• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 /* digital_agc.c
12  *
13  */
14 
15 #include <string.h>
16 #ifdef AGC_DEBUG
17 #include <stdio.h>
18 #endif
19 #include "digital_agc.h"
20 #include "gain_control.h"
21 
22 // To generate the gaintable, copy&paste the following lines to a Matlab window:
23 // MaxGain = 6; MinGain = 0; CompRatio = 3; Knee = 1;
24 // zeros = 0:31; lvl = 2.^(1-zeros);
25 // A = -10*log10(lvl) * (CompRatio - 1) / CompRatio;
26 // B = MaxGain - MinGain;
27 // gains = round(2^16*10.^(0.05 * (MinGain + B * ( log(exp(-Knee*A)+exp(-Knee*B)) - log(1+exp(-Knee*B)) ) / log(1/(1+exp(Knee*B))))));
28 // fprintf(1, '\t%i, %i, %i, %i,\n', gains);
29 // % Matlab code for plotting the gain and input/output level characteristic (copy/paste the following 3 lines):
30 // in = 10*log10(lvl); out = 20*log10(gains/65536);
31 // subplot(121); plot(in, out); axis([-30, 0, -5, 20]); grid on; xlabel('Input (dB)'); ylabel('Gain (dB)');
32 // subplot(122); plot(in, in+out); axis([-30, 0, -30, 5]); grid on; xlabel('Input (dB)'); ylabel('Output (dB)');
33 // zoom on;
34 
35 // Generator table for y=log2(1+e^x) in Q8.
36 static const WebRtc_UWord16 kGenFuncTable[128] = {
37           256,   485,   786,  1126,  1484,  1849,  2217,  2586,
38          2955,  3324,  3693,  4063,  4432,  4801,  5171,  5540,
39          5909,  6279,  6648,  7017,  7387,  7756,  8125,  8495,
40          8864,  9233,  9603,  9972, 10341, 10711, 11080, 11449,
41         11819, 12188, 12557, 12927, 13296, 13665, 14035, 14404,
42         14773, 15143, 15512, 15881, 16251, 16620, 16989, 17359,
43         17728, 18097, 18466, 18836, 19205, 19574, 19944, 20313,
44         20682, 21052, 21421, 21790, 22160, 22529, 22898, 23268,
45         23637, 24006, 24376, 24745, 25114, 25484, 25853, 26222,
46         26592, 26961, 27330, 27700, 28069, 28438, 28808, 29177,
47         29546, 29916, 30285, 30654, 31024, 31393, 31762, 32132,
48         32501, 32870, 33240, 33609, 33978, 34348, 34717, 35086,
49         35456, 35825, 36194, 36564, 36933, 37302, 37672, 38041,
50         38410, 38780, 39149, 39518, 39888, 40257, 40626, 40996,
51         41365, 41734, 42104, 42473, 42842, 43212, 43581, 43950,
52         44320, 44689, 45058, 45428, 45797, 46166, 46536, 46905
53 };
54 
55 static const WebRtc_Word16 kAvgDecayTime = 250; // frames; < 3000
56 
WebRtcAgc_CalculateGainTable(WebRtc_Word32 * gainTable,WebRtc_Word16 digCompGaindB,WebRtc_Word16 targetLevelDbfs,WebRtc_UWord8 limiterEnable,WebRtc_Word16 analogTarget)57 WebRtc_Word32 WebRtcAgc_CalculateGainTable(WebRtc_Word32 *gainTable, // Q16
58                                            WebRtc_Word16 digCompGaindB, // Q0
59                                            WebRtc_Word16 targetLevelDbfs,// Q0
60                                            WebRtc_UWord8 limiterEnable,
61                                            WebRtc_Word16 analogTarget) // Q0
62 {
63     // This function generates the compressor gain table used in the fixed digital part.
