• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ReaderWriter_2_9.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Operator.h"
24 #include "llvm/ValueSymbolTable.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/Program.h"
30 #include <cctype>
31 #include <map>
32 using namespace llvm;
33 
34 // Redefine older bitcode opcodes for use here. Note that these come from
35 // LLVM 2.7 (which is what HC shipped with).
36 #define METADATA_NODE_2_7             2
37 #define METADATA_FN_NODE_2_7          3
38 #define METADATA_NAMED_NODE_2_7       5
39 #define METADATA_ATTACHMENT_2_7       7
40 #define FUNC_CODE_INST_CALL_2_7       22
41 #define FUNC_CODE_DEBUG_LOC_2_7       32
42 
43 /// These are manifest constants used by the bitcode writer. They do not need to
44 /// be kept in sync with the reader, but need to be consistent within this file.
45 enum {
46   CurVersion = 0,
47 
48   // VALUE_SYMTAB_BLOCK abbrev id's.
49   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
50   VST_ENTRY_7_ABBREV,
51   VST_ENTRY_6_ABBREV,
52   VST_BBENTRY_6_ABBREV,
53 
54   // CONSTANTS_BLOCK abbrev id's.
55   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
56   CONSTANTS_INTEGER_ABBREV,
57   CONSTANTS_CE_CAST_Abbrev,
58   CONSTANTS_NULL_Abbrev,
59 
60   // FUNCTION_BLOCK abbrev id's.
61   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
62   FUNCTION_INST_BINOP_ABBREV,
63   FUNCTION_INST_BINOP_FLAGS_ABBREV,
64   FUNCTION_INST_CAST_ABBREV,
65   FUNCTION_INST_RET_VOID_ABBREV,
66   FUNCTION_INST_RET_VAL_ABBREV,
67   FUNCTION_INST_UNREACHABLE_ABBREV
68 };
69 
70 
GetEncodedCastOpcode(unsigned Opcode)71 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
72   switch (Opcode) {
73   default: llvm_unreachable("Unknown cast instruction!");
74   case Instruction::Trunc   : return bitc::CAST_TRUNC;
75   case Instruction::ZExt    : return bitc::CAST_ZEXT;
76   case Instruction::SExt    : return bitc::CAST_SEXT;
77   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
78   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
79   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
80   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
81   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
82   case Instruction::FPExt   : return bitc::CAST_FPEXT;
83   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
84   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
85   case Instruction::BitCast : return bitc::CAST_BITCAST;
86   }
87 }
88 
GetEncodedBinaryOpcode(unsigned Opcode)89 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
90   switch (Opcode) {
91   default: llvm_unreachable("Unknown binary instruction!");
92   case Instruction::Add:
93   case Instruction::FAdd: return bitc::BINOP_ADD;
94   case Instruction::Sub:
95   case Instruction::FSub: return bitc::BINOP_SUB;
96   case Instruction::Mul:
97   case Instruction::FMul: return bitc::BINOP_MUL;
98   case Instruction::UDiv: return bitc::BINOP_UDIV;
99   case Instruction::FDiv:
100   case Instruction::SDiv: return bitc::BINOP_SDIV;
101   case Instruction::URem: return bitc::BINOP_UREM;
102   case Instruction::FRem:
103   case Instruction::SRem: return bitc::BINOP_SREM;
104   case Instruction::Shl:  return bitc::BINOP_SHL;
105   case Instruction::LShr: return bitc::BINOP_LSHR;
106   case Instruction::AShr: return bitc::BINOP_ASHR;
107   case Instruction::And:  return bitc::BINOP_AND;
108   case Instruction::Or:   return bitc::BINOP_OR;
109   case Instruction::Xor:  return bitc::BINOP_XOR;
110   }
111 }
112 
WriteStringRecord(unsigned Code,StringRef Str,unsigned AbbrevToUse,BitstreamWriter & Stream)113 static void WriteStringRecord(unsigned Code, StringRef Str,
114                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
115   SmallVector<unsigned, 64> Vals;
116 
117   // Code: [strchar x N]
118   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
119     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
120       AbbrevToUse = 0;
121     Vals.push_back(Str[i]);
122   }
123 
124   // Emit the finished record.
125   Stream.EmitRecord(Code, Vals, AbbrevToUse);
126 }
127 
128 // Emit information about parameter attributes.
WriteAttributeTable(const ValueEnumerator & VE,BitstreamWriter & Stream)129 static void WriteAttributeTable(const ValueEnumerator &VE,
130                                 BitstreamWriter &Stream) {
131   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
132   if (Attrs.empty()) return;
133 
134   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
135 
136   SmallVector<uint64_t, 64> Record;
137   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
138     const AttrListPtr &A = Attrs[i];
139     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
140       const AttributeWithIndex &PAWI = A.getSlot(i);
141       Record.push_back(PAWI.Index);
142 
143       // FIXME: remove in LLVM 3.0
144       // Store the alignment in the bitcode as a 16-bit raw value instead of a
145       // 5-bit log2 encoded value. Shift the bits above the alignment up by
146       // 11 bits.
147       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
148       if (PAWI.Attrs & Attribute::Alignment)
149         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
150       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
151 
152       Record.push_back(FauxAttr);
153     }
154 
155     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
156     Record.clear();
157   }
158 
159   Stream.ExitBlock();
160 }
161 
WriteTypeSymbolTable(const ValueEnumerator & VE,BitstreamWriter & Stream)162 static void WriteTypeSymbolTable(const ValueEnumerator &VE,
163                                  BitstreamWriter &Stream) {
164   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
165   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID_OLD, 3);
166 
167   // 7-bit fixed width VST_CODE_ENTRY strings.
168   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
169   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
171                             Log2_32_Ceil(VE.getTypes().size()+1)));
172   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
173   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
174   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
175 
176   SmallVector<unsigned, 64> NameVals;
177 
178   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
179     Type *T = TypeList[i];
180 
181     switch (T->getTypeID()) {
182     case Type::StructTyID: {
183       StructType *ST = cast<StructType>(T);
184       if (ST->isAnonymous()) {
185         // Skip anonymous struct definitions in type symbol table
186         // FIXME(srhines)
187         break;
188       }
189 
190       // TST_ENTRY: [typeid, namechar x N]
191       NameVals.push_back(i);
192 
193       const std::string &Str = ST->getName();
194       bool is7Bit = true;
195       for (unsigned i = 0, e = Str.size(); i != e; ++i) {
196         NameVals.push_back((unsigned char)Str[i]);
197         if (Str[i] & 128)
198           is7Bit = false;
199       }
200 
201       // Emit the finished record.
202       Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
203       NameVals.clear();
204 
205       break;
206     }
207     default: break;
208     }
209   }
210 
211 #if 0
212   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
213        TI != TE; ++TI) {
214     // TST_ENTRY: [typeid, namechar x N]
215     NameVals.push_back(VE.getTypeID(TI->second));
216 
217     const std::string &Str = TI->first;
218     bool is7Bit = true;
219     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
220       NameVals.push_back((unsigned char)Str[i]);
221       if (Str[i] & 128)
222         is7Bit = false;
223     }
224 
225     // Emit the finished record.
