1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers. The main entry
11 // point is Sema::CheckInitList(), but all of the work is performed
12 // within the InitListChecker class.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "clang/Sema/Designator.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/SemaInternal.h"
20 #include "clang/Lex/Preprocessor.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include <map>
28 using namespace clang;
29
30 //===----------------------------------------------------------------------===//
31 // Sema Initialization Checking
32 //===----------------------------------------------------------------------===//
33
IsStringInit(Expr * Init,const ArrayType * AT,ASTContext & Context)34 static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
35 ASTContext &Context) {
36 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
37 return 0;
38
39 // See if this is a string literal or @encode.
40 Init = Init->IgnoreParens();
41
42 // Handle @encode, which is a narrow string.
43 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
44 return Init;
45
46 // Otherwise we can only handle string literals.
47 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
48 if (SL == 0) return 0;
49
50 QualType ElemTy = Context.getCanonicalType(AT->getElementType());
51 // char array can be initialized with a narrow string.
52 // Only allow char x[] = "foo"; not char x[] = L"foo";
53 if (!SL->isWide())
54 return ElemTy->isCharType() ? Init : 0;
55
56 // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
57 // correction from DR343): "An array with element type compatible with a
58 // qualified or unqualified version of wchar_t may be initialized by a wide
59 // string literal, optionally enclosed in braces."
60 if (Context.typesAreCompatible(Context.getWCharType(),
61 ElemTy.getUnqualifiedType()))
62 return Init;
63
64 return 0;
65 }
66
IsStringInit(Expr * init,QualType declType,ASTContext & Context)67 static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
68 const ArrayType *arrayType = Context.getAsArrayType(declType);
69 if (!arrayType) return 0;
70
71 return IsStringInit(init, arrayType, Context);
72 }
73
CheckStringInit(Expr * Str,QualType & DeclT,const ArrayType * AT,Sema & S)74 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
75 Sema &S) {
76 // Get the length of the string as parsed.
77 uint64_t StrLength =
78 cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
79
80
81 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
82 // C99 6.7.8p14. We have an array of character type with unknown size
83 // being initialized to a string literal.
84 llvm::APSInt ConstVal(32);
85 ConstVal = StrLength;
86 // Return a new array type (C99 6.7.8p22).
87 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
88 ConstVal,
89 ArrayType::Normal, 0);
90 return;
91 }
92
93 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
94
95 // We have an array of character type with known size. However,
96 // the size may be smaller or larger than the string we are initializing.
97 // FIXME: Avoid truncation for 64-bit length strings.
98 if (S.getLangOptions().CPlusPlus) {
99 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
100 // For Pascal strings it's OK to strip off the terminating null character,
101 // so the example below is valid:
102 //
103 // unsigned char a[2] = "\pa";
104 if (SL->isPascal())
105 StrLength--;
106 }
107
108 // [dcl.init.string]p2
109 if (StrLength > CAT->getSize().getZExtValue())
110 S.Diag(Str->getSourceRange().getBegin(),
111 diag::err_initializer_string_for_char_array_too_long)
112 << Str->getSourceRange();
113 } else {
114 // C99 6.7.8p14.
115 if (StrLength-1 > CAT->getSize().getZExtValue())
116 S.Diag(Str->getSourceRange().getBegin(),
117 diag::warn_initializer_string_for_char_array_too_long)
118 << Str->getSourceRange();
119 }
120
121 // Set the type to the actual size that we are initializing. If we have
122 // something like:
123 // char x[1] = "foo";
124 // then this will set the string literal's type to char[1].
125 Str->setType(DeclT);
126 }
127
128 //===----------------------------------------------------------------------===//
129 // Semantic checking for initializer lists.
130 //===----------------------------------------------------------------------===//
131
132 /// @brief Semantic checking for initializer lists.
133 ///
134 /// The InitListChecker class contains a set of routines that each
135 /// handle the initialization of a certain kind of entity, e.g.,
136 /// arrays, vectors, struct/union types, scalars, etc. The
137 /// InitListChecker itself performs a recursive walk of the subobject
138 /// structure of the type to be initialized, while stepping through
139 /// the initializer list one element at a time. The IList and Index
140 /// parameters to each of the Check* routines contain the active
141 /// (syntactic) initializer list and the index into that initializer
142 /// list that represents the current initializer. Each routine is
143 /// responsible for moving that Index forward as it consumes elements.
144 ///
145 /// Each Check* routine also has a StructuredList/StructuredIndex
146 /// arguments, which contains the current "structured" (semantic)
147 /// initializer list and the index into that initializer list where we
148 /// are copying initializers as we map them over to the semantic
149 /// list. Once we have completed our recursive walk of the subobject
150 /// structure, we will have constructed a full semantic initializer
151 /// list.
152 ///
153 /// C99 designators cause changes in the initializer list traversal,
154 /// because they make the initialization "jump" into a specific
155 /// subobject and then continue the initialization from that
156 /// point. CheckDesignatedInitializer() recursively steps into the
157 /// designated subobject and manages backing out the recursion to
158 /// initialize the subobjects after the one designated.
159 namespace {
160 class InitListChecker {
161 Sema &SemaRef;
162 bool hadError;
163 std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
164 InitListExpr *FullyStructuredList;
165
166 void CheckImplicitInitList(const InitializedEntity &Entity,
167 InitListExpr *ParentIList, QualType T,
168 unsigned &Index, InitListExpr *StructuredList,
169 unsigned &StructuredIndex,
170 bool TopLevelObject = false);
171 void CheckExplicitInitList(const InitializedEntity &Entity,
172 InitListExpr *IList, QualType &T,
173 unsigned &Index, InitListExpr *StructuredList,
174 unsigned &StructuredIndex,
175 bool TopLevelObject = false);
176 void CheckListElementTypes(const InitializedEntity &Entity,
177 InitListExpr *IList, QualType &DeclType,
178 bool SubobjectIsDesignatorContext,
179 unsigned &Index,
180 InitListExpr *StructuredList,
181 unsigned &StructuredIndex,
182 bool TopLevelObject = false);
183 void CheckSubElementType(const InitializedEntity &Entity,
184 InitListExpr *IList, QualType ElemType,
185 unsigned &Index,
186 InitListExpr *StructuredList,
187 unsigned &StructuredIndex);
188 void CheckScalarType(const InitializedEntity &Entity,
189 InitListExpr *IList, QualType DeclType,
190 unsigned &Index,
191 InitListExpr *StructuredList,
192 unsigned &StructuredIndex);
193 void CheckReferenceType(const InitializedEntity &Entity,
194 InitListExpr *IList, QualType DeclType,
195 unsigned &Index,
196 InitListExpr *StructuredList,
197 unsigned &StructuredIndex);
198 void CheckVectorType(const InitializedEntity &Entity,
199 InitListExpr *IList, QualType DeclType, unsigned &Index,
200 InitListExpr *StructuredList,
201 unsigned &StructuredIndex);
202 void CheckStructUnionTypes(const InitializedEntity &Entity,
203 InitListExpr *IList, QualType DeclType,
204 RecordDecl::field_iterator Field,
205 bool SubobjectIsDesignatorContext, unsigned &Index,
206 InitListExpr *StructuredList,
207 unsigned &StructuredIndex,
208 bool TopLevelObject = false);
209 void CheckArrayType(const InitializedEntity &Entity,
210 InitListExpr *IList, QualType &DeclType,
211 llvm::APSInt elementIndex,
212 bool SubobjectIsDesignatorContext, unsigned &Index,
213 InitListExpr *StructuredList,
214 unsigned &StructuredIndex);
215 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
216 InitListExpr *IList, DesignatedInitExpr *DIE,
217 unsigned DesigIdx,
218 QualType &CurrentObjectType,
219 RecordDecl::field_iterator *NextField,
220 llvm::APSInt *NextElementIndex,
221 unsigned &Index,
222 InitListExpr *StructuredList,
223 unsigned &StructuredIndex,
224 bool FinishSubobjectInit,
225 bool TopLevelObject);
226 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
227 QualType CurrentObjectType,
228 InitListExpr *StructuredList,
229 unsigned StructuredIndex,
230 SourceRange InitRange);
231 void UpdateStructuredListElement(InitListExpr *StructuredList,
232 unsigned &StructuredIndex,
233 Expr *expr);
234 int numArrayElements(QualType DeclType);
235 int numStructUnionElements(QualType DeclType);
236
237 void FillInValueInitForField(unsigned Init, FieldDecl *Field,
238 const InitializedEntity &ParentEntity,
239 InitListExpr *ILE, bool &RequiresSecondPass);
240 void FillInValueInitializations(const InitializedEntity &Entity,
241 InitListExpr *ILE, bool &RequiresSecondPass);
242 public:
243 InitListChecker(Sema &S, const InitializedEntity &Entity,
244 InitListExpr *IL, QualType &T);
HadError()245 bool HadError() { return hadError; }
246
247 // @brief Retrieves the fully-structured initializer list used for
248 // semantic analysis and code generation.
getFullyStructuredList() const249 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
250 };
251 } // end anonymous namespace
252
FillInValueInitForField(unsigned Init,FieldDecl * Field,const InitializedEntity & ParentEntity,InitListExpr * ILE,bool & RequiresSecondPass)253 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
254 const InitializedEntity &ParentEntity,
255 InitListExpr *ILE,
256 bool &RequiresSecondPass) {
257 SourceLocation Loc = ILE->getSourceRange().getBegin();
258 unsigned NumInits = ILE->getNumInits();
259 InitializedEntity MemberEntity
260 = InitializedEntity::InitializeMember(Field, &ParentEntity);
261 if (Init >= NumInits || !ILE->getInit(Init)) {
262 // FIXME: We probably don't need to handle references
263 // specially here, since value-initialization of references is
264 // handled in InitializationSequence.
265 if (Field->getType()->isReferenceType()) {
266 // C++ [dcl.init.aggr]p9:
267 // If an incomplete or empty initializer-list leaves a
268 // member of reference type uninitialized, the program is
269 // ill-formed.
270 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
271 << Field->getType()
272 << ILE->getSyntacticForm()->getSourceRange();
273 SemaRef.Diag(Field->getLocation(),
274 diag::note_uninit_reference_member);
275 hadError = true;
276 return;
277 }
278
279 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
280 true);
281 InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
282 if (!InitSeq) {
283 InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
284 hadError = true;
285 return;
286 }
287
288 ExprResult MemberInit
289 = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
290 if (MemberInit.isInvalid()) {
291 hadError = true;
292 return;
293 }
294
295 if (hadError) {
296 // Do nothing
297 } else if (Init < NumInits) {
298 ILE->setInit(Init, MemberInit.takeAs<Expr>());
299 } else if (InitSeq.isConstructorInitialization()) {
300 // Value-initialization requires a constructor call, so
301 // extend the initializer list to include the constructor
302 // call and make a note that we'll need to take another pass
303 // through the initializer list.
304 ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
305 RequiresSecondPass = true;
306 }
307 } else if (InitListExpr *InnerILE
308 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
309 FillInValueInitializations(MemberEntity, InnerILE,
310 RequiresSecondPass);
311 }
312
313 /// Recursively replaces NULL values within the given initializer list
314 /// with expressions that perform value-initialization of the
315 /// appropriate type.
316 void
FillInValueInitializations(const InitializedEntity & Entity,InitListExpr * ILE,bool & RequiresSecondPass)317 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
318 InitListExpr *ILE,
319 bool &RequiresSecondPass) {
320 assert((ILE->getType() != SemaRef.Context.VoidTy) &&
321 "Should not have void type");
322 SourceLocation Loc = ILE->getSourceRange().getBegin();
323 if (ILE->getSyntacticForm())
324 Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
325
326 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
327 if (RType->getDecl()->isUnion() &&
328 ILE->getInitializedFieldInUnion())
329 FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
330 Entity, ILE, RequiresSecondPass);
331 else {
332 unsigned Init = 0;
333 for (RecordDecl::field_iterator
334 Field = RType->getDecl()->field_begin(),
335 FieldEnd = RType->getDecl()->field_end();
336 Field != FieldEnd; ++Field) {
337 if (Field->isUnnamedBitfield())
338 continue;
339
340 if (hadError)
341 return;
342
343 FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
344 if (hadError)
345 return;
346
347 ++Init;
348
349 // Only look at the first initialization of a union.
350 if (RType->getDecl()->isUnion())
351 break;
352 }
353 }
354
355 return;
356 }
357
358 QualType ElementType;
359
360 InitializedEntity ElementEntity = Entity;
361 unsigned NumInits = ILE->getNumInits();
362 unsigned NumElements = NumInits;
363 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
364 ElementType = AType->getElementType();
365 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
366 NumElements = CAType->getSize().getZExtValue();
367 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
368 0, Entity);
369 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
370 ElementType = VType->getElementType();
371 NumElements = VType->getNumElements();
372 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
373 0, Entity);
374 } else
375 ElementType = ILE->getType();
376
377
378 for (unsigned Init = 0; Init != NumElements; ++Init) {
379 if (hadError)
380 return;
381
382 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
383 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
384 ElementEntity.setElementIndex(Init);
385
386 if (Init >= NumInits || !ILE->getInit(Init)) {
387 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
388 true);
389 InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
390 if (!InitSeq) {
391 InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
392 hadError = true;
393 return;
394 }
395
396 ExprResult ElementInit
397 = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
398 if (ElementInit.isInvalid()) {
399 hadError = true;
400 return;
401 }
402
403 if (hadError) {
404 // Do nothing
405 } else if (Init < NumInits) {
406 // For arrays, just set the expression used for value-initialization
407 // of the "holes" in the array.
408 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
409 ILE->setArrayFiller(ElementInit.takeAs<Expr>());
410 else
411 ILE->setInit(Init, ElementInit.takeAs<Expr>());
412 } else {
413 // For arrays, just set the expression used for value-initialization
414 // of the rest of elements and exit.
415 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
416 ILE->setArrayFiller(ElementInit.takeAs<Expr>());
417 return;
418 }
419
420 if (InitSeq.isConstructorInitialization()) {
421 // Value-initialization requires a constructor call, so
422 // extend the initializer list to include the constructor
423 // call and make a note that we'll need to take another pass
424 // through the initializer list.
425 ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
426 RequiresSecondPass = true;
427 }
428 }
429 } else if (InitListExpr *InnerILE
430 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
431 FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
432 }
433 }
434
435
InitListChecker(Sema & S,const InitializedEntity & Entity,InitListExpr * IL,QualType & T)436 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
437 InitListExpr *IL, QualType &T)
438 : SemaRef(S) {
439 hadError = false;
440
441 unsigned newIndex = 0;
442 unsigned newStructuredIndex = 0;
443 FullyStructuredList
444 = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
445 CheckExplicitInitList(Entity, IL, T, newIndex,
446 FullyStructuredList, newStructuredIndex,
447 /*TopLevelObject=*/true);
448
449 if (!hadError) {
450 bool RequiresSecondPass = false;
451 FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
452 if (RequiresSecondPass && !hadError)
453 FillInValueInitializations(Entity, FullyStructuredList,
454 RequiresSecondPass);
455 }
456 }
457
numArrayElements(QualType DeclType)458 int InitListChecker::numArrayElements(QualType DeclType) {
459 // FIXME: use a proper constant
460 int maxElements = 0x7FFFFFFF;
461 if (const ConstantArrayType *CAT =
462 SemaRef.Context.getAsConstantArrayType(DeclType)) {
463 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
464 }
465 return maxElements;
466 }
467
numStructUnionElements(QualType DeclType)468 int InitListChecker::numStructUnionElements(QualType DeclType) {
469 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
470 int InitializableMembers = 0;
471 for (RecordDecl::field_iterator
472 Field = structDecl->field_begin(),
473 FieldEnd = structDecl->field_end();
474 Field != FieldEnd; ++Field) {
475 if ((*Field)->getIdentifier() || !(*Field)->isBitField())
476 ++InitializableMembers;
477 }
478 if (structDecl->isUnion())
479 return std::min(InitializableMembers, 1);
480 return InitializableMembers - structDecl->hasFlexibleArrayMember();
481 }
482
CheckImplicitInitList(const InitializedEntity & Entity,InitListExpr * ParentIList,QualType T,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)483 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
484 InitListExpr *ParentIList,
485 QualType T, unsigned &Index,
486 InitListExpr *StructuredList,
487 unsigned &StructuredIndex,
488 bool TopLevelObject) {
489 int maxElements = 0;
490
491 if (T->isArrayType())
492 maxElements = numArrayElements(T);
493 else if (T->isRecordType())
494 maxElements = numStructUnionElements(T);
495 else if (T->isVectorType())
496 maxElements = T->getAs<VectorType>()->getNumElements();
497 else
498 assert(0 && "CheckImplicitInitList(): Illegal type");
499
500 if (maxElements == 0) {
501 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
502 diag::err_implicit_empty_initializer);
503 ++Index;
504 hadError = true;
505 return;
506 }
507
508 // Build a structured initializer list corresponding to this subobject.
509 InitListExpr *StructuredSubobjectInitList
510 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
511 StructuredIndex,
512 SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
513 ParentIList->getSourceRange().getEnd()));
514 unsigned StructuredSubobjectInitIndex = 0;
515
516 // Check the element types and build the structural subobject.
517 unsigned StartIndex = Index;
518 CheckListElementTypes(Entity, ParentIList, T,
519 /*SubobjectIsDesignatorContext=*/false, Index,
520 StructuredSubobjectInitList,
521 StructuredSubobjectInitIndex,
522 TopLevelObject);
523 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
524 StructuredSubobjectInitList->setType(T);
525
526 // Update the structured sub-object initializer so that it's ending
527 // range corresponds with the end of the last initializer it used.
528 if (EndIndex < ParentIList->getNumInits()) {
529 SourceLocation EndLoc
530 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
531 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
532 }
533
534 // Warn about missing braces.
535 if (T->isArrayType() || T->isRecordType()) {
536 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
537 diag::warn_missing_braces)
538 << StructuredSubobjectInitList->getSourceRange()
539 << FixItHint::CreateInsertion(StructuredSubobjectInitList->getLocStart(),
540 "{")
541 << FixItHint::CreateInsertion(SemaRef.PP.getLocForEndOfToken(
542 StructuredSubobjectInitList->getLocEnd()),
543 "}");
544 }
545 }
546
CheckExplicitInitList(const InitializedEntity & Entity,InitListExpr * IList,QualType & T,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)547 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
548 InitListExpr *IList, QualType &T,
549 unsigned &Index,
550 InitListExpr *StructuredList,
551 unsigned &StructuredIndex,
552 bool TopLevelObject) {
553 assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
554 SyntacticToSemantic[IList] = StructuredList;
555 StructuredList->setSyntacticForm(IList);
556 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
557 Index, StructuredList, StructuredIndex, TopLevelObject);
558 QualType ExprTy = T.getNonLValueExprType(SemaRef.Context);
559 IList->setType(ExprTy);
560 StructuredList->setType(ExprTy);
561 if (hadError)
562 return;
563
564 if (Index < IList->getNumInits()) {
565 // We have leftover initializers
566 if (StructuredIndex == 1 &&
567 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
568 unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
569 if (SemaRef.getLangOptions().CPlusPlus) {
570 DK = diag::err_excess_initializers_in_char_array_initializer;
571 hadError = true;
572 }
573 // Special-case
574 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
575 << IList->getInit(Index)->getSourceRange();
576 } else if (!T->isIncompleteType()) {
577 // Don't complain for incomplete types, since we'll get an error
578 // elsewhere
579 QualType CurrentObjectType = StructuredList->getType();
580 int initKind =
581 CurrentObjectType->isArrayType()? 0 :
582 CurrentObjectType->isVectorType()? 1 :
583 CurrentObjectType->isScalarType()? 2 :
584 CurrentObjectType->isUnionType()? 3 :
585 4;
586
587 unsigned DK = diag::warn_excess_initializers;
588 if (SemaRef.getLangOptions().CPlusPlus) {
589 DK = diag::err_excess_initializers;
590 hadError = true;
591 }
592 if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
593 DK = diag::err_excess_initializers;
594 hadError = true;
595 }
596
597 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
598 << initKind << IList->getInit(Index)->getSourceRange();
599 }
600 }
601
602 if (T->isScalarType() && !TopLevelObject)
603 SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
604 << IList->getSourceRange()
605 << FixItHint::CreateRemoval(IList->getLocStart())
606 << FixItHint::CreateRemoval(IList->getLocEnd());
607 }
608
CheckListElementTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)609 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
610 InitListExpr *IList,
611 QualType &DeclType,
612 bool SubobjectIsDesignatorContext,
613 unsigned &Index,
614 InitListExpr *StructuredList,
615 unsigned &StructuredIndex,
616 bool TopLevelObject) {
617 if (DeclType->isScalarType()) {
618 CheckScalarType(Entity, IList, DeclType, Index,
619 StructuredList, StructuredIndex);
620 } else if (DeclType->isVectorType()) {
621 CheckVectorType(Entity, IList, DeclType, Index,
622 StructuredList, StructuredIndex);
623 } else if (DeclType->isAggregateType()) {
624 if (DeclType->isRecordType()) {
625 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
626 CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
627 SubobjectIsDesignatorContext, Index,
628 StructuredList, StructuredIndex,
629 TopLevelObject);
630 } else if (DeclType->isArrayType()) {
631 llvm::APSInt Zero(
632 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
633 false);
634 CheckArrayType(Entity, IList, DeclType, Zero,
635 SubobjectIsDesignatorContext, Index,
636 StructuredList, StructuredIndex);
637 } else
638 assert(0 && "Aggregate that isn't a structure or array?!");
639 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
640 // This type is invalid, issue a diagnostic.