64     WebRtc_UWord32 tmpU32no1, tmpU32no2, absInLevel, logApprox;
65     WebRtc_Word32 inLevel, limiterLvl;
66     WebRtc_Word32 tmp32, tmp32no1, tmp32no2, numFIX, den, y32;
67     const WebRtc_UWord16 kLog10 = 54426; // log2(10)     in Q14
68     const WebRtc_UWord16 kLog10_2 = 49321; // 10*log10(2)  in Q14
69     const WebRtc_UWord16 kLogE_1 = 23637; // log2(e)      in Q14
70     WebRtc_UWord16 constMaxGain;
71     WebRtc_UWord16 tmpU16, intPart, fracPart;
72     const WebRtc_Word16 kCompRatio = 3;
73     const WebRtc_Word16 kSoftLimiterLeft = 1;
74     WebRtc_Word16 limiterOffset = 0; // Limiter offset
75     WebRtc_Word16 limiterIdx, limiterLvlX;
76     WebRtc_Word16 constLinApprox, zeroGainLvl, maxGain, diffGain;
77     WebRtc_Word16 i, tmp16, tmp16no1;
78     int zeros, zerosScale;
79 
80     // Constants
81 //    kLogE_1 = 23637; // log2(e)      in Q14
82 //    kLog10 = 54426; // log2(10)     in Q14
83 //    kLog10_2 = 49321; // 10*log10(2)  in Q14
84 
85     // Calculate maximum digital gain and zero gain level
86     tmp32no1 = WEBRTC_SPL_MUL_16_16(digCompGaindB - analogTarget, kCompRatio - 1);
87     tmp16no1 = analogTarget - targetLevelDbfs;
88     tmp16no1 += WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
89     maxGain = WEBRTC_SPL_MAX(tmp16no1, (analogTarget - targetLevelDbfs));
90     tmp32no1 = WEBRTC_SPL_MUL_16_16(maxGain, kCompRatio);
91     zeroGainLvl = digCompGaindB;
92     zeroGainLvl -= WebRtcSpl_DivW32W16ResW16(tmp32no1 + ((kCompRatio - 1) >> 1),
93                                              kCompRatio - 1);
94     if ((digCompGaindB <= analogTarget) && (limiterEnable))
95     {
96         zeroGainLvl += (analogTarget - digCompGaindB + kSoftLimiterLeft);
97         limiterOffset = 0;
98     }
99 
100     // Calculate the difference between maximum gain and gain at 0dB0v:
101     //  diffGain = maxGain + (compRatio-1)*zeroGainLvl/compRatio
102     //           = (compRatio-1)*digCompGaindB/compRatio
103     tmp32no1 = WEBRTC_SPL_MUL_16_16(digCompGaindB, kCompRatio - 1);
104     diffGain = WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
105     if (diffGain < 0)
106     {
107         return -1;
108     }
109 
110     // Calculate the limiter level and index:
111     //  limiterLvlX = analogTarget - limiterOffset
112     //  limiterLvl  = targetLevelDbfs + limiterOffset/compRatio
113     limiterLvlX = analogTarget - limiterOffset;
114     limiterIdx = 2
115             + WebRtcSpl_DivW32W16ResW16(WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)limiterLvlX, 13),
116                                         WEBRTC_SPL_RSHIFT_U16(kLog10_2, 1));
117     tmp16no1 = WebRtcSpl_DivW32W16ResW16(limiterOffset + (kCompRatio >> 1), kCompRatio);
118     limiterLvl = targetLevelDbfs + tmp16no1;
119 
120     // Calculate (through table lookup):
121     //  constMaxGain = log2(1+2^(log2(e)*diffGain)); (in Q8)
122     constMaxGain = kGenFuncTable[diffGain]; // in Q8
123 
124     // Calculate a parameter used to approximate the fractional part of 2^x with a
125     // piecewise linear function in Q14:
126     //  constLinApprox = round(3/2*(4*(3-2*sqrt(2))/(log(2)^2)-0.5)*2^14);
127     constLinApprox = 22817; // in Q14
128 
129     // Calculate a denominator used in the exponential part to convert from dB to linear scale:
130     //  den = 20*constMaxGain (in Q8)
131     den = WEBRTC_SPL_MUL_16_U16(20, constMaxGain); // in Q8
132 
133     for (i = 0; i < 32; i++)
134     {
135         // Calculate scaled input level (compressor):
136         //  inLevel = fix((-constLog10_2*(compRatio-1)*(1-i)+fix(compRatio/2))/compRatio)
137         tmp16 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16(kCompRatio - 1, i - 1); // Q0
138         tmp32 = WEBRTC_SPL_MUL_16_U16(tmp16, kLog10_2) + 1; // Q14
139         inLevel = WebRtcSpl_DivW32W16(tmp32, kCompRatio); // Q14
140 
141         // Calculate diffGain-inLevel, to map using the genFuncTable
142         inLevel = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)diffGain, 14) - inLevel; // Q14
143 
144         // Make calculations on abs(inLevel) and compensate for the sign afterwards.