226     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
227     NameVals.clear();
228   }
229 #endif
230 
231   Stream.ExitBlock();
232 }
233 
234 /// WriteTypeTable - Write out the type table for a module.
WriteTypeTable(const ValueEnumerator & VE,BitstreamWriter & Stream)235 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
236   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
237 
238   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_OLD, 4 /*count from # abbrevs */);
239   SmallVector<uint64_t, 64> TypeVals;
240 
241   // Abbrev for TYPE_CODE_POINTER.
242   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
243   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
244   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
245                             Log2_32_Ceil(VE.getTypes().size()+1)));
246   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
247   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
248 
249   // Abbrev for TYPE_CODE_FUNCTION.
250   Abbv = new BitCodeAbbrev();
251   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
252   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
253   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
254   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
255   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
256                             Log2_32_Ceil(VE.getTypes().size()+1)));
257   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
258 
259 #if 0
260   // Abbrev for TYPE_CODE_STRUCT_ANON.
261   Abbv = new BitCodeAbbrev();
262   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
263   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
264   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
265   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
266                             Log2_32_Ceil(VE.getTypes().size()+1)));
267   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
268 
269   // Abbrev for TYPE_CODE_STRUCT_NAME.
270   Abbv = new BitCodeAbbrev();
271   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
272   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
273   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
274   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
275 
276   // Abbrev for TYPE_CODE_STRUCT_NAMED.
277   Abbv = new BitCodeAbbrev();
278   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
279   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
280   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
281   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
282                             Log2_32_Ceil(VE.getTypes().size()+1)));
283   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
284 #endif
285 
286   // Abbrev for TYPE_CODE_STRUCT.
287   Abbv = new BitCodeAbbrev();
288   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_OLD));
289   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
290   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
291   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
292                             Log2_32_Ceil(VE.getTypes().size()+1)));
293   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
294 
295   // Abbrev for TYPE_CODE_ARRAY.
296   Abbv = new BitCodeAbbrev();
297   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
298   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
299   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
300                             Log2_32_Ceil(VE.getTypes().size()+1)));
301   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
302 
303   // Emit an entry count so the reader can reserve space.
304   TypeVals.push_back(TypeList.size());
305   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
306   TypeVals.clear();
307 
308   // Loop over all of the types, emitting each in turn.
309   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
310     Type *T = TypeList[i];
311     int AbbrevToUse = 0;
312     unsigned Code = 0;
313 
314     switch (T->getTypeID()) {
315     default: llvm_unreachable("Unknown type!");
316     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
317     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
318     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
319     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
320     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
321     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
322     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
323     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
324     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
325     case Type::IntegerTyID:
326       // INTEGER: [width]
327       Code = bitc::TYPE_CODE_INTEGER;
328       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
329       break;
330     case Type::PointerTyID: {
331       PointerType *PTy = cast<PointerType>(T);
332       // POINTER: [pointee type, address space]
333       Code = bitc::TYPE_CODE_POINTER;
334       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
335       unsigned AddressSpace = PTy->getAddressSpace();
336       TypeVals.push_back(AddressSpace);
337       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
338       break;
339     }
340     case Type::FunctionTyID: {
341       FunctionType *FT = cast<FunctionType>(T);
342       // FUNCTION: [isvararg, attrid, retty, paramty x N]
343       Code = bitc::TYPE_CODE_FUNCTION;
344       TypeVals.push_back(FT->isVarArg());
345       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
346       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
347       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
348         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
349       AbbrevToUse = FunctionAbbrev;
350       break;
351     }
352     case Type::StructTyID: {
353       StructType *ST = cast<StructType>(T);
354       // STRUCT: [ispacked, eltty x N]
355       TypeVals.push_back(ST->isPacked());
356       // Output all of the element types.
357       for (StructType::element_iterator I = ST->element_begin(),
358            E = ST->element_end(); I != E; ++I)
359         TypeVals.push_back(VE.getTypeID(*I));
360       AbbrevToUse = StructAbbrev;
361       break;
362     }
363     case Type::ArrayTyID: {
364       ArrayType *AT = cast<ArrayType>(T);
365       // ARRAY: [numelts, eltty]
366       Code = bitc::TYPE_CODE_ARRAY;
367       TypeVals.push_back(AT->getNumElements());
368       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
369       AbbrevToUse = ArrayAbbrev;
370       break;
371     }
372     case Type::VectorTyID: {
373       VectorType *VT = cast<VectorType>(T);
374       // VECTOR [numelts, eltty]
375       Code = bitc::TYPE_CODE_VECTOR;
376       TypeVals.push_back(VT->getNumElements());
377       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
378       break;
379     }
380     }
381 
382     // Emit the finished record.
383     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
384     TypeVals.clear();
385   }
386 
387   Stream.ExitBlock();
388 
389   WriteTypeSymbolTable(VE, Stream);
390 }
391 
getEncodedLinkage(const GlobalValue * GV)392 static unsigned getEncodedLinkage(const GlobalValue *GV) {
393   switch (GV->getLinkage()) {
394   default: llvm_unreachable("Invalid linkage!");
395   case GlobalValue::ExternalLinkage:                 return 0;
396   case GlobalValue::WeakAnyLinkage:                  return 1;
397   case GlobalValue::AppendingLinkage:                return 2;
398   case GlobalValue::InternalLinkage:                 return 3;
399   case GlobalValue::LinkOnceAnyLinkage:              return 4;
400   case GlobalValue::DLLImportLinkage:                return 5;
401   case GlobalValue::DLLExportLinkage:                return 6;
402   case GlobalValue::ExternalWeakLinkage:             return 7;
403   case GlobalValue::CommonLinkage:                   return 8;
404   case GlobalValue::PrivateLinkage:                  return 9;
405   case GlobalValue::WeakODRLinkage:                  return 10;
406   case GlobalValue::LinkOnceODRLinkage:              return 11;
407   case GlobalValue::AvailableExternallyLinkage:      return 12;
408   case GlobalValue::LinkerPrivateLinkage:            return 13;
409   case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
410   case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15;
411   }
412 }
413 
getEncodedVisibility(const GlobalValue * GV)414 static unsigned getEncodedVisibility(const GlobalValue *GV) {
415   switch (GV->getVisibility()) {
416   default: llvm_unreachable("Invalid visibility!");
417   case GlobalValue::DefaultVisibility:   return 0;
418   case GlobalValue::HiddenVisibility:    return 1;
419   case GlobalValue::ProtectedVisibility: return 2;
420   }
421 }
422 
423 // Emit top-level description of module, including target triple, inline asm,
424 // descriptors for global variables, and function prototype info.
WriteModuleInfo(const Module * M,const ValueEnumerator & VE,BitstreamWriter & Stream)425 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
426                             BitstreamWriter &Stream) {
427   // Emit the list of dependent libraries for the Module.
428   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
429     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
430 
431   // Emit various pieces of data attached to a module.
