• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- SelectionDAGBuilder.h - Selection-DAG building --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef SELECTIONDAGBUILDER_H
15 #define SELECTIONDAGBUILDER_H
16 
17 #include "llvm/Constants.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/CodeGen/SelectionDAGNodes.h"
22 #include "llvm/CodeGen/ValueTypes.h"
23 #include "llvm/Support/CallSite.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <vector>
26 
27 namespace llvm {
28 
29 class AliasAnalysis;
30 class AllocaInst;
31 class BasicBlock;
32 class BitCastInst;
33 class BranchInst;
34 class CallInst;
35 class DbgValueInst;
36 class ExtractElementInst;
37 class ExtractValueInst;
38 class FCmpInst;
39 class FPExtInst;
40 class FPToSIInst;
41 class FPToUIInst;
42 class FPTruncInst;
43 class Function;
44 class FunctionLoweringInfo;
45 class GetElementPtrInst;
46 class GCFunctionInfo;
47 class ICmpInst;
48 class IntToPtrInst;
49 class IndirectBrInst;
50 class InvokeInst;
51 class InsertElementInst;
52 class InsertValueInst;
53 class Instruction;
54 class LoadInst;
55 class MachineBasicBlock;
56 class MachineInstr;
57 class MachineRegisterInfo;
58 class MDNode;
59 class PHINode;
60 class PtrToIntInst;
61 class ReturnInst;
62 class SDDbgValue;
63 class SExtInst;
64 class SelectInst;
65 class ShuffleVectorInst;
66 class SIToFPInst;
67 class StoreInst;
68 class SwitchInst;
69 class TargetData;
70 class TargetLowering;
71 class TruncInst;
72 class UIToFPInst;
73 class UnreachableInst;
74 class UnwindInst;
75 class VAArgInst;
76 class ZExtInst;
77 
78 //===----------------------------------------------------------------------===//
79 /// SelectionDAGBuilder - This is the common target-independent lowering
80 /// implementation that is parameterized by a TargetLowering object.
81 ///
82 class SelectionDAGBuilder {
83   /// CurDebugLoc - current file + line number.  Changes as we build the DAG.
84   DebugLoc CurDebugLoc;
85 
86   DenseMap<const Value*, SDValue> NodeMap;
87 
88   /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
89   /// to preserve debug information for incoming arguments.
90   DenseMap<const Value*, SDValue> UnusedArgNodeMap;
91 
92   /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
93   class DanglingDebugInfo {
94     const DbgValueInst* DI;
95     DebugLoc dl;
96     unsigned SDNodeOrder;
97   public:
DanglingDebugInfo()98     DanglingDebugInfo() : DI(0), dl(DebugLoc()), SDNodeOrder(0) { }
DanglingDebugInfo(const DbgValueInst * di,DebugLoc DL,unsigned SDNO)99     DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
100       DI(di), dl(DL), SDNodeOrder(SDNO) { }
getDI()101     const DbgValueInst* getDI() { return DI; }
getdl()102     DebugLoc getdl() { return dl; }
getSDNodeOrder()103     unsigned getSDNodeOrder() { return SDNodeOrder; }
104   };
105 
106   /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
107   /// yet seen the referent.  We defer handling these until we do see it.
108   DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
109 
110 public:
111   /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
112   /// them up and then emit token factor nodes when possible.  This allows us to
113   /// get simple disambiguation between loads without worrying about alias
114   /// analysis.
115   SmallVector<SDValue, 8> PendingLoads;
116 private:
117 
118   /// PendingExports - CopyToReg nodes that copy values to virtual registers
119   /// for export to other blocks need to be emitted before any terminator
120   /// instruction, but they have no other ordering requirements. We bunch them
121   /// up and the emit a single tokenfactor for them just before terminator
122   /// instructions.
123   SmallVector<SDValue, 8> PendingExports;
124 
125   /// SDNodeOrder - A unique monotonically increasing number used to order the
126   /// SDNodes we create.
127   unsigned SDNodeOrder;
128 
129   /// Case - A struct to record the Value for a switch case, and the
130   /// case's target basic block.
