1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "scopes.h"
31
32 #include "bootstrapper.h"
33 #include "compiler.h"
34 #include "prettyprinter.h"
35 #include "scopeinfo.h"
36
37 namespace v8 {
38 namespace internal {
39
40 // ----------------------------------------------------------------------------
41 // A Zone allocator for use with LocalsMap.
42
43 // TODO(isolates): It is probably worth it to change the Allocator class to
44 // take a pointer to an isolate.
45 class ZoneAllocator: public Allocator {
46 public:
47 /* nothing to do */
~ZoneAllocator()48 virtual ~ZoneAllocator() {}
49
New(size_t size)50 virtual void* New(size_t size) { return ZONE->New(static_cast<int>(size)); }
51
52 /* ignored - Zone is freed in one fell swoop */
Delete(void * p)53 virtual void Delete(void* p) {}
54 };
55
56
57 static ZoneAllocator LocalsMapAllocator;
58
59
60 // ----------------------------------------------------------------------------
61 // Implementation of LocalsMap
62 //
63 // Note: We are storing the handle locations as key values in the hash map.
64 // When inserting a new variable via Declare(), we rely on the fact that
65 // the handle location remains alive for the duration of that variable
66 // use. Because a Variable holding a handle with the same location exists
67 // this is ensured.
68
Match(void * key1,void * key2)69 static bool Match(void* key1, void* key2) {
70 String* name1 = *reinterpret_cast<String**>(key1);
71 String* name2 = *reinterpret_cast<String**>(key2);
72 ASSERT(name1->IsSymbol());
73 ASSERT(name2->IsSymbol());
74 return name1 == name2;
75 }
76
77
78 // Dummy constructor
VariableMap(bool gotta_love_static_overloading)79 VariableMap::VariableMap(bool gotta_love_static_overloading) : HashMap() {}
80
VariableMap()81 VariableMap::VariableMap() : HashMap(Match, &LocalsMapAllocator, 8) {}
~VariableMap()82 VariableMap::~VariableMap() {}
83
84
Declare(Scope * scope,Handle<String> name,Variable::Mode mode,bool is_valid_lhs,Variable::Kind kind)85 Variable* VariableMap::Declare(Scope* scope,
86 Handle<String> name,
87 Variable::Mode mode,
88 bool is_valid_lhs,
89 Variable::Kind kind) {
90 HashMap::Entry* p = HashMap::Lookup(name.location(), name->Hash(), true);
91 if (p->value == NULL) {
92 // The variable has not been declared yet -> insert it.
93 ASSERT(p->key == name.location());
94 p->value = new Variable(scope, name, mode, is_valid_lhs, kind);
95 }
96 return reinterpret_cast<Variable*>(p->value);
97 }
98
99
Lookup(Handle<String> name)100 Variable* VariableMap::Lookup(Handle<String> name) {
101 HashMap::Entry* p = HashMap::Lookup(name.location(), name->Hash(), false);
102 if (p != NULL) {
103 ASSERT(*reinterpret_cast<String**>(p->key) == *name);
104 ASSERT(p->value != NULL);
105 return reinterpret_cast<Variable*>(p->value);
106 }
107 return NULL;
108 }
109
110
111 // ----------------------------------------------------------------------------
112 // Implementation of Scope
113
114
115 // Dummy constructor
Scope(Type type)116 Scope::Scope(Type type)
117 : inner_scopes_(0),
118 variables_(false),
119 temps_(0),
120 params_(0),
121 unresolved_(0),
122 decls_(0) {
123 SetDefaults(type, NULL, Handle<SerializedScopeInfo>::null());
124 ASSERT(!resolved());
125 }
126
127
Scope(Scope * outer_scope,Type type)128 Scope::Scope(Scope* outer_scope, Type type)
129 : inner_scopes_(4),
130 variables_(),
131 temps_(4),
132 params_(4),
133 unresolved_(16),
134 decls_(4) {
135 SetDefaults(type, outer_scope, Handle<SerializedScopeInfo>::null());
136 // At some point we might want to provide outer scopes to
137 // eval scopes (by walking the stack and reading the scope info).
138 // In that case, the ASSERT below needs to be adjusted.
139 ASSERT((type == GLOBAL_SCOPE || type == EVAL_SCOPE) == (outer_scope == NULL));
140 ASSERT(!HasIllegalRedeclaration());
141 ASSERT(!resolved());
142 }
143
144
Scope(Scope * inner_scope,Handle<SerializedScopeInfo> scope_info)145 Scope::Scope(Scope* inner_scope, Handle<SerializedScopeInfo> scope_info)
146 : inner_scopes_(4),
147 variables_(),
148 temps_(4),
149 params_(4),
150 unresolved_(16),
151 decls_(4) {
152 ASSERT(!scope_info.is_null());
153 SetDefaults(FUNCTION_SCOPE, NULL, scope_info);
154 ASSERT(resolved());
155 if (scope_info->HasHeapAllocatedLocals()) {
156 num_heap_slots_ = scope_info_->NumberOfContextSlots();
157 }
158
159 AddInnerScope(inner_scope);
160
161 // This scope's arguments shadow (if present) is context-allocated if an inner
162 // scope accesses this one's parameters. Allocate the arguments_shadow_
163 // variable if necessary.
