1 /*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef SkTypes_DEFINED
18 #define SkTypes_DEFINED
19
20 #include "SkPreConfig.h"
21 #include "SkUserConfig.h"
22 #include "SkPostConfig.h"
23
24 #ifndef SK_IGNORE_STDINT_DOT_H
25 #include <stdint.h>
26 #endif
27
28 #include <stdio.h>
29
30 /** \file SkTypes.h
31 */
32
33 /** See SkGraphics::GetVersion() to retrieve these at runtime
34 */
35 #define SKIA_VERSION_MAJOR 1
36 #define SKIA_VERSION_MINOR 0
37 #define SKIA_VERSION_PATCH 0
38
39 /*
40 memory wrappers to be implemented by the porting layer (platform)
41 */
42
43 /** Called internally if we run out of memory. The platform implementation must
44 not return, but should either throw an exception or otherwise exit.
45 */
46 extern void sk_out_of_memory(void);
47 /** Called internally if we hit an unrecoverable error.
48 The platform implementation must not return, but should either throw
49 an exception or otherwise exit.
50 */
51 extern void sk_throw(void);
52
53 enum {
54 SK_MALLOC_TEMP = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame
55 SK_MALLOC_THROW = 0x02 //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated.
56 };
57 /** Return a block of memory (at least 4-byte aligned) of at least the
58 specified size. If the requested memory cannot be returned, either
59 return null (if SK_MALLOC_TEMP bit is clear) or call sk_throw()
60 (if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free().
61 */
62 SK_API extern void* sk_malloc_flags(size_t size, unsigned flags);
63 /** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag
64 */
65 extern void* sk_malloc_throw(size_t size);
66 /** Same as standard realloc(), but this one never returns null on failure. It will throw
67 an exception if it fails.
68 */
69 extern void* sk_realloc_throw(void* buffer, size_t size);
70 /** Free memory returned by sk_malloc(). It is safe to pass null.
71 */
72 SK_API extern void sk_free(void*);
73
74 // bzero is safer than memset, but we can't rely on it, so... sk_bzero()
sk_bzero(void * buffer,size_t size)75 static inline void sk_bzero(void* buffer, size_t size) {
76 memset(buffer, 0, size);
77 }
78
79 ///////////////////////////////////////////////////////////////////////
80
81 #define SK_INIT_TO_AVOID_WARNING = 0
82
83 #ifndef SkDebugf
84 void SkDebugf(const char format[], ...);
85 #endif
86
87 #ifdef SK_DEBUG
88 #define SkASSERT(cond) SK_DEBUGBREAK(cond)
89 #define SkDEBUGCODE(code) code
90 #define SkDECLAREPARAM(type, var) , type var
91 #define SkPARAM(var) , var
92 // #define SkDEBUGF(args ) SkDebugf##args
93 #define SkDEBUGF(args ) SkDebugf args
94 #define SkAssertResult(cond) SkASSERT(cond)
95 #else
96 #define SkASSERT(cond)
97 #define SkDEBUGCODE(code)
98 #define SkDEBUGF(args)
99 #define SkDECLAREPARAM(type, var)
100 #define SkPARAM(var)
101
102 // unlike SkASSERT, this guy executes its condition in the non-debug build
103 #define SkAssertResult(cond) cond
104 #endif
105
106 namespace {
107
108 template <bool>
109 struct SkCompileAssert {
110 };
111
112 } // namespace
113
114 #define SK_COMPILE_ASSERT(expr, msg) \
115 typedef SkCompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
116
117 ///////////////////////////////////////////////////////////////////////
118
119 /**
120 * Fast type for signed 8 bits. Use for parameter passing and local variables,
121 * not for storage.
