1399       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1400       break;
1401     }
1402     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1403       VectorType *RTy = dyn_cast<VectorType>(CurTy);
1404       VectorType *OpTy =
1405         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1406       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1407         return Error("Invalid CE_SHUFVEC_EX record");
1408       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1409       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1410       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1411                                                  RTy->getNumElements());
1412       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1413       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1414       break;
1415     }
1416     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1417       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1418       Type *OpTy = getTypeByID(Record[0]);
1419       if (OpTy == 0) return Error("Invalid CE_CMP record");
1420       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1421       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1422 
1423       if (OpTy->isFPOrFPVectorTy())
1424         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1425       else
1426         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1427       break;
1428     }
1429     case bitc::CST_CODE_INLINEASM: {
1430       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1431       std::string AsmStr, ConstrStr;
1432       bool HasSideEffects = Record[0] & 1;
1433       bool IsAlignStack = Record[0] >> 1;
1434       unsigned AsmStrSize = Record[1];
1435       if (2+AsmStrSize >= Record.size())
1436         return Error("Invalid INLINEASM record");
1437       unsigned ConstStrSize = Record[2+AsmStrSize];
1438       if (3+AsmStrSize+ConstStrSize > Record.size())
1439         return Error("Invalid INLINEASM record");
1440 
1441       for (unsigned i = 0; i != AsmStrSize; ++i)
1442         AsmStr += (char)Record[2+i];
1443       for (unsigned i = 0; i != ConstStrSize; ++i)
1444         ConstrStr += (char)Record[3+AsmStrSize+i];
1445       PointerType *PTy = cast<PointerType>(CurTy);
1446       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1447                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1448       break;
1449     }
1450     case bitc::CST_CODE_BLOCKADDRESS:{
1451       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1452       Type *FnTy = getTypeByID(Record[0]);
1453       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1454       Function *Fn =
1455         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1456       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1457 
1458       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1459                                                   Type::getInt8Ty(Context),
1460                                             false, GlobalValue::InternalLinkage,
1461                                                   0, "");
1462       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1463       V = FwdRef;
1464       break;
1465     }
1466     }
1467 
1468     ValueList.AssignValue(V, NextCstNo);
1469     ++NextCstNo;
1470   }
1471 
1472   if (NextCstNo != ValueList.size())
1473     return Error("Invalid constant reference!");
1474 
1475   if (Stream.ReadBlockEnd())
1476     return Error("Error at end of constants block");
1477 
1478   // Once all the constants have been read, go through and resolve forward
1479   // references.
1480   ValueList.ResolveConstantForwardRefs();
1481   return false;
1482 }
1483 
1484 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1485 /// remember where it is and then skip it.  This lets us lazily deserialize the
1486 /// functions.
RememberAndSkipFunctionBody()1487 bool BitcodeReader::RememberAndSkipFunctionBody() {
1488   // Get the function we are talking about.
1489   if (FunctionsWithBodies.empty())
1490     return Error("Insufficient function protos");
1491 
1492   Function *Fn = FunctionsWithBodies.back();
1493   FunctionsWithBodies.pop_back();
1494 
1495   // Save the current stream state.
1496   uint64_t CurBit = Stream.GetCurrentBitNo();
1497   DeferredFunctionInfo[Fn] = CurBit;
1498 
1499   // Skip over the function block for now.
1500   if (Stream.SkipBlock())
1501     return Error("Malformed block record");
1502   return false;
1503 }
1504 
ParseModule()1505 bool BitcodeReader::ParseModule() {
1506   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1507     return Error("Malformed block record");
1508 
1509   SmallVector<uint64_t, 64> Record;
1510   std::vector<std::string> SectionTable;
1511   std::vector<std::string> GCTable;
1512 
1513   // Read all the records for this module.
1514   while (!Stream.AtEndOfStream()) {
1515     unsigned Code = Stream.ReadCode();
1516     if (Code == bitc::END_BLOCK) {
1517       if (Stream.ReadBlockEnd())
1518         return Error("Error at end of module block");
1519 
1520       // Patch the initializers for globals and aliases up.
1521       ResolveGlobalAndAliasInits();
1522       if (!GlobalInits.empty() || !AliasInits.empty())
1523         return Error("Malformed global initializer set");
1524       if (!FunctionsWithBodies.empty())
1525         return Error("Too few function bodies found");
1526 
1527       // Look for intrinsic functions which need to be upgraded at some point
1528       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1529            FI != FE; ++FI) {
1530         Function* NewFn;
1531         if (UpgradeIntrinsicFunction(FI, NewFn))
1532           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1533       }
1534 
1535       // Look for global variables which need to be renamed.
1536       for (Module::global_iterator
1537              GI = TheModule->global_begin(), GE = TheModule->global_end();
1538            GI != GE; ++GI)
1539         UpgradeGlobalVariable(GI);
1540 
1541       // Force deallocation of memory for these vectors to favor the client that
1542       // want lazy deserialization.
1543       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1544       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1545       std::vector<Function*>().swap(FunctionsWithBodies);
1546       return false;
1547     }
1548 
1549     if (Code == bitc::ENTER_SUBBLOCK) {
1550       switch (Stream.ReadSubBlockID()) {
1551       default:  // Skip unknown content.
1552         if (Stream.SkipBlock())
1553           return Error("Malformed block record");
1554         break;
1555       case bitc::BLOCKINFO_BLOCK_ID:
1556         if (Stream.ReadBlockInfoBlock())
1557           return Error("Malformed BlockInfoBlock");
1558         break;
1559       case bitc::PARAMATTR_BLOCK_ID:
1560         if (ParseAttributeBlock())
1561           return true;
1562         break;
1563       case bitc::TYPE_BLOCK_ID_NEW:
1564         if (ParseTypeTable())
1565           return true;
1566         break;
1567       case bitc::TYPE_BLOCK_ID_OLD:
1568         if (ParseOldTypeTable())
1569           return true;
1570         break;
1571       case bitc::TYPE_SYMTAB_BLOCK_ID_OLD:
1572         if (ParseOldTypeSymbolTable())
1573           return true;
1574         break;
1575       case bitc::VALUE_SYMTAB_BLOCK_ID:
1576         if (ParseValueSymbolTable())
1577           return true;
1578         break;
1579       case bitc::CONSTANTS_BLOCK_ID:
1580         if (ParseConstants() || ResolveGlobalAndAliasInits())
1581           return true;
1582         break;
1583       case bitc::METADATA_BLOCK_ID:
1584         if (ParseMetadata())
1585           return true;
1586         break;
1587       case bitc::FUNCTION_BLOCK_ID:
1588         // If this is the first function body we've seen, reverse the
1589         // FunctionsWithBodies list.
