• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CFG.h - Classes for representing and building CFGs------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the CFG and CFGBuilder classes for representing and
11 //  building Control-Flow Graphs (CFGs) from ASTs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CLANG_CFG_H
16 #define LLVM_CLANG_CFG_H
17 
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/Support/Allocator.h"
21 #include "llvm/Support/Casting.h"
22 #include "llvm/ADT/OwningPtr.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/Analysis/Support/BumpVector.h"
27 #include "clang/Basic/SourceLocation.h"
28 #include <cassert>
29 #include <iterator>
30 
31 namespace llvm {
32   class raw_ostream;
33 }
34 
35 namespace clang {
36   class CXXDestructorDecl;
37   class Decl;
38   class Stmt;
39   class Expr;
40   class FieldDecl;
41   class VarDecl;
42   class CXXCtorInitializer;
43   class CXXBaseSpecifier;
44   class CXXBindTemporaryExpr;
45   class CFG;
46   class PrinterHelper;
47   class LangOptions;
48   class ASTContext;
49 
50 /// CFGElement - Represents a top-level expression in a basic block.
51 class CFGElement {
52 public:
53   enum Kind {
54     // main kind
55     Invalid,
56     Statement,
57     Initializer,
58     // dtor kind
59     AutomaticObjectDtor,
60     BaseDtor,
61     MemberDtor,
62     TemporaryDtor,
63     DTOR_BEGIN = AutomaticObjectDtor,
64     DTOR_END = TemporaryDtor
65   };
66 
67 protected:
68   // The int bits are used to mark the kind.
69   llvm::PointerIntPair<void *, 2> Data1;
70   llvm::PointerIntPair<void *, 2> Data2;
71 
72   CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = 0)
73     : Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3),
74       Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) {}
75 
76 public:
CFGElement()77   CFGElement() {}
78 
getKind()79   Kind getKind() const {
80     unsigned x = Data2.getInt();
81     x <<= 2;
82     x |= Data1.getInt();
83     return (Kind) x;
84   }
85 
isValid()86   bool isValid() const { return getKind() != Invalid; }
87 
88   operator bool() const { return isValid(); }
89 
getAs()90   template<class ElemTy> const ElemTy *getAs() const {
91     if (llvm::isa<ElemTy>(this))
92       return static_cast<const ElemTy*>(this);
93     return 0;
94   }
95 
classof(const CFGElement * E)96   static bool classof(const CFGElement *E) { return true; }
97 };
98 
99 class CFGStmt : public CFGElement {
100 public:
CFGStmt(Stmt * S)101   CFGStmt(Stmt *S) : CFGElement(Statement, S) {}
102 
getStmt()103   Stmt *getStmt() const { return static_cast<Stmt *>(Data1.getPointer()); }
104 
classof(const CFGElement * E)105   static bool classof(const CFGElement *E) {
106     return E->getKind() == Statement;
107   }
108 };
109 
110 /// CFGInitializer - Represents C++ base or member initializer from
111 /// constructor's initialization list.
112 class CFGInitializer : public CFGElement {
113 public:
CFGInitializer(CXXCtorInitializer * initializer)114   CFGInitializer(CXXCtorInitializer *initializer)
115       : CFGElement(Initializer, initializer) {}
116 
getInitializer()117   CXXCtorInitializer* getInitializer() const {
118     return static_cast<CXXCtorInitializer*>(Data1.getPointer());
119   }
120 
classof(const CFGElement * E)121   static bool classof(const CFGElement *E) {
122     return E->getKind() == Initializer;
123   }
124 };
125 
126 /// CFGImplicitDtor - Represents C++ object destructor implicitly generated
127 /// by compiler on various occasions.
128 class CFGImplicitDtor : public CFGElement {
129 protected:
130   CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = 0)
CFGElement(kind,data1,data2)131     : CFGElement(kind, data1, data2) {
132     assert(kind >= DTOR_BEGIN && kind <= DTOR_END);
133   }
134 
135 public:
136   const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const;
137   bool isNoReturn(ASTContext &astContext) const;
138 
classof(const CFGElement * E)139   static bool classof(const CFGElement *E) {
140     Kind kind = E->getKind();
141     return kind >= DTOR_BEGIN && kind <= DTOR_END;
142   }
143 };
144 
145 /// CFGAutomaticObjDtor - Represents C++ object destructor implicitly generated
146 /// for automatic object or temporary bound to const reference at the point
147 /// of leaving its local scope.