641 ++Index;
642 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
643 << DeclType;
644 hadError = true;
645 } else if (DeclType->isRecordType()) {
646 // C++ [dcl.init]p14:
647 // [...] If the class is an aggregate (8.5.1), and the initializer
648 // is a brace-enclosed list, see 8.5.1.
649 //
650 // Note: 8.5.1 is handled below; here, we diagnose the case where
651 // we have an initializer list and a destination type that is not
652 // an aggregate.
653 // FIXME: In C++0x, this is yet another form of initialization.
654 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
655 << DeclType << IList->getSourceRange();
656 hadError = true;
657 } else if (DeclType->isReferenceType()) {
658 CheckReferenceType(Entity, IList, DeclType, Index,
659 StructuredList, StructuredIndex);
660 } else if (DeclType->isObjCObjectType()) {
661 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
662 << DeclType;
663 hadError = true;
664 } else {
665 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
666 << DeclType;
667 hadError = true;
668 }
669 }
670
CheckSubElementType(const InitializedEntity & Entity,InitListExpr * IList,QualType ElemType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)671 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
672 InitListExpr *IList,
673 QualType ElemType,
674 unsigned &Index,
675 InitListExpr *StructuredList,
676 unsigned &StructuredIndex) {
677 Expr *expr = IList->getInit(Index);
678 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
679 unsigned newIndex = 0;
680 unsigned newStructuredIndex = 0;
681 InitListExpr *newStructuredList
682 = getStructuredSubobjectInit(IList, Index, ElemType,
683 StructuredList, StructuredIndex,
684 SubInitList->getSourceRange());
685 CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
686 newStructuredList, newStructuredIndex);
687 ++StructuredIndex;
688 ++Index;
689 return;
690 } else if (ElemType->isScalarType()) {
691 return CheckScalarType(Entity, IList, ElemType, Index,
692 StructuredList, StructuredIndex);
693 } else if (ElemType->isReferenceType()) {
694 return CheckReferenceType(Entity, IList, ElemType, Index,
695 StructuredList, StructuredIndex);
696 }
697
698 if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
699 // arrayType can be incomplete if we're initializing a flexible
700 // array member. There's nothing we can do with the completed
701 // type here, though.
702
703 if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
704 CheckStringInit(Str, ElemType, arrayType, SemaRef);
705 UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
706 ++Index;
707 return;
708 }
709
710 // Fall through for subaggregate initialization.
711
712 } else if (SemaRef.getLangOptions().CPlusPlus) {
713 // C++ [dcl.init.aggr]p12:
714 // All implicit type conversions (clause 4) are considered when
715 // initializing the aggregate member with an ini- tializer from
716 // an initializer-list. If the initializer can initialize a
717 // member, the member is initialized. [...]
718
719 // FIXME: Better EqualLoc?
720 InitializationKind Kind =
721 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
722 InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
723
724 if (Seq) {
725 ExprResult Result =
726 Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
727 if (Result.isInvalid())
728 hadError = true;
729
730 UpdateStructuredListElement(StructuredList, StructuredIndex,
731 Result.takeAs<Expr>());
732 ++Index;
733 return;
734 }
735
736 // Fall through for subaggregate initialization
737 } else {
738 // C99 6.7.8p13:
739 //
740 // The initializer for a structure or union object that has
741 // automatic storage duration shall be either an initializer
742 // list as described below, or a single expression that has
743 // compatible structure or union type. In the latter case, the
744 // initial value of the object, including unnamed members, is
745 // that of the expression.
746 ExprResult ExprRes = SemaRef.Owned(expr);
747 if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
748 SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes)
749 == Sema::Compatible) {
750 if (ExprRes.isInvalid())
751 hadError = true;
752 else {
753 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
754 if (ExprRes.isInvalid())
755 hadError = true;
756 }
757 UpdateStructuredListElement(StructuredList, StructuredIndex,
758 ExprRes.takeAs<Expr>());
759 ++Index;
760 return;
761 }
762 ExprRes.release();
763 // Fall through for subaggregate initialization
764 }
765
766 // C++ [dcl.init.aggr]p12:
767 //
768 // [...] Otherwise, if the member is itself a non-empty
769 // subaggregate, brace elision is assumed and the initializer is
770 // considered for the initialization of the first member of
771 // the subaggregate.
772 if (!SemaRef.getLangOptions().OpenCL &&
773 (ElemType->isAggregateType() || ElemType->isVectorType())) {
774 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
775 StructuredIndex);
776 ++StructuredIndex;
777 } else {
778 // We cannot initialize this element, so let
779 // PerformCopyInitialization produce the appropriate diagnostic.
780 SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
781 SemaRef.Owned(expr));
782 hadError = true;
783 ++Index;
784 ++StructuredIndex;
785 }
786 }
787
CheckScalarType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)788 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
789 InitListExpr *IList, QualType DeclType,
790 unsigned &Index,
791 InitListExpr *StructuredList,
792 unsigned &StructuredIndex) {
793 if (Index >= IList->getNumInits()) {
794 SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
795 << IList->getSourceRange();
796 hadError = true;
797 ++Index;
798 ++StructuredIndex;
799 return;
800 }
801
802 Expr *expr = IList->getInit(Index);
803 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
804 SemaRef.Diag(SubIList->getLocStart(),
805 diag::warn_many_braces_around_scalar_init)
806 << SubIList->getSourceRange();
807
808 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
809 StructuredIndex);
810 return;
811 } else if (isa<DesignatedInitExpr>(expr)) {
812 SemaRef.Diag(expr->getSourceRange().getBegin(),
813 diag::err_designator_for_scalar_init)
814 << DeclType << expr->getSourceRange();
815 hadError = true;
816 ++Index;
817 ++StructuredIndex;
818 return;
819 }
820
821 ExprResult Result =
822 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
823 SemaRef.Owned(expr));
824
825 Expr *ResultExpr = 0;
826
827 if (Result.isInvalid())
828 hadError = true; // types weren't compatible.
829 else {
830 ResultExpr = Result.takeAs<Expr>();
831
832 if (ResultExpr != expr) {
833 // The type was promoted, update initializer list.
834 IList->setInit(Index, ResultExpr);
835 }
836 }
837 if (hadError)
838 ++StructuredIndex;
839 else
840 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
841 ++Index;
842 }
843
CheckReferenceType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)844 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
845 InitListExpr *IList, QualType DeclType,
846 unsigned &Index,
847 InitListExpr *StructuredList,
848 unsigned &StructuredIndex) {
849 if (Index < IList->getNumInits()) {
850 Expr *expr = IList->getInit(Index);
851 if (isa<InitListExpr>(expr)) {
852 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
853 << DeclType << IList->getSourceRange();
854 hadError = true;
855 ++Index;
856 ++StructuredIndex;
857 return;
858 }
859
860 ExprResult Result =
861 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
862 SemaRef.Owned(expr));
863
864 if (Result.isInvalid())
865 hadError = true;
866
867 expr = Result.takeAs<Expr>();
868 IList->setInit(Index, expr);
869
870 if (hadError)
871 ++StructuredIndex;
872 else
873 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
874 ++Index;
875 } else {
876 // FIXME: It would be wonderful if we could point at the actual member. In
877 // general, it would be useful to pass location information down the stack,
878 // so that we know the location (or decl) of the "current object" being
879 // initialized.
880 SemaRef.Diag(IList->getLocStart(),
881 diag::err_init_reference_member_uninitialized)
882 << DeclType
883 << IList->getSourceRange();
884 hadError = true;
885 ++Index;
886 ++StructuredIndex;
887 return;
888 }
889 }
890
CheckVectorType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)891 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
892 InitListExpr *IList, QualType DeclType,
893 unsigned &Index,
894 InitListExpr *StructuredList,
895 unsigned &StructuredIndex) {
896 if (Index >= IList->getNumInits())
897 return;
898
899 const VectorType *VT = DeclType->getAs<VectorType>();
900 unsigned maxElements = VT->getNumElements();
901 unsigned numEltsInit = 0;
902 QualType elementType = VT->getElementType();
903
904 if (!SemaRef.getLangOptions().OpenCL) {
905 // If the initializing element is a vector, try to copy-initialize
906 // instead of breaking it apart (which is doomed to failure anyway).
907 Expr *Init = IList->getInit(Index);
908 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
909 ExprResult Result =
910 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
911 SemaRef.Owned(Init));
912
913 Expr *ResultExpr = 0;
914 if (Result.isInvalid())
915 hadError = true; // types weren't compatible.
916 else {
917 ResultExpr = Result.takeAs<Expr>();
918
919 if (ResultExpr != Init) {
920 // The type was promoted, update initializer list.
921 IList->setInit(Index, ResultExpr);
922 }
923 }
924 if (hadError)
925 ++StructuredIndex;
926 else
927 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
928 ++Index;
929 return;
930 }
931
932 InitializedEntity ElementEntity =
933 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
934
935 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
936 // Don't attempt to go past the end of the init list
937 if (Index >= IList->getNumInits())
938 break;
939
940 ElementEntity.setElementIndex(Index);
941 CheckSubElementType(ElementEntity, IList, elementType, Index,
942 StructuredList, StructuredIndex);
943 }
944 return;
945 }
946
947 InitializedEntity ElementEntity =
948 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
949
950 // OpenCL initializers allows vectors to be constructed from vectors.
951 for (unsigned i = 0; i < maxElements; ++i) {
952 // Don't attempt to go past the end of the init list
953 if (Index >= IList->getNumInits())
954 break;
955
956 ElementEntity.setElementIndex(Index);
957
958 QualType IType = IList->getInit(Index)->getType();
959 if (!IType->isVectorType()) {
960 CheckSubElementType(ElementEntity, IList, elementType, Index,
961 StructuredList, StructuredIndex);
962 ++numEltsInit;
963 } else {
964 QualType VecType;
965 const VectorType *IVT = IType->getAs<VectorType>();
966 unsigned numIElts = IVT->getNumElements();
967
968 if (IType->isExtVectorType())
969 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
970 else
971 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
972 IVT->getVectorKind());
973 CheckSubElementType(ElementEntity, IList, VecType, Index,
974 StructuredList, StructuredIndex);
975 numEltsInit += numIElts;
976 }
977 }
978
979 // OpenCL requires all elements to be initialized.
980 if (numEltsInit != maxElements)
981 if (SemaRef.getLangOptions().OpenCL)
982 SemaRef.Diag(IList->getSourceRange().getBegin(),
983 diag::err_vector_incorrect_num_initializers)
984 << (numEltsInit < maxElements) << maxElements << numEltsInit;
985 }
986
CheckArrayType(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,llvm::APSInt elementIndex,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)987 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
988 InitListExpr *IList, QualType &DeclType,
989 llvm::APSInt elementIndex,
990 bool SubobjectIsDesignatorContext,
991 unsigned &Index,
992 InitListExpr *StructuredList,
993 unsigned &StructuredIndex) {
994 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
995
996 // Check for the special-case of initializing an array with a string.
997 if (Index < IList->getNumInits()) {
998 if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
999 SemaRef.Context)) {
1000 CheckStringInit(Str, DeclType, arrayType, SemaRef);
1001 // We place the string literal directly into the resulting
1002 // initializer list. This is the only place where the structure
1003 // of the structured initializer list doesn't match exactly,
1004 // because doing so would involve allocating one character
1005 // constant for each string.
1006 UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1007 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1008 ++Index;
1009 return;
1010 }
1011 }
1012 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1013 // Check for VLAs; in standard C it would be possible to check this
1014 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1015 // them in all sorts of strange places).
1016 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1017 diag::err_variable_object_no_init)
1018 << VAT->getSizeExpr()->getSourceRange();
1019 hadError = true;
1020 ++Index;
1021 ++StructuredIndex;
1022 return;
1023 }
1024
1025 // We might know the maximum number of elements in advance.
1026 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1027 elementIndex.isUnsigned());
1028 bool maxElementsKnown = false;
1029 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1030 maxElements = CAT->getSize();
1031 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1032 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1033 maxElementsKnown = true;
1034 }
1035
1036 QualType elementType = arrayType->getElementType();
1037 while (Index < IList->getNumInits()) {
1038 Expr *Init = IList->getInit(Index);
1039 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1040 // If we're not the subobject that matches up with the '{' for
1041 // the designator, we shouldn't be handling the
1042 // designator. Return immediately.
1043 if (!SubobjectIsDesignatorContext)
1044 return;
1045
1046 // Handle this designated initializer. elementIndex will be
1047 // updated to be the next array element we'll initialize.
1048 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1049 DeclType, 0, &elementIndex, Index,
1050 StructuredList, StructuredIndex, true,
1051 false)) {
1052 hadError = true;
1053 continue;
1054 }
1055
1056 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1057 maxElements = maxElements.extend(elementIndex.getBitWidth());
1058 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1059 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1060 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1061
1062 // If the array is of incomplete type, keep track of the number of
1063 // elements in the initializer.
1064 if (!maxElementsKnown && elementIndex > maxElements)
1065 maxElements = elementIndex;
1066
1067 continue;
1068 }
1069
1070 // If we know the maximum number of elements, and we've already
1071 // hit it, stop consuming elements in the initializer list.
1072 if (maxElementsKnown && elementIndex == maxElements)
1073 break;
1074
1075 InitializedEntity ElementEntity =
1076 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1077 Entity);
1078 // Check this element.
1079 CheckSubElementType(ElementEntity, IList, elementType, Index,
1080 StructuredList, StructuredIndex);
1081 ++elementIndex;
1082
1083 // If the array is of incomplete type, keep track of the number of
1084 // elements in the initializer.
1085 if (!maxElementsKnown && elementIndex > maxElements)
1086 maxElements = elementIndex;
1087 }
1088 if (!hadError && DeclType->isIncompleteArrayType()) {
1089 // If this is an incomplete array type, the actual type needs to
1090 // be calculated here.
1091 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1092 if (maxElements == Zero) {
1093 // Sizing an array implicitly to zero is not allowed by ISO C,
1094 // but is supported by GNU.
1095 SemaRef.Diag(IList->getLocStart(),
1096 diag::ext_typecheck_zero_array_size);
1097 }
1098
1099 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1100 ArrayType::Normal, 0);
1101 }
1102 }
1103
CheckStructUnionTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,RecordDecl::field_iterator Field,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)1104 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1105 InitListExpr *IList,
1106 QualType DeclType,
1107 RecordDecl::field_iterator Field,
1108 bool SubobjectIsDesignatorContext,
1109 unsigned &Index,
1110 InitListExpr *StructuredList,
1111 unsigned &StructuredIndex,
1112 bool TopLevelObject) {
1113 RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1114
1115 // If the record is invalid, some of it's members are invalid. To avoid
1116 // confusion, we forgo checking the intializer for the entire record.
1117 if (structDecl->isInvalidDecl()) {
1118 hadError = true;
1119 return;
1120 }
1121
1122 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1123 // Value-initialize the first named member of the union.
1124 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1125 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1126 Field != FieldEnd; ++Field) {
1127 if (Field->getDeclName()) {
1128 StructuredList->setInitializedFieldInUnion(*Field);
1129 break;
1130 }
1131 }
1132 return;
1133 }
1134
1135 // If structDecl is a forward declaration, this loop won't do
1136 // anything except look at designated initializers; That's okay,
1137 // because an error should get printed out elsewhere. It might be
1138 // worthwhile to skip over the rest of the initializer, though.
1139 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1140 RecordDecl::field_iterator FieldEnd = RD->field_end();
1141 bool InitializedSomething = false;
1142 bool CheckForMissingFields = true;
1143 while (Index < IList->getNumInits()) {
1144 Expr *Init = IList->getInit(Index);
1145
1146 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1147 // If we're not the subobject that matches up with the '{' for
1148 // the designator, we shouldn't be handling the
1149 // designator. Return immediately.
1150 if (!SubobjectIsDesignatorContext)
1151 return;
1152
1153 // Handle this designated initializer. Field will be updated to
1154 // the next field that we'll be initializing.
1155 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1156 DeclType, &Field, 0, Index,
1157 StructuredList, StructuredIndex,
1158 true, TopLevelObject))
1159 hadError = true;
1160
1161 InitializedSomething = true;
1162
1163 // Disable check for missing fields when designators are used.
1164 // This matches gcc behaviour.
1165 CheckForMissingFields = false;
1166 continue;
1167 }
1168
1169 if (Field == FieldEnd) {
1170 // We've run out of fields. We're done.
1171 break;
1172 }
1173
1174 // We've already initialized a member of a union. We're done.
1175 if (InitializedSomething && DeclType->isUnionType())
1176 break;
1177
1178 // If we've hit the flexible array member at the end, we're done.
1179 if (Field->getType()->isIncompleteArrayType())
1180 break;
1181
1182 if (Field->isUnnamedBitfield()) {
1183 // Don't initialize unnamed bitfields, e.g. "int : 20;"
1184 ++Field;
1185 continue;
1186 }
1187
1188 // Make sure we can use this declaration.
1189 if (SemaRef.DiagnoseUseOfDecl(*Field,
1190 IList->getInit(Index)->getLocStart())) {
1191 ++Index;
1192 ++Field;
1193 hadError = true;
1194 continue;
1195 }
1196
1197 InitializedEntity MemberEntity =
1198 InitializedEntity::InitializeMember(*Field, &Entity);
1199 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1200 StructuredList, StructuredIndex);
1201 InitializedSomething = true;
1202
1203 if (DeclType->isUnionType()) {
1204 // Initialize the first field within the union.
1205 StructuredList->setInitializedFieldInUnion(*Field);
1206 }
1207
1208 ++Field;
1209 }
1210
1211 // Emit warnings for missing struct field initializers.
1212 if (InitializedSomething && CheckForMissingFields && Field != FieldEnd &&
1213 !Field->getType()->isIncompleteArrayType() && !DeclType->isUnionType()) {
1214 // It is possible we have one or more unnamed bitfields remaining.
1215 // Find first (if any) named field and emit warning.
1216 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1217 it != end; ++it) {
1218 if (!it->isUnnamedBitfield()) {
1219 SemaRef.Diag(IList->getSourceRange().getEnd(),
1220 diag::warn_missing_field_initializers) << it->getName();
1221 break;
1222 }
1223 }
1224 }
1225
1226 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1227 Index >= IList->getNumInits())
1228 return;
1229
1230 // Handle GNU flexible array initializers.
1231 if (!TopLevelObject &&
1232 (!isa<InitListExpr>(IList->getInit(Index)) ||
1233 cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1234 SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1235 diag::err_flexible_array_init_nonempty)
1236 << IList->getInit(Index)->getSourceRange().getBegin();
1237 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1238 << *Field;
1239 hadError = true;
1240 ++Index;
1241 return;
1242 } else {
1243 SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1244 diag::ext_flexible_array_init)
1245 << IList->getInit(Index)->getSourceRange().getBegin();
1246 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1247 << *Field;
1248 }
1249
1250 InitializedEntity MemberEntity =
1251 InitializedEntity::InitializeMember(*Field, &Entity);
1252
1253 if (isa<InitListExpr>(IList->getInit(Index)))
1254 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1255 StructuredList, StructuredIndex);
1256 else
1257 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1258 StructuredList, StructuredIndex);
1259 }
1260
1261 /// \brief Expand a field designator that refers to a member of an
1262 /// anonymous struct or union into a series of field designators that
1263 /// refers to the field within the appropriate subobject.
1264 ///
ExpandAnonymousFieldDesignator(Sema & SemaRef,DesignatedInitExpr * DIE,unsigned DesigIdx,IndirectFieldDecl * IndirectField)1265 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1266 DesignatedInitExpr *DIE,
1267 unsigned DesigIdx,
1268 IndirectFieldDecl *IndirectField) {
1269 typedef DesignatedInitExpr::Designator Designator;
1270
1271 // Build the replacement designators.
1272 llvm::SmallVector<Designator, 4> Replacements;
1273 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1274 PE = IndirectField->chain_end(); PI != PE; ++PI) {
1275 if (PI + 1 == PE)
1276 Replacements.push_back(Designator((IdentifierInfo *)0,
1277 DIE->getDesignator(DesigIdx)->getDotLoc(),
1278 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1279 else
1280 Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1281 SourceLocation()));
1282 assert(isa<FieldDecl>(*PI));
1283 Replacements.back().setField(cast<FieldDecl>(*PI));
1284 }
1285
1286 // Expand the current designator into the set of replacement
1287 // designators, so we have a full subobject path down to where the
1288 // member of the anonymous struct/union is actually stored.
1289 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1290 &Replacements[0] + Replacements.size());
1291 }
1292
1293 /// \brief Given an implicit anonymous field, search the IndirectField that
1294 /// corresponds to FieldName.
FindIndirectFieldDesignator(FieldDecl * AnonField,IdentifierInfo * FieldName)1295 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1296 IdentifierInfo *FieldName) {
1297 assert(AnonField->isAnonymousStructOrUnion());
1298 Decl *NextDecl = AnonField->getNextDeclInContext();
1299 while (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(NextDecl)) {
1300 if (FieldName && FieldName == IF->getAnonField()->getIdentifier())
1301 return IF;
1302 NextDecl = NextDecl->getNextDeclInContext();
1303 }
1304 return 0;
1305 }
1306
1307 /// @brief Check the well-formedness of a C99 designated initializer.
1308 ///
1309 /// Determines whether the designated initializer @p DIE, which
1310 /// resides at the given @p Index within the initializer list @p
1311 /// IList, is well-formed for a current object of type @p DeclType
1312 /// (C99 6.7.8). The actual subobject that this designator refers to
1313 /// within the current subobject is returned in either
1314 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1315 ///
1316 /// @param IList The initializer list in which this designated
1317 /// initializer occurs.