164 Isolate* isolate = Isolate::Current();
165 Variable::Mode mode;
166 int arguments_shadow_index =
167 scope_info_->ContextSlotIndex(
168 isolate->heap()->arguments_shadow_symbol(), &mode);
169 if (arguments_shadow_index >= 0) {
170 ASSERT(mode == Variable::INTERNAL);
171 arguments_shadow_ = new Variable(
172 this,
173 isolate->factory()->arguments_shadow_symbol(),
174 Variable::INTERNAL,
175 true,
176 Variable::ARGUMENTS);
177 arguments_shadow_->set_rewrite(
178 new Slot(arguments_shadow_, Slot::CONTEXT, arguments_shadow_index));
179 arguments_shadow_->set_is_used(true);
180 }
181 }
182
183
SetDefaults(Type type,Scope * outer_scope,Handle<SerializedScopeInfo> scope_info)184 void Scope::SetDefaults(Type type,
185 Scope* outer_scope,
186 Handle<SerializedScopeInfo> scope_info) {
187 outer_scope_ = outer_scope;
188 type_ = type;
189 scope_name_ = FACTORY->empty_symbol();
190 dynamics_ = NULL;
191 receiver_ = NULL;
192 function_ = NULL;
193 arguments_ = NULL;
194 arguments_shadow_ = NULL;
195 illegal_redecl_ = NULL;
196 scope_inside_with_ = false;
197 scope_contains_with_ = false;
198 scope_calls_eval_ = false;
199 // Inherit the strict mode from the parent scope.
200 strict_mode_ = (outer_scope != NULL) && outer_scope->strict_mode_;
201 outer_scope_calls_eval_ = false;
202 inner_scope_calls_eval_ = false;
203 outer_scope_is_eval_scope_ = false;
204 force_eager_compilation_ = false;
205 num_var_or_const_ = 0;
206 num_stack_slots_ = 0;
207 num_heap_slots_ = 0;
208 scope_info_ = scope_info;
209 }
210
211
DeserializeScopeChain(CompilationInfo * info,Scope * global_scope)212 Scope* Scope::DeserializeScopeChain(CompilationInfo* info,
213 Scope* global_scope) {
214 ASSERT(!info->closure().is_null());
215 // If we have a serialized scope info, reuse it.
216 Scope* innermost_scope = NULL;
217 Scope* scope = NULL;
218
219 SerializedScopeInfo* scope_info = info->closure()->shared()->scope_info();
220 if (scope_info != SerializedScopeInfo::Empty()) {
221 JSFunction* current = *info->closure();
222 do {
223 current = current->context()->closure();
224 Handle<SerializedScopeInfo> scope_info(current->shared()->scope_info());
225 if (*scope_info != SerializedScopeInfo::Empty()) {
226 scope = new Scope(scope, scope_info);
227 if (innermost_scope == NULL) innermost_scope = scope;
228 } else {
229 ASSERT(current->context()->IsGlobalContext());
230 }
231 } while (!current->context()->IsGlobalContext());
232 }
233
234 global_scope->AddInnerScope(scope);
235 if (innermost_scope == NULL) innermost_scope = global_scope;
236
237 return innermost_scope;
238 }
239
240
Analyze(CompilationInfo * info)241 bool Scope::Analyze(CompilationInfo* info) {
242 ASSERT(info->function() != NULL);
243 Scope* top = info->function()->scope();
244
245 while (top->outer_scope() != NULL) top = top->outer_scope();
246 top->AllocateVariables(info->calling_context());
247
248 #ifdef DEBUG
249 if (info->isolate()->bootstrapper()->IsActive()
250 ? FLAG_print_builtin_scopes
251 : FLAG_print_scopes) {
252 info->function()->scope()->Print();
253 }
254 #endif
255
256 info->SetScope(info->function()->scope());
257 return true; // Can not fail.
258 }
259
260
Initialize(bool inside_with)261 void Scope::Initialize(bool inside_with) {
262 ASSERT(!resolved());
263
264 // Add this scope as a new inner scope of the outer scope.
265 if (outer_scope_ != NULL) {
266 outer_scope_->inner_scopes_.Add(this);
267 scope_inside_with_ = outer_scope_->scope_inside_with_ || inside_with;
268 } else {
269 scope_inside_with_ = inside_with;
270 }
271
272 // Declare convenience variables.
273 // Declare and allocate receiver (even for the global scope, and even
274 // if naccesses_ == 0).
275 // NOTE: When loading parameters in the global scope, we must take
276 // care not to access them as properties of the global object, but
277 // instead load them directly from the stack. Currently, the only
278 // such parameter is 'this' which is passed on the stack when
279 // invoking scripts
280 Variable* var =
281 variables_.Declare(this, FACTORY->this_symbol(), Variable::VAR,
282 false, Variable::THIS);
283 var->set_rewrite(new Slot(var, Slot::PARAMETER, -1));
284 receiver_ = var;
285
286 if (is_function_scope()) {
287 // Declare 'arguments' variable which exists in all functions.
288 // Note that it might never be accessed, in which case it won't be
289 // allocated during variable allocation.
290 variables_.Declare(this, FACTORY->arguments_symbol(), Variable::VAR,
291 true, Variable::ARGUMENTS);
292 }
293 }
294
295
LocalLookup(Handle<String> name)296 Variable* Scope::LocalLookup(Handle<String> name) {
297 Variable* result = variables_.Lookup(name);
298 if (result != NULL || !resolved()) {
299 return result;
300 }
301 // If the scope is resolved, we can find a variable in serialized scope info.
302
303 // We should never lookup 'arguments' in this scope
304 // as it is implicitly present in any scope.
