1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 // This file implements semantic analysis for C++ templates.
10 //===----------------------------------------------------------------------===/
11
12 #include "clang/Sema/SemaInternal.h"
13 #include "clang/Sema/Lookup.h"
14 #include "clang/Sema/Scope.h"
15 #include "clang/Sema/Template.h"
16 #include "clang/Sema/TemplateDeduction.h"
17 #include "TreeTransform.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/DeclFriend.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/TypeVisitor.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "clang/Sema/ParsedTemplate.h"
27 #include "clang/Basic/LangOptions.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "llvm/ADT/StringExtras.h"
30 using namespace clang;
31 using namespace sema;
32
33 // Exported for use by Parser.
34 SourceRange
getTemplateParamsRange(TemplateParameterList const * const * Ps,unsigned N)35 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36 unsigned N) {
37 if (!N) return SourceRange();
38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39 }
40
41 /// \brief Determine whether the declaration found is acceptable as the name
42 /// of a template and, if so, return that template declaration. Otherwise,
43 /// returns NULL.
isAcceptableTemplateName(ASTContext & Context,NamedDecl * Orig)44 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45 NamedDecl *Orig) {
46 NamedDecl *D = Orig->getUnderlyingDecl();
47
48 if (isa<TemplateDecl>(D))
49 return Orig;
50
51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52 // C++ [temp.local]p1:
53 // Like normal (non-template) classes, class templates have an
54 // injected-class-name (Clause 9). The injected-class-name
55 // can be used with or without a template-argument-list. When
56 // it is used without a template-argument-list, it is
57 // equivalent to the injected-class-name followed by the
58 // template-parameters of the class template enclosed in
59 // <>. When it is used with a template-argument-list, it
60 // refers to the specified class template specialization,
61 // which could be the current specialization or another
62 // specialization.
63 if (Record->isInjectedClassName()) {
64 Record = cast<CXXRecordDecl>(Record->getDeclContext());
65 if (Record->getDescribedClassTemplate())
66 return Record->getDescribedClassTemplate();
67
68 if (ClassTemplateSpecializationDecl *Spec
69 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70 return Spec->getSpecializedTemplate();
71 }
72
73 return 0;
74 }
75
76 return 0;
77 }
78
FilterAcceptableTemplateNames(LookupResult & R)79 void Sema::FilterAcceptableTemplateNames(LookupResult &R) {
80 // The set of class templates we've already seen.
81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82 LookupResult::Filter filter = R.makeFilter();
83 while (filter.hasNext()) {
84 NamedDecl *Orig = filter.next();
85 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig);
86 if (!Repl)
87 filter.erase();
88 else if (Repl != Orig) {
89
90 // C++ [temp.local]p3:
91 // A lookup that finds an injected-class-name (10.2) can result in an
92 // ambiguity in certain cases (for example, if it is found in more than
93 // one base class). If all of the injected-class-names that are found
94 // refer to specializations of the same class template, and if the name
95 // is used as a template-name, the reference refers to the class
96 // template itself and not a specialization thereof, and is not
97 // ambiguous.
98 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
99 if (!ClassTemplates.insert(ClassTmpl)) {
100 filter.erase();
101 continue;
102 }
103
104 // FIXME: we promote access to public here as a workaround to
105 // the fact that LookupResult doesn't let us remember that we
106 // found this template through a particular injected class name,
107 // which means we end up doing nasty things to the invariants.
108 // Pretending that access is public is *much* safer.
109 filter.replace(Repl, AS_public);
110 }
111 }
112 filter.done();
113 }
114
hasAnyAcceptableTemplateNames(LookupResult & R)115 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) {
116 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
117 if (isAcceptableTemplateName(Context, *I))
118 return true;
119
120 return false;
121 }
122
isTemplateName(Scope * S,CXXScopeSpec & SS,bool hasTemplateKeyword,UnqualifiedId & Name,ParsedType ObjectTypePtr,bool EnteringContext,TemplateTy & TemplateResult,bool & MemberOfUnknownSpecialization)123 TemplateNameKind Sema::isTemplateName(Scope *S,
124 CXXScopeSpec &SS,
125 bool hasTemplateKeyword,
126 UnqualifiedId &Name,
127 ParsedType ObjectTypePtr,
128 bool EnteringContext,
129 TemplateTy &TemplateResult,
130 bool &MemberOfUnknownSpecialization) {
131 assert(getLangOptions().CPlusPlus && "No template names in C!");
132
133 DeclarationName TName;
134 MemberOfUnknownSpecialization = false;
135
136 switch (Name.getKind()) {
137 case UnqualifiedId::IK_Identifier:
138 TName = DeclarationName(Name.Identifier);
139 break;
140
141 case UnqualifiedId::IK_OperatorFunctionId:
142 TName = Context.DeclarationNames.getCXXOperatorName(
143 Name.OperatorFunctionId.Operator);
144 break;
145
146 case UnqualifiedId::IK_LiteralOperatorId:
147 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
148 break;
149
150 default:
151 return TNK_Non_template;
152 }
153
154 QualType ObjectType = ObjectTypePtr.get();
155
156 LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
157 LookupOrdinaryName);
158 LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
159 MemberOfUnknownSpecialization);
160 if (R.empty()) return TNK_Non_template;
161 if (R.isAmbiguous()) {
162 // Suppress diagnostics; we'll redo this lookup later.
163 R.suppressDiagnostics();
164
165 // FIXME: we might have ambiguous templates, in which case we
166 // should at least parse them properly!
167 return TNK_Non_template;
168 }
169
170 TemplateName Template;
171 TemplateNameKind TemplateKind;
172
173 unsigned ResultCount = R.end() - R.begin();
174 if (ResultCount > 1) {
175 // We assume that we'll preserve the qualifier from a function
176 // template name in other ways.
177 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
178 TemplateKind = TNK_Function_template;
179
180 // We'll do this lookup again later.
181 R.suppressDiagnostics();
182 } else {
183 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
184
185 if (SS.isSet() && !SS.isInvalid()) {
186 NestedNameSpecifier *Qualifier
187 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
188 Template = Context.getQualifiedTemplateName(Qualifier,
189 hasTemplateKeyword, TD);
190 } else {
191 Template = TemplateName(TD);
192 }
193
194 if (isa<FunctionTemplateDecl>(TD)) {
195 TemplateKind = TNK_Function_template;
196
197 // We'll do this lookup again later.
198 R.suppressDiagnostics();
199 } else {
200 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
201 isa<TypeAliasTemplateDecl>(TD));
202 TemplateKind = TNK_Type_template;
203 }
204 }
205
206 TemplateResult = TemplateTy::make(Template);
207 return TemplateKind;
208 }
209
DiagnoseUnknownTemplateName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,const CXXScopeSpec * SS,TemplateTy & SuggestedTemplate,TemplateNameKind & SuggestedKind)210 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
211 SourceLocation IILoc,
212 Scope *S,
213 const CXXScopeSpec *SS,
214 TemplateTy &SuggestedTemplate,
215 TemplateNameKind &SuggestedKind) {
216 // We can't recover unless there's a dependent scope specifier preceding the
217 // template name.
218 // FIXME: Typo correction?
219 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
220 computeDeclContext(*SS))
221 return false;
222
223 // The code is missing a 'template' keyword prior to the dependent template
224 // name.
225 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
226 Diag(IILoc, diag::err_template_kw_missing)
227 << Qualifier << II.getName()
228 << FixItHint::CreateInsertion(IILoc, "template ");
229 SuggestedTemplate
230 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
231 SuggestedKind = TNK_Dependent_template_name;
232 return true;
233 }
234
LookupTemplateName(LookupResult & Found,Scope * S,CXXScopeSpec & SS,QualType ObjectType,bool EnteringContext,bool & MemberOfUnknownSpecialization)235 void Sema::LookupTemplateName(LookupResult &Found,
236 Scope *S, CXXScopeSpec &SS,
237 QualType ObjectType,
238 bool EnteringContext,
239 bool &MemberOfUnknownSpecialization) {
240 // Determine where to perform name lookup
241 MemberOfUnknownSpecialization = false;
242 DeclContext *LookupCtx = 0;
243 bool isDependent = false;
244 if (!ObjectType.isNull()) {
245 // This nested-name-specifier occurs in a member access expression, e.g.,
246 // x->B::f, and we are looking into the type of the object.
247 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
248 LookupCtx = computeDeclContext(ObjectType);
249 isDependent = ObjectType->isDependentType();
250 assert((isDependent || !ObjectType->isIncompleteType()) &&
251 "Caller should have completed object type");
252 } else if (SS.isSet()) {
253 // This nested-name-specifier occurs after another nested-name-specifier,
254 // so long into the context associated with the prior nested-name-specifier.
255 LookupCtx = computeDeclContext(SS, EnteringContext);
256 isDependent = isDependentScopeSpecifier(SS);
257
258 // The declaration context must be complete.
259 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
260 return;
261 }
262
263 bool ObjectTypeSearchedInScope = false;
264 if (LookupCtx) {
265 // Perform "qualified" name lookup into the declaration context we
266 // computed, which is either the type of the base of a member access
267 // expression or the declaration context associated with a prior
268 // nested-name-specifier.
269 LookupQualifiedName(Found, LookupCtx);
270
271 if (!ObjectType.isNull() && Found.empty()) {
272 // C++ [basic.lookup.classref]p1:
273 // In a class member access expression (5.2.5), if the . or -> token is
274 // immediately followed by an identifier followed by a <, the
275 // identifier must be looked up to determine whether the < is the
276 // beginning of a template argument list (14.2) or a less-than operator.
277 // The identifier is first looked up in the class of the object
278 // expression. If the identifier is not found, it is then looked up in
279 // the context of the entire postfix-expression and shall name a class
280 // or function template.
281 if (S) LookupName(Found, S);
282 ObjectTypeSearchedInScope = true;
283 }
284 } else if (isDependent && (!S || ObjectType.isNull())) {
285 // We cannot look into a dependent object type or nested nme
286 // specifier.
287 MemberOfUnknownSpecialization = true;
288 return;
289 } else {
290 // Perform unqualified name lookup in the current scope.
291 LookupName(Found, S);
292 }
293
294 if (Found.empty() && !isDependent) {
295 // If we did not find any names, attempt to correct any typos.
296 DeclarationName Name = Found.getLookupName();
297 Found.clear();
298 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
299 Found.getLookupKind(), S, &SS,
300 LookupCtx, false,
301 CTC_CXXCasts)) {
302 Found.setLookupName(Corrected.getCorrection());
303 if (Corrected.getCorrectionDecl())
304 Found.addDecl(Corrected.getCorrectionDecl());
305 FilterAcceptableTemplateNames(Found);
306 if (!Found.empty()) {
307 std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
308 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
309 if (LookupCtx)
310 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
311 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
312 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
313 else
314 Diag(Found.getNameLoc(), diag::err_no_template_suggest)
315 << Name << CorrectedQuotedStr
316 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
317 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
318 Diag(Template->getLocation(), diag::note_previous_decl)
319 << CorrectedQuotedStr;
320 }
321 } else {
322 Found.setLookupName(Name);
323 }
324 }
325
326 FilterAcceptableTemplateNames(Found);
327 if (Found.empty()) {
328 if (isDependent)
329 MemberOfUnknownSpecialization = true;
330 return;
331 }
332
333 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
334 // C++ [basic.lookup.classref]p1:
335 // [...] If the lookup in the class of the object expression finds a
336 // template, the name is also looked up in the context of the entire
337 // postfix-expression and [...]
338 //
339 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
340 LookupOrdinaryName);
341 LookupName(FoundOuter, S);
342 FilterAcceptableTemplateNames(FoundOuter);
343
344 if (FoundOuter.empty()) {
345 // - if the name is not found, the name found in the class of the
346 // object expression is used, otherwise
347 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
348 // - if the name is found in the context of the entire
349 // postfix-expression and does not name a class template, the name
350 // found in the class of the object expression is used, otherwise
351 } else if (!Found.isSuppressingDiagnostics()) {
352 // - if the name found is a class template, it must refer to the same
353 // entity as the one found in the class of the object expression,
354 // otherwise the program is ill-formed.
355 if (!Found.isSingleResult() ||
356 Found.getFoundDecl()->getCanonicalDecl()
357 != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
358 Diag(Found.getNameLoc(),
359 diag::ext_nested_name_member_ref_lookup_ambiguous)
360 << Found.getLookupName()
361 << ObjectType;
362 Diag(Found.getRepresentativeDecl()->getLocation(),
363 diag::note_ambig_member_ref_object_type)
364 << ObjectType;
365 Diag(FoundOuter.getFoundDecl()->getLocation(),
366 diag::note_ambig_member_ref_scope);
367
368 // Recover by taking the template that we found in the object
369 // expression's type.
370 }
371 }
372 }
373 }
374
375 /// ActOnDependentIdExpression - Handle a dependent id-expression that
376 /// was just parsed. This is only possible with an explicit scope
377 /// specifier naming a dependent type.
378 ExprResult
ActOnDependentIdExpression(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,bool isAddressOfOperand,const TemplateArgumentListInfo * TemplateArgs)379 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
380 const DeclarationNameInfo &NameInfo,
381 bool isAddressOfOperand,
382 const TemplateArgumentListInfo *TemplateArgs) {
383 DeclContext *DC = getFunctionLevelDeclContext();
384
385 if (!isAddressOfOperand &&
386 isa<CXXMethodDecl>(DC) &&
387 cast<CXXMethodDecl>(DC)->isInstance()) {
388 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
389
390 // Since the 'this' expression is synthesized, we don't need to
391 // perform the double-lookup check.
392 NamedDecl *FirstQualifierInScope = 0;
393
394 return Owned(CXXDependentScopeMemberExpr::Create(Context,
395 /*This*/ 0, ThisType,
396 /*IsArrow*/ true,
397 /*Op*/ SourceLocation(),
398 SS.getWithLocInContext(Context),
399 FirstQualifierInScope,
400 NameInfo,
401 TemplateArgs));
402 }
403
404 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
405 }
406
407 ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)408 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
409 const DeclarationNameInfo &NameInfo,
410 const TemplateArgumentListInfo *TemplateArgs) {
411 return Owned(DependentScopeDeclRefExpr::Create(Context,
412 SS.getWithLocInContext(Context),
413 NameInfo,
414 TemplateArgs));
415 }
416
417 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
418 /// that the template parameter 'PrevDecl' is being shadowed by a new
419 /// declaration at location Loc. Returns true to indicate that this is
420 /// an error, and false otherwise.
DiagnoseTemplateParameterShadow(SourceLocation Loc,Decl * PrevDecl)421 bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
422 assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
423
424 // Microsoft Visual C++ permits template parameters to be shadowed.
425 if (getLangOptions().Microsoft)
426 return false;
427
428 // C++ [temp.local]p4:
429 // A template-parameter shall not be redeclared within its
430 // scope (including nested scopes).
431 Diag(Loc, diag::err_template_param_shadow)
432 << cast<NamedDecl>(PrevDecl)->getDeclName();
433 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
434 return true;
435 }
436
437 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
438 /// the parameter D to reference the templated declaration and return a pointer
439 /// to the template declaration. Otherwise, do nothing to D and return null.
AdjustDeclIfTemplate(Decl * & D)440 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
441 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
442 D = Temp->getTemplatedDecl();
443 return Temp;
444 }
445 return 0;
446 }
447
getTemplatePackExpansion(SourceLocation EllipsisLoc) const448 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
449 SourceLocation EllipsisLoc) const {
450 assert(Kind == Template &&
451 "Only template template arguments can be pack expansions here");
452 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
453 "Template template argument pack expansion without packs");
454 ParsedTemplateArgument Result(*this);
455 Result.EllipsisLoc = EllipsisLoc;
456 return Result;
457 }
458
translateTemplateArgument(Sema & SemaRef,const ParsedTemplateArgument & Arg)459 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
460 const ParsedTemplateArgument &Arg) {
461
462 switch (Arg.getKind()) {
463 case ParsedTemplateArgument::Type: {
464 TypeSourceInfo *DI;
465 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
466 if (!DI)
467 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
468 return TemplateArgumentLoc(TemplateArgument(T), DI);
469 }
470
471 case ParsedTemplateArgument::NonType: {
472 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
473 return TemplateArgumentLoc(TemplateArgument(E), E);
474 }
475
476 case ParsedTemplateArgument::Template: {
477 TemplateName Template = Arg.getAsTemplate().get();
478 TemplateArgument TArg;
479 if (Arg.getEllipsisLoc().isValid())
480 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
481 else
482 TArg = Template;
483 return TemplateArgumentLoc(TArg,
484 Arg.getScopeSpec().getWithLocInContext(
485 SemaRef.Context),
486 Arg.getLocation(),
487 Arg.getEllipsisLoc());
488 }
489 }
490
491 llvm_unreachable("Unhandled parsed template argument");
492 return TemplateArgumentLoc();
493 }
494
495 /// \brief Translates template arguments as provided by the parser
496 /// into template arguments used by semantic analysis.
translateTemplateArguments(const ASTTemplateArgsPtr & TemplateArgsIn,TemplateArgumentListInfo & TemplateArgs)497 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
498 TemplateArgumentListInfo &TemplateArgs) {
499 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
500 TemplateArgs.addArgument(translateTemplateArgument(*this,
501 TemplateArgsIn[I]));
502 }
503
504 /// ActOnTypeParameter - Called when a C++ template type parameter
505 /// (e.g., "typename T") has been parsed. Typename specifies whether
506 /// the keyword "typename" was used to declare the type parameter
507 /// (otherwise, "class" was used), and KeyLoc is the location of the
508 /// "class" or "typename" keyword. ParamName is the name of the
509 /// parameter (NULL indicates an unnamed template parameter) and
510 /// ParamNameLoc is the location of the parameter name (if any).
511 /// If the type parameter has a default argument, it will be added
512 /// later via ActOnTypeParameterDefault.
ActOnTypeParameter(Scope * S,bool Typename,bool Ellipsis,SourceLocation EllipsisLoc,SourceLocation KeyLoc,IdentifierInfo * ParamName,SourceLocation ParamNameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedType DefaultArg)513 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
514 SourceLocation EllipsisLoc,
515 SourceLocation KeyLoc,
516 IdentifierInfo *ParamName,
517 SourceLocation ParamNameLoc,
518 unsigned Depth, unsigned Position,
519 SourceLocation EqualLoc,
520 ParsedType DefaultArg) {
521 assert(S->isTemplateParamScope() &&
522 "Template type parameter not in template parameter scope!");
523 bool Invalid = false;
524
525 if (ParamName) {
526 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
527 LookupOrdinaryName,
528 ForRedeclaration);
529 if (PrevDecl && PrevDecl->isTemplateParameter())
530 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
531 PrevDecl);
532 }
533
534 SourceLocation Loc = ParamNameLoc;
535 if (!ParamName)
536 Loc = KeyLoc;
537
538 TemplateTypeParmDecl *Param
539 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
540 KeyLoc, Loc, Depth, Position, ParamName,
541 Typename, Ellipsis);
542 Param->setAccess(AS_public);
543 if (Invalid)
544 Param->setInvalidDecl();
545
546 if (ParamName) {
547 // Add the template parameter into the current scope.
548 S->AddDecl(Param);
549 IdResolver.AddDecl(Param);
550 }
551
552 // C++0x [temp.param]p9:
553 // A default template-argument may be specified for any kind of
554 // template-parameter that is not a template parameter pack.
555 if (DefaultArg && Ellipsis) {
556 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
557 DefaultArg = ParsedType();
558 }
559
560 // Handle the default argument, if provided.
561 if (DefaultArg) {
562 TypeSourceInfo *DefaultTInfo;
563 GetTypeFromParser(DefaultArg, &DefaultTInfo);
564
565 assert(DefaultTInfo && "expected source information for type");
566
567 // Check for unexpanded parameter packs.
568 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
569 UPPC_DefaultArgument))
570 return Param;
571
572 // Check the template argument itself.
573 if (CheckTemplateArgument(Param, DefaultTInfo)) {
574 Param->setInvalidDecl();
575 return Param;
576 }
577
578 Param->setDefaultArgument(DefaultTInfo, false);
579 }
580
581 return Param;
582 }
583
584 /// \brief Check that the type of a non-type template parameter is
585 /// well-formed.
586 ///
587 /// \returns the (possibly-promoted) parameter type if valid;
588 /// otherwise, produces a diagnostic and returns a NULL type.
589 QualType
CheckNonTypeTemplateParameterType(QualType T,SourceLocation Loc)590 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
591 // We don't allow variably-modified types as the type of non-type template
592 // parameters.
593 if (T->isVariablyModifiedType()) {
594 Diag(Loc, diag::err_variably_modified_nontype_template_param)
595 << T;
596 return QualType();
597 }
598
599 // C++ [temp.param]p4:
600 //
601 // A non-type template-parameter shall have one of the following
602 // (optionally cv-qualified) types:
603 //
604 // -- integral or enumeration type,
605 if (T->isIntegralOrEnumerationType() ||
606 // -- pointer to object or pointer to function,
607 T->isPointerType() ||
608 // -- reference to object or reference to function,
609 T->isReferenceType() ||
610 // -- pointer to member,
611 T->isMemberPointerType() ||
612 // -- std::nullptr_t.
613 T->isNullPtrType() ||
614 // If T is a dependent type, we can't do the check now, so we
615 // assume that it is well-formed.
616 T->isDependentType())
617 return T;
618 // C++ [temp.param]p8:
619 //
620 // A non-type template-parameter of type "array of T" or
621 // "function returning T" is adjusted to be of type "pointer to
622 // T" or "pointer to function returning T", respectively.
623 else if (T->isArrayType())
624 // FIXME: Keep the type prior to promotion?
625 return Context.getArrayDecayedType(T);
626 else if (T->isFunctionType())
627 // FIXME: Keep the type prior to promotion?
628 return Context.getPointerType(T);
629
630 Diag(Loc, diag::err_template_nontype_parm_bad_type)
631 << T;
632
633 return QualType();
634 }
635
ActOnNonTypeTemplateParameter(Scope * S,Declarator & D,unsigned Depth,unsigned Position,SourceLocation EqualLoc,Expr * Default)636 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
637 unsigned Depth,
638 unsigned Position,
639 SourceLocation EqualLoc,
640 Expr *Default) {
641 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
642 QualType T = TInfo->getType();
643
644 assert(S->isTemplateParamScope() &&
645 "Non-type template parameter not in template parameter scope!");
646 bool Invalid = false;
647
648 IdentifierInfo *ParamName = D.getIdentifier();
649 if (ParamName) {
650 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
651 LookupOrdinaryName,
652 ForRedeclaration);
653 if (PrevDecl && PrevDecl->isTemplateParameter())
654 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
655 PrevDecl);
656 }
657
658 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
659 if (T.isNull()) {
660 T = Context.IntTy; // Recover with an 'int' type.
661 Invalid = true;
662 }
663
664 bool IsParameterPack = D.hasEllipsis();
665 NonTypeTemplateParmDecl *Param
666 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
667 D.getSourceRange().getBegin(),
668 D.getIdentifierLoc(),
669 Depth, Position, ParamName, T,
670 IsParameterPack, TInfo);
671 Param->setAccess(AS_public);
672
673 if (Invalid)
674 Param->setInvalidDecl();
675
676 if (D.getIdentifier()) {
677 // Add the template parameter into the current scope.
678 S->AddDecl(Param);
679 IdResolver.AddDecl(Param);
680 }
681
682 // C++0x [temp.param]p9:
683 // A default template-argument may be specified for any kind of
684 // template-parameter that is not a template parameter pack.
685 if (Default && IsParameterPack) {
686 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
687 Default = 0;
688 }
689
690 // Check the well-formedness of the default template argument, if provided.
691 if (Default) {
692 // Check for unexpanded parameter packs.
693 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
694 return Param;
695
696 TemplateArgument Converted;
697 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
698 if (DefaultRes.isInvalid()) {
699 Param->setInvalidDecl();
700 return Param;
701 }
702 Default = DefaultRes.take();
703
704 Param->setDefaultArgument(Default, false);
705 }
706
707 return Param;
708 }
709
710 /// ActOnTemplateTemplateParameter - Called when a C++ template template
711 /// parameter (e.g. T in template <template <typename> class T> class array)
712 /// has been parsed. S is the current scope.
ActOnTemplateTemplateParameter(Scope * S,SourceLocation TmpLoc,TemplateParamsTy * Params,SourceLocation EllipsisLoc,IdentifierInfo * Name,SourceLocation NameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedTemplateArgument Default)713 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
714 SourceLocation TmpLoc,
715 TemplateParamsTy *Params,
716 SourceLocation EllipsisLoc,
717 IdentifierInfo *Name,
718 SourceLocation NameLoc,
719 unsigned Depth,
720 unsigned Position,
721 SourceLocation EqualLoc,
722 ParsedTemplateArgument Default) {
723 assert(S->isTemplateParamScope() &&
724 "Template template parameter not in template parameter scope!");
725
726 // Construct the parameter object.
727 bool IsParameterPack = EllipsisLoc.isValid();
728 TemplateTemplateParmDecl *Param =
729 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
730 NameLoc.isInvalid()? TmpLoc : NameLoc,
731 Depth, Position, IsParameterPack,
732 Name, Params);
733 Param->setAccess(AS_public);
734
735 // If the template template parameter has a name, then link the identifier
736 // into the scope and lookup mechanisms.
737 if (Name) {
738 S->AddDecl(Param);
739 IdResolver.AddDecl(Param);
740 }
741
742 if (Params->size() == 0) {
743 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
744 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
745 Param->setInvalidDecl();
746 }
747
748 // C++0x [temp.param]p9:
749 // A default template-argument may be specified for any kind of
750 // template-parameter that is not a template parameter pack.
751 if (IsParameterPack && !Default.isInvalid()) {
752 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
753 Default = ParsedTemplateArgument();
754 }
755
756 if (!Default.isInvalid()) {
757 // Check only that we have a template template argument. We don't want to
758 // try to check well-formedness now, because our template template parameter
759 // might have dependent types in its template parameters, which we wouldn't
760 // be able to match now.
761 //
762 // If none of the template template parameter's template arguments mention
763 // other template parameters, we could actually perform more checking here.
764 // However, it isn't worth doing.
765 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
766 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
767 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
768 << DefaultArg.getSourceRange();
769 return Param;
770 }
771
772 // Check for unexpanded parameter packs.
773 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
774 DefaultArg.getArgument().getAsTemplate(),
775 UPPC_DefaultArgument))
776 return Param;
777
778 Param->setDefaultArgument(DefaultArg, false);
779 }
780
781 return Param;
782 }
783
784 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
785 /// contains the template parameters in Params/NumParams.
786 Sema::TemplateParamsTy *
ActOnTemplateParameterList(unsigned Depth,SourceLocation ExportLoc,SourceLocation TemplateLoc,SourceLocation LAngleLoc,Decl ** Params,unsigned NumParams,SourceLocation RAngleLoc)787 Sema::ActOnTemplateParameterList(unsigned Depth,
788 SourceLocation ExportLoc,
789 SourceLocation TemplateLoc,
790 SourceLocation LAngleLoc,
791 Decl **Params, unsigned NumParams,
792 SourceLocation RAngleLoc) {
793 if (ExportLoc.isValid())
794 Diag(ExportLoc, diag::warn_template_export_unsupported);
795
796 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
797 (NamedDecl**)Params, NumParams,
798 RAngleLoc);
799 }
800
SetNestedNameSpecifier(TagDecl * T,const CXXScopeSpec & SS)801 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
802 if (SS.isSet())
803 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
804 }
805
806 DeclResult
CheckClassTemplate(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,TemplateParameterList * TemplateParams,AccessSpecifier AS,unsigned NumOuterTemplateParamLists,TemplateParameterList ** OuterTemplateParamLists)807 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
808 SourceLocation KWLoc, CXXScopeSpec &SS,
809 IdentifierInfo *Name, SourceLocation NameLoc,
810 AttributeList *Attr,
811 TemplateParameterList *TemplateParams,
812 AccessSpecifier AS,
813 unsigned NumOuterTemplateParamLists,
814 TemplateParameterList** OuterTemplateParamLists) {
815 assert(TemplateParams && TemplateParams->size() > 0 &&
816 "No template parameters");
817 assert(TUK != TUK_Reference && "Can only declare or define class templates");
818 bool Invalid = false;
819
820 // Check that we can declare a template here.
821 if (CheckTemplateDeclScope(S, TemplateParams))
822 return true;
823
824 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
825 assert(Kind != TTK_Enum && "can't build template of enumerated type");
826
827 // There is no such thing as an unnamed class template.
828 if (!Name) {
829 Diag(KWLoc, diag::err_template_unnamed_class);
830 return true;
831 }
832
833 // Find any previous declaration with this name.
834 DeclContext *SemanticContext;
835 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
836 ForRedeclaration);
837 if (SS.isNotEmpty() && !SS.isInvalid()) {
838 SemanticContext = computeDeclContext(SS, true);
839 if (!SemanticContext) {
840 // FIXME: Produce a reasonable diagnostic here
841 return true;
842 }
843
844 if (RequireCompleteDeclContext(SS, SemanticContext))
845 return true;
846
847 LookupQualifiedName(Previous, SemanticContext);
848 } else {
849 SemanticContext = CurContext;
850 LookupName(Previous, S);
851 }
852
853 if (Previous.isAmbiguous())
854 return true;
855
856 NamedDecl *PrevDecl = 0;
857 if (Previous.begin() != Previous.end())
858 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
859
860 // If there is a previous declaration with the same name, check
861 // whether this is a valid redeclaration.