1590         if (!HasReversedFunctionsWithBodies) {
1591           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1592           HasReversedFunctionsWithBodies = true;
1593         }
1594 
1595         if (RememberAndSkipFunctionBody())
1596           return true;
1597         break;
1598       }
1599       continue;
1600     }
1601 
1602     if (Code == bitc::DEFINE_ABBREV) {
1603       Stream.ReadAbbrevRecord();
1604       continue;
1605     }
1606 
1607     // Read a record.
1608     switch (Stream.ReadRecord(Code, Record)) {
1609     default: break;  // Default behavior, ignore unknown content.
1610     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1611       if (Record.size() < 1)
1612         return Error("Malformed MODULE_CODE_VERSION");
1613       // Only version #0 is supported so far.
1614       if (Record[0] != 0)
1615         return Error("Unknown bitstream version!");
1616       break;
1617     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1618       std::string S;
1619       if (ConvertToString(Record, 0, S))
1620         return Error("Invalid MODULE_CODE_TRIPLE record");
1621       TheModule->setTargetTriple(S);
1622       break;
1623     }
1624     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1625       std::string S;
1626       if (ConvertToString(Record, 0, S))
1627         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1628       TheModule->setDataLayout(S);
1629       break;
1630     }
1631     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1632       std::string S;
1633       if (ConvertToString(Record, 0, S))
1634         return Error("Invalid MODULE_CODE_ASM record");
1635       TheModule->setModuleInlineAsm(S);
1636       break;
1637     }
1638     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1639       std::string S;
1640       if (ConvertToString(Record, 0, S))
1641         return Error("Invalid MODULE_CODE_DEPLIB record");
1642       TheModule->addLibrary(S);
1643       break;
1644     }
1645     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1646       std::string S;
1647       if (ConvertToString(Record, 0, S))
1648         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1649       SectionTable.push_back(S);
1650       break;
1651     }
1652     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1653       std::string S;
1654       if (ConvertToString(Record, 0, S))
1655         return Error("Invalid MODULE_CODE_GCNAME record");
1656       GCTable.push_back(S);
1657       break;
1658     }
1659     // GLOBALVAR: [pointer type, isconst, initid,
1660     //             linkage, alignment, section, visibility, threadlocal,
1661     //             unnamed_addr]
1662     case bitc::MODULE_CODE_GLOBALVAR: {
1663       if (Record.size() < 6)
1664         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1665       Type *Ty = getTypeByID(Record[0]);
1666       if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1667       if (!Ty->isPointerTy())
1668         return Error("Global not a pointer type!");
1669       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1670       Ty = cast<PointerType>(Ty)->getElementType();
1671 
1672       bool isConstant = Record[1];
1673       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1674       unsigned Alignment = (1 << Record[4]) >> 1;
1675       std::string Section;
1676       if (Record[5]) {
1677         if (Record[5]-1 >= SectionTable.size())
1678           return Error("Invalid section ID");
1679         Section = SectionTable[Record[5]-1];
1680       }
1681       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1682       if (Record.size() > 6)
1683         Visibility = GetDecodedVisibility(Record[6]);
1684       bool isThreadLocal = false;
1685       if (Record.size() > 7)
1686         isThreadLocal = Record[7];
1687 
1688       bool UnnamedAddr = false;
1689       if (Record.size() > 8)
1690         UnnamedAddr = Record[8];
1691 
1692       GlobalVariable *NewGV =
1693         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1694                            isThreadLocal, AddressSpace);
1695       NewGV->setAlignment(Alignment);
1696       if (!Section.empty())
1697         NewGV->setSection(Section);
1698       NewGV->setVisibility(Visibility);
1699       NewGV->setThreadLocal(isThreadLocal);
1700       NewGV->setUnnamedAddr(UnnamedAddr);
1701 
1702       ValueList.push_back(NewGV);
1703 
1704       // Remember which value to use for the global initializer.
1705       if (unsigned InitID = Record[2])
1706         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1707       break;
1708     }
1709     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1710     //             alignment, section, visibility, gc, unnamed_addr]
1711     case bitc::MODULE_CODE_FUNCTION: {
1712       if (Record.size() < 8)
1713         return Error("Invalid MODULE_CODE_FUNCTION record");
1714       Type *Ty = getTypeByID(Record[0]);
1715       if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1716       if (!Ty->isPointerTy())
1717         return Error("Function not a pointer type!");
1718       FunctionType *FTy =
1719         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1720       if (!FTy)
1721         return Error("Function not a pointer to function type!");
1722 
1723       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1724                                         "", TheModule);
1725 
1726       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1727       bool isProto = Record[2];
1728       Func->setLinkage(GetDecodedLinkage(Record[3]));
1729       Func->setAttributes(getAttributes(Record[4]));
1730 
1731       Func->setAlignment((1 << Record[5]) >> 1);
1732       if (Record[6]) {
1733         if (Record[6]-1 >= SectionTable.size())
1734           return Error("Invalid section ID");
1735         Func->setSection(SectionTable[Record[6]-1]);
1736       }
1737       Func->setVisibility(GetDecodedVisibility(Record[7]));
1738       if (Record.size() > 8 && Record[8]) {
1739         if (Record[8]-1 > GCTable.size())
1740           return Error("Invalid GC ID");
1741         Func->setGC(GCTable[Record[8]-1].c_str());
1742       }
1743       bool UnnamedAddr = false;
1744       if (Record.size() > 9)
1745         UnnamedAddr = Record[9];
1746       Func->setUnnamedAddr(UnnamedAddr);
1747       ValueList.push_back(Func);
1748 
1749       // If this is a function with a body, remember the prototype we are
1750       // creating now, so that we can match up the body with them later.