145         absInLevel = (WebRtc_UWord32)WEBRTC_SPL_ABS_W32(inLevel); // Q14
146 
147         // LUT with interpolation
148         intPart = (WebRtc_UWord16)WEBRTC_SPL_RSHIFT_U32(absInLevel, 14);
149         fracPart = (WebRtc_UWord16)(absInLevel & 0x00003FFF); // extract the fractional part
150         tmpU16 = kGenFuncTable[intPart + 1] - kGenFuncTable[intPart]; // Q8
151         tmpU32no1 = WEBRTC_SPL_UMUL_16_16(tmpU16, fracPart); // Q22
152         tmpU32no1 += WEBRTC_SPL_LSHIFT_U32((WebRtc_UWord32)kGenFuncTable[intPart], 14); // Q22
153         logApprox = WEBRTC_SPL_RSHIFT_U32(tmpU32no1, 8); // Q14
154         // Compensate for negative exponent using the relation:
155         //  log2(1 + 2^-x) = log2(1 + 2^x) - x
156         if (inLevel < 0)
157         {
158             zeros = WebRtcSpl_NormU32(absInLevel);
159             zerosScale = 0;
160             if (zeros < 15)
161             {
162                 // Not enough space for multiplication
163                 tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(absInLevel, 15 - zeros); // Q(zeros-1)
164                 tmpU32no2 = WEBRTC_SPL_UMUL_32_16(tmpU32no2, kLogE_1); // Q(zeros+13)
165                 if (zeros < 9)
166                 {
167                     tmpU32no1 = WEBRTC_SPL_RSHIFT_U32(tmpU32no1, 9 - zeros); // Q(zeros+13)
168                     zerosScale = 9 - zeros;
169                 } else
170                 {
171                     tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(tmpU32no2, zeros - 9); // Q22
172                 }
173             } else
174             {
175                 tmpU32no2 = WEBRTC_SPL_UMUL_32_16(absInLevel, kLogE_1); // Q28
176                 tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(tmpU32no2, 6); // Q22
177             }
178             logApprox = 0;
179             if (tmpU32no2 < tmpU32no1)
180             {
181                 logApprox = WEBRTC_SPL_RSHIFT_U32(tmpU32no1 - tmpU32no2, 8 - zerosScale); //Q14
182             }
183         }
184         numFIX = WEBRTC_SPL_LSHIFT_W32(WEBRTC_SPL_MUL_16_U16(maxGain, constMaxGain), 6); // Q14
185         numFIX -= WEBRTC_SPL_MUL_32_16((WebRtc_Word32)logApprox, diffGain); // Q14
186 
187         // Calculate ratio
188         // Shift numFIX as much as possible
189         zeros = WebRtcSpl_NormW32(numFIX);
190         numFIX = WEBRTC_SPL_LSHIFT_W32(numFIX, zeros); // Q(14+zeros)
191 
192         // Shift den so we end up in Qy1
193         tmp32no1 = WEBRTC_SPL_SHIFT_W32(den, zeros - 8); // Q(zeros)
194         if (numFIX < 0)
195         {
196             numFIX -= WEBRTC_SPL_RSHIFT_W32(tmp32no1, 1);
197         } else
198         {
199             numFIX += WEBRTC_SPL_RSHIFT_W32(tmp32no1, 1);
200         }
201         y32 = WEBRTC_SPL_DIV(numFIX, tmp32no1); // in Q14
202         if (limiterEnable && (i < limiterIdx))
203         {
204             tmp32 = WEBRTC_SPL_MUL_16_U16(i - 1, kLog10_2); // Q14
205             tmp32 -= WEBRTC_SPL_LSHIFT_W32(limiterLvl, 14); // Q14
206             y32 = WebRtcSpl_DivW32W16(tmp32 + 10, 20);
207         }
208         if (y32 > 39000)
209         {
210             tmp32 = WEBRTC_SPL_MUL(y32 >> 1, kLog10) + 4096; // in Q27
211             tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 13); // in Q14
212         } else
213         {
214             tmp32 = WEBRTC_SPL_MUL(y32, kLog10) + 8192; // in Q28
215             tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 14); // in Q14
216         }
217         tmp32 += WEBRTC_SPL_LSHIFT_W32(16, 14); // in Q14 (Make sure final output is in Q16)
218 
219         // Calculate power
220         if (tmp32 > 0)
221         {
222             intPart = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 14);
223             fracPart = (WebRtc_UWord16)(tmp32 & 0x00003FFF); // in Q14
224             if (WEBRTC_SPL_RSHIFT_W32(fracPart, 13))
225             {
226                 tmp16 = WEBRTC_SPL_LSHIFT_W16(2, 14) - constLinApprox;
227                 tmp32no2 = WEBRTC_SPL_LSHIFT_W32(1, 14) - fracPart;
228                 tmp32no2 = WEBRTC_SPL_MUL_32_16(tmp32no2, tmp16);
229                 tmp32no2 = WEBRTC_SPL_RSHIFT_W32(tmp32no2, 13);