1318 ///
1319 /// @param DIE The designated initializer expression.
1320 ///
1321 /// @param DesigIdx The index of the current designator.
1322 ///
1323 /// @param DeclType The type of the "current object" (C99 6.7.8p17),
1324 /// into which the designation in @p DIE should refer.
1325 ///
1326 /// @param NextField If non-NULL and the first designator in @p DIE is
1327 /// a field, this will be set to the field declaration corresponding
1328 /// to the field named by the designator.
1329 ///
1330 /// @param NextElementIndex If non-NULL and the first designator in @p
1331 /// DIE is an array designator or GNU array-range designator, this
1332 /// will be set to the last index initialized by this designator.
1333 ///
1334 /// @param Index Index into @p IList where the designated initializer
1335 /// @p DIE occurs.
1336 ///
1337 /// @param StructuredList The initializer list expression that
1338 /// describes all of the subobject initializers in the order they'll
1339 /// actually be initialized.
1340 ///
1341 /// @returns true if there was an error, false otherwise.
1342 bool
CheckDesignatedInitializer(const InitializedEntity & Entity,InitListExpr * IList,DesignatedInitExpr * DIE,unsigned DesigIdx,QualType & CurrentObjectType,RecordDecl::field_iterator * NextField,llvm::APSInt * NextElementIndex,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool FinishSubobjectInit,bool TopLevelObject)1343 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1344 InitListExpr *IList,
1345 DesignatedInitExpr *DIE,
1346 unsigned DesigIdx,
1347 QualType &CurrentObjectType,
1348 RecordDecl::field_iterator *NextField,
1349 llvm::APSInt *NextElementIndex,
1350 unsigned &Index,
1351 InitListExpr *StructuredList,
1352 unsigned &StructuredIndex,
1353 bool FinishSubobjectInit,
1354 bool TopLevelObject) {
1355 if (DesigIdx == DIE->size()) {
1356 // Check the actual initialization for the designated object type.
1357 bool prevHadError = hadError;
1358
1359 // Temporarily remove the designator expression from the
1360 // initializer list that the child calls see, so that we don't try
1361 // to re-process the designator.
1362 unsigned OldIndex = Index;
1363 IList->setInit(OldIndex, DIE->getInit());
1364
1365 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1366 StructuredList, StructuredIndex);
1367
1368 // Restore the designated initializer expression in the syntactic
1369 // form of the initializer list.
1370 if (IList->getInit(OldIndex) != DIE->getInit())
1371 DIE->setInit(IList->getInit(OldIndex));
1372 IList->setInit(OldIndex, DIE);
1373
1374 return hadError && !prevHadError;
1375 }
1376
1377 bool IsFirstDesignator = (DesigIdx == 0);
1378 assert((IsFirstDesignator || StructuredList) &&
1379 "Need a non-designated initializer list to start from");
1380
1381 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1382 // Determine the structural initializer list that corresponds to the
1383 // current subobject.
1384 StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1385 : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1386 StructuredList, StructuredIndex,
1387 SourceRange(D->getStartLocation(),
1388 DIE->getSourceRange().getEnd()));
1389 assert(StructuredList && "Expected a structured initializer list");
1390
1391 if (D->isFieldDesignator()) {
1392 // C99 6.7.8p7:
1393 //
1394 // If a designator has the form
1395 //
1396 // . identifier
1397 //
1398 // then the current object (defined below) shall have
1399 // structure or union type and the identifier shall be the
1400 // name of a member of that type.
1401 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1402 if (!RT) {
1403 SourceLocation Loc = D->getDotLoc();
1404 if (Loc.isInvalid())
1405 Loc = D->getFieldLoc();
1406 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1407 << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1408 ++Index;
1409 return true;
1410 }
1411
1412 // Note: we perform a linear search of the fields here, despite
1413 // the fact that we have a faster lookup method, because we always
1414 // need to compute the field's index.
1415 FieldDecl *KnownField = D->getField();
1416 IdentifierInfo *FieldName = D->getFieldName();
1417 unsigned FieldIndex = 0;
1418 RecordDecl::field_iterator
1419 Field = RT->getDecl()->field_begin(),
1420 FieldEnd = RT->getDecl()->field_end();
1421 for (; Field != FieldEnd; ++Field) {
1422 if (Field->isUnnamedBitfield())
1423 continue;
1424
1425 // If we find a field representing an anonymous field, look in the
1426 // IndirectFieldDecl that follow for the designated initializer.
1427 if (!KnownField && Field->isAnonymousStructOrUnion()) {
1428 if (IndirectFieldDecl *IF =
1429 FindIndirectFieldDesignator(*Field, FieldName)) {
1430 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1431 D = DIE->getDesignator(DesigIdx);
1432 break;
1433 }
1434 }
1435 if (KnownField && KnownField == *Field)
1436 break;
1437 if (FieldName && FieldName == Field->getIdentifier())
1438 break;
1439
1440 ++FieldIndex;
1441 }
1442
1443 if (Field == FieldEnd) {
1444 // There was no normal field in the struct with the designated
1445 // name. Perform another lookup for this name, which may find
1446 // something that we can't designate (e.g., a member function),
1447 // may find nothing, or may find a member of an anonymous
1448 // struct/union.
1449 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1450 FieldDecl *ReplacementField = 0;
1451 if (Lookup.first == Lookup.second) {
1452 // Name lookup didn't find anything. Determine whether this
1453 // was a typo for another field name.
1454 LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1455 Sema::LookupMemberName);
1456 TypoCorrection Corrected = SemaRef.CorrectTypo(
1457 DeclarationNameInfo(FieldName, D->getFieldLoc()),
1458 Sema::LookupMemberName, /*Scope=*/NULL, /*SS=*/NULL,
1459 RT->getDecl(), false, Sema::CTC_NoKeywords);
1460 if ((ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>()) &&
1461 ReplacementField->getDeclContext()->getRedeclContext()
1462 ->Equals(RT->getDecl())) {
1463 std::string CorrectedStr(
1464 Corrected.getAsString(SemaRef.getLangOptions()));
1465 std::string CorrectedQuotedStr(
1466 Corrected.getQuoted(SemaRef.getLangOptions()));
1467 SemaRef.Diag(D->getFieldLoc(),
1468 diag::err_field_designator_unknown_suggest)
1469 << FieldName << CurrentObjectType << CorrectedQuotedStr
1470 << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1471 SemaRef.Diag(ReplacementField->getLocation(),
1472 diag::note_previous_decl) << CorrectedQuotedStr;
1473 } else {
1474 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1475 << FieldName << CurrentObjectType;
1476 ++Index;
1477 return true;
1478 }
1479 }
1480
1481 if (!ReplacementField) {
1482 // Name lookup found something, but it wasn't a field.
1483 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1484 << FieldName;
1485 SemaRef.Diag((*Lookup.first)->getLocation(),
1486 diag::note_field_designator_found);
1487 ++Index;
1488 return true;
1489 }
1490
1491 if (!KnownField) {
1492 // The replacement field comes from typo correction; find it
1493 // in the list of fields.
1494 FieldIndex = 0;
1495 Field = RT->getDecl()->field_begin();
1496 for (; Field != FieldEnd; ++Field) {
1497 if (Field->isUnnamedBitfield())
1498 continue;
1499
1500 if (ReplacementField == *Field ||
1501 Field->getIdentifier() == ReplacementField->getIdentifier())
1502 break;
1503
1504 ++FieldIndex;
1505 }
1506 }
1507 }
1508
1509 // All of the fields of a union are located at the same place in
1510 // the initializer list.
1511 if (RT->getDecl()->isUnion()) {
1512 FieldIndex = 0;
1513 StructuredList->setInitializedFieldInUnion(*Field);
1514 }
1515
1516 // Make sure we can use this declaration.
1517 if (SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc())) {
1518 ++Index;
1519 return true;
1520 }
1521
1522 // Update the designator with the field declaration.
1523 D->setField(*Field);
1524
1525 // Make sure that our non-designated initializer list has space
1526 // for a subobject corresponding to this field.
1527 if (FieldIndex >= StructuredList->getNumInits())
1528 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1529
1530 // This designator names a flexible array member.
1531 if (Field->getType()->isIncompleteArrayType()) {
1532 bool Invalid = false;
1533 if ((DesigIdx + 1) != DIE->size()) {
1534 // We can't designate an object within the flexible array
1535 // member (because GCC doesn't allow it).
1536 DesignatedInitExpr::Designator *NextD
1537 = DIE->getDesignator(DesigIdx + 1);
1538 SemaRef.Diag(NextD->getStartLocation(),
1539 diag::err_designator_into_flexible_array_member)
1540 << SourceRange(NextD->getStartLocation(),
1541 DIE->getSourceRange().getEnd());
1542 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1543 << *Field;
1544 Invalid = true;
1545 }
1546
1547 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1548 !isa<StringLiteral>(DIE->getInit())) {
1549 // The initializer is not an initializer list.
1550 SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1551 diag::err_flexible_array_init_needs_braces)
1552 << DIE->getInit()->getSourceRange();
1553 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1554 << *Field;
1555 Invalid = true;
1556 }
1557
1558 // Handle GNU flexible array initializers.
1559 if (!Invalid && !TopLevelObject &&
1560 cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1561 SemaRef.Diag(DIE->getSourceRange().getBegin(),
1562 diag::err_flexible_array_init_nonempty)
1563 << DIE->getSourceRange().getBegin();
1564 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1565 << *Field;
1566 Invalid = true;
1567 }
1568
1569 if (Invalid) {
1570 ++Index;
1571 return true;
1572 }
1573
1574 // Initialize the array.
1575 bool prevHadError = hadError;
1576 unsigned newStructuredIndex = FieldIndex;
1577 unsigned OldIndex = Index;
1578 IList->setInit(Index, DIE->getInit());
1579
1580 InitializedEntity MemberEntity =
1581 InitializedEntity::InitializeMember(*Field, &Entity);
1582 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1583 StructuredList, newStructuredIndex);
1584
1585 IList->setInit(OldIndex, DIE);
1586 if (hadError && !prevHadError) {
1587 ++Field;
1588 ++FieldIndex;
1589 if (NextField)
1590 *NextField = Field;
1591 StructuredIndex = FieldIndex;
1592 return true;
1593 }
1594 } else {
1595 // Recurse to check later designated subobjects.
1596 QualType FieldType = (*Field)->getType();
1597 unsigned newStructuredIndex = FieldIndex;
1598
1599 InitializedEntity MemberEntity =
1600 InitializedEntity::InitializeMember(*Field, &Entity);
1601 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1602 FieldType, 0, 0, Index,
1603 StructuredList, newStructuredIndex,
1604 true, false))
1605 return true;
1606 }
1607
1608 // Find the position of the next field to be initialized in this
1609 // subobject.
1610 ++Field;
1611 ++FieldIndex;
1612
1613 // If this the first designator, our caller will continue checking
1614 // the rest of this struct/class/union subobject.
1615 if (IsFirstDesignator) {
1616 if (NextField)
1617 *NextField = Field;
1618 StructuredIndex = FieldIndex;
1619 return false;
1620 }
1621
1622 if (!FinishSubobjectInit)
1623 return false;
1624
1625 // We've already initialized something in the union; we're done.
1626 if (RT->getDecl()->isUnion())
1627 return hadError;
1628
1629 // Check the remaining fields within this class/struct/union subobject.
1630 bool prevHadError = hadError;
1631
1632 CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1633 StructuredList, FieldIndex);
1634 return hadError && !prevHadError;
1635 }
1636
1637 // C99 6.7.8p6:
1638 //
1639 // If a designator has the form
1640 //
1641 // [ constant-expression ]
1642 //
1643 // then the current object (defined below) shall have array
1644 // type and the expression shall be an integer constant
1645 // expression. If the array is of unknown size, any
1646 // nonnegative value is valid.
1647 //
1648 // Additionally, cope with the GNU extension that permits
1649 // designators of the form
1650 //
1651 // [ constant-expression ... constant-expression ]
1652 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1653 if (!AT) {
1654 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1655 << CurrentObjectType;
1656 ++Index;
1657 return true;
1658 }
1659
1660 Expr *IndexExpr = 0;
1661 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1662 if (D->isArrayDesignator()) {
1663 IndexExpr = DIE->getArrayIndex(*D);
1664 DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1665 DesignatedEndIndex = DesignatedStartIndex;
1666 } else {
1667 assert(D->isArrayRangeDesignator() && "Need array-range designator");
1668
1669 DesignatedStartIndex =
1670 DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1671 DesignatedEndIndex =
1672 DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1673 IndexExpr = DIE->getArrayRangeEnd(*D);
1674
1675 // Codegen can't handle evaluating array range designators that have side
1676 // effects, because we replicate the AST value for each initialized element.
1677 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1678 // elements with something that has a side effect, so codegen can emit an
1679 // "error unsupported" error instead of miscompiling the app.
1680 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1681 DIE->getInit()->HasSideEffects(SemaRef.Context))
1682 FullyStructuredList->sawArrayRangeDesignator();
1683 }
1684
1685 if (isa<ConstantArrayType>(AT)) {
1686 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1687 DesignatedStartIndex
1688 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1689 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1690 DesignatedEndIndex
1691 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1692 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1693 if (DesignatedEndIndex >= MaxElements) {
1694 SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1695 diag::err_array_designator_too_large)
1696 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1697 << IndexExpr->getSourceRange();
1698 ++Index;
1699 return true;
1700 }
1701 } else {
1702 // Make sure the bit-widths and signedness match.
1703 if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1704 DesignatedEndIndex
1705 = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1706 else if (DesignatedStartIndex.getBitWidth() <
1707 DesignatedEndIndex.getBitWidth())
1708 DesignatedStartIndex
1709 = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1710 DesignatedStartIndex.setIsUnsigned(true);
1711 DesignatedEndIndex.setIsUnsigned(true);
1712 }
1713
1714 // Make sure that our non-designated initializer list has space
1715 // for a subobject corresponding to this array element.
1716 if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1717 StructuredList->resizeInits(SemaRef.Context,
1718 DesignatedEndIndex.getZExtValue() + 1);
1719
1720 // Repeatedly perform subobject initializations in the range
1721 // [DesignatedStartIndex, DesignatedEndIndex].
1722
1723 // Move to the next designator
1724 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1725 unsigned OldIndex = Index;
1726
1727 InitializedEntity ElementEntity =
1728 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1729
1730 while (DesignatedStartIndex <= DesignatedEndIndex) {
1731 // Recurse to check later designated subobjects.
1732 QualType ElementType = AT->getElementType();
1733 Index = OldIndex;
1734
1735 ElementEntity.setElementIndex(ElementIndex);
1736 if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1737 ElementType, 0, 0, Index,
1738 StructuredList, ElementIndex,
1739 (DesignatedStartIndex == DesignatedEndIndex),
1740 false))
1741 return true;
1742
1743 // Move to the next index in the array that we'll be initializing.
1744 ++DesignatedStartIndex;
1745 ElementIndex = DesignatedStartIndex.getZExtValue();
1746 }
1747
1748 // If this the first designator, our caller will continue checking
1749 // the rest of this array subobject.
1750 if (IsFirstDesignator) {
1751 if (NextElementIndex)
1752 *NextElementIndex = DesignatedStartIndex;
1753 StructuredIndex = ElementIndex;
1754 return false;
1755 }
1756
1757 if (!FinishSubobjectInit)
1758 return false;
1759
1760 // Check the remaining elements within this array subobject.
1761 bool prevHadError = hadError;
1762 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
1763 /*SubobjectIsDesignatorContext=*/false, Index,
1764 StructuredList, ElementIndex);
1765 return hadError && !prevHadError;
1766 }
1767
1768 // Get the structured initializer list for a subobject of type
1769 // @p CurrentObjectType.
1770 InitListExpr *
getStructuredSubobjectInit(InitListExpr * IList,unsigned Index,QualType CurrentObjectType,InitListExpr * StructuredList,unsigned StructuredIndex,SourceRange InitRange)1771 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1772 QualType CurrentObjectType,
1773 InitListExpr *StructuredList,
1774 unsigned StructuredIndex,
1775 SourceRange InitRange) {
1776 Expr *ExistingInit = 0;
1777 if (!StructuredList)
1778 ExistingInit = SyntacticToSemantic[IList];
1779 else if (StructuredIndex < StructuredList->getNumInits())
1780 ExistingInit = StructuredList->getInit(StructuredIndex);
1781
1782 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1783 return Result;
1784
1785 if (ExistingInit) {
1786 // We are creating an initializer list that initializes the
1787 // subobjects of the current object, but there was already an
1788 // initialization that completely initialized the current
1789 // subobject, e.g., by a compound literal:
1790 //
1791 // struct X { int a, b; };
1792 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1793 //
1794 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1795 // designated initializer re-initializes the whole
1796 // subobject [0], overwriting previous initializers.
1797 SemaRef.Diag(InitRange.getBegin(),
1798 diag::warn_subobject_initializer_overrides)
1799 << InitRange;
1800 SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1801 diag::note_previous_initializer)
1802 << /*FIXME:has side effects=*/0
1803 << ExistingInit->getSourceRange();
1804 }
1805
1806 InitListExpr *Result
1807 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
1808 InitRange.getBegin(), 0, 0,
1809 InitRange.getEnd());
1810
1811 Result->setType(CurrentObjectType.getNonLValueExprType(SemaRef.Context));
1812
1813 // Pre-allocate storage for the structured initializer list.
1814 unsigned NumElements = 0;
1815 unsigned NumInits = 0;
1816 bool GotNumInits = false;
1817 if (!StructuredList) {
1818 NumInits = IList->getNumInits();
1819 GotNumInits = true;
1820 } else if (Index < IList->getNumInits()) {
1821 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
1822 NumInits = SubList->getNumInits();
1823 GotNumInits = true;
1824 }
1825 }
1826
1827 if (const ArrayType *AType
1828 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1829 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1830 NumElements = CAType->getSize().getZExtValue();
1831 // Simple heuristic so that we don't allocate a very large
1832 // initializer with many empty entries at the end.
1833 if (GotNumInits && NumElements > NumInits)
1834 NumElements = 0;
1835 }
1836 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
1837 NumElements = VType->getNumElements();
1838 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1839 RecordDecl *RDecl = RType->getDecl();
1840 if (RDecl->isUnion())
1841 NumElements = 1;
1842 else
1843 NumElements = std::distance(RDecl->field_begin(),
1844 RDecl->field_end());
1845 }
1846
1847 if (NumElements < NumInits)
1848 NumElements = IList->getNumInits();
1849
1850 Result->reserveInits(SemaRef.Context, NumElements);
1851
1852 // Link this new initializer list into the structured initializer
1853 // lists.
1854 if (StructuredList)
1855 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
1856 else {
1857 Result->setSyntacticForm(IList);
1858 SyntacticToSemantic[IList] = Result;
1859 }
1860
1861 return Result;
1862 }
1863
1864 /// Update the initializer at index @p StructuredIndex within the
1865 /// structured initializer list to the value @p expr.
UpdateStructuredListElement(InitListExpr * StructuredList,unsigned & StructuredIndex,Expr * expr)1866 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1867 unsigned &StructuredIndex,
1868 Expr *expr) {
1869 // No structured initializer list to update
1870 if (!StructuredList)
1871 return;
1872
1873 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
1874 StructuredIndex, expr)) {
1875 // This initializer overwrites a previous initializer. Warn.
1876 SemaRef.Diag(expr->getSourceRange().getBegin(),
1877 diag::warn_initializer_overrides)
1878 << expr->getSourceRange();
1879 SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1880 diag::note_previous_initializer)
1881 << /*FIXME:has side effects=*/0
1882 << PrevInit->getSourceRange();
1883 }
1884
1885 ++StructuredIndex;
1886 }
1887
1888 /// Check that the given Index expression is a valid array designator
1889 /// value. This is essentailly just a wrapper around
1890 /// VerifyIntegerConstantExpression that also checks for negative values
1891 /// and produces a reasonable diagnostic if there is a
1892 /// failure. Returns true if there was an error, false otherwise. If
1893 /// everything went okay, Value will receive the value of the constant
1894 /// expression.
1895 static bool
CheckArrayDesignatorExpr(Sema & S,Expr * Index,llvm::APSInt & Value)1896 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1897 SourceLocation Loc = Index->getSourceRange().getBegin();
1898
1899 // Make sure this is an integer constant expression.
1900 if (S.VerifyIntegerConstantExpression(Index, &Value))
1901 return true;
1902
1903 if (Value.isSigned() && Value.isNegative())
1904 return S.Diag(Loc, diag::err_array_designator_negative)
1905 << Value.toString(10) << Index->getSourceRange();
1906
1907 Value.setIsUnsigned(true);
1908 return false;
1909 }
1910
ActOnDesignatedInitializer(Designation & Desig,SourceLocation Loc,bool GNUSyntax,ExprResult Init)1911 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1912 SourceLocation Loc,
1913 bool GNUSyntax,
1914 ExprResult Init) {
1915 typedef DesignatedInitExpr::Designator ASTDesignator;
1916
1917 bool Invalid = false;
1918 llvm::SmallVector<ASTDesignator, 32> Designators;
1919 llvm::SmallVector<Expr *, 32> InitExpressions;
1920
1921 // Build designators and check array designator expressions.