432   if (!M->getTargetTriple().empty())
433     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
434                       0/*TODO*/, Stream);
435   if (!M->getDataLayout().empty())
436     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
437                       0/*TODO*/, Stream);
438   if (!M->getModuleInlineAsm().empty())
439     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
440                       0/*TODO*/, Stream);
441 
442   // Emit information about sections and GC, computing how many there are. Also
443   // compute the maximum alignment value.
444   std::map<std::string, unsigned> SectionMap;
445   std::map<std::string, unsigned> GCMap;
446   unsigned MaxAlignment = 0;
447   unsigned MaxGlobalType = 0;
448   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
449        GV != E; ++GV) {
450     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
451     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
452 
453     if (!GV->hasSection()) continue;
454     // Give section names unique ID's.
455     unsigned &Entry = SectionMap[GV->getSection()];
456     if (Entry != 0) continue;
457     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
458                       0/*TODO*/, Stream);
459     Entry = SectionMap.size();
460   }
461   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
462     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
463     if (F->hasSection()) {
464       // Give section names unique ID's.
465       unsigned &Entry = SectionMap[F->getSection()];
466       if (!Entry) {
467         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
468                           0/*TODO*/, Stream);
469         Entry = SectionMap.size();
470       }
471     }
472     if (F->hasGC()) {
473       // Same for GC names.
474       unsigned &Entry = GCMap[F->getGC()];
475       if (!Entry) {
476         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
477                           0/*TODO*/, Stream);
478         Entry = GCMap.size();
479       }
480     }
481   }
482 
483   // Emit abbrev for globals, now that we know # sections and max alignment.
484   unsigned SimpleGVarAbbrev = 0;
485   if (!M->global_empty()) {
486     // Add an abbrev for common globals with no visibility or thread localness.
487     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
488     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
489     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
490                               Log2_32_Ceil(MaxGlobalType+1)));
491     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
492     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
493     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
494     if (MaxAlignment == 0)                                      // Alignment.
495       Abbv->Add(BitCodeAbbrevOp(0));
496     else {
497       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
498       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
499                                Log2_32_Ceil(MaxEncAlignment+1)));
500     }
501     if (SectionMap.empty())                                    // Section.
502       Abbv->Add(BitCodeAbbrevOp(0));
503     else
504       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
505                                Log2_32_Ceil(SectionMap.size()+1)));
506     // Don't bother emitting vis + thread local.
507     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
508   }
509 
510   // Emit the global variable information.
511   SmallVector<unsigned, 64> Vals;
512   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
513        GV != E; ++GV) {
514     unsigned AbbrevToUse = 0;
515 
516     // GLOBALVAR: [type, isconst, initid,
517     //             linkage, alignment, section, visibility, threadlocal,
518     //             unnamed_addr]
519     Vals.push_back(VE.getTypeID(GV->getType()));
520     Vals.push_back(GV->isConstant());
521     Vals.push_back(GV->isDeclaration() ? 0 :
522                    (VE.getValueID(GV->getInitializer()) + 1));
523     Vals.push_back(getEncodedLinkage(GV));
524     Vals.push_back(Log2_32(GV->getAlignment())+1);
525     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
526     if (GV->isThreadLocal() ||
527         GV->getVisibility() != GlobalValue::DefaultVisibility ||
528         GV->hasUnnamedAddr()) {
529       Vals.push_back(getEncodedVisibility(GV));
530       Vals.push_back(GV->isThreadLocal());
531       Vals.push_back(GV->hasUnnamedAddr());
532     } else {
533       AbbrevToUse = SimpleGVarAbbrev;
534     }
535 
536     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
537     Vals.clear();
538   }
539 
540   // Emit the function proto information.
541   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
542     // FUNCTION:  [type, callingconv, isproto, paramattr,
543     //             linkage, alignment, section, visibility, gc, unnamed_addr]
544     Vals.push_back(VE.getTypeID(F->getType()));
545     Vals.push_back(F->getCallingConv());
546     Vals.push_back(F->isDeclaration());
547     Vals.push_back(getEncodedLinkage(F));
548     Vals.push_back(VE.getAttributeID(F->getAttributes()));
549     Vals.push_back(Log2_32(F->getAlignment())+1);
550     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
551     Vals.push_back(getEncodedVisibility(F));
552     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
553     Vals.push_back(F->hasUnnamedAddr());
554 
555     unsigned AbbrevToUse = 0;
556     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
557     Vals.clear();
558   }
559 
560   // Emit the alias information.
561   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
562        AI != E; ++AI) {
563     Vals.push_back(VE.getTypeID(AI->getType()));
564     Vals.push_back(VE.getValueID(AI->getAliasee()));
565     Vals.push_back(getEncodedLinkage(AI));
566     Vals.push_back(getEncodedVisibility(AI));
567     unsigned AbbrevToUse = 0;
568     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
569     Vals.clear();
570   }
571 }
572 
GetOptimizationFlags(const Value * V)573 static uint64_t GetOptimizationFlags(const Value *V) {
574   uint64_t Flags = 0;
575 
576   if (const OverflowingBinaryOperator *OBO =
577         dyn_cast<OverflowingBinaryOperator>(V)) {
578     if (OBO->hasNoSignedWrap())
579       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
580     if (OBO->hasNoUnsignedWrap())
581       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
582   } else if (const PossiblyExactOperator *PEO =
583                dyn_cast<PossiblyExactOperator>(V)) {
584     if (PEO->isExact())
585       Flags |= 1 << bitc::PEO_EXACT;
586   }
587 
588   return Flags;
589 }
590 
WriteMDNode(const MDNode * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVector<uint64_t,64> & Record)591 static void WriteMDNode(const MDNode *N,
592                         const ValueEnumerator &VE,
593                         BitstreamWriter &Stream,
594                         SmallVector<uint64_t, 64> &Record) {
595   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
596     if (N->getOperand(i)) {
597       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
598       Record.push_back(VE.getValueID(N->getOperand(i)));
599     } else {
600       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
601       Record.push_back(0);
602     }
603   }
604   unsigned MDCode = N->isFunctionLocal() ? METADATA_FN_NODE_2_7 :
605                                            METADATA_NODE_2_7;
606   Stream.EmitRecord(MDCode, Record, 0);
607   Record.clear();
608 }
609 
WriteModuleMetadata(const Module * M,const ValueEnumerator & VE,BitstreamWriter & Stream)610 static void WriteModuleMetadata(const Module *M,
611                                 const ValueEnumerator &VE,
612                                 BitstreamWriter &Stream) {
613   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
614   bool StartedMetadataBlock = false;
615   unsigned MDSAbbrev = 0;
616   SmallVector<uint64_t, 64> Record;
617   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
618 
619     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
620       if (!N->isFunctionLocal() || !N->getFunction()) {
621         if (!StartedMetadataBlock) {
622           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
623           StartedMetadataBlock = true;
624         }
625         WriteMDNode(N, VE, Stream, Record);
626       }
627     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
628       if (!StartedMetadataBlock)  {
629         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
630 
631         // Abbrev for METADATA_STRING.