862 ClassTemplateDecl *PrevClassTemplate
863 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
864
865 // We may have found the injected-class-name of a class template,
866 // class template partial specialization, or class template specialization.
867 // In these cases, grab the template that is being defined or specialized.
868 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
869 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
870 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
871 PrevClassTemplate
872 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
873 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
874 PrevClassTemplate
875 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
876 ->getSpecializedTemplate();
877 }
878 }
879
880 if (TUK == TUK_Friend) {
881 // C++ [namespace.memdef]p3:
882 // [...] When looking for a prior declaration of a class or a function
883 // declared as a friend, and when the name of the friend class or
884 // function is neither a qualified name nor a template-id, scopes outside
885 // the innermost enclosing namespace scope are not considered.
886 if (!SS.isSet()) {
887 DeclContext *OutermostContext = CurContext;
888 while (!OutermostContext->isFileContext())
889 OutermostContext = OutermostContext->getLookupParent();
890
891 if (PrevDecl &&
892 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
893 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
894 SemanticContext = PrevDecl->getDeclContext();
895 } else {
896 // Declarations in outer scopes don't matter. However, the outermost
897 // context we computed is the semantic context for our new
898 // declaration.
899 PrevDecl = PrevClassTemplate = 0;
900 SemanticContext = OutermostContext;
901 }
902 }
903
904 if (CurContext->isDependentContext()) {
905 // If this is a dependent context, we don't want to link the friend
906 // class template to the template in scope, because that would perform
907 // checking of the template parameter lists that can't be performed
908 // until the outer context is instantiated.
909 PrevDecl = PrevClassTemplate = 0;
910 }
911 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
912 PrevDecl = PrevClassTemplate = 0;
913
914 if (PrevClassTemplate) {
915 // Ensure that the template parameter lists are compatible.
916 if (!TemplateParameterListsAreEqual(TemplateParams,
917 PrevClassTemplate->getTemplateParameters(),
918 /*Complain=*/true,
919 TPL_TemplateMatch))
920 return true;
921
922 // C++ [temp.class]p4:
923 // In a redeclaration, partial specialization, explicit
924 // specialization or explicit instantiation of a class template,
925 // the class-key shall agree in kind with the original class
926 // template declaration (7.1.5.3).
927 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
928 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
929 TUK == TUK_Definition, KWLoc, *Name)) {
930 Diag(KWLoc, diag::err_use_with_wrong_tag)
931 << Name
932 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
933 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
934 Kind = PrevRecordDecl->getTagKind();
935 }
936
937 // Check for redefinition of this class template.
938 if (TUK == TUK_Definition) {
939 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
940 Diag(NameLoc, diag::err_redefinition) << Name;
941 Diag(Def->getLocation(), diag::note_previous_definition);
942 // FIXME: Would it make sense to try to "forget" the previous
943 // definition, as part of error recovery?
944 return true;
945 }
946 }
947 } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
948 // Maybe we will complain about the shadowed template parameter.
949 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
950 // Just pretend that we didn't see the previous declaration.
951 PrevDecl = 0;
952 } else if (PrevDecl) {
953 // C++ [temp]p5:
954 // A class template shall not have the same name as any other
955 // template, class, function, object, enumeration, enumerator,
956 // namespace, or type in the same scope (3.3), except as specified
957 // in (14.5.4).
958 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
959 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
960 return true;
961 }
962
963 // Check the template parameter list of this declaration, possibly
964 // merging in the template parameter list from the previous class
965 // template declaration.
966 if (CheckTemplateParameterList(TemplateParams,
967 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
968 (SS.isSet() && SemanticContext &&
969 SemanticContext->isRecord() &&
970 SemanticContext->isDependentContext())
971 ? TPC_ClassTemplateMember
972 : TPC_ClassTemplate))
973 Invalid = true;
974
975 if (SS.isSet()) {
976 // If the name of the template was qualified, we must be defining the
977 // template out-of-line.
978 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
979 !(TUK == TUK_Friend && CurContext->isDependentContext()))
980 Diag(NameLoc, diag::err_member_def_does_not_match)
981 << Name << SemanticContext << SS.getRange();
982 }
983
984 CXXRecordDecl *NewClass =
985 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
986 PrevClassTemplate?
987 PrevClassTemplate->getTemplatedDecl() : 0,
988 /*DelayTypeCreation=*/true);
989 SetNestedNameSpecifier(NewClass, SS);
990 if (NumOuterTemplateParamLists > 0)
991 NewClass->setTemplateParameterListsInfo(Context,
992 NumOuterTemplateParamLists,
993 OuterTemplateParamLists);
994
995 ClassTemplateDecl *NewTemplate
996 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
997 DeclarationName(Name), TemplateParams,
998 NewClass, PrevClassTemplate);
999 NewClass->setDescribedClassTemplate(NewTemplate);
1000
1001 // Build the type for the class template declaration now.
1002 QualType T = NewTemplate->getInjectedClassNameSpecialization();
1003 T = Context.getInjectedClassNameType(NewClass, T);
1004 assert(T->isDependentType() && "Class template type is not dependent?");
1005 (void)T;
1006
1007 // If we are providing an explicit specialization of a member that is a
1008 // class template, make a note of that.
1009 if (PrevClassTemplate &&
1010 PrevClassTemplate->getInstantiatedFromMemberTemplate())
1011 PrevClassTemplate->setMemberSpecialization();
1012
1013 // Set the access specifier.
1014 if (!Invalid && TUK != TUK_Friend)
1015 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1016
1017 // Set the lexical context of these templates
1018 NewClass->setLexicalDeclContext(CurContext);
1019 NewTemplate->setLexicalDeclContext(CurContext);
1020
1021 if (TUK == TUK_Definition)
1022 NewClass->startDefinition();
1023
1024 if (Attr)
1025 ProcessDeclAttributeList(S, NewClass, Attr);
1026
1027 if (TUK != TUK_Friend)
1028 PushOnScopeChains(NewTemplate, S);
1029 else {
1030 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1031 NewTemplate->setAccess(PrevClassTemplate->getAccess());
1032 NewClass->setAccess(PrevClassTemplate->getAccess());
1033 }
1034
1035 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1036 PrevClassTemplate != NULL);
1037
1038 // Friend templates are visible in fairly strange ways.
1039 if (!CurContext->isDependentContext()) {
1040 DeclContext *DC = SemanticContext->getRedeclContext();
1041 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1042 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1043 PushOnScopeChains(NewTemplate, EnclosingScope,
1044 /* AddToContext = */ false);
1045 }
1046
1047 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1048 NewClass->getLocation(),
1049 NewTemplate,
1050 /*FIXME:*/NewClass->getLocation());
1051 Friend->setAccess(AS_public);
1052 CurContext->addDecl(Friend);
1053 }
1054
1055 if (Invalid) {
1056 NewTemplate->setInvalidDecl();
1057 NewClass->setInvalidDecl();
1058 }
1059 return NewTemplate;
1060 }
1061
1062 /// \brief Diagnose the presence of a default template argument on a
1063 /// template parameter, which is ill-formed in certain contexts.
1064 ///
1065 /// \returns true if the default template argument should be dropped.
DiagnoseDefaultTemplateArgument(Sema & S,Sema::TemplateParamListContext TPC,SourceLocation ParamLoc,SourceRange DefArgRange)1066 static bool DiagnoseDefaultTemplateArgument(Sema &S,
1067 Sema::TemplateParamListContext TPC,
1068 SourceLocation ParamLoc,
1069 SourceRange DefArgRange) {
1070 switch (TPC) {
1071 case Sema::TPC_ClassTemplate:
1072 case Sema::TPC_TypeAliasTemplate:
1073 return false;
1074
1075 case Sema::TPC_FunctionTemplate:
1076 case Sema::TPC_FriendFunctionTemplateDefinition:
1077 // C++ [temp.param]p9:
1078 // A default template-argument shall not be specified in a
1079 // function template declaration or a function template
1080 // definition [...]
1081 // If a friend function template declaration specifies a default
1082 // template-argument, that declaration shall be a definition and shall be
1083 // the only declaration of the function template in the translation unit.
1084 // (C++98/03 doesn't have this wording; see DR226).
1085 if (!S.getLangOptions().CPlusPlus0x)
1086 S.Diag(ParamLoc,
1087 diag::ext_template_parameter_default_in_function_template)
1088 << DefArgRange;
1089 return false;
1090
1091 case Sema::TPC_ClassTemplateMember:
1092 // C++0x [temp.param]p9:
1093 // A default template-argument shall not be specified in the
1094 // template-parameter-lists of the definition of a member of a
1095 // class template that appears outside of the member's class.
1096 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1097 << DefArgRange;
1098 return true;
1099
1100 case Sema::TPC_FriendFunctionTemplate:
1101 // C++ [temp.param]p9:
1102 // A default template-argument shall not be specified in a
1103 // friend template declaration.
1104 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1105 << DefArgRange;
1106 return true;
1107
1108 // FIXME: C++0x [temp.param]p9 allows default template-arguments
1109 // for friend function templates if there is only a single
1110 // declaration (and it is a definition). Strange!
1111 }
1112
1113 return false;
1114 }
1115
1116 /// \brief Check for unexpanded parameter packs within the template parameters
1117 /// of a template template parameter, recursively.
DiagnoseUnexpandedParameterPacks(Sema & S,TemplateTemplateParmDecl * TTP)1118 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1119 TemplateTemplateParmDecl *TTP) {
1120 TemplateParameterList *Params = TTP->getTemplateParameters();
1121 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1122 NamedDecl *P = Params->getParam(I);
1123 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1124 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1125 NTTP->getTypeSourceInfo(),
1126 Sema::UPPC_NonTypeTemplateParameterType))
1127 return true;
1128
1129 continue;
1130 }
1131
1132 if (TemplateTemplateParmDecl *InnerTTP
1133 = dyn_cast<TemplateTemplateParmDecl>(P))
1134 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1135 return true;
1136 }
1137
1138 return false;
1139 }
1140
1141 /// \brief Checks the validity of a template parameter list, possibly
1142 /// considering the template parameter list from a previous
1143 /// declaration.
1144 ///
1145 /// If an "old" template parameter list is provided, it must be
1146 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
1147 /// template parameter list.
1148 ///
1149 /// \param NewParams Template parameter list for a new template
1150 /// declaration. This template parameter list will be updated with any
1151 /// default arguments that are carried through from the previous
1152 /// template parameter list.
1153 ///
1154 /// \param OldParams If provided, template parameter list from a
1155 /// previous declaration of the same template. Default template
1156 /// arguments will be merged from the old template parameter list to
1157 /// the new template parameter list.
1158 ///
1159 /// \param TPC Describes the context in which we are checking the given
1160 /// template parameter list.
1161 ///
1162 /// \returns true if an error occurred, false otherwise.
CheckTemplateParameterList(TemplateParameterList * NewParams,TemplateParameterList * OldParams,TemplateParamListContext TPC)1163 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1164 TemplateParameterList *OldParams,
1165 TemplateParamListContext TPC) {
1166 bool Invalid = false;
1167
1168 // C++ [temp.param]p10:
1169 // The set of default template-arguments available for use with a
1170 // template declaration or definition is obtained by merging the
1171 // default arguments from the definition (if in scope) and all
1172 // declarations in scope in the same way default function
1173 // arguments are (8.3.6).
1174 bool SawDefaultArgument = false;
1175 SourceLocation PreviousDefaultArgLoc;
1176
1177 bool SawParameterPack = false;
1178 SourceLocation ParameterPackLoc;
1179
1180 // Dummy initialization to avoid warnings.
1181 TemplateParameterList::iterator OldParam = NewParams->end();
1182 if (OldParams)
1183 OldParam = OldParams->begin();
1184
1185 bool RemoveDefaultArguments = false;
1186 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1187 NewParamEnd = NewParams->end();
1188 NewParam != NewParamEnd; ++NewParam) {
1189 // Variables used to diagnose redundant default arguments
1190 bool RedundantDefaultArg = false;
1191 SourceLocation OldDefaultLoc;
1192 SourceLocation NewDefaultLoc;
1193
1194 // Variables used to diagnose missing default arguments
1195 bool MissingDefaultArg = false;
1196
1197 // C++0x [temp.param]p11:
1198 // If a template parameter of a primary class template or alias template
1199 // is a template parameter pack, it shall be the last template parameter.
1200 if (SawParameterPack &&
1201 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1202 Diag(ParameterPackLoc,
1203 diag::err_template_param_pack_must_be_last_template_parameter);
1204 Invalid = true;
1205 }
1206
1207 if (TemplateTypeParmDecl *NewTypeParm
1208 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1209 // Check the presence of a default argument here.
1210 if (NewTypeParm->hasDefaultArgument() &&
1211 DiagnoseDefaultTemplateArgument(*this, TPC,
1212 NewTypeParm->getLocation(),
1213 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1214 .getSourceRange()))
1215 NewTypeParm->removeDefaultArgument();
1216
1217 // Merge default arguments for template type parameters.
1218 TemplateTypeParmDecl *OldTypeParm
1219 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1220
1221 if (NewTypeParm->isParameterPack()) {
1222 assert(!NewTypeParm->hasDefaultArgument() &&
1223 "Parameter packs can't have a default argument!");
1224 SawParameterPack = true;
1225 ParameterPackLoc = NewTypeParm->getLocation();
1226 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1227 NewTypeParm->hasDefaultArgument()) {
1228 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1229 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1230 SawDefaultArgument = true;
1231 RedundantDefaultArg = true;
1232 PreviousDefaultArgLoc = NewDefaultLoc;
1233 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1234 // Merge the default argument from the old declaration to the
1235 // new declaration.
1236 SawDefaultArgument = true;
1237 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1238 true);
1239 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1240 } else if (NewTypeParm->hasDefaultArgument()) {
1241 SawDefaultArgument = true;
1242 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1243 } else if (SawDefaultArgument)
1244 MissingDefaultArg = true;
1245 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1246 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1247 // Check for unexpanded parameter packs.
1248 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1249 NewNonTypeParm->getTypeSourceInfo(),
1250 UPPC_NonTypeTemplateParameterType)) {
1251 Invalid = true;
1252 continue;
1253 }
1254
1255 // Check the presence of a default argument here.
1256 if (NewNonTypeParm->hasDefaultArgument() &&
1257 DiagnoseDefaultTemplateArgument(*this, TPC,
1258 NewNonTypeParm->getLocation(),
1259 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1260 NewNonTypeParm->removeDefaultArgument();
1261 }
1262
1263 // Merge default arguments for non-type template parameters
1264 NonTypeTemplateParmDecl *OldNonTypeParm
1265 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1266 if (NewNonTypeParm->isParameterPack()) {
1267 assert(!NewNonTypeParm->hasDefaultArgument() &&
1268 "Parameter packs can't have a default argument!");
1269 SawParameterPack = true;
1270 ParameterPackLoc = NewNonTypeParm->getLocation();
1271 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1272 NewNonTypeParm->hasDefaultArgument()) {
1273 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1274 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1275 SawDefaultArgument = true;
1276 RedundantDefaultArg = true;
1277 PreviousDefaultArgLoc = NewDefaultLoc;
1278 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1279 // Merge the default argument from the old declaration to the
1280 // new declaration.
1281 SawDefaultArgument = true;
1282 // FIXME: We need to create a new kind of "default argument"
1283 // expression that points to a previous non-type template
1284 // parameter.
1285 NewNonTypeParm->setDefaultArgument(
1286 OldNonTypeParm->getDefaultArgument(),
1287 /*Inherited=*/ true);
1288 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1289 } else if (NewNonTypeParm->hasDefaultArgument()) {
1290 SawDefaultArgument = true;
1291 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1292 } else if (SawDefaultArgument)
1293 MissingDefaultArg = true;
1294 } else {
1295 // Check the presence of a default argument here.
1296 TemplateTemplateParmDecl *NewTemplateParm
1297 = cast<TemplateTemplateParmDecl>(*NewParam);
1298
1299 // Check for unexpanded parameter packs, recursively.
1300 if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1301 Invalid = true;
1302 continue;
1303 }
1304
1305 if (NewTemplateParm->hasDefaultArgument() &&
1306 DiagnoseDefaultTemplateArgument(*this, TPC,
1307 NewTemplateParm->getLocation(),
1308 NewTemplateParm->getDefaultArgument().getSourceRange()))
1309 NewTemplateParm->removeDefaultArgument();
1310
1311 // Merge default arguments for template template parameters
1312 TemplateTemplateParmDecl *OldTemplateParm
1313 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1314 if (NewTemplateParm->isParameterPack()) {
1315 assert(!NewTemplateParm->hasDefaultArgument() &&
1316 "Parameter packs can't have a default argument!");
1317 SawParameterPack = true;
1318 ParameterPackLoc = NewTemplateParm->getLocation();
1319 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1320 NewTemplateParm->hasDefaultArgument()) {
1321 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1322 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1323 SawDefaultArgument = true;
1324 RedundantDefaultArg = true;
1325 PreviousDefaultArgLoc = NewDefaultLoc;
1326 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1327 // Merge the default argument from the old declaration to the
1328 // new declaration.
1329 SawDefaultArgument = true;
1330 // FIXME: We need to create a new kind of "default argument" expression
1331 // that points to a previous template template parameter.
1332 NewTemplateParm->setDefaultArgument(
1333 OldTemplateParm->getDefaultArgument(),
1334 /*Inherited=*/ true);
1335 PreviousDefaultArgLoc
1336 = OldTemplateParm->getDefaultArgument().getLocation();
1337 } else if (NewTemplateParm->hasDefaultArgument()) {
1338 SawDefaultArgument = true;
1339 PreviousDefaultArgLoc
1340 = NewTemplateParm->getDefaultArgument().getLocation();
1341 } else if (SawDefaultArgument)
1342 MissingDefaultArg = true;
1343 }
1344
1345 if (RedundantDefaultArg) {
1346 // C++ [temp.param]p12:
1347 // A template-parameter shall not be given default arguments
1348 // by two different declarations in the same scope.
1349 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1350 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1351 Invalid = true;
1352 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1353 // C++ [temp.param]p11:
1354 // If a template-parameter of a class template has a default
1355 // template-argument, each subsequent template-parameter shall either
1356 // have a default template-argument supplied or be a template parameter
1357 // pack.
1358 Diag((*NewParam)->getLocation(),
1359 diag::err_template_param_default_arg_missing);
1360 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1361 Invalid = true;
1362 RemoveDefaultArguments = true;
1363 }
1364
1365 // If we have an old template parameter list that we're merging
1366 // in, move on to the next parameter.
1367 if (OldParams)
1368 ++OldParam;
1369 }
1370
1371 // We were missing some default arguments at the end of the list, so remove
1372 // all of the default arguments.
1373 if (RemoveDefaultArguments) {
1374 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1375 NewParamEnd = NewParams->end();
1376 NewParam != NewParamEnd; ++NewParam) {
1377 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1378 TTP->removeDefaultArgument();
1379 else if (NonTypeTemplateParmDecl *NTTP
1380 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1381 NTTP->removeDefaultArgument();
1382 else
1383 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1384 }
1385 }
1386
1387 return Invalid;
1388 }
1389
1390 namespace {
1391
1392 /// A class which looks for a use of a certain level of template
1393 /// parameter.
1394 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1395 typedef RecursiveASTVisitor<DependencyChecker> super;
1396
1397 unsigned Depth;
1398 bool Match;
1399
DependencyChecker__anon5fb1f6360111::DependencyChecker1400 DependencyChecker(TemplateParameterList *Params) : Match(false) {
1401 NamedDecl *ND = Params->getParam(0);
1402 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1403 Depth = PD->getDepth();
1404 } else if (NonTypeTemplateParmDecl *PD =
1405 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1406 Depth = PD->getDepth();
1407 } else {
1408 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1409 }
1410 }
1411
Matches__anon5fb1f6360111::DependencyChecker1412 bool Matches(unsigned ParmDepth) {
1413 if (ParmDepth >= Depth) {
1414 Match = true;
1415 return true;
1416 }
1417 return false;
1418 }
1419
VisitTemplateTypeParmType__anon5fb1f6360111::DependencyChecker1420 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1421 return !Matches(T->getDepth());
1422 }
1423
TraverseTemplateName__anon5fb1f6360111::DependencyChecker1424 bool TraverseTemplateName(TemplateName N) {
1425 if (TemplateTemplateParmDecl *PD =
1426 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1427 if (Matches(PD->getDepth())) return false;
1428 return super::TraverseTemplateName(N);
1429 }
1430
VisitDeclRefExpr__anon5fb1f6360111::DependencyChecker1431 bool VisitDeclRefExpr(DeclRefExpr *E) {
1432 if (NonTypeTemplateParmDecl *PD =
1433 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1434 if (PD->getDepth() == Depth) {
1435 Match = true;
1436 return false;
1437 }
1438 }
1439 return super::VisitDeclRefExpr(E);
1440 }
1441
TraverseInjectedClassNameType__anon5fb1f6360111::DependencyChecker1442 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1443 return TraverseType(T->getInjectedSpecializationType());
1444 }
1445 };
1446 }
1447
1448 /// Determines whether a given type depends on the given parameter
1449 /// list.
1450 static bool
DependsOnTemplateParameters(QualType T,TemplateParameterList * Params)1451 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1452 DependencyChecker Checker(Params);
1453 Checker.TraverseType(T);
1454 return Checker.Match;
1455 }
1456
1457 // Find the source range corresponding to the named type in the given
1458 // nested-name-specifier, if any.
getRangeOfTypeInNestedNameSpecifier(ASTContext & Context,QualType T,const CXXScopeSpec & SS)1459 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1460 QualType T,
1461 const CXXScopeSpec &SS) {
1462 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1463 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1464 if (const Type *CurType = NNS->getAsType()) {
1465 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1466 return NNSLoc.getTypeLoc().getSourceRange();
1467 } else
1468 break;
1469
1470 NNSLoc = NNSLoc.getPrefix();
1471 }
1472
1473 return SourceRange();
1474 }
1475
1476 /// \brief Match the given template parameter lists to the given scope
1477 /// specifier, returning the template parameter list that applies to the
1478 /// name.
1479 ///
1480 /// \param DeclStartLoc the start of the declaration that has a scope
1481 /// specifier or a template parameter list.
1482 ///
1483 /// \param DeclLoc The location of the declaration itself.
1484 ///
1485 /// \param SS the scope specifier that will be matched to the given template
1486 /// parameter lists. This scope specifier precedes a qualified name that is
1487 /// being declared.
1488 ///
1489 /// \param ParamLists the template parameter lists, from the outermost to the
1490 /// innermost template parameter lists.
1491 ///
1492 /// \param NumParamLists the number of template parameter lists in ParamLists.
1493 ///
1494 /// \param IsFriend Whether to apply the slightly different rules for
1495 /// matching template parameters to scope specifiers in friend
1496 /// declarations.
1497 ///
1498 /// \param IsExplicitSpecialization will be set true if the entity being
1499 /// declared is an explicit specialization, false otherwise.
1500 ///
1501 /// \returns the template parameter list, if any, that corresponds to the
1502 /// name that is preceded by the scope specifier @p SS. This template
1503 /// parameter list may have template parameters (if we're declaring a
1504 /// template) or may have no template parameters (if we're declaring a
1505 /// template specialization), or may be NULL (if what we're declaring isn't
1506 /// itself a template).
1507 TemplateParameterList *
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,SourceLocation DeclLoc,const CXXScopeSpec & SS,TemplateParameterList ** ParamLists,unsigned NumParamLists,bool IsFriend,bool & IsExplicitSpecialization,bool & Invalid)1508 Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1509 SourceLocation DeclLoc,
1510 const CXXScopeSpec &SS,
1511 TemplateParameterList **ParamLists,
1512 unsigned NumParamLists,
1513 bool IsFriend,
1514 bool &IsExplicitSpecialization,
1515 bool &Invalid) {
1516 IsExplicitSpecialization = false;
1517 Invalid = false;
1518
1519 // The sequence of nested types to which we will match up the template
1520 // parameter lists. We first build this list by starting with the type named
1521 // by the nested-name-specifier and walking out until we run out of types.
1522 llvm::SmallVector<QualType, 4> NestedTypes;
1523 QualType T;
1524 if (SS.getScopeRep()) {
1525 if (CXXRecordDecl *Record
1526 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1527 T = Context.getTypeDeclType(Record);
1528 else
1529 T = QualType(SS.getScopeRep()->getAsType(), 0);
1530 }
1531
1532 // If we found an explicit specialization that prevents us from needing
1533 // 'template<>' headers, this will be set to the location of that
1534 // explicit specialization.
1535 SourceLocation ExplicitSpecLoc;
1536
1537 while (!T.isNull()) {
1538 NestedTypes.push_back(T);
1539
1540 // Retrieve the parent of a record type.
1541 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1542 // If this type is an explicit specialization, we're done.
1543 if (ClassTemplateSpecializationDecl *Spec
1544 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1545 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1546 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1547 ExplicitSpecLoc = Spec->getLocation();
1548 break;
1549 }
1550 } else if (Record->getTemplateSpecializationKind()
1551 == TSK_ExplicitSpecialization) {
1552 ExplicitSpecLoc = Record->getLocation();
1553 break;
1554 }
1555
1556 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1557 T = Context.getTypeDeclType(Parent);
1558 else
1559 T = QualType();
1560 continue;
1561 }
1562
1563 if (const TemplateSpecializationType *TST
1564 = T->getAs<TemplateSpecializationType>()) {
1565 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1566 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1567 T = Context.getTypeDeclType(Parent);
1568 else
1569 T = QualType();
1570 continue;
1571 }
1572 }
1573
1574 // Look one step prior in a dependent template specialization type.
1575 if (const DependentTemplateSpecializationType *DependentTST
1576 = T->getAs<DependentTemplateSpecializationType>()) {
1577 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1578 T = QualType(NNS->getAsType(), 0);
1579 else
1580 T = QualType();
1581 continue;
1582 }
1583
1584 // Look one step prior in a dependent name type.
1585 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1586 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1587 T = QualType(NNS->getAsType(), 0);
1588 else
1589 T = QualType();
1590 continue;
1591 }
1592
1593 // Retrieve the parent of an enumeration type.
1594 if (const EnumType *EnumT = T->getAs<EnumType>()) {
1595 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1596 // check here.
1597 EnumDecl *Enum = EnumT->getDecl();
1598
1599 // Get to the parent type.
1600 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1601 T = Context.getTypeDeclType(Parent);
1602 else
1603 T = QualType();
1604 continue;
1605 }
1606
1607 T = QualType();
1608 }
1609 // Reverse the nested types list, since we want to traverse from the outermost
1610 // to the innermost while checking template-parameter-lists.
1611 std::reverse(NestedTypes.begin(), NestedTypes.end());
1612
1613 // C++0x [temp.expl.spec]p17:
1614 // A member or a member template may be nested within many
1615 // enclosing class templates. In an explicit specialization for
1616 // such a member, the member declaration shall be preceded by a
1617 // template<> for each enclosing class template that is
1618 // explicitly specialized.
1619 bool SawNonEmptyTemplateParameterList = false;
1620 unsigned ParamIdx = 0;
1621 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1622 ++TypeIdx) {
1623 T = NestedTypes[TypeIdx];
1624
1625 // Whether we expect a 'template<>' header.
1626 bool NeedEmptyTemplateHeader = false;
1627
1628 // Whether we expect a template header with parameters.
1629 bool NeedNonemptyTemplateHeader = false;
1630
1631 // For a dependent type, the set of template parameters that we
1632 // expect to see.
1633 TemplateParameterList *ExpectedTemplateParams = 0;
1634
1635 // C++0x [temp.expl.spec]p15:
1636 // A member or a member template may be nested within many enclosing
1637 // class templates. In an explicit specialization for such a member, the
1638 // member declaration shall be preceded by a template<> for each
1639 // enclosing class template that is explicitly specialized.
1640 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1641 if (ClassTemplatePartialSpecializationDecl *Partial
1642 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1643 ExpectedTemplateParams = Partial->getTemplateParameters();
1644 NeedNonemptyTemplateHeader = true;
1645 } else if (Record->isDependentType()) {
1646 if (Record->getDescribedClassTemplate()) {
1647 ExpectedTemplateParams = Record->getDescribedClassTemplate()
1648 ->getTemplateParameters();
1649 NeedNonemptyTemplateHeader = true;
1650 }
1651 } else if (ClassTemplateSpecializationDecl *Spec
1652 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1653 // C++0x [temp.expl.spec]p4:
1654 // Members of an explicitly specialized class template are defined
1655 // in the same manner as members of normal classes, and not using
1656 // the template<> syntax.
1657 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1658 NeedEmptyTemplateHeader = true;
1659 else
1660 continue;
1661 } else if (Record->getTemplateSpecializationKind()) {
1662 if (Record->getTemplateSpecializationKind()
1663 != TSK_ExplicitSpecialization &&
1664 TypeIdx == NumTypes - 1)
1665 IsExplicitSpecialization = true;
1666
1667 continue;
1668 }
1669 } else if (const TemplateSpecializationType *TST
1670 = T->getAs<TemplateSpecializationType>()) {
1671 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1672 ExpectedTemplateParams = Template->getTemplateParameters();
1673 NeedNonemptyTemplateHeader = true;
1674 }
1675 } else if (T->getAs<DependentTemplateSpecializationType>()) {
1676 // FIXME: We actually could/should check the template arguments here
1677 // against the corresponding template parameter list.