305 ASSERT(*name != *FACTORY->arguments_symbol());
306
307 // Assert that there is no local slot with the given name.
308 ASSERT(scope_info_->StackSlotIndex(*name) < 0);
309
310 // Check context slot lookup.
311 Variable::Mode mode;
312 int index = scope_info_->ContextSlotIndex(*name, &mode);
313 if (index >= 0) {
314 Variable* var =
315 variables_.Declare(this, name, mode, true, Variable::NORMAL);
316 var->set_rewrite(new Slot(var, Slot::CONTEXT, index));
317 return var;
318 }
319
320 index = scope_info_->ParameterIndex(*name);
321 if (index >= 0) {
322 // ".arguments" must be present in context slots.
323 ASSERT(arguments_shadow_ != NULL);
324 Variable* var =
325 variables_.Declare(this, name, Variable::VAR, true, Variable::NORMAL);
326 Property* rewrite =
327 new Property(new VariableProxy(arguments_shadow_),
328 new Literal(Handle<Object>(Smi::FromInt(index))),
329 RelocInfo::kNoPosition,
330 Property::SYNTHETIC);
331 rewrite->set_is_arguments_access(true);
332 var->set_rewrite(rewrite);
333 return var;
334 }
335
336 index = scope_info_->FunctionContextSlotIndex(*name);
337 if (index >= 0) {
338 // Check that there is no local slot with the given name.
339 ASSERT(scope_info_->StackSlotIndex(*name) < 0);
340 Variable* var =
341 variables_.Declare(this, name, Variable::VAR, true, Variable::NORMAL);
342 var->set_rewrite(new Slot(var, Slot::CONTEXT, index));
343 return var;
344 }
345
346 return NULL;
347 }
348
349
Lookup(Handle<String> name)350 Variable* Scope::Lookup(Handle<String> name) {
351 for (Scope* scope = this;
352 scope != NULL;
353 scope = scope->outer_scope()) {
354 Variable* var = scope->LocalLookup(name);
355 if (var != NULL) return var;
356 }
357 return NULL;
358 }
359
360
DeclareFunctionVar(Handle<String> name)361 Variable* Scope::DeclareFunctionVar(Handle<String> name) {
362 ASSERT(is_function_scope() && function_ == NULL);
363 function_ = new Variable(this, name, Variable::CONST, true, Variable::NORMAL);
364 return function_;
365 }
366
367
DeclareLocal(Handle<String> name,Variable::Mode mode,LocalType type)368 Variable* Scope::DeclareLocal(Handle<String> name,
369 Variable::Mode mode,
370 LocalType type) {
371 // DYNAMIC variables are introduces during variable allocation,
372 // INTERNAL variables are allocated explicitly, and TEMPORARY
373 // variables are allocated via NewTemporary().
374 ASSERT(!resolved());
375 ASSERT(mode == Variable::VAR || mode == Variable::CONST);
376 if (type == VAR_OR_CONST) {
377 num_var_or_const_++;
378 }
379 return variables_.Declare(this, name, mode, true, Variable::NORMAL);
380 }
381
382
DeclareGlobal(Handle<String> name)383 Variable* Scope::DeclareGlobal(Handle<String> name) {
384 ASSERT(is_global_scope());
385 return variables_.Declare(this, name, Variable::DYNAMIC_GLOBAL, true,
386 Variable::NORMAL);
387 }
388
389
AddParameter(Variable * var)390 void Scope::AddParameter(Variable* var) {
391 ASSERT(is_function_scope());
392 ASSERT(LocalLookup(var->name()) == var);
393 params_.Add(var);
394 }
395
396
NewUnresolved(Handle<String> name,bool inside_with,int position)397 VariableProxy* Scope::NewUnresolved(Handle<String> name,
398 bool inside_with,
399 int position) {
400 // Note that we must not share the unresolved variables with
401 // the same name because they may be removed selectively via
402 // RemoveUnresolved().
403 ASSERT(!resolved());
404 VariableProxy* proxy = new VariableProxy(name, false, inside_with, position);
405 unresolved_.Add(proxy);
406 return proxy;
407 }
408
409
RemoveUnresolved(VariableProxy * var)410 void Scope::RemoveUnresolved(VariableProxy* var) {
411 // Most likely (always?) any variable we want to remove
412 // was just added before, so we search backwards.
413 for (int i = unresolved_.length(); i-- > 0;) {
414 if (unresolved_[i] == var) {
415 unresolved_.Remove(i);
416 return;
417 }
418 }
419 }
420
421
NewTemporary(Handle<String> name)422 Variable* Scope::NewTemporary(Handle<String> name) {
423 ASSERT(!resolved());
424 Variable* var =
425 new Variable(this, name, Variable::TEMPORARY, true, Variable::NORMAL);
426 temps_.Add(var);
427 return var;
428 }
429
430
AddDeclaration(Declaration * declaration)431 void Scope::AddDeclaration(Declaration* declaration) {
432 decls_.Add(declaration);
433 }
434
435
SetIllegalRedeclaration(Expression * expression)436 void Scope::SetIllegalRedeclaration(Expression* expression) {
437 // Record only the first illegal redeclaration.
438 if (!HasIllegalRedeclaration()) {
439 illegal_redecl_ = expression;
440 }
441 ASSERT(HasIllegalRedeclaration());
442 }
443
444
VisitIllegalRedeclaration(AstVisitor * visitor)445 void Scope::VisitIllegalRedeclaration(AstVisitor* visitor) {
446 ASSERT(HasIllegalRedeclaration());
447 illegal_redecl_->Accept(visitor);
448 }
449
450
451 template<class Allocator>
CollectUsedVariables(List<Variable *,Allocator> * locals)452 void Scope::CollectUsedVariables(List<Variable*, Allocator>* locals) {
453 // Collect variables in this scope.