148 class CFGAutomaticObjDtor: public CFGImplicitDtor {
149 public:
CFGAutomaticObjDtor(const VarDecl * var,const Stmt * stmt)150   CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt)
151       : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {}
152 
getVarDecl()153   const VarDecl *getVarDecl() const {
154     return static_cast<VarDecl*>(Data1.getPointer());
155   }
156 
157   // Get statement end of which triggered the destructor call.
getTriggerStmt()158   const Stmt *getTriggerStmt() const {
159     return static_cast<Stmt*>(Data2.getPointer());
160   }
161 
classof(const CFGElement * elem)162   static bool classof(const CFGElement *elem) {
163     return elem->getKind() == AutomaticObjectDtor;
164   }
165 };
166 
167 /// CFGBaseDtor - Represents C++ object destructor implicitly generated for
168 /// base object in destructor.
169 class CFGBaseDtor : public CFGImplicitDtor {
170 public:
CFGBaseDtor(const CXXBaseSpecifier * base)171   CFGBaseDtor(const CXXBaseSpecifier *base)
172       : CFGImplicitDtor(BaseDtor, base) {}
173 
getBaseSpecifier()174   const CXXBaseSpecifier *getBaseSpecifier() const {
175     return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
176   }
177 
classof(const CFGElement * E)178   static bool classof(const CFGElement *E) {
179     return E->getKind() == BaseDtor;
180   }
181 };
182 
183 /// CFGMemberDtor - Represents C++ object destructor implicitly generated for
184 /// member object in destructor.
185 class CFGMemberDtor : public CFGImplicitDtor {
186 public:
CFGMemberDtor(const FieldDecl * field)187   CFGMemberDtor(const FieldDecl *field)
188       : CFGImplicitDtor(MemberDtor, field, 0) {}
189 
getFieldDecl()190   const FieldDecl *getFieldDecl() const {
191     return static_cast<const FieldDecl*>(Data1.getPointer());
192   }
193 
classof(const CFGElement * E)194   static bool classof(const CFGElement *E) {
195     return E->getKind() == MemberDtor;
196   }
197 };
198 
199 /// CFGTemporaryDtor - Represents C++ object destructor implicitly generated
200 /// at the end of full expression for temporary object.
201 class CFGTemporaryDtor : public CFGImplicitDtor {
202 public:
CFGTemporaryDtor(CXXBindTemporaryExpr * expr)203   CFGTemporaryDtor(CXXBindTemporaryExpr *expr)
204       : CFGImplicitDtor(TemporaryDtor, expr, 0) {}
205 
getBindTemporaryExpr()206   const CXXBindTemporaryExpr *getBindTemporaryExpr() const {
207     return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer());
208   }
209 
classof(const CFGElement * E)210   static bool classof(const CFGElement *E) {
211     return E->getKind() == TemporaryDtor;
212   }
213 };
214 
215 /// CFGTerminator - Represents CFGBlock terminator statement.
216 ///
217 /// TemporaryDtorsBranch bit is set to true if the terminator marks a branch
218 /// in control flow of destructors of temporaries. In this case terminator
219 /// statement is the same statement that branches control flow in evaluation
220 /// of matching full expression.
221 class CFGTerminator {
222   llvm::PointerIntPair<Stmt *, 1> Data;
223 public:
CFGTerminator()224   CFGTerminator() {}
225   CFGTerminator(Stmt *S, bool TemporaryDtorsBranch = false)
Data(S,TemporaryDtorsBranch)226       : Data(S, TemporaryDtorsBranch) {}
227 
getStmt()228   Stmt *getStmt() { return Data.getPointer(); }
getStmt()229   const Stmt *getStmt() const { return Data.getPointer(); }
230 
isTemporaryDtorsBranch()231   bool isTemporaryDtorsBranch() const { return Data.getInt(); }
232 
233   operator Stmt *() { return getStmt(); }
234   operator const Stmt *() const { return getStmt(); }
235 
236   Stmt *operator->() { return getStmt(); }
237   const Stmt *operator->() const { return getStmt(); }
238 
239   Stmt &operator*() { return *getStmt(); }
240   const Stmt &operator*() const { return *getStmt(); }
241 
242   operator bool() const { return getStmt(); }
243 };
244 
245 /// CFGBlock - Represents a single basic block in a source-level CFG.