632         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
633         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
634         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
635         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
636         MDSAbbrev = Stream.EmitAbbrev(Abbv);
637         StartedMetadataBlock = true;
638       }
639 
640       // Code: [strchar x N]
641       Record.append(MDS->begin(), MDS->end());
642 
643       // Emit the finished record.
644       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
645       Record.clear();
646     }
647   }
648 
649   // Write named metadata.
650   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
651        E = M->named_metadata_end(); I != E; ++I) {
652     const NamedMDNode *NMD = I;
653     if (!StartedMetadataBlock)  {
654       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
655       StartedMetadataBlock = true;
656     }
657 
658     // Write name.
659     StringRef Str = NMD->getName();
660     for (unsigned i = 0, e = Str.size(); i != e; ++i)
661       Record.push_back(Str[i]);
662     Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
663     Record.clear();
664 
665     // Write named metadata operands.
666     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
667       Record.push_back(VE.getValueID(NMD->getOperand(i)));
668     Stream.EmitRecord(METADATA_NAMED_NODE_2_7, Record, 0);
669     Record.clear();
670   }
671 
672   if (StartedMetadataBlock)
673     Stream.ExitBlock();
674 }
675 
WriteFunctionLocalMetadata(const Function & F,const ValueEnumerator & VE,BitstreamWriter & Stream)676 static void WriteFunctionLocalMetadata(const Function &F,
677                                        const ValueEnumerator &VE,
678                                        BitstreamWriter &Stream) {
679   bool StartedMetadataBlock = false;
680   SmallVector<uint64_t, 64> Record;
681   const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
682   for (unsigned i = 0, e = Vals.size(); i != e; ++i)
683     if (const MDNode *N = Vals[i])
684       if (N->isFunctionLocal() && N->getFunction() == &F) {
685         if (!StartedMetadataBlock) {
686           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
687           StartedMetadataBlock = true;
688         }
689         WriteMDNode(N, VE, Stream, Record);
690       }
691 
692   if (StartedMetadataBlock)
693     Stream.ExitBlock();
694 }
695 
WriteMetadataAttachment(const Function & F,const ValueEnumerator & VE,BitstreamWriter & Stream)696 static void WriteMetadataAttachment(const Function &F,
697                                     const ValueEnumerator &VE,
698                                     BitstreamWriter &Stream) {
699   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
700 
701   SmallVector<uint64_t, 64> Record;
702 
703   // Write metadata attachments
704   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
705   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
706 
707   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
708     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
709          I != E; ++I) {
710       MDs.clear();
711       I->getAllMetadataOtherThanDebugLoc(MDs);
712 
713       // If no metadata, ignore instruction.
714       if (MDs.empty()) continue;
715 
716       Record.push_back(VE.getInstructionID(I));
717 
718       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
719         Record.push_back(MDs[i].first);
720         Record.push_back(VE.getValueID(MDs[i].second));
721       }
722       Stream.EmitRecord(METADATA_ATTACHMENT_2_7, Record, 0);
723       Record.clear();
724     }
725 
726   Stream.ExitBlock();
727 }
728 
WriteModuleMetadataStore(const Module * M,BitstreamWriter & Stream)729 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
730   SmallVector<uint64_t, 64> Record;
731 
732   // Write metadata kinds
733   // METADATA_KIND - [n x [id, name]]
734   SmallVector<StringRef, 4> Names;
735   M->getMDKindNames(Names);
736 
737   if (Names.empty()) return;
738 
739   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
740 
741   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
742     Record.push_back(MDKindID);
743     StringRef KName = Names[MDKindID];
744     Record.append(KName.begin(), KName.end());
745 
746     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
747     Record.clear();
748   }
749 
750   Stream.ExitBlock();
751 }
752 
WriteConstants(unsigned FirstVal,unsigned LastVal,const ValueEnumerator & VE,BitstreamWriter & Stream,bool isGlobal)753 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
754                            const ValueEnumerator &VE,
755                            BitstreamWriter &Stream, bool isGlobal) {
756   if (FirstVal == LastVal) return;
757 
758   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
759 
760   unsigned AggregateAbbrev = 0;
761   unsigned String8Abbrev = 0;
762   unsigned CString7Abbrev = 0;
763   unsigned CString6Abbrev = 0;
764   // If this is a constant pool for the module, emit module-specific abbrevs.
765   if (isGlobal) {
766     // Abbrev for CST_CODE_AGGREGATE.
767     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
768     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
769     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
770     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
771     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
772 
773     // Abbrev for CST_CODE_STRING.
774     Abbv = new BitCodeAbbrev();
775     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
776     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
777     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
778     String8Abbrev = Stream.EmitAbbrev(Abbv);
779     // Abbrev for CST_CODE_CSTRING.
780     Abbv = new BitCodeAbbrev();
781     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
782     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
783     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
784     CString7Abbrev = Stream.EmitAbbrev(Abbv);
785     // Abbrev for CST_CODE_CSTRING.
786     Abbv = new BitCodeAbbrev();
787     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
788     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
789     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
790     CString6Abbrev = Stream.EmitAbbrev(Abbv);
791   }
792 
793   SmallVector<uint64_t, 64> Record;
794 
795   const ValueEnumerator::ValueList &Vals = VE.getValues();
796   Type *LastTy = 0;
797   for (unsigned i = FirstVal; i != LastVal; ++i) {
798     const Value *V = Vals[i].first;
799     // If we need to switch types, do so now.
800     if (V->getType() != LastTy) {
801       LastTy = V->getType();
802       Record.push_back(VE.getTypeID(LastTy));
803       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
804                         CONSTANTS_SETTYPE_ABBREV);
805       Record.clear();
806     }
807 
808     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
809       Record.push_back(unsigned(IA->hasSideEffects()) |
810                        unsigned(IA->isAlignStack()) << 1);
811 
812       // Add the asm string.
813       const std::string &AsmStr = IA->getAsmString();
814       Record.push_back(AsmStr.size());
815       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
816         Record.push_back(AsmStr[i]);
817 
818       // Add the constraint string.
819       const std::string &ConstraintStr = IA->getConstraintString();
820       Record.push_back(ConstraintStr.size());
821       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
822         Record.push_back(ConstraintStr[i]);
823       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
824       Record.clear();
825       continue;
826     }
827     const Constant *C = cast<Constant>(V);
828     unsigned Code = -1U;
829     unsigned AbbrevToUse = 0;
830     if (C->isNullValue()) {
831       Code = bitc::CST_CODE_NULL;
832     } else if (isa<UndefValue>(C)) {
833       Code = bitc::CST_CODE_UNDEF;
834     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
835       if (IV->getBitWidth() <= 64) {
836         uint64_t V = IV->getSExtValue();
837         if ((int64_t)V >= 0)
838           Record.push_back(V << 1);
839         else
840           Record.push_back((-V << 1) | 1);
841         Code = bitc::CST_CODE_INTEGER;
842         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
843       } else {                             // Wide integers, > 64 bits in size.
844         // We have an arbitrary precision integer value to write whose
845         // bit width is > 64. However, in canonical unsigned integer
846         // format it is likely that the high bits are going to be zero.
