• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // http://code.google.com/p/protobuf/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // from google3/strings/strutil.cc
32 
33 #include <google/protobuf/stubs/strutil.h>
34 #include <errno.h>
35 #include <float.h>    // FLT_DIG and DBL_DIG
36 #include <limits>
37 #include <limits.h>
38 #include <stdio.h>
39 #include <iterator>
40 
41 #ifdef _WIN32
42 // MSVC has only _snprintf, not snprintf.
43 //
44 // MinGW has both snprintf and _snprintf, but they appear to be different
45 // functions.  The former is buggy.  When invoked like so:
46 //   char buffer[32];
47 //   snprintf(buffer, 32, "%.*g\n", FLT_DIG, 1.23e10f);
48 // it prints "1.23000e+10".  This is plainly wrong:  %g should never print
49 // trailing zeros after the decimal point.  For some reason this bug only
50 // occurs with some input values, not all.  In any case, _snprintf does the
51 // right thing, so we use it.
52 #define snprintf _snprintf
53 #endif
54 
55 namespace google {
56 namespace protobuf {
57 
IsNaN(double value)58 inline bool IsNaN(double value) {
59   // NaN is never equal to anything, even itself.
60   return value != value;
61 }
62 
63 // These are defined as macros on some platforms.  #undef them so that we can
64 // redefine them.
65 #undef isxdigit
66 #undef isprint
67 
68 // The definitions of these in ctype.h change based on locale.  Since our
69 // string manipulation is all in relation to the protocol buffer and C++
70 // languages, we always want to use the C locale.  So, we re-define these
71 // exactly as we want them.
isxdigit(char c)72 inline bool isxdigit(char c) {
73   return ('0' <= c && c <= '9') ||
74          ('a' <= c && c <= 'f') ||
75          ('A' <= c && c <= 'F');
76 }
77 
isprint(char c)78 inline bool isprint(char c) {
79   return c >= 0x20 && c <= 0x7E;
80 }
81 
82 // ----------------------------------------------------------------------
83 // StripString
84 //    Replaces any occurrence of the character 'remove' (or the characters
85 //    in 'remove') with the character 'replacewith'.
86 // ----------------------------------------------------------------------
StripString(string * s,const char * remove,char replacewith)87 void StripString(string* s, const char* remove, char replacewith) {
88   const char * str_start = s->c_str();
89   const char * str = str_start;
90   for (str = strpbrk(str, remove);
91        str != NULL;
92        str = strpbrk(str + 1, remove)) {
93     (*s)[str - str_start] = replacewith;
94   }
95 }
96 
97 // ----------------------------------------------------------------------
98 // StringReplace()
99 //    Replace the "old" pattern with the "new" pattern in a string,
100 //    and append the result to "res".  If replace_all is false,
101 //    it only replaces the first instance of "old."
102 // ----------------------------------------------------------------------
103 
StringReplace(const string & s,const string & oldsub,const string & newsub,bool replace_all,string * res)104 void StringReplace(const string& s, const string& oldsub,
105                    const string& newsub, bool replace_all,
106                    string* res) {
107   if (oldsub.empty()) {
108     res->append(s);  // if empty, append the given string.
109     return;
110   }
111 
112   string::size_type start_pos = 0;
113   string::size_type pos;
114   do {
115     pos = s.find(oldsub, start_pos);
116     if (pos == string::npos) {
117       break;
118     }
119     res->append(s, start_pos, pos - start_pos);
120     res->append(newsub);
121     start_pos = pos + oldsub.size();  // start searching again after the "old"
122   } while (replace_all);
123   res->append(s, start_pos, s.length() - start_pos);
124 }
125 
126 // ----------------------------------------------------------------------
127 // StringReplace()
128 //    Give me a string and two patterns "old" and "new", and I replace
129 //    the first instance of "old" in the string with "new", if it
130 //    exists.  If "global" is true; call this repeatedly until it
131 //    fails.  RETURN a new string, regardless of whether the replacement
132 //    happened or not.
133 // ----------------------------------------------------------------------
134 
StringReplace(const string & s,const string & oldsub,const string & newsub,bool replace_all)135 string StringReplace(const string& s, const string& oldsub,
136                      const string& newsub, bool replace_all) {
137   string ret;
138   StringReplace(s, oldsub, newsub, replace_all, &ret);
139   return ret;
140 }
141 
142 // ----------------------------------------------------------------------
143 // SplitStringUsing()
144 //    Split a string using a character delimiter. Append the components
145 //    to 'result'.
146 //
147 // Note: For multi-character delimiters, this routine will split on *ANY* of
148 // the characters in the string, not the entire string as a single delimiter.
149 // ----------------------------------------------------------------------
150 template <typename ITR>
151 static inline
SplitStringToIteratorUsing(const string & full,const char * delim,ITR & result)152 void SplitStringToIteratorUsing(const string& full,
153                                 const char* delim,
154                                 ITR& result) {
155   // Optimize the common case where delim is a single character.
156   if (delim[0] != '\0' && delim[1] == '\0') {
157     char c = delim[0];
158     const char* p = full.data();
159     const char* end = p + full.size();
160     while (p != end) {
161       if (*p == c) {
162         ++p;
163       } else {
164         const char* start = p;
165         while (++p != end && *p != c);
166         *result++ = string(start, p - start);
167       }
168     }
169     return;
170   }
171 
172   string::size_type begin_index, end_index;
173   begin_index = full.find_first_not_of(delim);
174   while (begin_index != string::npos) {
175     end_index = full.find_first_of(delim, begin_index);
176     if (end_index == string::npos) {
177       *result++ = full.substr(begin_index);
178       return;
179     }
180     *result++ = full.substr(begin_index, (end_index - begin_index));
181     begin_index = full.find_first_not_of(delim, end_index);
182   }
183 }
184 
SplitStringUsing(const string & full,const char * delim,vector<string> * result)185 void SplitStringUsing(const string& full,
186                       const char* delim,
187                       vector<string>* result) {
188   back_insert_iterator< vector<string> > it(*result);
189   SplitStringToIteratorUsing(full, delim, it);
190 }
191 
192 // ----------------------------------------------------------------------
193 // JoinStrings()
194 //    This merges a vector of string components with delim inserted
195 //    as separaters between components.