1678 NeedNonemptyTemplateHeader = false;
1679 }
1680
1681 // C++ [temp.expl.spec]p16:
1682 // In an explicit specialization declaration for a member of a class
1683 // template or a member template that ap- pears in namespace scope, the
1684 // member template and some of its enclosing class templates may remain
1685 // unspecialized, except that the declaration shall not explicitly
1686 // specialize a class member template if its en- closing class templates
1687 // are not explicitly specialized as well.
1688 if (ParamIdx < NumParamLists) {
1689 if (ParamLists[ParamIdx]->size() == 0) {
1690 if (SawNonEmptyTemplateParameterList) {
1691 Diag(DeclLoc, diag::err_specialize_member_of_template)
1692 << ParamLists[ParamIdx]->getSourceRange();
1693 Invalid = true;
1694 IsExplicitSpecialization = false;
1695 return 0;
1696 }
1697 } else
1698 SawNonEmptyTemplateParameterList = true;
1699 }
1700
1701 if (NeedEmptyTemplateHeader) {
1702 // If we're on the last of the types, and we need a 'template<>' header
1703 // here, then it's an explicit specialization.
1704 if (TypeIdx == NumTypes - 1)
1705 IsExplicitSpecialization = true;
1706
1707 if (ParamIdx < NumParamLists) {
1708 if (ParamLists[ParamIdx]->size() > 0) {
1709 // The header has template parameters when it shouldn't. Complain.
1710 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1711 diag::err_template_param_list_matches_nontemplate)
1712 << T
1713 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1714 ParamLists[ParamIdx]->getRAngleLoc())
1715 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1716 Invalid = true;
1717 return 0;
1718 }
1719
1720 // Consume this template header.
1721 ++ParamIdx;
1722 continue;
1723 }
1724
1725 if (!IsFriend) {
1726 // We don't have a template header, but we should.
1727 SourceLocation ExpectedTemplateLoc;
1728 if (NumParamLists > 0)
1729 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1730 else
1731 ExpectedTemplateLoc = DeclStartLoc;
1732
1733 Diag(DeclLoc, diag::err_template_spec_needs_header)
1734 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1735 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1736 }
1737
1738 continue;
1739 }
1740
1741 if (NeedNonemptyTemplateHeader) {
1742 // In friend declarations we can have template-ids which don't
1743 // depend on the corresponding template parameter lists. But
1744 // assume that empty parameter lists are supposed to match this
1745 // template-id.
1746 if (IsFriend && T->isDependentType()) {
1747 if (ParamIdx < NumParamLists &&
1748 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1749 ExpectedTemplateParams = 0;
1750 else
1751 continue;
1752 }
1753
1754 if (ParamIdx < NumParamLists) {
1755 // Check the template parameter list, if we can.
1756 if (ExpectedTemplateParams &&
1757 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1758 ExpectedTemplateParams,
1759 true, TPL_TemplateMatch))
1760 Invalid = true;
1761
1762 if (!Invalid &&
1763 CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1764 TPC_ClassTemplateMember))
1765 Invalid = true;
1766
1767 ++ParamIdx;
1768 continue;
1769 }
1770
1771 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1772 << T
1773 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1774 Invalid = true;
1775 continue;
1776 }
1777 }
1778
1779 // If there were at least as many template-ids as there were template
1780 // parameter lists, then there are no template parameter lists remaining for
1781 // the declaration itself.
1782 if (ParamIdx >= NumParamLists)
1783 return 0;
1784
1785 // If there were too many template parameter lists, complain about that now.
1786 if (ParamIdx < NumParamLists - 1) {
1787 bool HasAnyExplicitSpecHeader = false;
1788 bool AllExplicitSpecHeaders = true;
1789 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1790 if (ParamLists[I]->size() == 0)
1791 HasAnyExplicitSpecHeader = true;
1792 else
1793 AllExplicitSpecHeaders = false;
1794 }
1795
1796 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1797 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1798 : diag::err_template_spec_extra_headers)
1799 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1800 ParamLists[NumParamLists - 2]->getRAngleLoc());
1801
1802 // If there was a specialization somewhere, such that 'template<>' is
1803 // not required, and there were any 'template<>' headers, note where the
1804 // specialization occurred.
1805 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1806 Diag(ExplicitSpecLoc,
1807 diag::note_explicit_template_spec_does_not_need_header)
1808 << NestedTypes.back();
1809
1810 // We have a template parameter list with no corresponding scope, which
1811 // means that the resulting template declaration can't be instantiated
1812 // properly (we'll end up with dependent nodes when we shouldn't).
1813 if (!AllExplicitSpecHeaders)
1814 Invalid = true;
1815 }
1816
1817 // C++ [temp.expl.spec]p16:
1818 // In an explicit specialization declaration for a member of a class
1819 // template or a member template that ap- pears in namespace scope, the
1820 // member template and some of its enclosing class templates may remain
1821 // unspecialized, except that the declaration shall not explicitly
1822 // specialize a class member template if its en- closing class templates
1823 // are not explicitly specialized as well.
1824 if (ParamLists[NumParamLists - 1]->size() == 0 &&
1825 SawNonEmptyTemplateParameterList) {
1826 Diag(DeclLoc, diag::err_specialize_member_of_template)
1827 << ParamLists[ParamIdx]->getSourceRange();
1828 Invalid = true;
1829 IsExplicitSpecialization = false;
1830 return 0;
1831 }
1832
1833 // Return the last template parameter list, which corresponds to the
1834 // entity being declared.
1835 return ParamLists[NumParamLists - 1];
1836 }
1837
NoteAllFoundTemplates(TemplateName Name)1838 void Sema::NoteAllFoundTemplates(TemplateName Name) {
1839 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1840 Diag(Template->getLocation(), diag::note_template_declared_here)
1841 << (isa<FunctionTemplateDecl>(Template)? 0
1842 : isa<ClassTemplateDecl>(Template)? 1
1843 : isa<TypeAliasTemplateDecl>(Template)? 2
1844 : 3)
1845 << Template->getDeclName();
1846 return;
1847 }
1848
1849 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1850 for (OverloadedTemplateStorage::iterator I = OST->begin(),
1851 IEnd = OST->end();
1852 I != IEnd; ++I)
1853 Diag((*I)->getLocation(), diag::note_template_declared_here)
1854 << 0 << (*I)->getDeclName();
1855
1856 return;
1857 }
1858 }
1859
1860
CheckTemplateIdType(TemplateName Name,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)1861 QualType Sema::CheckTemplateIdType(TemplateName Name,
1862 SourceLocation TemplateLoc,
1863 TemplateArgumentListInfo &TemplateArgs) {
1864 DependentTemplateName *DTN
1865 = Name.getUnderlying().getAsDependentTemplateName();
1866 if (DTN && DTN->isIdentifier())
1867 // When building a template-id where the template-name is dependent,
1868 // assume the template is a type template. Either our assumption is
1869 // correct, or the code is ill-formed and will be diagnosed when the
1870 // dependent name is substituted.
1871 return Context.getDependentTemplateSpecializationType(ETK_None,
1872 DTN->getQualifier(),
1873 DTN->getIdentifier(),
1874 TemplateArgs);
1875
1876 TemplateDecl *Template = Name.getAsTemplateDecl();
1877 if (!Template || isa<FunctionTemplateDecl>(Template)) {
1878 // We might have a substituted template template parameter pack. If so,
1879 // build a template specialization type for it.
1880 if (Name.getAsSubstTemplateTemplateParmPack())
1881 return Context.getTemplateSpecializationType(Name, TemplateArgs);
1882
1883 Diag(TemplateLoc, diag::err_template_id_not_a_type)
1884 << Name;
1885 NoteAllFoundTemplates(Name);
1886 return QualType();
1887 }
1888
1889 // Check that the template argument list is well-formed for this
1890 // template.
1891 llvm::SmallVector<TemplateArgument, 4> Converted;
1892 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1893 false, Converted))
1894 return QualType();
1895
1896 assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1897 "Converted template argument list is too short!");
1898
1899 QualType CanonType;
1900
1901 bool InstantiationDependent = false;
1902 if (TypeAliasTemplateDecl *AliasTemplate
1903 = dyn_cast<TypeAliasTemplateDecl>(Template)) {
1904 // Find the canonical type for this type alias template specialization.
1905 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1906 if (Pattern->isInvalidDecl())
1907 return QualType();
1908
1909 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1910 Converted.data(), Converted.size());
1911
1912 // Only substitute for the innermost template argument list.
1913 MultiLevelTemplateArgumentList TemplateArgLists;
1914 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1915 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1916 for (unsigned I = 0; I < Depth; ++I)
1917 TemplateArgLists.addOuterTemplateArguments(0, 0);
1918
1919 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
1920 CanonType = SubstType(Pattern->getUnderlyingType(),
1921 TemplateArgLists, AliasTemplate->getLocation(),
1922 AliasTemplate->getDeclName());
1923 if (CanonType.isNull())
1924 return QualType();
1925 } else if (Name.isDependent() ||
1926 TemplateSpecializationType::anyDependentTemplateArguments(
1927 TemplateArgs, InstantiationDependent)) {
1928 // This class template specialization is a dependent
1929 // type. Therefore, its canonical type is another class template
1930 // specialization type that contains all of the converted
1931 // arguments in canonical form. This ensures that, e.g., A<T> and
1932 // A<T, T> have identical types when A is declared as:
1933 //
1934 // template<typename T, typename U = T> struct A;
1935 TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1936 CanonType = Context.getTemplateSpecializationType(CanonName,
1937 Converted.data(),
1938 Converted.size());
1939
1940 // FIXME: CanonType is not actually the canonical type, and unfortunately
1941 // it is a TemplateSpecializationType that we will never use again.
1942 // In the future, we need to teach getTemplateSpecializationType to only
1943 // build the canonical type and return that to us.
1944 CanonType = Context.getCanonicalType(CanonType);
1945
1946 // This might work out to be a current instantiation, in which
1947 // case the canonical type needs to be the InjectedClassNameType.
1948 //
1949 // TODO: in theory this could be a simple hashtable lookup; most
1950 // changes to CurContext don't change the set of current
1951 // instantiations.
1952 if (isa<ClassTemplateDecl>(Template)) {
1953 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1954 // If we get out to a namespace, we're done.
1955 if (Ctx->isFileContext()) break;
1956
1957 // If this isn't a record, keep looking.
1958 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1959 if (!Record) continue;
1960
1961 // Look for one of the two cases with InjectedClassNameTypes
1962 // and check whether it's the same template.
1963 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1964 !Record->getDescribedClassTemplate())
1965 continue;
1966
1967 // Fetch the injected class name type and check whether its
1968 // injected type is equal to the type we just built.
1969 QualType ICNT = Context.getTypeDeclType(Record);
1970 QualType Injected = cast<InjectedClassNameType>(ICNT)
1971 ->getInjectedSpecializationType();
1972
1973 if (CanonType != Injected->getCanonicalTypeInternal())
1974 continue;
1975
1976 // If so, the canonical type of this TST is the injected
1977 // class name type of the record we just found.
1978 assert(ICNT.isCanonical());
1979 CanonType = ICNT;
1980 break;
1981 }
1982 }
1983 } else if (ClassTemplateDecl *ClassTemplate
1984 = dyn_cast<ClassTemplateDecl>(Template)) {
1985 // Find the class template specialization declaration that
1986 // corresponds to these arguments.
1987 void *InsertPos = 0;
1988 ClassTemplateSpecializationDecl *Decl
1989 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1990 InsertPos);
1991 if (!Decl) {
1992 // This is the first time we have referenced this class template
1993 // specialization. Create the canonical declaration and add it to
1994 // the set of specializations.
1995 Decl = ClassTemplateSpecializationDecl::Create(Context,
1996 ClassTemplate->getTemplatedDecl()->getTagKind(),
1997 ClassTemplate->getDeclContext(),
1998 ClassTemplate->getLocation(),
1999 ClassTemplate->getLocation(),
2000 ClassTemplate,
2001 Converted.data(),
2002 Converted.size(), 0);
2003 ClassTemplate->AddSpecialization(Decl, InsertPos);
2004 Decl->setLexicalDeclContext(CurContext);
2005 }
2006
2007 CanonType = Context.getTypeDeclType(Decl);
2008 assert(isa<RecordType>(CanonType) &&
2009 "type of non-dependent specialization is not a RecordType");
2010 }
2011
2012 // Build the fully-sugared type for this class template
2013 // specialization, which refers back to the class template
2014 // specialization we created or found.
2015 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2016 }
2017
2018 TypeResult
ActOnTemplateIdType(CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)2019 Sema::ActOnTemplateIdType(CXXScopeSpec &SS,
2020 TemplateTy TemplateD, SourceLocation TemplateLoc,
2021 SourceLocation LAngleLoc,
2022 ASTTemplateArgsPtr TemplateArgsIn,
2023 SourceLocation RAngleLoc) {
2024 if (SS.isInvalid())
2025 return true;
2026
2027 TemplateName Template = TemplateD.getAsVal<TemplateName>();
2028
2029 // Translate the parser's template argument list in our AST format.
2030 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2031 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2032
2033 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2034 QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
2035 DTN->getQualifier(),
2036 DTN->getIdentifier(),
2037 TemplateArgs);
2038
2039 // Build type-source information.
2040 TypeLocBuilder TLB;
2041 DependentTemplateSpecializationTypeLoc SpecTL
2042 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2043 SpecTL.setKeywordLoc(SourceLocation());
2044 SpecTL.setNameLoc(TemplateLoc);
2045 SpecTL.setLAngleLoc(LAngleLoc);
2046 SpecTL.setRAngleLoc(RAngleLoc);
2047 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2048 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2049 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2050 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2051 }
2052
2053 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2054 TemplateArgsIn.release();
2055
2056 if (Result.isNull())
2057 return true;
2058
2059 // Build type-source information.
2060 TypeLocBuilder TLB;
2061 TemplateSpecializationTypeLoc SpecTL
2062 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2063 SpecTL.setTemplateNameLoc(TemplateLoc);
2064 SpecTL.setLAngleLoc(LAngleLoc);
2065 SpecTL.setRAngleLoc(RAngleLoc);
2066 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2067 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2068
2069 if (SS.isNotEmpty()) {
2070 // Create an elaborated-type-specifier containing the nested-name-specifier.
2071 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2072 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2073 ElabTL.setKeywordLoc(SourceLocation());
2074 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2075 }
2076
2077 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2078 }
2079
ActOnTagTemplateIdType(TagUseKind TUK,TypeSpecifierType TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)2080 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2081 TypeSpecifierType TagSpec,
2082 SourceLocation TagLoc,
2083 CXXScopeSpec &SS,
2084 TemplateTy TemplateD,
2085 SourceLocation TemplateLoc,
2086 SourceLocation LAngleLoc,
2087 ASTTemplateArgsPtr TemplateArgsIn,
2088 SourceLocation RAngleLoc) {
2089 TemplateName Template = TemplateD.getAsVal<TemplateName>();
2090
2091 // Translate the parser's template argument list in our AST format.
2092 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2093 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2094
2095 // Determine the tag kind
2096 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2097 ElaboratedTypeKeyword Keyword
2098 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2099
2100 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2101 QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2102 DTN->getQualifier(),
2103 DTN->getIdentifier(),
2104 TemplateArgs);
2105
2106 // Build type-source information.
2107 TypeLocBuilder TLB;
2108 DependentTemplateSpecializationTypeLoc SpecTL
2109 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2110 SpecTL.setKeywordLoc(TagLoc);
2111 SpecTL.setNameLoc(TemplateLoc);
2112 SpecTL.setLAngleLoc(LAngleLoc);
2113 SpecTL.setRAngleLoc(RAngleLoc);
2114 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2115 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2116 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2117 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2118 }
2119
2120 if (TypeAliasTemplateDecl *TAT =
2121 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2122 // C++0x [dcl.type.elab]p2:
2123 // If the identifier resolves to a typedef-name or the simple-template-id
2124 // resolves to an alias template specialization, the
2125 // elaborated-type-specifier is ill-formed.
2126 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2127 Diag(TAT->getLocation(), diag::note_declared_at);
2128 }
2129
2130 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2131 if (Result.isNull())
2132 return TypeResult();
2133
2134 // Check the tag kind
2135 if (const RecordType *RT = Result->getAs<RecordType>()) {
2136 RecordDecl *D = RT->getDecl();
2137
2138 IdentifierInfo *Id = D->getIdentifier();
2139 assert(Id && "templated class must have an identifier");
2140
2141 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2142 TagLoc, *Id)) {
2143 Diag(TagLoc, diag::err_use_with_wrong_tag)
2144 << Result
2145 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2146 Diag(D->getLocation(), diag::note_previous_use);
2147 }
2148 }
2149
2150 // Provide source-location information for the template specialization.
2151 TypeLocBuilder TLB;
2152 TemplateSpecializationTypeLoc SpecTL
2153 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2154 SpecTL.setTemplateNameLoc(TemplateLoc);
2155 SpecTL.setLAngleLoc(LAngleLoc);
2156 SpecTL.setRAngleLoc(RAngleLoc);
2157 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2158 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2159
2160 // Construct an elaborated type containing the nested-name-specifier (if any)
2161 // and keyword.
2162 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2163 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2164 ElabTL.setKeywordLoc(TagLoc);
2165 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2166 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2167 }
2168
BuildTemplateIdExpr(const CXXScopeSpec & SS,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo & TemplateArgs)2169 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2170 LookupResult &R,
2171 bool RequiresADL,
2172 const TemplateArgumentListInfo &TemplateArgs) {
2173 // FIXME: Can we do any checking at this point? I guess we could check the
2174 // template arguments that we have against the template name, if the template
2175 // name refers to a single template. That's not a terribly common case,
2176 // though.
2177 // foo<int> could identify a single function unambiguously
2178 // This approach does NOT work, since f<int>(1);
2179 // gets resolved prior to resorting to overload resolution
2180 // i.e., template<class T> void f(double);
2181 // vs template<class T, class U> void f(U);
2182
2183 // These should be filtered out by our callers.
2184 assert(!R.empty() && "empty lookup results when building templateid");
2185 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2186
2187 // We don't want lookup warnings at this point.
2188 R.suppressDiagnostics();
2189
2190 UnresolvedLookupExpr *ULE
2191 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2192 SS.getWithLocInContext(Context),
2193 R.getLookupNameInfo(),
2194 RequiresADL, TemplateArgs,
2195 R.begin(), R.end());
2196
2197 return Owned(ULE);
2198 }
2199
2200 // We actually only call this from template instantiation.
2201 ExprResult
BuildQualifiedTemplateIdExpr(CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo & TemplateArgs)2202 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2203 const DeclarationNameInfo &NameInfo,
2204 const TemplateArgumentListInfo &TemplateArgs) {
2205 DeclContext *DC;
2206 if (!(DC = computeDeclContext(SS, false)) ||
2207 DC->isDependentContext() ||
2208 RequireCompleteDeclContext(SS, DC))
2209 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
2210
2211 bool MemberOfUnknownSpecialization;
2212 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2213 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2214 MemberOfUnknownSpecialization);
2215
2216 if (R.isAmbiguous())
2217 return ExprError();
2218
2219 if (R.empty()) {
2220 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2221 << NameInfo.getName() << SS.getRange();
2222 return ExprError();
2223 }
2224
2225 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2226 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2227 << (NestedNameSpecifier*) SS.getScopeRep()
2228 << NameInfo.getName() << SS.getRange();
2229 Diag(Temp->getLocation(), diag::note_referenced_class_template);
2230 return ExprError();
2231 }
2232
2233 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
2234 }
2235
2236 /// \brief Form a dependent template name.
2237 ///
2238 /// This action forms a dependent template name given the template
2239 /// name and its (presumably dependent) scope specifier. For
2240 /// example, given "MetaFun::template apply", the scope specifier \p
2241 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2242 /// of the "template" keyword, and "apply" is the \p Name.
ActOnDependentTemplateName(Scope * S,SourceLocation TemplateKWLoc,CXXScopeSpec & SS,UnqualifiedId & Name,ParsedType ObjectType,bool EnteringContext,TemplateTy & Result)2243 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2244 SourceLocation TemplateKWLoc,
2245 CXXScopeSpec &SS,
2246 UnqualifiedId &Name,
2247 ParsedType ObjectType,
2248 bool EnteringContext,
2249 TemplateTy &Result) {
2250 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
2251 !getLangOptions().CPlusPlus0x)
2252 Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
2253 << FixItHint::CreateRemoval(TemplateKWLoc);
2254
2255 DeclContext *LookupCtx = 0;
2256 if (SS.isSet())
2257 LookupCtx = computeDeclContext(SS, EnteringContext);
2258 if (!LookupCtx && ObjectType)
2259 LookupCtx = computeDeclContext(ObjectType.get());
2260 if (LookupCtx) {
2261 // C++0x [temp.names]p5:
2262 // If a name prefixed by the keyword template is not the name of
2263 // a template, the program is ill-formed. [Note: the keyword
2264 // template may not be applied to non-template members of class
2265 // templates. -end note ] [ Note: as is the case with the
2266 // typename prefix, the template prefix is allowed in cases
2267 // where it is not strictly necessary; i.e., when the
2268 // nested-name-specifier or the expression on the left of the ->
2269 // or . is not dependent on a template-parameter, or the use
2270 // does not appear in the scope of a template. -end note]
2271 //
2272 // Note: C++03 was more strict here, because it banned the use of
2273 // the "template" keyword prior to a template-name that was not a
2274 // dependent name. C++ DR468 relaxed this requirement (the
2275 // "template" keyword is now permitted). We follow the C++0x
2276 // rules, even in C++03 mode with a warning, retroactively applying the DR.
2277 bool MemberOfUnknownSpecialization;
2278 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2279 ObjectType, EnteringContext, Result,
2280 MemberOfUnknownSpecialization);
2281 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2282 isa<CXXRecordDecl>(LookupCtx) &&
2283 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2284 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2285 // This is a dependent template. Handle it below.
2286 } else if (TNK == TNK_Non_template) {
2287 Diag(Name.getSourceRange().getBegin(),
2288 diag::err_template_kw_refers_to_non_template)
2289 << GetNameFromUnqualifiedId(Name).getName()
2290 << Name.getSourceRange()
2291 << TemplateKWLoc;
2292 return TNK_Non_template;
2293 } else {
2294 // We found something; return it.
2295 return TNK;
2296 }
2297 }
2298
2299 NestedNameSpecifier *Qualifier
2300 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2301
2302 switch (Name.getKind()) {
2303 case UnqualifiedId::IK_Identifier:
2304 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2305 Name.Identifier));
2306 return TNK_Dependent_template_name;
2307
2308 case UnqualifiedId::IK_OperatorFunctionId:
2309 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2310 Name.OperatorFunctionId.Operator));
2311 return TNK_Dependent_template_name;
2312
2313 case UnqualifiedId::IK_LiteralOperatorId:
2314 assert(false && "We don't support these; Parse shouldn't have allowed propagation");
2315
2316 default:
2317 break;
2318 }
2319
2320 Diag(Name.getSourceRange().getBegin(),
2321 diag::err_template_kw_refers_to_non_template)
2322 << GetNameFromUnqualifiedId(Name).getName()
2323 << Name.getSourceRange()
2324 << TemplateKWLoc;
2325 return TNK_Non_template;
2326 }
2327
CheckTemplateTypeArgument(TemplateTypeParmDecl * Param,const TemplateArgumentLoc & AL,llvm::SmallVectorImpl<TemplateArgument> & Converted)2328 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2329 const TemplateArgumentLoc &AL,
2330 llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2331 const TemplateArgument &Arg = AL.getArgument();
2332
2333 // Check template type parameter.
2334 switch(Arg.getKind()) {
2335 case TemplateArgument::Type:
2336 // C++ [temp.arg.type]p1:
2337 // A template-argument for a template-parameter which is a
2338 // type shall be a type-id.
2339 break;
2340 case TemplateArgument::Template: {
2341 // We have a template type parameter but the template argument
2342 // is a template without any arguments.
2343 SourceRange SR = AL.getSourceRange();
2344 TemplateName Name = Arg.getAsTemplate();
2345 Diag(SR.getBegin(), diag::err_template_missing_args)
2346 << Name << SR;
2347 if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2348 Diag(Decl->getLocation(), diag::note_template_decl_here);
2349
2350 return true;
2351 }
2352 default: {
2353 // We have a template type parameter but the template argument
2354 // is not a type.
2355 SourceRange SR = AL.getSourceRange();
2356 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2357 Diag(Param->getLocation(), diag::note_template_param_here);
2358
2359 return true;
2360 }
2361 }
2362
2363 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2364 return true;
2365
2366 // Add the converted template type argument.
2367 QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2368
2369 // Objective-C ARC:
2370 // If an explicitly-specified template argument type is a lifetime type
2371 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2372 if (getLangOptions().ObjCAutoRefCount &&
2373 ArgType->isObjCLifetimeType() &&
2374 !ArgType.getObjCLifetime()) {
2375 Qualifiers Qs;
2376 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2377 ArgType = Context.getQualifiedType(ArgType, Qs);
2378 }
2379
2380 Converted.push_back(TemplateArgument(ArgType));
2381 return false;
2382 }
2383
2384 /// \brief Substitute template arguments into the default template argument for
2385 /// the given template type parameter.
2386 ///
2387 /// \param SemaRef the semantic analysis object for which we are performing
2388 /// the substitution.
2389 ///
2390 /// \param Template the template that we are synthesizing template arguments
2391 /// for.
2392 ///
2393 /// \param TemplateLoc the location of the template name that started the
2394 /// template-id we are checking.
2395 ///
2396 /// \param RAngleLoc the location of the right angle bracket ('>') that
2397 /// terminates the template-id.
2398 ///
2399 /// \param Param the template template parameter whose default we are
2400 /// substituting into.
2401 ///
2402 /// \param Converted the list of template arguments provided for template
2403 /// parameters that precede \p Param in the template parameter list.
2404 /// \returns the substituted template argument, or NULL if an error occurred.
2405 static TypeSourceInfo *
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTypeParmDecl * Param,llvm::SmallVectorImpl<TemplateArgument> & Converted)2406 SubstDefaultTemplateArgument(Sema &SemaRef,
2407 TemplateDecl *Template,
2408 SourceLocation TemplateLoc,
2409 SourceLocation RAngleLoc,
2410 TemplateTypeParmDecl *Param,
2411 llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2412 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2413
2414 // If the argument type is dependent, instantiate it now based
2415 // on the previously-computed template arguments.
2416 if (ArgType->getType()->isDependentType()) {
2417 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2418 Converted.data(), Converted.size());
2419
2420 MultiLevelTemplateArgumentList AllTemplateArgs
2421 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2422
2423 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2424 Template, Converted.data(),
2425 Converted.size(),
2426 SourceRange(TemplateLoc, RAngleLoc));
2427
2428 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2429 Param->getDefaultArgumentLoc(),
2430 Param->getDeclName());
2431 }
2432
2433 return ArgType;
2434 }
2435
2436 /// \brief Substitute template arguments into the default template argument for
2437 /// the given non-type template parameter.
2438 ///
2439 /// \param SemaRef the semantic analysis object for which we are performing
2440 /// the substitution.
2441 ///
2442 /// \param Template the template that we are synthesizing template arguments
2443 /// for.
2444 ///
2445 /// \param TemplateLoc the location of the template name that started the
2446 /// template-id we are checking.
2447 ///
2448 /// \param RAngleLoc the location of the right angle bracket ('>') that
2449 /// terminates the template-id.
2450 ///
2451 /// \param Param the non-type template parameter whose default we are
2452 /// substituting into.
2453 ///
2454 /// \param Converted the list of template arguments provided for template
2455 /// parameters that precede \p Param in the template parameter list.
2456 ///
2457 /// \returns the substituted template argument, or NULL if an error occurred.
2458 static ExprResult
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,NonTypeTemplateParmDecl * Param,llvm::SmallVectorImpl<TemplateArgument> & Converted)2459 SubstDefaultTemplateArgument(Sema &SemaRef,
2460 TemplateDecl *Template,
2461 SourceLocation TemplateLoc,
2462 SourceLocation RAngleLoc,
2463 NonTypeTemplateParmDecl *Param,
2464 llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2465 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2466 Converted.data(), Converted.size());
2467
2468 MultiLevelTemplateArgumentList AllTemplateArgs
2469 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2470
2471 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2472 Template, Converted.data(),
2473 Converted.size(),
2474 SourceRange(TemplateLoc, RAngleLoc));
2475
2476 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2477 }
2478
2479 /// \brief Substitute template arguments into the default template argument for
2480 /// the given template template parameter.
2481 ///
2482 /// \param SemaRef the semantic analysis object for which we are performing
2483 /// the substitution.
2484 ///
2485 /// \param Template the template that we are synthesizing template arguments
2486 /// for.
2487 ///
2488 /// \param TemplateLoc the location of the template name that started the
2489 /// template-id we are checking.
2490 ///
2491 /// \param RAngleLoc the location of the right angle bracket ('>') that
2492 /// terminates the template-id.
