• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2006 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef SkMath_DEFINED
18 #define SkMath_DEFINED
19 
20 #include "SkTypes.h"
21 
22 //! Returns the number of leading zero bits (0...32)
23 int SkCLZ_portable(uint32_t);
24 
25 /** Computes the 64bit product of a * b, and then shifts the answer down by
26     shift bits, returning the low 32bits. shift must be [0..63]
27     e.g. to perform a fixedmul, call SkMulShift(a, b, 16)
28 */
29 int32_t SkMulShift(int32_t a, int32_t b, unsigned shift);
30 
31 /** Computes numer1 * numer2 / denom in full 64 intermediate precision.
32     It is an error for denom to be 0. There is no special handling if
33     the result overflows 32bits.
34 */
35 int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom);
36 
37 /** Computes (numer1 << shift) / denom in full 64 intermediate precision.
38     It is an error for denom to be 0. There is no special handling if
39     the result overflows 32bits.
40 */
41 int32_t SkDivBits(int32_t numer, int32_t denom, int shift);
42 
43 /** Return the integer square root of value, with a bias of bitBias
44 */
45 int32_t SkSqrtBits(int32_t value, int bitBias);
46 
47 /** Return the integer square root of n, treated as a SkFixed (16.16)
48 */
49 #define SkSqrt32(n)         SkSqrtBits(n, 15)
50 
51 /** Return the integer cube root of value, with a bias of bitBias
52  */
53 int32_t SkCubeRootBits(int32_t value, int bitBias);
54 
55 /** Returns -1 if n < 0, else returns 0
56 */
57 #define SkExtractSign(n)    ((int32_t)(n) >> 31)
58 
59 /** If sign == -1, returns -n, else sign must be 0, and returns n.
60     Typically used in conjunction with SkExtractSign().
61 */
SkApplySign(int32_t n,int32_t sign)62 static inline int32_t SkApplySign(int32_t n, int32_t sign) {
63     SkASSERT(sign == 0 || sign == -1);
64     return (n ^ sign) - sign;
65 }
66 
67 /** Return x with the sign of y */
SkCopySign32(int32_t x,int32_t y)68 static inline int32_t SkCopySign32(int32_t x, int32_t y) {
69     return SkApplySign(x, SkExtractSign(x ^ y));
70 }
71 
72 /** Returns (value < 0 ? 0 : value) efficiently (i.e. no compares or branches)
73 */
SkClampPos(int value)74 static inline int SkClampPos(int value) {
75     return value & ~(value >> 31);
76 }
77 
78 /** Given an integer and a positive (max) integer, return the value
79     pinned against 0 and max, inclusive.
80     @param value    The value we want returned pinned between [0...max]
81     @param max      The positive max value
82     @return 0 if value < 0, max if value > max, else value
83 */
SkClampMax(int value,int max)84 static inline int SkClampMax(int value, int max) {
85     // ensure that max is positive
86     SkASSERT(max >= 0);
87     if (value < 0) {
88         value = 0;
89     }
90     if (value > max) {
91         value = max;
92     }
93     return value;
94 }
95 
96 /** Given a positive value and a positive max, return the value
97     pinned against max.
98     Note: only works as long as max - value doesn't wrap around
99     @return max if value >= max, else value
100 */
SkClampUMax(unsigned value,unsigned max)101 static inline unsigned SkClampUMax(unsigned value, unsigned max) {
102 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR
103     if (value > max) {
104         value = max;
105     }
106     return value;
107 #else
108     int diff = max - value;
109     // clear diff if diff is positive
110     diff &= diff >> 31;
111 
112     return value + diff;
113 #endif
114 }
115 
116 ///////////////////////////////////////////////////////////////////////////////
117 
118 #if defined(__arm__)
119     #define SkCLZ(x)    __builtin_clz(x)
120 #endif
121 
122 #ifndef SkCLZ
123     #define SkCLZ(x)    SkCLZ_portable(x)
124 #endif
125 
126 ///////////////////////////////////////////////////////////////////////////////
127 
128 /** Returns the smallest power-of-2 that is >= the specified value. If value
129     is already a power of 2, then it is returned unchanged. It is undefined
130     if value is <= 0.