196 //
197 // ----------------------------------------------------------------------
198 template <class ITERATOR>
JoinStringsIterator(const ITERATOR & start,const ITERATOR & end,const char * delim,string * result)199 static void JoinStringsIterator(const ITERATOR& start,
200                                 const ITERATOR& end,
201                                 const char* delim,
202                                 string* result) {
203   GOOGLE_CHECK(result != NULL);
204   result->clear();
205   int delim_length = strlen(delim);
206 
207   // Precompute resulting length so we can reserve() memory in one shot.
208   int length = 0;
209   for (ITERATOR iter = start; iter != end; ++iter) {
210     if (iter != start) {
211       length += delim_length;
212     }
213     length += iter->size();
214   }
215   result->reserve(length);
216 
217   // Now combine everything.
218   for (ITERATOR iter = start; iter != end; ++iter) {
219     if (iter != start) {
220       result->append(delim, delim_length);
221     }
222     result->append(iter->data(), iter->size());
223   }
224 }
225 
JoinStrings(const vector<string> & components,const char * delim,string * result)226 void JoinStrings(const vector<string>& components,
227                  const char* delim,
228                  string * result) {
229   JoinStringsIterator(components.begin(), components.end(), delim, result);
230 }
231 
232 // ----------------------------------------------------------------------
233 // UnescapeCEscapeSequences()
234 //    This does all the unescaping that C does: \ooo, \r, \n, etc
235 //    Returns length of resulting string.
236 //    The implementation of \x parses any positive number of hex digits,
237 //    but it is an error if the value requires more than 8 bits, and the
238 //    result is truncated to 8 bits.
239 //
240 //    The second call stores its errors in a supplied string vector.
241 //    If the string vector pointer is NULL, it reports the errors with LOG().
242 // ----------------------------------------------------------------------
243 
244 #define IS_OCTAL_DIGIT(c) (((c) >= '0') && ((c) <= '7'))
245 
hex_digit_to_int(char c)246 inline int hex_digit_to_int(char c) {
247   /* Assume ASCII. */
248   assert('0' == 0x30 && 'A' == 0x41 && 'a' == 0x61);
249   assert(isxdigit(c));
250   int x = static_cast<unsigned char>(c);
251   if (x > '9') {
252     x += 9;
253   }
254   return x & 0xf;
255 }
256 
257 // Protocol buffers doesn't ever care about errors, but I don't want to remove
258 // the code.
259 #define LOG_STRING(LEVEL, VECTOR) GOOGLE_LOG_IF(LEVEL, false)
260 
UnescapeCEscapeSequences(const char * source,char * dest)261 int UnescapeCEscapeSequences(const char* source, char* dest) {
262   return UnescapeCEscapeSequences(source, dest, NULL);
263 }
264 
UnescapeCEscapeSequences(const char * source,char * dest,vector<string> * errors)265 int UnescapeCEscapeSequences(const char* source, char* dest,
266                              vector<string> *errors) {
267   GOOGLE_DCHECK(errors == NULL) << "Error reporting not implemented.";
268 
269   char* d = dest;
270   const char* p = source;
271 
272   // Small optimization for case where source = dest and there's no escaping
273   while ( p == d && *p != '\0' && *p != '\\' )
274     p++, d++;
275 
276   while (*p != '\0') {
277     if (*p != '\\') {
278       *d++ = *p++;
279     } else {
280       switch ( *++p ) {                    // skip past the '\\'
281         case '\0':
282           LOG_STRING(ERROR, errors) << "String cannot end with \\";
283           *d = '\0';
284           return d - dest;   // we're done with p
285         case 'a':  *d++ = '\a';  break;
286         case 'b':  *d++ = '\b';  break;
287         case 'f':  *d++ = '\f';  break;
288         case 'n':  *d++ = '\n';  break;
289         case 'r':  *d++ = '\r';  break;
290         case 't':  *d++ = '\t';  break;
291         case 'v':  *d++ = '\v';  break;
292         case '\\': *d++ = '\\';  break;
293         case '?':  *d++ = '\?';  break;    // \?  Who knew?
294         case '\'': *d++ = '\'';  break;
295         case '"':  *d++ = '\"';  break;
296         case '0': case '1': case '2': case '3':  // octal digit: 1 to 3 digits
297         case '4': case '5': case '6': case '7': {
298           char ch = *p - '0';
299           if ( IS_OCTAL_DIGIT(p[1]) )
300             ch = ch * 8 + *++p - '0';
301           if ( IS_OCTAL_DIGIT(p[1]) )      // safe (and easy) to do this twice
302             ch = ch * 8 + *++p - '0';      // now points at last digit
303           *d++ = ch;
304           break;
305         }
306         case 'x': case 'X': {
307           if (!isxdigit(p[1])) {
308             if (p[1] == '\0') {
309               LOG_STRING(ERROR, errors) << "String cannot end with \\x";
310             } else {
311               LOG_STRING(ERROR, errors) <<
312                 "\\x cannot be followed by non-hex digit: \\" << *p << p[1];
313             }
314             break;
315           }
316           unsigned int ch = 0;
317           const char *hex_start = p;
318           while (isxdigit(p[1]))  // arbitrarily many hex digits
319             ch = (ch << 4) + hex_digit_to_int(*++p);
320           if (ch > 0xFF)
321             LOG_STRING(ERROR, errors) << "Value of " <<
322               "\\" << string(hex_start, p+1-hex_start) << " exceeds 8 bits";
323           *d++ = ch;
324           break;
325         }
326 #if 0  // TODO(kenton):  Support \u and \U?  Requires runetochar().