1751       if (!isProto)
1752         FunctionsWithBodies.push_back(Func);
1753       break;
1754     }
1755     // ALIAS: [alias type, aliasee val#, linkage]
1756     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1757     case bitc::MODULE_CODE_ALIAS: {
1758       if (Record.size() < 3)
1759         return Error("Invalid MODULE_ALIAS record");
1760       Type *Ty = getTypeByID(Record[0]);
1761       if (!Ty) return Error("Invalid MODULE_ALIAS record");
1762       if (!Ty->isPointerTy())
1763         return Error("Function not a pointer type!");
1764 
1765       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1766                                            "", 0, TheModule);
1767       // Old bitcode files didn't have visibility field.
1768       if (Record.size() > 3)
1769         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1770       ValueList.push_back(NewGA);
1771       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1772       break;
1773     }
1774     /// MODULE_CODE_PURGEVALS: [numvals]
1775     case bitc::MODULE_CODE_PURGEVALS:
1776       // Trim down the value list to the specified size.
1777       if (Record.size() < 1 || Record[0] > ValueList.size())
1778         return Error("Invalid MODULE_PURGEVALS record");
1779       ValueList.shrinkTo(Record[0]);
1780       break;
1781     }
1782     Record.clear();
1783   }
1784 
1785   return Error("Premature end of bitstream");
1786 }
1787 
ParseBitcodeInto(Module * M)1788 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1789   TheModule = 0;
1790 
1791   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1792   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1793 
1794   if (Buffer->getBufferSize() & 3) {
1795     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1796       return Error("Invalid bitcode signature");
1797     else
1798       return Error("Bitcode stream should be a multiple of 4 bytes in length");
1799   }
1800 
1801   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1802   // The magic number is 0x0B17C0DE stored in little endian.
1803   if (isBitcodeWrapper(BufPtr, BufEnd))
1804     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1805       return Error("Invalid bitcode wrapper header");
1806 
1807   StreamFile.init(BufPtr, BufEnd);
1808   Stream.init(StreamFile);
1809 
1810   // Sniff for the signature.
1811   if (Stream.Read(8) != 'B' ||
1812       Stream.Read(8) != 'C' ||
1813       Stream.Read(4) != 0x0 ||
1814       Stream.Read(4) != 0xC ||
1815       Stream.Read(4) != 0xE ||
1816       Stream.Read(4) != 0xD)
1817     return Error("Invalid bitcode signature");
1818 
1819   // We expect a number of well-defined blocks, though we don't necessarily
1820   // need to understand them all.
1821   while (!Stream.AtEndOfStream()) {
1822     unsigned Code = Stream.ReadCode();
1823 
1824     if (Code != bitc::ENTER_SUBBLOCK) {
1825 
1826       // The ranlib in xcode 4 will align archive members by appending newlines to the
1827       // end of them. If this file size is a multiple of 4 but not 8, we have to read and
1828       // ignore these final 4 bytes :-(
1829       if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1830           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1831 	  Stream.AtEndOfStream())
1832         return false;
1833 
1834       return Error("Invalid record at top-level");
1835     }
1836 
1837     unsigned BlockID = Stream.ReadSubBlockID();
1838 
1839     // We only know the MODULE subblock ID.
1840     switch (BlockID) {
1841     case bitc::BLOCKINFO_BLOCK_ID:
1842       if (Stream.ReadBlockInfoBlock())
1843         return Error("Malformed BlockInfoBlock");
1844       break;
1845     case bitc::MODULE_BLOCK_ID:
1846       // Reject multiple MODULE_BLOCK's in a single bitstream.
1847       if (TheModule)
1848         return Error("Multiple MODULE_BLOCKs in same stream");
1849       TheModule = M;
1850       if (ParseModule())
1851         return true;
1852       break;
1853     default:
1854       if (Stream.SkipBlock())
1855         return Error("Malformed block record");
1856       break;
1857     }
1858   }
1859 
1860   return false;
1861 }
1862 
ParseModuleTriple(std::string & Triple)1863 bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1864   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1865     return Error("Malformed block record");
1866 
1867   SmallVector<uint64_t, 64> Record;
1868 
1869   // Read all the records for this module.
1870   while (!Stream.AtEndOfStream()) {
1871     unsigned Code = Stream.ReadCode();
1872     if (Code == bitc::END_BLOCK) {
1873       if (Stream.ReadBlockEnd())
1874         return Error("Error at end of module block");
1875 
1876       return false;
1877     }
1878 
1879     if (Code == bitc::ENTER_SUBBLOCK) {
1880       switch (Stream.ReadSubBlockID()) {
1881       default:  // Skip unknown content.
1882         if (Stream.SkipBlock())
1883           return Error("Malformed block record");
1884         break;
1885       }
1886       continue;
1887     }
1888 
1889     if (Code == bitc::DEFINE_ABBREV) {
1890       Stream.ReadAbbrevRecord();
1891       continue;
1892     }
1893 
1894     // Read a record.
1895     switch (Stream.ReadRecord(Code, Record)) {
1896     default: break;  // Default behavior, ignore unknown content.
1897     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1898       if (Record.size() < 1)
1899         return Error("Malformed MODULE_CODE_VERSION");
1900       // Only version #0 is supported so far.