1922 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1923 const Designator &D = Desig.getDesignator(Idx);
1924 switch (D.getKind()) {
1925 case Designator::FieldDesignator:
1926 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1927 D.getFieldLoc()));
1928 break;
1929
1930 case Designator::ArrayDesignator: {
1931 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1932 llvm::APSInt IndexValue;
1933 if (!Index->isTypeDependent() &&
1934 !Index->isValueDependent() &&
1935 CheckArrayDesignatorExpr(*this, Index, IndexValue))
1936 Invalid = true;
1937 else {
1938 Designators.push_back(ASTDesignator(InitExpressions.size(),
1939 D.getLBracketLoc(),
1940 D.getRBracketLoc()));
1941 InitExpressions.push_back(Index);
1942 }
1943 break;
1944 }
1945
1946 case Designator::ArrayRangeDesignator: {
1947 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1948 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1949 llvm::APSInt StartValue;
1950 llvm::APSInt EndValue;
1951 bool StartDependent = StartIndex->isTypeDependent() ||
1952 StartIndex->isValueDependent();
1953 bool EndDependent = EndIndex->isTypeDependent() ||
1954 EndIndex->isValueDependent();
1955 if ((!StartDependent &&
1956 CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1957 (!EndDependent &&
1958 CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1959 Invalid = true;
1960 else {
1961 // Make sure we're comparing values with the same bit width.
1962 if (StartDependent || EndDependent) {
1963 // Nothing to compute.
1964 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1965 EndValue = EndValue.extend(StartValue.getBitWidth());
1966 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1967 StartValue = StartValue.extend(EndValue.getBitWidth());
1968
1969 if (!StartDependent && !EndDependent && EndValue < StartValue) {
1970 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1971 << StartValue.toString(10) << EndValue.toString(10)
1972 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1973 Invalid = true;
1974 } else {
1975 Designators.push_back(ASTDesignator(InitExpressions.size(),
1976 D.getLBracketLoc(),
1977 D.getEllipsisLoc(),
1978 D.getRBracketLoc()));
1979 InitExpressions.push_back(StartIndex);
1980 InitExpressions.push_back(EndIndex);
1981 }
1982 }
1983 break;
1984 }
1985 }
1986 }
1987
1988 if (Invalid || Init.isInvalid())
1989 return ExprError();
1990
1991 // Clear out the expressions within the designation.
1992 Desig.ClearExprs(*this);
1993
1994 DesignatedInitExpr *DIE
1995 = DesignatedInitExpr::Create(Context,
1996 Designators.data(), Designators.size(),
1997 InitExpressions.data(), InitExpressions.size(),
1998 Loc, GNUSyntax, Init.takeAs<Expr>());
1999
2000 if (getLangOptions().CPlusPlus)
2001 Diag(DIE->getLocStart(), diag::ext_designated_init_cxx)
2002 << DIE->getSourceRange();
2003 else if (!getLangOptions().C99)
2004 Diag(DIE->getLocStart(), diag::ext_designated_init)
2005 << DIE->getSourceRange();
2006
2007 return Owned(DIE);
2008 }
2009
CheckInitList(const InitializedEntity & Entity,InitListExpr * & InitList,QualType & DeclType)2010 bool Sema::CheckInitList(const InitializedEntity &Entity,
2011 InitListExpr *&InitList, QualType &DeclType) {
2012 InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
2013 if (!CheckInitList.HadError())
2014 InitList = CheckInitList.getFullyStructuredList();
2015
2016 return CheckInitList.HadError();
2017 }
2018
2019 //===----------------------------------------------------------------------===//
2020 // Initialization entity
2021 //===----------------------------------------------------------------------===//
2022
InitializedEntity(ASTContext & Context,unsigned Index,const InitializedEntity & Parent)2023 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2024 const InitializedEntity &Parent)
2025 : Parent(&Parent), Index(Index)
2026 {
2027 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2028 Kind = EK_ArrayElement;
2029 Type = AT->getElementType();
2030 } else {
2031 Kind = EK_VectorElement;
2032 Type = Parent.getType()->getAs<VectorType>()->getElementType();
2033 }
2034 }
2035
InitializeBase(ASTContext & Context,CXXBaseSpecifier * Base,bool IsInheritedVirtualBase)2036 InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2037 CXXBaseSpecifier *Base,
2038 bool IsInheritedVirtualBase)
2039 {
2040 InitializedEntity Result;
2041 Result.Kind = EK_Base;
2042 Result.Base = reinterpret_cast<uintptr_t>(Base);
2043 if (IsInheritedVirtualBase)
2044 Result.Base |= 0x01;
2045
2046 Result.Type = Base->getType();
2047 return Result;
2048 }
2049
getName() const2050 DeclarationName InitializedEntity::getName() const {
2051 switch (getKind()) {
2052 case EK_Parameter: {
2053 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2054 return (D ? D->getDeclName() : DeclarationName());
2055 }
2056
2057 case EK_Variable:
2058 case EK_Member:
2059 return VariableOrMember->getDeclName();
2060
2061 case EK_Result:
2062 case EK_Exception:
2063 case EK_New:
2064 case EK_Temporary:
2065 case EK_Base:
2066 case EK_Delegating:
2067 case EK_ArrayElement:
2068 case EK_VectorElement:
2069 case EK_BlockElement:
2070 return DeclarationName();
2071 }
2072
2073 // Silence GCC warning
2074 return DeclarationName();
2075 }
2076
getDecl() const2077 DeclaratorDecl *InitializedEntity::getDecl() const {
2078 switch (getKind()) {
2079 case EK_Variable:
2080 case EK_Member:
2081 return VariableOrMember;
2082
2083 case EK_Parameter:
2084 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2085
2086 case EK_Result:
2087 case EK_Exception:
2088 case EK_New:
2089 case EK_Temporary:
2090 case EK_Base:
2091 case EK_Delegating:
2092 case EK_ArrayElement:
2093 case EK_VectorElement:
2094 case EK_BlockElement:
2095 return 0;
2096 }
2097
2098 // Silence GCC warning
2099 return 0;
2100 }
2101
allowsNRVO() const2102 bool InitializedEntity::allowsNRVO() const {
2103 switch (getKind()) {
2104 case EK_Result:
2105 case EK_Exception:
2106 return LocAndNRVO.NRVO;
2107
2108 case EK_Variable:
2109 case EK_Parameter:
2110 case EK_Member:
2111 case EK_New:
2112 case EK_Temporary:
2113 case EK_Base:
2114 case EK_Delegating:
2115 case EK_ArrayElement:
2116 case EK_VectorElement:
2117 case EK_BlockElement:
2118 break;
2119 }
2120
2121 return false;
2122 }
2123
2124 //===----------------------------------------------------------------------===//
2125 // Initialization sequence
2126 //===----------------------------------------------------------------------===//
2127
Destroy()2128 void InitializationSequence::Step::Destroy() {
2129 switch (Kind) {
2130 case SK_ResolveAddressOfOverloadedFunction:
2131 case SK_CastDerivedToBaseRValue:
2132 case SK_CastDerivedToBaseXValue:
2133 case SK_CastDerivedToBaseLValue:
2134 case SK_BindReference:
2135 case SK_BindReferenceToTemporary:
2136 case SK_ExtraneousCopyToTemporary:
2137 case SK_UserConversion:
2138 case SK_QualificationConversionRValue:
2139 case SK_QualificationConversionXValue:
2140 case SK_QualificationConversionLValue:
2141 case SK_ListInitialization:
2142 case SK_ConstructorInitialization:
2143 case SK_ZeroInitialization:
2144 case SK_CAssignment:
2145 case SK_StringInit:
2146 case SK_ObjCObjectConversion:
2147 case SK_ArrayInit:
2148 case SK_PassByIndirectCopyRestore:
2149 case SK_PassByIndirectRestore:
2150 case SK_ProduceObjCObject:
2151 break;
2152
2153 case SK_ConversionSequence:
2154 delete ICS;
2155 }
2156 }
2157
isDirectReferenceBinding() const2158 bool InitializationSequence::isDirectReferenceBinding() const {
2159 return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2160 }
2161
isAmbiguous() const2162 bool InitializationSequence::isAmbiguous() const {
2163 if (!Failed())
2164 return false;
2165
2166 switch (getFailureKind()) {
2167 case FK_TooManyInitsForReference:
2168 case FK_ArrayNeedsInitList:
2169 case FK_ArrayNeedsInitListOrStringLiteral:
2170 case FK_AddressOfOverloadFailed: // FIXME: Could do better
2171 case FK_NonConstLValueReferenceBindingToTemporary:
2172 case FK_NonConstLValueReferenceBindingToUnrelated:
2173 case FK_RValueReferenceBindingToLValue:
2174 case FK_ReferenceInitDropsQualifiers:
2175 case FK_ReferenceInitFailed:
2176 case FK_ConversionFailed:
2177 case FK_ConversionFromPropertyFailed:
2178 case FK_TooManyInitsForScalar:
2179 case FK_ReferenceBindingToInitList:
2180 case FK_InitListBadDestinationType:
2181 case FK_DefaultInitOfConst:
2182 case FK_Incomplete:
2183 case FK_ArrayTypeMismatch:
2184 case FK_NonConstantArrayInit:
2185 return false;
2186
2187 case FK_ReferenceInitOverloadFailed:
2188 case FK_UserConversionOverloadFailed:
2189 case FK_ConstructorOverloadFailed:
2190 return FailedOverloadResult == OR_Ambiguous;
2191 }
2192
2193 return false;
2194 }
2195
isConstructorInitialization() const2196 bool InitializationSequence::isConstructorInitialization() const {
2197 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2198 }
2199
AddAddressOverloadResolutionStep(FunctionDecl * Function,DeclAccessPair Found)2200 void InitializationSequence::AddAddressOverloadResolutionStep(
2201 FunctionDecl *Function,
2202 DeclAccessPair Found) {
2203 Step S;
2204 S.Kind = SK_ResolveAddressOfOverloadedFunction;
2205 S.Type = Function->getType();
2206 S.Function.Function = Function;
2207 S.Function.FoundDecl = Found;
2208 Steps.push_back(S);
2209 }
2210
AddDerivedToBaseCastStep(QualType BaseType,ExprValueKind VK)2211 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2212 ExprValueKind VK) {
2213 Step S;
2214 switch (VK) {
2215 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2216 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2217 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2218 default: llvm_unreachable("No such category");
2219 }
2220 S.Type = BaseType;
2221 Steps.push_back(S);
2222 }
2223
AddReferenceBindingStep(QualType T,bool BindingTemporary)2224 void InitializationSequence::AddReferenceBindingStep(QualType T,
2225 bool BindingTemporary) {
2226 Step S;
2227 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2228 S.Type = T;
2229 Steps.push_back(S);
2230 }
2231
AddExtraneousCopyToTemporary(QualType T)2232 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2233 Step S;
2234 S.Kind = SK_ExtraneousCopyToTemporary;
2235 S.Type = T;
2236 Steps.push_back(S);
2237 }
2238
AddUserConversionStep(FunctionDecl * Function,DeclAccessPair FoundDecl,QualType T)2239 void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2240 DeclAccessPair FoundDecl,
2241 QualType T) {
2242 Step S;
2243 S.Kind = SK_UserConversion;
2244 S.Type = T;
2245 S.Function.Function = Function;
2246 S.Function.FoundDecl = FoundDecl;
2247 Steps.push_back(S);
2248 }
2249
AddQualificationConversionStep(QualType Ty,ExprValueKind VK)2250 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2251 ExprValueKind VK) {
2252 Step S;
2253 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2254 switch (VK) {
2255 case VK_RValue:
2256 S.Kind = SK_QualificationConversionRValue;
2257 break;
2258 case VK_XValue:
2259 S.Kind = SK_QualificationConversionXValue;
2260 break;
2261 case VK_LValue:
2262 S.Kind = SK_QualificationConversionLValue;
2263 break;
2264 }
2265 S.Type = Ty;
2266 Steps.push_back(S);
2267 }
2268
AddConversionSequenceStep(const ImplicitConversionSequence & ICS,QualType T)2269 void InitializationSequence::AddConversionSequenceStep(
2270 const ImplicitConversionSequence &ICS,
2271 QualType T) {
2272 Step S;
2273 S.Kind = SK_ConversionSequence;
2274 S.Type = T;
2275 S.ICS = new ImplicitConversionSequence(ICS);
2276 Steps.push_back(S);
2277 }
2278
AddListInitializationStep(QualType T)2279 void InitializationSequence::AddListInitializationStep(QualType T) {
2280 Step S;
2281 S.Kind = SK_ListInitialization;
2282 S.Type = T;
2283 Steps.push_back(S);
2284 }
2285
2286 void
AddConstructorInitializationStep(CXXConstructorDecl * Constructor,AccessSpecifier Access,QualType T)2287 InitializationSequence::AddConstructorInitializationStep(
2288 CXXConstructorDecl *Constructor,
2289 AccessSpecifier Access,
2290 QualType T) {
2291 Step S;
2292 S.Kind = SK_ConstructorInitialization;
2293 S.Type = T;
2294 S.Function.Function = Constructor;
2295 S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2296 Steps.push_back(S);
2297 }
2298
AddZeroInitializationStep(QualType T)2299 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2300 Step S;
2301 S.Kind = SK_ZeroInitialization;
2302 S.Type = T;
2303 Steps.push_back(S);
2304 }
2305
AddCAssignmentStep(QualType T)2306 void InitializationSequence::AddCAssignmentStep(QualType T) {
2307 Step S;
2308 S.Kind = SK_CAssignment;
2309 S.Type = T;
2310 Steps.push_back(S);
2311 }
2312
AddStringInitStep(QualType T)2313 void InitializationSequence::AddStringInitStep(QualType T) {
2314 Step S;
2315 S.Kind = SK_StringInit;
2316 S.Type = T;
2317 Steps.push_back(S);
2318 }
2319
AddObjCObjectConversionStep(QualType T)2320 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2321 Step S;
2322 S.Kind = SK_ObjCObjectConversion;
2323 S.Type = T;
2324 Steps.push_back(S);
2325 }
2326
AddArrayInitStep(QualType T)2327 void InitializationSequence::AddArrayInitStep(QualType T) {
2328 Step S;
2329 S.Kind = SK_ArrayInit;
2330 S.Type = T;
2331 Steps.push_back(S);
2332 }
2333
AddPassByIndirectCopyRestoreStep(QualType type,bool shouldCopy)2334 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2335 bool shouldCopy) {
2336 Step s;
2337 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2338 : SK_PassByIndirectRestore);
2339 s.Type = type;
2340 Steps.push_back(s);
2341 }
2342
AddProduceObjCObjectStep(QualType T)2343 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2344 Step S;
2345 S.Kind = SK_ProduceObjCObject;
2346 S.Type = T;
2347 Steps.push_back(S);
2348 }
2349
SetOverloadFailure(FailureKind Failure,OverloadingResult Result)2350 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2351 OverloadingResult Result) {
2352 setSequenceKind(FailedSequence);
2353 this->Failure = Failure;
2354 this->FailedOverloadResult = Result;
2355 }
2356
2357 //===----------------------------------------------------------------------===//
2358 // Attempt initialization
2359 //===----------------------------------------------------------------------===//
2360
MaybeProduceObjCObject(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)2361 static void MaybeProduceObjCObject(Sema &S,
2362 InitializationSequence &Sequence,
2363 const InitializedEntity &Entity) {
2364 if (!S.getLangOptions().ObjCAutoRefCount) return;
2365
2366 /// When initializing a parameter, produce the value if it's marked
2367 /// __attribute__((ns_consumed)).
2368 if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2369 if (!Entity.isParameterConsumed())
2370 return;
2371
2372 assert(Entity.getType()->isObjCRetainableType() &&
2373 "consuming an object of unretainable type?");
2374 Sequence.AddProduceObjCObjectStep(Entity.getType());
2375
2376 /// When initializing a return value, if the return type is a
2377 /// retainable type, then returns need to immediately retain the
2378 /// object. If an autorelease is required, it will be done at the
2379 /// last instant.
2380 } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2381 if (!Entity.getType()->isObjCRetainableType())
2382 return;
2383
2384 Sequence.AddProduceObjCObjectStep(Entity.getType());
2385 }
2386 }
2387
2388 /// \brief Attempt list initialization (C++0x [dcl.init.list])
TryListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence)2389 static void TryListInitialization(Sema &S,
2390 const InitializedEntity &Entity,
2391 const InitializationKind &Kind,
2392 InitListExpr *InitList,
2393 InitializationSequence &Sequence) {
2394 // FIXME: We only perform rudimentary checking of list
2395 // initializations at this point, then assume that any list
2396 // initialization of an array, aggregate, or scalar will be
2397 // well-formed. When we actually "perform" list initialization, we'll
2398 // do all of the necessary checking. C++0x initializer lists will
2399 // force us to perform more checking here.
2400
2401 QualType DestType = Entity.getType();
2402
2403 // C++ [dcl.init]p13:
2404 // If T is a scalar type, then a declaration of the form
2405 //
2406 // T x = { a };
2407 //
2408 // is equivalent to
2409 //
2410 // T x = a;
2411 if (DestType->isScalarType()) {
2412 if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
2413 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2414 return;
2415 }
2416
2417 // Assume scalar initialization from a single value works.
2418 } else if (DestType->isAggregateType()) {
2419 // Assume aggregate initialization works.
2420 } else if (DestType->isVectorType()) {
2421 // Assume vector initialization works.
2422 } else if (DestType->isReferenceType()) {
2423 // FIXME: C++0x defines behavior for this.
2424 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2425 return;
2426 } else if (DestType->isRecordType()) {
2427 // FIXME: C++0x defines behavior for this
2428 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2429 }
2430
2431 // Add a general "list initialization" step.
2432 Sequence.AddListInitializationStep(DestType);
2433 }
2434
2435 /// \brief Try a reference initialization that involves calling a conversion
2436 /// function.
TryRefInitWithConversionFunction(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,bool AllowRValues,InitializationSequence & Sequence)2437 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2438 const InitializedEntity &Entity,
2439 const InitializationKind &Kind,
2440 Expr *Initializer,
2441 bool AllowRValues,
2442 InitializationSequence &Sequence) {
2443 QualType DestType = Entity.getType();
2444 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2445 QualType T1 = cv1T1.getUnqualifiedType();
2446 QualType cv2T2 = Initializer->getType();
2447 QualType T2 = cv2T2.getUnqualifiedType();
2448
2449 bool DerivedToBase;
2450 bool ObjCConversion;
2451 bool ObjCLifetimeConversion;
2452 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2453 T1, T2, DerivedToBase,
2454 ObjCConversion,
2455 ObjCLifetimeConversion) &&
2456 "Must have incompatible references when binding via conversion");
2457 (void)DerivedToBase;
2458 (void)ObjCConversion;
2459 (void)ObjCLifetimeConversion;
2460
2461 // Build the candidate set directly in the initialization sequence
2462 // structure, so that it will persist if we fail.
2463 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2464 CandidateSet.clear();
2465
2466 // Determine whether we are allowed to call explicit constructors or
2467 // explicit conversion operators.
2468 bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2469
2470 const RecordType *T1RecordType = 0;
2471 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
2472 !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
2473 // The type we're converting to is a class type. Enumerate its constructors
2474 // to see if there is a suitable conversion.
2475 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2476
2477 DeclContext::lookup_iterator Con, ConEnd;
2478 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
2479 Con != ConEnd; ++Con) {
2480 NamedDecl *D = *Con;
2481 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2482
2483 // Find the constructor (which may be a template).
2484 CXXConstructorDecl *Constructor = 0;
2485 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2486 if (ConstructorTmpl)
2487 Constructor = cast<CXXConstructorDecl>(
2488 ConstructorTmpl->getTemplatedDecl());
2489 else
2490 Constructor = cast<CXXConstructorDecl>(D);
2491
2492 if (!Constructor->isInvalidDecl() &&
2493 Constructor->isConvertingConstructor(AllowExplicit)) {
2494 if (ConstructorTmpl)
2495 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2496 /*ExplicitArgs*/ 0,
2497 &Initializer, 1, CandidateSet,
2498 /*SuppressUserConversions=*/true);
2499 else
2500 S.AddOverloadCandidate(Constructor, FoundDecl,
2501 &Initializer, 1, CandidateSet,
2502 /*SuppressUserConversions=*/true);
2503 }
2504 }
2505 }
2506 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
2507 return OR_No_Viable_Function;
2508
2509 const RecordType *T2RecordType = 0;
2510 if ((T2RecordType = T2->getAs<RecordType>()) &&
2511 !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
2512 // The type we're converting from is a class type, enumerate its conversion
2513 // functions.
2514 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2515
2516 const UnresolvedSetImpl *Conversions
2517 = T2RecordDecl->getVisibleConversionFunctions();
2518 for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2519 E = Conversions->end(); I != E; ++I) {
2520 NamedDecl *D = *I;
2521 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2522 if (isa<UsingShadowDecl>(D))
2523 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2524
2525 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2526 CXXConversionDecl *Conv;
2527 if (ConvTemplate)
2528 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2529 else
2530 Conv = cast<CXXConversionDecl>(D);
2531
2532 // If the conversion function doesn't return a reference type,
2533 // it can't be considered for this conversion unless we're allowed to
2534 // consider rvalues.
2535 // FIXME: Do we need to make sure that we only consider conversion
2536 // candidates with reference-compatible results? That might be needed to
2537 // break recursion.
2538 if ((AllowExplicit || !Conv->isExplicit()) &&
2539 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2540 if (ConvTemplate)
2541 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2542 ActingDC, Initializer,
2543 DestType, CandidateSet);
2544 else
2545 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2546 Initializer, DestType, CandidateSet);
2547 }
2548 }
2549 }
2550 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
2551 return OR_No_Viable_Function;
2552
2553 SourceLocation DeclLoc = Initializer->getLocStart();
2554
2555 // Perform overload resolution. If it fails, return the failed result.