454 // Note that the function_ variable - if present - is not
455 // collected here but handled separately in ScopeInfo
456 // which is the current user of this function).
457 for (int i = 0; i < temps_.length(); i++) {
458 Variable* var = temps_[i];
459 if (var->is_used()) {
460 locals->Add(var);
461 }
462 }
463 for (VariableMap::Entry* p = variables_.Start();
464 p != NULL;
465 p = variables_.Next(p)) {
466 Variable* var = reinterpret_cast<Variable*>(p->value);
467 if (var->is_used()) {
468 locals->Add(var);
469 }
470 }
471 }
472
473
474 // Make sure the method gets instantiated by the template system.
475 template void Scope::CollectUsedVariables(
476 List<Variable*, FreeStoreAllocationPolicy>* locals);
477 template void Scope::CollectUsedVariables(
478 List<Variable*, PreallocatedStorage>* locals);
479 template void Scope::CollectUsedVariables(
480 List<Variable*, ZoneListAllocationPolicy>* locals);
481
482
AllocateVariables(Handle<Context> context)483 void Scope::AllocateVariables(Handle<Context> context) {
484 ASSERT(outer_scope_ == NULL); // eval or global scopes only
485
486 // 1) Propagate scope information.
487 // If we are in an eval scope, we may have other outer scopes about
488 // which we don't know anything at this point. Thus we must be conservative
489 // and assume they may invoke eval themselves. Eventually we could capture
490 // this information in the ScopeInfo and then use it here (by traversing
491 // the call chain stack, at compile time).
492 bool eval_scope = is_eval_scope();
493 PropagateScopeInfo(eval_scope, eval_scope);
494
495 // 2) Resolve variables.
496 Scope* global_scope = NULL;
497 if (is_global_scope()) global_scope = this;
498 ResolveVariablesRecursively(global_scope, context);
499
500 // 3) Allocate variables.
501 AllocateVariablesRecursively();
502 }
503
504
AllowsLazyCompilation() const505 bool Scope::AllowsLazyCompilation() const {
506 return !force_eager_compilation_ && HasTrivialOuterContext();
507 }
508
509
HasTrivialContext() const510 bool Scope::HasTrivialContext() const {
511 // A function scope has a trivial context if it always is the global
512 // context. We iteratively scan out the context chain to see if
513 // there is anything that makes this scope non-trivial; otherwise we
514 // return true.
515 for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
516 if (scope->is_eval_scope()) return false;
517 if (scope->scope_inside_with_) return false;
518 if (scope->num_heap_slots_ > 0) return false;
519 }
520 return true;
521 }
522
523
HasTrivialOuterContext() const524 bool Scope::HasTrivialOuterContext() const {
525 Scope* outer = outer_scope_;
526 if (outer == NULL) return true;
527 // Note that the outer context may be trivial in general, but the current
528 // scope may be inside a 'with' statement in which case the outer context
529 // for this scope is not trivial.
530 return !scope_inside_with_ && outer->HasTrivialContext();
531 }
532
533
ContextChainLength(Scope * scope)534 int Scope::ContextChainLength(Scope* scope) {
535 int n = 0;
536 for (Scope* s = this; s != scope; s = s->outer_scope_) {
537 ASSERT(s != NULL); // scope must be in the scope chain
538 if (s->num_heap_slots() > 0) n++;
539 }
540 return n;
541 }
542
543
544 #ifdef DEBUG
Header(Scope::Type type)545 static const char* Header(Scope::Type type) {
546 switch (type) {
547 case Scope::EVAL_SCOPE: return "eval";
548 case Scope::FUNCTION_SCOPE: return "function";
549 case Scope::GLOBAL_SCOPE: return "global";
550 }
551 UNREACHABLE();
552 return NULL;
553 }
554
555
Indent(int n,const char * str)556 static void Indent(int n, const char* str) {
557 PrintF("%*s%s", n, "", str);
558 }
559
560
PrintName(Handle<String> name)561 static void PrintName(Handle<String> name) {
562 SmartPointer<char> s = name->ToCString(DISALLOW_NULLS);
563 PrintF("%s", *s);
564 }
565
566
PrintVar(PrettyPrinter * printer,int indent,Variable * var)567 static void PrintVar(PrettyPrinter* printer, int indent, Variable* var) {
568 if (var->is_used() || var->rewrite() != NULL) {
569 Indent(indent, Variable::Mode2String(var->mode()));
570 PrintF(" ");
571 PrintName(var->name());
572 PrintF("; // ");
573 if (var->rewrite() != NULL) {
574 PrintF("%s, ", printer->Print(var->rewrite()));
575 if (var->is_accessed_from_inner_scope()) PrintF(", ");
576 }
577 if (var->is_accessed_from_inner_scope()) PrintF("inner scope access");
578 PrintF("\n");
579 }
580 }
581
582
PrintMap(PrettyPrinter * printer,int indent,VariableMap * map)583 static void PrintMap(PrettyPrinter* printer, int indent, VariableMap* map) {
584 for (VariableMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) {
585 Variable* var = reinterpret_cast<Variable*>(p->value);
586 PrintVar(printer, indent, var);
587 }
588 }
589
590
Print(int n)591 void Scope::Print(int n) {
592 int n0 = (n > 0 ? n : 0);
593 int n1 = n0 + 2; // indentation
594
595 // Print header.