131   struct Case {
132     Constant* Low;
133     Constant* High;
134     MachineBasicBlock* BB;
135 
CaseCase136     Case() : Low(0), High(0), BB(0) { }
CaseCase137     Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
138       Low(low), High(high), BB(bb) { }
sizeCase139     APInt size() const {
140       const APInt &rHigh = cast<ConstantInt>(High)->getValue();
141       const APInt &rLow  = cast<ConstantInt>(Low)->getValue();
142       return (rHigh - rLow + 1ULL);
143     }
144   };
145 
146   struct CaseBits {
147     uint64_t Mask;
148     MachineBasicBlock* BB;
149     unsigned Bits;
150 
CaseBitsCaseBits151     CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
152       Mask(mask), BB(bb), Bits(bits) { }
153   };
154 
155   typedef std::vector<Case>           CaseVector;
156   typedef std::vector<CaseBits>       CaseBitsVector;
157   typedef CaseVector::iterator        CaseItr;
158   typedef std::pair<CaseItr, CaseItr> CaseRange;
159 
160   /// CaseRec - A struct with ctor used in lowering switches to a binary tree
161   /// of conditional branches.
162   struct CaseRec {
CaseRecCaseRec163     CaseRec(MachineBasicBlock *bb, const Constant *lt, const Constant *ge,
164             CaseRange r) :
165     CaseBB(bb), LT(lt), GE(ge), Range(r) {}
166 
167     /// CaseBB - The MBB in which to emit the compare and branch
168     MachineBasicBlock *CaseBB;
169     /// LT, GE - If nonzero, we know the current case value must be less-than or
170     /// greater-than-or-equal-to these Constants.
171     const Constant *LT;
172     const Constant *GE;
173     /// Range - A pair of iterators representing the range of case values to be
174     /// processed at this point in the binary search tree.
175     CaseRange Range;
176   };
177 
178   typedef std::vector<CaseRec> CaseRecVector;
179 
180   /// The comparison function for sorting the switch case values in the vector.
181   /// WARNING: Case ranges should be disjoint!
182   struct CaseCmp {
operatorCaseCmp183     bool operator()(const Case &C1, const Case &C2) {
184       assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
185       const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
186       const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
187       return CI1->getValue().slt(CI2->getValue());
188     }
189   };
190 
191   struct CaseBitsCmp {
operatorCaseBitsCmp192     bool operator()(const CaseBits &C1, const CaseBits &C2) {
193       return C1.Bits > C2.Bits;
194     }
195   };
196 
197   size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
198 
199   /// CaseBlock - This structure is used to communicate between
200   /// SelectionDAGBuilder and SDISel for the code generation of additional basic
201   /// blocks needed by multi-case switch statements.
202   struct CaseBlock {
CaseBlockCaseBlock203     CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
204               const Value *cmpmiddle,
205               MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
206               MachineBasicBlock *me)
207       : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
208         TrueBB(truebb), FalseBB(falsebb), ThisBB(me) {}
209     // CC - the condition code to use for the case block's setcc node
210     ISD::CondCode CC;
211     // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
212     // Emit by default LHS op RHS. MHS is used for range comparisons:
213     // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
214     const Value *CmpLHS, *CmpMHS, *CmpRHS;
215     // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
216     MachineBasicBlock *TrueBB, *FalseBB;
217     // ThisBB - the block into which to emit the code for the setcc and branches
218     MachineBasicBlock *ThisBB;
219   };
220   struct JumpTable {
JumpTableJumpTable221     JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
222               MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
223 
224     /// Reg - the virtual register containing the index of the jump table entry
225     //. to jump to.
226     unsigned Reg;
227     /// JTI - the JumpTableIndex for this jump table in the function.
228     unsigned JTI;
229     /// MBB - the MBB into which to emit the code for the indirect jump.
230     MachineBasicBlock *MBB;
231     /// Default - the MBB of the default bb, which is a successor of the range
232     /// check MBB.  This is when updating PHI nodes in successors.