2493 ///
2494 /// \param Param the template template parameter whose default we are
2495 /// substituting into.
2496 ///
2497 /// \param Converted the list of template arguments provided for template
2498 /// parameters that precede \p Param in the template parameter list.
2499 ///
2500 /// \param QualifierLoc Will be set to the nested-name-specifier (with
2501 /// source-location information) that precedes the template name.
2502 ///
2503 /// \returns the substituted template argument, or NULL if an error occurred.
2504 static TemplateName
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTemplateParmDecl * Param,llvm::SmallVectorImpl<TemplateArgument> & Converted,NestedNameSpecifierLoc & QualifierLoc)2505 SubstDefaultTemplateArgument(Sema &SemaRef,
2506 TemplateDecl *Template,
2507 SourceLocation TemplateLoc,
2508 SourceLocation RAngleLoc,
2509 TemplateTemplateParmDecl *Param,
2510 llvm::SmallVectorImpl<TemplateArgument> &Converted,
2511 NestedNameSpecifierLoc &QualifierLoc) {
2512 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2513 Converted.data(), Converted.size());
2514
2515 MultiLevelTemplateArgumentList AllTemplateArgs
2516 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2517
2518 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2519 Template, Converted.data(),
2520 Converted.size(),
2521 SourceRange(TemplateLoc, RAngleLoc));
2522
2523 // Substitute into the nested-name-specifier first,
2524 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2525 if (QualifierLoc) {
2526 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2527 AllTemplateArgs);
2528 if (!QualifierLoc)
2529 return TemplateName();
2530 }
2531
2532 return SemaRef.SubstTemplateName(QualifierLoc,
2533 Param->getDefaultArgument().getArgument().getAsTemplate(),
2534 Param->getDefaultArgument().getTemplateNameLoc(),
2535 AllTemplateArgs);
2536 }
2537
2538 /// \brief If the given template parameter has a default template
2539 /// argument, substitute into that default template argument and
2540 /// return the corresponding template argument.
2541 TemplateArgumentLoc
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,Decl * Param,llvm::SmallVectorImpl<TemplateArgument> & Converted)2542 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2543 SourceLocation TemplateLoc,
2544 SourceLocation RAngleLoc,
2545 Decl *Param,
2546 llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2547 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2548 if (!TypeParm->hasDefaultArgument())
2549 return TemplateArgumentLoc();
2550
2551 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2552 TemplateLoc,
2553 RAngleLoc,
2554 TypeParm,
2555 Converted);
2556 if (DI)
2557 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2558
2559 return TemplateArgumentLoc();
2560 }
2561
2562 if (NonTypeTemplateParmDecl *NonTypeParm
2563 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2564 if (!NonTypeParm->hasDefaultArgument())
2565 return TemplateArgumentLoc();
2566
2567 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2568 TemplateLoc,
2569 RAngleLoc,
2570 NonTypeParm,
2571 Converted);
2572 if (Arg.isInvalid())
2573 return TemplateArgumentLoc();
2574
2575 Expr *ArgE = Arg.takeAs<Expr>();
2576 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2577 }
2578
2579 TemplateTemplateParmDecl *TempTempParm
2580 = cast<TemplateTemplateParmDecl>(Param);
2581 if (!TempTempParm->hasDefaultArgument())
2582 return TemplateArgumentLoc();
2583
2584
2585 NestedNameSpecifierLoc QualifierLoc;
2586 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2587 TemplateLoc,
2588 RAngleLoc,
2589 TempTempParm,
2590 Converted,
2591 QualifierLoc);
2592 if (TName.isNull())
2593 return TemplateArgumentLoc();
2594
2595 return TemplateArgumentLoc(TemplateArgument(TName),
2596 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2597 TempTempParm->getDefaultArgument().getTemplateNameLoc());
2598 }
2599
2600 /// \brief Check that the given template argument corresponds to the given
2601 /// template parameter.
2602 ///
2603 /// \param Param The template parameter against which the argument will be
2604 /// checked.
2605 ///
2606 /// \param Arg The template argument.
2607 ///
2608 /// \param Template The template in which the template argument resides.
2609 ///
2610 /// \param TemplateLoc The location of the template name for the template
2611 /// whose argument list we're matching.
2612 ///
2613 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
2614 /// the template argument list.
2615 ///
2616 /// \param ArgumentPackIndex The index into the argument pack where this
2617 /// argument will be placed. Only valid if the parameter is a parameter pack.
2618 ///
2619 /// \param Converted The checked, converted argument will be added to the
2620 /// end of this small vector.
2621 ///
2622 /// \param CTAK Describes how we arrived at this particular template argument:
2623 /// explicitly written, deduced, etc.
2624 ///
2625 /// \returns true on error, false otherwise.
CheckTemplateArgument(NamedDecl * Param,const TemplateArgumentLoc & Arg,NamedDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,unsigned ArgumentPackIndex,llvm::SmallVectorImpl<TemplateArgument> & Converted,CheckTemplateArgumentKind CTAK)2626 bool Sema::CheckTemplateArgument(NamedDecl *Param,
2627 const TemplateArgumentLoc &Arg,
2628 NamedDecl *Template,
2629 SourceLocation TemplateLoc,
2630 SourceLocation RAngleLoc,
2631 unsigned ArgumentPackIndex,
2632 llvm::SmallVectorImpl<TemplateArgument> &Converted,
2633 CheckTemplateArgumentKind CTAK) {
2634 // Check template type parameters.
2635 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2636 return CheckTemplateTypeArgument(TTP, Arg, Converted);
2637
2638 // Check non-type template parameters.
2639 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2640 // Do substitution on the type of the non-type template parameter
2641 // with the template arguments we've seen thus far. But if the
2642 // template has a dependent context then we cannot substitute yet.
2643 QualType NTTPType = NTTP->getType();
2644 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2645 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2646
2647 if (NTTPType->isDependentType() &&
2648 !isa<TemplateTemplateParmDecl>(Template) &&
2649 !Template->getDeclContext()->isDependentContext()) {
2650 // Do substitution on the type of the non-type template parameter.
2651 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2652 NTTP, Converted.data(), Converted.size(),
2653 SourceRange(TemplateLoc, RAngleLoc));
2654
2655 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2656 Converted.data(), Converted.size());
2657 NTTPType = SubstType(NTTPType,
2658 MultiLevelTemplateArgumentList(TemplateArgs),
2659 NTTP->getLocation(),
2660 NTTP->getDeclName());
2661 // If that worked, check the non-type template parameter type
2662 // for validity.
2663 if (!NTTPType.isNull())
2664 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2665 NTTP->getLocation());
2666 if (NTTPType.isNull())
2667 return true;
2668 }
2669
2670 switch (Arg.getArgument().getKind()) {
2671 case TemplateArgument::Null:
2672 assert(false && "Should never see a NULL template argument here");
2673 return true;
2674
2675 case TemplateArgument::Expression: {
2676 TemplateArgument Result;
2677 ExprResult Res =
2678 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2679 Result, CTAK);
2680 if (Res.isInvalid())
2681 return true;
2682
2683 Converted.push_back(Result);
2684 break;
2685 }
2686
2687 case TemplateArgument::Declaration:
2688 case TemplateArgument::Integral:
2689 // We've already checked this template argument, so just copy
2690 // it to the list of converted arguments.
2691 Converted.push_back(Arg.getArgument());
2692 break;
2693
2694 case TemplateArgument::Template:
2695 case TemplateArgument::TemplateExpansion:
2696 // We were given a template template argument. It may not be ill-formed;
2697 // see below.
2698 if (DependentTemplateName *DTN
2699 = Arg.getArgument().getAsTemplateOrTemplatePattern()
2700 .getAsDependentTemplateName()) {
2701 // We have a template argument such as \c T::template X, which we
2702 // parsed as a template template argument. However, since we now
2703 // know that we need a non-type template argument, convert this
2704 // template name into an expression.
2705
2706 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2707 Arg.getTemplateNameLoc());
2708
2709 CXXScopeSpec SS;
2710 SS.Adopt(Arg.getTemplateQualifierLoc());
2711 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2712 SS.getWithLocInContext(Context),
2713 NameInfo));
2714
2715 // If we parsed the template argument as a pack expansion, create a
2716 // pack expansion expression.
2717 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2718 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2719 if (E.isInvalid())
2720 return true;
2721 }
2722
2723 TemplateArgument Result;
2724 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2725 if (E.isInvalid())
2726 return true;
2727
2728 Converted.push_back(Result);
2729 break;
2730 }
2731
2732 // We have a template argument that actually does refer to a class
2733 // template, alias template, or template template parameter, and
2734 // therefore cannot be a non-type template argument.
2735 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2736 << Arg.getSourceRange();
2737
2738 Diag(Param->getLocation(), diag::note_template_param_here);
2739 return true;
2740
2741 case TemplateArgument::Type: {
2742 // We have a non-type template parameter but the template
2743 // argument is a type.
2744
2745 // C++ [temp.arg]p2:
2746 // In a template-argument, an ambiguity between a type-id and
2747 // an expression is resolved to a type-id, regardless of the
2748 // form of the corresponding template-parameter.
2749 //
2750 // We warn specifically about this case, since it can be rather
2751 // confusing for users.
2752 QualType T = Arg.getArgument().getAsType();
2753 SourceRange SR = Arg.getSourceRange();
2754 if (T->isFunctionType())
2755 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2756 else
2757 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2758 Diag(Param->getLocation(), diag::note_template_param_here);
2759 return true;
2760 }
2761
2762 case TemplateArgument::Pack:
2763 llvm_unreachable("Caller must expand template argument packs");
2764 break;
2765 }
2766
2767 return false;
2768 }
2769
2770
2771 // Check template template parameters.
2772 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2773
2774 // Substitute into the template parameter list of the template
2775 // template parameter, since previously-supplied template arguments
2776 // may appear within the template template parameter.
2777 {
2778 // Set up a template instantiation context.
2779 LocalInstantiationScope Scope(*this);
2780 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2781 TempParm, Converted.data(), Converted.size(),
2782 SourceRange(TemplateLoc, RAngleLoc));
2783
2784 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2785 Converted.data(), Converted.size());
2786 TempParm = cast_or_null<TemplateTemplateParmDecl>(
2787 SubstDecl(TempParm, CurContext,
2788 MultiLevelTemplateArgumentList(TemplateArgs)));
2789 if (!TempParm)
2790 return true;
2791 }
2792
2793 switch (Arg.getArgument().getKind()) {
2794 case TemplateArgument::Null:
2795 assert(false && "Should never see a NULL template argument here");
2796 return true;
2797
2798 case TemplateArgument::Template:
2799 case TemplateArgument::TemplateExpansion:
2800 if (CheckTemplateArgument(TempParm, Arg))
2801 return true;
2802
2803 Converted.push_back(Arg.getArgument());
2804 break;
2805
2806 case TemplateArgument::Expression:
2807 case TemplateArgument::Type:
2808 // We have a template template parameter but the template
2809 // argument does not refer to a template.
2810 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2811 << getLangOptions().CPlusPlus0x;
2812 return true;
2813
2814 case TemplateArgument::Declaration:
2815 llvm_unreachable(
2816 "Declaration argument with template template parameter");
2817 break;
2818 case TemplateArgument::Integral:
2819 llvm_unreachable(
2820 "Integral argument with template template parameter");
2821 break;
2822
2823 case TemplateArgument::Pack:
2824 llvm_unreachable("Caller must expand template argument packs");
2825 break;
2826 }
2827
2828 return false;
2829 }
2830
2831 /// \brief Check that the given template argument list is well-formed
2832 /// for specializing the given template.
CheckTemplateArgumentList(TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs,bool PartialTemplateArgs,llvm::SmallVectorImpl<TemplateArgument> & Converted)2833 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2834 SourceLocation TemplateLoc,
2835 TemplateArgumentListInfo &TemplateArgs,
2836 bool PartialTemplateArgs,
2837 llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2838 TemplateParameterList *Params = Template->getTemplateParameters();
2839 unsigned NumParams = Params->size();
2840 unsigned NumArgs = TemplateArgs.size();
2841 bool Invalid = false;
2842
2843 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2844
2845 bool HasParameterPack =
2846 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2847
2848 if ((NumArgs > NumParams && !HasParameterPack) ||
2849 (NumArgs < Params->getMinRequiredArguments() &&
2850 !PartialTemplateArgs)) {
2851 // FIXME: point at either the first arg beyond what we can handle,
2852 // or the '>', depending on whether we have too many or too few
2853 // arguments.
2854 SourceRange Range;
2855 if (NumArgs > NumParams)
2856 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2857 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2858 << (NumArgs > NumParams)
2859 << (isa<ClassTemplateDecl>(Template)? 0 :
2860 isa<FunctionTemplateDecl>(Template)? 1 :
2861 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2862 << Template << Range;
2863 Diag(Template->getLocation(), diag::note_template_decl_here)
2864 << Params->getSourceRange();
2865 Invalid = true;
2866 }
2867
2868 // C++ [temp.arg]p1:
2869 // [...] The type and form of each template-argument specified in
2870 // a template-id shall match the type and form specified for the
2871 // corresponding parameter declared by the template in its
2872 // template-parameter-list.
2873 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
2874 llvm::SmallVector<TemplateArgument, 2> ArgumentPack;
2875 TemplateParameterList::iterator Param = Params->begin(),
2876 ParamEnd = Params->end();
2877 unsigned ArgIdx = 0;
2878 LocalInstantiationScope InstScope(*this, true);
2879 while (Param != ParamEnd) {
2880 if (ArgIdx < NumArgs) {
2881 // If we have an expanded parameter pack, make sure we don't have too
2882 // many arguments.
2883 if (NonTypeTemplateParmDecl *NTTP
2884 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2885 if (NTTP->isExpandedParameterPack() &&
2886 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2887 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2888 << true
2889 << (isa<ClassTemplateDecl>(Template)? 0 :
2890 isa<FunctionTemplateDecl>(Template)? 1 :
2891 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2892 << Template;
2893 Diag(Template->getLocation(), diag::note_template_decl_here)
2894 << Params->getSourceRange();
2895 return true;
2896 }
2897 }
2898
2899 // Check the template argument we were given.
2900 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2901 TemplateLoc, RAngleLoc,
2902 ArgumentPack.size(), Converted))
2903 return true;
2904
2905 if ((*Param)->isTemplateParameterPack()) {
2906 // The template parameter was a template parameter pack, so take the
2907 // deduced argument and place it on the argument pack. Note that we
2908 // stay on the same template parameter so that we can deduce more
2909 // arguments.
2910 ArgumentPack.push_back(Converted.back());
2911 Converted.pop_back();
2912 } else {
2913 // Move to the next template parameter.
2914 ++Param;
2915 }
2916 ++ArgIdx;
2917 continue;
2918 }
2919
2920 // If we're checking a partial template argument list, we're done.
2921 if (PartialTemplateArgs) {
2922 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
2923 Converted.push_back(TemplateArgument::CreatePackCopy(Context,
2924 ArgumentPack.data(),
2925 ArgumentPack.size()));
2926
2927 return Invalid;
2928 }
2929
2930 // If we have a template parameter pack with no more corresponding
2931 // arguments, just break out now and we'll fill in the argument pack below.
2932 if ((*Param)->isTemplateParameterPack())
2933 break;
2934
2935 // We have a default template argument that we will use.
2936 TemplateArgumentLoc Arg;
2937
2938 // Retrieve the default template argument from the template
2939 // parameter. For each kind of template parameter, we substitute the
2940 // template arguments provided thus far and any "outer" template arguments
2941 // (when the template parameter was part of a nested template) into
2942 // the default argument.
2943 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2944 if (!TTP->hasDefaultArgument()) {
2945 assert(Invalid && "Missing default argument");
2946 break;
2947 }
2948
2949 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2950 Template,
2951 TemplateLoc,
2952 RAngleLoc,
2953 TTP,
2954 Converted);
2955 if (!ArgType)
2956 return true;
2957
2958 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2959 ArgType);
2960 } else if (NonTypeTemplateParmDecl *NTTP
2961 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2962 if (!NTTP->hasDefaultArgument()) {
2963 assert(Invalid && "Missing default argument");
2964 break;
2965 }
2966
2967 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2968 TemplateLoc,
2969 RAngleLoc,
2970 NTTP,
2971 Converted);
2972 if (E.isInvalid())
2973 return true;
2974
2975 Expr *Ex = E.takeAs<Expr>();
2976 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2977 } else {
2978 TemplateTemplateParmDecl *TempParm
2979 = cast<TemplateTemplateParmDecl>(*Param);
2980
2981 if (!TempParm->hasDefaultArgument()) {
2982 assert(Invalid && "Missing default argument");
2983 break;
2984 }
2985
2986 NestedNameSpecifierLoc QualifierLoc;
2987 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2988 TemplateLoc,
2989 RAngleLoc,
2990 TempParm,
2991 Converted,
2992 QualifierLoc);
2993 if (Name.isNull())
2994 return true;
2995
2996 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
2997 TempParm->getDefaultArgument().getTemplateNameLoc());
2998 }
2999
3000 // Introduce an instantiation record that describes where we are using
3001 // the default template argument.
3002 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
3003 Converted.data(), Converted.size(),
3004 SourceRange(TemplateLoc, RAngleLoc));
3005
3006 // Check the default template argument.
3007 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3008 RAngleLoc, 0, Converted))
3009 return true;
3010
3011 // Core issue 150 (assumed resolution): if this is a template template
3012 // parameter, keep track of the default template arguments from the
3013 // template definition.
3014 if (isTemplateTemplateParameter)
3015 TemplateArgs.addArgument(Arg);
3016
3017 // Move to the next template parameter and argument.
3018 ++Param;
3019 ++ArgIdx;
3020 }
3021
3022 // Form argument packs for each of the parameter packs remaining.
3023 while (Param != ParamEnd) {
3024 // If we're checking a partial list of template arguments, don't fill
3025 // in arguments for non-template parameter packs.
3026
3027 if ((*Param)->isTemplateParameterPack()) {
3028 if (ArgumentPack.empty())
3029 Converted.push_back(TemplateArgument(0, 0));
3030 else {
3031 Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3032 ArgumentPack.data(),
3033 ArgumentPack.size()));
3034 ArgumentPack.clear();
3035 }
3036 }
3037
3038 ++Param;
3039 }
3040
3041 return Invalid;
3042 }
3043
3044 namespace {
3045 class UnnamedLocalNoLinkageFinder
3046 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3047 {
3048 Sema &S;
3049 SourceRange SR;
3050
3051 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3052
3053 public:
UnnamedLocalNoLinkageFinder(Sema & S,SourceRange SR)3054 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3055
Visit(QualType T)3056 bool Visit(QualType T) {
3057 return inherited::Visit(T.getTypePtr());
3058 }
3059
3060 #define TYPE(Class, Parent) \
3061 bool Visit##Class##Type(const Class##Type *);
3062 #define ABSTRACT_TYPE(Class, Parent) \
3063 bool Visit##Class##Type(const Class##Type *) { return false; }
3064 #define NON_CANONICAL_TYPE(Class, Parent) \
3065 bool Visit##Class##Type(const Class##Type *) { return false; }
3066 #include "clang/AST/TypeNodes.def"
3067
3068 bool VisitTagDecl(const TagDecl *Tag);
3069 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3070 };
3071 }
3072
VisitBuiltinType(const BuiltinType *)3073 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3074 return false;
3075 }
3076
VisitComplexType(const ComplexType * T)3077 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3078 return Visit(T->getElementType());
3079 }
3080
VisitPointerType(const PointerType * T)3081 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3082 return Visit(T->getPointeeType());
3083 }
3084
VisitBlockPointerType(const BlockPointerType * T)3085 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3086 const BlockPointerType* T) {
3087 return Visit(T->getPointeeType());
3088 }
3089
VisitLValueReferenceType(const LValueReferenceType * T)3090 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3091 const LValueReferenceType* T) {
3092 return Visit(T->getPointeeType());
3093 }
3094
VisitRValueReferenceType(const RValueReferenceType * T)3095 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3096 const RValueReferenceType* T) {
3097 return Visit(T->getPointeeType());
3098 }
3099
VisitMemberPointerType(const MemberPointerType * T)3100 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3101 const MemberPointerType* T) {
3102 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3103 }
3104
VisitConstantArrayType(const ConstantArrayType * T)3105 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3106 const ConstantArrayType* T) {
3107 return Visit(T->getElementType());
3108 }
3109
VisitIncompleteArrayType(const IncompleteArrayType * T)3110 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3111 const IncompleteArrayType* T) {
3112 return Visit(T->getElementType());
3113 }
3114
VisitVariableArrayType(const VariableArrayType * T)3115 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3116 const VariableArrayType* T) {
3117 return Visit(T->getElementType());
3118 }
3119
VisitDependentSizedArrayType(const DependentSizedArrayType * T)3120 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3121 const DependentSizedArrayType* T) {
3122 return Visit(T->getElementType());
3123 }
3124
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)3125 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3126 const DependentSizedExtVectorType* T) {
3127 return Visit(T->getElementType());
3128 }
3129
VisitVectorType(const VectorType * T)3130 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3131 return Visit(T->getElementType());
3132 }
3133
VisitExtVectorType(const ExtVectorType * T)3134 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3135 return Visit(T->getElementType());
3136 }
3137
VisitFunctionProtoType(const FunctionProtoType * T)3138 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3139 const FunctionProtoType* T) {
3140 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3141 AEnd = T->arg_type_end();
3142 A != AEnd; ++A) {
3143 if (Visit(*A))
3144 return true;
3145 }
3146
3147 return Visit(T->getResultType());
3148 }
3149
VisitFunctionNoProtoType(const FunctionNoProtoType * T)3150 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3151 const FunctionNoProtoType* T) {
3152 return Visit(T->getResultType());
3153 }
3154
VisitUnresolvedUsingType(const UnresolvedUsingType *)3155 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3156 const UnresolvedUsingType*) {
3157 return false;
3158 }
3159
VisitTypeOfExprType(const TypeOfExprType *)3160 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3161 return false;
3162 }
3163
VisitTypeOfType(const TypeOfType * T)3164 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3165 return Visit(T->getUnderlyingType());
3166 }
3167
VisitDecltypeType(const DecltypeType *)3168 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3169 return false;
3170 }
3171
VisitUnaryTransformType(const UnaryTransformType *)3172 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3173 const UnaryTransformType*) {
3174 return false;
3175 }
3176
VisitAutoType(const AutoType * T)3177 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3178 return Visit(T->getDeducedType());
3179 }
3180
VisitRecordType(const RecordType * T)3181 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3182 return VisitTagDecl(T->getDecl());
3183 }
3184
VisitEnumType(const EnumType * T)3185 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3186 return VisitTagDecl(T->getDecl());
3187 }
3188
VisitTemplateTypeParmType(const TemplateTypeParmType *)3189 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3190 const TemplateTypeParmType*) {
3191 return false;
3192 }
3193
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *)3194 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3195 const SubstTemplateTypeParmPackType *) {
3196 return false;
3197 }
3198
VisitTemplateSpecializationType(const TemplateSpecializationType *)3199 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3200 const TemplateSpecializationType*) {
3201 return false;
3202 }
3203
VisitInjectedClassNameType(const InjectedClassNameType * T)3204 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3205 const InjectedClassNameType* T) {
3206 return VisitTagDecl(T->getDecl());
3207 }
3208
VisitDependentNameType(const DependentNameType * T)3209 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3210 const DependentNameType* T) {
3211 return VisitNestedNameSpecifier(T->getQualifier());
3212 }
3213
VisitDependentTemplateSpecializationType(const DependentTemplateSpecializationType * T)3214 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3215 const DependentTemplateSpecializationType* T) {
3216 return VisitNestedNameSpecifier(T->getQualifier());
3217 }
3218
VisitPackExpansionType(const PackExpansionType * T)3219 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3220 const PackExpansionType* T) {
3221 return Visit(T->getPattern());
3222 }
3223
VisitObjCObjectType(const ObjCObjectType *)3224 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3225 return false;
3226 }
3227
VisitObjCInterfaceType(const ObjCInterfaceType *)3228 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3229 const ObjCInterfaceType *) {
3230 return false;
3231 }
3232
VisitObjCObjectPointerType(const ObjCObjectPointerType *)3233 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3234 const ObjCObjectPointerType *) {
3235 return false;
3236 }
3237
VisitTagDecl(const TagDecl * Tag)3238 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3239 if (Tag->getDeclContext()->isFunctionOrMethod()) {
3240 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
3241 << S.Context.getTypeDeclType(Tag) << SR;
3242 return true;
3243 }
3244
3245 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3246 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
3247 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3248 return true;
3249 }
3250
3251 return false;
3252 }
3253
VisitNestedNameSpecifier(NestedNameSpecifier * NNS)3254 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3255 NestedNameSpecifier *NNS) {
3256 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3257 return true;
3258
3259 switch (NNS->getKind()) {
3260 case NestedNameSpecifier::Identifier:
3261 case NestedNameSpecifier::Namespace:
3262 case NestedNameSpecifier::NamespaceAlias:
3263 case NestedNameSpecifier::Global:
3264 return false;
3265
3266 case NestedNameSpecifier::TypeSpec:
3267 case NestedNameSpecifier::TypeSpecWithTemplate:
3268 return Visit(QualType(NNS->getAsType(), 0));
3269 }
3270 return false;
3271 }
3272
3273
3274 /// \brief Check a template argument against its corresponding
3275 /// template type parameter.
3276 ///
3277 /// This routine implements the semantics of C++ [temp.arg.type]. It
3278 /// returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTypeParmDecl * Param,TypeSourceInfo * ArgInfo)3279 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3280 TypeSourceInfo *ArgInfo) {
3281 assert(ArgInfo && "invalid TypeSourceInfo");
3282 QualType Arg = ArgInfo->getType();
3283 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3284
3285 if (Arg->isVariablyModifiedType()) {
3286 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3287 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3288 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3289 }
3290
3291 // C++03 [temp.arg.type]p2:
3292 // A local type, a type with no linkage, an unnamed type or a type
3293 // compounded from any of these types shall not be used as a
3294 // template-argument for a template type-parameter.
3295 //
3296 // C++0x allows these, and even in C++03 we allow them as an extension with
3297 // a warning.
3298 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
3299 UnnamedLocalNoLinkageFinder Finder(*this, SR);
3300 (void)Finder.Visit(Context.getCanonicalType(Arg));
3301 }
3302
3303 return false;
3304 }
3305
3306 /// \brief Checks whether the given template argument is the address
3307 /// of an object or function according to C++ [temp.arg.nontype]p1.
3308 static bool
CheckTemplateArgumentAddressOfObjectOrFunction(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,TemplateArgument & Converted)3309 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3310 NonTypeTemplateParmDecl *Param,
3311 QualType ParamType,
3312 Expr *ArgIn,
3313 TemplateArgument &Converted) {
3314 bool Invalid = false;
3315 Expr *Arg = ArgIn;
3316 QualType ArgType = Arg->getType();
3317
3318 // See through any implicit casts we added to fix the type.
3319 Arg = Arg->IgnoreImpCasts();
3320
3321 // C++ [temp.arg.nontype]p1:
3322 //
3323 // A template-argument for a non-type, non-template
3324 // template-parameter shall be one of: [...]
3325 //
3326 // -- the address of an object or function with external
3327 // linkage, including function templates and function
3328 // template-ids but excluding non-static class members,
3329 // expressed as & id-expression where the & is optional if
3330 // the name refers to a function or array, or if the
3331 // corresponding template-parameter is a reference; or
3332
3333 // In C++98/03 mode, give an extension warning on any extra parentheses.
3334 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3335 bool ExtraParens = false;
3336 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3337 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
3338 S.Diag(Arg->getSourceRange().getBegin(),
3339 diag::ext_template_arg_extra_parens)
3340 << Arg->getSourceRange();
3341 ExtraParens = true;
3342 }
3343
3344 Arg = Parens->getSubExpr();
3345 }
3346
3347 while (SubstNonTypeTemplateParmExpr *subst =
3348 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3349 Arg = subst->getReplacement()->IgnoreImpCasts();
3350
3351 bool AddressTaken = false;
3352 SourceLocation AddrOpLoc;
3353 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3354 if (UnOp->getOpcode() == UO_AddrOf) {
3355 Arg = UnOp->getSubExpr();
3356 AddressTaken = true;
3357 AddrOpLoc = UnOp->getOperatorLoc();
3358 }
3359 }
3360
3361 if (S.getLangOptions().Microsoft && isa<CXXUuidofExpr>(Arg)) {
3362 Converted = TemplateArgument(ArgIn);
3363 return false;
3364 }
3365
3366 while (SubstNonTypeTemplateParmExpr *subst =
3367 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3368 Arg = subst->getReplacement()->IgnoreImpCasts();
3369
3370 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
3371 if (!DRE) {
3372 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3373 << Arg->getSourceRange();
3374 S.Diag(Param->getLocation(), diag::note_template_param_here);
3375 return true;
3376 }
3377
3378 // Stop checking the precise nature of the argument if it is value dependent,
3379 // it should be checked when instantiated.