847         // So, we only write the number of active words.
848         unsigned NWords = IV->getValue().getActiveWords();
849         const uint64_t *RawWords = IV->getValue().getRawData();
850         for (unsigned i = 0; i != NWords; ++i) {
851           int64_t V = RawWords[i];
852           if (V >= 0)
853             Record.push_back(V << 1);
854           else
855             Record.push_back((-V << 1) | 1);
856         }
857         Code = bitc::CST_CODE_WIDE_INTEGER;
858       }
859     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
860       Code = bitc::CST_CODE_FLOAT;
861       Type *Ty = CFP->getType();
862       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
863         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
864       } else if (Ty->isX86_FP80Ty()) {
865         // api needed to prevent premature destruction
866         // bits are not in the same order as a normal i80 APInt, compensate.
867         APInt api = CFP->getValueAPF().bitcastToAPInt();
868         const uint64_t *p = api.getRawData();
869         Record.push_back((p[1] << 48) | (p[0] >> 16));
870         Record.push_back(p[0] & 0xffffLL);
871       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
872         APInt api = CFP->getValueAPF().bitcastToAPInt();
873         const uint64_t *p = api.getRawData();
874         Record.push_back(p[0]);
875         Record.push_back(p[1]);
876       } else {
877         assert (0 && "Unknown FP type!");
878       }
879     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
880       const ConstantArray *CA = cast<ConstantArray>(C);
881       // Emit constant strings specially.
882       unsigned NumOps = CA->getNumOperands();
883       // If this is a null-terminated string, use the denser CSTRING encoding.
884       if (CA->getOperand(NumOps-1)->isNullValue()) {
885         Code = bitc::CST_CODE_CSTRING;
886         --NumOps;  // Don't encode the null, which isn't allowed by char6.
887       } else {
888         Code = bitc::CST_CODE_STRING;
889         AbbrevToUse = String8Abbrev;
890       }
891       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
892       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
893       for (unsigned i = 0; i != NumOps; ++i) {
894         unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
895         Record.push_back(V);
896         isCStr7 &= (V & 128) == 0;
897         if (isCStrChar6)
898           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
899       }
900 
901       if (isCStrChar6)
902         AbbrevToUse = CString6Abbrev;
903       else if (isCStr7)
904         AbbrevToUse = CString7Abbrev;
905     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
906                isa<ConstantVector>(V)) {
907       Code = bitc::CST_CODE_AGGREGATE;
908       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
909         Record.push_back(VE.getValueID(C->getOperand(i)));
910       AbbrevToUse = AggregateAbbrev;
911     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
912       switch (CE->getOpcode()) {
913       default:
914         if (Instruction::isCast(CE->getOpcode())) {
915           Code = bitc::CST_CODE_CE_CAST;
916           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
917           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
918           Record.push_back(VE.getValueID(C->getOperand(0)));
919           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
920         } else {
921           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
922           Code = bitc::CST_CODE_CE_BINOP;
923           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
924           Record.push_back(VE.getValueID(C->getOperand(0)));
925           Record.push_back(VE.getValueID(C->getOperand(1)));
926           uint64_t Flags = GetOptimizationFlags(CE);
927           if (Flags != 0)
928             Record.push_back(Flags);
929         }
930         break;
931       case Instruction::GetElementPtr:
932         Code = bitc::CST_CODE_CE_GEP;
933         if (cast<GEPOperator>(C)->isInBounds())
934           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
935         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
936           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
937           Record.push_back(VE.getValueID(C->getOperand(i)));
938         }
939         break;
940       case Instruction::Select:
941         Code = bitc::CST_CODE_CE_SELECT;
942         Record.push_back(VE.getValueID(C->getOperand(0)));
943         Record.push_back(VE.getValueID(C->getOperand(1)));
944         Record.push_back(VE.getValueID(C->getOperand(2)));
945         break;
946       case Instruction::ExtractElement:
947         Code = bitc::CST_CODE_CE_EXTRACTELT;
948         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
949         Record.push_back(VE.getValueID(C->getOperand(0)));
950         Record.push_back(VE.getValueID(C->getOperand(1)));
951         break;
952       case Instruction::InsertElement:
953         Code = bitc::CST_CODE_CE_INSERTELT;
954         Record.push_back(VE.getValueID(C->getOperand(0)));
955         Record.push_back(VE.getValueID(C->getOperand(1)));
956         Record.push_back(VE.getValueID(C->getOperand(2)));
957         break;
958       case Instruction::ShuffleVector:
959         // If the return type and argument types are the same, this is a
960         // standard shufflevector instruction.  If the types are different,
961         // then the shuffle is widening or truncating the input vectors, and
962         // the argument type must also be encoded.
963         if (C->getType() == C->getOperand(0)->getType()) {
964           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
965         } else {
966           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
967           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
968         }
969         Record.push_back(VE.getValueID(C->getOperand(0)));
970         Record.push_back(VE.getValueID(C->getOperand(1)));
971         Record.push_back(VE.getValueID(C->getOperand(2)));
972         break;
973       case Instruction::ICmp:
974       case Instruction::FCmp:
975         Code = bitc::CST_CODE_CE_CMP;
976         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
977         Record.push_back(VE.getValueID(C->getOperand(0)));
978         Record.push_back(VE.getValueID(C->getOperand(1)));
979         Record.push_back(CE->getPredicate());
980         break;
981       }
982     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
983       Code = bitc::CST_CODE_BLOCKADDRESS;
984       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
985       Record.push_back(VE.getValueID(BA->getFunction()));
986       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
987     } else {
988 #ifndef NDEBUG
989       C->dump();
990 #endif
991       llvm_unreachable("Unknown constant!");
992     }
993     Stream.EmitRecord(Code, Record, AbbrevToUse);
994     Record.clear();
995   }
996 
997   Stream.ExitBlock();
998 }
999 
WriteModuleConstants(const ValueEnumerator & VE,BitstreamWriter & Stream)1000 static void WriteModuleConstants(const ValueEnumerator &VE,
1001                                  BitstreamWriter &Stream) {
1002   const ValueEnumerator::ValueList &Vals = VE.getValues();
1003 
1004   // Find the first constant to emit, which is the first non-globalvalue value.
1005   // We know globalvalues have been emitted by WriteModuleInfo.
1006   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1007     if (!isa<GlobalValue>(Vals[i].first)) {
1008       WriteConstants(i, Vals.size(), VE, Stream, true);
1009       return;
1010     }
1011   }
1012 }
1013 
1014 /// PushValueAndType - The file has to encode both the value and type id for
1015 /// many values, because we need to know what type to create for forward
1016 /// references.  However, most operands are not forward references, so this type
1017 /// field is not needed.
1018 ///
1019 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1020 /// instruction ID, then it is a forward reference, and it also includes the
1021 /// type ID.