2556 OverloadCandidateSet::iterator Best;
2557 if (OverloadingResult Result
2558 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
2559 return Result;
2560
2561 FunctionDecl *Function = Best->Function;
2562
2563 // This is the overload that will actually be used for the initialization, so
2564 // mark it as used.
2565 S.MarkDeclarationReferenced(DeclLoc, Function);
2566
2567 // Compute the returned type of the conversion.
2568 if (isa<CXXConversionDecl>(Function))
2569 T2 = Function->getResultType();
2570 else
2571 T2 = cv1T1;
2572
2573 // Add the user-defined conversion step.
2574 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
2575 T2.getNonLValueExprType(S.Context));
2576
2577 // Determine whether we need to perform derived-to-base or
2578 // cv-qualification adjustments.
2579 ExprValueKind VK = VK_RValue;
2580 if (T2->isLValueReferenceType())
2581 VK = VK_LValue;
2582 else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
2583 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
2584
2585 bool NewDerivedToBase = false;
2586 bool NewObjCConversion = false;
2587 bool NewObjCLifetimeConversion = false;
2588 Sema::ReferenceCompareResult NewRefRelationship
2589 = S.CompareReferenceRelationship(DeclLoc, T1,
2590 T2.getNonLValueExprType(S.Context),
2591 NewDerivedToBase, NewObjCConversion,
2592 NewObjCLifetimeConversion);
2593 if (NewRefRelationship == Sema::Ref_Incompatible) {
2594 // If the type we've converted to is not reference-related to the
2595 // type we're looking for, then there is another conversion step
2596 // we need to perform to produce a temporary of the right type
2597 // that we'll be binding to.
2598 ImplicitConversionSequence ICS;
2599 ICS.setStandard();
2600 ICS.Standard = Best->FinalConversion;
2601 T2 = ICS.Standard.getToType(2);
2602 Sequence.AddConversionSequenceStep(ICS, T2);
2603 } else if (NewDerivedToBase)
2604 Sequence.AddDerivedToBaseCastStep(
2605 S.Context.getQualifiedType(T1,
2606 T2.getNonReferenceType().getQualifiers()),
2607 VK);
2608 else if (NewObjCConversion)
2609 Sequence.AddObjCObjectConversionStep(
2610 S.Context.getQualifiedType(T1,
2611 T2.getNonReferenceType().getQualifiers()));
2612
2613 if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
2614 Sequence.AddQualificationConversionStep(cv1T1, VK);
2615
2616 Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
2617 return OR_Success;
2618 }
2619
2620 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
TryReferenceInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)2621 static void TryReferenceInitialization(Sema &S,
2622 const InitializedEntity &Entity,
2623 const InitializationKind &Kind,
2624 Expr *Initializer,
2625 InitializationSequence &Sequence) {
2626 QualType DestType = Entity.getType();
2627 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2628 Qualifiers T1Quals;
2629 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2630 QualType cv2T2 = Initializer->getType();
2631 Qualifiers T2Quals;
2632 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
2633 SourceLocation DeclLoc = Initializer->getLocStart();
2634
2635 // If the initializer is the address of an overloaded function, try
2636 // to resolve the overloaded function. If all goes well, T2 is the
2637 // type of the resulting function.
2638 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2639 DeclAccessPair Found;
2640 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
2641 T1,
2642 false,
2643 Found)) {
2644 Sequence.AddAddressOverloadResolutionStep(Fn, Found);
2645 cv2T2 = Fn->getType();
2646 T2 = cv2T2.getUnqualifiedType();
2647 } else if (!T1->isRecordType()) {
2648 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2649 return;
2650 }
2651 }
2652
2653 // Compute some basic properties of the types and the initializer.
2654 bool isLValueRef = DestType->isLValueReferenceType();
2655 bool isRValueRef = !isLValueRef;
2656 bool DerivedToBase = false;
2657 bool ObjCConversion = false;
2658 bool ObjCLifetimeConversion = false;
2659 Expr::Classification InitCategory = Initializer->Classify(S.Context);
2660 Sema::ReferenceCompareResult RefRelationship
2661 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
2662 ObjCConversion, ObjCLifetimeConversion);
2663
2664 // C++0x [dcl.init.ref]p5:
2665 // A reference to type "cv1 T1" is initialized by an expression of type
2666 // "cv2 T2" as follows:
2667 //
2668 // - If the reference is an lvalue reference and the initializer
2669 // expression
2670 // Note the analogous bullet points for rvlaue refs to functions. Because
2671 // there are no function rvalues in C++, rvalue refs to functions are treated
2672 // like lvalue refs.
2673 OverloadingResult ConvOvlResult = OR_Success;
2674 bool T1Function = T1->isFunctionType();
2675 if (isLValueRef || T1Function) {
2676 if (InitCategory.isLValue() &&
2677 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
2678 (Kind.isCStyleOrFunctionalCast() &&
2679 RefRelationship == Sema::Ref_Related))) {
2680 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
2681 // reference-compatible with "cv2 T2," or
2682 //
2683 // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
2684 // bit-field when we're determining whether the reference initialization
2685 // can occur. However, we do pay attention to whether it is a bit-field
2686 // to decide whether we're actually binding to a temporary created from
2687 // the bit-field.
2688 if (DerivedToBase)
2689 Sequence.AddDerivedToBaseCastStep(
2690 S.Context.getQualifiedType(T1, T2Quals),
2691 VK_LValue);
2692 else if (ObjCConversion)
2693 Sequence.AddObjCObjectConversionStep(
2694 S.Context.getQualifiedType(T1, T2Quals));
2695
2696 if (T1Quals != T2Quals)
2697 Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
2698 bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
2699 (Initializer->getBitField() || Initializer->refersToVectorElement());
2700 Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
2701 return;
2702 }
2703
2704 // - has a class type (i.e., T2 is a class type), where T1 is not
2705 // reference-related to T2, and can be implicitly converted to an
2706 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
2707 // with "cv3 T3" (this conversion is selected by enumerating the
2708 // applicable conversion functions (13.3.1.6) and choosing the best
2709 // one through overload resolution (13.3)),
2710 // If we have an rvalue ref to function type here, the rhs must be
2711 // an rvalue.
2712 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
2713 (isLValueRef || InitCategory.isRValue())) {
2714 ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
2715 Initializer,
2716 /*AllowRValues=*/isRValueRef,
2717 Sequence);
2718 if (ConvOvlResult == OR_Success)
2719 return;
2720 if (ConvOvlResult != OR_No_Viable_Function) {
2721 Sequence.SetOverloadFailure(
2722 InitializationSequence::FK_ReferenceInitOverloadFailed,
2723 ConvOvlResult);
2724 }
2725 }
2726 }
2727
2728 // - Otherwise, the reference shall be an lvalue reference to a
2729 // non-volatile const type (i.e., cv1 shall be const), or the reference
2730 // shall be an rvalue reference.
2731 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
2732 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
2733 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2734 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2735 Sequence.SetOverloadFailure(
2736 InitializationSequence::FK_ReferenceInitOverloadFailed,
2737 ConvOvlResult);
2738 else
2739 Sequence.SetFailed(InitCategory.isLValue()
2740 ? (RefRelationship == Sema::Ref_Related
2741 ? InitializationSequence::FK_ReferenceInitDropsQualifiers
2742 : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
2743 : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
2744
2745 return;
2746 }
2747
2748 // - If the initializer expression
2749 // - is an xvalue, class prvalue, array prvalue, or function lvalue and
2750 // "cv1 T1" is reference-compatible with "cv2 T2"
2751 // Note: functions are handled below.
2752 if (!T1Function &&
2753 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
2754 (Kind.isCStyleOrFunctionalCast() &&
2755 RefRelationship == Sema::Ref_Related)) &&
2756 (InitCategory.isXValue() ||
2757 (InitCategory.isPRValue() && T2->isRecordType()) ||
2758 (InitCategory.isPRValue() && T2->isArrayType()))) {
2759 ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
2760 if (InitCategory.isPRValue() && T2->isRecordType()) {
2761 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
2762 // compiler the freedom to perform a copy here or bind to the
2763 // object, while C++0x requires that we bind directly to the
2764 // object. Hence, we always bind to the object without making an
2765 // extra copy. However, in C++03 requires that we check for the
2766 // presence of a suitable copy constructor:
2767 //
2768 // The constructor that would be used to make the copy shall
2769 // be callable whether or not the copy is actually done.
2770 if (!S.getLangOptions().CPlusPlus0x && !S.getLangOptions().Microsoft)
2771 Sequence.AddExtraneousCopyToTemporary(cv2T2);
2772 }
2773
2774 if (DerivedToBase)
2775 Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
2776 ValueKind);
2777 else if (ObjCConversion)
2778 Sequence.AddObjCObjectConversionStep(
2779 S.Context.getQualifiedType(T1, T2Quals));
2780
2781 if (T1Quals != T2Quals)
2782 Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
2783 Sequence.AddReferenceBindingStep(cv1T1,
2784 /*bindingTemporary=*/(InitCategory.isPRValue() && !T2->isArrayType()));
2785 return;
2786 }
2787
2788 // - has a class type (i.e., T2 is a class type), where T1 is not
2789 // reference-related to T2, and can be implicitly converted to an
2790 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
2791 // where "cv1 T1" is reference-compatible with "cv3 T3",
2792 if (T2->isRecordType()) {
2793 if (RefRelationship == Sema::Ref_Incompatible) {
2794 ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
2795 Kind, Initializer,
2796 /*AllowRValues=*/true,
2797 Sequence);
2798 if (ConvOvlResult)
2799 Sequence.SetOverloadFailure(
2800 InitializationSequence::FK_ReferenceInitOverloadFailed,
2801 ConvOvlResult);
2802
2803 return;
2804 }
2805
2806 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2807 return;
2808 }
2809
2810 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
2811 // from the initializer expression using the rules for a non-reference
2812 // copy initialization (8.5). The reference is then bound to the
2813 // temporary. [...]
2814
2815 // Determine whether we are allowed to call explicit constructors or
2816 // explicit conversion operators.
2817 bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
2818
2819 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
2820
2821 ImplicitConversionSequence ICS
2822 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
2823 /*SuppressUserConversions*/ false,
2824 AllowExplicit,
2825 /*FIXME:InOverloadResolution=*/false,
2826 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
2827 /*AllowObjCWritebackConversion=*/false);
2828
2829 if (ICS.isBad()) {
2830 // FIXME: Use the conversion function set stored in ICS to turn
2831 // this into an overloading ambiguity diagnostic. However, we need
2832 // to keep that set as an OverloadCandidateSet rather than as some
2833 // other kind of set.
2834 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2835 Sequence.SetOverloadFailure(
2836 InitializationSequence::FK_ReferenceInitOverloadFailed,
2837 ConvOvlResult);
2838 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
2839 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2840 else
2841 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
2842 return;
2843 } else {
2844 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
2845 }
2846
2847 // [...] If T1 is reference-related to T2, cv1 must be the
2848 // same cv-qualification as, or greater cv-qualification
2849 // than, cv2; otherwise, the program is ill-formed.
2850 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
2851 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
2852 if (RefRelationship == Sema::Ref_Related &&
2853 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
2854 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2855 return;
2856 }
2857
2858 // [...] If T1 is reference-related to T2 and the reference is an rvalue
2859 // reference, the initializer expression shall not be an lvalue.
2860 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
2861 InitCategory.isLValue()) {
2862 Sequence.SetFailed(
2863 InitializationSequence::FK_RValueReferenceBindingToLValue);
2864 return;
2865 }
2866
2867 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2868 return;
2869 }
2870
2871 /// \brief Attempt character array initialization from a string literal
2872 /// (C++ [dcl.init.string], C99 6.7.8).
TryStringLiteralInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)2873 static void TryStringLiteralInitialization(Sema &S,
2874 const InitializedEntity &Entity,
2875 const InitializationKind &Kind,
2876 Expr *Initializer,
2877 InitializationSequence &Sequence) {
2878 Sequence.AddStringInitStep(Entity.getType());
2879 }
2880
2881 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2882 /// enumerates the constructors of the initialized entity and performs overload
2883 /// resolution to select the best.
TryConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr ** Args,unsigned NumArgs,QualType DestType,InitializationSequence & Sequence)2884 static void TryConstructorInitialization(Sema &S,
2885 const InitializedEntity &Entity,
2886 const InitializationKind &Kind,
2887 Expr **Args, unsigned NumArgs,
2888 QualType DestType,
2889 InitializationSequence &Sequence) {
2890 // Build the candidate set directly in the initialization sequence
2891 // structure, so that it will persist if we fail.
2892 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2893 CandidateSet.clear();
2894
2895 // Determine whether we are allowed to call explicit constructors or
2896 // explicit conversion operators.
2897 bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
2898 Kind.getKind() == InitializationKind::IK_Value ||
2899 Kind.getKind() == InitializationKind::IK_Default);
2900
2901 // The type we're constructing needs to be complete.
2902 if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2903 Sequence.SetFailed(InitializationSequence::FK_Incomplete);
2904 return;
2905 }
2906
2907 // The type we're converting to is a class type. Enumerate its constructors
2908 // to see if one is suitable.
2909 const RecordType *DestRecordType = DestType->getAs<RecordType>();
2910 assert(DestRecordType && "Constructor initialization requires record type");
2911 CXXRecordDecl *DestRecordDecl
2912 = cast<CXXRecordDecl>(DestRecordType->getDecl());
2913
2914 DeclContext::lookup_iterator Con, ConEnd;
2915 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
2916 Con != ConEnd; ++Con) {
2917 NamedDecl *D = *Con;
2918 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2919 bool SuppressUserConversions = false;
2920
2921 // Find the constructor (which may be a template).
2922 CXXConstructorDecl *Constructor = 0;
2923 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2924 if (ConstructorTmpl)
2925 Constructor = cast<CXXConstructorDecl>(
2926 ConstructorTmpl->getTemplatedDecl());
2927 else {
2928 Constructor = cast<CXXConstructorDecl>(D);
2929
2930 // If we're performing copy initialization using a copy constructor, we
2931 // suppress user-defined conversions on the arguments.
2932 // FIXME: Move constructors?
2933 if (Kind.getKind() == InitializationKind::IK_Copy &&
2934 Constructor->isCopyConstructor())
2935 SuppressUserConversions = true;
2936 }
2937
2938 if (!Constructor->isInvalidDecl() &&
2939 (AllowExplicit || !Constructor->isExplicit())) {
2940 if (ConstructorTmpl)
2941 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2942 /*ExplicitArgs*/ 0,
2943 Args, NumArgs, CandidateSet,
2944 SuppressUserConversions);
2945 else
2946 S.AddOverloadCandidate(Constructor, FoundDecl,
2947 Args, NumArgs, CandidateSet,
2948 SuppressUserConversions);
2949 }
2950 }
2951
2952 SourceLocation DeclLoc = Kind.getLocation();
2953
2954 // Perform overload resolution. If it fails, return the failed result.
2955 OverloadCandidateSet::iterator Best;
2956 if (OverloadingResult Result
2957 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
2958 Sequence.SetOverloadFailure(
2959 InitializationSequence::FK_ConstructorOverloadFailed,
2960 Result);
2961 return;
2962 }
2963
2964 // C++0x [dcl.init]p6:
2965 // If a program calls for the default initialization of an object
2966 // of a const-qualified type T, T shall be a class type with a
2967 // user-provided default constructor.
2968 if (Kind.getKind() == InitializationKind::IK_Default &&
2969 Entity.getType().isConstQualified() &&
2970 cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2971 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2972 return;
2973 }
2974
2975 // Add the constructor initialization step. Any cv-qualification conversion is
2976 // subsumed by the initialization.
2977 Sequence.AddConstructorInitializationStep(
2978 cast<CXXConstructorDecl>(Best->Function),
2979 Best->FoundDecl.getAccess(),
2980 DestType);
2981 }
2982
2983 /// \brief Attempt value initialization (C++ [dcl.init]p7).
TryValueInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence)2984 static void TryValueInitialization(Sema &S,
2985 const InitializedEntity &Entity,
2986 const InitializationKind &Kind,
2987 InitializationSequence &Sequence) {
2988 // C++ [dcl.init]p5:
2989 //
2990 // To value-initialize an object of type T means:
2991 QualType T = Entity.getType();
2992
2993 // -- if T is an array type, then each element is value-initialized;
2994 while (const ArrayType *AT = S.Context.getAsArrayType(T))
2995 T = AT->getElementType();
2996
2997 if (const RecordType *RT = T->getAs<RecordType>()) {
2998 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2999 // -- if T is a class type (clause 9) with a user-declared
3000 // constructor (12.1), then the default constructor for T is
3001 // called (and the initialization is ill-formed if T has no
3002 // accessible default constructor);
3003 //
3004 // FIXME: we really want to refer to a single subobject of the array,
3005 // but Entity doesn't have a way to capture that (yet).
3006 if (ClassDecl->hasUserDeclaredConstructor())
3007 return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
3008
3009 // -- if T is a (possibly cv-qualified) non-union class type
3010 // without a user-provided constructor, then the object is
3011 // zero-initialized and, if T's implicitly-declared default
3012 // constructor is non-trivial, that constructor is called.
3013 if ((ClassDecl->getTagKind() == TTK_Class ||
3014 ClassDecl->getTagKind() == TTK_Struct)) {
3015 Sequence.AddZeroInitializationStep(Entity.getType());
3016 return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
3017 }
3018 }
3019 }
3020
3021 Sequence.AddZeroInitializationStep(Entity.getType());
3022 }
3023
3024 /// \brief Attempt default initialization (C++ [dcl.init]p6).
TryDefaultInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence)3025 static void TryDefaultInitialization(Sema &S,
3026 const InitializedEntity &Entity,
3027 const InitializationKind &Kind,
3028 InitializationSequence &Sequence) {
3029 assert(Kind.getKind() == InitializationKind::IK_Default);
3030
3031 // C++ [dcl.init]p6:
3032 // To default-initialize an object of type T means:
3033 // - if T is an array type, each element is default-initialized;
3034 QualType DestType = S.Context.getBaseElementType(Entity.getType());
3035
3036 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
3037 // constructor for T is called (and the initialization is ill-formed if
3038 // T has no accessible default constructor);
3039 if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
3040 TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
3041 return;
3042 }
3043
3044 // - otherwise, no initialization is performed.
3045
3046 // If a program calls for the default initialization of an object of
3047 // a const-qualified type T, T shall be a class type with a user-provided
3048 // default constructor.
3049 if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus) {
3050 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3051 return;
3052 }
3053
3054 // If the destination type has a lifetime property, zero-initialize it.
3055 if (DestType.getQualifiers().hasObjCLifetime()) {
3056 Sequence.AddZeroInitializationStep(Entity.getType());
3057 return;
3058 }
3059 }
3060
3061 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3062 /// which enumerates all conversion functions and performs overload resolution
3063 /// to select the best.
TryUserDefinedConversion(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)3064 static void TryUserDefinedConversion(Sema &S,
3065 const InitializedEntity &Entity,
3066 const InitializationKind &Kind,
3067 Expr *Initializer,
3068 InitializationSequence &Sequence) {
3069 QualType DestType = Entity.getType();
3070 assert(!DestType->isReferenceType() && "References are handled elsewhere");
3071 QualType SourceType = Initializer->getType();
3072 assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3073 "Must have a class type to perform a user-defined conversion");
3074
3075 // Build the candidate set directly in the initialization sequence
3076 // structure, so that it will persist if we fail.
3077 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3078 CandidateSet.clear();
3079
3080 // Determine whether we are allowed to call explicit constructors or
3081 // explicit conversion operators.
3082 bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
3083
3084 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3085 // The type we're converting to is a class type. Enumerate its constructors
3086 // to see if there is a suitable conversion.
3087 CXXRecordDecl *DestRecordDecl
3088 = cast<CXXRecordDecl>(DestRecordType->getDecl());
3089
3090 // Try to complete the type we're converting to.
3091 if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3092 DeclContext::lookup_iterator Con, ConEnd;
3093 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
3094 Con != ConEnd; ++Con) {
3095 NamedDecl *D = *Con;
3096 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3097
3098 // Find the constructor (which may be a template).
3099 CXXConstructorDecl *Constructor = 0;
3100 FunctionTemplateDecl *ConstructorTmpl
3101 = dyn_cast<FunctionTemplateDecl>(D);
3102 if (ConstructorTmpl)
3103 Constructor = cast<CXXConstructorDecl>(
3104 ConstructorTmpl->getTemplatedDecl());
3105 else
3106 Constructor = cast<CXXConstructorDecl>(D);
3107
3108 if (!Constructor->isInvalidDecl() &&
3109 Constructor->isConvertingConstructor(AllowExplicit)) {
3110 if (ConstructorTmpl)
3111 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3112 /*ExplicitArgs*/ 0,
3113 &Initializer, 1, CandidateSet,
3114 /*SuppressUserConversions=*/true);
3115 else
3116 S.AddOverloadCandidate(Constructor, FoundDecl,
3117 &Initializer, 1, CandidateSet,
3118 /*SuppressUserConversions=*/true);
3119 }
3120 }
3121 }
3122 }
3123
3124 SourceLocation DeclLoc = Initializer->getLocStart();
3125
3126 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3127 // The type we're converting from is a class type, enumerate its conversion
3128 // functions.
3129
3130 // We can only enumerate the conversion functions for a complete type; if
3131 // the type isn't complete, simply skip this step.