3380 if (Arg->isValueDependent()) {
3381 Converted = TemplateArgument(ArgIn);
3382 return false;
3383 }
3384
3385 if (!isa<ValueDecl>(DRE->getDecl())) {
3386 S.Diag(Arg->getSourceRange().getBegin(),
3387 diag::err_template_arg_not_object_or_func_form)
3388 << Arg->getSourceRange();
3389 S.Diag(Param->getLocation(), diag::note_template_param_here);
3390 return true;
3391 }
3392
3393 NamedDecl *Entity = 0;
3394
3395 // Cannot refer to non-static data members
3396 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
3397 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
3398 << Field << Arg->getSourceRange();
3399 S.Diag(Param->getLocation(), diag::note_template_param_here);
3400 return true;
3401 }
3402
3403 // Cannot refer to non-static member functions
3404 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
3405 if (!Method->isStatic()) {
3406 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
3407 << Method << Arg->getSourceRange();
3408 S.Diag(Param->getLocation(), diag::note_template_param_here);
3409 return true;
3410 }
3411
3412 // Functions must have external linkage.
3413 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3414 if (!isExternalLinkage(Func->getLinkage())) {
3415 S.Diag(Arg->getSourceRange().getBegin(),
3416 diag::err_template_arg_function_not_extern)
3417 << Func << Arg->getSourceRange();
3418 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
3419 << true;
3420 return true;
3421 }
3422
3423 // Okay: we've named a function with external linkage.
3424 Entity = Func;
3425
3426 // If the template parameter has pointer type, the function decays.
3427 if (ParamType->isPointerType() && !AddressTaken)
3428 ArgType = S.Context.getPointerType(Func->getType());
3429 else if (AddressTaken && ParamType->isReferenceType()) {
3430 // If we originally had an address-of operator, but the
3431 // parameter has reference type, complain and (if things look
3432 // like they will work) drop the address-of operator.
3433 if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3434 ParamType.getNonReferenceType())) {
3435 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3436 << ParamType;
3437 S.Diag(Param->getLocation(), diag::note_template_param_here);
3438 return true;
3439 }
3440
3441 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3442 << ParamType
3443 << FixItHint::CreateRemoval(AddrOpLoc);
3444 S.Diag(Param->getLocation(), diag::note_template_param_here);
3445
3446 ArgType = Func->getType();
3447 }
3448 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3449 if (!isExternalLinkage(Var->getLinkage())) {
3450 S.Diag(Arg->getSourceRange().getBegin(),
3451 diag::err_template_arg_object_not_extern)
3452 << Var << Arg->getSourceRange();
3453 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
3454 << true;
3455 return true;
3456 }
3457
3458 // A value of reference type is not an object.
3459 if (Var->getType()->isReferenceType()) {
3460 S.Diag(Arg->getSourceRange().getBegin(),
3461 diag::err_template_arg_reference_var)
3462 << Var->getType() << Arg->getSourceRange();
3463 S.Diag(Param->getLocation(), diag::note_template_param_here);
3464 return true;
3465 }
3466
3467 // Okay: we've named an object with external linkage
3468 Entity = Var;
3469
3470 // If the template parameter has pointer type, we must have taken
3471 // the address of this object.
3472 if (ParamType->isReferenceType()) {
3473 if (AddressTaken) {
3474 // If we originally had an address-of operator, but the
3475 // parameter has reference type, complain and (if things look
3476 // like they will work) drop the address-of operator.
3477 if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3478 ParamType.getNonReferenceType())) {
3479 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3480 << ParamType;
3481 S.Diag(Param->getLocation(), diag::note_template_param_here);
3482 return true;
3483 }
3484
3485 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3486 << ParamType
3487 << FixItHint::CreateRemoval(AddrOpLoc);
3488 S.Diag(Param->getLocation(), diag::note_template_param_here);
3489
3490 ArgType = Var->getType();
3491 }
3492 } else if (!AddressTaken && ParamType->isPointerType()) {
3493 if (Var->getType()->isArrayType()) {
3494 // Array-to-pointer decay.
3495 ArgType = S.Context.getArrayDecayedType(Var->getType());
3496 } else {
3497 // If the template parameter has pointer type but the address of
3498 // this object was not taken, complain and (possibly) recover by
3499 // taking the address of the entity.
3500 ArgType = S.Context.getPointerType(Var->getType());
3501 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3502 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3503 << ParamType;
3504 S.Diag(Param->getLocation(), diag::note_template_param_here);
3505 return true;
3506 }
3507
3508 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3509 << ParamType
3510 << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3511
3512 S.Diag(Param->getLocation(), diag::note_template_param_here);
3513 }
3514 }
3515 } else {
3516 // We found something else, but we don't know specifically what it is.
3517 S.Diag(Arg->getSourceRange().getBegin(),
3518 diag::err_template_arg_not_object_or_func)
3519 << Arg->getSourceRange();
3520 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3521 return true;
3522 }
3523
3524 bool ObjCLifetimeConversion;
3525 if (ParamType->isPointerType() &&
3526 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3527 S.IsQualificationConversion(ArgType, ParamType, false,
3528 ObjCLifetimeConversion)) {
3529 // For pointer-to-object types, qualification conversions are
3530 // permitted.
3531 } else {
3532 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3533 if (!ParamRef->getPointeeType()->isFunctionType()) {
3534 // C++ [temp.arg.nontype]p5b3:
3535 // For a non-type template-parameter of type reference to
3536 // object, no conversions apply. The type referred to by the
3537 // reference may be more cv-qualified than the (otherwise
3538 // identical) type of the template- argument. The
3539 // template-parameter is bound directly to the
3540 // template-argument, which shall be an lvalue.
3541
3542 // FIXME: Other qualifiers?
3543 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3544 unsigned ArgQuals = ArgType.getCVRQualifiers();
3545
3546 if ((ParamQuals | ArgQuals) != ParamQuals) {
3547 S.Diag(Arg->getSourceRange().getBegin(),
3548 diag::err_template_arg_ref_bind_ignores_quals)
3549 << ParamType << Arg->getType()
3550 << Arg->getSourceRange();
3551 S.Diag(Param->getLocation(), diag::note_template_param_here);
3552 return true;
3553 }
3554 }
3555 }
3556
3557 // At this point, the template argument refers to an object or
3558 // function with external linkage. We now need to check whether the
3559 // argument and parameter types are compatible.
3560 if (!S.Context.hasSameUnqualifiedType(ArgType,
3561 ParamType.getNonReferenceType())) {
3562 // We can't perform this conversion or binding.
3563 if (ParamType->isReferenceType())
3564 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3565 << ParamType << ArgIn->getType() << Arg->getSourceRange();
3566 else
3567 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
3568 << ArgIn->getType() << ParamType << Arg->getSourceRange();
3569 S.Diag(Param->getLocation(), diag::note_template_param_here);
3570 return true;
3571 }
3572 }
3573
3574 // Create the template argument.
3575 Converted = TemplateArgument(Entity->getCanonicalDecl());
3576 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3577 return false;
3578 }
3579
3580 /// \brief Checks whether the given template argument is a pointer to
3581 /// member constant according to C++ [temp.arg.nontype]p1.
CheckTemplateArgumentPointerToMember(Expr * Arg,TemplateArgument & Converted)3582 bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3583 TemplateArgument &Converted) {
3584 bool Invalid = false;
3585
3586 // See through any implicit casts we added to fix the type.
3587 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3588 Arg = Cast->getSubExpr();
3589
3590 // C++ [temp.arg.nontype]p1:
3591 //
3592 // A template-argument for a non-type, non-template
3593 // template-parameter shall be one of: [...]
3594 //
3595 // -- a pointer to member expressed as described in 5.3.1.
3596 DeclRefExpr *DRE = 0;
3597
3598 // In C++98/03 mode, give an extension warning on any extra parentheses.
3599 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3600 bool ExtraParens = false;
3601 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3602 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
3603 Diag(Arg->getSourceRange().getBegin(),
3604 diag::ext_template_arg_extra_parens)
3605 << Arg->getSourceRange();
3606 ExtraParens = true;
3607 }
3608
3609 Arg = Parens->getSubExpr();
3610 }
3611
3612 while (SubstNonTypeTemplateParmExpr *subst =
3613 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3614 Arg = subst->getReplacement()->IgnoreImpCasts();
3615
3616 // A pointer-to-member constant written &Class::member.
3617 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3618 if (UnOp->getOpcode() == UO_AddrOf) {
3619 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3620 if (DRE && !DRE->getQualifier())
3621 DRE = 0;
3622 }
3623 }
3624 // A constant of pointer-to-member type.
3625 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3626 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3627 if (VD->getType()->isMemberPointerType()) {
3628 if (isa<NonTypeTemplateParmDecl>(VD) ||
3629 (isa<VarDecl>(VD) &&
3630 Context.getCanonicalType(VD->getType()).isConstQualified())) {
3631 if (Arg->isTypeDependent() || Arg->isValueDependent())
3632 Converted = TemplateArgument(Arg);
3633 else
3634 Converted = TemplateArgument(VD->getCanonicalDecl());
3635 return Invalid;
3636 }
3637 }
3638 }
3639
3640 DRE = 0;
3641 }
3642
3643 if (!DRE)
3644 return Diag(Arg->getSourceRange().getBegin(),
3645 diag::err_template_arg_not_pointer_to_member_form)
3646 << Arg->getSourceRange();
3647
3648 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3649 assert((isa<FieldDecl>(DRE->getDecl()) ||
3650 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3651 "Only non-static member pointers can make it here");
3652
3653 // Okay: this is the address of a non-static member, and therefore
3654 // a member pointer constant.
3655 if (Arg->isTypeDependent() || Arg->isValueDependent())
3656 Converted = TemplateArgument(Arg);
3657 else
3658 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3659 return Invalid;
3660 }
3661
3662 // We found something else, but we don't know specifically what it is.
3663 Diag(Arg->getSourceRange().getBegin(),
3664 diag::err_template_arg_not_pointer_to_member_form)
3665 << Arg->getSourceRange();
3666 Diag(DRE->getDecl()->getLocation(),
3667 diag::note_template_arg_refers_here);
3668 return true;
3669 }
3670
3671 /// \brief Check a template argument against its corresponding
3672 /// non-type template parameter.
3673 ///
3674 /// This routine implements the semantics of C++ [temp.arg.nontype].
3675 /// If an error occurred, it returns ExprError(); otherwise, it
3676 /// returns the converted template argument. \p
3677 /// InstantiatedParamType is the type of the non-type template
3678 /// parameter after it has been instantiated.
CheckTemplateArgument(NonTypeTemplateParmDecl * Param,QualType InstantiatedParamType,Expr * Arg,TemplateArgument & Converted,CheckTemplateArgumentKind CTAK)3679 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3680 QualType InstantiatedParamType, Expr *Arg,
3681 TemplateArgument &Converted,
3682 CheckTemplateArgumentKind CTAK) {
3683 SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3684
3685 // If either the parameter has a dependent type or the argument is
3686 // type-dependent, there's nothing we can check now.
3687 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3688 // FIXME: Produce a cloned, canonical expression?
3689 Converted = TemplateArgument(Arg);
3690 return Owned(Arg);
3691 }
3692
3693 // C++ [temp.arg.nontype]p5:
3694 // The following conversions are performed on each expression used
3695 // as a non-type template-argument. If a non-type
3696 // template-argument cannot be converted to the type of the
3697 // corresponding template-parameter then the program is
3698 // ill-formed.
3699 //
3700 // -- for a non-type template-parameter of integral or
3701 // enumeration type, integral promotions (4.5) and integral
3702 // conversions (4.7) are applied.
3703 QualType ParamType = InstantiatedParamType;
3704 QualType ArgType = Arg->getType();
3705 if (ParamType->isIntegralOrEnumerationType()) {
3706 // C++ [temp.arg.nontype]p1:
3707 // A template-argument for a non-type, non-template
3708 // template-parameter shall be one of:
3709 //
3710 // -- an integral constant-expression of integral or enumeration
3711 // type; or
3712 // -- the name of a non-type template-parameter; or
3713 SourceLocation NonConstantLoc;
3714 llvm::APSInt Value;
3715 if (!ArgType->isIntegralOrEnumerationType()) {
3716 Diag(Arg->getSourceRange().getBegin(),
3717 diag::err_template_arg_not_integral_or_enumeral)
3718 << ArgType << Arg->getSourceRange();
3719 Diag(Param->getLocation(), diag::note_template_param_here);
3720 return ExprError();
3721 } else if (!Arg->isValueDependent() &&
3722 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3723 Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3724 << ArgType << Arg->getSourceRange();
3725 return ExprError();
3726 }
3727
3728 // From here on out, all we care about are the unqualified forms
3729 // of the parameter and argument types.
3730 ParamType = ParamType.getUnqualifiedType();
3731 ArgType = ArgType.getUnqualifiedType();
3732
3733 // Try to convert the argument to the parameter's type.
3734 if (Context.hasSameType(ParamType, ArgType)) {
3735 // Okay: no conversion necessary
3736 } else if (CTAK == CTAK_Deduced) {
3737 // C++ [temp.deduct.type]p17:
3738 // If, in the declaration of a function template with a non-type
3739 // template-parameter, the non-type template- parameter is used
3740 // in an expression in the function parameter-list and, if the
3741 // corresponding template-argument is deduced, the
3742 // template-argument type shall match the type of the
3743 // template-parameter exactly, except that a template-argument
3744 // deduced from an array bound may be of any integral type.
3745 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3746 << ArgType << ParamType;
3747 Diag(Param->getLocation(), diag::note_template_param_here);
3748 return ExprError();
3749 } else if (ParamType->isBooleanType()) {
3750 // This is an integral-to-boolean conversion.
3751 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
3752 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3753 !ParamType->isEnumeralType()) {
3754 // This is an integral promotion or conversion.
3755 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
3756 } else {
3757 // We can't perform this conversion.
3758 Diag(Arg->getSourceRange().getBegin(),
3759 diag::err_template_arg_not_convertible)
3760 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3761 Diag(Param->getLocation(), diag::note_template_param_here);
3762 return ExprError();
3763 }
3764
3765 // Add the value of this argument to the list of converted
3766 // arguments. We use the bitwidth and signedness of the template
3767 // parameter.
3768 if (Arg->isValueDependent()) {
3769 // The argument is value-dependent. Create a new
3770 // TemplateArgument with the converted expression.
3771 Converted = TemplateArgument(Arg);
3772 return Owned(Arg);
3773 }
3774
3775 QualType IntegerType = Context.getCanonicalType(ParamType);
3776 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3777 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3778
3779 if (ParamType->isBooleanType()) {
3780 // Value must be zero or one.
3781 Value = Value != 0;
3782 unsigned AllowedBits = Context.getTypeSize(IntegerType);
3783 if (Value.getBitWidth() != AllowedBits)
3784 Value = Value.extOrTrunc(AllowedBits);
3785 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3786 } else {
3787 llvm::APSInt OldValue = Value;
3788
3789 // Coerce the template argument's value to the value it will have
3790 // based on the template parameter's type.
3791 unsigned AllowedBits = Context.getTypeSize(IntegerType);
3792 if (Value.getBitWidth() != AllowedBits)
3793 Value = Value.extOrTrunc(AllowedBits);
3794 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3795
3796 // Complain if an unsigned parameter received a negative value.
3797 if (IntegerType->isUnsignedIntegerOrEnumerationType()
3798 && (OldValue.isSigned() && OldValue.isNegative())) {
3799 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3800 << OldValue.toString(10) << Value.toString(10) << Param->getType()
3801 << Arg->getSourceRange();
3802 Diag(Param->getLocation(), diag::note_template_param_here);
3803 }
3804
3805 // Complain if we overflowed the template parameter's type.
3806 unsigned RequiredBits;
3807 if (IntegerType->isUnsignedIntegerOrEnumerationType())
3808 RequiredBits = OldValue.getActiveBits();
3809 else if (OldValue.isUnsigned())
3810 RequiredBits = OldValue.getActiveBits() + 1;
3811 else
3812 RequiredBits = OldValue.getMinSignedBits();
3813 if (RequiredBits > AllowedBits) {
3814 Diag(Arg->getSourceRange().getBegin(),
3815 diag::warn_template_arg_too_large)
3816 << OldValue.toString(10) << Value.toString(10) << Param->getType()
3817 << Arg->getSourceRange();
3818 Diag(Param->getLocation(), diag::note_template_param_here);
3819 }
3820 }
3821
3822 Converted = TemplateArgument(Value,
3823 ParamType->isEnumeralType() ? ParamType
3824 : IntegerType);
3825 return Owned(Arg);
3826 }
3827
3828 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3829
3830 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3831 // from a template argument of type std::nullptr_t to a non-type
3832 // template parameter of type pointer to object, pointer to
3833 // function, or pointer-to-member, respectively.
3834 if (ArgType->isNullPtrType()) {
3835 if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
3836 Converted = TemplateArgument((NamedDecl *)0);
3837 return Owned(Arg);
3838 }
3839
3840 if (ParamType->isNullPtrType()) {
3841 llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true);
3842 Converted = TemplateArgument(Zero, Context.NullPtrTy);
3843 return Owned(Arg);
3844 }
3845 }
3846
3847 // Handle pointer-to-function, reference-to-function, and
3848 // pointer-to-member-function all in (roughly) the same way.
3849 if (// -- For a non-type template-parameter of type pointer to
3850 // function, only the function-to-pointer conversion (4.3) is
3851 // applied. If the template-argument represents a set of
3852 // overloaded functions (or a pointer to such), the matching
3853 // function is selected from the set (13.4).
3854 (ParamType->isPointerType() &&
3855 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3856 // -- For a non-type template-parameter of type reference to
3857 // function, no conversions apply. If the template-argument
3858 // represents a set of overloaded functions, the matching
3859 // function is selected from the set (13.4).
3860 (ParamType->isReferenceType() &&
3861 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3862 // -- For a non-type template-parameter of type pointer to
3863 // member function, no conversions apply. If the
3864 // template-argument represents a set of overloaded member
3865 // functions, the matching member function is selected from
3866 // the set (13.4).
3867 (ParamType->isMemberPointerType() &&
3868 ParamType->getAs<MemberPointerType>()->getPointeeType()
3869 ->isFunctionType())) {
3870
3871 if (Arg->getType() == Context.OverloadTy) {
3872 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3873 true,
3874 FoundResult)) {
3875 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3876 return ExprError();
3877
3878 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3879 ArgType = Arg->getType();
3880 } else
3881 return ExprError();
3882 }
3883
3884 if (!ParamType->isMemberPointerType()) {
3885 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3886 ParamType,
3887 Arg, Converted))
3888 return ExprError();
3889 return Owned(Arg);
3890 }
3891
3892 bool ObjCLifetimeConversion;
3893 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
3894 false, ObjCLifetimeConversion)) {
3895 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take();
3896 } else if (!Context.hasSameUnqualifiedType(ArgType,
3897 ParamType.getNonReferenceType())) {
3898 // We can't perform this conversion.
3899 Diag(Arg->getSourceRange().getBegin(),
3900 diag::err_template_arg_not_convertible)
3901 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3902 Diag(Param->getLocation(), diag::note_template_param_here);
3903 return ExprError();
3904 }
3905
3906 if (CheckTemplateArgumentPointerToMember(Arg, Converted))
3907 return ExprError();
3908 return Owned(Arg);
3909 }
3910
3911 if (ParamType->isPointerType()) {
3912 // -- for a non-type template-parameter of type pointer to
3913 // object, qualification conversions (4.4) and the
3914 // array-to-pointer conversion (4.2) are applied.
3915 // C++0x also allows a value of std::nullptr_t.
3916 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3917 "Only object pointers allowed here");
3918
3919 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3920 ParamType,
3921 Arg, Converted))
3922 return ExprError();
3923 return Owned(Arg);
3924 }
3925
3926 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3927 // -- For a non-type template-parameter of type reference to
3928 // object, no conversions apply. The type referred to by the
3929 // reference may be more cv-qualified than the (otherwise
3930 // identical) type of the template-argument. The
3931 // template-parameter is bound directly to the
3932 // template-argument, which must be an lvalue.
3933 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3934 "Only object references allowed here");
3935
3936 if (Arg->getType() == Context.OverloadTy) {
3937 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3938 ParamRefType->getPointeeType(),
3939 true,
3940 FoundResult)) {
3941 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3942 return ExprError();
3943
3944 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3945 ArgType = Arg->getType();
3946 } else
3947 return ExprError();
3948 }
3949
3950 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3951 ParamType,
3952 Arg, Converted))
3953 return ExprError();
3954 return Owned(Arg);
3955 }
3956
3957 // -- For a non-type template-parameter of type pointer to data
3958 // member, qualification conversions (4.4) are applied.
3959 assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3960
3961 bool ObjCLifetimeConversion;
3962 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3963 // Types match exactly: nothing more to do here.
3964 } else if (IsQualificationConversion(ArgType, ParamType, false,
3965 ObjCLifetimeConversion)) {
3966 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take();
3967 } else {
3968 // We can't perform this conversion.
3969 Diag(Arg->getSourceRange().getBegin(),
3970 diag::err_template_arg_not_convertible)
3971 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3972 Diag(Param->getLocation(), diag::note_template_param_here);
3973 return ExprError();
3974 }
3975
3976 if (CheckTemplateArgumentPointerToMember(Arg, Converted))
3977 return ExprError();
3978 return Owned(Arg);
3979 }
3980
3981 /// \brief Check a template argument against its corresponding
3982 /// template template parameter.
3983 ///
3984 /// This routine implements the semantics of C++ [temp.arg.template].
3985 /// It returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTemplateParmDecl * Param,const TemplateArgumentLoc & Arg)3986 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3987 const TemplateArgumentLoc &Arg) {
3988 TemplateName Name = Arg.getArgument().getAsTemplate();
3989 TemplateDecl *Template = Name.getAsTemplateDecl();
3990 if (!Template) {
3991 // Any dependent template name is fine.
3992 assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3993 return false;
3994 }
3995
3996 // C++0x [temp.arg.template]p1:
3997 // A template-argument for a template template-parameter shall be
3998 // the name of a class template or an alias template, expressed as an
3999 // id-expression. When the template-argument names a class template, only
4000 // primary class templates are considered when matching the
4001 // template template argument with the corresponding parameter;
4002 // partial specializations are not considered even if their
4003 // parameter lists match that of the template template parameter.
4004 //
4005 // Note that we also allow template template parameters here, which
4006 // will happen when we are dealing with, e.g., class template
4007 // partial specializations.
4008 if (!isa<ClassTemplateDecl>(Template) &&
4009 !isa<TemplateTemplateParmDecl>(Template) &&
4010 !isa<TypeAliasTemplateDecl>(Template)) {
4011 assert(isa<FunctionTemplateDecl>(Template) &&
4012 "Only function templates are possible here");
4013 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4014 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4015 << Template;
4016 }
4017
4018 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4019 Param->getTemplateParameters(),
4020 true,
4021 TPL_TemplateTemplateArgumentMatch,
4022 Arg.getLocation());
4023 }
4024
4025 /// \brief Given a non-type template argument that refers to a
4026 /// declaration and the type of its corresponding non-type template
4027 /// parameter, produce an expression that properly refers to that
4028 /// declaration.
4029 ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument & Arg,QualType ParamType,SourceLocation Loc)4030 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4031 QualType ParamType,
4032 SourceLocation Loc) {
4033 assert(Arg.getKind() == TemplateArgument::Declaration &&
4034 "Only declaration template arguments permitted here");
4035 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4036
4037 if (VD->getDeclContext()->isRecord() &&
4038 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4039 // If the value is a class member, we might have a pointer-to-member.
4040 // Determine whether the non-type template template parameter is of
4041 // pointer-to-member type. If so, we need to build an appropriate
4042 // expression for a pointer-to-member, since a "normal" DeclRefExpr
4043 // would refer to the member itself.
4044 if (ParamType->isMemberPointerType()) {
4045 QualType ClassType
4046 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4047 NestedNameSpecifier *Qualifier
4048 = NestedNameSpecifier::Create(Context, 0, false,
4049 ClassType.getTypePtr());
4050 CXXScopeSpec SS;
4051 SS.MakeTrivial(Context, Qualifier, Loc);
4052
4053 // The actual value-ness of this is unimportant, but for
4054 // internal consistency's sake, references to instance methods
4055 // are r-values.
4056 ExprValueKind VK = VK_LValue;
4057 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4058 VK = VK_RValue;
4059
4060 ExprResult RefExpr = BuildDeclRefExpr(VD,
4061 VD->getType().getNonReferenceType(),
4062 VK,
4063 Loc,
4064 &SS);
4065 if (RefExpr.isInvalid())
4066 return ExprError();
4067
4068 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4069
4070 // We might need to perform a trailing qualification conversion, since
4071 // the element type on the parameter could be more qualified than the
4072 // element type in the expression we constructed.
4073 bool ObjCLifetimeConversion;
4074 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4075 ParamType.getUnqualifiedType(), false,
4076 ObjCLifetimeConversion))
4077 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4078
4079 assert(!RefExpr.isInvalid() &&
4080 Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4081 ParamType.getUnqualifiedType()));
4082 return move(RefExpr);
4083 }
4084 }
4085
4086 QualType T = VD->getType().getNonReferenceType();
4087 if (ParamType->isPointerType()) {
4088 // When the non-type template parameter is a pointer, take the
4089 // address of the declaration.
4090 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4091 if (RefExpr.isInvalid())
4092 return ExprError();
4093
4094 if (T->isFunctionType() || T->isArrayType()) {
4095 // Decay functions and arrays.
4096 RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4097 if (RefExpr.isInvalid())
4098 return ExprError();
4099
4100 return move(RefExpr);
4101 }
4102
4103 // Take the address of everything else
4104 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4105 }
4106
4107 ExprValueKind VK = VK_RValue;
4108
4109 // If the non-type template parameter has reference type, qualify the
4110 // resulting declaration reference with the extra qualifiers on the
4111 // type that the reference refers to.
4112 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4113 VK = VK_LValue;
4114 T = Context.getQualifiedType(T,
4115 TargetRef->getPointeeType().getQualifiers());
4116 }
4117
4118 return BuildDeclRefExpr(VD, T, VK, Loc);
4119 }
4120
4121 /// \brief Construct a new expression that refers to the given
4122 /// integral template argument with the given source-location
4123 /// information.
4124 ///
4125 /// This routine takes care of the mapping from an integral template
4126 /// argument (which may have any integral type) to the appropriate
4127 /// literal value.
4128 ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument & Arg,SourceLocation Loc)4129 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4130 SourceLocation Loc) {
4131 assert(Arg.getKind() == TemplateArgument::Integral &&
4132 "Operation is only valid for integral template arguments");
4133 QualType T = Arg.getIntegralType();
4134 if (T->isCharType() || T->isWideCharType())
4135 return Owned(new (Context) CharacterLiteral(
4136 Arg.getAsIntegral()->getZExtValue(),
4137 T->isWideCharType(), T, Loc));
4138 if (T->isBooleanType())
4139 return Owned(new (Context) CXXBoolLiteralExpr(
4140 Arg.getAsIntegral()->getBoolValue(),
4141 T, Loc));
4142
4143 if (T->isNullPtrType())
4144 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4145
4146 // If this is an enum type that we're instantiating, we need to use an integer
4147 // type the same size as the enumerator. We don't want to build an
4148 // IntegerLiteral with enum type.
4149 QualType BT;
4150 if (const EnumType *ET = T->getAs<EnumType>())
4151 BT = ET->getDecl()->getIntegerType();
4152 else
4153 BT = T;
4154
4155 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
4156 if (T->isEnumeralType()) {
4157 // FIXME: This is a hack. We need a better way to handle substituted
4158 // non-type template parameters.
4159 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4160 Context.getTrivialTypeSourceInfo(T, Loc),
4161 Loc, Loc);
4162 }
4163
4164 return Owned(E);
4165 }
4166
4167 /// \brief Match two template parameters within template parameter lists.
MatchTemplateParameterKind(Sema & S,NamedDecl * New,NamedDecl * Old,bool Complain,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)4168 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4169 bool Complain,
4170 Sema::TemplateParameterListEqualKind Kind,
4171 SourceLocation TemplateArgLoc) {
4172 // Check the actual kind (type, non-type, template).
4173 if (Old->getKind() != New->getKind()) {
4174 if (Complain) {
4175 unsigned NextDiag = diag::err_template_param_different_kind;
4176 if (TemplateArgLoc.isValid()) {
4177 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4178 NextDiag = diag::note_template_param_different_kind;
4179 }
4180 S.Diag(New->getLocation(), NextDiag)
4181 << (Kind != Sema::TPL_TemplateMatch);
4182 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4183 << (Kind != Sema::TPL_TemplateMatch);
4184 }
4185
4186 return false;
4187 }
4188
4189 // Check that both are parameter packs are neither are parameter packs.
4190 // However, if we are matching a template template argument to a
4191 // template template parameter, the template template parameter can have
4192 // a parameter pack where the template template argument does not.
4193 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4194 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4195 Old->isTemplateParameterPack())) {
4196 if (Complain) {
4197 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4198 if (TemplateArgLoc.isValid()) {
4199 S.Diag(TemplateArgLoc,
4200 diag::err_template_arg_template_params_mismatch);
4201 NextDiag = diag::note_template_parameter_pack_non_pack;
4202 }
4203
4204 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4205 : isa<NonTypeTemplateParmDecl>(New)? 1
4206 : 2;
4207 S.Diag(New->getLocation(), NextDiag)
4208 << ParamKind << New->isParameterPack();
4209 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4210 << ParamKind << Old->isParameterPack();
4211 }
4212
4213 return false;
4214 }
4215
4216 // For non-type template parameters, check the type of the parameter.