327         case 'u': {
328           // \uhhhh => convert 4 hex digits to UTF-8
329           char32 rune = 0;
330           const char *hex_start = p;
331           for (int i = 0; i < 4; ++i) {
332             if (isxdigit(p[1])) {  // Look one char ahead.
333               rune = (rune << 4) + hex_digit_to_int(*++p);  // Advance p.
334             } else {
335               LOG_STRING(ERROR, errors)
336                 << "\\u must be followed by 4 hex digits: \\"
337                 <<  string(hex_start, p+1-hex_start);
338               break;
339             }
340           }
341           d += runetochar(d, &rune);
342           break;
343         }
344         case 'U': {
345           // \Uhhhhhhhh => convert 8 hex digits to UTF-8
346           char32 rune = 0;
347           const char *hex_start = p;
348           for (int i = 0; i < 8; ++i) {
349             if (isxdigit(p[1])) {  // Look one char ahead.
350               // Don't change rune until we're sure this
351               // is within the Unicode limit, but do advance p.
352               char32 newrune = (rune << 4) + hex_digit_to_int(*++p);
353               if (newrune > 0x10FFFF) {
354                 LOG_STRING(ERROR, errors)
355                   << "Value of \\"
356                   << string(hex_start, p + 1 - hex_start)
357                   << " exceeds Unicode limit (0x10FFFF)";
358                 break;
359               } else {
360                 rune = newrune;
361               }
362             } else {
363               LOG_STRING(ERROR, errors)
364                 << "\\U must be followed by 8 hex digits: \\"
365                 <<  string(hex_start, p+1-hex_start);
366               break;
367             }
368           }
369           d += runetochar(d, &rune);
370           break;
371         }
372 #endif
373         default:
374           LOG_STRING(ERROR, errors) << "Unknown escape sequence: \\" << *p;
375       }
376       p++;                                 // read past letter we escaped
377     }
378   }
379   *d = '\0';
380   return d - dest;
381 }
382 
383 // ----------------------------------------------------------------------
384 // UnescapeCEscapeString()
385 //    This does the same thing as UnescapeCEscapeSequences, but creates
386 //    a new string. The caller does not need to worry about allocating
387 //    a dest buffer. This should be used for non performance critical
388 //    tasks such as printing debug messages. It is safe for src and dest
389 //    to be the same.
390 //
391 //    The second call stores its errors in a supplied string vector.
392 //    If the string vector pointer is NULL, it reports the errors with LOG().
393 //
394 //    In the first and second calls, the length of dest is returned. In the
395 //    the third call, the new string is returned.
396 // ----------------------------------------------------------------------
UnescapeCEscapeString(const string & src,string * dest)397 int UnescapeCEscapeString(const string& src, string* dest) {
398   return UnescapeCEscapeString(src, dest, NULL);
399 }
400 
UnescapeCEscapeString(const string & src,string * dest,vector<string> * errors)401 int UnescapeCEscapeString(const string& src, string* dest,
402                           vector<string> *errors) {
403   scoped_array<char> unescaped(new char[src.size() + 1]);
404   int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), errors);
405   GOOGLE_CHECK(dest);
406   dest->assign(unescaped.get(), len);
407   return len;
408 }
409 
UnescapeCEscapeString(const string & src)410 string UnescapeCEscapeString(const string& src) {
411   scoped_array<char> unescaped(new char[src.size() + 1]);
412   int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), NULL);
413   return string(unescaped.get(), len);
414 }
415 
416 // ----------------------------------------------------------------------
417 // CEscapeString()
418 // CHexEscapeString()
419 //    Copies 'src' to 'dest', escaping dangerous characters using
420 //    C-style escape sequences. This is very useful for preparing query
421 //    flags. 'src' and 'dest' should not overlap. The 'Hex' version uses
422 //    hexadecimal rather than octal sequences.
423 //    Returns the number of bytes written to 'dest' (not including the \0)
424 //    or -1 if there was insufficient space.
425 //
426 //    Currently only \n, \r, \t, ", ', \ and !isprint() chars are escaped.
427 // ----------------------------------------------------------------------
CEscapeInternal(const char * src,int src_len,char * dest,int dest_len,bool use_hex,bool utf8_safe)428 int CEscapeInternal(const char* src, int src_len, char* dest,
429                     int dest_len, bool use_hex, bool utf8_safe) {
430   const char* src_end = src + src_len;
431   int used = 0;
432   bool last_hex_escape = false; // true if last output char was \xNN
433 
434   for (; src < src_end; src++) {
435     if (dest_len - used < 2)   // Need space for two letter escape
436       return -1;
437 
438     bool is_hex_escape = false;
439     switch (*src) {
440       case '\n': dest[used++] = '\\'; dest[used++] = 'n';  break;
441       case '\r': dest[used++] = '\\'; dest[used++] = 'r';  break;
442       case '\t': dest[used++] = '\\'; dest[used++] = 't';  break;
443       case '\"': dest[used++] = '\\'; dest[used++] = '\"'; break;
444       case '\'': dest[used++] = '\\'; dest[used++] = '\''; break;
445       case '\\': dest[used++] = '\\'; dest[used++] = '\\'; break;
446       default:
447         // Note that if we emit \xNN and the src character after that is a hex
448         // digit then that digit must be escaped too to prevent it being
449         // interpreted as part of the character code by C.
450         if ((!utf8_safe || static_cast<uint8>(*src) < 0x80) &&
451             (!isprint(*src) ||
452              (last_hex_escape && isxdigit(*src)))) {
453           if (dest_len - used < 4) // need space for 4 letter escape
454             return -1;
455           sprintf(dest + used, (use_hex ? "\\x%02x" : "\\%03o"),
456                   static_cast<uint8>(*src));
457           is_hex_escape = use_hex;
458           used += 4;
459         } else {
460           dest[used++] = *src; break;
461         }
462     }
463     last_hex_escape = is_hex_escape;
464   }
465 
466   if (dest_len - used < 1)   // make sure that there is room for \0
467     return -1;
468 
469   dest[used] = '\0';   // doesn't count towards return value though
470   return used;
471 }
472 
CEscapeString(const char * src,int src_len,char * dest,int dest_len)473 int CEscapeString(const char* src, int src_len, char* dest, int dest_len) {
474   return CEscapeInternal(src, src_len, dest, dest_len, false, false);
475 }
476 
477 // ----------------------------------------------------------------------
478 // CEscape()
479 // CHexEscape()
480 //    Copies 'src' to result, escaping dangerous characters using
481 //    C-style escape sequences. This is very useful for preparing query
482 //    flags. 'src' and 'dest' should not overlap. The 'Hex' version
483 //    hexadecimal rather than octal sequences.