3132 if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3133 CXXRecordDecl *SourceRecordDecl
3134 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3135
3136 const UnresolvedSetImpl *Conversions
3137 = SourceRecordDecl->getVisibleConversionFunctions();
3138 for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3139 E = Conversions->end();
3140 I != E; ++I) {
3141 NamedDecl *D = *I;
3142 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3143 if (isa<UsingShadowDecl>(D))
3144 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3145
3146 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3147 CXXConversionDecl *Conv;
3148 if (ConvTemplate)
3149 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3150 else
3151 Conv = cast<CXXConversionDecl>(D);
3152
3153 if (AllowExplicit || !Conv->isExplicit()) {
3154 if (ConvTemplate)
3155 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3156 ActingDC, Initializer, DestType,
3157 CandidateSet);
3158 else
3159 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3160 Initializer, DestType, CandidateSet);
3161 }
3162 }
3163 }
3164 }
3165
3166 // Perform overload resolution. If it fails, return the failed result.
3167 OverloadCandidateSet::iterator Best;
3168 if (OverloadingResult Result
3169 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3170 Sequence.SetOverloadFailure(
3171 InitializationSequence::FK_UserConversionOverloadFailed,
3172 Result);
3173 return;
3174 }
3175
3176 FunctionDecl *Function = Best->Function;
3177 S.MarkDeclarationReferenced(DeclLoc, Function);
3178
3179 if (isa<CXXConstructorDecl>(Function)) {
3180 // Add the user-defined conversion step. Any cv-qualification conversion is
3181 // subsumed by the initialization.
3182 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3183 return;
3184 }
3185
3186 // Add the user-defined conversion step that calls the conversion function.
3187 QualType ConvType = Function->getCallResultType();
3188 if (ConvType->getAs<RecordType>()) {
3189 // If we're converting to a class type, there may be an copy if
3190 // the resulting temporary object (possible to create an object of
3191 // a base class type). That copy is not a separate conversion, so
3192 // we just make a note of the actual destination type (possibly a
3193 // base class of the type returned by the conversion function) and
3194 // let the user-defined conversion step handle the conversion.
3195 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3196 return;
3197 }
3198
3199 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
3200
3201 // If the conversion following the call to the conversion function
3202 // is interesting, add it as a separate step.
3203 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3204 Best->FinalConversion.Third) {
3205 ImplicitConversionSequence ICS;
3206 ICS.setStandard();
3207 ICS.Standard = Best->FinalConversion;
3208 Sequence.AddConversionSequenceStep(ICS, DestType);
3209 }
3210 }
3211
3212 /// The non-zero enum values here are indexes into diagnostic alternatives.
3213 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
3214
3215 /// Determines whether this expression is an acceptable ICR source.
isInvalidICRSource(ASTContext & C,Expr * e,bool isAddressOf)3216 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
3217 bool isAddressOf) {
3218 // Skip parens.
3219 e = e->IgnoreParens();
3220
3221 // Skip address-of nodes.
3222 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
3223 if (op->getOpcode() == UO_AddrOf)
3224 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true);
3225
3226 // Skip certain casts.
3227 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
3228 switch (ce->getCastKind()) {
3229 case CK_Dependent:
3230 case CK_BitCast:
3231 case CK_LValueBitCast:
3232 case CK_NoOp:
3233 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf);
3234
3235 case CK_ArrayToPointerDecay:
3236 return IIK_nonscalar;
3237
3238 case CK_NullToPointer:
3239 return IIK_okay;
3240
3241 default:
3242 break;
3243 }
3244
3245 // If we have a declaration reference, it had better be a local variable.
3246 } else if (isa<DeclRefExpr>(e) || isa<BlockDeclRefExpr>(e)) {
3247 if (!isAddressOf) return IIK_nonlocal;
3248
3249 VarDecl *var;
3250 if (isa<DeclRefExpr>(e)) {
3251 var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
3252 if (!var) return IIK_nonlocal;
3253 } else {
3254 var = cast<BlockDeclRefExpr>(e)->getDecl();
3255 }
3256
3257 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
3258
3259 // If we have a conditional operator, check both sides.
3260 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
3261 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf))
3262 return iik;
3263
3264 return isInvalidICRSource(C, cond->getRHS(), isAddressOf);
3265
3266 // These are never scalar.
3267 } else if (isa<ArraySubscriptExpr>(e)) {
3268 return IIK_nonscalar;
3269
3270 // Otherwise, it needs to be a null pointer constant.
3271 } else {
3272 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
3273 ? IIK_okay : IIK_nonlocal);
3274 }
3275
3276 return IIK_nonlocal;
3277 }
3278
3279 /// Check whether the given expression is a valid operand for an
3280 /// indirect copy/restore.
checkIndirectCopyRestoreSource(Sema & S,Expr * src)3281 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
3282 assert(src->isRValue());
3283
3284 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false);
3285 if (iik == IIK_okay) return;
3286
3287 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
3288 << ((unsigned) iik - 1) // shift index into diagnostic explanations
3289 << src->getSourceRange();
3290 }
3291
3292 /// \brief Determine whether we have compatible array types for the
3293 /// purposes of GNU by-copy array initialization.
hasCompatibleArrayTypes(ASTContext & Context,const ArrayType * Dest,const ArrayType * Source)3294 static bool hasCompatibleArrayTypes(ASTContext &Context,
3295 const ArrayType *Dest,
3296 const ArrayType *Source) {
3297 // If the source and destination array types are equivalent, we're
3298 // done.
3299 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
3300 return true;
3301
3302 // Make sure that the element types are the same.
3303 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
3304 return false;
3305
3306 // The only mismatch we allow is when the destination is an
3307 // incomplete array type and the source is a constant array type.
3308 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
3309 }
3310
tryObjCWritebackConversion(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity,Expr * Initializer)3311 static bool tryObjCWritebackConversion(Sema &S,
3312 InitializationSequence &Sequence,
3313 const InitializedEntity &Entity,
3314 Expr *Initializer) {
3315 bool ArrayDecay = false;
3316 QualType ArgType = Initializer->getType();
3317 QualType ArgPointee;
3318 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
3319 ArrayDecay = true;
3320 ArgPointee = ArgArrayType->getElementType();
3321 ArgType = S.Context.getPointerType(ArgPointee);
3322 }
3323
3324 // Handle write-back conversion.
3325 QualType ConvertedArgType;
3326 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
3327 ConvertedArgType))
3328 return false;
3329
3330 // We should copy unless we're passing to an argument explicitly
3331 // marked 'out'.
3332 bool ShouldCopy = true;
3333 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3334 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3335
3336 // Do we need an lvalue conversion?
3337 if (ArrayDecay || Initializer->isGLValue()) {
3338 ImplicitConversionSequence ICS;
3339 ICS.setStandard();
3340 ICS.Standard.setAsIdentityConversion();
3341
3342 QualType ResultType;
3343 if (ArrayDecay) {
3344 ICS.Standard.First = ICK_Array_To_Pointer;
3345 ResultType = S.Context.getPointerType(ArgPointee);
3346 } else {
3347 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
3348 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
3349 }
3350
3351 Sequence.AddConversionSequenceStep(ICS, ResultType);
3352 }
3353
3354 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3355 return true;
3356 }
3357
InitializationSequence(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr ** Args,unsigned NumArgs)3358 InitializationSequence::InitializationSequence(Sema &S,
3359 const InitializedEntity &Entity,
3360 const InitializationKind &Kind,
3361 Expr **Args,
3362 unsigned NumArgs)
3363 : FailedCandidateSet(Kind.getLocation()) {
3364 ASTContext &Context = S.Context;
3365
3366 // C++0x [dcl.init]p16:
3367 // The semantics of initializers are as follows. The destination type is
3368 // the type of the object or reference being initialized and the source
3369 // type is the type of the initializer expression. The source type is not
3370 // defined when the initializer is a braced-init-list or when it is a
3371 // parenthesized list of expressions.
3372 QualType DestType = Entity.getType();
3373
3374 if (DestType->isDependentType() ||
3375 Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
3376 SequenceKind = DependentSequence;
3377 return;
3378 }
3379
3380 // Almost everything is a normal sequence.
3381 setSequenceKind(NormalSequence);
3382
3383 for (unsigned I = 0; I != NumArgs; ++I)
3384 if (Args[I]->getObjectKind() == OK_ObjCProperty) {
3385 ExprResult Result = S.ConvertPropertyForRValue(Args[I]);
3386 if (Result.isInvalid()) {
3387 SetFailed(FK_ConversionFromPropertyFailed);
3388 return;
3389 }
3390 Args[I] = Result.take();
3391 }
3392
3393 QualType SourceType;
3394 Expr *Initializer = 0;
3395 if (NumArgs == 1) {
3396 Initializer = Args[0];
3397 if (!isa<InitListExpr>(Initializer))
3398 SourceType = Initializer->getType();
3399 }
3400
3401 // - If the initializer is a braced-init-list, the object is
3402 // list-initialized (8.5.4).
3403 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
3404 TryListInitialization(S, Entity, Kind, InitList, *this);
3405 return;
3406 }
3407
3408 // - If the destination type is a reference type, see 8.5.3.
3409 if (DestType->isReferenceType()) {
3410 // C++0x [dcl.init.ref]p1:
3411 // A variable declared to be a T& or T&&, that is, "reference to type T"
3412 // (8.3.2), shall be initialized by an object, or function, of type T or
3413 // by an object that can be converted into a T.
3414 // (Therefore, multiple arguments are not permitted.)
3415 if (NumArgs != 1)
3416 SetFailed(FK_TooManyInitsForReference);
3417 else
3418 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
3419 return;
3420 }
3421
3422 // - If the initializer is (), the object is value-initialized.
3423 if (Kind.getKind() == InitializationKind::IK_Value ||
3424 (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
3425 TryValueInitialization(S, Entity, Kind, *this);
3426 return;
3427 }
3428
3429 // Handle default initialization.
3430 if (Kind.getKind() == InitializationKind::IK_Default) {
3431 TryDefaultInitialization(S, Entity, Kind, *this);
3432 return;
3433 }
3434
3435 // - If the destination type is an array of characters, an array of
3436 // char16_t, an array of char32_t, or an array of wchar_t, and the
3437 // initializer is a string literal, see 8.5.2.
3438 // - Otherwise, if the destination type is an array, the program is
3439 // ill-formed.
3440 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
3441 if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
3442 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
3443 return;
3444 }
3445
3446 // Note: as an GNU C extension, we allow initialization of an
3447 // array from a compound literal that creates an array of the same
3448 // type, so long as the initializer has no side effects.
3449 if (!S.getLangOptions().CPlusPlus && Initializer &&
3450 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
3451 Initializer->getType()->isArrayType()) {
3452 const ArrayType *SourceAT
3453 = Context.getAsArrayType(Initializer->getType());
3454 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
3455 SetFailed(FK_ArrayTypeMismatch);
3456 else if (Initializer->HasSideEffects(S.Context))
3457 SetFailed(FK_NonConstantArrayInit);
3458 else {
3459 AddArrayInitStep(DestType);
3460 }
3461 } else if (DestAT->getElementType()->isAnyCharacterType())
3462 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
3463 else
3464 SetFailed(FK_ArrayNeedsInitList);
3465
3466 return;
3467 }
3468
3469 // Determine whether we should consider writeback conversions for
3470 // Objective-C ARC.
3471 bool allowObjCWritebackConversion = S.getLangOptions().ObjCAutoRefCount &&
3472 Entity.getKind() == InitializedEntity::EK_Parameter;
3473
3474 // We're at the end of the line for C: it's either a write-back conversion
3475 // or it's a C assignment. There's no need to check anything else.
3476 if (!S.getLangOptions().CPlusPlus) {
3477 // If allowed, check whether this is an Objective-C writeback conversion.
3478 if (allowObjCWritebackConversion &&
3479 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
3480 return;
3481 }
3482
3483 // Handle initialization in C
3484 AddCAssignmentStep(DestType);
3485 MaybeProduceObjCObject(S, *this, Entity);
3486 return;
3487 }
3488
3489 assert(S.getLangOptions().CPlusPlus);
3490
3491 // - If the destination type is a (possibly cv-qualified) class type:
3492 if (DestType->isRecordType()) {
3493 // - If the initialization is direct-initialization, or if it is
3494 // copy-initialization where the cv-unqualified version of the
3495 // source type is the same class as, or a derived class of, the
3496 // class of the destination, constructors are considered. [...]
3497 if (Kind.getKind() == InitializationKind::IK_Direct ||
3498 (Kind.getKind() == InitializationKind::IK_Copy &&
3499 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
3500 S.IsDerivedFrom(SourceType, DestType))))
3501 TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
3502 Entity.getType(), *this);
3503 // - Otherwise (i.e., for the remaining copy-initialization cases),
3504 // user-defined conversion sequences that can convert from the source
3505 // type to the destination type or (when a conversion function is
3506 // used) to a derived class thereof are enumerated as described in
3507 // 13.3.1.4, and the best one is chosen through overload resolution
3508 // (13.3).
3509 else
3510 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3511 return;
3512 }
3513
3514 if (NumArgs > 1) {
3515 SetFailed(FK_TooManyInitsForScalar);
3516 return;
3517 }
3518 assert(NumArgs == 1 && "Zero-argument case handled above");
3519
3520 // - Otherwise, if the source type is a (possibly cv-qualified) class
3521 // type, conversion functions are considered.
3522 if (!SourceType.isNull() && SourceType->isRecordType()) {
3523 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3524 MaybeProduceObjCObject(S, *this, Entity);
3525 return;
3526 }
3527
3528 // - Otherwise, the initial value of the object being initialized is the
3529 // (possibly converted) value of the initializer expression. Standard
3530 // conversions (Clause 4) will be used, if necessary, to convert the
3531 // initializer expression to the cv-unqualified version of the
3532 // destination type; no user-defined conversions are considered.
3533
3534 ImplicitConversionSequence ICS
3535 = S.TryImplicitConversion(Initializer, Entity.getType(),
3536 /*SuppressUserConversions*/true,
3537 /*AllowExplicitConversions*/ false,
3538 /*InOverloadResolution*/ false,
3539 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3540 allowObjCWritebackConversion);
3541
3542 if (ICS.isStandard() &&
3543 ICS.Standard.Second == ICK_Writeback_Conversion) {
3544 // Objective-C ARC writeback conversion.
3545
3546 // We should copy unless we're passing to an argument explicitly
3547 // marked 'out'.
3548 bool ShouldCopy = true;
3549 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3550 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3551
3552 // If there was an lvalue adjustment, add it as a separate conversion.
3553 if (ICS.Standard.First == ICK_Array_To_Pointer ||
3554 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
3555 ImplicitConversionSequence LvalueICS;
3556 LvalueICS.setStandard();
3557 LvalueICS.Standard.setAsIdentityConversion();
3558 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
3559 LvalueICS.Standard.First = ICS.Standard.First;
3560 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
3561 }
3562
3563 AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3564 } else if (ICS.isBad()) {
3565 DeclAccessPair dap;
3566 if (Initializer->getType() == Context.OverloadTy &&
3567 !S.ResolveAddressOfOverloadedFunction(Initializer
3568 , DestType, false, dap))
3569 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3570 else
3571 SetFailed(InitializationSequence::FK_ConversionFailed);
3572 } else {
3573 AddConversionSequenceStep(ICS, Entity.getType());
3574
3575 MaybeProduceObjCObject(S, *this, Entity);
3576 }
3577 }
3578
~InitializationSequence()3579 InitializationSequence::~InitializationSequence() {
3580 for (llvm::SmallVectorImpl<Step>::iterator Step = Steps.begin(),
3581 StepEnd = Steps.end();
3582 Step != StepEnd; ++Step)
3583 Step->Destroy();
3584 }
3585
3586 //===----------------------------------------------------------------------===//
3587 // Perform initialization
3588 //===----------------------------------------------------------------------===//
3589 static Sema::AssignmentAction
getAssignmentAction(const InitializedEntity & Entity)3590 getAssignmentAction(const InitializedEntity &Entity) {
3591 switch(Entity.getKind()) {
3592 case InitializedEntity::EK_Variable:
3593 case InitializedEntity::EK_New:
3594 case InitializedEntity::EK_Exception:
3595 case InitializedEntity::EK_Base:
3596 case InitializedEntity::EK_Delegating:
3597 return Sema::AA_Initializing;
3598
3599 case InitializedEntity::EK_Parameter:
3600 if (Entity.getDecl() &&
3601 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
3602 return Sema::AA_Sending;
3603
3604 return Sema::AA_Passing;
3605
3606 case InitializedEntity::EK_Result:
3607 return Sema::AA_Returning;
3608
3609 case InitializedEntity::EK_Temporary:
3610 // FIXME: Can we tell apart casting vs. converting?
3611 return Sema::AA_Casting;
3612
3613 case InitializedEntity::EK_Member:
3614 case InitializedEntity::EK_ArrayElement:
3615 case InitializedEntity::EK_VectorElement:
3616 case InitializedEntity::EK_BlockElement:
3617 return Sema::AA_Initializing;
3618 }
3619
3620 return Sema::AA_Converting;
3621 }
3622
3623 /// \brief Whether we should binding a created object as a temporary when
3624 /// initializing the given entity.
shouldBindAsTemporary(const InitializedEntity & Entity)3625 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
3626 switch (Entity.getKind()) {
3627 case InitializedEntity::EK_ArrayElement:
3628 case InitializedEntity::EK_Member:
3629 case InitializedEntity::EK_Result:
3630 case InitializedEntity::EK_New:
3631 case InitializedEntity::EK_Variable:
3632 case InitializedEntity::EK_Base:
3633 case InitializedEntity::EK_Delegating:
3634 case InitializedEntity::EK_VectorElement:
3635 case InitializedEntity::EK_Exception:
3636 case InitializedEntity::EK_BlockElement:
3637 return false;
3638
3639 case InitializedEntity::EK_Parameter:
3640 case InitializedEntity::EK_Temporary:
3641 return true;
3642 }
3643
3644 llvm_unreachable("missed an InitializedEntity kind?");
3645 }
3646
3647 /// \brief Whether the given entity, when initialized with an object
3648 /// created for that initialization, requires destruction.
shouldDestroyTemporary(const InitializedEntity & Entity)3649 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
3650 switch (Entity.getKind()) {
3651 case InitializedEntity::EK_Member:
3652 case InitializedEntity::EK_Result:
3653 case InitializedEntity::EK_New:
3654 case InitializedEntity::EK_Base:
3655 case InitializedEntity::EK_Delegating:
3656 case InitializedEntity::EK_VectorElement:
3657 case InitializedEntity::EK_BlockElement:
3658 return false;
3659
3660 case InitializedEntity::EK_Variable:
3661 case InitializedEntity::EK_Parameter:
3662 case InitializedEntity::EK_Temporary:
3663 case InitializedEntity::EK_ArrayElement:
3664 case InitializedEntity::EK_Exception:
3665 return true;
3666 }
3667
3668 llvm_unreachable("missed an InitializedEntity kind?");
3669 }
3670
3671 /// \brief Make a (potentially elidable) temporary copy of the object
3672 /// provided by the given initializer by calling the appropriate copy
3673 /// constructor.
3674 ///
3675 /// \param S The Sema object used for type-checking.
3676 ///
3677 /// \param T The type of the temporary object, which must either be
3678 /// the type of the initializer expression or a superclass thereof.
3679 ///
3680 /// \param Enter The entity being initialized.
3681 ///
3682 /// \param CurInit The initializer expression.
3683 ///
3684 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
3685 /// is permitted in C++03 (but not C++0x) when binding a reference to
3686 /// an rvalue.
3687 ///
3688 /// \returns An expression that copies the initializer expression into
3689 /// a temporary object, or an error expression if a copy could not be
3690 /// created.
CopyObject(Sema & S,QualType T,const InitializedEntity & Entity,ExprResult CurInit,bool IsExtraneousCopy)3691 static ExprResult CopyObject(Sema &S,
3692 QualType T,
3693 const InitializedEntity &Entity,
3694 ExprResult CurInit,
3695 bool IsExtraneousCopy) {
3696 // Determine which class type we're copying to.
3697 Expr *CurInitExpr = (Expr *)CurInit.get();
3698 CXXRecordDecl *Class = 0;
3699 if (const RecordType *Record = T->getAs<RecordType>())
3700 Class = cast<CXXRecordDecl>(Record->getDecl());
3701 if (!Class)
3702 return move(CurInit);
3703
3704 // C++0x [class.copy]p32:
3705 // When certain criteria are met, an implementation is allowed to
3706 // omit the copy/move construction of a class object, even if the
3707 // copy/move constructor and/or destructor for the object have
3708 // side effects. [...]
3709 // - when a temporary class object that has not been bound to a
3710 // reference (12.2) would be copied/moved to a class object
3711 // with the same cv-unqualified type, the copy/move operation
3712 // can be omitted by constructing the temporary object
3713 // directly into the target of the omitted copy/move
3714 //
3715 // Note that the other three bullets are handled elsewhere. Copy
3716 // elision for return statements and throw expressions are handled as part
3717 // of constructor initialization, while copy elision for exception handlers
3718 // is handled by the run-time.
