1 //===-- AutoUpgrade.cpp - Implement auto-upgrade helper functions ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the auto-upgrade helper functions
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/AutoUpgrade.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Function.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Module.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Support/CallSite.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/IRBuilder.h"
24 #include <cstring>
25 using namespace llvm;
26
27
UpgradeIntrinsicFunction1(Function * F,Function * & NewFn)28 static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) {
29 assert(F && "Illegal to upgrade a non-existent Function.");
30
31 // Quickly eliminate it, if it's not a candidate.
32 StringRef Name = F->getName();
33 if (Name.size() <= 8 || !Name.startswith("llvm."))
34 return false;
35 Name = Name.substr(5); // Strip off "llvm."
36
37 FunctionType *FTy = F->getFunctionType();
38 Module *M = F->getParent();
39
40 switch (Name[0]) {
41 default: break;
42 case 'p':
43 // This upgrades the llvm.prefetch intrinsic to accept one more parameter,
44 // which is a instruction / data cache identifier. The old version only
45 // implicitly accepted the data version.
46 if (Name == "prefetch") {
47 // Don't do anything if it has the correct number of arguments already
48 if (FTy->getNumParams() == 4)
49 break;
50
51 assert(FTy->getNumParams() == 3 && "old prefetch takes 3 args!");
52 // We first need to change the name of the old (bad) intrinsic, because
53 // its type is incorrect, but we cannot overload that name. We
54 // arbitrarily unique it here allowing us to construct a correctly named
55 // and typed function below.
56 std::string NameTmp = F->getName();
57 F->setName("");
58 NewFn = cast<Function>(M->getOrInsertFunction(NameTmp,
59 FTy->getReturnType(),
60 FTy->getParamType(0),
61 FTy->getParamType(1),
62 FTy->getParamType(2),
63 FTy->getParamType(2),
64 (Type*)0));
65 return true;
66 }
67
68 break;
69 case 'x': {
70 const char *NewFnName = NULL;
71 // This fixes the poorly named crc32 intrinsics.
72 if (Name == "x86.sse42.crc32.8")
73 NewFnName = "llvm.x86.sse42.crc32.32.8";
74 else if (Name == "x86.sse42.crc32.16")
75 NewFnName = "llvm.x86.sse42.crc32.32.16";
76 else if (Name == "x86.sse42.crc32.32")
77 NewFnName = "llvm.x86.sse42.crc32.32.32";
78 else if (Name == "x86.sse42.crc64.8")
79 NewFnName = "llvm.x86.sse42.crc32.64.8";
80 else if (Name == "x86.sse42.crc64.64")
81 NewFnName = "llvm.x86.sse42.crc32.64.64";
82
83 if (NewFnName) {
84 F->setName(NewFnName);
85 NewFn = F;
86 return true;
87 }
88
89 // Calls to these instructions are transformed into unaligned loads.
90 if (Name == "x86.sse.loadu.ps" || Name == "x86.sse2.loadu.dq" ||
91 Name == "x86.sse2.loadu.pd")
92 return true;
93
94 // Calls to these instructions are transformed into nontemporal stores.
95 if (Name == "x86.sse.movnt.ps" || Name == "x86.sse2.movnt.dq" ||
96 Name == "x86.sse2.movnt.pd" || Name == "x86.sse2.movnt.i")
97 return true;
98
99 break;
100 }
101 }
102
103 // This may not belong here. This function is effectively being overloaded
104 // to both detect an intrinsic which needs upgrading, and to provide the
105 // upgraded form of the intrinsic. We should perhaps have two separate
106 // functions for this.
107 return false;
108 }
109
UpgradeIntrinsicFunction(Function * F,Function * & NewFn)110 bool llvm::UpgradeIntrinsicFunction(Function *F, Function *&NewFn) {
111 NewFn = 0;
112 bool Upgraded = UpgradeIntrinsicFunction1(F, NewFn);
113
114 // Upgrade intrinsic attributes. This does not change the function.
115 if (NewFn)
116 F = NewFn;
117 if (unsigned id = F->getIntrinsicID())
118 F->setAttributes(Intrinsic::getAttributes((Intrinsic::ID)id));
119 return Upgraded;
120 }
121
UpgradeGlobalVariable(GlobalVariable * GV)122 bool llvm::UpgradeGlobalVariable(GlobalVariable *GV) {
123 // Nothing to do yet.
124 return false;
125 }
126
127 // UpgradeIntrinsicCall - Upgrade a call to an old intrinsic to be a call the
128 // upgraded intrinsic. All argument and return casting must be provided in
129 // order to seamlessly integrate with existing context.
UpgradeIntrinsicCall(CallInst * CI,Function * NewFn)130 void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
131 Function *F = CI->getCalledFunction();
132 LLVMContext &C = CI->getContext();
133 ImmutableCallSite CS(CI);
134
135 assert(F && "CallInst has no function associated with it.");
136
137 if (!NewFn) {
138 if (F->getName() == "llvm.x86.sse.loadu.ps" ||
139 F->getName() == "llvm.x86.sse2.loadu.dq" ||
140 F->getName() == "llvm.x86.sse2.loadu.pd") {
141 // Convert to a native, unaligned load.
142 Type *VecTy = CI->getType();
143 Type *IntTy = IntegerType::get(C, 128);
144 IRBuilder<> Builder(C);
145 Builder.SetInsertPoint(CI->getParent(), CI);
146
147 Value *BC = Builder.CreateBitCast(CI->getArgOperand(0),
148 PointerType::getUnqual(IntTy),
149 "cast");
150 LoadInst *LI = Builder.CreateLoad(BC, CI->getName());
151 LI->setAlignment(1); // Unaligned load.
152 BC = Builder.CreateBitCast(LI, VecTy, "new.cast");
153
154 // Fix up all the uses with our new load.
