1 //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the DenseMap class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_ADT_DENSEMAP_H 15 #define LLVM_ADT_DENSEMAP_H 16 17 #include "llvm/Support/MathExtras.h" 18 #include "llvm/Support/PointerLikeTypeTraits.h" 19 #include "llvm/Support/type_traits.h" 20 #include "llvm/ADT/DenseMapInfo.h" 21 #include <algorithm> 22 #include <iterator> 23 #include <new> 24 #include <utility> 25 #include <cassert> 26 #include <cstddef> 27 #include <cstring> 28 29 namespace llvm { 30 31 template<typename KeyT, typename ValueT, 32 typename KeyInfoT = DenseMapInfo<KeyT>, 33 typename ValueInfoT = DenseMapInfo<ValueT>, bool IsConst = false> 34 class DenseMapIterator; 35 36 template<typename KeyT, typename ValueT, 37 typename KeyInfoT = DenseMapInfo<KeyT>, 38 typename ValueInfoT = DenseMapInfo<ValueT> > 39 class DenseMap { 40 typedef std::pair<KeyT, ValueT> BucketT; 41 unsigned NumBuckets; 42 BucketT *Buckets; 43 44 unsigned NumEntries; 45 unsigned NumTombstones; 46 public: 47 typedef KeyT key_type; 48 typedef ValueT mapped_type; 49 typedef BucketT value_type; 50 DenseMap(const DenseMap & other)51 DenseMap(const DenseMap &other) { 52 NumBuckets = 0; 53 CopyFrom(other); 54 } 55 56 explicit DenseMap(unsigned NumInitBuckets = 0) { 57 init(NumInitBuckets); 58 } 59 60 template<typename InputIt> DenseMap(const InputIt & I,const InputIt & E)61 DenseMap(const InputIt &I, const InputIt &E) { 62 init(NextPowerOf2(std::distance(I, E))); 63 insert(I, E); 64 } 65 ~DenseMap()66 ~DenseMap() { 67 const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); 68 for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) { 69 if (!KeyInfoT::isEqual(P->first, EmptyKey) && 70 !KeyInfoT::isEqual(P->first, TombstoneKey)) 71 P->second.~ValueT(); 72 P->first.~KeyT(); 73 } 74 #ifndef NDEBUG 75 if (NumBuckets) 76 memset((void*)Buckets, 0x5a, sizeof(BucketT)*NumBuckets); 77 #endif 78 operator delete(Buckets); 79 } 80 81 typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator; 82 typedef DenseMapIterator<KeyT, ValueT, 83 KeyInfoT, ValueInfoT, true> const_iterator; begin()84 inline iterator begin() { 85 // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets(). 86 return empty() ? end() : iterator(Buckets, Buckets+NumBuckets); 87 } end()88 inline iterator end() { 89 return iterator(Buckets+NumBuckets, Buckets+NumBuckets); 90 } begin()91 inline const_iterator begin() const { 92 return empty() ? end() : const_iterator(Buckets, Buckets+NumBuckets); 93 } end()94 inline const_iterator end() const { 95 return const_iterator(Buckets+NumBuckets, Buckets+NumBuckets); 96 } 97 empty()98 bool empty() const { return NumEntries == 0; } size()99 unsigned size() const { return NumEntries; } 100 101 /// Grow the densemap so that it has at least Size buckets. Does not shrink resize(size_t Size)102 void resize(size_t Size) { 103 if (Size > NumBuckets) 104 grow(Size); 105 } 106 clear()107 void clear() { 108 if (NumEntries == 0 && NumTombstones == 0) return; 109 110 // If the capacity of the array is huge, and the # elements used is small, 111 // shrink the array. 112 if (NumEntries * 4 < NumBuckets && NumBuckets > 64) { 113 shrink_and_clear(); 114 return; 115 } 116 117 const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); 118 for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) { 119 if (!KeyInfoT::isEqual(P->first, EmptyKey)) { 120 if (!KeyInfoT::isEqual(P->first, TombstoneKey)) { 121 P->second.