230                 tmp32no2 = WEBRTC_SPL_LSHIFT_W32(1, 14) - tmp32no2;
231             } else
232             {
233                 tmp16 = constLinApprox - WEBRTC_SPL_LSHIFT_W16(1, 14);
234                 tmp32no2 = WEBRTC_SPL_MUL_32_16(fracPart, tmp16);
235                 tmp32no2 = WEBRTC_SPL_RSHIFT_W32(tmp32no2, 13);
236             }
237             fracPart = (WebRtc_UWord16)tmp32no2;
238             gainTable[i] = WEBRTC_SPL_LSHIFT_W32(1, intPart)
239                     + WEBRTC_SPL_SHIFT_W32(fracPart, intPart - 14);
240         } else
241         {
242             gainTable[i] = 0;
243         }
244     }
245 
246     return 0;
247 }
248 
WebRtcAgc_InitDigital(DigitalAgc_t * stt,WebRtc_Word16 agcMode)249 WebRtc_Word32 WebRtcAgc_InitDigital(DigitalAgc_t *stt, WebRtc_Word16 agcMode)
250 {
251 
252     if (agcMode == kAgcModeFixedDigital)
253     {
254         // start at minimum to find correct gain faster
255         stt->capacitorSlow = 0;
256     } else
257     {
258         // start out with 0 dB gain
259         stt->capacitorSlow = 134217728; // (WebRtc_Word32)(0.125f * 32768.0f * 32768.0f);
260     }
261     stt->capacitorFast = 0;
262     stt->gain = 65536;
263     stt->gatePrevious = 0;
264     stt->agcMode = agcMode;
265 #ifdef AGC_DEBUG
266     stt->frameCounter = 0;
267 #endif
268 
269     // initialize VADs
270     WebRtcAgc_InitVad(&stt->vadNearend);
271     WebRtcAgc_InitVad(&stt->vadFarend);
272 
273     return 0;
274 }
275 
WebRtcAgc_AddFarendToDigital(DigitalAgc_t * stt,const WebRtc_Word16 * in_far,WebRtc_Word16 nrSamples)276 WebRtc_Word32 WebRtcAgc_AddFarendToDigital(DigitalAgc_t *stt, const WebRtc_Word16 *in_far,
277                                            WebRtc_Word16 nrSamples)
278 {
279     // Check for valid pointer
280     if (&stt->vadFarend == NULL)
281     {
282         return -1;
283     }
284 
285     // VAD for far end
286     WebRtcAgc_ProcessVad(&stt->vadFarend, in_far, nrSamples);
287 
288     return 0;
289 }
290 
WebRtcAgc_ProcessDigital(DigitalAgc_t * stt,const WebRtc_Word16 * in_near,const WebRtc_Word16 * in_near_H,WebRtc_Word16 * out,WebRtc_Word16 * out_H,WebRtc_UWord32 FS,WebRtc_Word16 lowlevelSignal)291 WebRtc_Word32 WebRtcAgc_ProcessDigital(DigitalAgc_t *stt, const WebRtc_Word16 *in_near,
292                                        const WebRtc_Word16 *in_near_H, WebRtc_Word16 *out,
293                                        WebRtc_Word16 *out_H, WebRtc_UWord32 FS,
294                                        WebRtc_Word16 lowlevelSignal)
295 {
296     // array for gains (one value per ms, incl start & end)
297     WebRtc_Word32 gains[11];
298 
299     WebRtc_Word32 out_tmp, tmp32;
300     WebRtc_Word32 env[10];
301     WebRtc_Word32 nrg, max_nrg;
302     WebRtc_Word32 cur_level;
303     WebRtc_Word32 gain32, delta;
304     WebRtc_Word16 logratio;
305     WebRtc_Word16 lower_thr, upper_thr;
306     WebRtc_Word16 zeros, zeros_fast, frac;
307     WebRtc_Word16 decay;
308     WebRtc_Word16 gate, gain_adj;
309     WebRtc_Word16 k, n;
310     WebRtc_Word16 L, L2; // samples/subframe
311 
312     // determine number of samples per ms
313     if (FS == 8000)
314     {
315         L = 8;
316         L2 = 3;
317     } else if (FS == 16000)
318     {
319         L = 16;
320         L2 = 4;
321     } else if (FS == 32000)
322     {
323         L = 16;
324         L2 = 4;
325     } else
326     {
327         return -1;
328     }
329 
330     memcpy(out, in_near, 10 * L * sizeof(WebRtc_Word16));
331     if (FS == 32000)
332     {
333         memcpy(out_H, in_near_H, 10 * L * sizeof(WebRtc_Word16));
334     }
335     // VAD for near end
336     logratio = WebRtcAgc_ProcessVad(&stt->vadNearend, out, L * 10);
337 
338     // Account for far end VAD
339     if (stt->vadFarend.counter > 10)
340     {
341         tmp32 = WEBRTC_SPL_MUL_16_16(3, logratio);
342         logratio = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 - stt->vadFarend.logRatio, 2);
343     }
344 
345     // Determine decay factor depending on VAD
346     //  upper_thr = 1.0f;
347     //  lower_thr = 0.25f;
348     upper_thr = 1024; // Q10
349     lower_thr = 0; // Q10