596 Indent(n0, Header(type_));
597 if (scope_name_->length() > 0) {
598 PrintF(" ");
599 PrintName(scope_name_);
600 }
601
602 // Print parameters, if any.
603 if (is_function_scope()) {
604 PrintF(" (");
605 for (int i = 0; i < params_.length(); i++) {
606 if (i > 0) PrintF(", ");
607 PrintName(params_[i]->name());
608 }
609 PrintF(")");
610 }
611
612 PrintF(" {\n");
613
614 // Function name, if any (named function literals, only).
615 if (function_ != NULL) {
616 Indent(n1, "// (local) function name: ");
617 PrintName(function_->name());
618 PrintF("\n");
619 }
620
621 // Scope info.
622 if (HasTrivialOuterContext()) {
623 Indent(n1, "// scope has trivial outer context\n");
624 }
625 if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n");
626 if (scope_contains_with_) Indent(n1, "// scope contains 'with'\n");
627 if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n");
628 if (outer_scope_calls_eval_) Indent(n1, "// outer scope calls 'eval'\n");
629 if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
630 if (outer_scope_is_eval_scope_) {
631 Indent(n1, "// outer scope is 'eval' scope\n");
632 }
633 if (num_stack_slots_ > 0) { Indent(n1, "// ");
634 PrintF("%d stack slots\n", num_stack_slots_); }
635 if (num_heap_slots_ > 0) { Indent(n1, "// ");
636 PrintF("%d heap slots\n", num_heap_slots_); }
637
638 // Print locals.
639 PrettyPrinter printer;
640 Indent(n1, "// function var\n");
641 if (function_ != NULL) {
642 PrintVar(&printer, n1, function_);
643 }
644
645 Indent(n1, "// temporary vars\n");
646 for (int i = 0; i < temps_.length(); i++) {
647 PrintVar(&printer, n1, temps_[i]);
648 }
649
650 Indent(n1, "// local vars\n");
651 PrintMap(&printer, n1, &variables_);
652
653 Indent(n1, "// dynamic vars\n");
654 if (dynamics_ != NULL) {
655 PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC));
656 PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC_LOCAL));
657 PrintMap(&printer, n1, dynamics_->GetMap(Variable::DYNAMIC_GLOBAL));
658 }
659
660 // Print inner scopes (disable by providing negative n).
661 if (n >= 0) {
662 for (int i = 0; i < inner_scopes_.length(); i++) {
663 PrintF("\n");
664 inner_scopes_[i]->Print(n1);
665 }
666 }
667
668 Indent(n0, "}\n");
669 }
670 #endif // DEBUG
671
672
NonLocal(Handle<String> name,Variable::Mode mode)673 Variable* Scope::NonLocal(Handle<String> name, Variable::Mode mode) {
674 if (dynamics_ == NULL) dynamics_ = new DynamicScopePart();
675 VariableMap* map = dynamics_->GetMap(mode);
676 Variable* var = map->Lookup(name);
677 if (var == NULL) {
678 // Declare a new non-local.
679 var = map->Declare(NULL, name, mode, true, Variable::NORMAL);
680 // Allocate it by giving it a dynamic lookup.
681 var->set_rewrite(new Slot(var, Slot::LOOKUP, -1));
682 }
683 return var;
684 }
685
686
687 // Lookup a variable starting with this scope. The result is either
688 // the statically resolved variable belonging to an outer scope, or
689 // NULL. It may be NULL because a) we couldn't find a variable, or b)
690 // because the variable is just a guess (and may be shadowed by
691 // another variable that is introduced dynamically via an 'eval' call
692 // or a 'with' statement).
LookupRecursive(Handle<String> name,bool inner_lookup,Variable ** invalidated_local)693 Variable* Scope::LookupRecursive(Handle<String> name,
694 bool inner_lookup,
695 Variable** invalidated_local) {
696 // If we find a variable, but the current scope calls 'eval', the found
697 // variable may not be the correct one (the 'eval' may introduce a
698 // property with the same name). In that case, remember that the variable
699 // found is just a guess.
700 bool guess = scope_calls_eval_;
701
702 // Try to find the variable in this scope.
703 Variable* var = LocalLookup(name);
704
705 if (var != NULL) {
706 // We found a variable. If this is not an inner lookup, we are done.
707 // (Even if there is an 'eval' in this scope which introduces the
708 // same variable again, the resulting variable remains the same.
709 // Note that enclosing 'with' statements are handled at the call site.)
710 if (!inner_lookup)
711 return var;
712
713 } else {
714 // We did not find a variable locally. Check against the function variable,
715 // if any. We can do this for all scopes, since the function variable is
716 // only present - if at all - for function scopes.
717 //
718 // This lookup corresponds to a lookup in the "intermediate" scope sitting
719 // between this scope and the outer scope. (ECMA-262, 3rd., requires that
720 // the name of named function literal is kept in an intermediate scope
721 // in between this scope and the next outer scope.)
722 if (function_ != NULL && function_->name().is_identical_to(name)) {
723 var = function_;
724
725 } else if (outer_scope_ != NULL) {
726 var = outer_scope_->LookupRecursive(name, true, invalidated_local);
727 // We may have found a variable in an outer scope. However, if
728 // the current scope is inside a 'with', the actual variable may
729 // be a property introduced via the 'with' statement. Then, the
730 // variable we may have found is just a guess.