484 //
485 //    Currently only \n, \r, \t, ", ', \ and !isprint() chars are escaped.
486 // ----------------------------------------------------------------------
CEscape(const string & src)487 string CEscape(const string& src) {
488   const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
489   scoped_array<char> dest(new char[dest_length]);
490   const int len = CEscapeInternal(src.data(), src.size(),
491                                   dest.get(), dest_length, false, false);
492   GOOGLE_DCHECK_GE(len, 0);
493   return string(dest.get(), len);
494 }
495 
496 namespace strings {
497 
Utf8SafeCEscape(const string & src)498 string Utf8SafeCEscape(const string& src) {
499   const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
500   scoped_array<char> dest(new char[dest_length]);
501   const int len = CEscapeInternal(src.data(), src.size(),
502                                   dest.get(), dest_length, false, true);
503   GOOGLE_DCHECK_GE(len, 0);
504   return string(dest.get(), len);
505 }
506 
CHexEscape(const string & src)507 string CHexEscape(const string& src) {
508   const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
509   scoped_array<char> dest(new char[dest_length]);
510   const int len = CEscapeInternal(src.data(), src.size(),
511                                   dest.get(), dest_length, true, false);
512   GOOGLE_DCHECK_GE(len, 0);
513   return string(dest.get(), len);
514 }
515 
516 }  // namespace strings
517 
518 // ----------------------------------------------------------------------
519 // strto32_adaptor()
520 // strtou32_adaptor()
521 //    Implementation of strto[u]l replacements that have identical
522 //    overflow and underflow characteristics for both ILP-32 and LP-64
523 //    platforms, including errno preservation in error-free calls.
524 // ----------------------------------------------------------------------
525 
strto32_adaptor(const char * nptr,char ** endptr,int base)526 int32 strto32_adaptor(const char *nptr, char **endptr, int base) {
527   const int saved_errno = errno;
528   errno = 0;
529   const long result = strtol(nptr, endptr, base);
530   if (errno == ERANGE && result == LONG_MIN) {
531     return kint32min;
532   } else if (errno == ERANGE && result == LONG_MAX) {
533     return kint32max;
534   } else if (errno == 0 && result < kint32min) {
535     errno = ERANGE;
536     return kint32min;
537   } else if (errno == 0 && result > kint32max) {
538     errno = ERANGE;
539     return kint32max;
540   }
541   if (errno == 0)
542     errno = saved_errno;
543   return static_cast<int32>(result);
544 }
545 
strtou32_adaptor(const char * nptr,char ** endptr,int base)546 uint32 strtou32_adaptor(const char *nptr, char **endptr, int base) {
547   const int saved_errno = errno;
548   errno = 0;
549   const unsigned long result = strtoul(nptr, endptr, base);
550   if (errno == ERANGE && result == ULONG_MAX) {
551     return kuint32max;
552   } else if (errno == 0 && result > kuint32max) {
553     errno = ERANGE;
554     return kuint32max;
555   }
556   if (errno == 0)
557     errno = saved_errno;
558   return static_cast<uint32>(result);
559 }
560 
561 // ----------------------------------------------------------------------
562 // FastIntToBuffer()
563 // FastInt64ToBuffer()
564 // FastHexToBuffer()
565 // FastHex64ToBuffer()
566 // FastHex32ToBuffer()
567 // ----------------------------------------------------------------------
568 
569 // Offset into buffer where FastInt64ToBuffer places the end of string
570 // null character.  Also used by FastInt64ToBufferLeft.
571 static const int kFastInt64ToBufferOffset = 21;
572 
FastInt64ToBuffer(int64 i,char * buffer)573 char *FastInt64ToBuffer(int64 i, char* buffer) {
574   // We could collapse the positive and negative sections, but that
575   // would be slightly slower for positive numbers...
576   // 22 bytes is enough to store -2**64, -18446744073709551616.
577   char* p = buffer + kFastInt64ToBufferOffset;
578   *p-- = '\0';
579   if (i >= 0) {
580     do {
581       *p-- = '0' + i % 10;
582       i /= 10;
583     } while (i > 0);
584     return p + 1;
585   } else {
586     // On different platforms, % and / have different behaviors for
587     // negative numbers, so we need to jump through hoops to make sure
588     // we don't divide negative numbers.
589     if (i > -10) {
590       i = -i;
591       *p-- = '0' + i;
592       *p = '-';
593       return p;
594     } else {
595       // Make sure we aren't at MIN_INT, in which case we can't say i = -i
596       i = i + 10;
597       i = -i;
598       *p-- = '0' + i % 10;
599       // Undo what we did a moment ago
600       i = i / 10 + 1;
601       do {
602         *p-- = '0' + i % 10;
603         i /= 10;
604       } while (i > 0);
605       *p = '-';
606       return p;
607     }
608   }
609 }
610 
611 // Offset into buffer where FastInt32ToBuffer places the end of string
612 // null character.  Also used by FastInt32ToBufferLeft
613 static const int kFastInt32ToBufferOffset = 11;
614 
615 // Yes, this is a duplicate of FastInt64ToBuffer.  But, we need this for the
616 // compiler to generate 32 bit arithmetic instructions.  It's much faster, at
617 // least with 32 bit binaries.
FastInt32ToBuffer(int32 i,char * buffer)618 char *FastInt32ToBuffer(int32 i, char* buffer) {
619   // We could collapse the positive and negative sections, but that
620   // would be slightly slower for positive numbers...