350     if (logratio > upper_thr)
351     {
352         // decay = -2^17 / DecayTime;  ->  -65
353         decay = -65;
354     } else if (logratio < lower_thr)
355     {
356         decay = 0;
357     } else
358     {
359         // decay = (WebRtc_Word16)(((lower_thr - logratio)
360         //       * (2^27/(DecayTime*(upper_thr-lower_thr)))) >> 10);
361         // SUBSTITUTED: 2^27/(DecayTime*(upper_thr-lower_thr))  ->  65
362         tmp32 = WEBRTC_SPL_MUL_16_16((lower_thr - logratio), 65);
363         decay = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 10);
364     }
365 
366     // adjust decay factor for long silence (detected as low standard deviation)
367     // This is only done in the adaptive modes
368     if (stt->agcMode != kAgcModeFixedDigital)
369     {
370         if (stt->vadNearend.stdLongTerm < 4000)
371         {
372             decay = 0;
373         } else if (stt->vadNearend.stdLongTerm < 8096)
374         {
375             // decay = (WebRtc_Word16)(((stt->vadNearend.stdLongTerm - 4000) * decay) >> 12);
376             tmp32 = WEBRTC_SPL_MUL_16_16((stt->vadNearend.stdLongTerm - 4000), decay);
377             decay = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 12);
378         }
379 
380         if (lowlevelSignal != 0)
381         {
382             decay = 0;
383         }
384     }
385 #ifdef AGC_DEBUG
386     stt->frameCounter++;
387     fprintf(stt->logFile, "%5.2f\t%d\t%d\t%d\t", (float)(stt->frameCounter) / 100, logratio, decay, stt->vadNearend.stdLongTerm);
388 #endif
389     // Find max amplitude per sub frame
390     // iterate over sub frames
391     for (k = 0; k < 10; k++)
392     {
393         // iterate over samples
394         max_nrg = 0;
395         for (n = 0; n < L; n++)
396         {
397             nrg = WEBRTC_SPL_MUL_16_16(out[k * L + n], out[k * L + n]);
398             if (nrg > max_nrg)
399             {
400                 max_nrg = nrg;
401             }
402         }
403         env[k] = max_nrg;
404     }
405 
406     // Calculate gain per sub frame
407     gains[0] = stt->gain;
408     for (k = 0; k < 10; k++)
409     {
410         // Fast envelope follower
411         //  decay time = -131000 / -1000 = 131 (ms)
412         stt->capacitorFast = AGC_SCALEDIFF32(-1000, stt->capacitorFast, stt->capacitorFast);
413         if (env[k] > stt->capacitorFast)
414         {
415             stt->capacitorFast = env[k];
416         }
417         // Slow envelope follower
418         if (env[k] > stt->capacitorSlow)
419         {
420             // increase capacitorSlow
421             stt->capacitorSlow
422                     = AGC_SCALEDIFF32(500, (env[k] - stt->capacitorSlow), stt->capacitorSlow);
423         } else
424         {
425             // decrease capacitorSlow
426             stt->capacitorSlow
427                     = AGC_SCALEDIFF32(decay, stt->capacitorSlow, stt->capacitorSlow);
428         }
429 
430         // use maximum of both capacitors as current level
431         if (stt->capacitorFast > stt->capacitorSlow)
432         {
433             cur_level = stt->capacitorFast;
434         } else
435         {
436             cur_level = stt->capacitorSlow;
437         }
438         // Translate signal level into gain, using a piecewise linear approximation
439         // find number of leading zeros
440         zeros = WebRtcSpl_NormU32((WebRtc_UWord32)cur_level);
441         if (cur_level == 0)
442         {
443             zeros = 31;
444         }
445         tmp32 = (WEBRTC_SPL_LSHIFT_W32(cur_level, zeros) & 0x7FFFFFFF);
446         frac = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 19); // Q12
447         tmp32 = WEBRTC_SPL_MUL((stt->gainTable[zeros-1] - stt->gainTable[zeros]), frac);
448         gains[k + 1] = stt->gainTable[zeros] + WEBRTC_SPL_RSHIFT_W32(tmp32, 12);
449 #ifdef AGC_DEBUG
450         if (k == 0)
451         {
452             fprintf(stt->logFile, "%d\t%d\t%d\t%d\t%d\n", env[0], cur_level, stt->capacitorFast, stt->capacitorSlow, zeros);
453         }
454 #endif
455     }
456 
457     // Gate processing (lower gain during absence of speech)
458     zeros = WEBRTC_SPL_LSHIFT_W16(zeros, 9) - WEBRTC_SPL_RSHIFT_W16(frac, 3);