PushValueAndType(const Value * V,unsigned InstID,SmallVector<unsigned,64> & Vals,ValueEnumerator & VE)1022 static bool PushValueAndType(const Value *V, unsigned InstID,
1023                              SmallVector<unsigned, 64> &Vals,
1024                              ValueEnumerator &VE) {
1025   unsigned ValID = VE.getValueID(V);
1026   Vals.push_back(ValID);
1027   if (ValID >= InstID) {
1028     Vals.push_back(VE.getTypeID(V->getType()));
1029     return true;
1030   }
1031   return false;
1032 }
1033 
1034 /// WriteInstruction - Emit an instruction to the specified stream.
WriteInstruction(const Instruction & I,unsigned InstID,ValueEnumerator & VE,BitstreamWriter & Stream,SmallVector<unsigned,64> & Vals)1035 static void WriteInstruction(const Instruction &I, unsigned InstID,
1036                              ValueEnumerator &VE, BitstreamWriter &Stream,
1037                              SmallVector<unsigned, 64> &Vals) {
1038   unsigned Code = 0;
1039   unsigned AbbrevToUse = 0;
1040   VE.setInstructionID(&I);
1041   switch (I.getOpcode()) {
1042   default:
1043     if (Instruction::isCast(I.getOpcode())) {
1044       Code = bitc::FUNC_CODE_INST_CAST;
1045       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1046         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1047       Vals.push_back(VE.getTypeID(I.getType()));
1048       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1049     } else {
1050       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1051       Code = bitc::FUNC_CODE_INST_BINOP;
1052       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1053         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1054       Vals.push_back(VE.getValueID(I.getOperand(1)));
1055       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1056       uint64_t Flags = GetOptimizationFlags(&I);
1057       if (Flags != 0) {
1058         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1059           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1060         Vals.push_back(Flags);
1061       }
1062     }
1063     break;
1064 
1065   case Instruction::GetElementPtr:
1066     Code = bitc::FUNC_CODE_INST_GEP;
1067     if (cast<GEPOperator>(&I)->isInBounds())
1068       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1069     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1070       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1071     break;
1072   case Instruction::ExtractValue: {
1073     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1074     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1075     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1076     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1077       Vals.push_back(*i);
1078     break;
1079   }
1080   case Instruction::InsertValue: {
1081     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1082     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1083     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1084     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1085     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1086       Vals.push_back(*i);
1087     break;
1088   }
1089   case Instruction::Select:
1090     Code = bitc::FUNC_CODE_INST_VSELECT;
1091     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1092     Vals.push_back(VE.getValueID(I.getOperand(2)));
1093     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1094     break;
1095   case Instruction::ExtractElement:
1096     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1097     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1098     Vals.push_back(VE.getValueID(I.getOperand(1)));
1099     break;
1100   case Instruction::InsertElement:
1101     Code = bitc::FUNC_CODE_INST_INSERTELT;
1102     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1103     Vals.push_back(VE.getValueID(I.getOperand(1)));
1104     Vals.push_back(VE.getValueID(I.getOperand(2)));
1105     break;
1106   case Instruction::ShuffleVector:
1107     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1108     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1109     Vals.push_back(VE.getValueID(I.getOperand(1)));
1110     Vals.push_back(VE.getValueID(I.getOperand(2)));
1111     break;
1112   case Instruction::ICmp:
1113   case Instruction::FCmp:
1114     // compare returning Int1Ty or vector of Int1Ty
1115     Code = bitc::FUNC_CODE_INST_CMP2;
1116     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1117     Vals.push_back(VE.getValueID(I.getOperand(1)));
1118     Vals.push_back(cast<CmpInst>(I).getPredicate());
1119     break;
1120 
1121   case Instruction::Ret:
1122     {
1123       Code = bitc::FUNC_CODE_INST_RET;
1124       unsigned NumOperands = I.getNumOperands();
1125       if (NumOperands == 0)
1126         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1127       else if (NumOperands == 1) {
1128         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1129           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1130       } else {
1131         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1132           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1133       }
1134     }
1135     break;
1136   case Instruction::Br:
1137     {
1138       Code = bitc::FUNC_CODE_INST_BR;
1139       BranchInst &II = cast<BranchInst>(I);
1140       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1141       if (II.isConditional()) {
1142         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1143         Vals.push_back(VE.getValueID(II.getCondition()));
1144       }
1145     }
1146     break;
1147   case Instruction::Switch:
1148     Code = bitc::FUNC_CODE_INST_SWITCH;
1149     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1150     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1151       Vals.push_back(VE.getValueID(I.getOperand(i)));
1152     break;
1153   case Instruction::IndirectBr:
1154     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1155     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1156     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1157       Vals.push_back(VE.getValueID(I.getOperand(i)));
1158     break;
1159 
1160   case Instruction::Invoke: {
1161     const InvokeInst *II = cast<InvokeInst>(&I);
1162     const Value *Callee(II->getCalledValue());
1163     PointerType *PTy = cast<PointerType>(Callee->getType());
1164     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1165     Code = bitc::FUNC_CODE_INST_INVOKE;
1166 
1167     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1168     Vals.push_back(II->getCallingConv());
1169     Vals.push_back(VE.getValueID(II->getNormalDest()));
1170     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1171     PushValueAndType(Callee, InstID, Vals, VE);
1172 
1173     // Emit value #'s for the fixed parameters.
1174     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1175       Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
1176 
1177     // Emit type/value pairs for varargs params.
1178     if (FTy->isVarArg()) {
1179       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1180            i != e; ++i)
1181         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1182     }
1183     break;
1184   }
1185   case Instruction::Unwind:
1186     Code = bitc::FUNC_CODE_INST_UNWIND;
1187     break;
1188   case Instruction::Unreachable:
1189     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1190     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1191     break;
1192 
1193   case Instruction::PHI: {
1194     const PHINode &PN = cast<PHINode>(I);
1195     Code = bitc::FUNC_CODE_INST_PHI;
1196     Vals.push_back(VE.getTypeID(PN.getType()));
1197     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1198       Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1199       Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1200     }
1201     break;
1202   }
1203 
1204   case Instruction::Alloca:
1205     Code = bitc::FUNC_CODE_INST_ALLOCA;
1206     Vals.push_back(VE.getTypeID(I.getType()));
1207     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1208     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1209     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1210     break;
1211 
1212   case Instruction::Load:
1213     Code = bitc::FUNC_CODE_INST_LOAD;
1214     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1215       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1216 
1217     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1218     Vals.push_back(cast<LoadInst>(I).isVolatile());
1219     break;
1220   case Instruction::Store:
1221     Code = bitc::FUNC_CODE_INST_STORE;
1222     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1223     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1224     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1225     Vals.push_back(cast<StoreInst>(I).isVolatile());
1226     break;
1227   case Instruction::Call: {
1228     const CallInst &CI = cast<CallInst>(I);
1229     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1230     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1231 
1232     Code = FUNC_CODE_INST_CALL_2_7;
1233 
1234     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1235     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1236     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1237 
1238     // Emit value #'s for the fixed parameters.
1239     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1240       Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
1241 
1242     // Emit type/value pairs for varargs params.