155 if (!CI->use_empty())
156 CI->replaceAllUsesWith(BC);
157
158 // Remove intrinsic.
159 CI->eraseFromParent();
160 } else if (F->getName() == "llvm.x86.sse.movnt.ps" ||
161 F->getName() == "llvm.x86.sse2.movnt.dq" ||
162 F->getName() == "llvm.x86.sse2.movnt.pd" ||
163 F->getName() == "llvm.x86.sse2.movnt.i") {
164 IRBuilder<> Builder(C);
165 Builder.SetInsertPoint(CI->getParent(), CI);
166
167 Module *M = F->getParent();
168 SmallVector<Value *, 1> Elts;
169 Elts.push_back(ConstantInt::get(Type::getInt32Ty(C), 1));
170 MDNode *Node = MDNode::get(C, Elts);
171
172 Value *Arg0 = CI->getArgOperand(0);
173 Value *Arg1 = CI->getArgOperand(1);
174
175 // Convert the type of the pointer to a pointer to the stored type.
176 Value *BC = Builder.CreateBitCast(Arg0,
177 PointerType::getUnqual(Arg1->getType()),
178 "cast");
179 StoreInst *SI = Builder.CreateStore(Arg1, BC);
180 SI->setMetadata(M->getMDKindID("nontemporal"), Node);
181 SI->setAlignment(16);
182
183 // Remove intrinsic.
184 CI->eraseFromParent();
185 } else {
186 llvm_unreachable("Unknown function for CallInst upgrade.");
187 }
188 return;
189 }
190
191 switch (NewFn->getIntrinsicID()) {
192 case Intrinsic::prefetch: {
193 IRBuilder<> Builder(C);
194 Builder.SetInsertPoint(CI->getParent(), CI);
195 llvm::Type *I32Ty = llvm::Type::getInt32Ty(CI->getContext());
196
197 // Add the extra "data cache" argument
198 Value *Operands[4] = { CI->getArgOperand(0), CI->getArgOperand(1),
199 CI->getArgOperand(2),
200 llvm::ConstantInt::get(I32Ty, 1) };
201 CallInst *NewCI = CallInst::Create(NewFn, Operands,
202 CI->getName(), CI);
203 NewCI->setTailCall(CI->isTailCall());
204 NewCI->setCallingConv(CI->getCallingConv());
205 // Handle any uses of the old CallInst.
206 if (!CI->use_empty())
207 // Replace all uses of the old call with the new cast which has the
208 // correct type.
209 CI->replaceAllUsesWith(NewCI);
210
211 // Clean up the old call now that it has been completely upgraded.
212 CI->eraseFromParent();
213 break;
214 }
215 }
216 }
217
218 // This tests each Function to determine if it needs upgrading. When we find
219 // one we are interested in, we then upgrade all calls to reflect the new
220 // function.
UpgradeCallsToIntrinsic(Function * F)221 void llvm::UpgradeCallsToIntrinsic(Function* F) {
222 assert(F && "Illegal attempt to upgrade a non-existent intrinsic.");
223
224 // Upgrade the function and check if it is a totaly new function.
225 Function *NewFn;
226 if (UpgradeIntrinsicFunction(F, NewFn)) {
227 if (NewFn != F) {
228 // Replace all uses to the old function with the new one if necessary.
229 for (Value::use_iterator UI = F->use_begin(), UE = F->use_end();
230 UI != UE; ) {
231 if (CallInst *CI = dyn_cast<CallInst>(*UI++))
232 UpgradeIntrinsicCall(CI, NewFn);
233 }
234 // Remove old function, no longer used, from the module.
235 F->eraseFromParent();
236 }
237 }
238 }
239
240 /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
241 /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
242 /// strips that use.
CheckDebugInfoIntrinsics(Module * M)243 void llvm::CheckDebugInfoIntrinsics(Module *M) {
244 if (Function *FuncStart = M->getFunction("llvm.dbg.func.start")) {
245 while (!FuncStart->use_empty())
246 cast<CallInst>(FuncStart->use_back())->eraseFromParent();
247 FuncStart->eraseFromParent();
248 }
249
250 if (Function *StopPoint = M->getFunction("llvm.dbg.stoppoint")) {
251 while (!StopPoint->use_empty())
252 cast<CallInst>(StopPoint->use_back())->eraseFromParent();
253 StopPoint->eraseFromParent();
254 }
255
256 if (Function *RegionStart = M->getFunction("llvm.dbg.region.start")) {
257 while (!RegionStart->use_empty())
258 cast<CallInst>(RegionStart->use_back())->eraseFromParent();
259 RegionStart->eraseFromParent();
260 }
261
262 if (Function *RegionEnd = M->getFunction("llvm.dbg.region.end")) {
263 while (!RegionEnd->use_empty())
264 cast<CallInst>(RegionEnd->use_back())->eraseFromParent();
265 RegionEnd->eraseFromParent();
266 }
267
268 if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
269 if (!Declare->use_empty()) {
270 DbgDeclareInst *DDI = cast<DbgDeclareInst>(Declare->use_back());
271 if (!isa<MDNode>(DDI->getArgOperand(0)) ||
272 !isa<MDNode>(DDI->getArgOperand(1))) {
273 while (!Declare->use_empty()) {
274 CallInst *CI = cast<CallInst>(Declare->use_back());
275 CI->eraseFromParent();
276 }
277 Declare->eraseFromParent();
278 }
279 }
280 }
281 }
282