459     // find number of leading zeros
460     zeros_fast = WebRtcSpl_NormU32((WebRtc_UWord32)stt->capacitorFast);
461     if (stt->capacitorFast == 0)
462     {
463         zeros_fast = 31;
464     }
465     tmp32 = (WEBRTC_SPL_LSHIFT_W32(stt->capacitorFast, zeros_fast) & 0x7FFFFFFF);
466     zeros_fast = WEBRTC_SPL_LSHIFT_W16(zeros_fast, 9);
467     zeros_fast -= (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 22);
468 
469     gate = 1000 + zeros_fast - zeros - stt->vadNearend.stdShortTerm;
470 
471     if (gate < 0)
472     {
473         stt->gatePrevious = 0;
474     } else
475     {
476         tmp32 = WEBRTC_SPL_MUL_16_16(stt->gatePrevious, 7);
477         gate = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((WebRtc_Word32)gate + tmp32, 3);
478         stt->gatePrevious = gate;
479     }
480     // gate < 0     -> no gate
481     // gate > 2500  -> max gate
482     if (gate > 0)
483     {
484         if (gate < 2500)
485         {
486             gain_adj = WEBRTC_SPL_RSHIFT_W16(2500 - gate, 5);
487         } else
488         {
489             gain_adj = 0;
490         }
491         for (k = 0; k < 10; k++)
492         {
493             if ((gains[k + 1] - stt->gainTable[0]) > 8388608)
494             {
495                 // To prevent wraparound
496                 tmp32 = WEBRTC_SPL_RSHIFT_W32((gains[k+1] - stt->gainTable[0]), 8);
497                 tmp32 = WEBRTC_SPL_MUL(tmp32, (178 + gain_adj));
498             } else
499             {
500                 tmp32 = WEBRTC_SPL_MUL((gains[k+1] - stt->gainTable[0]), (178 + gain_adj));
501                 tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 8);
502             }
503             gains[k + 1] = stt->gainTable[0] + tmp32;
504         }
505     }
506 
507     // Limit gain to avoid overload distortion
508     for (k = 0; k < 10; k++)
509     {
510         // To prevent wrap around
511         zeros = 10;
512         if (gains[k + 1] > 47453132)
513         {
514             zeros = 16 - WebRtcSpl_NormW32(gains[k + 1]);
515         }
516         gain32 = WEBRTC_SPL_RSHIFT_W32(gains[k+1], zeros) + 1;
517         gain32 = WEBRTC_SPL_MUL(gain32, gain32);
518         // check for overflow
519         while (AGC_MUL32(WEBRTC_SPL_RSHIFT_W32(env[k], 12) + 1, gain32)
520                 > WEBRTC_SPL_SHIFT_W32((WebRtc_Word32)32767, 2 * (1 - zeros + 10)))
521         {
522             // multiply by 253/256 ==> -0.1 dB
523             if (gains[k + 1] > 8388607)
524             {
525                 // Prevent wrap around
526                 gains[k + 1] = WEBRTC_SPL_MUL(WEBRTC_SPL_RSHIFT_W32(gains[k+1], 8), 253);
527             } else
528             {
529                 gains[k + 1] = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL(gains[k+1], 253), 8);
530             }
531             gain32 = WEBRTC_SPL_RSHIFT_W32(gains[k+1], zeros) + 1;
532             gain32 = WEBRTC_SPL_MUL(gain32, gain32);
533         }
534     }
535     // gain reductions should be done 1 ms earlier than gain increases
536     for (k = 1; k < 10; k++)
537     {
538         if (gains[k] > gains[k + 1])
539         {
540             gains[k] = gains[k + 1];
541         }
542     }
543     // save start gain for next frame
544     stt->gain = gains[10];
545 
546     // Apply gain
547     // handle first sub frame separately
548     delta = WEBRTC_SPL_LSHIFT_W32(gains[1] - gains[0], (4 - L2));
549     gain32 = WEBRTC_SPL_LSHIFT_W32(gains[0], 4);
550     // iterate over samples
551     for (n = 0; n < L; n++)
552     {
553         // For lower band
554         tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out[n], WEBRTC_SPL_RSHIFT_W32(gain32 + 127, 7));
555         out_tmp = WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
556         if (out_tmp > 4095)
557         {
558             out[n] = (WebRtc_Word16)32767;
559         } else if (out_tmp < -4096)
560         {
561             out[n] = (WebRtc_Word16)-32768;
562         } else
563         {
564             tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out[n], WEBRTC_SPL_RSHIFT_W32(gain32, 4));
565             out[n] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