1243     if (FTy->isVarArg()) {
1244       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1245            i != e; ++i)
1246         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1247     }
1248     break;
1249   }
1250   case Instruction::VAArg:
1251     Code = bitc::FUNC_CODE_INST_VAARG;
1252     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1253     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1254     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1255     break;
1256   }
1257 
1258   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1259   Vals.clear();
1260 }
1261 
1262 // Emit names for globals/functions etc.
WriteValueSymbolTable(const ValueSymbolTable & VST,const ValueEnumerator & VE,BitstreamWriter & Stream)1263 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1264                                   const ValueEnumerator &VE,
1265                                   BitstreamWriter &Stream) {
1266   if (VST.empty()) return;
1267   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1268 
1269   // FIXME: Set up the abbrev, we know how many values there are!
1270   // FIXME: We know if the type names can use 7-bit ascii.
1271   SmallVector<unsigned, 64> NameVals;
1272 
1273   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1274        SI != SE; ++SI) {
1275 
1276     const ValueName &Name = *SI;
1277 
1278     // Figure out the encoding to use for the name.
1279     bool is7Bit = true;
1280     bool isChar6 = true;
1281     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1282          C != E; ++C) {
1283       if (isChar6)
1284         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1285       if ((unsigned char)*C & 128) {
1286         is7Bit = false;
1287         break;  // don't bother scanning the rest.
1288       }
1289     }
1290 
1291     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1292 
1293     // VST_ENTRY:   [valueid, namechar x N]
1294     // VST_BBENTRY: [bbid, namechar x N]
1295     unsigned Code;
1296     if (isa<BasicBlock>(SI->getValue())) {
1297       Code = bitc::VST_CODE_BBENTRY;
1298       if (isChar6)
1299         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1300     } else {
1301       Code = bitc::VST_CODE_ENTRY;
1302       if (isChar6)
1303         AbbrevToUse = VST_ENTRY_6_ABBREV;
1304       else if (is7Bit)
1305         AbbrevToUse = VST_ENTRY_7_ABBREV;
1306     }
1307 
1308     NameVals.push_back(VE.getValueID(SI->getValue()));
1309     for (const char *P = Name.getKeyData(),
1310          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1311       NameVals.push_back((unsigned char)*P);
1312 
1313     // Emit the finished record.
1314     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1315     NameVals.clear();
1316   }
1317   Stream.ExitBlock();
1318 }
1319 
1320 /// WriteFunction - Emit a function body to the module stream.
WriteFunction(const Function & F,ValueEnumerator & VE,BitstreamWriter & Stream)1321 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1322                           BitstreamWriter &Stream) {
1323   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1324   VE.incorporateFunction(F);
1325 
1326   SmallVector<unsigned, 64> Vals;
1327 
1328   // Emit the number of basic blocks, so the reader can create them ahead of
1329   // time.
1330   Vals.push_back(VE.getBasicBlocks().size());
1331   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1332   Vals.clear();
1333 
1334   // If there are function-local constants, emit them now.
1335   unsigned CstStart, CstEnd;
1336   VE.getFunctionConstantRange(CstStart, CstEnd);
1337   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1338 
1339   // If there is function-local metadata, emit it now.
1340   WriteFunctionLocalMetadata(F, VE, Stream);
1341 
1342   // Keep a running idea of what the instruction ID is.
1343   unsigned InstID = CstEnd;
1344 
1345   bool NeedsMetadataAttachment = false;
1346 
1347   DebugLoc LastDL;
1348 
1349   // Finally, emit all the instructions, in order.
1350   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1351     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1352          I != E; ++I) {
1353       WriteInstruction(*I, InstID, VE, Stream, Vals);
1354 
1355       if (!I->getType()->isVoidTy())
1356         ++InstID;
1357 
1358       // If the instruction has metadata, write a metadata attachment later.
1359       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1360 
1361       // If the instruction has a debug location, emit it.
1362       DebugLoc DL = I->getDebugLoc();
1363       if (DL.isUnknown()) {
1364         // nothing todo.
1365       } else if (DL == LastDL) {
1366         // Just repeat the same debug loc as last time.
1367         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1368       } else {
1369         MDNode *Scope, *IA;
1370         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1371 
1372         Vals.push_back(DL.getLine());
1373         Vals.push_back(DL.getCol());
1374         Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1375         Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1376         Stream.EmitRecord(FUNC_CODE_DEBUG_LOC_2_7, Vals);
1377         Vals.clear();
1378 
1379         LastDL = DL;
1380       }
1381     }
1382 
1383   // Emit names for all the instructions etc.
1384   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1385 
1386   if (NeedsMetadataAttachment)
1387     WriteMetadataAttachment(F, VE, Stream);
1388   VE.purgeFunction();
1389   Stream.ExitBlock();
1390 }
1391 
1392 // Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(const ValueEnumerator & VE,BitstreamWriter & Stream)1393 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1394   // We only want to emit block info records for blocks that have multiple
1395   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1396   // blocks can defined their abbrevs inline.
1397   Stream.EnterBlockInfoBlock(2);
1398 
1399   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1400     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1401     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1402     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1403     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1404     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1405     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1406                                    Abbv) != VST_ENTRY_8_ABBREV)
1407       llvm_unreachable("Unexpected abbrev ordering!");
1408   }
1409 
1410   { // 7-bit fixed width VST_ENTRY strings.
1411     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1412     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1413     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1414     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1415     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1416     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1417                                    Abbv) != VST_ENTRY_7_ABBREV)
1418       llvm_unreachable("Unexpected abbrev ordering!");
1419   }
1420   { // 6-bit char6 VST_ENTRY strings.
1421     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1422     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1423     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1424     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1425     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1426     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1427                                    Abbv) != VST_ENTRY_6_ABBREV)
1428       llvm_unreachable("Unexpected abbrev ordering!");
1429   }
1430   { // 6-bit char6 VST_BBENTRY strings.
1431     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1432     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1433     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1434     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1435     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1436     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1437                                    Abbv) != VST_BBENTRY_6_ABBREV)
1438       llvm_unreachable("Unexpected abbrev ordering!");
1439   }
1440 
1441 
1442 
1443   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1444     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1445     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1446     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1447                               Log2_32_Ceil(VE.getTypes().size()+1)));
1448     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1449                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1450       llvm_unreachable("Unexpected abbrev ordering!");
1451   }
1452 
1453   { // INTEGER abbrev for CONSTANTS_BLOCK.
1454     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1455     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1456     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1457     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1458                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1459       llvm_unreachable("Unexpected abbrev ordering!");
1460   }
1461 
1462   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1463     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1464     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1465     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1466     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1467                               Log2_32_Ceil(VE.getTypes().size()+1)));
1468     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1469 
1470     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1471                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1472       llvm_unreachable("Unexpected abbrev ordering!");
1473   }
1474   { // NULL abbrev for CONSTANTS_BLOCK.
1475     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1476     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1477     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1478                                    Abbv) != CONSTANTS_NULL_Abbrev)
1479       llvm_unreachable("Unexpected abbrev ordering!");
1480   }
1481 
1482   // FIXME: This should only use space for first class types!