621   // 12 bytes is enough to store -2**32, -4294967296.
622   char* p = buffer + kFastInt32ToBufferOffset;
623   *p-- = '\0';
624   if (i >= 0) {
625     do {
626       *p-- = '0' + i % 10;
627       i /= 10;
628     } while (i > 0);
629     return p + 1;
630   } else {
631     // On different platforms, % and / have different behaviors for
632     // negative numbers, so we need to jump through hoops to make sure
633     // we don't divide negative numbers.
634     if (i > -10) {
635       i = -i;
636       *p-- = '0' + i;
637       *p = '-';
638       return p;
639     } else {
640       // Make sure we aren't at MIN_INT, in which case we can't say i = -i
641       i = i + 10;
642       i = -i;
643       *p-- = '0' + i % 10;
644       // Undo what we did a moment ago
645       i = i / 10 + 1;
646       do {
647         *p-- = '0' + i % 10;
648         i /= 10;
649       } while (i > 0);
650       *p = '-';
651       return p;
652     }
653   }
654 }
655 
FastHexToBuffer(int i,char * buffer)656 char *FastHexToBuffer(int i, char* buffer) {
657   GOOGLE_CHECK(i >= 0) << "FastHexToBuffer() wants non-negative integers, not " << i;
658 
659   static const char *hexdigits = "0123456789abcdef";
660   char *p = buffer + 21;
661   *p-- = '\0';
662   do {
663     *p-- = hexdigits[i & 15];   // mod by 16
664     i >>= 4;                    // divide by 16
665   } while (i > 0);
666   return p + 1;
667 }
668 
InternalFastHexToBuffer(uint64 value,char * buffer,int num_byte)669 char *InternalFastHexToBuffer(uint64 value, char* buffer, int num_byte) {
670   static const char *hexdigits = "0123456789abcdef";
671   buffer[num_byte] = '\0';
672   for (int i = num_byte - 1; i >= 0; i--) {
673     buffer[i] = hexdigits[uint32(value) & 0xf];
674     value >>= 4;
675   }
676   return buffer;
677 }
678 
FastHex64ToBuffer(uint64 value,char * buffer)679 char *FastHex64ToBuffer(uint64 value, char* buffer) {
680   return InternalFastHexToBuffer(value, buffer, 16);
681 }
682 
FastHex32ToBuffer(uint32 value,char * buffer)683 char *FastHex32ToBuffer(uint32 value, char* buffer) {
684   return InternalFastHexToBuffer(value, buffer, 8);
685 }
686 
PlaceNum(char * p,int num,char prev_sep)687 static inline char* PlaceNum(char* p, int num, char prev_sep) {
688    *p-- = '0' + num % 10;
689    *p-- = '0' + num / 10;
690    *p-- = prev_sep;
691    return p;
692 }
693 
694 // ----------------------------------------------------------------------
695 // FastInt32ToBufferLeft()
696 // FastUInt32ToBufferLeft()
697 // FastInt64ToBufferLeft()
698 // FastUInt64ToBufferLeft()
699 //
700 // Like the Fast*ToBuffer() functions above, these are intended for speed.
701 // Unlike the Fast*ToBuffer() functions, however, these functions write
702 // their output to the beginning of the buffer (hence the name, as the
703 // output is left-aligned).  The caller is responsible for ensuring that
704 // the buffer has enough space to hold the output.
705 //
706 // Returns a pointer to the end of the string (i.e. the null character
707 // terminating the string).
708 // ----------------------------------------------------------------------
709 
710 static const char two_ASCII_digits[100][2] = {
711   {'0','0'}, {'0','1'}, {'0','2'}, {'0','3'}, {'0','4'},
712   {'0','5'}, {'0','6'}, {'0','7'}, {'0','8'}, {'0','9'},
713   {'1','0'}, {'1','1'}, {'1','2'}, {'1','3'}, {'1','4'},
714   {'1','5'}, {'1','6'}, {'1','7'}, {'1','8'}, {'1','9'},
715   {'2','0'}, {'2','1'}, {'2','2'}, {'2','3'}, {'2','4'},
716   {'2','5'}, {'2','6'}, {'2','7'}, {'2','8'}, {'2','9'},
717   {'3','0'}, {'3','1'}, {'3','2'}, {'3','3'}, {'3','4'},
718   {'3','5'}, {'3','6'}, {'3','7'}, {'3','8'}, {'3','9'},
719   {'4','0'}, {'4','1'}, {'4','2'}, {'4','3'}, {'4','4'},
720   {'4','5'}, {'4','6'}, {'4','7'}, {'4','8'}, {'4','9'},
721   {'5','0'}, {'5','1'}, {'5','2'}, {'5','3'}, {'5','4'},
722   {'5','5'}, {'5','6'}, {'5','7'}, {'5','8'}, {'5','9'},
723   {'6','0'}, {'6','1'}, {'6','2'}, {'6','3'}, {'6','4'},
724   {'6','5'}, {'6','6'}, {'6','7'}, {'6','8'}, {'6','9'},
725   {'7','0'}, {'7','1'}, {'7','2'}, {'7','3'}, {'7','4'},
726   {'7','5'}, {'7','6'}, {'7','7'}, {'7','8'}, {'7','9'},
727   {'8','0'}, {'8','1'}, {'8','2'}, {'8','3'}, {'8','4'},
728   {'8','5'}, {'8','6'}, {'8','7'}, {'8','8'}, {'8','9'},
729   {'9','0'}, {'9','1'}, {'9','2'}, {'9','3'}, {'9','4'},
730   {'9','5'}, {'9','6'}, {'9','7'}, {'9','8'}, {'9','9'}
731 };
732 
FastUInt32ToBufferLeft(uint32 u,char * buffer)733 char* FastUInt32ToBufferLeft(uint32 u, char* buffer) {
734   int digits;
735   const char *ASCII_digits = NULL;
736   // The idea of this implementation is to trim the number of divides to as few
737   // as possible by using multiplication and subtraction rather than mod (%),
738   // and by outputting two digits at a time rather than one.