566         }
567         // For higher band
568         if (FS == 32000)
569         {
570             tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out_H[n],
571                                    WEBRTC_SPL_RSHIFT_W32(gain32 + 127, 7));
572             out_tmp = WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
573             if (out_tmp > 4095)
574             {
575                 out_H[n] = (WebRtc_Word16)32767;
576             } else if (out_tmp < -4096)
577             {
578                 out_H[n] = (WebRtc_Word16)-32768;
579             } else
580             {
581                 tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out_H[n],
582                                        WEBRTC_SPL_RSHIFT_W32(gain32, 4));
583                 out_H[n] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
584             }
585         }
586         //
587 
588         gain32 += delta;
589     }
590     // iterate over subframes
591     for (k = 1; k < 10; k++)
592     {
593         delta = WEBRTC_SPL_LSHIFT_W32(gains[k+1] - gains[k], (4 - L2));
594         gain32 = WEBRTC_SPL_LSHIFT_W32(gains[k], 4);
595         // iterate over samples
596         for (n = 0; n < L; n++)
597         {
598             // For lower band
599             tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out[k * L + n],
600                                    WEBRTC_SPL_RSHIFT_W32(gain32, 4));
601             out[k * L + n] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
602             // For higher band
603             if (FS == 32000)
604             {
605                 tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out_H[k * L + n],
606                                        WEBRTC_SPL_RSHIFT_W32(gain32, 4));
607                 out_H[k * L + n] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16);
608             }
609             gain32 += delta;
610         }
611     }
612 
613     return 0;
614 }
615 
WebRtcAgc_InitVad(AgcVad_t * state)616 void WebRtcAgc_InitVad(AgcVad_t *state)
617 {
618     WebRtc_Word16 k;
619 
620     state->HPstate = 0; // state of high pass filter
621     state->logRatio = 0; // log( P(active) / P(inactive) )
622     // average input level (Q10)
623     state->meanLongTerm = WEBRTC_SPL_LSHIFT_W16(15, 10);
624 
625     // variance of input level (Q8)
626     state->varianceLongTerm = WEBRTC_SPL_LSHIFT_W32(500, 8);
627 
628     state->stdLongTerm = 0; // standard deviation of input level in dB
629     // short-term average input level (Q10)
630     state->meanShortTerm = WEBRTC_SPL_LSHIFT_W16(15, 10);
631 
632     // short-term variance of input level (Q8)
633     state->varianceShortTerm = WEBRTC_SPL_LSHIFT_W32(500, 8);
634 
635     state->stdShortTerm = 0; // short-term standard deviation of input level in dB
636     state->counter = 3; // counts updates
637     for (k = 0; k < 8; k++)
638     {
639         // downsampling filter
640         state->downState[k] = 0;
641     }
642 }
643 
WebRtcAgc_ProcessVad(AgcVad_t * state,const WebRtc_Word16 * in,WebRtc_Word16 nrSamples)644 WebRtc_Word16 WebRtcAgc_ProcessVad(AgcVad_t *state, // (i) VAD state
645                                    const WebRtc_Word16 *in, // (i) Speech signal
646                                    WebRtc_Word16 nrSamples) // (i) number of samples
647 {
648     WebRtc_Word32 out, nrg, tmp32, tmp32b;
649     WebRtc_UWord16 tmpU16;
650     WebRtc_Word16 k, subfr, tmp16;
651     WebRtc_Word16 buf1[8];
652     WebRtc_Word16 buf2[4];
653     WebRtc_Word16 HPstate;
654     WebRtc_Word16 zeros, dB;
655     WebRtc_Word16 *buf1_ptr;
656 
657     // process in 10 sub frames of 1 ms (to save on memory)
658     nrg = 0;
659     buf1_ptr = &buf1[0];
660     HPstate = state->HPstate;
661     for (subfr = 0; subfr < 10; subfr++)
662     {
663         // downsample to 4 kHz
664         if (nrSamples == 160)
665         {
666             for (k = 0; k < 8; k++)
667             {
668                 tmp32 = (WebRtc_Word32)in[2 * k] + (WebRtc_Word32)in[2 * k + 1];
669                 tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 1);
670                 buf1[k] = (WebRtc_Word16)tmp32;