1901       if (Record[0] != 0)
1902         return Error("Unknown bitstream version!");
1903       break;
1904     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1905       std::string S;
1906       if (ConvertToString(Record, 0, S))
1907         return Error("Invalid MODULE_CODE_TRIPLE record");
1908       Triple = S;
1909       break;
1910     }
1911     }
1912     Record.clear();
1913   }
1914 
1915   return Error("Premature end of bitstream");
1916 }
1917 
ParseTriple(std::string & Triple)1918 bool BitcodeReader::ParseTriple(std::string &Triple) {
1919   if (Buffer->getBufferSize() & 3)
1920     return Error("Bitcode stream should be a multiple of 4 bytes in length");
1921 
1922   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1923   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1924 
1925   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1926   // The magic number is 0x0B17C0DE stored in little endian.
1927   if (isBitcodeWrapper(BufPtr, BufEnd))
1928     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1929       return Error("Invalid bitcode wrapper header");
1930 
1931   StreamFile.init(BufPtr, BufEnd);
1932   Stream.init(StreamFile);
1933 
1934   // Sniff for the signature.
1935   if (Stream.Read(8) != 'B' ||
1936       Stream.Read(8) != 'C' ||
1937       Stream.Read(4) != 0x0 ||
1938       Stream.Read(4) != 0xC ||
1939       Stream.Read(4) != 0xE ||
1940       Stream.Read(4) != 0xD)
1941     return Error("Invalid bitcode signature");
1942 
1943   // We expect a number of well-defined blocks, though we don't necessarily
1944   // need to understand them all.
1945   while (!Stream.AtEndOfStream()) {
1946     unsigned Code = Stream.ReadCode();
1947 
1948     if (Code != bitc::ENTER_SUBBLOCK)
1949       return Error("Invalid record at top-level");
1950 
1951     unsigned BlockID = Stream.ReadSubBlockID();
1952 
1953     // We only know the MODULE subblock ID.
1954     switch (BlockID) {
1955     case bitc::MODULE_BLOCK_ID:
1956       if (ParseModuleTriple(Triple))
1957         return true;
1958       break;
1959     default:
1960       if (Stream.SkipBlock())
1961         return Error("Malformed block record");
1962       break;
1963     }
1964   }
1965 
1966   return false;
1967 }
1968 
1969 /// ParseMetadataAttachment - Parse metadata attachments.
ParseMetadataAttachment()1970 bool BitcodeReader::ParseMetadataAttachment() {
1971   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1972     return Error("Malformed block record");
1973 
1974   SmallVector<uint64_t, 64> Record;
1975   while(1) {
1976     unsigned Code = Stream.ReadCode();
1977     if (Code == bitc::END_BLOCK) {
1978       if (Stream.ReadBlockEnd())
1979         return Error("Error at end of PARAMATTR block");
1980       break;
1981     }
1982     if (Code == bitc::DEFINE_ABBREV) {
1983       Stream.ReadAbbrevRecord();
1984       continue;
1985     }
1986     // Read a metadata attachment record.
1987     Record.clear();
1988     switch (Stream.ReadRecord(Code, Record)) {
1989     default:  // Default behavior: ignore.
1990       break;
1991     case bitc::METADATA_ATTACHMENT: {
1992       unsigned RecordLength = Record.size();
1993       if (Record.empty() || (RecordLength - 1) % 2 == 1)
1994         return Error ("Invalid METADATA_ATTACHMENT reader!");
1995       Instruction *Inst = InstructionList[Record[0]];
1996       for (unsigned i = 1; i != RecordLength; i = i+2) {
1997         unsigned Kind = Record[i];
1998         DenseMap<unsigned, unsigned>::iterator I =
1999           MDKindMap.find(Kind);
2000         if (I == MDKindMap.end())
2001           return Error("Invalid metadata kind ID");
2002         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2003         Inst->setMetadata(I->second, cast<MDNode>(Node));
2004       }
2005       break;
2006     }
2007     }
2008   }
2009   return false;
2010 }
2011 
2012 /// ParseFunctionBody - Lazily parse the specified function body block.
ParseFunctionBody(Function * F)2013 bool BitcodeReader::ParseFunctionBody(Function *F) {
2014   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2015     return Error("Malformed block record");
2016 
2017   InstructionList.clear();
2018   unsigned ModuleValueListSize = ValueList.size();
2019   unsigned ModuleMDValueListSize = MDValueList.size();
2020 
2021   // Add all the function arguments to the value table.
2022   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2023     ValueList.push_back(I);
2024 
2025   unsigned NextValueNo = ValueList.size();
2026   BasicBlock *CurBB = 0;
2027   unsigned CurBBNo = 0;
2028 
2029   DebugLoc LastLoc;
2030 
2031   // Read all the records.
2032   SmallVector<uint64_t, 64> Record;
2033   while (1) {
2034     unsigned Code = Stream.ReadCode();
2035     if (Code == bitc::END_BLOCK) {
2036       if (Stream.ReadBlockEnd())
2037         return Error("Error at end of function block");
2038       break;
2039     }
2040 
2041     if (Code == bitc::ENTER_SUBBLOCK) {
2042       switch (Stream.ReadSubBlockID()) {
2043       default:  // Skip unknown content.
2044         if (Stream.SkipBlock())
2045           return Error("Malformed block record");
2046         break;
2047       case bitc::CONSTANTS_BLOCK_ID:
2048         if (ParseConstants()) return true;
2049         NextValueNo = ValueList.size();
2050         break;
2051       case bitc::VALUE_SYMTAB_BLOCK_ID:
2052         if (ParseValueSymbolTable()) return true;
2053         break;
2054       case bitc::METADATA_ATTACHMENT_ID:
2055         if (ParseMetadataAttachment()) return true;
2056         break;
2057       case bitc::METADATA_BLOCK_ID:
2058         if (ParseMetadata()) return true;
2059         break;
2060       }
2061       continue;
2062     }
2063 
2064     if (Code == bitc::DEFINE_ABBREV) {
2065       Stream.ReadAbbrevRecord();
2066       continue;
2067     }
2068 
2069     // Read a record.
2070     Record.clear();
2071     Instruction *I = 0;
2072     unsigned BitCode = Stream.ReadRecord(Code, Record);
2073     switch (BitCode) {
2074     default: // Default behavior: reject
2075       return Error("Unknown instruction");
2076     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2077       if (Record.size() < 1 || Record[0] == 0)
2078         return Error("Invalid DECLAREBLOCKS record");
2079       // Create all the basic blocks for the function.