4217 if (NonTypeTemplateParmDecl *OldNTTP
4218 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4219 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4220
4221 // If we are matching a template template argument to a template
4222 // template parameter and one of the non-type template parameter types
4223 // is dependent, then we must wait until template instantiation time
4224 // to actually compare the arguments.
4225 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4226 (OldNTTP->getType()->isDependentType() ||
4227 NewNTTP->getType()->isDependentType()))
4228 return true;
4229
4230 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4231 if (Complain) {
4232 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4233 if (TemplateArgLoc.isValid()) {
4234 S.Diag(TemplateArgLoc,
4235 diag::err_template_arg_template_params_mismatch);
4236 NextDiag = diag::note_template_nontype_parm_different_type;
4237 }
4238 S.Diag(NewNTTP->getLocation(), NextDiag)
4239 << NewNTTP->getType()
4240 << (Kind != Sema::TPL_TemplateMatch);
4241 S.Diag(OldNTTP->getLocation(),
4242 diag::note_template_nontype_parm_prev_declaration)
4243 << OldNTTP->getType();
4244 }
4245
4246 return false;
4247 }
4248
4249 return true;
4250 }
4251
4252 // For template template parameters, check the template parameter types.
4253 // The template parameter lists of template template
4254 // parameters must agree.
4255 if (TemplateTemplateParmDecl *OldTTP
4256 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4257 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4258 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4259 OldTTP->getTemplateParameters(),
4260 Complain,
4261 (Kind == Sema::TPL_TemplateMatch
4262 ? Sema::TPL_TemplateTemplateParmMatch
4263 : Kind),
4264 TemplateArgLoc);
4265 }
4266
4267 return true;
4268 }
4269
4270 /// \brief Diagnose a known arity mismatch when comparing template argument
4271 /// lists.
4272 static
DiagnoseTemplateParameterListArityMismatch(Sema & S,TemplateParameterList * New,TemplateParameterList * Old,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)4273 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4274 TemplateParameterList *New,
4275 TemplateParameterList *Old,
4276 Sema::TemplateParameterListEqualKind Kind,
4277 SourceLocation TemplateArgLoc) {
4278 unsigned NextDiag = diag::err_template_param_list_different_arity;
4279 if (TemplateArgLoc.isValid()) {
4280 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4281 NextDiag = diag::note_template_param_list_different_arity;
4282 }
4283 S.Diag(New->getTemplateLoc(), NextDiag)
4284 << (New->size() > Old->size())
4285 << (Kind != Sema::TPL_TemplateMatch)
4286 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4287 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4288 << (Kind != Sema::TPL_TemplateMatch)
4289 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4290 }
4291
4292 /// \brief Determine whether the given template parameter lists are
4293 /// equivalent.
4294 ///
4295 /// \param New The new template parameter list, typically written in the
4296 /// source code as part of a new template declaration.
4297 ///
4298 /// \param Old The old template parameter list, typically found via
4299 /// name lookup of the template declared with this template parameter
4300 /// list.
4301 ///
4302 /// \param Complain If true, this routine will produce a diagnostic if
4303 /// the template parameter lists are not equivalent.
4304 ///
4305 /// \param Kind describes how we are to match the template parameter lists.
4306 ///
4307 /// \param TemplateArgLoc If this source location is valid, then we
4308 /// are actually checking the template parameter list of a template
4309 /// argument (New) against the template parameter list of its
4310 /// corresponding template template parameter (Old). We produce
4311 /// slightly different diagnostics in this scenario.
4312 ///
4313 /// \returns True if the template parameter lists are equal, false
4314 /// otherwise.
4315 bool
TemplateParameterListsAreEqual(TemplateParameterList * New,TemplateParameterList * Old,bool Complain,TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)4316 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4317 TemplateParameterList *Old,
4318 bool Complain,
4319 TemplateParameterListEqualKind Kind,
4320 SourceLocation TemplateArgLoc) {
4321 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4322 if (Complain)
4323 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4324 TemplateArgLoc);
4325
4326 return false;
4327 }
4328
4329 // C++0x [temp.arg.template]p3:
4330 // A template-argument matches a template template-parameter (call it P)
4331 // when each of the template parameters in the template-parameter-list of
4332 // the template-argument's corresponding class template or alias template
4333 // (call it A) matches the corresponding template parameter in the
4334 // template-parameter-list of P. [...]
4335 TemplateParameterList::iterator NewParm = New->begin();
4336 TemplateParameterList::iterator NewParmEnd = New->end();
4337 for (TemplateParameterList::iterator OldParm = Old->begin(),
4338 OldParmEnd = Old->end();
4339 OldParm != OldParmEnd; ++OldParm) {
4340 if (Kind != TPL_TemplateTemplateArgumentMatch ||
4341 !(*OldParm)->isTemplateParameterPack()) {
4342 if (NewParm == NewParmEnd) {
4343 if (Complain)
4344 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4345 TemplateArgLoc);
4346
4347 return false;
4348 }
4349
4350 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4351 Kind, TemplateArgLoc))
4352 return false;
4353
4354 ++NewParm;
4355 continue;
4356 }
4357
4358 // C++0x [temp.arg.template]p3:
4359 // [...] When P's template- parameter-list contains a template parameter
4360 // pack (14.5.3), the template parameter pack will match zero or more
4361 // template parameters or template parameter packs in the
4362 // template-parameter-list of A with the same type and form as the
4363 // template parameter pack in P (ignoring whether those template
4364 // parameters are template parameter packs).
4365 for (; NewParm != NewParmEnd; ++NewParm) {
4366 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4367 Kind, TemplateArgLoc))
4368 return false;
4369 }
4370 }
4371
4372 // Make sure we exhausted all of the arguments.
4373 if (NewParm != NewParmEnd) {
4374 if (Complain)
4375 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4376 TemplateArgLoc);
4377
4378 return false;
4379 }
4380
4381 return true;
4382 }
4383
4384 /// \brief Check whether a template can be declared within this scope.
4385 ///
4386 /// If the template declaration is valid in this scope, returns
4387 /// false. Otherwise, issues a diagnostic and returns true.
4388 bool
CheckTemplateDeclScope(Scope * S,TemplateParameterList * TemplateParams)4389 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4390 // Find the nearest enclosing declaration scope.
4391 while ((S->getFlags() & Scope::DeclScope) == 0 ||
4392 (S->getFlags() & Scope::TemplateParamScope) != 0)
4393 S = S->getParent();
4394
4395 // C++ [temp]p2:
4396 // A template-declaration can appear only as a namespace scope or
4397 // class scope declaration.
4398 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4399 if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4400 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4401 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4402 << TemplateParams->getSourceRange();
4403
4404 while (Ctx && isa<LinkageSpecDecl>(Ctx))
4405 Ctx = Ctx->getParent();
4406
4407 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4408 return false;
4409
4410 return Diag(TemplateParams->getTemplateLoc(),
4411 diag::err_template_outside_namespace_or_class_scope)
4412 << TemplateParams->getSourceRange();
4413 }
4414
4415 /// \brief Determine what kind of template specialization the given declaration
4416 /// is.
getTemplateSpecializationKind(NamedDecl * D)4417 static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
4418 if (!D)
4419 return TSK_Undeclared;
4420
4421 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4422 return Record->getTemplateSpecializationKind();
4423 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4424 return Function->getTemplateSpecializationKind();
4425 if (VarDecl *Var = dyn_cast<VarDecl>(D))
4426 return Var->getTemplateSpecializationKind();
4427
4428 return TSK_Undeclared;
4429 }
4430
4431 /// \brief Check whether a specialization is well-formed in the current
4432 /// context.
4433 ///
4434 /// This routine determines whether a template specialization can be declared
4435 /// in the current context (C++ [temp.expl.spec]p2).
4436 ///
4437 /// \param S the semantic analysis object for which this check is being
4438 /// performed.
4439 ///
4440 /// \param Specialized the entity being specialized or instantiated, which
4441 /// may be a kind of template (class template, function template, etc.) or
4442 /// a member of a class template (member function, static data member,
4443 /// member class).
4444 ///
4445 /// \param PrevDecl the previous declaration of this entity, if any.
4446 ///
4447 /// \param Loc the location of the explicit specialization or instantiation of
4448 /// this entity.
4449 ///
4450 /// \param IsPartialSpecialization whether this is a partial specialization of
4451 /// a class template.
4452 ///
4453 /// \returns true if there was an error that we cannot recover from, false
4454 /// otherwise.
CheckTemplateSpecializationScope(Sema & S,NamedDecl * Specialized,NamedDecl * PrevDecl,SourceLocation Loc,bool IsPartialSpecialization)4455 static bool CheckTemplateSpecializationScope(Sema &S,
4456 NamedDecl *Specialized,
4457 NamedDecl *PrevDecl,
4458 SourceLocation Loc,
4459 bool IsPartialSpecialization) {
4460 // Keep these "kind" numbers in sync with the %select statements in the
4461 // various diagnostics emitted by this routine.
4462 int EntityKind = 0;
4463 if (isa<ClassTemplateDecl>(Specialized))
4464 EntityKind = IsPartialSpecialization? 1 : 0;
4465 else if (isa<FunctionTemplateDecl>(Specialized))
4466 EntityKind = 2;
4467 else if (isa<CXXMethodDecl>(Specialized))
4468 EntityKind = 3;
4469 else if (isa<VarDecl>(Specialized))
4470 EntityKind = 4;
4471 else if (isa<RecordDecl>(Specialized))
4472 EntityKind = 5;
4473 else {
4474 S.Diag(Loc, diag::err_template_spec_unknown_kind);
4475 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4476 return true;
4477 }
4478
4479 // C++ [temp.expl.spec]p2:
4480 // An explicit specialization shall be declared in the namespace
4481 // of which the template is a member, or, for member templates, in
4482 // the namespace of which the enclosing class or enclosing class
4483 // template is a member. An explicit specialization of a member
4484 // function, member class or static data member of a class
4485 // template shall be declared in the namespace of which the class
4486 // template is a member. Such a declaration may also be a
4487 // definition. If the declaration is not a definition, the
4488 // specialization may be defined later in the name- space in which
4489 // the explicit specialization was declared, or in a namespace
4490 // that encloses the one in which the explicit specialization was
4491 // declared.
4492 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4493 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4494 << Specialized;
4495 return true;
4496 }
4497
4498 if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4499 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4500 << Specialized;
4501 return true;
4502 }
4503
4504 // C++ [temp.class.spec]p6:
4505 // A class template partial specialization may be declared or redeclared
4506 // in any namespace scope in which its definition may be defined (14.5.1
4507 // and 14.5.2).
4508 bool ComplainedAboutScope = false;
4509 DeclContext *SpecializedContext
4510 = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4511 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4512 if ((!PrevDecl ||
4513 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4514 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4515 // C++ [temp.exp.spec]p2:
4516 // An explicit specialization shall be declared in the namespace of which
4517 // the template is a member, or, for member templates, in the namespace
4518 // of which the enclosing class or enclosing class template is a member.
4519 // An explicit specialization of a member function, member class or
4520 // static data member of a class template shall be declared in the
4521 // namespace of which the class template is a member.
4522 //
4523 // C++0x [temp.expl.spec]p2:
4524 // An explicit specialization shall be declared in a namespace enclosing
4525 // the specialized template.
4526 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
4527 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
4528 bool IsCPlusPlus0xExtension
4529 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
4530 if (isa<TranslationUnitDecl>(SpecializedContext))
4531 S.Diag(Loc, IsCPlusPlus0xExtension
4532 ? diag::ext_template_spec_decl_out_of_scope_global
4533 : diag::err_template_spec_decl_out_of_scope_global)
4534 << EntityKind << Specialized;
4535 else if (isa<NamespaceDecl>(SpecializedContext))
4536 S.Diag(Loc, IsCPlusPlus0xExtension
4537 ? diag::ext_template_spec_decl_out_of_scope
4538 : diag::err_template_spec_decl_out_of_scope)
4539 << EntityKind << Specialized
4540 << cast<NamedDecl>(SpecializedContext);
4541
4542 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4543 ComplainedAboutScope = true;
4544 }
4545 }
4546
4547 // Make sure that this redeclaration (or definition) occurs in an enclosing
4548 // namespace.
4549 // Note that HandleDeclarator() performs this check for explicit
4550 // specializations of function templates, static data members, and member
4551 // functions, so we skip the check here for those kinds of entities.
4552 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4553 // Should we refactor that check, so that it occurs later?
4554 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4555 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4556 isa<FunctionDecl>(Specialized))) {
4557 if (isa<TranslationUnitDecl>(SpecializedContext))
4558 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4559 << EntityKind << Specialized;
4560 else if (isa<NamespaceDecl>(SpecializedContext))
4561 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4562 << EntityKind << Specialized
4563 << cast<NamedDecl>(SpecializedContext);
4564
4565 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4566 }
4567
4568 // FIXME: check for specialization-after-instantiation errors and such.
4569
4570 return false;
4571 }
4572
4573 /// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4574 /// that checks non-type template partial specialization arguments.
CheckNonTypeClassTemplatePartialSpecializationArgs(Sema & S,NonTypeTemplateParmDecl * Param,const TemplateArgument * Args,unsigned NumArgs)4575 static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4576 NonTypeTemplateParmDecl *Param,
4577 const TemplateArgument *Args,
4578 unsigned NumArgs) {
4579 for (unsigned I = 0; I != NumArgs; ++I) {
4580 if (Args[I].getKind() == TemplateArgument::Pack) {
4581 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4582 Args[I].pack_begin(),
4583 Args[I].pack_size()))
4584 return true;
4585
4586 continue;
4587 }
4588
4589 Expr *ArgExpr = Args[I].getAsExpr();
4590 if (!ArgExpr) {
4591 continue;
4592 }
4593
4594 // We can have a pack expansion of any of the bullets below.
4595 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4596 ArgExpr = Expansion->getPattern();
4597
4598 // Strip off any implicit casts we added as part of type checking.
4599 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4600 ArgExpr = ICE->getSubExpr();
4601
4602 // C++ [temp.class.spec]p8:
4603 // A non-type argument is non-specialized if it is the name of a
4604 // non-type parameter. All other non-type arguments are
4605 // specialized.
4606 //
4607 // Below, we check the two conditions that only apply to
4608 // specialized non-type arguments, so skip any non-specialized
4609 // arguments.
4610 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4611 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4612 continue;
4613
4614 // C++ [temp.class.spec]p9:
4615 // Within the argument list of a class template partial
4616 // specialization, the following restrictions apply:
4617 // -- A partially specialized non-type argument expression
4618 // shall not involve a template parameter of the partial
4619 // specialization except when the argument expression is a
4620 // simple identifier.
4621 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4622 S.Diag(ArgExpr->getLocStart(),
4623 diag::err_dependent_non_type_arg_in_partial_spec)
4624 << ArgExpr->getSourceRange();
4625 return true;
4626 }
4627
4628 // -- The type of a template parameter corresponding to a
4629 // specialized non-type argument shall not be dependent on a
4630 // parameter of the specialization.
4631 if (Param->getType()->isDependentType()) {
4632 S.Diag(ArgExpr->getLocStart(),
4633 diag::err_dependent_typed_non_type_arg_in_partial_spec)
4634 << Param->getType()
4635 << ArgExpr->getSourceRange();
4636 S.Diag(Param->getLocation(), diag::note_template_param_here);
4637 return true;
4638 }
4639 }
4640
4641 return false;
4642 }
4643
4644 /// \brief Check the non-type template arguments of a class template
4645 /// partial specialization according to C++ [temp.class.spec]p9.
4646 ///
4647 /// \param TemplateParams the template parameters of the primary class
4648 /// template.
4649 ///
4650 /// \param TemplateArg the template arguments of the class template
4651 /// partial specialization.
4652 ///
4653 /// \returns true if there was an error, false otherwise.
CheckClassTemplatePartialSpecializationArgs(Sema & S,TemplateParameterList * TemplateParams,llvm::SmallVectorImpl<TemplateArgument> & TemplateArgs)4654 static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4655 TemplateParameterList *TemplateParams,
4656 llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4657 const TemplateArgument *ArgList = TemplateArgs.data();
4658
4659 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4660 NonTypeTemplateParmDecl *Param
4661 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4662 if (!Param)
4663 continue;
4664
4665 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4666 &ArgList[I], 1))
4667 return true;
4668 }
4669
4670 return false;
4671 }
4672
4673 /// \brief Retrieve the previous declaration of the given declaration.
getPreviousDecl(NamedDecl * ND)4674 static NamedDecl *getPreviousDecl(NamedDecl *ND) {
4675 if (VarDecl *VD = dyn_cast<VarDecl>(ND))
4676 return VD->getPreviousDeclaration();
4677 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
4678 return FD->getPreviousDeclaration();
4679 if (TagDecl *TD = dyn_cast<TagDecl>(ND))
4680 return TD->getPreviousDeclaration();
4681 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
4682 return TD->getPreviousDeclaration();
4683 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4684 return FTD->getPreviousDeclaration();
4685 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4686 return CTD->getPreviousDeclaration();
4687 return 0;
4688 }
4689
4690 DeclResult
ActOnClassTemplateSpecialization(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr,MultiTemplateParamsArg TemplateParameterLists)4691 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4692 TagUseKind TUK,
4693 SourceLocation KWLoc,
4694 CXXScopeSpec &SS,
4695 TemplateTy TemplateD,
4696 SourceLocation TemplateNameLoc,
4697 SourceLocation LAngleLoc,
4698 ASTTemplateArgsPtr TemplateArgsIn,
4699 SourceLocation RAngleLoc,
4700 AttributeList *Attr,
4701 MultiTemplateParamsArg TemplateParameterLists) {
4702 assert(TUK != TUK_Reference && "References are not specializations");
4703
4704 // NOTE: KWLoc is the location of the tag keyword. This will instead
4705 // store the location of the outermost template keyword in the declaration.
4706 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
4707 ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
4708
4709 // Find the class template we're specializing
4710 TemplateName Name = TemplateD.getAsVal<TemplateName>();
4711 ClassTemplateDecl *ClassTemplate
4712 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4713
4714 if (!ClassTemplate) {
4715 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4716 << (Name.getAsTemplateDecl() &&
4717 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4718 return true;
4719 }
4720
4721 bool isExplicitSpecialization = false;
4722 bool isPartialSpecialization = false;
4723
4724 // Check the validity of the template headers that introduce this
4725 // template.
4726 // FIXME: We probably shouldn't complain about these headers for
4727 // friend declarations.
4728 bool Invalid = false;
4729 TemplateParameterList *TemplateParams
4730 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
4731 TemplateNameLoc,
4732 SS,
4733 (TemplateParameterList**)TemplateParameterLists.get(),
4734 TemplateParameterLists.size(),
4735 TUK == TUK_Friend,
4736 isExplicitSpecialization,
4737 Invalid);
4738 if (Invalid)
4739 return true;
4740
4741 if (TemplateParams && TemplateParams->size() > 0) {
4742 isPartialSpecialization = true;
4743
4744 if (TUK == TUK_Friend) {
4745 Diag(KWLoc, diag::err_partial_specialization_friend)
4746 << SourceRange(LAngleLoc, RAngleLoc);
4747 return true;
4748 }
4749
4750 // C++ [temp.class.spec]p10:
4751 // The template parameter list of a specialization shall not
4752 // contain default template argument values.
4753 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4754 Decl *Param = TemplateParams->getParam(I);
4755 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4756 if (TTP->hasDefaultArgument()) {
4757 Diag(TTP->getDefaultArgumentLoc(),
4758 diag::err_default_arg_in_partial_spec);
4759 TTP->removeDefaultArgument();
4760 }
4761 } else if (NonTypeTemplateParmDecl *NTTP
4762 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4763 if (Expr *DefArg = NTTP->getDefaultArgument()) {
4764 Diag(NTTP->getDefaultArgumentLoc(),
4765 diag::err_default_arg_in_partial_spec)
4766 << DefArg->getSourceRange();
4767 NTTP->removeDefaultArgument();
4768 }
4769 } else {
4770 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4771 if (TTP->hasDefaultArgument()) {
4772 Diag(TTP->getDefaultArgument().getLocation(),
4773 diag::err_default_arg_in_partial_spec)
4774 << TTP->getDefaultArgument().getSourceRange();
4775 TTP->removeDefaultArgument();
4776 }
4777 }
4778 }
4779 } else if (TemplateParams) {
4780 if (TUK == TUK_Friend)
4781 Diag(KWLoc, diag::err_template_spec_friend)
4782 << FixItHint::CreateRemoval(
4783 SourceRange(TemplateParams->getTemplateLoc(),
4784 TemplateParams->getRAngleLoc()))
4785 << SourceRange(LAngleLoc, RAngleLoc);
4786 else
4787 isExplicitSpecialization = true;
4788 } else if (TUK != TUK_Friend) {
4789 Diag(KWLoc, diag::err_template_spec_needs_header)
4790 << FixItHint::CreateInsertion(KWLoc, "template<> ");
4791 isExplicitSpecialization = true;
4792 }
4793
4794 // Check that the specialization uses the same tag kind as the
4795 // original template.
4796 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4797 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4798 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4799 Kind, TUK == TUK_Definition, KWLoc,
4800 *ClassTemplate->getIdentifier())) {
4801 Diag(KWLoc, diag::err_use_with_wrong_tag)
4802 << ClassTemplate
4803 << FixItHint::CreateReplacement(KWLoc,
4804 ClassTemplate->getTemplatedDecl()->getKindName());
4805 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4806 diag::note_previous_use);
4807 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4808 }
4809
4810 // Translate the parser's template argument list in our AST format.
4811 TemplateArgumentListInfo TemplateArgs;
4812 TemplateArgs.setLAngleLoc(LAngleLoc);
4813 TemplateArgs.setRAngleLoc(RAngleLoc);
4814 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4815
4816 // Check for unexpanded parameter packs in any of the template arguments.
4817 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4818 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4819 UPPC_PartialSpecialization))
4820 return true;
4821
4822 // Check that the template argument list is well-formed for this
4823 // template.
4824 llvm::SmallVector<TemplateArgument, 4> Converted;
4825 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4826 TemplateArgs, false, Converted))
4827 return true;
4828
4829 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4830 "Converted template argument list is too short!");
4831
4832 // Find the class template (partial) specialization declaration that
4833 // corresponds to these arguments.
4834 if (isPartialSpecialization) {
4835 if (CheckClassTemplatePartialSpecializationArgs(*this,
4836 ClassTemplate->getTemplateParameters(),
4837 Converted))
4838 return true;
4839
4840 bool InstantiationDependent;
4841 if (!Name.isDependent() &&
4842 !TemplateSpecializationType::anyDependentTemplateArguments(
4843 TemplateArgs.getArgumentArray(),
4844 TemplateArgs.size(),
4845 InstantiationDependent)) {
4846 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4847 << ClassTemplate->getDeclName();
4848 isPartialSpecialization = false;
4849 }
4850 }
4851
4852 void *InsertPos = 0;
4853 ClassTemplateSpecializationDecl *PrevDecl = 0;
4854
4855 if (isPartialSpecialization)
4856 // FIXME: Template parameter list matters, too
4857 PrevDecl
4858 = ClassTemplate->findPartialSpecialization(Converted.data(),
4859 Converted.size(),
4860 InsertPos);
4861 else
4862 PrevDecl
4863 = ClassTemplate->findSpecialization(Converted.data(),
4864 Converted.size(), InsertPos);
4865
4866 ClassTemplateSpecializationDecl *Specialization = 0;
4867
4868 // Check whether we can declare a class template specialization in
4869 // the current scope.
4870 if (TUK != TUK_Friend &&
4871 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4872 TemplateNameLoc,
4873 isPartialSpecialization))
4874 return true;
4875
4876 // The canonical type
4877 QualType CanonType;
4878 if (PrevDecl &&
4879 (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4880 TUK == TUK_Friend)) {
4881 // Since the only prior class template specialization with these
4882 // arguments was referenced but not declared, or we're only
4883 // referencing this specialization as a friend, reuse that
4884 // declaration node as our own, updating its source location and
4885 // the list of outer template parameters to reflect our new declaration.
4886 Specialization = PrevDecl;
4887 Specialization->setLocation(TemplateNameLoc);
4888 if (TemplateParameterLists.size() > 0) {
4889 Specialization->setTemplateParameterListsInfo(Context,
4890 TemplateParameterLists.size(),
4891 (TemplateParameterList**) TemplateParameterLists.release());
4892 }
4893 PrevDecl = 0;
4894 CanonType = Context.getTypeDeclType(Specialization);
4895 } else if (isPartialSpecialization) {
4896 // Build the canonical type that describes the converted template
4897 // arguments of the class template partial specialization.
4898 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4899 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4900 Converted.data(),
4901 Converted.size());
4902
4903 if (Context.hasSameType(CanonType,
4904 ClassTemplate->getInjectedClassNameSpecialization())) {
4905 // C++ [temp.class.spec]p9b3:
4906 //
4907 // -- The argument list of the specialization shall not be identical
4908 // to the implicit argument list of the primary template.
4909 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4910 << (TUK == TUK_Definition)
4911 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4912 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4913 ClassTemplate->getIdentifier(),
4914 TemplateNameLoc,
4915 Attr,
4916 TemplateParams,
4917 AS_none,
4918 TemplateParameterLists.size() - 1,
4919 (TemplateParameterList**) TemplateParameterLists.release());
4920 }
4921
4922 // Create a new class template partial specialization declaration node.
4923 ClassTemplatePartialSpecializationDecl *PrevPartial
4924 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4925 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4926 : ClassTemplate->getNextPartialSpecSequenceNumber();
4927 ClassTemplatePartialSpecializationDecl *Partial
4928 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4929 ClassTemplate->getDeclContext(),
4930 KWLoc, TemplateNameLoc,
4931 TemplateParams,
4932 ClassTemplate,
4933 Converted.data(),
4934 Converted.size(),
4935 TemplateArgs,
4936 CanonType,
4937 PrevPartial,
4938 SequenceNumber);
4939 SetNestedNameSpecifier(Partial, SS);
4940 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
4941 Partial->setTemplateParameterListsInfo(Context,
4942 TemplateParameterLists.size() - 1,
4943 (TemplateParameterList**) TemplateParameterLists.release());
4944 }
4945
4946 if (!PrevPartial)
4947 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4948 Specialization = Partial;
4949
4950 // If we are providing an explicit specialization of a member class
4951 // template specialization, make a note of that.
4952 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4953 PrevPartial->setMemberSpecialization();
4954
4955 // Check that all of the template parameters of the class template
4956 // partial specialization are deducible from the template
4957 // arguments. If not, this class template partial specialization
4958 // will never be used.
4959 llvm::SmallVector<bool, 8> DeducibleParams;
4960 DeducibleParams.resize(TemplateParams->size());
4961 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4962 TemplateParams->getDepth(),
4963 DeducibleParams);
4964 unsigned NumNonDeducible = 0;
4965 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4966 if (!DeducibleParams[I])
4967 ++NumNonDeducible;
4968
4969 if (NumNonDeducible) {
4970 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4971 << (NumNonDeducible > 1)
4972 << SourceRange(TemplateNameLoc, RAngleLoc);
4973 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4974 if (!DeducibleParams[I]) {
4975 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4976 if (Param->getDeclName())
4977 Diag(Param->getLocation(),
4978 diag::note_partial_spec_unused_parameter)
4979 << Param->getDeclName();
4980 else
4981 Diag(Param->getLocation(),
4982 diag::note_partial_spec_unused_parameter)
4983 << "<anonymous>";
4984 }
4985 }
4986 }
4987 } else {
4988 // Create a new class template specialization declaration node for
4989 // this explicit specialization or friend declaration.
4990 Specialization
4991 = ClassTemplateSpecializationDecl::Create(Context, Kind,
4992 ClassTemplate->getDeclContext(),
4993 KWLoc, TemplateNameLoc,
4994 ClassTemplate,
4995 Converted.data(),
4996 Converted.size(),
4997 PrevDecl);
4998 SetNestedNameSpecifier(Specialization, SS);
4999 if (TemplateParameterLists.size() > 0) {
5000 Specialization->setTemplateParameterListsInfo(Context,
5001 TemplateParameterLists.size(),
5002 (TemplateParameterList**) TemplateParameterLists.release());
5003 }
5004
5005 if (!PrevDecl)
5006 ClassTemplate->AddSpecialization(Specialization, InsertPos);
5007
5008 CanonType = Context.getTypeDeclType(Specialization);
5009 }
5010
5011 // C++ [temp.expl.spec]p6:
5012 // If a template, a member template or the member of a class template is
5013 // explicitly specialized then that specialization shall be declared
5014 // before the first use of that specialization that would cause an implicit
5015 // instantiation to take place, in every translation unit in which such a
5016 // use occurs; no diagnostic is required.
5017 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5018 bool Okay = false;
5019 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
5020 // Is there any previous explicit specialization declaration?
5021 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5022 Okay = true;
5023 break;
5024 }
5025 }
5026
5027 if (!Okay) {
5028 SourceRange Range(TemplateNameLoc, RAngleLoc);
5029 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5030 << Context.getTypeDeclType(Specialization) << Range;
5031
5032 Diag(PrevDecl->getPointOfInstantiation(),
5033 diag::note_instantiation_required_here)
5034 << (PrevDecl->getTemplateSpecializationKind()
5035 != TSK_ImplicitInstantiation);
5036 return true;
5037 }
5038 }
5039
5040 // If this is not a friend, note that this is an explicit specialization.