~ValueT(); 122 --NumEntries; 123 } 124 P->first = EmptyKey; 125 } 126 } 127 assert(NumEntries == 0 && "Node count imbalance!"); 128 NumTombstones = 0; 129 } 130 131 /// count - Return true if the specified key is in the map. count(const KeyT & Val)132 bool count(const KeyT &Val) const { 133 BucketT *TheBucket; 134 return LookupBucketFor(Val, TheBucket); 135 } 136 find(const KeyT & Val)137 iterator find(const KeyT &Val) { 138 BucketT *TheBucket; 139 if (LookupBucketFor(Val, TheBucket)) 140 return iterator(TheBucket, Buckets+NumBuckets); 141 return end(); 142 } find(const KeyT & Val)143 const_iterator find(const KeyT &Val) const { 144 BucketT *TheBucket; 145 if (LookupBucketFor(Val, TheBucket)) 146 return const_iterator(TheBucket, Buckets+NumBuckets); 147 return end(); 148 } 149 150 /// lookup - Return the entry for the specified key, or a default 151 /// constructed value if no such entry exists. lookup(const KeyT & Val)152 ValueT lookup(const KeyT &Val) const { 153 BucketT *TheBucket; 154 if (LookupBucketFor(Val, TheBucket)) 155 return TheBucket->second; 156 return ValueT(); 157 } 158 159 // Inserts key,value pair into the map if the key isn't already in the map. 160 // If the key is already in the map, it returns false and doesn't update the 161 // value. insert(const std::pair<KeyT,ValueT> & KV)162 std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) { 163 BucketT *TheBucket; 164 if (LookupBucketFor(KV.first, TheBucket)) 165 return std::make_pair(iterator(TheBucket, Buckets+NumBuckets), 166 false); // Already in map. 167 168 // Otherwise, insert the new element. 169 TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket); 170 return std::make_pair(iterator(TheBucket, Buckets+NumBuckets), 171 true); 172 } 173 174 /// insert - Range insertion of pairs. 175 template<typename InputIt> insert(InputIt I,InputIt E)176 void insert(InputIt I, InputIt E) { 177 for (; I != E; ++I) 178 insert(*I); 179 } 180 181 erase(const KeyT & Val)182 bool erase(const KeyT &Val) { 183 BucketT *TheBucket; 184 if (!LookupBucketFor(Val, TheBucket)) 185 return false; // not in map. 186 187 TheBucket->second.~ValueT(); 188 TheBucket->first = getTombstoneKey(); 189 --NumEntries; 190 ++NumTombstones; 191 return true; 192 } erase(iterator I)193 void erase(iterator I) { 194 BucketT *TheBucket = &*I; 195 TheBucket->second.~ValueT(); 196 TheBucket->first = getTombstoneKey(); 197 --NumEntries; 198 ++NumTombstones; 199 } 200 swap(DenseMap & RHS)201 void swap(DenseMap& RHS) { 202 std::swap(NumBuckets, RHS.NumBuckets); 203 std::swap(Buckets, RHS.Buckets); 204 std::swap(NumEntries, RHS.NumEntries); 205 std::swap(NumTombstones, RHS.NumTombstones); 206 } 207 FindAndConstruct(const KeyT & Key)208 value_type& FindAndConstruct(const KeyT &Key) { 209 BucketT *TheBucket; 210 if (LookupBucketFor(Key, TheBucket)) 211 return *TheBucket; 212 213 return *InsertIntoBucket(Key, ValueT(), TheBucket); 214 } 215 216 ValueT &operator[](const KeyT &Key) { 217 return FindAndConstruct(Key).second; 218 } 219 220 DenseMap& operator=(const DenseMap& other) { 221 CopyFrom(other); 222 return *this; 223 } 224 225 /// isPointerIntoBucketsArray - Return true if the specified pointer points 226 /// somewhere into the DenseMap's array of buckets (i.e. either to a key or 227 /// value in the DenseMap). isPointerIntoBucketsArray(const void * Ptr)228 bool isPointerIntoBucketsArray(const void *Ptr) const { 229 return Ptr >= Buckets && Ptr < Buckets+NumBuckets; 230 } 231 232 /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets 233 /// array. In conjunction with the previous method, this can be used to 234 /// determine whether an insertion