2080       FunctionBBs.resize(Record[0]);
2081       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2082         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2083       CurBB = FunctionBBs[0];
2084       continue;
2085 
2086     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2087       // This record indicates that the last instruction is at the same
2088       // location as the previous instruction with a location.
2089       I = 0;
2090 
2091       // Get the last instruction emitted.
2092       if (CurBB && !CurBB->empty())
2093         I = &CurBB->back();
2094       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2095                !FunctionBBs[CurBBNo-1]->empty())
2096         I = &FunctionBBs[CurBBNo-1]->back();
2097 
2098       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2099       I->setDebugLoc(LastLoc);
2100       I = 0;
2101       continue;
2102 
2103     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2104       I = 0;     // Get the last instruction emitted.
2105       if (CurBB && !CurBB->empty())
2106         I = &CurBB->back();
2107       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2108                !FunctionBBs[CurBBNo-1]->empty())
2109         I = &FunctionBBs[CurBBNo-1]->back();
2110       if (I == 0 || Record.size() < 4)
2111         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2112 
2113       unsigned Line = Record[0], Col = Record[1];
2114       unsigned ScopeID = Record[2], IAID = Record[3];
2115 
2116       MDNode *Scope = 0, *IA = 0;
2117       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2118       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2119       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2120       I->setDebugLoc(LastLoc);
2121       I = 0;
2122       continue;
2123     }
2124 
2125     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2126       unsigned OpNum = 0;
2127       Value *LHS, *RHS;
2128       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2129           getValue(Record, OpNum, LHS->getType(), RHS) ||
2130           OpNum+1 > Record.size())
2131         return Error("Invalid BINOP record");
2132 
2133       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2134       if (Opc == -1) return Error("Invalid BINOP record");
2135       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2136       InstructionList.push_back(I);
2137       if (OpNum < Record.size()) {
2138         if (Opc == Instruction::Add ||
2139             Opc == Instruction::Sub ||
2140             Opc == Instruction::Mul ||
2141             Opc == Instruction::Shl) {
2142           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2143             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2144           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2145             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2146         } else if (Opc == Instruction::SDiv ||
2147                    Opc == Instruction::UDiv ||
2148                    Opc == Instruction::LShr ||
2149                    Opc == Instruction::AShr) {
2150           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2151             cast<BinaryOperator>(I)->setIsExact(true);
2152         }
2153       }
2154       break;
2155     }
2156     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2157       unsigned OpNum = 0;
2158       Value *Op;
2159       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2160           OpNum+2 != Record.size())
2161         return Error("Invalid CAST record");
2162 
2163       Type *ResTy = getTypeByID(Record[OpNum]);
2164       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2165       if (Opc == -1 || ResTy == 0)
2166         return Error("Invalid CAST record");
2167       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2168       InstructionList.push_back(I);
2169       break;
2170     }
2171     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2172     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2173       unsigned OpNum = 0;
2174       Value *BasePtr;
2175       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2176         return Error("Invalid GEP record");
2177 
2178       SmallVector<Value*, 16> GEPIdx;
2179       while (OpNum != Record.size()) {
2180         Value *Op;
2181         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2182           return Error("Invalid GEP record");
2183         GEPIdx.push_back(Op);
2184       }
2185 
2186       I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
2187       InstructionList.push_back(I);
2188       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2189         cast<GetElementPtrInst>(I)->setIsInBounds(true);
2190       break;
2191     }
2192 
2193     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2194                                        // EXTRACTVAL: [opty, opval, n x indices]
2195       unsigned OpNum = 0;
2196       Value *Agg;
2197       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2198         return Error("Invalid EXTRACTVAL record");
2199 
2200       SmallVector<unsigned, 4> EXTRACTVALIdx;
2201       for (unsigned RecSize = Record.size();
2202            OpNum != RecSize; ++OpNum) {
2203         uint64_t Index = Record[OpNum];
2204         if ((unsigned)Index != Index)
2205           return Error("Invalid EXTRACTVAL index");
2206         EXTRACTVALIdx.push_back((unsigned)Index);
2207       }
2208 
2209       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2210       InstructionList.push_back(I);
2211       break;
2212     }
2213 
2214     case bitc::FUNC_CODE_INST_INSERTVAL: {
2215                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
2216       unsigned OpNum = 0;
2217       Value *Agg;
2218       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2219         return Error("Invalid INSERTVAL record");
2220       Value *Val;
2221       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2222         return Error("Invalid INSERTVAL record");
2223 
2224       SmallVector<unsigned, 4> INSERTVALIdx;
2225       for (unsigned RecSize = Record.size();
2226            OpNum != RecSize; ++OpNum) {
2227         uint64_t Index = Record[OpNum];
2228         if ((unsigned)Index != Index)
2229           return Error("Invalid INSERTVAL index");
2230         INSERTVALIdx.push_back((unsigned)Index);
2231       }
2232 
2233       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2234       InstructionList.push_back(I);
2235       break;
2236     }
2237 
2238     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2239       // obsolete form of select
2240       // handles select i1 ... in old bitcode
2241       unsigned OpNum = 0;
2242       Value *TrueVal, *FalseVal, *Cond;
2243       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2244           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2245           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2246         return Error("Invalid SELECT record");
2247 
2248       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2249       InstructionList.push_back(I);
2250       break;
2251     }
2252 
2253     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2254       // new form of select
2255       // handles select i1 or select [N x i1]
2256       unsigned OpNum = 0;
2257       Value *TrueVal, *FalseVal, *Cond;
2258       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2259           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2260           getValueTypePair(Record, OpNum, NextValueNo, Cond))
2261         return Error("Invalid SELECT record");
2262 
2263       // select condition can be either i1 or [N x i1]
2264       if (VectorType* vector_type =
2265           dyn_cast<VectorType>(Cond->getType())) {
2266         // expect <n x i1>
2267         if (vector_type->getElementType() != Type::getInt1Ty(Context))
2268           return Error("Invalid SELECT condition type");
2269       } else {
2270         // expect i1
2271         if (Cond->getType() != Type::getInt1Ty(Context))
2272           return Error("Invalid SELECT condition type");
2273       }
2274 
2275       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2276       InstructionList.push_back(I);
2277       break;
2278     }
2279 
2280     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2281       unsigned OpNum = 0;
2282       Value *Vec, *Idx;
2283       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2284           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2285         return Error("Invalid EXTRACTELT record");
2286       I = ExtractElementInst::Create(Vec, Idx);
2287       InstructionList.push_back(I);
2288       break;
2289     }
2290 
2291     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2292       unsigned OpNum = 0;
2293       Value *Vec, *Elt, *Idx;
2294       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2295           getValue(Record, OpNum,
2296                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2297           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2298         return Error("Invalid INSERTELT record");
2299       I = InsertElementInst::Create(Vec, Elt, Idx);
2300       InstructionList.push_back(I);
2301       break;
2302     }
2303 
2304     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2305       unsigned OpNum = 0;
2306       Value *Vec1, *Vec2, *Mask;
2307       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2308           getValue(Record, OpNum, Vec1->getType(), Vec2))
2309         return Error("Invalid SHUFFLEVEC record");
2310 
2311       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2312         return Error("Invalid SHUFFLEVEC record");
2313       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2314       InstructionList.push_back(I);
2315       break;
2316     }
2317 
2318     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2319       // Old form of ICmp/FCmp returning bool
2320       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2321       // both legal on vectors but had different behaviour.