246 ///  It consists of:
247 ///
248 ///  (1) A set of statements/expressions (which may contain subexpressions).
249 ///  (2) A "terminator" statement (not in the set of statements).
250 ///  (3) A list of successors and predecessors.
251 ///
252 /// Terminator: The terminator represents the type of control-flow that occurs
253 /// at the end of the basic block.  The terminator is a Stmt* referring to an
254 /// AST node that has control-flow: if-statements, breaks, loops, etc.
255 /// If the control-flow is conditional, the condition expression will appear
256 /// within the set of statements in the block (usually the last statement).
257 ///
258 /// Predecessors: the order in the set of predecessors is arbitrary.
259 ///
260 /// Successors: the order in the set of successors is NOT arbitrary.  We
261 ///  currently have the following orderings based on the terminator:
262 ///
263 ///     Terminator       Successor Ordering
264 ///  -----------------------------------------------------
265 ///       if            Then Block;  Else Block
266 ///     ? operator      LHS expression;  RHS expression
267 ///     &&, ||          expression that uses result of && or ||, RHS
268 ///
269 /// But note that any of that may be NULL in case of optimized-out edges.
270 ///
271 class CFGBlock {
272   class ElementList {
273     typedef BumpVector<CFGElement> ImplTy;
274     ImplTy Impl;
275   public:
ElementList(BumpVectorContext & C)276     ElementList(BumpVectorContext &C) : Impl(C, 4) {}
277 
278     typedef std::reverse_iterator<ImplTy::iterator>       iterator;
279     typedef std::reverse_iterator<ImplTy::const_iterator> const_iterator;
280     typedef ImplTy::iterator                              reverse_iterator;
281     typedef ImplTy::const_iterator                        const_reverse_iterator;
282 
push_back(CFGElement e,BumpVectorContext & C)283     void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
insert(reverse_iterator I,size_t Cnt,CFGElement E,BumpVectorContext & C)284     reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
285         BumpVectorContext& C) {
286       return Impl.insert(I, Cnt, E, C);
287     }
288 
front()289     CFGElement front() const { return Impl.back(); }
back()290     CFGElement back() const { return Impl.front(); }
291 
begin()292     iterator begin() { return Impl.rbegin(); }
end()293     iterator end() { return Impl.rend(); }
begin()294     const_iterator begin() const { return Impl.rbegin(); }
end()295     const_iterator end() const { return Impl.rend(); }
rbegin()296     reverse_iterator rbegin() { return Impl.begin(); }
rend()297     reverse_iterator rend() { return Impl.end(); }
rbegin()298     const_reverse_iterator rbegin() const { return Impl.begin(); }
rend()299     const_reverse_iterator rend() const { return Impl.end(); }
300 
301    CFGElement operator[](size_t i) const  {
302      assert(i < Impl.size());
303      return Impl[Impl.size() - 1 - i];
304    }
305 
size()306     size_t size() const { return Impl.size(); }
empty()307     bool empty() const { return Impl.empty(); }
308   };
309 
310   /// Stmts - The set of statements in the basic block.
311   ElementList Elements;
312 
313   /// Label - An (optional) label that prefixes the executable
314   ///  statements in the block.  When this variable is non-NULL, it is
315   ///  either an instance of LabelStmt, SwitchCase or CXXCatchStmt.
316   Stmt *Label;
317 
318   /// Terminator - The terminator for a basic block that
319   ///  indicates the type of control-flow that occurs between a block
320   ///  and its successors.
321   CFGTerminator Terminator;
322 
323   /// LoopTarget - Some blocks are used to represent the "loop edge" to
324   ///  the start of a loop from within the loop body.  This Stmt* will be
325   ///  refer to the loop statement for such blocks (and be null otherwise).
326   const Stmt *LoopTarget;
327 
328   /// BlockID - A numerical ID assigned to a CFGBlock during construction
329   ///   of the CFG.