caused the DenseMap to reallocate. getPointerIntoBucketsArray()235 const void *getPointerIntoBucketsArray() const { return Buckets; } 236 237 private: CopyFrom(const DenseMap & other)238 void CopyFrom(const DenseMap& other) { 239 if (NumBuckets != 0 && 240 (!isPodLike<KeyInfoT>::value || !isPodLike<ValueInfoT>::value)) { 241 const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); 242 for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) { 243 if (!KeyInfoT::isEqual(P->first, EmptyKey) && 244 !KeyInfoT::isEqual(P->first, TombstoneKey)) 245 P->second.~ValueT(); 246 P->first.~KeyT(); 247 } 248 } 249 250 NumEntries = other.NumEntries; 251 NumTombstones = other.NumTombstones; 252 253 if (NumBuckets) { 254 #ifndef NDEBUG 255 memset((void*)Buckets, 0x5a, sizeof(BucketT)*NumBuckets); 256 #endif 257 operator delete(Buckets); 258 } 259 260 NumBuckets = other.NumBuckets; 261 262 if (NumBuckets == 0) { 263 Buckets = 0; 264 return; 265 } 266 267 Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets)); 268 269 if (isPodLike<KeyInfoT>::value && isPodLike<ValueInfoT>::value) 270 memcpy(Buckets, other.Buckets, NumBuckets * sizeof(BucketT)); 271 else 272 for (size_t i = 0; i < NumBuckets; ++i) { 273 new (&Buckets[i].first) KeyT(other.Buckets[i].first); 274 if (!KeyInfoT::isEqual(Buckets[i].first, getEmptyKey()) && 275 !KeyInfoT::isEqual(Buckets[i].first, getTombstoneKey())) 276 new (&Buckets[i].second) ValueT(other.Buckets[i].second); 277 } 278 } 279 InsertIntoBucket(const KeyT & Key,const ValueT & Value,BucketT * TheBucket)280 BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value, 281 BucketT *TheBucket) { 282 // If the load of the hash table is more than 3/4, or if fewer than 1/8 of 283 // the buckets are empty (meaning that many are filled with tombstones), 284 // grow the table. 285 // 286 // The later case is tricky. For example, if we had one empty bucket with 287 // tons of tombstones, failing lookups (e.g. for insertion) would have to 288 // probe almost the entire table until it found the empty bucket. If the 289 // table completely filled with tombstones, no lookup would ever succeed, 290 // causing infinite loops in lookup. 291 ++NumEntries; 292 if (NumEntries*4 >= NumBuckets*3) { 293 this->grow(NumBuckets * 2); 294 LookupBucketFor(Key, TheBucket); 295 } 296 if (NumBuckets-(NumEntries+NumTombstones) < NumBuckets/8) { 297 this->grow(NumBuckets); 298 LookupBucketFor(Key, TheBucket); 299 } 300 301 // If we are writing over a tombstone, remember this. 302 if (!KeyInfoT::isEqual(TheBucket->first, getEmptyKey())) 303 --NumTombstones; 304 305 TheBucket->first = Key; 306 new (&TheBucket->second) ValueT(Value); 307 return TheBucket; 308 } 309 getHashValue(const KeyT & Val)310 static unsigned getHashValue(const KeyT &Val) { 311 return KeyInfoT::getHashValue(Val); 312 } getEmptyKey()313 static const KeyT getEmptyKey() { 314 return KeyInfoT::getEmptyKey(); 315 } getTombstoneKey()316 static const KeyT getTombstoneKey() { 317 return KeyInfoT::getTombstoneKey(); 318 } 319 320 /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in 321 /// FoundBucket. If the bucket contains the key and a value, this returns 322 /// true, otherwise it returns a bucket with an empty marker or tombstone and 323 /// returns false. LookupBucketFor(const KeyT & Val,BucketT * & FoundBucket)324 bool LookupBucketFor(const KeyT &Val, BucketT *&FoundBucket) const { 325 unsigned BucketNo = getHashValue(Val); 326 unsigned ProbeAmt = 1; 327 BucketT *BucketsPtr = Buckets; 328 329 if (NumBuckets == 0) { 330 FoundBucket = 0; 331 return false; 332 } 333 334 // FoundTombstone - Keep track of whether we find a tombstone while probing. 