131 */
SkNextPow2(int value)132 static inline int SkNextPow2(int value) {
133     SkASSERT(value > 0);
134     return 1 << (32 - SkCLZ(value - 1));
135 }
136 
137 /** Returns the log2 of the specified value, were that value to be rounded up
138     to the next power of 2. It is undefined to pass 0. Examples:
139          SkNextLog2(1) -> 0
140          SkNextLog2(2) -> 1
141          SkNextLog2(3) -> 2
142          SkNextLog2(4) -> 2
143          SkNextLog2(5) -> 3
144 */
SkNextLog2(uint32_t value)145 static inline int SkNextLog2(uint32_t value) {
146     SkASSERT(value != 0);
147     return 32 - SkCLZ(value - 1);
148 }
149 
150 /** Returns true if value is a power of 2. Does not explicitly check for
151     value <= 0.
152  */
SkIsPow2(int value)153 static inline bool SkIsPow2(int value) {
154     return (value & (value - 1)) == 0;
155 }
156 
157 ///////////////////////////////////////////////////////////////////////////////
158 
159 /** SkMulS16(a, b) multiplies a * b, but requires that a and b are both int16_t.
160     With this requirement, we can generate faster instructions on some
161     architectures.
162 */
163 #if defined(__arm__) \
164   && !defined(__thumb__) \
165   && !defined(__ARM_ARCH_4T__) \
166   && !defined(__ARM_ARCH_5T__)
SkMulS16(S16CPU x,S16CPU y)167     static inline int32_t SkMulS16(S16CPU x, S16CPU y) {
168         SkASSERT((int16_t)x == x);
169         SkASSERT((int16_t)y == y);
170         int32_t product;
171         asm("smulbb %0, %1, %2 \n"
172             : "=r"(product)
173             : "r"(x), "r"(y)
174             );
175         return product;
176     }
177 #else
178     #ifdef SK_DEBUG
SkMulS16(S16CPU x,S16CPU y)179         static inline int32_t SkMulS16(S16CPU x, S16CPU y) {
180             SkASSERT((int16_t)x == x);
181             SkASSERT((int16_t)y == y);
182             return x * y;
183         }
184     #else
185         #define SkMulS16(x, y)  ((x) * (y))
186     #endif
187 #endif
188 
189 /** Return a*b/255, truncating away any fractional bits. Only valid if both
190     a and b are 0..255
191 */
SkMulDiv255Trunc(U8CPU a,U8CPU b)192 static inline U8CPU SkMulDiv255Trunc(U8CPU a, U8CPU b) {
193     SkASSERT((uint8_t)a == a);
194     SkASSERT((uint8_t)b == b);
195     unsigned prod = SkMulS16(a, b) + 1;
196     return (prod + (prod >> 8)) >> 8;
197 }
198 
199 /** Return a*b/255, rounding any fractional bits. Only valid if both
200     a and b are 0..255
201  */
SkMulDiv255Round(U8CPU a,U8CPU b)202 static inline U8CPU SkMulDiv255Round(U8CPU a, U8CPU b) {
203     SkASSERT((uint8_t)a == a);
204     SkASSERT((uint8_t)b == b);
205     unsigned prod = SkMulS16(a, b) + 128;
206     return (prod + (prod >> 8)) >> 8;
207 }
208 
209 /** Return (a*b)/255, taking the ceiling of any fractional bits. Only valid if
210     both a and b are 0..255. The expected result equals (a * b + 254) / 255.
211  */
SkMulDiv255Ceiling(U8CPU a,U8CPU b)212 static inline U8CPU SkMulDiv255Ceiling(U8CPU a, U8CPU b) {
213     SkASSERT((uint8_t)a == a);
214     SkASSERT((uint8_t)b == b);
215     unsigned prod = SkMulS16(a, b) + 255;
216     return (prod + (prod >> 8)) >> 8;
217 }
218 
219 /** Return a*b/((1 << shift) - 1), rounding any fractional bits.
220     Only valid if a and b are unsigned and <= 32767 and shift is > 0 and <= 8
221 */
SkMul16ShiftRound(unsigned a,unsigned b,int shift)222 static inline unsigned SkMul16ShiftRound(unsigned a, unsigned b, int shift) {
223     SkASSERT(a <= 32767);
224     SkASSERT(b <= 32767);
225     SkASSERT(shift > 0 && shift <= 8);
226     unsigned prod = SkMulS16(a, b) + (1 << (shift - 1));
227     return (prod + (prod >> shift)) >> shift;
228 }
229 
230 /** Just the rounding step in SkDiv255Round: round(value / 255)
231  */
SkDiv255Round(unsigned prod)232 static inline unsigned SkDiv255Round(unsigned prod) {
233     prod += 128;
234     return (prod + (prod >> 8)) >> 8;
235 }
236 
237 #endif
238 
239