330   unsigned BlockID;
331 
332   /// Predecessors/Successors - Keep track of the predecessor / successor
333   /// CFG blocks.
334   typedef BumpVector<CFGBlock*> AdjacentBlocks;
335   AdjacentBlocks Preds;
336   AdjacentBlocks Succs;
337 
338 public:
CFGBlock(unsigned blockid,BumpVectorContext & C)339   explicit CFGBlock(unsigned blockid, BumpVectorContext &C)
340     : Elements(C), Label(NULL), Terminator(NULL), LoopTarget(NULL),
341       BlockID(blockid), Preds(C, 1), Succs(C, 1) {}
~CFGBlock()342   ~CFGBlock() {}
343 
344   // Statement iterators
345   typedef ElementList::iterator                      iterator;
346   typedef ElementList::const_iterator                const_iterator;
347   typedef ElementList::reverse_iterator              reverse_iterator;
348   typedef ElementList::const_reverse_iterator        const_reverse_iterator;
349 
front()350   CFGElement                 front()       const { return Elements.front();   }
back()351   CFGElement                 back()        const { return Elements.back();    }
352 
begin()353   iterator                   begin()             { return Elements.begin();   }
end()354   iterator                   end()               { return Elements.end();     }
begin()355   const_iterator             begin()       const { return Elements.begin();   }
end()356   const_iterator             end()         const { return Elements.end();     }
357 
rbegin()358   reverse_iterator           rbegin()            { return Elements.rbegin();  }
rend()359   reverse_iterator           rend()              { return Elements.rend();    }
rbegin()360   const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
rend()361   const_reverse_iterator     rend()        const { return Elements.rend();    }
362 
size()363   unsigned                   size()        const { return Elements.size();    }
empty()364   bool                       empty()       const { return Elements.empty();   }
365 
366   CFGElement operator[](size_t i) const  { return Elements[i]; }
367 
368   // CFG iterators
369   typedef AdjacentBlocks::iterator                              pred_iterator;
370   typedef AdjacentBlocks::const_iterator                  const_pred_iterator;
371   typedef AdjacentBlocks::reverse_iterator              pred_reverse_iterator;
372   typedef AdjacentBlocks::const_reverse_iterator  const_pred_reverse_iterator;
373 
374   typedef AdjacentBlocks::iterator                              succ_iterator;
375   typedef AdjacentBlocks::const_iterator                  const_succ_iterator;
376   typedef AdjacentBlocks::reverse_iterator              succ_reverse_iterator;
377   typedef AdjacentBlocks::const_reverse_iterator  const_succ_reverse_iterator;
378 
pred_begin()379   pred_iterator                pred_begin()        { return Preds.begin();   }
pred_end()380   pred_iterator                pred_end()          { return Preds.end();     }
pred_begin()381   const_pred_iterator          pred_begin()  const { return Preds.begin();   }
pred_end()382   const_pred_iterator          pred_end()    const { return Preds.end();     }
383 
pred_rbegin()384   pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
pred_rend()385   pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
pred_rbegin()386   const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
pred_rend()387   const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
388 
succ_begin()389   succ_iterator                succ_begin()        { return Succs.begin();   }
succ_end()390   succ_iterator                succ_end()          { return Succs.end();     }
succ_begin()391   const_succ_iterator          succ_begin()  const { return Succs.begin();   }
succ_end()392   const_succ_iterator          succ_end()    const { return Succs.end();     }
393 
succ_rbegin()394   succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
succ_rend()395   succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
succ_rbegin()396   const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
succ_rend()397   const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
398 
succ_size()399   unsigned                     succ_size()   const { return Succs.size();    }
succ_empty()400   bool                         succ_empty()  const { return Succs.empty();   }
401 
pred_size()402   unsigned                     pred_size()   const { return Preds.size();    }
pred_empty()403   bool                         pred_empty()  const { return Preds.empty();   }
404 
405 
406   class FilterOptions {