2322     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2323       // FCmp/ICmp returning bool or vector of bool
2324 
2325       unsigned OpNum = 0;
2326       Value *LHS, *RHS;
2327       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2328           getValue(Record, OpNum, LHS->getType(), RHS) ||
2329           OpNum+1 != Record.size())
2330         return Error("Invalid CMP record");
2331 
2332       if (LHS->getType()->isFPOrFPVectorTy())
2333         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2334       else
2335         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2336       InstructionList.push_back(I);
2337       break;
2338     }
2339 
2340     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2341       {
2342         unsigned Size = Record.size();
2343         if (Size == 0) {
2344           I = ReturnInst::Create(Context);
2345           InstructionList.push_back(I);
2346           break;
2347         }
2348 
2349         unsigned OpNum = 0;
2350         Value *Op = NULL;
2351         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2352           return Error("Invalid RET record");
2353         if (OpNum != Record.size())
2354           return Error("Invalid RET record");
2355 
2356         I = ReturnInst::Create(Context, Op);
2357         InstructionList.push_back(I);
2358         break;
2359       }
2360     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2361       if (Record.size() != 1 && Record.size() != 3)
2362         return Error("Invalid BR record");
2363       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2364       if (TrueDest == 0)
2365         return Error("Invalid BR record");
2366 
2367       if (Record.size() == 1) {
2368         I = BranchInst::Create(TrueDest);
2369         InstructionList.push_back(I);
2370       }
2371       else {
2372         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2373         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2374         if (FalseDest == 0 || Cond == 0)
2375           return Error("Invalid BR record");
2376         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2377         InstructionList.push_back(I);
2378       }
2379       break;
2380     }
2381     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2382       if (Record.size() < 3 || (Record.size() & 1) == 0)
2383         return Error("Invalid SWITCH record");
2384       Type *OpTy = getTypeByID(Record[0]);
2385       Value *Cond = getFnValueByID(Record[1], OpTy);
2386       BasicBlock *Default = getBasicBlock(Record[2]);
2387       if (OpTy == 0 || Cond == 0 || Default == 0)
2388         return Error("Invalid SWITCH record");
2389       unsigned NumCases = (Record.size()-3)/2;
2390       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2391       InstructionList.push_back(SI);
2392       for (unsigned i = 0, e = NumCases; i != e; ++i) {
2393         ConstantInt *CaseVal =
2394           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2395         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2396         if (CaseVal == 0 || DestBB == 0) {
2397           delete SI;
2398           return Error("Invalid SWITCH record!");
2399         }
2400         SI->addCase(CaseVal, DestBB);
2401       }
2402       I = SI;
2403       break;
2404     }
2405     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2406       if (Record.size() < 2)
2407         return Error("Invalid INDIRECTBR record");
2408       Type *OpTy = getTypeByID(Record[0]);
2409       Value *Address = getFnValueByID(Record[1], OpTy);
2410       if (OpTy == 0 || Address == 0)
2411         return Error("Invalid INDIRECTBR record");
2412       unsigned NumDests = Record.size()-2;
2413       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2414       InstructionList.push_back(IBI);
2415       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2416         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2417           IBI->addDestination(DestBB);
2418         } else {
2419           delete IBI;
2420           return Error("Invalid INDIRECTBR record!");
2421         }
2422       }
2423       I = IBI;
2424       break;
2425     }
2426 
2427     case bitc::FUNC_CODE_INST_INVOKE: {
2428       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2429       if (Record.size() < 4) return Error("Invalid INVOKE record");
2430       AttrListPtr PAL = getAttributes(Record[0]);
2431       unsigned CCInfo = Record[1];
2432       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2433       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2434 
2435       unsigned OpNum = 4;
2436       Value *Callee;
2437       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2438         return Error("Invalid INVOKE record");
2439 
2440       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2441       FunctionType *FTy = !CalleeTy ? 0 :
2442         dyn_cast<FunctionType>(CalleeTy->getElementType());
2443 
2444       // Check that the right number of fixed parameters are here.
2445       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2446           Record.size() < OpNum+FTy->getNumParams())
2447         return Error("Invalid INVOKE record");
2448 
2449       SmallVector<Value*, 16> Ops;
2450       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2451         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2452         if (Ops.back() == 0) return Error("Invalid INVOKE record");
2453       }
2454 
2455       if (!FTy->isVarArg()) {
2456         if (Record.size() != OpNum)
2457           return Error("Invalid INVOKE record");
2458       } else {
2459         // Read type/value pairs for varargs params.