5041 if (TUK != TUK_Friend)
5042 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5043
5044 // Check that this isn't a redefinition of this specialization.
5045 if (TUK == TUK_Definition) {
5046 if (RecordDecl *Def = Specialization->getDefinition()) {
5047 SourceRange Range(TemplateNameLoc, RAngleLoc);
5048 Diag(TemplateNameLoc, diag::err_redefinition)
5049 << Context.getTypeDeclType(Specialization) << Range;
5050 Diag(Def->getLocation(), diag::note_previous_definition);
5051 Specialization->setInvalidDecl();
5052 return true;
5053 }
5054 }
5055
5056 if (Attr)
5057 ProcessDeclAttributeList(S, Specialization, Attr);
5058
5059 // Build the fully-sugared type for this class template
5060 // specialization as the user wrote in the specialization
5061 // itself. This means that we'll pretty-print the type retrieved
5062 // from the specialization's declaration the way that the user
5063 // actually wrote the specialization, rather than formatting the
5064 // name based on the "canonical" representation used to store the
5065 // template arguments in the specialization.
5066 TypeSourceInfo *WrittenTy
5067 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5068 TemplateArgs, CanonType);
5069 if (TUK != TUK_Friend) {
5070 Specialization->setTypeAsWritten(WrittenTy);
5071 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5072 }
5073 TemplateArgsIn.release();
5074
5075 // C++ [temp.expl.spec]p9:
5076 // A template explicit specialization is in the scope of the
5077 // namespace in which the template was defined.
5078 //
5079 // We actually implement this paragraph where we set the semantic
5080 // context (in the creation of the ClassTemplateSpecializationDecl),
5081 // but we also maintain the lexical context where the actual
5082 // definition occurs.
5083 Specialization->setLexicalDeclContext(CurContext);
5084
5085 // We may be starting the definition of this specialization.
5086 if (TUK == TUK_Definition)
5087 Specialization->startDefinition();
5088
5089 if (TUK == TUK_Friend) {
5090 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5091 TemplateNameLoc,
5092 WrittenTy,
5093 /*FIXME:*/KWLoc);
5094 Friend->setAccess(AS_public);
5095 CurContext->addDecl(Friend);
5096 } else {
5097 // Add the specialization into its lexical context, so that it can
5098 // be seen when iterating through the list of declarations in that
5099 // context. However, specializations are not found by name lookup.
5100 CurContext->addDecl(Specialization);
5101 }
5102 return Specialization;
5103 }
5104
ActOnTemplateDeclarator(Scope * S,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)5105 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5106 MultiTemplateParamsArg TemplateParameterLists,
5107 Declarator &D) {
5108 return HandleDeclarator(S, D, move(TemplateParameterLists), false);
5109 }
5110
ActOnStartOfFunctionTemplateDef(Scope * FnBodyScope,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)5111 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5112 MultiTemplateParamsArg TemplateParameterLists,
5113 Declarator &D) {
5114 assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5115 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5116
5117 if (FTI.hasPrototype) {
5118 // FIXME: Diagnose arguments without names in C.
5119 }
5120
5121 Scope *ParentScope = FnBodyScope->getParent();
5122
5123 Decl *DP = HandleDeclarator(ParentScope, D,
5124 move(TemplateParameterLists),
5125 /*IsFunctionDefinition=*/true);
5126 if (FunctionTemplateDecl *FunctionTemplate
5127 = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5128 return ActOnStartOfFunctionDef(FnBodyScope,
5129 FunctionTemplate->getTemplatedDecl());
5130 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5131 return ActOnStartOfFunctionDef(FnBodyScope, Function);
5132 return 0;
5133 }
5134
5135 /// \brief Strips various properties off an implicit instantiation
5136 /// that has just been explicitly specialized.
StripImplicitInstantiation(NamedDecl * D)5137 static void StripImplicitInstantiation(NamedDecl *D) {
5138 D->dropAttrs();
5139
5140 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5141 FD->setInlineSpecified(false);
5142 }
5143 }
5144
5145 /// \brief Diagnose cases where we have an explicit template specialization
5146 /// before/after an explicit template instantiation, producing diagnostics
5147 /// for those cases where they are required and determining whether the
5148 /// new specialization/instantiation will have any effect.
5149 ///
5150 /// \param NewLoc the location of the new explicit specialization or
5151 /// instantiation.
5152 ///
5153 /// \param NewTSK the kind of the new explicit specialization or instantiation.
5154 ///
5155 /// \param PrevDecl the previous declaration of the entity.
5156 ///
5157 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5158 ///
5159 /// \param PrevPointOfInstantiation if valid, indicates where the previus
5160 /// declaration was instantiated (either implicitly or explicitly).
5161 ///
5162 /// \param HasNoEffect will be set to true to indicate that the new
5163 /// specialization or instantiation has no effect and should be ignored.
5164 ///
5165 /// \returns true if there was an error that should prevent the introduction of
5166 /// the new declaration into the AST, false otherwise.
5167 bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,TemplateSpecializationKind NewTSK,NamedDecl * PrevDecl,TemplateSpecializationKind PrevTSK,SourceLocation PrevPointOfInstantiation,bool & HasNoEffect)5168 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5169 TemplateSpecializationKind NewTSK,
5170 NamedDecl *PrevDecl,
5171 TemplateSpecializationKind PrevTSK,
5172 SourceLocation PrevPointOfInstantiation,
5173 bool &HasNoEffect) {
5174 HasNoEffect = false;
5175
5176 switch (NewTSK) {
5177 case TSK_Undeclared:
5178 case TSK_ImplicitInstantiation:
5179 assert(false && "Don't check implicit instantiations here");
5180 return false;
5181
5182 case TSK_ExplicitSpecialization:
5183 switch (PrevTSK) {
5184 case TSK_Undeclared:
5185 case TSK_ExplicitSpecialization:
5186 // Okay, we're just specializing something that is either already
5187 // explicitly specialized or has merely been mentioned without any
5188 // instantiation.
5189 return false;
5190
5191 case TSK_ImplicitInstantiation:
5192 if (PrevPointOfInstantiation.isInvalid()) {
5193 // The declaration itself has not actually been instantiated, so it is
5194 // still okay to specialize it.
5195 StripImplicitInstantiation(PrevDecl);
5196 return false;
5197 }
5198 // Fall through
5199
5200 case TSK_ExplicitInstantiationDeclaration:
5201 case TSK_ExplicitInstantiationDefinition:
5202 assert((PrevTSK == TSK_ImplicitInstantiation ||
5203 PrevPointOfInstantiation.isValid()) &&
5204 "Explicit instantiation without point of instantiation?");
5205
5206 // C++ [temp.expl.spec]p6:
5207 // If a template, a member template or the member of a class template
5208 // is explicitly specialized then that specialization shall be declared
5209 // before the first use of that specialization that would cause an
5210 // implicit instantiation to take place, in every translation unit in
5211 // which such a use occurs; no diagnostic is required.
5212 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
5213 // Is there any previous explicit specialization declaration?
5214 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5215 return false;
5216 }
5217
5218 Diag(NewLoc, diag::err_specialization_after_instantiation)
5219 << PrevDecl;
5220 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5221 << (PrevTSK != TSK_ImplicitInstantiation);
5222
5223 return true;
5224 }
5225 break;
5226
5227 case TSK_ExplicitInstantiationDeclaration:
5228 switch (PrevTSK) {
5229 case TSK_ExplicitInstantiationDeclaration:
5230 // This explicit instantiation declaration is redundant (that's okay).
5231 HasNoEffect = true;
5232 return false;
5233
5234 case TSK_Undeclared:
5235 case TSK_ImplicitInstantiation:
5236 // We're explicitly instantiating something that may have already been
5237 // implicitly instantiated; that's fine.
5238 return false;
5239
5240 case TSK_ExplicitSpecialization:
5241 // C++0x [temp.explicit]p4:
5242 // For a given set of template parameters, if an explicit instantiation
5243 // of a template appears after a declaration of an explicit
5244 // specialization for that template, the explicit instantiation has no
5245 // effect.
5246 HasNoEffect = true;
5247 return false;
5248
5249 case TSK_ExplicitInstantiationDefinition:
5250 // C++0x [temp.explicit]p10:
5251 // If an entity is the subject of both an explicit instantiation
5252 // declaration and an explicit instantiation definition in the same
5253 // translation unit, the definition shall follow the declaration.
5254 Diag(NewLoc,
5255 diag::err_explicit_instantiation_declaration_after_definition);
5256 Diag(PrevPointOfInstantiation,
5257 diag::note_explicit_instantiation_definition_here);
5258 assert(PrevPointOfInstantiation.isValid() &&
5259 "Explicit instantiation without point of instantiation?");
5260 HasNoEffect = true;
5261 return false;
5262 }
5263 break;
5264
5265 case TSK_ExplicitInstantiationDefinition:
5266 switch (PrevTSK) {
5267 case TSK_Undeclared:
5268 case TSK_ImplicitInstantiation:
5269 // We're explicitly instantiating something that may have already been
5270 // implicitly instantiated; that's fine.
5271 return false;
5272
5273 case TSK_ExplicitSpecialization:
5274 // C++ DR 259, C++0x [temp.explicit]p4:
5275 // For a given set of template parameters, if an explicit
5276 // instantiation of a template appears after a declaration of
5277 // an explicit specialization for that template, the explicit
5278 // instantiation has no effect.
5279 //
5280 // In C++98/03 mode, we only give an extension warning here, because it
5281 // is not harmful to try to explicitly instantiate something that
5282 // has been explicitly specialized.
5283 if (!getLangOptions().CPlusPlus0x) {
5284 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
5285 << PrevDecl;
5286 Diag(PrevDecl->getLocation(),
5287 diag::note_previous_template_specialization);
5288 }
5289 HasNoEffect = true;
5290 return false;
5291
5292 case TSK_ExplicitInstantiationDeclaration:
5293 // We're explicity instantiating a definition for something for which we
5294 // were previously asked to suppress instantiations. That's fine.
5295 return false;
5296
5297 case TSK_ExplicitInstantiationDefinition:
5298 // C++0x [temp.spec]p5:
5299 // For a given template and a given set of template-arguments,
5300 // - an explicit instantiation definition shall appear at most once
5301 // in a program,
5302 Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5303 << PrevDecl;
5304 Diag(PrevPointOfInstantiation,
5305 diag::note_previous_explicit_instantiation);
5306 HasNoEffect = true;
5307 return false;
5308 }
5309 break;
5310 }
5311
5312 assert(false && "Missing specialization/instantiation case?");
5313
5314 return false;
5315 }
5316
5317 /// \brief Perform semantic analysis for the given dependent function
5318 /// template specialization. The only possible way to get a dependent
5319 /// function template specialization is with a friend declaration,
5320 /// like so:
5321 ///
5322 /// template <class T> void foo(T);
5323 /// template <class T> class A {
5324 /// friend void foo<>(T);
5325 /// };
5326 ///
5327 /// There really isn't any useful analysis we can do here, so we
5328 /// just store the information.
5329 bool
CheckDependentFunctionTemplateSpecialization(FunctionDecl * FD,const TemplateArgumentListInfo & ExplicitTemplateArgs,LookupResult & Previous)5330 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5331 const TemplateArgumentListInfo &ExplicitTemplateArgs,
5332 LookupResult &Previous) {
5333 // Remove anything from Previous that isn't a function template in
5334 // the correct context.
5335 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5336 LookupResult::Filter F = Previous.makeFilter();
5337 while (F.hasNext()) {
5338 NamedDecl *D = F.next()->getUnderlyingDecl();
5339 if (!isa<FunctionTemplateDecl>(D) ||
5340 !FDLookupContext->InEnclosingNamespaceSetOf(
5341 D->getDeclContext()->getRedeclContext()))
5342 F.erase();
5343 }
5344 F.done();
5345
5346 // Should this be diagnosed here?
5347 if (Previous.empty()) return true;
5348
5349 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5350 ExplicitTemplateArgs);
5351 return false;
5352 }
5353
5354 /// \brief Perform semantic analysis for the given function template
5355 /// specialization.
5356 ///
5357 /// This routine performs all of the semantic analysis required for an
5358 /// explicit function template specialization. On successful completion,
5359 /// the function declaration \p FD will become a function template
5360 /// specialization.
5361 ///
5362 /// \param FD the function declaration, which will be updated to become a
5363 /// function template specialization.
5364 ///
5365 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5366 /// if any. Note that this may be valid info even when 0 arguments are
5367 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5368 /// as it anyway contains info on the angle brackets locations.
5369 ///
5370 /// \param Previous the set of declarations that may be specialized by
5371 /// this function specialization.
5372 bool
CheckFunctionTemplateSpecialization(FunctionDecl * FD,TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous)5373 Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5374 TemplateArgumentListInfo *ExplicitTemplateArgs,
5375 LookupResult &Previous) {
5376 // The set of function template specializations that could match this
5377 // explicit function template specialization.
5378 UnresolvedSet<8> Candidates;
5379
5380 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5381 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5382 I != E; ++I) {
5383 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5384 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5385 // Only consider templates found within the same semantic lookup scope as
5386 // FD.
5387 if (!FDLookupContext->InEnclosingNamespaceSetOf(
5388 Ovl->getDeclContext()->getRedeclContext()))
5389 continue;
5390
5391 // C++ [temp.expl.spec]p11:
5392 // A trailing template-argument can be left unspecified in the
5393 // template-id naming an explicit function template specialization
5394 // provided it can be deduced from the function argument type.
5395 // Perform template argument deduction to determine whether we may be
5396 // specializing this template.
5397 // FIXME: It is somewhat wasteful to build
5398 TemplateDeductionInfo Info(Context, FD->getLocation());
5399 FunctionDecl *Specialization = 0;
5400 if (TemplateDeductionResult TDK
5401 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5402 FD->getType(),
5403 Specialization,
5404 Info)) {
5405 // FIXME: Template argument deduction failed; record why it failed, so
5406 // that we can provide nifty diagnostics.
5407 (void)TDK;
5408 continue;
5409 }
5410
5411 // Record this candidate.
5412 Candidates.addDecl(Specialization, I.getAccess());
5413 }
5414 }
5415
5416 // Find the most specialized function template.
5417 UnresolvedSetIterator Result
5418 = getMostSpecialized(Candidates.begin(), Candidates.end(),
5419 TPOC_Other, 0, FD->getLocation(),
5420 PDiag(diag::err_function_template_spec_no_match)
5421 << FD->getDeclName(),
5422 PDiag(diag::err_function_template_spec_ambiguous)
5423 << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5424 PDiag(diag::note_function_template_spec_matched));
5425 if (Result == Candidates.end())
5426 return true;
5427
5428 // Ignore access information; it doesn't figure into redeclaration checking.
5429 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5430
5431 FunctionTemplateSpecializationInfo *SpecInfo
5432 = Specialization->getTemplateSpecializationInfo();
5433 assert(SpecInfo && "Function template specialization info missing?");
5434
5435 // Note: do not overwrite location info if previous template
5436 // specialization kind was explicit.
5437 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5438 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation)
5439 Specialization->setLocation(FD->getLocation());
5440
5441 // FIXME: Check if the prior specialization has a point of instantiation.
5442 // If so, we have run afoul of .
5443
5444 // If this is a friend declaration, then we're not really declaring
5445 // an explicit specialization.
5446 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5447
5448 // Check the scope of this explicit specialization.
5449 if (!isFriend &&
5450 CheckTemplateSpecializationScope(*this,
5451 Specialization->getPrimaryTemplate(),
5452 Specialization, FD->getLocation(),
5453 false))
5454 return true;
5455
5456 // C++ [temp.expl.spec]p6:
5457 // If a template, a member template or the member of a class template is
5458 // explicitly specialized then that specialization shall be declared
5459 // before the first use of that specialization that would cause an implicit
5460 // instantiation to take place, in every translation unit in which such a
5461 // use occurs; no diagnostic is required.
5462 bool HasNoEffect = false;
5463 if (!isFriend &&
5464 CheckSpecializationInstantiationRedecl(FD->getLocation(),
5465 TSK_ExplicitSpecialization,
5466 Specialization,
5467 SpecInfo->getTemplateSpecializationKind(),
5468 SpecInfo->getPointOfInstantiation(),
5469 HasNoEffect))
5470 return true;
5471
5472 // Mark the prior declaration as an explicit specialization, so that later
5473 // clients know that this is an explicit specialization.
5474 if (!isFriend) {
5475 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5476 MarkUnusedFileScopedDecl(Specialization);
5477 }
5478
5479 // Turn the given function declaration into a function template
5480 // specialization, with the template arguments from the previous
5481 // specialization.
5482 // Take copies of (semantic and syntactic) template argument lists.
5483 const TemplateArgumentList* TemplArgs = new (Context)
5484 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5485 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
5486 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
5487 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5488 TemplArgs, /*InsertPos=*/0,
5489 SpecInfo->getTemplateSpecializationKind(),
5490 TemplArgsAsWritten);
5491 FD->setStorageClass(Specialization->getStorageClass());
5492
5493 // The "previous declaration" for this function template specialization is
5494 // the prior function template specialization.
5495 Previous.clear();
5496 Previous.addDecl(Specialization);
5497 return false;
5498 }
5499
5500 /// \brief Perform semantic analysis for the given non-template member
5501 /// specialization.
5502 ///
5503 /// This routine performs all of the semantic analysis required for an
5504 /// explicit member function specialization. On successful completion,
5505 /// the function declaration \p FD will become a member function
5506 /// specialization.
5507 ///
5508 /// \param Member the member declaration, which will be updated to become a
5509 /// specialization.
5510 ///
5511 /// \param Previous the set of declarations, one of which may be specialized
5512 /// by this function specialization; the set will be modified to contain the
5513 /// redeclared member.
5514 bool
CheckMemberSpecialization(NamedDecl * Member,LookupResult & Previous)5515 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5516 assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5517
5518 // Try to find the member we are instantiating.
5519 NamedDecl *Instantiation = 0;
5520 NamedDecl *InstantiatedFrom = 0;
5521 MemberSpecializationInfo *MSInfo = 0;
5522
5523 if (Previous.empty()) {
5524 // Nowhere to look anyway.
5525 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5526 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5527 I != E; ++I) {
5528 NamedDecl *D = (*I)->getUnderlyingDecl();
5529 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5530 if (Context.hasSameType(Function->getType(), Method->getType())) {
5531 Instantiation = Method;
5532 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5533 MSInfo = Method->getMemberSpecializationInfo();
5534 break;
5535 }
5536 }
5537 }
5538 } else if (isa<VarDecl>(Member)) {
5539 VarDecl *PrevVar;
5540 if (Previous.isSingleResult() &&
5541 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5542 if (PrevVar->isStaticDataMember()) {
5543 Instantiation = PrevVar;
5544 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5545 MSInfo = PrevVar->getMemberSpecializationInfo();
5546 }
5547 } else if (isa<RecordDecl>(Member)) {
5548 CXXRecordDecl *PrevRecord;
5549 if (Previous.isSingleResult() &&
5550 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5551 Instantiation = PrevRecord;
5552 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5553 MSInfo = PrevRecord->getMemberSpecializationInfo();
5554 }
5555 }
5556
5557 if (!Instantiation) {
5558 // There is no previous declaration that matches. Since member
5559 // specializations are always out-of-line, the caller will complain about
5560 // this mismatch later.
5561 return false;
5562 }
5563
5564 // If this is a friend, just bail out here before we start turning
5565 // things into explicit specializations.
5566 if (Member->getFriendObjectKind() != Decl::FOK_None) {
5567 // Preserve instantiation information.
5568 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5569 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5570 cast<CXXMethodDecl>(InstantiatedFrom),
5571 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5572 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5573 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5574 cast<CXXRecordDecl>(InstantiatedFrom),
5575 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5576 }
5577
5578 Previous.clear();
5579 Previous.addDecl(Instantiation);
5580 return false;
5581 }
5582
5583 // Make sure that this is a specialization of a member.
5584 if (!InstantiatedFrom) {
5585 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5586 << Member;
5587 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5588 return true;
5589 }
5590
5591 // C++ [temp.expl.spec]p6:
5592 // If a template, a member template or the member of a class template is
5593 // explicitly specialized then that spe- cialization shall be declared
5594 // before the first use of that specialization that would cause an implicit
5595 // instantiation to take place, in every translation unit in which such a
5596 // use occurs; no diagnostic is required.
5597 assert(MSInfo && "Member specialization info missing?");
5598
5599 bool HasNoEffect = false;
5600 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5601 TSK_ExplicitSpecialization,
5602 Instantiation,
5603 MSInfo->getTemplateSpecializationKind(),
5604 MSInfo->getPointOfInstantiation(),
5605 HasNoEffect))
5606 return true;
5607
5608 // Check the scope of this explicit specialization.
5609 if (CheckTemplateSpecializationScope(*this,
5610 InstantiatedFrom,
5611 Instantiation, Member->getLocation(),
5612 false))
5613 return true;
5614
5615 // Note that this is an explicit instantiation of a member.
5616 // the original declaration to note that it is an explicit specialization
5617 // (if it was previously an implicit instantiation). This latter step
5618 // makes bookkeeping easier.
5619 if (isa<FunctionDecl>(Member)) {
5620 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5621 if (InstantiationFunction->getTemplateSpecializationKind() ==
5622 TSK_ImplicitInstantiation) {
5623 InstantiationFunction->setTemplateSpecializationKind(
5624 TSK_ExplicitSpecialization);
5625 InstantiationFunction->setLocation(Member->getLocation());
5626 }
5627
5628 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5629 cast<CXXMethodDecl>(InstantiatedFrom),
5630 TSK_ExplicitSpecialization);
5631 MarkUnusedFileScopedDecl(InstantiationFunction);
5632 } else if (isa<VarDecl>(Member)) {
5633 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5634 if (InstantiationVar->getTemplateSpecializationKind() ==
5635 TSK_ImplicitInstantiation) {
5636 InstantiationVar->setTemplateSpecializationKind(
5637 TSK_ExplicitSpecialization);
5638 InstantiationVar->setLocation(Member->getLocation());
5639 }
5640
5641 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5642 cast<VarDecl>(InstantiatedFrom),
5643 TSK_ExplicitSpecialization);
5644 MarkUnusedFileScopedDecl(InstantiationVar);
5645 } else {
5646 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5647 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5648 if (InstantiationClass->getTemplateSpecializationKind() ==
5649 TSK_ImplicitInstantiation) {
5650 InstantiationClass->setTemplateSpecializationKind(
5651 TSK_ExplicitSpecialization);
5652 InstantiationClass->setLocation(Member->getLocation());
5653 }
5654
5655 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5656 cast<CXXRecordDecl>(InstantiatedFrom),
5657 TSK_ExplicitSpecialization);
5658 }
5659
5660 // Save the caller the trouble of having to figure out which declaration
5661 // this specialization matches.
5662 Previous.clear();
5663 Previous.addDecl(Instantiation);
5664 return false;
5665 }
5666
5667 /// \brief Check the scope of an explicit instantiation.
5668 ///
5669 /// \returns true if a serious error occurs, false otherwise.
CheckExplicitInstantiationScope(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName)5670 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5671 SourceLocation InstLoc,
5672 bool WasQualifiedName) {
5673 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5674 DeclContext *CurContext = S.CurContext->getRedeclContext();
5675
5676 if (CurContext->isRecord()) {
5677 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5678 << D;
5679 return true;
5680 }
5681
5682 // C++0x [temp.explicit]p2:
5683 // An explicit instantiation shall appear in an enclosing namespace of its
5684 // template.
5685 //
5686 // This is DR275, which we do not retroactively apply to C++98/03.
5687 if (S.getLangOptions().CPlusPlus0x &&
5688 !CurContext->Encloses(OrigContext)) {
5689 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
5690 S.Diag(InstLoc,
5691 S.getLangOptions().CPlusPlus0x?
5692 diag::err_explicit_instantiation_out_of_scope
5693 : diag::warn_explicit_instantiation_out_of_scope_0x)
5694 << D << NS;
5695 else
5696 S.Diag(InstLoc,
5697 S.getLangOptions().CPlusPlus0x?
5698 diag::err_explicit_instantiation_must_be_global
5699 : diag::warn_explicit_instantiation_out_of_scope_0x)
5700 << D;
5701 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5702 return false;
5703 }
5704
5705 // C++0x [temp.explicit]p2:
5706 // If the name declared in the explicit instantiation is an unqualified
5707 // name, the explicit instantiation shall appear in the namespace where
5708 // its template is declared or, if that namespace is inline (7.3.1), any
5709 // namespace from its enclosing namespace set.
5710 if (WasQualifiedName)
5711 return false;
5712
5713 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5714 return false;
5715
5716 S.Diag(InstLoc,
5717 S.getLangOptions().CPlusPlus0x?
5718 diag::err_explicit_instantiation_unqualified_wrong_namespace
5719 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5720 << D << OrigContext;
5721 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5722 return false;
5723 }
5724
5725 /// \brief Determine whether the given scope specifier has a template-id in it.
ScopeSpecifierHasTemplateId(const CXXScopeSpec & SS)5726 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5727 if (!SS.isSet())
5728 return false;
5729
5730 // C++0x [temp.explicit]p2:
5731 // If the explicit instantiation is for a member function, a member class
5732 // or a static data member of a class template specialization, the name of
5733 // the class template specialization in the qualified-id for the member
5734 // name shall be a simple-template-id.
5735 //
5736 // C++98 has the same restriction, just worded differently.
5737 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5738 NNS; NNS = NNS->getPrefix())
5739 if (const Type *T = NNS->getAsType())
5740 if (isa<TemplateSpecializationType>(T))
5741 return true;
5742
5743 return false;
5744 }
5745
5746 // Explicit instantiation of a class template specialization
5747 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,const CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr)5748 Sema::ActOnExplicitInstantiation(Scope *S,
5749 SourceLocation ExternLoc,
5750 SourceLocation TemplateLoc,
5751 unsigned TagSpec,
5752 SourceLocation KWLoc,
5753 const CXXScopeSpec &SS,
5754 TemplateTy TemplateD,
5755 SourceLocation TemplateNameLoc,
5756 SourceLocation LAngleLoc,
5757 ASTTemplateArgsPtr TemplateArgsIn,
5758 SourceLocation RAngleLoc,
5759 AttributeList *Attr) {
5760 // Find the class template we're specializing
5761 TemplateName Name = TemplateD.getAsVal<TemplateName>();
5762 ClassTemplateDecl *ClassTemplate
5763 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5764
5765 // Check that the specialization uses the same tag kind as the
5766 // original template.
5767 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5768 assert(Kind != TTK_Enum &&
5769 "Invalid enum tag in class template explicit instantiation!");
5770 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5771 Kind, /*isDefinition*/false, KWLoc,
5772 *ClassTemplate->getIdentifier())) {
5773 Diag(KWLoc, diag::err_use_with_wrong_tag)
5774 << ClassTemplate
5775 << FixItHint::CreateReplacement(KWLoc,
5776 ClassTemplate->getTemplatedDecl()->getKindName());
5777 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5778 diag::note_previous_use);
5779 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5780 }
5781
5782 // C++0x [temp.explicit]p2:
5783 // There are two forms of explicit instantiation: an explicit instantiation
5784 // definition and an explicit instantiation declaration. An explicit
5785 // instantiation declaration begins with the extern keyword. [...]
5786 TemplateSpecializationKind TSK
5787 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5788 : TSK_ExplicitInstantiationDeclaration;
5789
5790 // Translate the parser's template argument list in our AST format.
5791 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5792 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5793
5794 // Check that the template argument list is well-formed for this
5795 // template.
5796 llvm::SmallVector<TemplateArgument, 4> Converted;
5797 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5798 TemplateArgs, false, Converted))
5799 return true;
5800
5801 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5802 "Converted template argument list is too short!");
5803
5804 // Find the class template specialization declaration that
5805 // corresponds to these arguments.
5806 void *InsertPos = 0;
5807 ClassTemplateSpecializationDecl *PrevDecl
5808 = ClassTemplate->findSpecialization(Converted.data(),
5809 Converted.size(), InsertPos);
5810
5811 TemplateSpecializationKind PrevDecl_TSK
5812 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5813
5814 // C++0x [temp.explicit]p2:
5815 // [...] An explicit instantiation shall appear in an enclosing
5816 // namespace of its template. [...]
5817 //
5818 // This is C++ DR 275.
5819 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5820 SS.isSet()))
5821 return true;
5822
5823 ClassTemplateSpecializationDecl *Specialization = 0;
5824
5825 bool HasNoEffect = false;
5826 if (PrevDecl) {
5827 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5828 PrevDecl, PrevDecl_TSK,
5829 PrevDecl->getPointOfInstantiation(),
5830 HasNoEffect))
5831 return PrevDecl;
5832
5833 // Even though HasNoEffect == true means that this explicit instantiation
5834 // has no effect on semantics, we go on to put its syntax in the AST.
5835
5836 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5837 PrevDecl_TSK == TSK_Undeclared) {
5838 // Since the only prior class template specialization with these
5839 // arguments was referenced but not declared, reuse that
5840 // declaration node as our own, updating the source location
5841 // for the template name to reflect our new declaration.