335 BucketT *FoundTombstone = 0; 336 const KeyT EmptyKey = getEmptyKey(); 337 const KeyT TombstoneKey = getTombstoneKey(); 338 assert(!KeyInfoT::isEqual(Val, EmptyKey) && 339 !KeyInfoT::isEqual(Val, TombstoneKey) && 340 "Empty/Tombstone value shouldn't be inserted into map!"); 341 342 while (1) { 343 BucketT *ThisBucket = BucketsPtr + (BucketNo & (NumBuckets-1)); 344 // Found Val's bucket? If so, return it. 345 if (KeyInfoT::isEqual(ThisBucket->first, Val)) { 346 FoundBucket = ThisBucket; 347 return true; 348 } 349 350 // If we found an empty bucket, the key doesn't exist in the set. 351 // Insert it and return the default value. 352 if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) { 353 // If we've already seen a tombstone while probing, fill it in instead 354 // of the empty bucket we eventually probed to. 355 if (FoundTombstone) ThisBucket = FoundTombstone; 356 FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket; 357 return false; 358 } 359 360 // If this is a tombstone, remember it. If Val ends up not in the map, we 361 // prefer to return it than something that would require more probing. 362 if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone) 363 FoundTombstone = ThisBucket; // Remember the first tombstone found. 364 365 // Otherwise, it's a hash collision or a tombstone, continue quadratic 366 // probing. 367 BucketNo += ProbeAmt++; 368 } 369 } 370 init(unsigned InitBuckets)371 void init(unsigned InitBuckets) { 372 NumEntries = 0; 373 NumTombstones = 0; 374 NumBuckets = InitBuckets; 375 376 if (InitBuckets == 0) { 377 Buckets = 0; 378 return; 379 } 380 381 assert(InitBuckets && (InitBuckets & (InitBuckets-1)) == 0 && 382 "# initial buckets must be a power of two!"); 383 Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*InitBuckets)); 384 // Initialize all the keys to EmptyKey. 385 const KeyT EmptyKey = getEmptyKey(); 386 for (unsigned i = 0; i != InitBuckets; ++i) 387 new (&Buckets[i].first) KeyT(EmptyKey); 388 } 389 grow(unsigned AtLeast)390 void grow(unsigned AtLeast) { 391 unsigned OldNumBuckets = NumBuckets; 392 BucketT *OldBuckets = Buckets; 393 394 if (NumBuckets < 64) 395 NumBuckets = 64; 396 397 // Double the number of buckets. 398 while (NumBuckets < AtLeast) 399 NumBuckets <<= 1; 400 NumTombstones = 0; 401 Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets)); 402 403 // Initialize all the keys to EmptyKey. 404 const KeyT EmptyKey = getEmptyKey(); 405 for (unsigned i = 0, e = NumBuckets; i != e; ++i) 406 new (&Buckets[i].first) KeyT(EmptyKey); 407 408 // Insert all the old elements. 409 const KeyT TombstoneKey = getTombstoneKey(); 410 for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) { 411 if (!KeyInfoT::isEqual(B->first, EmptyKey) && 412 !KeyInfoT::isEqual(B->first, TombstoneKey)) { 413 // Insert the key/value into the new table. 414 BucketT *DestBucket; 415 bool FoundVal = LookupBucketFor(B->first, DestBucket); 416 (void)FoundVal; // silence warning. 417 assert(!FoundVal && "Key already in new map?"); 418 DestBucket->first = B->first; 419 new (&DestBucket->second) ValueT(B->second); 420 421 // Free the value. 422 B->second.~ValueT(); 423 } 424 B->first.~KeyT(); 425 } 426 427 #ifndef NDEBUG 428 if (OldNumBuckets) 429 memset((void*)OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets); 430 #endif 431 // Free the old table. 