3719 bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
3720 SourceLocation Loc;
3721 switch (Entity.getKind()) {
3722 case InitializedEntity::EK_Result:
3723 Loc = Entity.getReturnLoc();
3724 break;
3725
3726 case InitializedEntity::EK_Exception:
3727 Loc = Entity.getThrowLoc();
3728 break;
3729
3730 case InitializedEntity::EK_Variable:
3731 Loc = Entity.getDecl()->getLocation();
3732 break;
3733
3734 case InitializedEntity::EK_ArrayElement:
3735 case InitializedEntity::EK_Member:
3736 case InitializedEntity::EK_Parameter:
3737 case InitializedEntity::EK_Temporary:
3738 case InitializedEntity::EK_New:
3739 case InitializedEntity::EK_Base:
3740 case InitializedEntity::EK_Delegating:
3741 case InitializedEntity::EK_VectorElement:
3742 case InitializedEntity::EK_BlockElement:
3743 Loc = CurInitExpr->getLocStart();
3744 break;
3745 }
3746
3747 // Make sure that the type we are copying is complete.
3748 if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
3749 return move(CurInit);
3750
3751 // Perform overload resolution using the class's copy/move constructors.
3752 DeclContext::lookup_iterator Con, ConEnd;
3753 OverloadCandidateSet CandidateSet(Loc);
3754 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
3755 Con != ConEnd; ++Con) {
3756 // Only consider copy/move constructors and constructor templates. Per
3757 // C++0x [dcl.init]p16, second bullet to class types, this
3758 // initialization is direct-initialization.
3759 CXXConstructorDecl *Constructor = 0;
3760
3761 if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
3762 // Handle copy/moveconstructors, only.
3763 if (!Constructor || Constructor->isInvalidDecl() ||
3764 !Constructor->isCopyOrMoveConstructor() ||
3765 !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
3766 continue;
3767
3768 DeclAccessPair FoundDecl
3769 = DeclAccessPair::make(Constructor, Constructor->getAccess());
3770 S.AddOverloadCandidate(Constructor, FoundDecl,
3771 &CurInitExpr, 1, CandidateSet);
3772 continue;
3773 }
3774
3775 // Handle constructor templates.
3776 FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
3777 if (ConstructorTmpl->isInvalidDecl())
3778 continue;
3779
3780 Constructor = cast<CXXConstructorDecl>(
3781 ConstructorTmpl->getTemplatedDecl());
3782 if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
3783 continue;
3784
3785 // FIXME: Do we need to limit this to copy-constructor-like
3786 // candidates?
3787 DeclAccessPair FoundDecl
3788 = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
3789 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
3790 &CurInitExpr, 1, CandidateSet, true);
3791 }
3792
3793 OverloadCandidateSet::iterator Best;
3794 switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
3795 case OR_Success:
3796 break;
3797
3798 case OR_No_Viable_Function:
3799 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
3800 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
3801 : diag::err_temp_copy_no_viable)
3802 << (int)Entity.getKind() << CurInitExpr->getType()
3803 << CurInitExpr->getSourceRange();
3804 CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1);
3805 if (!IsExtraneousCopy || S.isSFINAEContext())
3806 return ExprError();
3807 return move(CurInit);
3808
3809 case OR_Ambiguous:
3810 S.Diag(Loc, diag::err_temp_copy_ambiguous)
3811 << (int)Entity.getKind() << CurInitExpr->getType()
3812 << CurInitExpr->getSourceRange();
3813 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1);
3814 return ExprError();
3815
3816 case OR_Deleted:
3817 S.Diag(Loc, diag::err_temp_copy_deleted)
3818 << (int)Entity.getKind() << CurInitExpr->getType()
3819 << CurInitExpr->getSourceRange();
3820 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3821 << 1 << Best->Function->isDeleted();
3822 return ExprError();
3823 }
3824
3825 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3826 ASTOwningVector<Expr*> ConstructorArgs(S);
3827 CurInit.release(); // Ownership transferred into MultiExprArg, below.
3828
3829 S.CheckConstructorAccess(Loc, Constructor, Entity,
3830 Best->FoundDecl.getAccess(), IsExtraneousCopy);
3831
3832 if (IsExtraneousCopy) {
3833 // If this is a totally extraneous copy for C++03 reference
3834 // binding purposes, just return the original initialization
3835 // expression. We don't generate an (elided) copy operation here
3836 // because doing so would require us to pass down a flag to avoid
3837 // infinite recursion, where each step adds another extraneous,
3838 // elidable copy.
3839
3840 // Instantiate the default arguments of any extra parameters in
3841 // the selected copy constructor, as if we were going to create a
3842 // proper call to the copy constructor.
3843 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
3844 ParmVarDecl *Parm = Constructor->getParamDecl(I);
3845 if (S.RequireCompleteType(Loc, Parm->getType(),
3846 S.PDiag(diag::err_call_incomplete_argument)))
3847 break;
3848
3849 // Build the default argument expression; we don't actually care
3850 // if this succeeds or not, because this routine will complain
3851 // if there was a problem.
3852 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
3853 }
3854
3855 return S.Owned(CurInitExpr);
3856 }
3857
3858 S.MarkDeclarationReferenced(Loc, Constructor);
3859
3860 // Determine the arguments required to actually perform the
3861 // constructor call (we might have derived-to-base conversions, or
3862 // the copy constructor may have default arguments).
3863 if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
3864 Loc, ConstructorArgs))
3865 return ExprError();
3866
3867 // Actually perform the constructor call.
3868 CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
3869 move_arg(ConstructorArgs),
3870 /*ZeroInit*/ false,
3871 CXXConstructExpr::CK_Complete,
3872 SourceRange());
3873
3874 // If we're supposed to bind temporaries, do so.
3875 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
3876 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3877 return move(CurInit);
3878 }
3879
PrintInitLocationNote(Sema & S,const InitializedEntity & Entity)3880 void InitializationSequence::PrintInitLocationNote(Sema &S,
3881 const InitializedEntity &Entity) {
3882 if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
3883 if (Entity.getDecl()->getLocation().isInvalid())
3884 return;
3885
3886 if (Entity.getDecl()->getDeclName())
3887 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
3888 << Entity.getDecl()->getDeclName();
3889 else
3890 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
3891 }
3892 }
3893
isReferenceBinding(const InitializationSequence::Step & s)3894 static bool isReferenceBinding(const InitializationSequence::Step &s) {
3895 return s.Kind == InitializationSequence::SK_BindReference ||
3896 s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
3897 }
3898
3899 ExprResult
Perform(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType * ResultType)3900 InitializationSequence::Perform(Sema &S,
3901 const InitializedEntity &Entity,
3902 const InitializationKind &Kind,
3903 MultiExprArg Args,
3904 QualType *ResultType) {
3905 if (Failed()) {
3906 unsigned NumArgs = Args.size();
3907 Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
3908 return ExprError();
3909 }
3910
3911 if (getKind() == DependentSequence) {
3912 // If the declaration is a non-dependent, incomplete array type
3913 // that has an initializer, then its type will be completed once
3914 // the initializer is instantiated.
3915 if (ResultType && !Entity.getType()->isDependentType() &&
3916 Args.size() == 1) {
3917 QualType DeclType = Entity.getType();
3918 if (const IncompleteArrayType *ArrayT
3919 = S.Context.getAsIncompleteArrayType(DeclType)) {
3920 // FIXME: We don't currently have the ability to accurately
3921 // compute the length of an initializer list without
3922 // performing full type-checking of the initializer list
3923 // (since we have to determine where braces are implicitly
3924 // introduced and such). So, we fall back to making the array
3925 // type a dependently-sized array type with no specified
3926 // bound.
3927 if (isa<InitListExpr>((Expr *)Args.get()[0])) {
3928 SourceRange Brackets;
3929
3930 // Scavange the location of the brackets from the entity, if we can.
3931 if (DeclaratorDecl *DD = Entity.getDecl()) {
3932 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
3933 TypeLoc TL = TInfo->getTypeLoc();
3934 if (IncompleteArrayTypeLoc *ArrayLoc
3935 = dyn_cast<IncompleteArrayTypeLoc>(&TL))
3936 Brackets = ArrayLoc->getBracketsRange();
3937 }
3938 }
3939
3940 *ResultType
3941 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
3942 /*NumElts=*/0,
3943 ArrayT->getSizeModifier(),
3944 ArrayT->getIndexTypeCVRQualifiers(),
3945 Brackets);
3946 }
3947
3948 }
3949 }
3950 assert(Kind.getKind() == InitializationKind::IK_Copy ||
3951 Kind.isExplicitCast());
3952 return ExprResult(Args.release()[0]);
3953 }
3954
3955 // No steps means no initialization.
3956 if (Steps.empty())
3957 return S.Owned((Expr *)0);
3958
3959 QualType DestType = Entity.getType().getNonReferenceType();
3960 // FIXME: Ugly hack around the fact that Entity.getType() is not
3961 // the same as Entity.getDecl()->getType() in cases involving type merging,
3962 // and we want latter when it makes sense.
3963 if (ResultType)
3964 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
3965 Entity.getType();
3966
3967 ExprResult CurInit = S.Owned((Expr *)0);
3968
3969 // For initialization steps that start with a single initializer,
3970 // grab the only argument out the Args and place it into the "current"
3971 // initializer.
3972 switch (Steps.front().Kind) {
3973 case SK_ResolveAddressOfOverloadedFunction:
3974 case SK_CastDerivedToBaseRValue:
3975 case SK_CastDerivedToBaseXValue:
3976 case SK_CastDerivedToBaseLValue:
3977 case SK_BindReference:
3978 case SK_BindReferenceToTemporary:
3979 case SK_ExtraneousCopyToTemporary:
3980 case SK_UserConversion:
3981 case SK_QualificationConversionLValue:
3982 case SK_QualificationConversionXValue:
3983 case SK_QualificationConversionRValue:
3984 case SK_ConversionSequence:
3985 case SK_ListInitialization:
3986 case SK_CAssignment:
3987 case SK_StringInit:
3988 case SK_ObjCObjectConversion:
3989 case SK_ArrayInit:
3990 case SK_PassByIndirectCopyRestore:
3991 case SK_PassByIndirectRestore:
3992 case SK_ProduceObjCObject: {
3993 assert(Args.size() == 1);
3994 CurInit = Args.get()[0];
3995 if (!CurInit.get()) return ExprError();
3996
3997 // Read from a property when initializing something with it.
3998 if (CurInit.get()->getObjectKind() == OK_ObjCProperty) {
3999 CurInit = S.ConvertPropertyForRValue(CurInit.take());
4000 if (CurInit.isInvalid())
4001 return ExprError();
4002 }
4003 break;
4004 }
4005
4006 case SK_ConstructorInitialization:
4007 case SK_ZeroInitialization:
4008 break;
4009 }
4010
4011 // Walk through the computed steps for the initialization sequence,
4012 // performing the specified conversions along the way.
4013 bool ConstructorInitRequiresZeroInit = false;
4014 for (step_iterator Step = step_begin(), StepEnd = step_end();
4015 Step != StepEnd; ++Step) {
4016 if (CurInit.isInvalid())
4017 return ExprError();
4018
4019 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
4020
4021 switch (Step->Kind) {
4022 case SK_ResolveAddressOfOverloadedFunction:
4023 // Overload resolution determined which function invoke; update the
4024 // initializer to reflect that choice.
4025 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
4026 S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
4027 CurInit = S.FixOverloadedFunctionReference(move(CurInit),
4028 Step->Function.FoundDecl,
4029 Step->Function.Function);
4030 break;
4031
4032 case SK_CastDerivedToBaseRValue:
4033 case SK_CastDerivedToBaseXValue:
4034 case SK_CastDerivedToBaseLValue: {
4035 // We have a derived-to-base cast that produces either an rvalue or an
4036 // lvalue. Perform that cast.
4037
4038 CXXCastPath BasePath;
4039
4040 // Casts to inaccessible base classes are allowed with C-style casts.
4041 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
4042 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
4043 CurInit.get()->getLocStart(),
4044 CurInit.get()->getSourceRange(),
4045 &BasePath, IgnoreBaseAccess))
4046 return ExprError();
4047
4048 if (S.BasePathInvolvesVirtualBase(BasePath)) {
4049 QualType T = SourceType;
4050 if (const PointerType *Pointer = T->getAs<PointerType>())
4051 T = Pointer->getPointeeType();
4052 if (const RecordType *RecordTy = T->getAs<RecordType>())
4053 S.MarkVTableUsed(CurInit.get()->getLocStart(),
4054 cast<CXXRecordDecl>(RecordTy->getDecl()));
4055 }
4056
4057 ExprValueKind VK =
4058 Step->Kind == SK_CastDerivedToBaseLValue ?
4059 VK_LValue :
4060 (Step->Kind == SK_CastDerivedToBaseXValue ?
4061 VK_XValue :
4062 VK_RValue);
4063 CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4064 Step->Type,
4065 CK_DerivedToBase,
4066 CurInit.get(),
4067 &BasePath, VK));
4068 break;
4069 }
4070
4071 case SK_BindReference:
4072 if (FieldDecl *BitField = CurInit.get()->getBitField()) {
4073 // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
4074 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
4075 << Entity.getType().isVolatileQualified()
4076 << BitField->getDeclName()
4077 << CurInit.get()->getSourceRange();
4078 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
4079 return ExprError();
4080 }
4081
4082 if (CurInit.get()->refersToVectorElement()) {
4083 // References cannot bind to vector elements.
4084 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
4085 << Entity.getType().isVolatileQualified()
4086 << CurInit.get()->getSourceRange();
4087 PrintInitLocationNote(S, Entity);
4088 return ExprError();
4089 }
4090
4091 // Reference binding does not have any corresponding ASTs.
4092
4093 // Check exception specifications
4094 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4095 return ExprError();
4096
4097 break;
4098
4099 case SK_BindReferenceToTemporary:
4100 // Check exception specifications
4101 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4102 return ExprError();
4103
4104 // Materialize the temporary into memory.
4105 CurInit = new (S.Context) MaterializeTemporaryExpr(
4106 Entity.getType().getNonReferenceType(),
4107 CurInit.get(),
4108 Entity.getType()->isLValueReferenceType());
4109
4110 // If we're binding to an Objective-C object that has lifetime, we
4111 // need cleanups.
4112 if (S.getLangOptions().ObjCAutoRefCount &&
4113 CurInit.get()->getType()->isObjCLifetimeType())
4114 S.ExprNeedsCleanups = true;
4115
4116 break;
4117
4118 case SK_ExtraneousCopyToTemporary:
4119 CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
4120 /*IsExtraneousCopy=*/true);
4121 break;
4122
4123 case SK_UserConversion: {
4124 // We have a user-defined conversion that invokes either a constructor
4125 // or a conversion function.
4126 CastKind CastKind;
4127 bool IsCopy = false;
4128 FunctionDecl *Fn = Step->Function.Function;
4129 DeclAccessPair FoundFn = Step->Function.FoundDecl;
4130 bool CreatedObject = false;
4131 bool IsLvalue = false;
4132 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
4133 // Build a call to the selected constructor.
4134 ASTOwningVector<Expr*> ConstructorArgs(S);
4135 SourceLocation Loc = CurInit.get()->getLocStart();
4136 CurInit.release(); // Ownership transferred into MultiExprArg, below.
4137
4138 // Determine the arguments required to actually perform the constructor
4139 // call.
4140 Expr *Arg = CurInit.get();
4141 if (S.CompleteConstructorCall(Constructor,
4142 MultiExprArg(&Arg, 1),
4143 Loc, ConstructorArgs))
4144 return ExprError();
4145
4146 // Build the an expression that constructs a temporary.
4147 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
4148 move_arg(ConstructorArgs),
4149 /*ZeroInit*/ false,
4150 CXXConstructExpr::CK_Complete,
4151 SourceRange());
4152 if (CurInit.isInvalid())
4153 return ExprError();
4154
4155 S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
4156 FoundFn.getAccess());
4157 S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
4158
4159 CastKind = CK_ConstructorConversion;
4160 QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
4161 if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
4162 S.IsDerivedFrom(SourceType, Class))
4163 IsCopy = true;
4164
4165 CreatedObject = true;
4166 } else {
4167 // Build a call to the conversion function.
4168 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
4169 IsLvalue = Conversion->getResultType()->isLValueReferenceType();
4170 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
4171 FoundFn);
4172 S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
4173
4174 // FIXME: Should we move this initialization into a separate
4175 // derived-to-base conversion? I believe the answer is "no", because
4176 // we don't want to turn off access control here for c-style casts.
4177 ExprResult CurInitExprRes =
4178 S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
4179 FoundFn, Conversion);
4180 if(CurInitExprRes.isInvalid())
4181 return ExprError();
4182 CurInit = move(CurInitExprRes);
4183
4184 // Build the actual call to the conversion function.
4185 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion);
4186 if (CurInit.isInvalid() || !CurInit.get())
4187 return ExprError();
4188
4189 CastKind = CK_UserDefinedConversion;
4190
4191 CreatedObject = Conversion->getResultType()->isRecordType();
4192 }
4193
4194 bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
4195 if (RequiresCopy || shouldBindAsTemporary(Entity))
4196 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4197 else if (CreatedObject && shouldDestroyTemporary(Entity)) {
4198 QualType T = CurInit.get()->getType();
4199 if (const RecordType *Record = T->getAs<RecordType>()) {
4200 CXXDestructorDecl *Destructor
4201 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
4202 S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
4203 S.PDiag(diag::err_access_dtor_temp) << T);
4204 S.MarkDeclarationReferenced(CurInit.get()->getLocStart(), Destructor);
4205 S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
4206 }
4207 }
4208
4209 // FIXME: xvalues
4210 CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4211 CurInit.get()->getType(),
4212 CastKind, CurInit.get(), 0,
4213 IsLvalue ? VK_LValue : VK_RValue));
4214
4215 if (RequiresCopy)
4216 CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
4217 move(CurInit), /*IsExtraneousCopy=*/false);
4218
4219 break;
4220 }
4221
4222 case SK_QualificationConversionLValue:
4223 case SK_QualificationConversionXValue:
4224 case SK_QualificationConversionRValue: {
4225 // Perform a qualification conversion; these can never go wrong.
4226 ExprValueKind VK =
4227 Step->Kind == SK_QualificationConversionLValue ?
4228 VK_LValue :
4229 (Step->Kind == SK_QualificationConversionXValue ?
4230 VK_XValue :
4231 VK_RValue);
4232 CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
4233 break;
4234 }
4235
4236 case SK_ConversionSequence: {
4237 Sema::CheckedConversionKind CCK
4238 = Kind.isCStyleCast()? Sema::CCK_CStyleCast
4239 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
4240 : Kind.isExplicitCast()? Sema::CCK_OtherCast
4241 : Sema::CCK_ImplicitConversion;
4242 ExprResult CurInitExprRes =
4243 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
4244 getAssignmentAction(Entity), CCK);
4245 if (CurInitExprRes.isInvalid())
4246 return ExprError();
4247 CurInit = move(CurInitExprRes);
4248 break;
4249 }
4250
4251 case SK_ListInitialization: {
4252 InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
4253 QualType Ty = Step->Type;
4254 if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
4255 return ExprError();
4256
4257 CurInit.release();
4258 CurInit = S.Owned(InitList);
4259 break;
4260 }
4261
4262 case SK_ConstructorInitialization: {
4263 unsigned NumArgs = Args.size();
4264 CXXConstructorDecl *Constructor
4265 = cast<CXXConstructorDecl>(Step->Function.Function);
4266
4267 // Build a call to the selected constructor.
4268 ASTOwningVector<Expr*> ConstructorArgs(S);
4269 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4270 ? Kind.getEqualLoc()
4271 : Kind.getLocation();
4272
4273 if (Kind.getKind() == InitializationKind::IK_Default) {
4274 // Force even a trivial, implicit default constructor to be
4275 // semantically checked. We do this explicitly because we don't build
4276 // the definition for completely trivial constructors.
4277 CXXRecordDecl *ClassDecl = Constructor->getParent();
4278 assert(ClassDecl && "No parent class for constructor.");
4279 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4280 ClassDecl->hasTrivialDefaultConstructor() &&
4281 !Constructor->isUsed(false))
4282 S.DefineImplicitDefaultConstructor(Loc, Constructor);
4283 }
4284
4285 // Determine the arguments required to actually perform the constructor
4286 // call.
4287 if (S.CompleteConstructorCall(Constructor, move(Args),
4288 Loc, ConstructorArgs))
4289 return ExprError();
4290
4291
4292 if (Entity.getKind() == InitializedEntity::EK_Temporary &&
4293 NumArgs != 1 && // FIXME: Hack to work around cast weirdness
4294 (Kind.getKind() == InitializationKind::IK_Direct ||
4295 Kind.getKind() == InitializationKind::IK_Value)) {
4296 // An explicitly-constructed temporary, e.g., X(1, 2).
4297 unsigned NumExprs = ConstructorArgs.size();
4298 Expr **Exprs = (Expr **)ConstructorArgs.take();
4299 S.MarkDeclarationReferenced(Loc, Constructor);
4300 S.DiagnoseUseOfDecl(Constructor, Loc);
4301
4302 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4303 if (!TSInfo)
4304 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4305
4306 CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
4307 Constructor,
4308 TSInfo,
4309 Exprs,
4310 NumExprs,
4311 Kind.getParenRange(),
4312 ConstructorInitRequiresZeroInit));
4313 } else {
4314 CXXConstructExpr::ConstructionKind ConstructKind =
4315 CXXConstructExpr::CK_Complete;
4316
4317 if (Entity.getKind() == InitializedEntity::EK_Base) {
4318 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4319 CXXConstructExpr::CK_VirtualBase :
4320 CXXConstructExpr::CK_NonVirtualBase;
4321 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4322 ConstructKind = CXXConstructExpr::CK_Delegating;
4323 }
4324
4325 // Only get the parenthesis range if it is a direct construction.