2460         while (OpNum != Record.size()) {
2461           Value *Op;
2462           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2463             return Error("Invalid INVOKE record");
2464           Ops.push_back(Op);
2465         }
2466       }
2467 
2468       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2469       InstructionList.push_back(I);
2470       cast<InvokeInst>(I)->setCallingConv(
2471         static_cast<CallingConv::ID>(CCInfo));
2472       cast<InvokeInst>(I)->setAttributes(PAL);
2473       break;
2474     }
2475     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2476       I = new UnwindInst(Context);
2477       InstructionList.push_back(I);
2478       break;
2479     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2480       I = new UnreachableInst(Context);
2481       InstructionList.push_back(I);
2482       break;
2483     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2484       if (Record.size() < 1 || ((Record.size()-1)&1))
2485         return Error("Invalid PHI record");
2486       Type *Ty = getTypeByID(Record[0]);
2487       if (!Ty) return Error("Invalid PHI record");
2488 
2489       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2490       InstructionList.push_back(PN);
2491 
2492       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2493         Value *V = getFnValueByID(Record[1+i], Ty);
2494         BasicBlock *BB = getBasicBlock(Record[2+i]);
2495         if (!V || !BB) return Error("Invalid PHI record");
2496         PN->addIncoming(V, BB);
2497       }
2498       I = PN;
2499       break;
2500     }
2501 
2502     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2503       if (Record.size() != 4)
2504         return Error("Invalid ALLOCA record");
2505       PointerType *Ty =
2506         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2507       Type *OpTy = getTypeByID(Record[1]);
2508       Value *Size = getFnValueByID(Record[2], OpTy);
2509       unsigned Align = Record[3];
2510       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2511       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2512       InstructionList.push_back(I);
2513       break;
2514     }
2515     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2516       unsigned OpNum = 0;
2517       Value *Op;
2518       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2519           OpNum+2 != Record.size())
2520         return Error("Invalid LOAD record");
2521 
2522       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2523       InstructionList.push_back(I);
2524       break;
2525     }
2526     case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2527       unsigned OpNum = 0;
2528       Value *Val, *Ptr;
2529       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2530           getValue(Record, OpNum,
2531                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2532           OpNum+2 != Record.size())
2533         return Error("Invalid STORE record");
2534 
2535       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2536       InstructionList.push_back(I);
2537       break;
2538     }
2539     case bitc::FUNC_CODE_INST_CALL: {
2540       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2541       if (Record.size() < 3)
2542         return Error("Invalid CALL record");
2543 
2544       AttrListPtr PAL = getAttributes(Record[0]);
2545       unsigned CCInfo = Record[1];
2546 
2547       unsigned OpNum = 2;
2548       Value *Callee;
2549       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2550         return Error("Invalid CALL record");
2551 
2552       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2553       FunctionType *FTy = 0;
2554       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2555       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2556         return Error("Invalid CALL record");
2557 
2558       SmallVector<Value*, 16> Args;
2559       // Read the fixed params.
2560       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2561         if (FTy->getParamType(i)->isLabelTy())
2562           Args.push_back(getBasicBlock(Record[OpNum]));
2563         else
2564           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2565         if (Args.back() == 0) return Error("Invalid CALL record");
2566       }
2567 
2568       // Read type/value pairs for varargs params.
2569       if (!FTy->isVarArg()) {
2570         if (OpNum != Record.size())
2571           return Error("Invalid CALL record");
2572       } else {
2573         while (OpNum != Record.size()) {
2574           Value *Op;
2575           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2576             return Error("Invalid CALL record");
2577           Args.push_back(Op);
2578         }
2579       }
2580 
2581       I = CallInst::Create(Callee, Args);
2582       InstructionList.push_back(I);
2583       cast<CallInst>(I)->setCallingConv(
2584         static_cast<CallingConv::ID>(CCInfo>>1));
2585       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2586       cast<CallInst>(I)->setAttributes(PAL);
2587       break;
2588     }
2589     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2590       if (Record.size() < 3)
2591         return Error("Invalid VAARG record");
2592       Type *OpTy = getTypeByID(Record[0]);
2593       Value *Op = getFnValueByID(Record[1], OpTy);
2594       Type *ResTy = getTypeByID(Record[2]);
2595       if (!OpTy || !Op || !ResTy)
2596         return Error("Invalid VAARG record");
2597       I = new VAArgInst(Op, ResTy);
2598       InstructionList.push_back(I);
2599       break;
2600     }
2601     }
2602 
2603     // Add instruction to end of current BB.  If there is no current BB, reject
2604     // this file.
2605     if (CurBB == 0) {
2606       delete I;
2607       return Error("Invalid instruction with no BB");
2608     }
2609     CurBB->getInstList().push_back(I);
2610 
2611     // If this was a terminator instruction, move to the next block.
2612     if (isa<TerminatorInst>(I)) {
2613       ++CurBBNo;
2614       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2615     }
2616 
2617     // Non-void values get registered in the value table for future use.
2618     if (I && !I->getType()->isVoidTy())
2619       ValueList.AssignValue(I, NextValueNo++);
2620   }
2621 
2622   // Check the function list for unresolved values.
2623   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2624     if (A->getParent() == 0) {
2625       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2626       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2627         if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2628           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2629           delete A;
2630         }
2631       }
2632       return Error("Never resolved value found in function!");
2633     }
2634   }
2635 
2636   // FIXME: Check for unresolved forward-declared metadata references
2637   // and clean up leaks.
2638 
2639   // See if anything took the address of blocks in this function.  If so,
2640   // resolve them now.