407   public:
FilterOptions()408     FilterOptions() {
409       IgnoreDefaultsWithCoveredEnums = 0;
410     }
411 
412     unsigned IgnoreDefaultsWithCoveredEnums : 1;
413   };
414 
415   static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
416        const CFGBlock *Dst);
417 
418   template <typename IMPL, bool IsPred>
419   class FilteredCFGBlockIterator {
420   private:
421     IMPL I, E;
422     const FilterOptions F;
423     const CFGBlock *From;
424    public:
FilteredCFGBlockIterator(const IMPL & i,const IMPL & e,const CFGBlock * from,const FilterOptions & f)425     explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
426               const CFGBlock *from,
427               const FilterOptions &f)
428       : I(i), E(e), F(f), From(from) {}
429 
hasMore()430     bool hasMore() const { return I != E; }
431 
432     FilteredCFGBlockIterator &operator++() {
433       do { ++I; } while (hasMore() && Filter(*I));
434       return *this;
435     }
436 
437     const CFGBlock *operator*() const { return *I; }
438   private:
Filter(const CFGBlock * To)439     bool Filter(const CFGBlock *To) {
440       return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
441     }
442   };
443 
444   typedef FilteredCFGBlockIterator<const_pred_iterator, true>
445           filtered_pred_iterator;
446 
447   typedef FilteredCFGBlockIterator<const_succ_iterator, false>
448           filtered_succ_iterator;
449 
filtered_pred_start_end(const FilterOptions & f)450   filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
451     return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
452   }
453 
filtered_succ_start_end(const FilterOptions & f)454   filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
455     return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
456   }
457 
458   // Manipulation of block contents
459 
setTerminator(Stmt * Statement)460   void setTerminator(Stmt* Statement) { Terminator = Statement; }
setLabel(Stmt * Statement)461   void setLabel(Stmt* Statement) { Label = Statement; }
setLoopTarget(const Stmt * loopTarget)462   void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
463 
getTerminator()464   CFGTerminator getTerminator() { return Terminator; }
getTerminator()465   const CFGTerminator getTerminator() const { return Terminator; }
466 
467   Stmt* getTerminatorCondition();
468 
getTerminatorCondition()469   const Stmt* getTerminatorCondition() const {
470     return const_cast<CFGBlock*>(this)->getTerminatorCondition();
471   }
472 
getLoopTarget()473   const Stmt *getLoopTarget() const { return LoopTarget; }
474 
getLabel()475   Stmt* getLabel() { return Label; }
getLabel()476   const Stmt* getLabel() const { return Label; }
477 
getBlockID()478   unsigned getBlockID() const { return BlockID; }
479 
480   void dump(const CFG *cfg, const LangOptions &LO) const;
481   void print(llvm::raw_ostream &OS, const CFG* cfg, const LangOptions &LO) const;
482   void printTerminator(llvm::raw_ostream &OS, const LangOptions &LO) const;
483 
addSuccessor(CFGBlock * Block,BumpVectorContext & C)484   void addSuccessor(CFGBlock* Block, BumpVectorContext &C) {
485     if (Block)
486       Block->Preds.push_back(this, C);
487     Succs.push_back(Block, C);
488   }
489 
appendStmt(Stmt * statement,BumpVectorContext & C)490   void appendStmt(Stmt* statement, BumpVectorContext &C) {
491     Elements.push_back(CFGStmt(statement), C);
492   }
493 
appendInitializer(CXXCtorInitializer * initializer,BumpVectorContext & C)494   void appendInitializer(CXXCtorInitializer *initializer,
495                         BumpVectorContext& C) {
496     Elements.push_back(CFGInitializer(initializer), C);
497   }
498 
appendBaseDtor(const CXXBaseSpecifier * BS,BumpVectorContext & C)499   void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
500     Elements.push_back(CFGBaseDtor(BS), C);
501   }
502 
appendMemberDtor(FieldDecl * FD,BumpVectorContext & C)503   void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
504     Elements.push_back(CFGMemberDtor(FD), C);
505   }
506 
appendTemporaryDtor(CXXBindTemporaryExpr * E,BumpVectorContext & C)507   void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) {
508     Elements.push_back(CFGTemporaryDtor(E), C);
509   }
510 
511   // Destructors must be inserted in reversed order. So insertion is in two
512   // steps. First we prepare space for some number of elements, then we insert
513   // the elements beginning at the last position in prepared space.