233     MachineBasicBlock *Default;
234   };
235   struct JumpTableHeader {
236     JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
237                     bool E = false):
FirstJumpTableHeader238       First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
239     APInt First;
240     APInt Last;
241     const Value *SValue;
242     MachineBasicBlock *HeaderBB;
243     bool Emitted;
244   };
245   typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
246 
247   struct BitTestCase {
BitTestCaseBitTestCase248     BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr):
249       Mask(M), ThisBB(T), TargetBB(Tr) { }
250     uint64_t Mask;
251     MachineBasicBlock *ThisBB;
252     MachineBasicBlock *TargetBB;
253   };
254 
255   typedef SmallVector<BitTestCase, 3> BitTestInfo;
256 
257   struct BitTestBlock {
BitTestBlockBitTestBlock258     BitTestBlock(APInt F, APInt R, const Value* SV,
259                  unsigned Rg, EVT RgVT, bool E,
260                  MachineBasicBlock* P, MachineBasicBlock* D,
261                  const BitTestInfo& C):
262       First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E),
263       Parent(P), Default(D), Cases(C) { }
264     APInt First;
265     APInt Range;
266     const Value *SValue;
267     unsigned Reg;
268     EVT RegVT;
269     bool Emitted;
270     MachineBasicBlock *Parent;
271     MachineBasicBlock *Default;
272     BitTestInfo Cases;
273   };
274 
275 public:
276   // TLI - This is information that describes the available target features we
277   // need for lowering.  This indicates when operations are unavailable,
278   // implemented with a libcall, etc.
279   const TargetMachine &TM;
280   const TargetLowering &TLI;
281   SelectionDAG &DAG;
282   const TargetData *TD;
283   AliasAnalysis *AA;
284 
285   /// SwitchCases - Vector of CaseBlock structures used to communicate
286   /// SwitchInst code generation information.
287   std::vector<CaseBlock> SwitchCases;
288   /// JTCases - Vector of JumpTable structures used to communicate
289   /// SwitchInst code generation information.
290   std::vector<JumpTableBlock> JTCases;
291   /// BitTestCases - Vector of BitTestBlock structures used to communicate
292   /// SwitchInst code generation information.
293   std::vector<BitTestBlock> BitTestCases;
294 
295   // Emit PHI-node-operand constants only once even if used by multiple
296   // PHI nodes.
297   DenseMap<const Constant *, unsigned> ConstantsOut;
298 
299   /// FuncInfo - Information about the function as a whole.
300   ///
301   FunctionLoweringInfo &FuncInfo;
302 
303   /// OptLevel - What optimization level we're generating code for.
304   ///
305   CodeGenOpt::Level OptLevel;
306 
307   /// GFI - Garbage collection metadata for the function.
308   GCFunctionInfo *GFI;
309 
310   /// HasTailCall - This is set to true if a call in the current
311   /// block has been translated as a tail call. In this case,
312   /// no subsequent DAG nodes should be created.
313   ///
314   bool HasTailCall;
315 
316   LLVMContext *Context;
317 
SelectionDAGBuilder(SelectionDAG & dag,FunctionLoweringInfo & funcinfo,CodeGenOpt::Level ol)318   SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
319                       CodeGenOpt::Level ol)
320     : SDNodeOrder(0), TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
321       DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
322       HasTailCall(false), Context(dag.getContext()) {
323   }
324 
325   void init(GCFunctionInfo *gfi, AliasAnalysis &aa);
326 
327   /// clear - Clear out the current SelectionDAG and the associated
328   /// state and prepare this SelectionDAGBuilder object to be used
329   /// for a new block. This doesn't clear out information about
330   /// additional blocks that are needed to complete switch lowering
331   /// or PHI node updating; that information is cleared out as it is
332   /// consumed.
333   void clear();
334 
335   /// clearDanglingDebugInfo - Clear the dangling debug information
336   /// map. This function is seperated from the clear so that debug
337   /// information that is dangling in a basic block can be properly
338   /// resolved in a different basic block. This allows the
339   /// SelectionDAG to resolve dangling debug information attached
340   /// to PHI nodes.
341   void clearDanglingDebugInfo();
342 
343   /// getRoot - Return the current virtual root of the Selection DAG,
344   /// flushing any PendingLoad items. This must be done before emitting
345   /// a store or any other node that may need to be ordered after any
346   /// prior load instructions.