5842 // (Other source locations will be updated later.)
5843 Specialization = PrevDecl;
5844 Specialization->setLocation(TemplateNameLoc);
5845 PrevDecl = 0;
5846 }
5847 }
5848
5849 if (!Specialization) {
5850 // Create a new class template specialization declaration node for
5851 // this explicit specialization.
5852 Specialization
5853 = ClassTemplateSpecializationDecl::Create(Context, Kind,
5854 ClassTemplate->getDeclContext(),
5855 KWLoc, TemplateNameLoc,
5856 ClassTemplate,
5857 Converted.data(),
5858 Converted.size(),
5859 PrevDecl);
5860 SetNestedNameSpecifier(Specialization, SS);
5861
5862 if (!HasNoEffect && !PrevDecl) {
5863 // Insert the new specialization.
5864 ClassTemplate->AddSpecialization(Specialization, InsertPos);
5865 }
5866 }
5867
5868 // Build the fully-sugared type for this explicit instantiation as
5869 // the user wrote in the explicit instantiation itself. This means
5870 // that we'll pretty-print the type retrieved from the
5871 // specialization's declaration the way that the user actually wrote
5872 // the explicit instantiation, rather than formatting the name based
5873 // on the "canonical" representation used to store the template
5874 // arguments in the specialization.
5875 TypeSourceInfo *WrittenTy
5876 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5877 TemplateArgs,
5878 Context.getTypeDeclType(Specialization));
5879 Specialization->setTypeAsWritten(WrittenTy);
5880 TemplateArgsIn.release();
5881
5882 // Set source locations for keywords.
5883 Specialization->setExternLoc(ExternLoc);
5884 Specialization->setTemplateKeywordLoc(TemplateLoc);
5885
5886 // Add the explicit instantiation into its lexical context. However,
5887 // since explicit instantiations are never found by name lookup, we
5888 // just put it into the declaration context directly.
5889 Specialization->setLexicalDeclContext(CurContext);
5890 CurContext->addDecl(Specialization);
5891
5892 // Syntax is now OK, so return if it has no other effect on semantics.
5893 if (HasNoEffect) {
5894 // Set the template specialization kind.
5895 Specialization->setTemplateSpecializationKind(TSK);
5896 return Specialization;
5897 }
5898
5899 // C++ [temp.explicit]p3:
5900 // A definition of a class template or class member template
5901 // shall be in scope at the point of the explicit instantiation of
5902 // the class template or class member template.
5903 //
5904 // This check comes when we actually try to perform the
5905 // instantiation.
5906 ClassTemplateSpecializationDecl *Def
5907 = cast_or_null<ClassTemplateSpecializationDecl>(
5908 Specialization->getDefinition());
5909 if (!Def)
5910 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5911 else if (TSK == TSK_ExplicitInstantiationDefinition) {
5912 MarkVTableUsed(TemplateNameLoc, Specialization, true);
5913 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5914 }
5915
5916 // Instantiate the members of this class template specialization.
5917 Def = cast_or_null<ClassTemplateSpecializationDecl>(
5918 Specialization->getDefinition());
5919 if (Def) {
5920 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5921
5922 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5923 // TSK_ExplicitInstantiationDefinition
5924 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5925 TSK == TSK_ExplicitInstantiationDefinition)
5926 Def->setTemplateSpecializationKind(TSK);
5927
5928 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5929 }
5930
5931 // Set the template specialization kind.
5932 Specialization->setTemplateSpecializationKind(TSK);
5933 return Specialization;
5934 }
5935
5936 // Explicit instantiation of a member class of a class template.
5937 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr)5938 Sema::ActOnExplicitInstantiation(Scope *S,
5939 SourceLocation ExternLoc,
5940 SourceLocation TemplateLoc,
5941 unsigned TagSpec,
5942 SourceLocation KWLoc,
5943 CXXScopeSpec &SS,
5944 IdentifierInfo *Name,
5945 SourceLocation NameLoc,
5946 AttributeList *Attr) {
5947
5948 bool Owned = false;
5949 bool IsDependent = false;
5950 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5951 KWLoc, SS, Name, NameLoc, Attr, AS_none,
5952 MultiTemplateParamsArg(*this, 0, 0),
5953 Owned, IsDependent, false, false,
5954 TypeResult());
5955 assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5956
5957 if (!TagD)
5958 return true;
5959
5960 TagDecl *Tag = cast<TagDecl>(TagD);
5961 if (Tag->isEnum()) {
5962 Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5963 << Context.getTypeDeclType(Tag);
5964 return true;
5965 }
5966
5967 if (Tag->isInvalidDecl())
5968 return true;
5969
5970 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5971 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5972 if (!Pattern) {
5973 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5974 << Context.getTypeDeclType(Record);
5975 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5976 return true;
5977 }
5978
5979 // C++0x [temp.explicit]p2:
5980 // If the explicit instantiation is for a class or member class, the
5981 // elaborated-type-specifier in the declaration shall include a
5982 // simple-template-id.
5983 //
5984 // C++98 has the same restriction, just worded differently.
5985 if (!ScopeSpecifierHasTemplateId(SS))
5986 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5987 << Record << SS.getRange();
5988
5989 // C++0x [temp.explicit]p2:
5990 // There are two forms of explicit instantiation: an explicit instantiation
5991 // definition and an explicit instantiation declaration. An explicit
5992 // instantiation declaration begins with the extern keyword. [...]
5993 TemplateSpecializationKind TSK
5994 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5995 : TSK_ExplicitInstantiationDeclaration;
5996
5997 // C++0x [temp.explicit]p2:
5998 // [...] An explicit instantiation shall appear in an enclosing
5999 // namespace of its template. [...]
6000 //
6001 // This is C++ DR 275.
6002 CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
6003
6004 // Verify that it is okay to explicitly instantiate here.
6005 CXXRecordDecl *PrevDecl
6006 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
6007 if (!PrevDecl && Record->getDefinition())
6008 PrevDecl = Record;
6009 if (PrevDecl) {
6010 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6011 bool HasNoEffect = false;
6012 assert(MSInfo && "No member specialization information?");
6013 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6014 PrevDecl,
6015 MSInfo->getTemplateSpecializationKind(),
6016 MSInfo->getPointOfInstantiation(),
6017 HasNoEffect))
6018 return true;
6019 if (HasNoEffect)
6020 return TagD;
6021 }
6022
6023 CXXRecordDecl *RecordDef
6024 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6025 if (!RecordDef) {
6026 // C++ [temp.explicit]p3:
6027 // A definition of a member class of a class template shall be in scope
6028 // at the point of an explicit instantiation of the member class.
6029 CXXRecordDecl *Def
6030 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6031 if (!Def) {
6032 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6033 << 0 << Record->getDeclName() << Record->getDeclContext();
6034 Diag(Pattern->getLocation(), diag::note_forward_declaration)
6035 << Pattern;
6036 return true;
6037 } else {
6038 if (InstantiateClass(NameLoc, Record, Def,
6039 getTemplateInstantiationArgs(Record),
6040 TSK))
6041 return true;
6042
6043 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6044 if (!RecordDef)
6045 return true;
6046 }
6047 }
6048
6049 // Instantiate all of the members of the class.
6050 InstantiateClassMembers(NameLoc, RecordDef,
6051 getTemplateInstantiationArgs(Record), TSK);
6052
6053 if (TSK == TSK_ExplicitInstantiationDefinition)
6054 MarkVTableUsed(NameLoc, RecordDef, true);
6055
6056 // FIXME: We don't have any representation for explicit instantiations of
6057 // member classes. Such a representation is not needed for compilation, but it
6058 // should be available for clients that want to see all of the declarations in
6059 // the source code.
6060 return TagD;
6061 }
6062
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,Declarator & D)6063 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6064 SourceLocation ExternLoc,
6065 SourceLocation TemplateLoc,
6066 Declarator &D) {
6067 // Explicit instantiations always require a name.
6068 // TODO: check if/when DNInfo should replace Name.
6069 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6070 DeclarationName Name = NameInfo.getName();
6071 if (!Name) {
6072 if (!D.isInvalidType())
6073 Diag(D.getDeclSpec().getSourceRange().getBegin(),
6074 diag::err_explicit_instantiation_requires_name)
6075 << D.getDeclSpec().getSourceRange()
6076 << D.getSourceRange();
6077
6078 return true;
6079 }
6080
6081 // The scope passed in may not be a decl scope. Zip up the scope tree until
6082 // we find one that is.
6083 while ((S->getFlags() & Scope::DeclScope) == 0 ||
6084 (S->getFlags() & Scope::TemplateParamScope) != 0)
6085 S = S->getParent();
6086
6087 // Determine the type of the declaration.
6088 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6089 QualType R = T->getType();
6090 if (R.isNull())
6091 return true;
6092
6093 // C++ [dcl.stc]p1:
6094 // A storage-class-specifier shall not be specified in [...] an explicit
6095 // instantiation (14.7.2) directive.
6096 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6097 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6098 << Name;
6099 return true;
6100 } else if (D.getDeclSpec().getStorageClassSpec()
6101 != DeclSpec::SCS_unspecified) {
6102 // Complain about then remove the storage class specifier.
6103 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6104 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6105
6106 D.getMutableDeclSpec().ClearStorageClassSpecs();
6107 }
6108
6109 // C++0x [temp.explicit]p1:
6110 // [...] An explicit instantiation of a function template shall not use the
6111 // inline or constexpr specifiers.
6112 // Presumably, this also applies to member functions of class templates as
6113 // well.
6114 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
6115 Diag(D.getDeclSpec().getInlineSpecLoc(),
6116 diag::err_explicit_instantiation_inline)
6117 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6118
6119 // FIXME: check for constexpr specifier.
6120
6121 // C++0x [temp.explicit]p2:
6122 // There are two forms of explicit instantiation: an explicit instantiation
6123 // definition and an explicit instantiation declaration. An explicit
6124 // instantiation declaration begins with the extern keyword. [...]
6125 TemplateSpecializationKind TSK
6126 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6127 : TSK_ExplicitInstantiationDeclaration;
6128
6129 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6130 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6131
6132 if (!R->isFunctionType()) {
6133 // C++ [temp.explicit]p1:
6134 // A [...] static data member of a class template can be explicitly
6135 // instantiated from the member definition associated with its class
6136 // template.
6137 if (Previous.isAmbiguous())
6138 return true;
6139
6140 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6141 if (!Prev || !Prev->isStaticDataMember()) {
6142 // We expect to see a data data member here.
6143 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6144 << Name;
6145 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6146 P != PEnd; ++P)
6147 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6148 return true;
6149 }
6150
6151 if (!Prev->getInstantiatedFromStaticDataMember()) {
6152 // FIXME: Check for explicit specialization?
6153 Diag(D.getIdentifierLoc(),
6154 diag::err_explicit_instantiation_data_member_not_instantiated)
6155 << Prev;
6156 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6157 // FIXME: Can we provide a note showing where this was declared?
6158 return true;
6159 }
6160
6161 // C++0x [temp.explicit]p2:
6162 // If the explicit instantiation is for a member function, a member class
6163 // or a static data member of a class template specialization, the name of
6164 // the class template specialization in the qualified-id for the member
6165 // name shall be a simple-template-id.
6166 //
6167 // C++98 has the same restriction, just worded differently.
6168 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6169 Diag(D.getIdentifierLoc(),
6170 diag::ext_explicit_instantiation_without_qualified_id)
6171 << Prev << D.getCXXScopeSpec().getRange();
6172
6173 // Check the scope of this explicit instantiation.
6174 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6175
6176 // Verify that it is okay to explicitly instantiate here.
6177 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6178 assert(MSInfo && "Missing static data member specialization info?");
6179 bool HasNoEffect = false;
6180 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6181 MSInfo->getTemplateSpecializationKind(),
6182 MSInfo->getPointOfInstantiation(),
6183 HasNoEffect))
6184 return true;
6185 if (HasNoEffect)
6186 return (Decl*) 0;
6187
6188 // Instantiate static data member.
6189 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6190 if (TSK == TSK_ExplicitInstantiationDefinition)
6191 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6192
6193 // FIXME: Create an ExplicitInstantiation node?
6194 return (Decl*) 0;
6195 }
6196
6197 // If the declarator is a template-id, translate the parser's template
6198 // argument list into our AST format.
6199 bool HasExplicitTemplateArgs = false;
6200 TemplateArgumentListInfo TemplateArgs;
6201 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6202 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6203 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6204 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6205 ASTTemplateArgsPtr TemplateArgsPtr(*this,
6206 TemplateId->getTemplateArgs(),
6207 TemplateId->NumArgs);
6208 translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6209 HasExplicitTemplateArgs = true;
6210 TemplateArgsPtr.release();
6211 }
6212
6213 // C++ [temp.explicit]p1:
6214 // A [...] function [...] can be explicitly instantiated from its template.
6215 // A member function [...] of a class template can be explicitly
6216 // instantiated from the member definition associated with its class
6217 // template.
6218 UnresolvedSet<8> Matches;
6219 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6220 P != PEnd; ++P) {
6221 NamedDecl *Prev = *P;
6222 if (!HasExplicitTemplateArgs) {
6223 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6224 if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6225 Matches.clear();
6226
6227 Matches.addDecl(Method, P.getAccess());
6228 if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6229 break;
6230 }
6231 }
6232 }
6233
6234 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6235 if (!FunTmpl)
6236 continue;
6237
6238 TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6239 FunctionDecl *Specialization = 0;
6240 if (TemplateDeductionResult TDK
6241 = DeduceTemplateArguments(FunTmpl,
6242 (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6243 R, Specialization, Info)) {
6244 // FIXME: Keep track of almost-matches?
6245 (void)TDK;
6246 continue;
6247 }
6248
6249 Matches.addDecl(Specialization, P.getAccess());
6250 }
6251
6252 // Find the most specialized function template specialization.
6253 UnresolvedSetIterator Result
6254 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6255 D.getIdentifierLoc(),
6256 PDiag(diag::err_explicit_instantiation_not_known) << Name,
6257 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6258 PDiag(diag::note_explicit_instantiation_candidate));
6259
6260 if (Result == Matches.end())
6261 return true;
6262
6263 // Ignore access control bits, we don't need them for redeclaration checking.
6264 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6265
6266 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6267 Diag(D.getIdentifierLoc(),
6268 diag::err_explicit_instantiation_member_function_not_instantiated)
6269 << Specialization
6270 << (Specialization->getTemplateSpecializationKind() ==
6271 TSK_ExplicitSpecialization);
6272 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6273 return true;
6274 }
6275
6276 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
6277 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6278 PrevDecl = Specialization;
6279
6280 if (PrevDecl) {
6281 bool HasNoEffect = false;
6282 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6283 PrevDecl,
6284 PrevDecl->getTemplateSpecializationKind(),
6285 PrevDecl->getPointOfInstantiation(),
6286 HasNoEffect))
6287 return true;
6288
6289 // FIXME: We may still want to build some representation of this
6290 // explicit specialization.
6291 if (HasNoEffect)
6292 return (Decl*) 0;
6293 }
6294
6295 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6296
6297 if (TSK == TSK_ExplicitInstantiationDefinition)
6298 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6299
6300 // C++0x [temp.explicit]p2:
6301 // If the explicit instantiation is for a member function, a member class
6302 // or a static data member of a class template specialization, the name of
6303 // the class template specialization in the qualified-id for the member
6304 // name shall be a simple-template-id.
6305 //
6306 // C++98 has the same restriction, just worded differently.
6307 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6308 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6309 D.getCXXScopeSpec().isSet() &&
6310 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6311 Diag(D.getIdentifierLoc(),
6312 diag::ext_explicit_instantiation_without_qualified_id)
6313 << Specialization << D.getCXXScopeSpec().getRange();
6314
6315 CheckExplicitInstantiationScope(*this,
6316 FunTmpl? (NamedDecl *)FunTmpl
6317 : Specialization->getInstantiatedFromMemberFunction(),
6318 D.getIdentifierLoc(),
6319 D.getCXXScopeSpec().isSet());
6320
6321 // FIXME: Create some kind of ExplicitInstantiationDecl here.
6322 return (Decl*) 0;
6323 }
6324
6325 TypeResult
ActOnDependentTag(Scope * S,unsigned TagSpec,TagUseKind TUK,const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation TagLoc,SourceLocation NameLoc)6326 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6327 const CXXScopeSpec &SS, IdentifierInfo *Name,
6328 SourceLocation TagLoc, SourceLocation NameLoc) {
6329 // This has to hold, because SS is expected to be defined.
6330 assert(Name && "Expected a name in a dependent tag");
6331
6332 NestedNameSpecifier *NNS
6333 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6334 if (!NNS)
6335 return true;
6336
6337 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6338
6339 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6340 Diag(NameLoc, diag::err_dependent_tag_decl)
6341 << (TUK == TUK_Definition) << Kind << SS.getRange();
6342 return true;
6343 }
6344
6345 // Create the resulting type.
6346 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6347 QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6348
6349 // Create type-source location information for this type.
6350 TypeLocBuilder TLB;
6351 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6352 TL.setKeywordLoc(TagLoc);
6353 TL.setQualifierLoc(SS.getWithLocInContext(Context));
6354 TL.setNameLoc(NameLoc);
6355 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6356 }
6357
6358 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,const IdentifierInfo & II,SourceLocation IdLoc)6359 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6360 const CXXScopeSpec &SS, const IdentifierInfo &II,
6361 SourceLocation IdLoc) {
6362 if (SS.isInvalid())
6363 return true;
6364
6365 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
6366 !getLangOptions().CPlusPlus0x)
6367 Diag(TypenameLoc, diag::ext_typename_outside_of_template)
6368 << FixItHint::CreateRemoval(TypenameLoc);
6369
6370 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6371 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6372 TypenameLoc, QualifierLoc, II, IdLoc);
6373 if (T.isNull())
6374 return true;
6375
6376 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6377 if (isa<DependentNameType>(T)) {
6378 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6379 TL.setKeywordLoc(TypenameLoc);
6380 TL.setQualifierLoc(QualifierLoc);
6381 TL.setNameLoc(IdLoc);
6382 } else {
6383 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6384 TL.setKeywordLoc(TypenameLoc);
6385 TL.setQualifierLoc(QualifierLoc);
6386 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6387 }
6388
6389 return CreateParsedType(T, TSI);
6390 }
6391
6392 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,SourceLocation TemplateLoc,TemplateTy TemplateIn,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)6393 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6394 const CXXScopeSpec &SS,
6395 SourceLocation TemplateLoc,
6396 TemplateTy TemplateIn,
6397 SourceLocation TemplateNameLoc,
6398 SourceLocation LAngleLoc,
6399 ASTTemplateArgsPtr TemplateArgsIn,
6400 SourceLocation RAngleLoc) {
6401 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
6402 !getLangOptions().CPlusPlus0x)
6403 Diag(TypenameLoc, diag::ext_typename_outside_of_template)
6404 << FixItHint::CreateRemoval(TypenameLoc);
6405
6406 // Translate the parser's template argument list in our AST format.
6407 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6408 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6409
6410 TemplateName Template = TemplateIn.get();
6411 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6412 // Construct a dependent template specialization type.
6413 assert(DTN && "dependent template has non-dependent name?");
6414 assert(DTN->getQualifier()
6415 == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6416 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6417 DTN->getQualifier(),
6418 DTN->getIdentifier(),
6419 TemplateArgs);
6420
6421 // Create source-location information for this type.
6422 TypeLocBuilder Builder;
6423 DependentTemplateSpecializationTypeLoc SpecTL
6424 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6425 SpecTL.setLAngleLoc(LAngleLoc);
6426 SpecTL.setRAngleLoc(RAngleLoc);
6427 SpecTL.setKeywordLoc(TypenameLoc);
6428 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6429 SpecTL.setNameLoc(TemplateNameLoc);
6430 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6431 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6432 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6433 }
6434
6435 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6436 if (T.isNull())
6437 return true;
6438
6439 // Provide source-location information for the template specialization
6440 // type.
6441 TypeLocBuilder Builder;
6442 TemplateSpecializationTypeLoc SpecTL
6443 = Builder.push<TemplateSpecializationTypeLoc>(T);
6444
6445 // FIXME: No place to set the location of the 'template' keyword!
6446 SpecTL.setLAngleLoc(LAngleLoc);
6447 SpecTL.setRAngleLoc(RAngleLoc);
6448 SpecTL.setTemplateNameLoc(TemplateNameLoc);
6449 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6450 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6451
6452 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6453 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6454 TL.setKeywordLoc(TypenameLoc);
6455 TL.setQualifierLoc(SS.getWithLocInContext(Context));
6456
6457 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6458 return CreateParsedType(T, TSI);
6459 }
6460
6461
6462 /// \brief Build the type that describes a C++ typename specifier,
6463 /// e.g., "typename T::type".
6464 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc)6465 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6466 SourceLocation KeywordLoc,
6467 NestedNameSpecifierLoc QualifierLoc,
6468 const IdentifierInfo &II,
6469 SourceLocation IILoc) {
6470 CXXScopeSpec SS;
6471 SS.Adopt(QualifierLoc);
6472
6473 DeclContext *Ctx = computeDeclContext(SS);
6474 if (!Ctx) {
6475 // If the nested-name-specifier is dependent and couldn't be
6476 // resolved to a type, build a typename type.
6477 assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
6478 return Context.getDependentNameType(Keyword,
6479 QualifierLoc.getNestedNameSpecifier(),
6480 &II);
6481 }
6482
6483 // If the nested-name-specifier refers to the current instantiation,
6484 // the "typename" keyword itself is superfluous. In C++03, the
6485 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6486 // allows such extraneous "typename" keywords, and we retroactively
6487 // apply this DR to C++03 code with only a warning. In any case we continue.
6488
6489 if (RequireCompleteDeclContext(SS, Ctx))
6490 return QualType();
6491
6492 DeclarationName Name(&II);
6493 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6494 LookupQualifiedName(Result, Ctx);
6495 unsigned DiagID = 0;
6496 Decl *Referenced = 0;
6497 switch (Result.getResultKind()) {
6498 case LookupResult::NotFound:
6499 DiagID = diag::err_typename_nested_not_found;
6500 break;
6501
6502 case LookupResult::FoundUnresolvedValue: {
6503 // We found a using declaration that is a value. Most likely, the using
6504 // declaration itself is meant to have the 'typename' keyword.
6505 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6506 IILoc);
6507 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6508 << Name << Ctx << FullRange;
6509 if (UnresolvedUsingValueDecl *Using
6510 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6511 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6512 Diag(Loc, diag::note_using_value_decl_missing_typename)
6513 << FixItHint::CreateInsertion(Loc, "typename ");
6514 }
6515 }
6516 // Fall through to create a dependent typename type, from which we can recover
6517 // better.
6518
6519 case LookupResult::NotFoundInCurrentInstantiation:
6520 // Okay, it's a member of an unknown instantiation.
6521 return Context.getDependentNameType(Keyword,
6522 QualifierLoc.getNestedNameSpecifier(),
6523 &II);
6524
6525 case LookupResult::Found:
6526 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6527 // We found a type. Build an ElaboratedType, since the
6528 // typename-specifier was just sugar.
6529 return Context.getElaboratedType(ETK_Typename,
6530 QualifierLoc.getNestedNameSpecifier(),
6531 Context.getTypeDeclType(Type));
6532 }
6533
6534 DiagID = diag::err_typename_nested_not_type;
6535 Referenced = Result.getFoundDecl();
6536 break;
6537
6538
6539 llvm_unreachable("unresolved using decl in non-dependent context");
6540 return QualType();
6541
6542 case LookupResult::FoundOverloaded:
6543 DiagID = diag::err_typename_nested_not_type;
6544 Referenced = *Result.begin();
6545 break;
6546
6547 case LookupResult::Ambiguous:
6548 return QualType();
6549 }
6550
6551 // If we get here, it's because name lookup did not find a
6552 // type. Emit an appropriate diagnostic and return an error.
6553 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6554 IILoc);
6555 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6556 if (Referenced)
6557 Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6558 << Name;
6559 return QualType();
6560 }
6561
6562 namespace {
6563 // See Sema::RebuildTypeInCurrentInstantiation
6564 class CurrentInstantiationRebuilder
6565 : public TreeTransform<CurrentInstantiationRebuilder> {
6566 SourceLocation Loc;
6567 DeclarationName Entity;
6568
6569 public:
6570 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6571
CurrentInstantiationRebuilder(Sema & SemaRef,SourceLocation Loc,DeclarationName Entity)6572 CurrentInstantiationRebuilder(Sema &SemaRef,
6573 SourceLocation Loc,
6574 DeclarationName Entity)
6575 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6576 Loc(Loc), Entity(Entity) { }
6577
6578 /// \brief Determine whether the given type \p T has already been
6579 /// transformed.
6580 ///
6581 /// For the purposes of type reconstruction, a type has already been
6582 /// transformed if it is NULL or if it is not dependent.
AlreadyTransformed(QualType T)6583 bool AlreadyTransformed(QualType T) {
6584 return T.isNull() || !T->isDependentType();
6585 }
6586
6587 /// \brief Returns the location of the entity whose type is being
6588 /// rebuilt.
getBaseLocation()6589 SourceLocation getBaseLocation() { return Loc; }
6590
6591 /// \brief Returns the name of the entity whose type is being rebuilt.
getBaseEntity()6592 DeclarationName getBaseEntity() { return Entity; }
6593
6594 /// \brief Sets the "base" location and entity when that
6595 /// information is known based on another transformation.
setBase(SourceLocation Loc,DeclarationName Entity)6596 void setBase(SourceLocation Loc, DeclarationName Entity) {
6597 this->Loc = Loc;
6598 this->Entity = Entity;
6599 }
6600 };
6601 }
6602
6603 /// \brief Rebuilds a type within the context of the current instantiation.
6604 ///
6605 /// The type \p T is part of the type of an out-of-line member definition of
6606 /// a class template (or class template partial specialization) that was parsed
6607 /// and constructed before we entered the scope of the class template (or
6608 /// partial specialization thereof). This routine will rebuild that type now
6609 /// that we have entered the declarator's scope, which may produce different
6610 /// canonical types, e.g.,
6611 ///
6612 /// \code
6613 /// template<typename T>
6614 /// struct X {
6615 /// typedef T* pointer;
6616 /// pointer data();
6617 /// };
6618 ///
6619 /// template<typename T>
6620 /// typename X<T>::pointer X<T>::data() { ... }
6621 /// \endcode
6622 ///
6623 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6624 /// since we do not know that we can look into X<T> when we parsed the type.
6625 /// This function will rebuild the type, performing the lookup of "pointer"
6626 /// in X<T> and returning an ElaboratedType whose canonical type is the same
6627 /// as the canonical type of T*, allowing the return types of the out-of-line
6628 /// definition and the declaration to match.
RebuildTypeInCurrentInstantiation(TypeSourceInfo * T,SourceLocation Loc,DeclarationName Name)6629 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6630 SourceLocation Loc,
6631 DeclarationName Name) {
6632 if (!T || !T->getType()->isDependentType())
6633 return T;
6634
6635 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6636 return Rebuilder.TransformType(T);
6637 }
6638
RebuildExprInCurrentInstantiation(Expr * E)6639 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6640 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6641 DeclarationName());
6642 return Rebuilder.TransformExpr(E);
6643 }
6644
RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec & SS)6645 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6646 if (SS.isInvalid())
6647 return true;
6648
6649 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6650 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6651 DeclarationName());
6652 NestedNameSpecifierLoc Rebuilt
6653 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
6654 if (!Rebuilt)
6655 return true;
6656
6657 SS.Adopt(Rebuilt);
6658 return false;
6659 }
6660
6661 /// \brief Produces a formatted string that describes the binding of
6662 /// template parameters to template arguments.
6663 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgumentList & Args)6664 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6665 const TemplateArgumentList &Args) {
6666 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6667 }
6668
6669 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgument * Args,unsigned NumArgs)6670 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6671 const TemplateArgument *Args,
6672 unsigned NumArgs) {
6673 llvm::SmallString<128> Str;
6674 llvm::raw_svector_ostream Out(Str);
6675
6676 if (!Params || Params->size() == 0 || NumArgs == 0)
6677 return std::string();
6678
6679 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6680 if (I >= NumArgs)
6681 break;
6682
6683 if (I == 0)
6684 Out << "[with ";
6685 else
6686 Out << ", ";
6687
6688 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6689 Out << Id->getName();
6690 } else {
6691 Out << '$' << I;
6692 }
6693
6694 Out << " = ";
6695 Args[I].print(Context.PrintingPolicy, Out);
6696 }
6697
6698 Out << ']';
6699 return Out.str();
6700 }
6701
MarkAsLateParsedTemplate(FunctionDecl * FD,bool Flag)6702 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
6703 if (!FD)
6704 return;
6705 FD->setLateTemplateParsed(Flag);
6706 }
6707
IsInsideALocalClassWithinATemplateFunction()6708 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
6709 DeclContext *DC = CurContext;
6710
6711 while (DC) {
6712 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
6713 const FunctionDecl *FD = RD->isLocalClass();
6714 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
6715 } else if (DC->isTranslationUnit() || DC->isNamespace())
6716 return false;
6717
6718 DC = DC->getParent();
6719 }
6720 return false;
6721 }
6722