beginAutomaticObjDtorsInsert(iterator I,size_t Cnt,BumpVectorContext & C)514   iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt,
515       BumpVectorContext& C) {
516     return iterator(Elements.insert(I.base(), Cnt, CFGElement(), C));
517   }
insertAutomaticObjDtor(iterator I,VarDecl * VD,Stmt * S)518   iterator insertAutomaticObjDtor(iterator I, VarDecl* VD, Stmt* S) {
519     *I = CFGAutomaticObjDtor(VD, S);
520     return ++I;
521   }
522 };
523 
524 /// CFG - Represents a source-level, intra-procedural CFG that represents the
525 ///  control-flow of a Stmt.  The Stmt can represent an entire function body,
526 ///  or a single expression.  A CFG will always contain one empty block that
527 ///  represents the Exit point of the CFG.  A CFG will also contain a designated
528 ///  Entry block.  The CFG solely represents control-flow; it consists of
529 ///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
530 ///  was constructed from.
531 class CFG {
532 public:
533   //===--------------------------------------------------------------------===//
534   // CFG Construction & Manipulation.
535   //===--------------------------------------------------------------------===//
536 
537   class BuildOptions {
538     llvm::BitVector alwaysAddMask;
539   public:
540     typedef llvm::DenseMap<const Stmt *, const CFGBlock*> ForcedBlkExprs;
541     ForcedBlkExprs **forcedBlkExprs;
542 
543     bool PruneTriviallyFalseEdges:1;
544     bool AddEHEdges:1;
545     bool AddInitializers:1;
546     bool AddImplicitDtors:1;
547 
alwaysAdd(const Stmt * stmt)548     bool alwaysAdd(const Stmt *stmt) const {
549       return alwaysAddMask[stmt->getStmtClass()];
550     }
551 
setAlwaysAdd(Stmt::StmtClass stmtClass)552     void setAlwaysAdd(Stmt::StmtClass stmtClass) {
553       alwaysAddMask[stmtClass] = true;
554     }
555 
BuildOptions()556     BuildOptions()
557     : alwaysAddMask(Stmt::lastStmtConstant, false)
558       ,forcedBlkExprs(0), PruneTriviallyFalseEdges(true)
559       ,AddEHEdges(false)
560       ,AddInitializers(false)
561       ,AddImplicitDtors(false) {}
562   };
563 
564   /// buildCFG - Builds a CFG from an AST.  The responsibility to free the
565   ///   constructed CFG belongs to the caller.
566   static CFG* buildCFG(const Decl *D, Stmt* AST, ASTContext *C,
567                        const BuildOptions &BO);
568 
569   /// createBlock - Create a new block in the CFG.  The CFG owns the block;
570   ///  the caller should not directly free it.
571   CFGBlock* createBlock();
572 
573   /// setEntry - Set the entry block of the CFG.  This is typically used
574   ///  only during CFG construction.  Most CFG clients expect that the
575   ///  entry block has no predecessors and contains no statements.
setEntry(CFGBlock * B)576   void setEntry(CFGBlock *B) { Entry = B; }
577 
578   /// setIndirectGotoBlock - Set the block used for indirect goto jumps.
579   ///  This is typically used only during CFG construction.
setIndirectGotoBlock(CFGBlock * B)580   void setIndirectGotoBlock(CFGBlock* B) { IndirectGotoBlock = B; }
581 
582   //===--------------------------------------------------------------------===//
583   // Block Iterators
584   //===--------------------------------------------------------------------===//
585 
586   typedef BumpVector<CFGBlock*>                    CFGBlockListTy;
587   typedef CFGBlockListTy::iterator                 iterator;
588   typedef CFGBlockListTy::const_iterator           const_iterator;
589   typedef std::reverse_iterator<iterator>          reverse_iterator;
590   typedef std::reverse_iterator<const_iterator>    const_reverse_iterator;
591 
front()592   CFGBlock&                 front()                { return *Blocks.front(); }
back()593   CFGBlock&                 back()                 { return *Blocks.back(); }
594 
begin()595   iterator                  begin()                { return Blocks.begin(); }
end()596   iterator                  end()                  { return Blocks.end(); }
begin()597   const_iterator            begin()       const    { return Blocks.begin(); }
end()598   const_iterator            end()         const    { return Blocks.end(); }
599 
rbegin()600   reverse_iterator          rbegin()               { return Blocks.rbegin(); }
rend()601   reverse_iterator          rend()                 { return Blocks.rend(); }
rbegin()602   const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
rend()603   const_reverse_iterator    rend()        const    { return Blocks.rend(); }
604 
getEntry()605   CFGBlock&                 getEntry()             { return *Entry; }
getEntry()606   const CFGBlock&           getEntry()    const    { return *Entry; }
getExit()607   CFGBlock&                 getExit()              { return *Exit; }
getExit()608   const CFGBlock&           getExit()     const    { return *Exit; }
609 
getIndirectGotoBlock()610   CFGBlock*        getIndirectGotoBlock() { return IndirectGotoBlock; }
getIndirectGotoBlock()611   const CFGBlock*  getIndirectGotoBlock() const { return IndirectGotoBlock; }
612 
613   //===--------------------------------------------------------------------===//
614   // Member templates useful for various batch operations over CFGs.