731 if (scope_inside_with_)
732 guess = true;
733 }
734
735 // If we did not find a variable, we are done.
736 if (var == NULL)
737 return NULL;
738 }
739
740 ASSERT(var != NULL);
741
742 // If this is a lookup from an inner scope, mark the variable.
743 if (inner_lookup) {
744 var->MarkAsAccessedFromInnerScope();
745 }
746
747 // If the variable we have found is just a guess, invalidate the
748 // result. If the found variable is local, record that fact so we
749 // can generate fast code to get it if it is not shadowed by eval.
750 if (guess) {
751 if (!var->is_global()) *invalidated_local = var;
752 var = NULL;
753 }
754
755 return var;
756 }
757
758
ResolveVariable(Scope * global_scope,Handle<Context> context,VariableProxy * proxy)759 void Scope::ResolveVariable(Scope* global_scope,
760 Handle<Context> context,
761 VariableProxy* proxy) {
762 ASSERT(global_scope == NULL || global_scope->is_global_scope());
763
764 // If the proxy is already resolved there's nothing to do
765 // (functions and consts may be resolved by the parser).
766 if (proxy->var() != NULL) return;
767
768 // Otherwise, try to resolve the variable.
769 Variable* invalidated_local = NULL;
770 Variable* var = LookupRecursive(proxy->name(), false, &invalidated_local);
771
772 if (proxy->inside_with()) {
773 // If we are inside a local 'with' statement, all bets are off
774 // and we cannot resolve the proxy to a local variable even if
775 // we found an outer matching variable.
776 // Note that we must do a lookup anyway, because if we find one,
777 // we must mark that variable as potentially accessed from this
778 // inner scope (the property may not be in the 'with' object).
779 var = NonLocal(proxy->name(), Variable::DYNAMIC);
780
781 } else {
782 // We are not inside a local 'with' statement.
783
784 if (var == NULL) {
785 // We did not find the variable. We have a global variable
786 // if we are in the global scope (we know already that we
787 // are outside a 'with' statement) or if there is no way
788 // that the variable might be introduced dynamically (through
789 // a local or outer eval() call, or an outer 'with' statement),
790 // or we don't know about the outer scope (because we are
791 // in an eval scope).
792 if (is_global_scope() ||
793 !(scope_inside_with_ || outer_scope_is_eval_scope_ ||
794 scope_calls_eval_ || outer_scope_calls_eval_)) {
795 // We must have a global variable.
796 ASSERT(global_scope != NULL);
797 var = global_scope->DeclareGlobal(proxy->name());
798
799 } else if (scope_inside_with_) {
800 // If we are inside a with statement we give up and look up
801 // the variable at runtime.
802 var = NonLocal(proxy->name(), Variable::DYNAMIC);
803
804 } else if (invalidated_local != NULL) {
805 // No with statements are involved and we found a local
806 // variable that might be shadowed by eval introduced
807 // variables.
808 var = NonLocal(proxy->name(), Variable::DYNAMIC_LOCAL);
809 var->set_local_if_not_shadowed(invalidated_local);
810
811 } else if (outer_scope_is_eval_scope_) {
812 // No with statements and we did not find a local and the code
813 // is executed with a call to eval. The context contains
814 // scope information that we can use to determine if the
815 // variable is global if it is not shadowed by eval-introduced
816 // variables.
817 if (context->GlobalIfNotShadowedByEval(proxy->name())) {
818 var = NonLocal(proxy->name(), Variable::DYNAMIC_GLOBAL);
819
820 } else {
821 var = NonLocal(proxy->name(), Variable::DYNAMIC);
822 }
823
824 } else {
825 // No with statements and we did not find a local and the code
826 // is not executed with a call to eval. We know that this
827 // variable is global unless it is shadowed by eval-introduced
828 // variables.
829 var = NonLocal(proxy->name(), Variable::DYNAMIC_GLOBAL);
830 }
831 }
832 }
833
834 proxy->BindTo(var);
835 }
836
837
ResolveVariablesRecursively(Scope * global_scope,Handle<Context> context)838 void Scope::ResolveVariablesRecursively(Scope* global_scope,
839 Handle<Context> context) {
840 ASSERT(global_scope == NULL || global_scope->is_global_scope());
841
842 // Resolve unresolved variables for this scope.
843 for (int i = 0; i < unresolved_.length(); i++) {
844 ResolveVariable(global_scope, context, unresolved_[i]);
845 }
846
847 // Resolve unresolved variables for inner scopes.
848 for (int i = 0; i < inner_scopes_.length(); i++) {
849 inner_scopes_[i]->ResolveVariablesRecursively(global_scope, context);
850 }
851 }
852
853
PropagateScopeInfo(bool outer_scope_calls_eval,bool outer_scope_is_eval_scope)854 bool Scope::PropagateScopeInfo(bool outer_scope_calls_eval,
855 bool outer_scope_is_eval_scope) {
856 if (outer_scope_calls_eval) {
857 outer_scope_calls_eval_ = true;
858 }
859
860 if (outer_scope_is_eval_scope) {
861 outer_scope_is_eval_scope_ = true;
862 }
863
864 bool calls_eval = scope_calls_eval_ || outer_scope_calls_eval_;
865 bool is_eval = is_eval_scope() || outer_scope_is_eval_scope_;
866 for (int i = 0; i < inner_scopes_.length(); i++) {
867 Scope* inner_scope = inner_scopes_[i];
868 if (inner_scope->PropagateScopeInfo(calls_eval, is_eval)) {
869 inner_scope_calls_eval_ = true;
870 }
871 if (inner_scope->force_eager_compilation_) {
872 force_eager_compilation_ = true;
873 }
874 }
875
876 return scope_calls_eval_ || inner_scope_calls_eval_;
877 }
878
879
MustAllocate(Variable * var)880 bool Scope::MustAllocate(Variable* var) {
881 // Give var a read/write use if there is a chance it might be accessed
882 // via an eval() call. This is only possible if the variable has a
883 // visible name.