4326 SourceRange parenRange =
4327 Kind.getKind() == InitializationKind::IK_Direct ?
4328 Kind.getParenRange() : SourceRange();
4329
4330 // If the entity allows NRVO, mark the construction as elidable
4331 // unconditionally.
4332 if (Entity.allowsNRVO())
4333 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4334 Constructor, /*Elidable=*/true,
4335 move_arg(ConstructorArgs),
4336 ConstructorInitRequiresZeroInit,
4337 ConstructKind,
4338 parenRange);
4339 else
4340 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4341 Constructor,
4342 move_arg(ConstructorArgs),
4343 ConstructorInitRequiresZeroInit,
4344 ConstructKind,
4345 parenRange);
4346 }
4347 if (CurInit.isInvalid())
4348 return ExprError();
4349
4350 // Only check access if all of that succeeded.
4351 S.CheckConstructorAccess(Loc, Constructor, Entity,
4352 Step->Function.FoundDecl.getAccess());
4353 S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Loc);
4354
4355 if (shouldBindAsTemporary(Entity))
4356 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4357
4358 break;
4359 }
4360
4361 case SK_ZeroInitialization: {
4362 step_iterator NextStep = Step;
4363 ++NextStep;
4364 if (NextStep != StepEnd &&
4365 NextStep->Kind == SK_ConstructorInitialization) {
4366 // The need for zero-initialization is recorded directly into
4367 // the call to the object's constructor within the next step.
4368 ConstructorInitRequiresZeroInit = true;
4369 } else if (Kind.getKind() == InitializationKind::IK_Value &&
4370 S.getLangOptions().CPlusPlus &&
4371 !Kind.isImplicitValueInit()) {
4372 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4373 if (!TSInfo)
4374 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
4375 Kind.getRange().getBegin());
4376
4377 CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
4378 TSInfo->getType().getNonLValueExprType(S.Context),
4379 TSInfo,
4380 Kind.getRange().getEnd()));
4381 } else {
4382 CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
4383 }
4384 break;
4385 }
4386
4387 case SK_CAssignment: {
4388 QualType SourceType = CurInit.get()->getType();
4389 ExprResult Result = move(CurInit);
4390 Sema::AssignConvertType ConvTy =
4391 S.CheckSingleAssignmentConstraints(Step->Type, Result);
4392 if (Result.isInvalid())
4393 return ExprError();
4394 CurInit = move(Result);
4395
4396 // If this is a call, allow conversion to a transparent union.
4397 ExprResult CurInitExprRes = move(CurInit);
4398 if (ConvTy != Sema::Compatible &&
4399 Entity.getKind() == InitializedEntity::EK_Parameter &&
4400 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
4401 == Sema::Compatible)
4402 ConvTy = Sema::Compatible;
4403 if (CurInitExprRes.isInvalid())
4404 return ExprError();
4405 CurInit = move(CurInitExprRes);
4406
4407 bool Complained;
4408 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
4409 Step->Type, SourceType,
4410 CurInit.get(),
4411 getAssignmentAction(Entity),
4412 &Complained)) {
4413 PrintInitLocationNote(S, Entity);
4414 return ExprError();
4415 } else if (Complained)
4416 PrintInitLocationNote(S, Entity);
4417 break;
4418 }
4419
4420 case SK_StringInit: {
4421 QualType Ty = Step->Type;
4422 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
4423 S.Context.getAsArrayType(Ty), S);
4424 break;
4425 }
4426
4427 case SK_ObjCObjectConversion:
4428 CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
4429 CK_ObjCObjectLValueCast,
4430 S.CastCategory(CurInit.get()));
4431 break;
4432
4433 case SK_ArrayInit:
4434 // Okay: we checked everything before creating this step. Note that
4435 // this is a GNU extension.
4436 S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
4437 << Step->Type << CurInit.get()->getType()
4438 << CurInit.get()->getSourceRange();
4439
4440 // If the destination type is an incomplete array type, update the
4441 // type accordingly.
4442 if (ResultType) {
4443 if (const IncompleteArrayType *IncompleteDest
4444 = S.Context.getAsIncompleteArrayType(Step->Type)) {
4445 if (const ConstantArrayType *ConstantSource
4446 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
4447 *ResultType = S.Context.getConstantArrayType(
4448 IncompleteDest->getElementType(),
4449 ConstantSource->getSize(),
4450 ArrayType::Normal, 0);
4451 }
4452 }
4453 }
4454 break;
4455
4456 case SK_PassByIndirectCopyRestore:
4457 case SK_PassByIndirectRestore:
4458 checkIndirectCopyRestoreSource(S, CurInit.get());
4459 CurInit = S.Owned(new (S.Context)
4460 ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
4461 Step->Kind == SK_PassByIndirectCopyRestore));
4462 break;
4463
4464 case SK_ProduceObjCObject:
4465 CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
4466 CK_ObjCProduceObject,
4467 CurInit.take(), 0, VK_RValue));
4468 break;
4469 }
4470 }
4471
4472 // Diagnose non-fatal problems with the completed initialization.
4473 if (Entity.getKind() == InitializedEntity::EK_Member &&
4474 cast<FieldDecl>(Entity.getDecl())->isBitField())
4475 S.CheckBitFieldInitialization(Kind.getLocation(),
4476 cast<FieldDecl>(Entity.getDecl()),
4477 CurInit.get());
4478
4479 return move(CurInit);
4480 }
4481
4482 //===----------------------------------------------------------------------===//
4483 // Diagnose initialization failures
4484 //===----------------------------------------------------------------------===//
Diagnose(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr ** Args,unsigned NumArgs)4485 bool InitializationSequence::Diagnose(Sema &S,
4486 const InitializedEntity &Entity,
4487 const InitializationKind &Kind,
4488 Expr **Args, unsigned NumArgs) {
4489 if (!Failed())
4490 return false;
4491
4492 QualType DestType = Entity.getType();
4493 switch (Failure) {
4494 case FK_TooManyInitsForReference:
4495 // FIXME: Customize for the initialized entity?
4496 if (NumArgs == 0)
4497 S.Diag(Kind.getLocation(), diag::err_reference_without_init)
4498 << DestType.getNonReferenceType();
4499 else // FIXME: diagnostic below could be better!
4500 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
4501 << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
4502 break;
4503
4504 case FK_ArrayNeedsInitList:
4505 case FK_ArrayNeedsInitListOrStringLiteral:
4506 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
4507 << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
4508 break;
4509
4510 case FK_ArrayTypeMismatch:
4511 case FK_NonConstantArrayInit:
4512 S.Diag(Kind.getLocation(),
4513 (Failure == FK_ArrayTypeMismatch
4514 ? diag::err_array_init_different_type
4515 : diag::err_array_init_non_constant_array))
4516 << DestType.getNonReferenceType()
4517 << Args[0]->getType()
4518 << Args[0]->getSourceRange();
4519 break;
4520
4521 case FK_AddressOfOverloadFailed: {
4522 DeclAccessPair Found;
4523 S.ResolveAddressOfOverloadedFunction(Args[0],
4524 DestType.getNonReferenceType(),
4525 true,
4526 Found);
4527 break;
4528 }
4529
4530 case FK_ReferenceInitOverloadFailed:
4531 case FK_UserConversionOverloadFailed:
4532 switch (FailedOverloadResult) {
4533 case OR_Ambiguous:
4534 if (Failure == FK_UserConversionOverloadFailed)
4535 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
4536 << Args[0]->getType() << DestType
4537 << Args[0]->getSourceRange();
4538 else
4539 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
4540 << DestType << Args[0]->getType()
4541 << Args[0]->getSourceRange();
4542
4543 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args, NumArgs);
4544 break;
4545
4546 case OR_No_Viable_Function:
4547 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
4548 << Args[0]->getType() << DestType.getNonReferenceType()
4549 << Args[0]->getSourceRange();
4550 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
4551 break;
4552
4553 case OR_Deleted: {
4554 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
4555 << Args[0]->getType() << DestType.getNonReferenceType()
4556 << Args[0]->getSourceRange();
4557 OverloadCandidateSet::iterator Best;
4558 OverloadingResult Ovl
4559 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
4560 true);
4561 if (Ovl == OR_Deleted) {
4562 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4563 << 1 << Best->Function->isDeleted();
4564 } else {
4565 llvm_unreachable("Inconsistent overload resolution?");
4566 }
4567 break;
4568 }
4569
4570 case OR_Success:
4571 llvm_unreachable("Conversion did not fail!");
4572 break;
4573 }
4574 break;
4575
4576 case FK_NonConstLValueReferenceBindingToTemporary:
4577 case FK_NonConstLValueReferenceBindingToUnrelated:
4578 S.Diag(Kind.getLocation(),
4579 Failure == FK_NonConstLValueReferenceBindingToTemporary
4580 ? diag::err_lvalue_reference_bind_to_temporary
4581 : diag::err_lvalue_reference_bind_to_unrelated)
4582 << DestType.getNonReferenceType().isVolatileQualified()
4583 << DestType.getNonReferenceType()
4584 << Args[0]->getType()
4585 << Args[0]->getSourceRange();
4586 break;
4587
4588 case FK_RValueReferenceBindingToLValue:
4589 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
4590 << DestType.getNonReferenceType() << Args[0]->getType()
4591 << Args[0]->getSourceRange();
4592 break;
4593
4594 case FK_ReferenceInitDropsQualifiers:
4595 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
4596 << DestType.getNonReferenceType()
4597 << Args[0]->getType()
4598 << Args[0]->getSourceRange();
4599 break;
4600
4601 case FK_ReferenceInitFailed:
4602 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
4603 << DestType.getNonReferenceType()
4604 << Args[0]->isLValue()
4605 << Args[0]->getType()
4606 << Args[0]->getSourceRange();
4607 if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
4608 Args[0]->getType()->isObjCObjectPointerType())
4609 S.EmitRelatedResultTypeNote(Args[0]);
4610 break;
4611
4612 case FK_ConversionFailed: {
4613 QualType FromType = Args[0]->getType();
4614 S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
4615 << (int)Entity.getKind()
4616 << DestType
4617 << Args[0]->isLValue()
4618 << FromType
4619 << Args[0]->getSourceRange();
4620 if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
4621 Args[0]->getType()->isObjCObjectPointerType())
4622 S.EmitRelatedResultTypeNote(Args[0]);
4623 break;
4624 }
4625
4626 case FK_ConversionFromPropertyFailed:
4627 // No-op. This error has already been reported.
4628 break;
4629
4630 case FK_TooManyInitsForScalar: {
4631 SourceRange R;
4632
4633 if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
4634 R = SourceRange(InitList->getInit(0)->getLocEnd(),
4635 InitList->getLocEnd());
4636 else
4637 R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
4638
4639 R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
4640 if (Kind.isCStyleOrFunctionalCast())
4641 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
4642 << R;
4643 else
4644 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
4645 << /*scalar=*/2 << R;
4646 break;
4647 }
4648
4649 case FK_ReferenceBindingToInitList:
4650 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
4651 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
4652 break;
4653
4654 case FK_InitListBadDestinationType:
4655 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
4656 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
4657 break;
4658
4659 case FK_ConstructorOverloadFailed: {
4660 SourceRange ArgsRange;
4661 if (NumArgs)
4662 ArgsRange = SourceRange(Args[0]->getLocStart(),
4663 Args[NumArgs - 1]->getLocEnd());
4664
4665 // FIXME: Using "DestType" for the entity we're printing is probably
4666 // bad.
4667 switch (FailedOverloadResult) {
4668 case OR_Ambiguous:
4669 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
4670 << DestType << ArgsRange;
4671 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
4672 Args, NumArgs);
4673 break;
4674
4675 case OR_No_Viable_Function:
4676 if (Kind.getKind() == InitializationKind::IK_Default &&
4677 (Entity.getKind() == InitializedEntity::EK_Base ||
4678 Entity.getKind() == InitializedEntity::EK_Member) &&
4679 isa<CXXConstructorDecl>(S.CurContext)) {
4680 // This is implicit default initialization of a member or
4681 // base within a constructor. If no viable function was
4682 // found, notify the user that she needs to explicitly
4683 // initialize this base/member.
4684 CXXConstructorDecl *Constructor
4685 = cast<CXXConstructorDecl>(S.CurContext);
4686 if (Entity.getKind() == InitializedEntity::EK_Base) {
4687 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4688 << Constructor->isImplicit()
4689 << S.Context.getTypeDeclType(Constructor->getParent())
4690 << /*base=*/0
4691 << Entity.getType();
4692
4693 RecordDecl *BaseDecl
4694 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
4695 ->getDecl();
4696 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
4697 << S.Context.getTagDeclType(BaseDecl);
4698 } else {
4699 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4700 << Constructor->isImplicit()
4701 << S.Context.getTypeDeclType(Constructor->getParent())
4702 << /*member=*/1
4703 << Entity.getName();
4704 S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
4705
4706 if (const RecordType *Record
4707 = Entity.getType()->getAs<RecordType>())
4708 S.Diag(Record->getDecl()->getLocation(),
4709 diag::note_previous_decl)
4710 << S.Context.getTagDeclType(Record->getDecl());
4711 }
4712 break;
4713 }
4714
4715 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
4716 << DestType << ArgsRange;
4717 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
4718 break;
4719
4720 case OR_Deleted: {
4721 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
4722 << true << DestType << ArgsRange;
4723 OverloadCandidateSet::iterator Best;
4724 OverloadingResult Ovl
4725 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
4726 if (Ovl == OR_Deleted) {
4727 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4728 << 1 << Best->Function->isDeleted();
4729 } else {
4730 llvm_unreachable("Inconsistent overload resolution?");
4731 }
4732 break;
4733 }
4734
4735 case OR_Success:
4736 llvm_unreachable("Conversion did not fail!");
4737 break;
4738 }
4739 break;
4740 }
4741
4742 case FK_DefaultInitOfConst:
4743 if (Entity.getKind() == InitializedEntity::EK_Member &&
4744 isa<CXXConstructorDecl>(S.CurContext)) {
4745 // This is implicit default-initialization of a const member in
4746 // a constructor. Complain that it needs to be explicitly
4747 // initialized.
4748 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
4749 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
4750 << Constructor->isImplicit()
4751 << S.Context.getTypeDeclType(Constructor->getParent())
4752 << /*const=*/1
4753 << Entity.getName();
4754 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
4755 << Entity.getName();
4756 } else {
4757 S.Diag(Kind.getLocation(), diag::err_default_init_const)
4758 << DestType << (bool)DestType->getAs<RecordType>();
4759 }
4760 break;
4761
4762 case FK_Incomplete:
4763 S.RequireCompleteType(Kind.getLocation(), DestType,
4764 diag::err_init_incomplete_type);
4765 break;
4766 }
4767
4768 PrintInitLocationNote(S, Entity);
4769 return true;
4770 }
4771
dump(llvm::raw_ostream & OS) const4772 void InitializationSequence::dump(llvm::raw_ostream &OS) const {
4773 switch (SequenceKind) {
4774 case FailedSequence: {
4775 OS << "Failed sequence: ";
4776 switch (Failure) {
4777 case FK_TooManyInitsForReference:
4778 OS << "too many initializers for reference";
4779 break;
4780
4781 case FK_ArrayNeedsInitList:
4782 OS << "array requires initializer list";
4783 break;
4784
4785 case FK_ArrayNeedsInitListOrStringLiteral:
4786 OS << "array requires initializer list or string literal";
4787 break;
4788
4789 case FK_ArrayTypeMismatch:
4790 OS << "array type mismatch";
4791 break;
4792
4793 case FK_NonConstantArrayInit:
4794 OS << "non-constant array initializer";
4795 break;
4796
4797 case FK_AddressOfOverloadFailed:
4798 OS << "address of overloaded function failed";
4799 break;
4800
4801 case FK_ReferenceInitOverloadFailed:
4802 OS << "overload resolution for reference initialization failed";
4803 break;
4804
4805 case FK_NonConstLValueReferenceBindingToTemporary:
4806 OS << "non-const lvalue reference bound to temporary";
4807 break;
4808
4809 case FK_NonConstLValueReferenceBindingToUnrelated:
4810 OS << "non-const lvalue reference bound to unrelated type";
4811 break;
4812
4813 case FK_RValueReferenceBindingToLValue:
4814 OS << "rvalue reference bound to an lvalue";
4815 break;
4816
4817 case FK_ReferenceInitDropsQualifiers:
4818 OS << "reference initialization drops qualifiers";
4819 break;
4820
4821 case FK_ReferenceInitFailed:
4822 OS << "reference initialization failed";
4823 break;
4824
4825 case FK_ConversionFailed:
4826 OS << "conversion failed";
4827 break;
4828
4829 case FK_ConversionFromPropertyFailed:
4830 OS << "conversion from property failed";
4831 break;
4832
4833 case FK_TooManyInitsForScalar:
4834 OS << "too many initializers for scalar";
4835 break;
4836
4837 case FK_ReferenceBindingToInitList:
4838 OS << "referencing binding to initializer list";
4839 break;
4840
4841 case FK_InitListBadDestinationType:
4842 OS << "initializer list for non-aggregate, non-scalar type";
4843 break;
4844
4845 case FK_UserConversionOverloadFailed:
4846 OS << "overloading failed for user-defined conversion";
4847 break;
4848
4849 case FK_ConstructorOverloadFailed:
4850 OS << "constructor overloading failed";
4851 break;
4852
4853 case FK_DefaultInitOfConst:
4854 OS << "default initialization of a const variable";
4855 break;
4856
4857 case FK_Incomplete:
4858 OS << "initialization of incomplete type";
4859 break;
4860 }
4861 OS << '\n';
4862 return;
4863 }
4864
4865 case DependentSequence:
4866 OS << "Dependent sequence\n";
4867 return;
4868
4869 case NormalSequence:
4870 OS << "Normal sequence: ";
4871 break;
4872 }
4873
4874 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
4875 if (S != step_begin()) {
4876 OS << " -> ";
4877 }
4878
4879 switch (S->Kind) {
4880 case SK_ResolveAddressOfOverloadedFunction:
4881 OS << "resolve address of overloaded function";
4882 break;
4883
4884 case SK_CastDerivedToBaseRValue:
4885 OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
4886 break;
4887
4888 case SK_CastDerivedToBaseXValue:
4889 OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
4890 break;
4891
4892 case SK_CastDerivedToBaseLValue:
4893 OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
4894 break;
4895
4896 case SK_BindReference:
4897 OS << "bind reference to lvalue";
4898 break;
4899
4900 case SK_BindReferenceToTemporary:
4901 OS << "bind reference to a temporary";
4902 break;
4903
4904 case SK_ExtraneousCopyToTemporary:
4905 OS << "extraneous C++03 copy to temporary";
4906 break;
4907
4908 case SK_UserConversion:
4909 OS << "user-defined conversion via " << S->Function.Function;
4910 break;
4911
4912 case SK_QualificationConversionRValue:
4913 OS << "qualification conversion (rvalue)";
4914
4915 case SK_QualificationConversionXValue:
4916 OS << "qualification conversion (xvalue)";
4917
4918 case SK_QualificationConversionLValue:
4919 OS << "qualification conversion (lvalue)";
4920 break;
4921
4922 case SK_ConversionSequence:
4923 OS << "implicit conversion sequence (";
4924 S->ICS->DebugPrint(); // FIXME: use OS
4925 OS << ")";
4926 break;
4927
4928 case SK_ListInitialization:
4929 OS << "list initialization";
4930 break;
4931
4932 case SK_ConstructorInitialization:
4933 OS << "constructor initialization";
4934 break;
4935
4936 case SK_ZeroInitialization:
4937 OS << "zero initialization";
4938 break;
4939
4940 case SK_CAssignment:
4941 OS << "C assignment";
4942 break;
4943
4944 case SK_StringInit:
4945 OS << "string initialization";
4946 break;
4947
4948 case SK_ObjCObjectConversion:
4949 OS << "Objective-C object conversion";
4950 break;
4951
4952 case SK_ArrayInit:
4953 OS << "array initialization";
4954 break;
4955
4956 case SK_PassByIndirectCopyRestore:
4957 OS << "pass by indirect copy and restore";
4958 break;
4959
4960 case SK_PassByIndirectRestore:
4961 OS << "pass by indirect restore";
4962 break;
4963
4964 case SK_ProduceObjCObject:
4965 OS << "Objective-C object retension";
4966 break;
4967 }
4968 }
4969 }
4970
dump() const4971 void InitializationSequence::dump() const {
4972 dump(llvm::errs());
4973 }
4974
4975 //===----------------------------------------------------------------------===//
4976 // Initialization helper functions
4977 //===----------------------------------------------------------------------===//
4978 bool
CanPerformCopyInitialization(const InitializedEntity & Entity,ExprResult Init)4979 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
4980 ExprResult Init) {
4981 if (Init.isInvalid())
4982 return false;
4983
4984 Expr *InitE = Init.get();
4985 assert(InitE && "No initialization expression");
4986
4987 InitializationKind Kind = InitializationKind::CreateCopy(SourceLocation(),
4988 SourceLocation());
4989 InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
4990 return !Seq.Failed();
4991 }
4992
4993 ExprResult
PerformCopyInitialization(const InitializedEntity & Entity,SourceLocation EqualLoc,ExprResult Init)4994 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
4995 SourceLocation EqualLoc,
4996 ExprResult Init) {
4997 if (Init.isInvalid())
4998 return ExprError();
4999
5000 Expr *InitE = Init.get();
5001 assert(InitE && "No initialization expression?");
5002
5003 if (EqualLoc.isInvalid())
5004 EqualLoc = InitE->getLocStart();
5005
5006 InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
5007 EqualLoc);
5008 InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
5009 Init.release();
5010 return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
5011 }
5012