739   // The huge-number case is first, in the hopes that the compiler will output
740   // that case in one branch-free block of code, and only output conditional
741   // branches into it from below.
742   if (u >= 1000000000) {  // >= 1,000,000,000
743     digits = u / 100000000;  // 100,000,000
744     ASCII_digits = two_ASCII_digits[digits];
745     buffer[0] = ASCII_digits[0];
746     buffer[1] = ASCII_digits[1];
747     buffer += 2;
748 sublt100_000_000:
749     u -= digits * 100000000;  // 100,000,000
750 lt100_000_000:
751     digits = u / 1000000;  // 1,000,000
752     ASCII_digits = two_ASCII_digits[digits];
753     buffer[0] = ASCII_digits[0];
754     buffer[1] = ASCII_digits[1];
755     buffer += 2;
756 sublt1_000_000:
757     u -= digits * 1000000;  // 1,000,000
758 lt1_000_000:
759     digits = u / 10000;  // 10,000
760     ASCII_digits = two_ASCII_digits[digits];
761     buffer[0] = ASCII_digits[0];
762     buffer[1] = ASCII_digits[1];
763     buffer += 2;
764 sublt10_000:
765     u -= digits * 10000;  // 10,000
766 lt10_000:
767     digits = u / 100;
768     ASCII_digits = two_ASCII_digits[digits];
769     buffer[0] = ASCII_digits[0];
770     buffer[1] = ASCII_digits[1];
771     buffer += 2;
772 sublt100:
773     u -= digits * 100;
774 lt100:
775     digits = u;
776     ASCII_digits = two_ASCII_digits[digits];
777     buffer[0] = ASCII_digits[0];
778     buffer[1] = ASCII_digits[1];
779     buffer += 2;
780 done:
781     *buffer = 0;
782     return buffer;
783   }
784 
785   if (u < 100) {
786     digits = u;
787     if (u >= 10) goto lt100;
788     *buffer++ = '0' + digits;
789     goto done;
790   }
791   if (u  <  10000) {   // 10,000
792     if (u >= 1000) goto lt10_000;
793     digits = u / 100;
794     *buffer++ = '0' + digits;
795     goto sublt100;
796   }
797   if (u  <  1000000) {   // 1,000,000
798     if (u >= 100000) goto lt1_000_000;
799     digits = u / 10000;  //    10,000
800     *buffer++ = '0' + digits;
801     goto sublt10_000;
802   }
803   if (u  <  100000000) {   // 100,000,000
804     if (u >= 10000000) goto lt100_000_000;
805     digits = u / 1000000;  //   1,000,000
806     *buffer++ = '0' + digits;
807     goto sublt1_000_000;
808   }
809   // we already know that u < 1,000,000,000
810   digits = u / 100000000;   // 100,000,000
811   *buffer++ = '0' + digits;
812   goto sublt100_000_000;
813 }
814 
FastInt32ToBufferLeft(int32 i,char * buffer)815 char* FastInt32ToBufferLeft(int32 i, char* buffer) {
816   uint32 u = i;
817   if (i < 0) {
818     *buffer++ = '-';
819     u = -i;
820   }
821   return FastUInt32ToBufferLeft(u, buffer);
822 }
823 
FastUInt64ToBufferLeft(uint64 u64,char * buffer)824 char* FastUInt64ToBufferLeft(uint64 u64, char* buffer) {
825   int digits;
826   const char *ASCII_digits = NULL;
827 
828   uint32 u = static_cast<uint32>(u64);
829   if (u == u64) return FastUInt32ToBufferLeft(u, buffer);
830 
831   uint64 top_11_digits = u64 / 1000000000;
832   buffer = FastUInt64ToBufferLeft(top_11_digits, buffer);
833   u = u64 - (top_11_digits * 1000000000);
834 
835   digits = u / 10000000;  // 10,000,000
836   GOOGLE_DCHECK_LT(digits, 100);
837   ASCII_digits = two_ASCII_digits[digits];
838   buffer[0] = ASCII_digits[0];
839   buffer[1] = ASCII_digits[1];
840   buffer += 2;
841   u -= digits * 10000000;  // 10,000,000
842   digits = u / 100000;  // 100,000
843   ASCII_digits = two_ASCII_digits[digits];
844   buffer[0] = ASCII_digits[0];
845   buffer[1] = ASCII_digits[1];
846   buffer += 2;
847   u -= digits * 100000;  // 100,000
848   digits = u / 1000;  // 1,000
849   ASCII_digits = two_ASCII_digits[digits];
850   buffer[0] = ASCII_digits[0];
851   buffer[1] = ASCII_digits[1];
852   buffer += 2;
853   u -= digits * 1000;  // 1,000
854   digits = u / 10;
855   ASCII_digits = two_ASCII_digits[digits];
856   buffer[0] = ASCII_digits[0];
857   buffer[1] = ASCII_digits[1];
858   buffer += 2;
859   u -= digits * 10;
860   digits = u;
861   *buffer++ = '0' + digits;
862   *buffer = 0;
863   return buffer;
864 }
865 
FastInt64ToBufferLeft(int64 i,char * buffer)866 char* FastInt64ToBufferLeft(int64 i, char* buffer) {
867   uint64 u = i;
868   if (i < 0) {
869     *buffer++ = '-';
870     u = -i;
871   }
872   return FastUInt64ToBufferLeft(u, buffer);
873 }
874 
875 // ----------------------------------------------------------------------
876 // SimpleItoa()
877 //    Description: converts an integer to a string.
878 //
879 //    Return value: string
880 // ----------------------------------------------------------------------
881 
SimpleItoa(int i)882 string SimpleItoa(int i) {
883   char buffer[kFastToBufferSize];
884   return (sizeof(i) == 4) ?