884 if ((var->is_this() || var->name()->length() > 0) &&
885 (var->is_accessed_from_inner_scope() ||
886 scope_calls_eval_ || inner_scope_calls_eval_ ||
887 scope_contains_with_)) {
888 var->set_is_used(true);
889 }
890 // Global variables do not need to be allocated.
891 return !var->is_global() && var->is_used();
892 }
893
894
MustAllocateInContext(Variable * var)895 bool Scope::MustAllocateInContext(Variable* var) {
896 // If var is accessed from an inner scope, or if there is a
897 // possibility that it might be accessed from the current or an inner
898 // scope (through an eval() call), it must be allocated in the
899 // context. Exception: temporary variables are not allocated in the
900 // context.
901 return
902 var->mode() != Variable::TEMPORARY &&
903 (var->is_accessed_from_inner_scope() ||
904 scope_calls_eval_ || inner_scope_calls_eval_ ||
905 scope_contains_with_ || var->is_global());
906 }
907
908
HasArgumentsParameter()909 bool Scope::HasArgumentsParameter() {
910 for (int i = 0; i < params_.length(); i++) {
911 if (params_[i]->name().is_identical_to(FACTORY->arguments_symbol()))
912 return true;
913 }
914 return false;
915 }
916
917
AllocateStackSlot(Variable * var)918 void Scope::AllocateStackSlot(Variable* var) {
919 var->set_rewrite(new Slot(var, Slot::LOCAL, num_stack_slots_++));
920 }
921
922
AllocateHeapSlot(Variable * var)923 void Scope::AllocateHeapSlot(Variable* var) {
924 var->set_rewrite(new Slot(var, Slot::CONTEXT, num_heap_slots_++));
925 }
926
927
AllocateParameterLocals()928 void Scope::AllocateParameterLocals() {
929 ASSERT(is_function_scope());
930 Variable* arguments = LocalLookup(FACTORY->arguments_symbol());
931 ASSERT(arguments != NULL); // functions have 'arguments' declared implicitly
932
933 // Parameters are rewritten to arguments[i] if 'arguments' is used in
934 // a non-strict mode function. Strict mode code doesn't alias arguments.
935 bool rewrite_parameters = false;
936
937 if (MustAllocate(arguments) && !HasArgumentsParameter()) {
938 // 'arguments' is used. Unless there is also a parameter called
939 // 'arguments', we must be conservative and access all parameters via
940 // the arguments object: The i'th parameter is rewritten into
941 // '.arguments[i]' (*). If we have a parameter named 'arguments', a
942 // (new) value is always assigned to it via the function
943 // invocation. Then 'arguments' denotes that specific parameter value
944 // and cannot be used to access the parameters, which is why we don't
945 // need to rewrite in that case.
946 //
947 // (*) Instead of having a parameter called 'arguments', we may have an
948 // assignment to 'arguments' in the function body, at some arbitrary
949 // point in time (possibly through an 'eval()' call!). After that
950 // assignment any re-write of parameters would be invalid (was bug
951 // 881452). Thus, we introduce a shadow '.arguments'
952 // variable which also points to the arguments object. For rewrites we
953 // use '.arguments' which remains valid even if we assign to
954 // 'arguments'. To summarize: If we need to rewrite, we allocate an
955 // 'arguments' object dynamically upon function invocation. The compiler
956 // introduces 2 local variables 'arguments' and '.arguments', both of
957 // which originally point to the arguments object that was
958 // allocated. All parameters are rewritten into property accesses via
959 // the '.arguments' variable. Thus, any changes to properties of
960 // 'arguments' are reflected in the variables and vice versa. If the
961 // 'arguments' variable is changed, '.arguments' still points to the
962 // correct arguments object and the rewrites still work.
963
964 // We are using 'arguments'. Tell the code generator that is needs to
965 // allocate the arguments object by setting 'arguments_'.
966 arguments_ = arguments;
967
968 // In strict mode 'arguments' does not alias formal parameters.
969 // Therefore in strict mode we allocate parameters as if 'arguments'
970 // were not used.
971 rewrite_parameters = !is_strict_mode();
972 }
973
974 if (rewrite_parameters) {
975 // We also need the '.arguments' shadow variable. Declare it and create
976 // and bind the corresponding proxy. It's ok to declare it only now
977 // because it's a local variable that is allocated after the parameters
978 // have been allocated.
979 //
980 // Note: This is "almost" at temporary variable but we cannot use
981 // NewTemporary() because the mode needs to be INTERNAL since this
982 // variable may be allocated in the heap-allocated context (temporaries
983 // are never allocated in the context).
984 arguments_shadow_ = new Variable(this,
985 FACTORY->arguments_shadow_symbol(),
986 Variable::INTERNAL,
987 true,
988 Variable::ARGUMENTS);
989 arguments_shadow_->set_is_used(true);
990 temps_.Add(arguments_shadow_);
991
992 // Allocate the parameters by rewriting them into '.arguments[i]' accesses.