432 operator delete(OldBuckets); 433 } 434 shrink_and_clear()435 void shrink_and_clear() { 436 unsigned OldNumBuckets = NumBuckets; 437 BucketT *OldBuckets = Buckets; 438 439 // Reduce the number of buckets. 440 NumBuckets = NumEntries > 32 ? 1 << (Log2_32_Ceil(NumEntries) + 1) 441 : 64; 442 NumTombstones = 0; 443 Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets)); 444 445 // Initialize all the keys to EmptyKey. 446 const KeyT EmptyKey = getEmptyKey(); 447 for (unsigned i = 0, e = NumBuckets; i != e; ++i) 448 new (&Buckets[i].first) KeyT(EmptyKey); 449 450 // Free the old buckets. 451 const KeyT TombstoneKey = getTombstoneKey(); 452 for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) { 453 if (!KeyInfoT::isEqual(B->first, EmptyKey) && 454 !KeyInfoT::isEqual(B->first, TombstoneKey)) { 455 // Free the value. 456 B->second.~ValueT(); 457 } 458 B->first.~KeyT(); 459 } 460 461 #ifndef NDEBUG 462 memset((void*)OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets); 463 #endif 464 // Free the old table. 465 operator delete(OldBuckets); 466 467 NumEntries = 0; 468 } 469 470 public: 471 /// Return the approximate size (in bytes) of the actual map. 472 /// This is just the raw memory used by DenseMap. 473 /// If entries are pointers to objects, the size of the referenced objects 474 /// are not included. getMemorySize()475 size_t getMemorySize() const { 476 return NumBuckets * sizeof(BucketT); 477 } 478 }; 479 480 template<typename KeyT, typename ValueT, 481 typename KeyInfoT, typename ValueInfoT, bool IsConst> 482 class DenseMapIterator { 483 typedef std::pair<KeyT, ValueT> Bucket; 484 typedef DenseMapIterator<KeyT, ValueT, 485 KeyInfoT, ValueInfoT, true> ConstIterator; 486 friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, ValueInfoT, true>; 487 public: 488 typedef ptrdiff_t difference_type; 489 typedef typename conditional<IsConst, const Bucket, Bucket>::type value_type; 490 typedef value_type *pointer; 491 typedef value_type &reference; 492 typedef std::forward_iterator_tag iterator_category; 493 private: 494 pointer Ptr, End; 495 public: DenseMapIterator()496 DenseMapIterator() : Ptr(0), End(0) {} 497 DenseMapIterator(pointer Pos,pointer E)498 DenseMapIterator(pointer Pos, pointer E) : Ptr(Pos), End(E) { 499 AdvancePastEmptyBuckets(); 500 } 501 502 // If IsConst is true this is a converting constructor from iterator to 503 // const_iterator and the default copy constructor is used. 504 // Otherwise this is a copy constructor for iterator. DenseMapIterator(const DenseMapIterator<KeyT,ValueT,KeyInfoT,ValueInfoT,false> & I)505 DenseMapIterator(const DenseMapIterator<KeyT, ValueT, 506 KeyInfoT, ValueInfoT, false>& I) 507 : Ptr(I.Ptr), End(I.End) {} 508 509 reference operator*() const { 510 return *Ptr; 511 } 512 pointer operator->() const { 513 return Ptr; 514 } 515 516 bool operator==(const ConstIterator &RHS) const { 517 return Ptr == RHS.operator->(); 518 } 519 bool operator!=(const ConstIterator &RHS) const { 520 return Ptr != RHS.operator->(); 521 } 522 523 inline DenseMapIterator& operator++() { // Preincrement 524 ++Ptr; 525 AdvancePastEmptyBuckets(); 526 return *this; 527 } 528 DenseMapIterator operator++(int) { // Postincrement 529 DenseMapIterator tmp = *this; ++*this; return tmp; 530 } 531 532 private: AdvancePastEmptyBuckets()533 void AdvancePastEmptyBuckets() { 534 const KeyT Empty = KeyInfoT::getEmptyKey(); 535 const KeyT Tombstone = KeyInfoT::getTombstoneKey(); 536 537 while (Ptr != End && 538 (KeyInfoT::isEqual(Ptr->first, Empty) || 539 KeyInfoT::isEqual(Ptr->first, Tombstone))) 540 ++Ptr; 541 } 542 }; 543 544 } // end namespace llvm 545 546 #endif 547