885     FastInt32ToBuffer(i, buffer) :
886     FastInt64ToBuffer(i, buffer);
887 }
888 
SimpleItoa(unsigned int i)889 string SimpleItoa(unsigned int i) {
890   char buffer[kFastToBufferSize];
891   return string(buffer, (sizeof(i) == 4) ?
892     FastUInt32ToBufferLeft(i, buffer) :
893     FastUInt64ToBufferLeft(i, buffer));
894 }
895 
SimpleItoa(long i)896 string SimpleItoa(long i) {
897   char buffer[kFastToBufferSize];
898   return (sizeof(i) == 4) ?
899     FastInt32ToBuffer(i, buffer) :
900     FastInt64ToBuffer(i, buffer);
901 }
902 
SimpleItoa(unsigned long i)903 string SimpleItoa(unsigned long i) {
904   char buffer[kFastToBufferSize];
905   return string(buffer, (sizeof(i) == 4) ?
906     FastUInt32ToBufferLeft(i, buffer) :
907     FastUInt64ToBufferLeft(i, buffer));
908 }
909 
SimpleItoa(long long i)910 string SimpleItoa(long long i) {
911   char buffer[kFastToBufferSize];
912   return (sizeof(i) == 4) ?
913     FastInt32ToBuffer(i, buffer) :
914     FastInt64ToBuffer(i, buffer);
915 }
916 
SimpleItoa(unsigned long long i)917 string SimpleItoa(unsigned long long i) {
918   char buffer[kFastToBufferSize];
919   return string(buffer, (sizeof(i) == 4) ?
920     FastUInt32ToBufferLeft(i, buffer) :
921     FastUInt64ToBufferLeft(i, buffer));
922 }
923 
924 // ----------------------------------------------------------------------
925 // SimpleDtoa()
926 // SimpleFtoa()
927 // DoubleToBuffer()
928 // FloatToBuffer()
929 //    We want to print the value without losing precision, but we also do
930 //    not want to print more digits than necessary.  This turns out to be
931 //    trickier than it sounds.  Numbers like 0.2 cannot be represented
932 //    exactly in binary.  If we print 0.2 with a very large precision,
933 //    e.g. "%.50g", we get "0.2000000000000000111022302462515654042363167".
934 //    On the other hand, if we set the precision too low, we lose
935 //    significant digits when printing numbers that actually need them.
936 //    It turns out there is no precision value that does the right thing
937 //    for all numbers.
938 //
939 //    Our strategy is to first try printing with a precision that is never
940 //    over-precise, then parse the result with strtod() to see if it
941 //    matches.  If not, we print again with a precision that will always
942 //    give a precise result, but may use more digits than necessary.
943 //
944 //    An arguably better strategy would be to use the algorithm described
945 //    in "How to Print Floating-Point Numbers Accurately" by Steele &
946 //    White, e.g. as implemented by David M. Gay's dtoa().  It turns out,
947 //    however, that the following implementation is about as fast as
948 //    DMG's code.  Furthermore, DMG's code locks mutexes, which means it
949 //    will not scale well on multi-core machines.  DMG's code is slightly
950 //    more accurate (in that it will never use more digits than
951 //    necessary), but this is probably irrelevant for most users.
952 //
953 //    Rob Pike and Ken Thompson also have an implementation of dtoa() in
954 //    third_party/fmt/fltfmt.cc.  Their implementation is similar to this
955 //    one in that it makes guesses and then uses strtod() to check them.
956 //    Their implementation is faster because they use their own code to
957 //    generate the digits in the first place rather than use snprintf(),
958 //    thus avoiding format string parsing overhead.  However, this makes
959 //    it considerably more complicated than the following implementation,
960 //    and it is embedded in a larger library.  If speed turns out to be
961 //    an issue, we could re-implement this in terms of their
962 //    implementation.
963 // ----------------------------------------------------------------------
964 
SimpleDtoa(double value)965 string SimpleDtoa(double value) {
966   char buffer[kDoubleToBufferSize];
967   return DoubleToBuffer(value, buffer);
968 }
969 
SimpleFtoa(float value)970 string SimpleFtoa(float value) {
971   char buffer[kFloatToBufferSize];
972   return FloatToBuffer(value, buffer);
973 }
974 
IsValidFloatChar(char c)975 static inline bool IsValidFloatChar(char c) {
976   return ('0' <= c && c <= '9') ||
977          c == 'e' || c == 'E' ||
978          c == '+' || c == '-';
979 }
980 
DelocalizeRadix(char * buffer)981 void DelocalizeRadix(char* buffer) {
982   // Fast check:  if the buffer has a normal decimal point, assume no
983   // translation is needed.
984   if (strchr(buffer, '.') != NULL) return;
985 
986   // Find the first unknown character.
987   while (IsValidFloatChar(*buffer)) ++buffer;
988 
989   if (*buffer == '\0') {
990     // No radix character found.
991     return;
992   }
993 
994   // We are now pointing at the locale-specific radix character.  Replace it
995   // with '.'.
996   *buffer = '.';
997   ++buffer;
998 
999   if (!IsValidFloatChar(*buffer) && *buffer != '\0') {
1000     // It appears the radix was a multi-byte character.  We need to remove the
1001     // extra bytes.
1002     char* target = buffer;
1003     do { ++buffer; } while (!IsValidFloatChar(*buffer) && *buffer != '\0');
1004     memmove(target, buffer, strlen(buffer) + 1);
1005   }
1006 }
1007 
DoubleToBuffer(double value,char * buffer)1008 char* DoubleToBuffer(double value, char* buffer) {
1009   // DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all
1010   // platforms these days.  Just in case some system exists where DBL_DIG
1011   // is significantly larger -- and risks overflowing our buffer -- we have
1012   // this assert.