347   ///
348   SDValue getRoot();
349 
350   /// getControlRoot - Similar to getRoot, but instead of flushing all the
351   /// PendingLoad items, flush all the PendingExports items. It is necessary
352   /// to do this before emitting a terminator instruction.
353   ///
354   SDValue getControlRoot();
355 
getCurDebugLoc()356   DebugLoc getCurDebugLoc() const { return CurDebugLoc; }
357 
getSDNodeOrder()358   unsigned getSDNodeOrder() const { return SDNodeOrder; }
359 
360   void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
361 
362   /// AssignOrderingToNode - Assign an ordering to the node. The order is gotten
363   /// from how the code appeared in the source. The ordering is used by the
364   /// scheduler to effectively turn off scheduling.
365   void AssignOrderingToNode(const SDNode *Node);
366 
367   void visit(const Instruction &I);
368 
369   void visit(unsigned Opcode, const User &I);
370 
371   // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
372   // generate the debug data structures now that we've seen its definition.
373   void resolveDanglingDebugInfo(const Value *V, SDValue Val);
374   SDValue getValue(const Value *V);
375   SDValue getNonRegisterValue(const Value *V);
376   SDValue getValueImpl(const Value *V);
377 
setValue(const Value * V,SDValue NewN)378   void setValue(const Value *V, SDValue NewN) {
379     SDValue &N = NodeMap[V];
380     assert(N.getNode() == 0 && "Already set a value for this node!");
381     N = NewN;
382   }
383 
setUnusedArgValue(const Value * V,SDValue NewN)384   void setUnusedArgValue(const Value *V, SDValue NewN) {
385     SDValue &N = UnusedArgNodeMap[V];
386     assert(N.getNode() == 0 && "Already set a value for this node!");
387     N = NewN;
388   }
389 
390   void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
391                             MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
392                             MachineBasicBlock *SwitchBB, unsigned Opc);
393   void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
394                                     MachineBasicBlock *FBB,
395                                     MachineBasicBlock *CurBB,
396                                     MachineBasicBlock *SwitchBB);
397   bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
398   bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
399   void CopyToExportRegsIfNeeded(const Value *V);
400   void ExportFromCurrentBlock(const Value *V);
401   void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
402                    MachineBasicBlock *LandingPad = NULL);
403 
404   /// UpdateSplitBlock - When an MBB was split during scheduling, update the
405   /// references that ned to refer to the last resulting block.
406   void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
407 
408 private:
409   // Terminator instructions.
410   void visitRet(const ReturnInst &I);
411   void visitBr(const BranchInst &I);
412   void visitSwitch(const SwitchInst &I);
413   void visitIndirectBr(const IndirectBrInst &I);
visitUnreachable(const UnreachableInst & I)414   void visitUnreachable(const UnreachableInst &I) { /* noop */ }
415 
416   // Helpers for visitSwitch
417   bool handleSmallSwitchRange(CaseRec& CR,
418                               CaseRecVector& WorkList,
419                               const Value* SV,
420                               MachineBasicBlock* Default,
421                               MachineBasicBlock *SwitchBB);
422   bool handleJTSwitchCase(CaseRec& CR,
423                           CaseRecVector& WorkList,
424                           const Value* SV,
425                           MachineBasicBlock* Default,
426                           MachineBasicBlock *SwitchBB);
427   bool handleBTSplitSwitchCase(CaseRec& CR,
428                                CaseRecVector& WorkList,
429                                const Value* SV,
430                                MachineBasicBlock* Default,
431                                MachineBasicBlock *SwitchBB);
432   bool handleBitTestsSwitchCase(CaseRec& CR,
433                                 CaseRecVector& WorkList,
434                                 const Value* SV,
435                                 MachineBasicBlock* Default,
436                                 MachineBasicBlock *SwitchBB);
437 
438   uint32_t getEdgeWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst);
439   void addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst);
440 public:
441   void visitSwitchCase(CaseBlock &CB,
442                        MachineBasicBlock *SwitchBB);
443   void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
444   void visitBitTestCase(BitTestBlock &BB,
445                         MachineBasicBlock* NextMBB,
446                         unsigned Reg,
447                         BitTestCase &B,
448                         MachineBasicBlock *SwitchBB);
449   void visitJumpTable(JumpTable &JT);
450   void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
451                             MachineBasicBlock *SwitchBB);
452 
453 private:
454   // These all get lowered before this pass.