671             }
672             in += 16;
673 
674             WebRtcSpl_DownsampleBy2(buf1, 8, buf2, state->downState);
675         } else
676         {
677             WebRtcSpl_DownsampleBy2(in, 8, buf2, state->downState);
678             in += 8;
679         }
680 
681         // high pass filter and compute energy
682         for (k = 0; k < 4; k++)
683         {
684             out = buf2[k] + HPstate;
685             tmp32 = WEBRTC_SPL_MUL(600, out);
686             HPstate = (WebRtc_Word16)(WEBRTC_SPL_RSHIFT_W32(tmp32, 10) - buf2[k]);
687             tmp32 = WEBRTC_SPL_MUL(out, out);
688             nrg += WEBRTC_SPL_RSHIFT_W32(tmp32, 6);
689         }
690     }
691     state->HPstate = HPstate;
692 
693     // find number of leading zeros
694     if (!(0xFFFF0000 & nrg))
695     {
696         zeros = 16;
697     } else
698     {
699         zeros = 0;
700     }
701     if (!(0xFF000000 & (nrg << zeros)))
702     {
703         zeros += 8;
704     }
705     if (!(0xF0000000 & (nrg << zeros)))
706     {
707         zeros += 4;
708     }
709     if (!(0xC0000000 & (nrg << zeros)))
710     {
711         zeros += 2;
712     }
713     if (!(0x80000000 & (nrg << zeros)))
714     {
715         zeros += 1;
716     }
717 
718     // energy level (range {-32..30}) (Q10)
719     dB = WEBRTC_SPL_LSHIFT_W16(15 - zeros, 11);
720 
721     // Update statistics
722 
723     if (state->counter < kAvgDecayTime)
724     {
725         // decay time = AvgDecTime * 10 ms
726         state->counter++;
727     }
728 
729     // update short-term estimate of mean energy level (Q10)
730     tmp32 = (WEBRTC_SPL_MUL_16_16(state->meanShortTerm, 15) + (WebRtc_Word32)dB);
731     state->meanShortTerm = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 4);
732 
733     // update short-term estimate of variance in energy level (Q8)
734     tmp32 = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL_16_16(dB, dB), 12);
735     tmp32 += WEBRTC_SPL_MUL(state->varianceShortTerm, 15);
736     state->varianceShortTerm = WEBRTC_SPL_RSHIFT_W32(tmp32, 4);
737 
738     // update short-term estimate of standard deviation in energy level (Q10)
739     tmp32 = WEBRTC_SPL_MUL_16_16(state->meanShortTerm, state->meanShortTerm);
740     tmp32 = WEBRTC_SPL_LSHIFT_W32(state->varianceShortTerm, 12) - tmp32;
741     state->stdShortTerm = (WebRtc_Word16)WebRtcSpl_Sqrt(tmp32);
742 
743     // update long-term estimate of mean energy level (Q10)
744     tmp32 = WEBRTC_SPL_MUL_16_16(state->meanLongTerm, state->counter) + (WebRtc_Word32)dB;
745     state->meanLongTerm = WebRtcSpl_DivW32W16ResW16(tmp32,
746                                                     WEBRTC_SPL_ADD_SAT_W16(state->counter, 1));
747 
748     // update long-term estimate of variance in energy level (Q8)
749     tmp32 = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL_16_16(dB, dB), 12);
750     tmp32 += WEBRTC_SPL_MUL(state->varianceLongTerm, state->counter);
751     state->varianceLongTerm = WebRtcSpl_DivW32W16(tmp32,
752                                                   WEBRTC_SPL_ADD_SAT_W16(state->counter, 1));
753 
754     // update long-term estimate of standard deviation in energy level (Q10)
755     tmp32 = WEBRTC_SPL_MUL_16_16(state->meanLongTerm, state->meanLongTerm);
756     tmp32 = WEBRTC_SPL_LSHIFT_W32(state->varianceLongTerm, 12) - tmp32;
757     state->stdLongTerm = (WebRtc_Word16)WebRtcSpl_Sqrt(tmp32);
758 
759     // update voice activity measure (Q10)
760     tmp16 = WEBRTC_SPL_LSHIFT_W16(3, 12);
761     tmp32 = WEBRTC_SPL_MUL_16_16(tmp16, (dB - state->meanLongTerm));
762     tmp32 = WebRtcSpl_DivW32W16(tmp32, state->stdLongTerm);
763     tmpU16 = WEBRTC_SPL_LSHIFT_U16((WebRtc_UWord16)13, 12);
764     tmp32b = WEBRTC_SPL_MUL_16_U16(state->logRatio, tmpU16);
765     tmp32 += WEBRTC_SPL_RSHIFT_W32(tmp32b, 10);
766 
767     state->logRatio = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 6);
768 
769     // limit
770     if (state->logRatio > 2048)
771     {
772         state->logRatio = 2048;
773     }
774     if (state->logRatio < -2048)
775     {
776         state->logRatio = -2048;
777     }
778 
779     return state->logRatio; // Q10
780 }
781