993 for (int i = 0; i < params_.length(); i++) {
994 Variable* var = params_[i];
995 ASSERT(var->scope() == this);
996 if (MustAllocate(var)) {
997 if (MustAllocateInContext(var)) {
998 // It is ok to set this only now, because arguments is a local
999 // variable that is allocated after the parameters have been
1000 // allocated.
1001 arguments_shadow_->MarkAsAccessedFromInnerScope();
1002 }
1003 Property* rewrite =
1004 new Property(new VariableProxy(arguments_shadow_),
1005 new Literal(Handle<Object>(Smi::FromInt(i))),
1006 RelocInfo::kNoPosition,
1007 Property::SYNTHETIC);
1008 rewrite->set_is_arguments_access(true);
1009 var->set_rewrite(rewrite);
1010 }
1011 }
1012
1013 } else {
1014 // The arguments object is not used, so we can access parameters directly.
1015 // The same parameter may occur multiple times in the parameters_ list.
1016 // If it does, and if it is not copied into the context object, it must
1017 // receive the highest parameter index for that parameter; thus iteration
1018 // order is relevant!
1019 for (int i = 0; i < params_.length(); i++) {
1020 Variable* var = params_[i];
1021 ASSERT(var->scope() == this);
1022 if (MustAllocate(var)) {
1023 if (MustAllocateInContext(var)) {
1024 ASSERT(var->rewrite() == NULL ||
1025 (var->AsSlot() != NULL &&
1026 var->AsSlot()->type() == Slot::CONTEXT));
1027 if (var->rewrite() == NULL) {
1028 // Only set the heap allocation if the parameter has not
1029 // been allocated yet.
1030 AllocateHeapSlot(var);
1031 }
1032 } else {
1033 ASSERT(var->rewrite() == NULL ||
1034 (var->AsSlot() != NULL &&
1035 var->AsSlot()->type() == Slot::PARAMETER));
1036 // Set the parameter index always, even if the parameter
1037 // was seen before! (We need to access the actual parameter
1038 // supplied for the last occurrence of a multiply declared
1039 // parameter.)
1040 var->set_rewrite(new Slot(var, Slot::PARAMETER, i));
1041 }
1042 }
1043 }
1044 }
1045 }
1046
1047
AllocateNonParameterLocal(Variable * var)1048 void Scope::AllocateNonParameterLocal(Variable* var) {
1049 ASSERT(var->scope() == this);
1050 ASSERT(var->rewrite() == NULL ||
1051 (!var->IsVariable(FACTORY->result_symbol())) ||
1052 (var->AsSlot() == NULL || var->AsSlot()->type() != Slot::LOCAL));
1053 if (var->rewrite() == NULL && MustAllocate(var)) {
1054 if (MustAllocateInContext(var)) {
1055 AllocateHeapSlot(var);
1056 } else {
1057 AllocateStackSlot(var);
1058 }
1059 }
1060 }
1061
1062
AllocateNonParameterLocals()1063 void Scope::AllocateNonParameterLocals() {
1064 // All variables that have no rewrite yet are non-parameter locals.
1065 for (int i = 0; i < temps_.length(); i++) {
1066 AllocateNonParameterLocal(temps_[i]);
1067 }
1068
1069 for (VariableMap::Entry* p = variables_.Start();
1070 p != NULL;
1071 p = variables_.Next(p)) {
1072 Variable* var = reinterpret_cast<Variable*>(p->value);
1073 AllocateNonParameterLocal(var);
1074 }
1075
1076 // For now, function_ must be allocated at the very end. If it gets
1077 // allocated in the context, it must be the last slot in the context,
1078 // because of the current ScopeInfo implementation (see
1079 // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
1080 if (function_ != NULL) {
1081 AllocateNonParameterLocal(function_);
1082 }
1083 }
1084
1085
AllocateVariablesRecursively()1086 void Scope::AllocateVariablesRecursively() {
1087 // Allocate variables for inner scopes.
1088 for (int i = 0; i < inner_scopes_.length(); i++) {
1089 inner_scopes_[i]->AllocateVariablesRecursively();
1090 }
1091
1092 // If scope is already resolved, we still need to allocate
1093 // variables in inner scopes which might not had been resolved yet.
1094 if (resolved()) return;
1095 // The number of slots required for variables.
1096 num_stack_slots_ = 0;
1097 num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
1098
1099 // Allocate variables for this scope.
1100 // Parameters must be allocated first, if any.
1101 if (is_function_scope()) AllocateParameterLocals();
1102 AllocateNonParameterLocals();
1103
1104 // Allocate context if necessary.
1105 bool must_have_local_context = false;
1106 if (scope_calls_eval_ || scope_contains_with_) {
1107 // The context for the eval() call or 'with' statement in this scope.
1108 // Unless we are in the global or an eval scope, we need a local
1109 // context even if we didn't statically allocate any locals in it,
1110 // and the compiler will access the context variable. If we are
1111 // not in an inner scope, the scope is provided from the outside.
1112 must_have_local_context = is_function_scope();
1113 }
1114
1115 // If we didn't allocate any locals in the local context, then we only
1116 // need the minimal number of slots if we must have a local context.
1117 if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS &&
1118 !must_have_local_context) {
1119 num_heap_slots_ = 0;
1120 }
1121
1122 // Allocation done.
1123 ASSERT(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
1124 }
1125
1126 } } // namespace v8::internal
1127