455   void visitInvoke(const InvokeInst &I);
456   void visitUnwind(const UnwindInst &I);
457 
458   void visitBinary(const User &I, unsigned OpCode);
459   void visitShift(const User &I, unsigned Opcode);
visitAdd(const User & I)460   void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
visitFAdd(const User & I)461   void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
visitSub(const User & I)462   void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
463   void visitFSub(const User &I);
visitMul(const User & I)464   void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
visitFMul(const User & I)465   void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
visitURem(const User & I)466   void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
visitSRem(const User & I)467   void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
visitFRem(const User & I)468   void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
visitUDiv(const User & I)469   void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
470   void visitSDiv(const User &I);
visitFDiv(const User & I)471   void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
visitAnd(const User & I)472   void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
visitOr(const User & I)473   void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
visitXor(const User & I)474   void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
visitShl(const User & I)475   void visitShl (const User &I) { visitShift(I, ISD::SHL); }
visitLShr(const User & I)476   void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
visitAShr(const User & I)477   void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
478   void visitICmp(const User &I);
479   void visitFCmp(const User &I);
480   // Visit the conversion instructions
481   void visitTrunc(const User &I);
482   void visitZExt(const User &I);
483   void visitSExt(const User &I);
484   void visitFPTrunc(const User &I);
485   void visitFPExt(const User &I);
486   void visitFPToUI(const User &I);
487   void visitFPToSI(const User &I);
488   void visitUIToFP(const User &I);
489   void visitSIToFP(const User &I);
490   void visitPtrToInt(const User &I);
491   void visitIntToPtr(const User &I);
492   void visitBitCast(const User &I);
493 
494   void visitExtractElement(const User &I);
495   void visitInsertElement(const User &I);
496   void visitShuffleVector(const User &I);
497 
498   void visitExtractValue(const ExtractValueInst &I);
499   void visitInsertValue(const InsertValueInst &I);
500 
501   void visitGetElementPtr(const User &I);
502   void visitSelect(const User &I);
503 
504   void visitAlloca(const AllocaInst &I);
505   void visitLoad(const LoadInst &I);
506   void visitStore(const StoreInst &I);
507   void visitPHI(const PHINode &I);
508   void visitCall(const CallInst &I);
509   bool visitMemCmpCall(const CallInst &I);
510 
511   void visitInlineAsm(ImmutableCallSite CS);
512   const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
513   void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
514 
515   void visitPow(const CallInst &I);
516   void visitExp2(const CallInst &I);
517   void visitExp(const CallInst &I);
518   void visitLog(const CallInst &I);
519   void visitLog2(const CallInst &I);
520   void visitLog10(const CallInst &I);
521 
522   void visitVAStart(const CallInst &I);
523   void visitVAArg(const VAArgInst &I);
524   void visitVAEnd(const CallInst &I);
525   void visitVACopy(const CallInst &I);
526 
visitUserOp1(const Instruction & I)527   void visitUserOp1(const Instruction &I) {
528     llvm_unreachable("UserOp1 should not exist at instruction selection time!");
529   }
visitUserOp2(const Instruction & I)530   void visitUserOp2(const Instruction &I) {
531     llvm_unreachable("UserOp2 should not exist at instruction selection time!");
532   }
533 
534   const char *implVisitBinaryAtomic(const CallInst& I, ISD::NodeType Op);
535   const char *implVisitAluOverflow(const CallInst &I, ISD::NodeType Op);
536 
537   void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
538 
539   /// EmitFuncArgumentDbgValue - If V is an function argument then create
540   /// corresponding DBG_VALUE machine instruction for it now. At the end of
541   /// instruction selection, they will be inserted to the entry BB.
542   bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
543                                 int64_t Offset, const SDValue &N);
544 };
545 
546 } // end namespace llvm
547 
548 #endif
549