1483 
1484   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1485     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1486     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1487     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1488     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1489     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1490     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1491                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1492       llvm_unreachable("Unexpected abbrev ordering!");
1493   }
1494   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1495     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1496     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1497     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1498     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1499     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1500     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1501                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1502       llvm_unreachable("Unexpected abbrev ordering!");
1503   }
1504   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1505     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1506     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1507     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1508     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1509     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1510     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1511     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1512                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1513       llvm_unreachable("Unexpected abbrev ordering!");
1514   }
1515   { // INST_CAST abbrev for FUNCTION_BLOCK.
1516     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1517     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1518     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1519     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1520                               Log2_32_Ceil(VE.getTypes().size()+1)));
1521     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1522     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1523                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1524       llvm_unreachable("Unexpected abbrev ordering!");
1525   }
1526 
1527   { // INST_RET abbrev for FUNCTION_BLOCK.
1528     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1529     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1530     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1531                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1532       llvm_unreachable("Unexpected abbrev ordering!");
1533   }
1534   { // INST_RET abbrev for FUNCTION_BLOCK.
1535     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1536     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1537     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1538     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1539                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1540       llvm_unreachable("Unexpected abbrev ordering!");
1541   }
1542   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1543     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1544     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1545     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1546                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1547       llvm_unreachable("Unexpected abbrev ordering!");
1548   }
1549 
1550   Stream.ExitBlock();
1551 }
1552 
1553 
1554 /// WriteModule - Emit the specified module to the bitstream.
WriteModule(const Module * M,BitstreamWriter & Stream)1555 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1556   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1557 
1558   // Emit the version number if it is non-zero.
1559   if (CurVersion) {
1560     SmallVector<unsigned, 1> Vals;
1561     Vals.push_back(CurVersion);
1562     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1563   }
1564 
1565   // Analyze the module, enumerating globals, functions, etc.
1566   ValueEnumerator VE(M);
1567 
1568   // Emit blockinfo, which defines the standard abbreviations etc.
1569   WriteBlockInfo(VE, Stream);
1570 
1571   // Emit information about parameter attributes.
1572   WriteAttributeTable(VE, Stream);
1573 
1574   // Emit information describing all of the types in the module.
1575   WriteTypeTable(VE, Stream);
1576 
1577   // Emit top-level description of module, including target triple, inline asm,
1578   // descriptors for global variables, and function prototype info.
1579   WriteModuleInfo(M, VE, Stream);
1580 
1581   // Emit constants.
1582   WriteModuleConstants(VE, Stream);
1583 
1584   // Emit metadata.
1585   WriteModuleMetadata(M, VE, Stream);
1586 
1587   // Emit function bodies.
1588   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1589     if (!F->isDeclaration())
1590       WriteFunction(*F, VE, Stream);
1591 
1592   // Emit metadata.
1593   WriteModuleMetadataStore(M, Stream);
1594 
1595   // Emit names for globals/functions etc.
1596   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1597 
1598   Stream.ExitBlock();
1599 }
1600 
1601 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1602 /// header and trailer to make it compatible with the system archiver.  To do
1603 /// this we emit the following header, and then emit a trailer that pads the
1604 /// file out to be a multiple of 16 bytes.
1605 ///
1606 /// struct bc_header {
1607 ///   uint32_t Magic;         // 0x0B17C0DE
1608 ///   uint32_t Version;       // Version, currently always 0.
1609 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1610 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1611 ///   uint32_t CPUType;       // CPU specifier.
1612 ///   ... potentially more later ...
1613 /// };
1614 enum {
1615   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1616   DarwinBCHeaderSize = 5*4
1617 };
1618 
EmitDarwinBCHeader(BitstreamWriter & Stream,const Triple & TT)1619 static void EmitDarwinBCHeader(BitstreamWriter &Stream, const Triple &TT) {
1620   unsigned CPUType = ~0U;
1621 
1622   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1623   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1624   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1625   // specific constants here because they are implicitly part of the Darwin ABI.
1626   enum {
1627     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1628     DARWIN_CPU_TYPE_X86        = 7,
1629     DARWIN_CPU_TYPE_ARM        = 12,
1630     DARWIN_CPU_TYPE_POWERPC    = 18
1631   };
1632 
1633   Triple::ArchType Arch = TT.getArch();
1634   if (Arch == Triple::x86_64)
1635     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1636   else if (Arch == Triple::x86)
1637     CPUType = DARWIN_CPU_TYPE_X86;
1638   else if (Arch == Triple::ppc)
1639     CPUType = DARWIN_CPU_TYPE_POWERPC;
1640   else if (Arch == Triple::ppc64)
1641     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1642   else if (Arch == Triple::arm || Arch == Triple::thumb)
1643     CPUType = DARWIN_CPU_TYPE_ARM;
1644 
1645   // Traditional Bitcode starts after header.
1646   unsigned BCOffset = DarwinBCHeaderSize;
1647 
1648   Stream.Emit(0x0B17C0DE, 32);
1649   Stream.Emit(0         , 32);  // Version.
1650   Stream.Emit(BCOffset  , 32);
1651   Stream.Emit(0         , 32);  // Filled in later.
1652   Stream.Emit(CPUType   , 32);
1653 }
1654 
1655 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1656 /// finalize the header.
EmitDarwinBCTrailer(BitstreamWriter & Stream,unsigned BufferSize)1657 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1658   // Update the size field in the header.
1659   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1660 
1661   // If the file is not a multiple of 16 bytes, insert dummy padding.
1662   while (BufferSize & 15) {
1663     Stream.Emit(0, 8);
1664     ++BufferSize;
1665   }
1666 }
1667 
1668 
1669 /// WriteBitcodeToFile - Write the specified module to the specified output
1670 /// stream.
WriteBitcodeToFile(const Module * M,raw_ostream & Out)1671 void llvm_2_9::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1672   std::vector<unsigned char> Buffer;
1673   BitstreamWriter Stream(Buffer);
1674 
1675   Buffer.reserve(256*1024);
1676 
1677   WriteBitcodeToStream( M, Stream );
1678 
1679   // Write the generated bitstream to "Out".
1680   Out.write((char*)&Buffer.front(), Buffer.size());
1681 }
1682 
1683 /// WriteBitcodeToStream - Write the specified module to the specified output
1684 /// stream.
WriteBitcodeToStream(const Module * M,BitstreamWriter & Stream)1685 void llvm_2_9::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1686   // If this is darwin or another generic macho target, emit a file header and
1687   // trailer if needed.
1688   Triple TT(M->getTargetTriple());
1689   if (TT.isOSDarwin())
1690     EmitDarwinBCHeader(Stream, TT);
1691 
1692   // Emit the file header.
1693   Stream.Emit((unsigned)'B', 8);
1694   Stream.Emit((unsigned)'C', 8);
1695   Stream.Emit(0x0, 4);
1696   Stream.Emit(0xC, 4);
1697   Stream.Emit(0xE, 4);
1698   Stream.Emit(0xD, 4);
1699 
1700   // Emit the module.
1701   WriteModule(M, Stream);
1702 
1703   if (TT.isOSDarwin())
1704     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1705 }
1706