615   //===--------------------------------------------------------------------===//
616 
617   template <typename CALLBACK>
VisitBlockStmts(CALLBACK & O)618   void VisitBlockStmts(CALLBACK& O) const {
619     for (const_iterator I=begin(), E=end(); I != E; ++I)
620       for (CFGBlock::const_iterator BI=(*I)->begin(), BE=(*I)->end();
621            BI != BE; ++BI) {
622         if (const CFGStmt *stmt = BI->getAs<CFGStmt>())
623           O(stmt->getStmt());
624       }
625   }
626 
627   //===--------------------------------------------------------------------===//
628   // CFG Introspection.
629   //===--------------------------------------------------------------------===//
630 
631   struct   BlkExprNumTy {
632     const signed Idx;
BlkExprNumTyBlkExprNumTy633     explicit BlkExprNumTy(signed idx) : Idx(idx) {}
BlkExprNumTyBlkExprNumTy634     explicit BlkExprNumTy() : Idx(-1) {}
635     operator bool() const { return Idx >= 0; }
636     operator unsigned() const { assert(Idx >=0); return (unsigned) Idx; }
637   };
638 
isBlkExpr(const Stmt * S)639   bool isBlkExpr(const Stmt* S) { return getBlkExprNum(S); }
isBlkExpr(const Stmt * S)640   bool isBlkExpr(const Stmt *S) const {
641     return const_cast<CFG*>(this)->isBlkExpr(S);
642   }
643   BlkExprNumTy  getBlkExprNum(const Stmt* S);
644   unsigned      getNumBlkExprs();
645 
646   /// getNumBlockIDs - Returns the total number of BlockIDs allocated (which
647   /// start at 0).
getNumBlockIDs()648   unsigned getNumBlockIDs() const { return NumBlockIDs; }
649 
650   //===--------------------------------------------------------------------===//
651   // CFG Debugging: Pretty-Printing and Visualization.
652   //===--------------------------------------------------------------------===//
653 
654   void viewCFG(const LangOptions &LO) const;
655   void print(llvm::raw_ostream& OS, const LangOptions &LO) const;
656   void dump(const LangOptions &LO) const;
657 
658   //===--------------------------------------------------------------------===//
659   // Internal: constructors and data.
660   //===--------------------------------------------------------------------===//
661 
CFG()662   CFG() : Entry(NULL), Exit(NULL), IndirectGotoBlock(NULL), NumBlockIDs(0),
663           BlkExprMap(NULL), Blocks(BlkBVC, 10) {}
664 
665   ~CFG();
666 
getAllocator()667   llvm::BumpPtrAllocator& getAllocator() {
668     return BlkBVC.getAllocator();
669   }
670 
getBumpVectorContext()671   BumpVectorContext &getBumpVectorContext() {
672     return BlkBVC;
673   }
674 
675 private:
676   CFGBlock* Entry;
677   CFGBlock* Exit;
678   CFGBlock* IndirectGotoBlock;  // Special block to contain collective dispatch
679                                 // for indirect gotos
680   unsigned  NumBlockIDs;
681 
682   // BlkExprMap - An opaque pointer to prevent inclusion of DenseMap.h.
683   //  It represents a map from Expr* to integers to record the set of
684   //  block-level expressions and their "statement number" in the CFG.