122 */
123 typedef int S8CPU;
124
125 /**
126 * Fast type for unsigned 8 bits. Use for parameter passing and local
127 * variables, not for storage
128 */
129 typedef unsigned U8CPU;
130
131 /**
132 * Fast type for signed 16 bits. Use for parameter passing and local variables,
133 * not for storage
134 */
135 typedef int S16CPU;
136
137 /**
138 * Fast type for unsigned 16 bits. Use for parameter passing and local
139 * variables, not for storage
140 */
141 typedef unsigned U16CPU;
142
143 /**
144 * Meant to be faster than bool (doesn't promise to be 0 or 1,
145 * just 0 or non-zero
146 */
147 typedef int SkBool;
148
149 /**
150 * Meant to be a small version of bool, for storage purposes. Will be 0 or 1
151 */
152 typedef uint8_t SkBool8;
153
154 #ifdef SK_DEBUG
155 SK_API int8_t SkToS8(long);
156 SK_API uint8_t SkToU8(size_t);
157 SK_API int16_t SkToS16(long);
158 SK_API uint16_t SkToU16(size_t);
159 SK_API int32_t SkToS32(long);
160 SK_API uint32_t SkToU32(size_t);
161 #else
162 #define SkToS8(x) ((int8_t)(x))
163 #define SkToU8(x) ((uint8_t)(x))
164 #define SkToS16(x) ((int16_t)(x))
165 #define SkToU16(x) ((uint16_t)(x))
166 #define SkToS32(x) ((int32_t)(x))
167 #define SkToU32(x) ((uint32_t)(x))
168 #endif
169
170 /** Returns 0 or 1 based on the condition
171 */
172 #define SkToBool(cond) ((cond) != 0)
173
174 #define SK_MaxS16 32767
175 #define SK_MinS16 -32767
176 #define SK_MaxU16 0xFFFF
177 #define SK_MinU16 0
178 #define SK_MaxS32 0x7FFFFFFF
179 #define SK_MinS32 0x80000001
180 #define SK_MaxU32 0xFFFFFFFF
181 #define SK_MinU32 0
182 #define SK_NaN32 0x80000000
183
184 /** Returns true if the value can be represented with signed 16bits
185 */
SkIsS16(long x)186 static inline bool SkIsS16(long x) {
187 return (int16_t)x == x;
188 }
189
190 /** Returns true if the value can be represented with unsigned 16bits
191 */
SkIsU16(long x)192 static inline bool SkIsU16(long x) {
193 return (uint16_t)x == x;
194 }
195
196 //////////////////////////////////////////////////////////////////////////////
197 #ifndef SK_OFFSETOF
198 #define SK_OFFSETOF(type, field) ((char*)&(((type*)1)->field) - (char*)1)
199 #endif
200
201 /** Returns the number of entries in an array (not a pointer)
202 */
203 #define SK_ARRAY_COUNT(array) (sizeof(array) / sizeof(array[0]))
204
205 /** Returns x rounded up to a multiple of 2
206 */
207 #define SkAlign2(x) (((x) + 1) >> 1 << 1)
208 /** Returns x rounded up to a multiple of 4
209 */
210 #define SkAlign4(x) (((x) + 3) >> 2 << 2)
211
212 typedef uint32_t SkFourByteTag;
213 #define SkSetFourByteTag(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
214
215 /** 32 bit integer to hold a unicode value
216 */
217 typedef int32_t SkUnichar;
218 /** 32 bit value to hold a millisecond count
219 */
220 typedef uint32_t SkMSec;
221 /** 1 second measured in milliseconds
222 */
223 #define SK_MSec1 1000
224 /** maximum representable milliseconds
225 */
226 #define SK_MSecMax 0x7FFFFFFF
227 /** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
228 */
229 #define SkMSec_LT(a, b) ((int32_t)(a) - (int32_t)(b) < 0)
230 /** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
231 */
232 #define SkMSec_LE(a, b) ((int32_t)(a) - (int32_t)(b) <= 0)
233
234 /****************************************************************************
235 The rest of these only build with C++
236 */
237 #ifdef __cplusplus
238
239 /** Faster than SkToBool for integral conditions. Returns 0 or 1
240 */
Sk32ToBool(uint32_t n)241 static inline int Sk32ToBool(uint32_t n) {
242 return (n | (0-n)) >> 31;
243 }
244
SkTSwap(T & a,T & b)245 template <typename T> inline void SkTSwap(T& a, T& b) {