2641   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2642     BlockAddrFwdRefs.find(F);
2643   if (BAFRI != BlockAddrFwdRefs.end()) {
2644     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2645     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2646       unsigned BlockIdx = RefList[i].first;
2647       if (BlockIdx >= FunctionBBs.size())
2648         return Error("Invalid blockaddress block #");
2649 
2650       GlobalVariable *FwdRef = RefList[i].second;
2651       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2652       FwdRef->eraseFromParent();
2653     }
2654 
2655     BlockAddrFwdRefs.erase(BAFRI);
2656   }
2657 
2658   // Trim the value list down to the size it was before we parsed this function.
2659   ValueList.shrinkTo(ModuleValueListSize);
2660   MDValueList.shrinkTo(ModuleMDValueListSize);
2661   std::vector<BasicBlock*>().swap(FunctionBBs);
2662   return false;
2663 }
2664 
2665 //===----------------------------------------------------------------------===//
2666 // GVMaterializer implementation
2667 //===----------------------------------------------------------------------===//
2668 
2669 
isMaterializable(const GlobalValue * GV) const2670 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2671   if (const Function *F = dyn_cast<Function>(GV)) {
2672     return F->isDeclaration() &&
2673       DeferredFunctionInfo.count(const_cast<Function*>(F));
2674   }
2675   return false;
2676 }
2677 
Materialize(GlobalValue * GV,std::string * ErrInfo)2678 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2679   Function *F = dyn_cast<Function>(GV);
2680   // If it's not a function or is already material, ignore the request.
2681   if (!F || !F->isMaterializable()) return false;
2682 
2683   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2684   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2685 
2686   // Move the bit stream to the saved position of the deferred function body.
2687   Stream.JumpToBit(DFII->second);
2688 
2689   if (ParseFunctionBody(F)) {
2690     if (ErrInfo) *ErrInfo = ErrorString;
2691     return true;
2692   }
2693 
2694   // Upgrade any old intrinsic calls in the function.
2695   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2696        E = UpgradedIntrinsics.end(); I != E; ++I) {
2697     if (I->first != I->second) {
2698       for (Value::use_iterator UI = I->first->use_begin(),
2699            UE = I->first->use_end(); UI != UE; ) {
2700         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2701           UpgradeIntrinsicCall(CI, I->second);
2702       }
2703     }
2704   }
2705 
2706   return false;
2707 }
2708 
isDematerializable(const GlobalValue * GV) const2709 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2710   const Function *F = dyn_cast<Function>(GV);
2711   if (!F || F->isDeclaration())
2712     return false;
2713   return DeferredFunctionInfo.count(const_cast<Function*>(F));
2714 }
2715 
Dematerialize(GlobalValue * GV)2716 void BitcodeReader::Dematerialize(GlobalValue *GV) {
2717   Function *F = dyn_cast<Function>(GV);
2718   // If this function isn't dematerializable, this is a noop.
2719   if (!F || !isDematerializable(F))
2720     return;
2721 
2722   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2723 
2724   // Just forget the function body, we can remat it later.
2725   F->deleteBody();
2726 }
2727 
2728 
MaterializeModule(Module * M,std::string * ErrInfo)2729 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2730   assert(M == TheModule &&
2731          "Can only Materialize the Module this BitcodeReader is attached to.");
2732   // Iterate over the module, deserializing any functions that are still on
2733   // disk.
2734   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2735        F != E; ++F)
2736     if (F->isMaterializable() &&
2737         Materialize(F, ErrInfo))
2738       return true;
2739 
2740   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2741   // delete the old functions to clean up. We can't do this unless the entire
2742   // module is materialized because there could always be another function body
2743   // with calls to the old function.
2744   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2745        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2746     if (I->first != I->second) {
2747       for (Value::use_iterator UI = I->first->use_begin(),
2748            UE = I->first->use_end(); UI != UE; ) {
2749         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2750           UpgradeIntrinsicCall(CI, I->second);
2751       }
2752       if (!I->first->use_empty())
2753         I->first->replaceAllUsesWith(I->second);
2754       I->first->eraseFromParent();
2755     }
2756   }
2757   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2758 
2759   // Check debug info intrinsics.
2760   CheckDebugInfoIntrinsics(TheModule);
2761 
2762   return false;
2763 }
2764 
2765 
2766 //===----------------------------------------------------------------------===//
2767 // External interface
2768 //===----------------------------------------------------------------------===//
2769 
2770 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2771 ///
getLazyBitcodeModule(MemoryBuffer * Buffer,LLVMContext & Context,std::string * ErrMsg)2772 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2773                                    LLVMContext& Context,
2774                                    std::string *ErrMsg) {
2775   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2776   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2777   M->setMaterializer(R);
2778   if (R->ParseBitcodeInto(M)) {
2779     if (ErrMsg)
2780       *ErrMsg = R->getErrorString();
2781 
2782     delete M;  // Also deletes R.
2783     return 0;
2784   }
2785   // Have the BitcodeReader dtor delete 'Buffer'.
2786   R->setBufferOwned(true);
2787   return M;
2788 }
2789 
2790 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2791 /// If an error occurs, return null and fill in *ErrMsg if non-null.
ParseBitcodeFile(MemoryBuffer * Buffer,LLVMContext & Context,std::string * ErrMsg)2792 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2793                                std::string *ErrMsg){
2794   Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2795   if (!M) return 0;
2796 
2797   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2798   // there was an error.
2799   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2800 
2801   // Read in the entire module, and destroy the BitcodeReader.
2802   if (M->MaterializeAllPermanently(ErrMsg)) {
2803     delete M;
2804     return 0;
2805   }
2806 
2807   return M;
2808 }
2809 
getBitcodeTargetTriple(MemoryBuffer * Buffer,LLVMContext & Context,std::string * ErrMsg)2810 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2811                                          LLVMContext& Context,
2812                                          std::string *ErrMsg) {
2813   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2814   // Don't let the BitcodeReader dtor delete 'Buffer'.
2815   R->setBufferOwned(false);
2816 
2817   std::string Triple("");
2818   if (R->ParseTriple(Triple))
2819     if (ErrMsg)
2820       *ErrMsg = R->getErrorString();
2821 
2822   delete R;
2823   return Triple;
2824 }
2825