685   void*     BlkExprMap;
686 
687   BumpVectorContext BlkBVC;
688 
689   CFGBlockListTy Blocks;
690 
691 };
692 } // end namespace clang
693 
694 //===----------------------------------------------------------------------===//
695 // GraphTraits specializations for CFG basic block graphs (source-level CFGs)
696 //===----------------------------------------------------------------------===//
697 
698 namespace llvm {
699 
700 /// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
701 /// CFGTerminator to a specific Stmt class.
702 template <> struct simplify_type<const ::clang::CFGTerminator> {
703   typedef const ::clang::Stmt *SimpleType;
704   static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
705     return Val.getStmt();
706   }
707 };
708 
709 template <> struct simplify_type< ::clang::CFGTerminator> {
710   typedef ::clang::Stmt *SimpleType;
711   static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
712     return const_cast<SimpleType>(Val.getStmt());
713   }
714 };
715 
716 // Traits for: CFGBlock
717 
718 template <> struct GraphTraits< ::clang::CFGBlock* > {
719   typedef ::clang::CFGBlock NodeType;
720   typedef ::clang::CFGBlock::succ_iterator ChildIteratorType;
721 
722   static NodeType* getEntryNode(::clang::CFGBlock* BB)
723   { return BB; }
724 
725   static inline ChildIteratorType child_begin(NodeType* N)
726   { return N->succ_begin(); }
727 
728   static inline ChildIteratorType child_end(NodeType* N)
729   { return N->succ_end(); }
730 };
731 
732 template <> struct GraphTraits< const ::clang::CFGBlock* > {
733   typedef const ::clang::CFGBlock NodeType;
734   typedef ::clang::CFGBlock::const_succ_iterator ChildIteratorType;
735 
736   static NodeType* getEntryNode(const clang::CFGBlock* BB)
737   { return BB; }
738 
739   static inline ChildIteratorType child_begin(NodeType* N)
740   { return N->succ_begin(); }
741 
742   static inline ChildIteratorType child_end(NodeType* N)
743   { return N->succ_end(); }
744 };
745 
746 template <> struct GraphTraits<Inverse<const ::clang::CFGBlock*> > {
747   typedef const ::clang::CFGBlock NodeType;
748   typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
749 
750   static NodeType *getEntryNode(Inverse<const ::clang::CFGBlock*> G)
751   { return G.Graph; }
752 
753   static inline ChildIteratorType child_begin(NodeType* N)
754   { return N->pred_begin(); }
755 
756   static inline ChildIteratorType child_end(NodeType* N)
757   { return N->pred_end(); }
758 };
759 
760 // Traits for: CFG
761 
762 template <> struct GraphTraits< ::clang::CFG* >
763     : public GraphTraits< ::clang::CFGBlock* >  {
764 
765   typedef ::clang::CFG::iterator nodes_iterator;
766 
767   static NodeType *getEntryNode(::clang::CFG* F) { return &F->getEntry(); }
768   static nodes_iterator nodes_begin(::clang::CFG* F) { return F->begin(); }
769   static nodes_iterator nodes_end(::clang::CFG* F) { return F->end(); }
770 };
771 
772 template <> struct GraphTraits<const ::clang::CFG* >
773     : public GraphTraits<const ::clang::CFGBlock* >  {
774 
775   typedef ::clang::CFG::const_iterator nodes_iterator;
776 
777   static NodeType *getEntryNode( const ::clang::CFG* F) {
778     return &F->getEntry();
779   }
780   static nodes_iterator nodes_begin( const ::clang::CFG* F) {
781     return F->begin();
782   }
783   static nodes_iterator nodes_end( const ::clang::CFG* F) {
784     return F->end();
785   }
786 };
787 
788 template <> struct GraphTraits<Inverse<const ::clang::CFG*> >
789   : public GraphTraits<Inverse<const ::clang::CFGBlock*> > {
790 
791   typedef ::clang::CFG::const_iterator nodes_iterator;
792 
793   static NodeType *getEntryNode(const ::clang::CFG* F) { return &F->getExit(); }
794   static nodes_iterator nodes_begin(const ::clang::CFG* F) { return F->begin();}
795   static nodes_iterator nodes_end(const ::clang::CFG* F) { return F->end(); }
796 };
797 } // end llvm namespace
798 #endif
799