246 T c(a);
247 a = b;
248 b = c;
249 }
250
SkAbs32(int32_t value)251 static inline int32_t SkAbs32(int32_t value) {
252 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR
253 if (value < 0)
254 value = -value;
255 return value;
256 #else
257 int32_t mask = value >> 31;
258 return (value ^ mask) - mask;
259 #endif
260 }
261
SkMax32(int32_t a,int32_t b)262 static inline int32_t SkMax32(int32_t a, int32_t b) {
263 if (a < b)
264 a = b;
265 return a;
266 }
267
SkMin32(int32_t a,int32_t b)268 static inline int32_t SkMin32(int32_t a, int32_t b) {
269 if (a > b)
270 a = b;
271 return a;
272 }
273
SkSign32(int32_t a)274 static inline int32_t SkSign32(int32_t a) {
275 return (a >> 31) | ((unsigned) -a >> 31);
276 }
277
SkFastMin32(int32_t value,int32_t max)278 static inline int32_t SkFastMin32(int32_t value, int32_t max) {
279 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR
280 if (value > max)
281 value = max;
282 return value;
283 #else
284 int diff = max - value;
285 // clear diff if it is negative (clear if value > max)
286 diff &= (diff >> 31);
287 return value + diff;
288 #endif
289 }
290
291 /** Returns signed 32 bit value pinned between min and max, inclusively
292 */
SkPin32(int32_t value,int32_t min,int32_t max)293 static inline int32_t SkPin32(int32_t value, int32_t min, int32_t max) {
294 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR
295 if (value < min)
296 value = min;
297 if (value > max)
298 value = max;
299 #else
300 if (value < min)
301 value = min;
302 else if (value > max)
303 value = max;
304 #endif
305 return value;
306 }
307
SkSetClearShift(uint32_t bits,bool cond,unsigned shift)308 static inline uint32_t SkSetClearShift(uint32_t bits, bool cond,
309 unsigned shift) {
310 SkASSERT((int)cond == 0 || (int)cond == 1);
311 return (bits & ~(1 << shift)) | ((int)cond << shift);
312 }
313
SkSetClearMask(uint32_t bits,bool cond,uint32_t mask)314 static inline uint32_t SkSetClearMask(uint32_t bits, bool cond,
315 uint32_t mask) {
316 return cond ? bits | mask : bits & ~mask;
317 }
318
319 ///////////////////////////////////////////////////////////////////////////////
320
321 /** Use to combine multiple bits in a bitmask in a type safe way.
322 */
323 template <typename T>
SkTBitOr(T a,T b)324 T SkTBitOr(T a, T b) {
325 return (T)(a | b);
326 }
327
328 /**
329 * Use to cast a pointer to a different type, and maintaining strict-aliasing
330 */
SkTCast(const void * ptr)331 template <typename Dst> Dst SkTCast(const void* ptr) {
332 union {
333 const void* src;
334 Dst dst;
335 } data;
336 data.src = ptr;
337 return data.dst;
338 }
339
340 //////////////////////////////////////////////////////////////////////////////
341
342 /** \class SkNoncopyable
343
344 SkNoncopyable is the base class for objects that may do not want to
345 be copied. It hides its copy-constructor and its assignment-operator.
346 */
347 class SK_API SkNoncopyable {
348 public:
SkNoncopyable()349 SkNoncopyable() {}
350
351 private:
352 SkNoncopyable(const SkNoncopyable&);
353 SkNoncopyable& operator=(const SkNoncopyable&);
354 };
355
356 class SkAutoFree : SkNoncopyable {
357 public:
SkAutoFree()358 SkAutoFree() : fPtr(NULL) {}
SkAutoFree(void * ptr)359 explicit SkAutoFree(void* ptr) : fPtr(ptr) {}
~SkAutoFree()360 ~SkAutoFree() { sk_free(fPtr); }
361
362 /** Return the currently allocate buffer, or null
363 */
get()364 void* get() const { return fPtr; }
365
366 /** Assign a new ptr allocated with sk_malloc (or null), and return the
367 previous ptr. Note it is the caller's responsibility to sk_free the
368 returned ptr.