1013   GOOGLE_COMPILE_ASSERT(DBL_DIG < 20, DBL_DIG_is_too_big);
1014 
1015   if (value == numeric_limits<double>::infinity()) {
1016     strcpy(buffer, "inf");
1017     return buffer;
1018   } else if (value == -numeric_limits<double>::infinity()) {
1019     strcpy(buffer, "-inf");
1020     return buffer;
1021   } else if (IsNaN(value)) {
1022     strcpy(buffer, "nan");
1023     return buffer;
1024   }
1025 
1026   int snprintf_result =
1027     snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG, value);
1028 
1029   // The snprintf should never overflow because the buffer is significantly
1030   // larger than the precision we asked for.
1031   GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
1032 
1033   // We need to make parsed_value volatile in order to force the compiler to
1034   // write it out to the stack.  Otherwise, it may keep the value in a
1035   // register, and if it does that, it may keep it as a long double instead
1036   // of a double.  This long double may have extra bits that make it compare
1037   // unequal to "value" even though it would be exactly equal if it were
1038   // truncated to a double.
1039   volatile double parsed_value = strtod(buffer, NULL);
1040   if (parsed_value != value) {
1041     int snprintf_result =
1042       snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG+2, value);
1043 
1044     // Should never overflow; see above.
1045     GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
1046   }
1047 
1048   DelocalizeRadix(buffer);
1049   return buffer;
1050 }
1051 
safe_strtof(const char * str,float * value)1052 bool safe_strtof(const char* str, float* value) {
1053   char* endptr;
1054   errno = 0;  // errno only gets set on errors
1055 #if defined(_WIN32) || defined (__hpux)  // has no strtof()
1056   *value = strtod(str, &endptr);
1057 #else
1058   *value = strtof(str, &endptr);
1059 #endif
1060   return *str != 0 && *endptr == 0 && errno == 0;
1061 }
1062 
FloatToBuffer(float value,char * buffer)1063 char* FloatToBuffer(float value, char* buffer) {
1064   // FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
1065   // platforms these days.  Just in case some system exists where FLT_DIG
1066   // is significantly larger -- and risks overflowing our buffer -- we have
1067   // this assert.
1068   GOOGLE_COMPILE_ASSERT(FLT_DIG < 10, FLT_DIG_is_too_big);
1069 
1070   if (value == numeric_limits<double>::infinity()) {
1071     strcpy(buffer, "inf");
1072     return buffer;
1073   } else if (value == -numeric_limits<double>::infinity()) {
1074     strcpy(buffer, "-inf");
1075     return buffer;
1076   } else if (IsNaN(value)) {
1077     strcpy(buffer, "nan");
1078     return buffer;
1079   }
1080 
1081   int snprintf_result =
1082     snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG, value);
1083 
1084   // The snprintf should never overflow because the buffer is significantly
1085   // larger than the precision we asked for.
1086   GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
1087 
1088   float parsed_value;
1089   if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
1090     int snprintf_result =
1091       snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG+2, value);
1092 
1093     // Should never overflow; see above.
1094     GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
1095   }
1096 
1097   DelocalizeRadix(buffer);
1098   return buffer;
1099 }
1100 
1101 // ----------------------------------------------------------------------
1102 // NoLocaleStrtod()
1103 //   This code will make you cry.
1104 // ----------------------------------------------------------------------
1105 
1106 // Returns a string identical to *input except that the character pointed to
1107 // by radix_pos (which should be '.') is replaced with the locale-specific
1108 // radix character.
LocalizeRadix(const char * input,const char * radix_pos)1109 string LocalizeRadix(const char* input, const char* radix_pos) {
1110   // Determine the locale-specific radix character by calling sprintf() to
1111   // print the number 1.5, then stripping off the digits.  As far as I can
1112   // tell, this is the only portable, thread-safe way to get the C library
1113   // to divuldge the locale's radix character.  No, localeconv() is NOT
1114   // thread-safe.
1115   char temp[16];
1116   int size = sprintf(temp, "%.1f", 1.5);
1117   GOOGLE_CHECK_EQ(temp[0], '1');
1118   GOOGLE_CHECK_EQ(temp[size-1], '5');
1119   GOOGLE_CHECK_LE(size, 6);
1120 
1121   // Now replace the '.' in the input with it.
1122   string result;
1123   result.reserve(strlen(input) + size - 3);
1124   result.append(input, radix_pos);
1125   result.append(temp + 1, size - 2);
1126   result.append(radix_pos + 1);
1127   return result;
1128 }
1129 
NoLocaleStrtod(const char * text,char ** original_endptr)1130 double NoLocaleStrtod(const char* text, char** original_endptr) {
1131   // We cannot simply set the locale to "C" temporarily with setlocale()
1132   // as this is not thread-safe.  Instead, we try to parse in the current
1133   // locale first.  If parsing stops at a '.' character, then this is a
1134   // pretty good hint that we're actually in some other locale in which
1135   // '.' is not the radix character.
1136 
1137   char* temp_endptr;
1138   double result = strtod(text, &temp_endptr);
1139   if (original_endptr != NULL) *original_endptr = temp_endptr;
1140   if (*temp_endptr != '.') return result;
1141 
1142   // Parsing halted on a '.'.  Perhaps we're in a different locale?  Let's
1143   // try to replace the '.' with a locale-specific radix character and
1144   // try again.
1145   string localized = LocalizeRadix(text, temp_endptr);
1146   const char* localized_cstr = localized.c_str();
1147   char* localized_endptr;
1148   result = strtod(localized_cstr, &localized_endptr);
1149   if ((localized_endptr - localized_cstr) >
1150       (temp_endptr - text)) {
1151     // This attempt got further, so replacing the decimal must have helped.
1152     // Update original_endptr to point at the right location.
1153     if (original_endptr != NULL) {
1154       // size_diff is non-zero if the localized radix has multiple bytes.
1155       int size_diff = localized.size() - strlen(text);
1156       // const_cast is necessary to match the strtod() interface.
1157       *original_endptr = const_cast<char*>(
1158         text + (localized_endptr - localized_cstr - size_diff));
1159     }
1160   }
1161 
1162   return result;
1163 }
1164 
1165 }  // namespace protobuf
1166 }  // namespace google
1167