369 */
set(void * ptr)370 void* set(void* ptr) {
371 void* prev = fPtr;
372 fPtr = ptr;
373 return prev;
374 }
375
376 /** Transfer ownership of the current ptr to the caller, setting the
377 internal reference to null. Note the caller is reponsible for calling
378 sk_free on the returned address.
379 */
detach()380 void* detach() { return this->set(NULL); }
381
382 /** Free the current buffer, and set the internal reference to NULL. Same
383 as calling sk_free(detach())
384 */
free()385 void free() {
386 sk_free(fPtr);
387 fPtr = NULL;
388 }
389
390 private:
391 void* fPtr;
392 // illegal
393 SkAutoFree(const SkAutoFree&);
394 SkAutoFree& operator=(const SkAutoFree&);
395 };
396
397 class SkAutoMalloc : public SkAutoFree {
398 public:
SkAutoMalloc(size_t size)399 explicit SkAutoMalloc(size_t size)
400 : SkAutoFree(sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP)) {}
401
SkAutoMalloc(size_t size,unsigned flags)402 SkAutoMalloc(size_t size, unsigned flags)
403 : SkAutoFree(sk_malloc_flags(size, flags)) {}
SkAutoMalloc()404 SkAutoMalloc() {}
405
406 void* alloc(size_t size,
407 unsigned flags = (SK_MALLOC_THROW | SK_MALLOC_TEMP)) {
408 sk_free(set(sk_malloc_flags(size, flags)));
409 return get();
410 }
411 };
412
413 /**
414 * Manage an allocated block of memory. If the requested size is <= kSize, then
415 * the allocation will come from the stack rather than the heap. This object
416 * is the sole manager of the lifetime of the block, so the caller must not
417 * call sk_free() or delete on the block.
418 */
419 template <size_t kSize> class SkAutoSMalloc : SkNoncopyable {
420 public:
421 /**
422 * Creates initially empty storage. get() returns a ptr, but it is to
423 * a zero-byte allocation. Must call realloc(size) to return an allocated
424 * block.
425 */
SkAutoSMalloc()426 SkAutoSMalloc() {
427 fPtr = fStorage;
428 }
429
430 /**
431 * Allocate a block of the specified size. If size <= kSize, then the
432 * allocation will come from the stack, otherwise it will be dynamically
433 * allocated.
434 */
SkAutoSMalloc(size_t size)435 explicit SkAutoSMalloc(size_t size) {
436 fPtr = fStorage;
437 this->realloc(size);
438 }
439
440 /**
441 * Free the allocated block (if any). If the block was small enought to
442 * have been allocated on the stack (size <= kSize) then this does nothing.
443 */
~SkAutoSMalloc()444 ~SkAutoSMalloc() {
445 if (fPtr != (void*)fStorage) {
446 sk_free(fPtr);
447 }
448 }
449
450 /**
451 * Return the allocated block. May return non-null even if the block is
452 * of zero size. Since this may be on the stack or dynamically allocated,
453 * the caller must not call sk_free() on it, but must rely on SkAutoSMalloc
454 * to manage it.
455 */
get()456 void* get() const { return fPtr; }
457
458 /**
459 * Return a new block of the requested size, freeing (as necessary) any
460 * previously allocated block. As with the constructor, if size <= kSize
461 * then the return block may be allocated locally, rather than from the
462 * heap.
463 */
realloc(size_t size)464 void* realloc(size_t size) {
465 if (fPtr != (void*)fStorage) {
466 sk_free(fPtr);
467 }
468
469 if (size <= kSize) {
470 fPtr = fStorage;
471 } else {
472 fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP);
473 }
474 return fPtr;
475 }
476
477 private:
478 void* fPtr;
479 uint32_t fStorage[(kSize + 3) >> 2];
480 // illegal
481 SkAutoSMalloc(const SkAutoSMalloc&);
482 SkAutoSMalloc& operator=(const SkAutoSMalloc&);
483 };
484
485 #endif /* C++ */
486
487 #endif
488
489