1 //===- X86Disassembler.cpp - Disassembler for x86 and x86_64 ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler.
11 // It contains code to translate the data produced by the decoder into
12 // MCInsts.
13 // Documentation for the disassembler can be found in X86Disassembler.h.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "X86Disassembler.h"
18 #include "X86DisassemblerDecoder.h"
19
20 #include "llvm/MC/EDInstInfo.h"
21 #include "llvm/MC/MCDisassembler.h"
22 #include "llvm/MC/MCDisassembler.h"
23 #include "llvm/MC/MCInst.h"
24 #include "llvm/Target/TargetRegistry.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MemoryObject.h"
27 #include "llvm/Support/raw_ostream.h"
28
29 #define GET_REGINFO_ENUM
30 #include "X86GenRegisterInfo.inc"
31 #include "X86GenEDInfo.inc"
32
33 using namespace llvm;
34 using namespace llvm::X86Disassembler;
35
x86DisassemblerDebug(const char * file,unsigned line,const char * s)36 void x86DisassemblerDebug(const char *file,
37 unsigned line,
38 const char *s) {
39 dbgs() << file << ":" << line << ": " << s;
40 }
41
42 #define debug(s) DEBUG(x86DisassemblerDebug(__FILE__, __LINE__, s));
43
44 namespace llvm {
45
46 // Fill-ins to make the compiler happy. These constants are never actually
47 // assigned; they are just filler to make an automatically-generated switch
48 // statement work.
49 namespace X86 {
50 enum {
51 BX_SI = 500,
52 BX_DI = 501,
53 BP_SI = 502,
54 BP_DI = 503,
55 sib = 504,
56 sib64 = 505
57 };
58 }
59
60 extern Target TheX86_32Target, TheX86_64Target;
61
62 }
63
64 static bool translateInstruction(MCInst &target,
65 InternalInstruction &source);
66
X86GenericDisassembler(DisassemblerMode mode)67 X86GenericDisassembler::X86GenericDisassembler(DisassemblerMode mode) :
68 MCDisassembler(),
69 fMode(mode) {
70 }
71
~X86GenericDisassembler()72 X86GenericDisassembler::~X86GenericDisassembler() {
73 }
74
getEDInfo() const75 EDInstInfo *X86GenericDisassembler::getEDInfo() const {
76 return instInfoX86;
77 }
78
79 /// regionReader - a callback function that wraps the readByte method from
80 /// MemoryObject.
81 ///
82 /// @param arg - The generic callback parameter. In this case, this should
83 /// be a pointer to a MemoryObject.
84 /// @param byte - A pointer to the byte to be read.
85 /// @param address - The address to be read.
regionReader(void * arg,uint8_t * byte,uint64_t address)86 static int regionReader(void* arg, uint8_t* byte, uint64_t address) {
87 MemoryObject* region = static_cast<MemoryObject*>(arg);
88 return region->readByte(address, byte);
89 }
90
91 /// logger - a callback function that wraps the operator<< method from
92 /// raw_ostream.
93 ///
94 /// @param arg - The generic callback parameter. This should be a pointe
95 /// to a raw_ostream.
96 /// @param log - A string to be logged. logger() adds a newline.
logger(void * arg,const char * log)97 static void logger(void* arg, const char* log) {
98 if (!arg)
99 return;
100
101 raw_ostream &vStream = *(static_cast<raw_ostream*>(arg));
102 vStream << log << "\n";
103 }
104
105 //
106 // Public interface for the disassembler
107 //
108
getInstruction(MCInst & instr,uint64_t & size,const MemoryObject & region,uint64_t address,raw_ostream & vStream) const109 bool X86GenericDisassembler::getInstruction(MCInst &instr,
110 uint64_t &size,
111 const MemoryObject ®ion,
112 uint64_t address,
113 raw_ostream &vStream) const {
114 InternalInstruction internalInstr;
115
116 int ret = decodeInstruction(&internalInstr,
117 regionReader,
118 (void*)®ion,
119 logger,
120 (void*)&vStream,
121 address,
122 fMode);
123
124 if (ret) {
125 size = internalInstr.readerCursor - address;
126 return false;
127 }
128 else {
129 size = internalInstr.length;
130 return !translateInstruction(instr, internalInstr);
131 }
132 }
133
134 //
135 // Private code that translates from struct InternalInstructions to MCInsts.
136 //
137
138 /// translateRegister - Translates an internal register to the appropriate LLVM
139 /// register, and appends it as an operand to an MCInst.
140 ///
141 /// @param mcInst - The MCInst to append to.
142 /// @param reg - The Reg to append.
translateRegister(MCInst & mcInst,Reg reg)143 static void translateRegister(MCInst &mcInst, Reg reg) {
144 #define ENTRY(x) X86::x,
145 uint8_t llvmRegnums[] = {
146 ALL_REGS
147 0
148 };
149 #undef ENTRY
150
151 uint8_t llvmRegnum = llvmRegnums[reg];
152 mcInst.addOperand(MCOperand::CreateReg(llvmRegnum));
153 }
154
155 /// translateImmediate - Appends an immediate operand to an MCInst.
156 ///
157 /// @param mcInst - The MCInst to append to.
158 /// @param immediate - The immediate value to append.
159 /// @param operand - The operand, as stored in the descriptor table.
160 /// @param insn - The internal instruction.
translateImmediate(MCInst & mcInst,uint64_t immediate,const OperandSpecifier & operand,InternalInstruction & insn)161 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
162 const OperandSpecifier &operand,
163 InternalInstruction &insn) {
164 // Sign-extend the immediate if necessary.
165
166 OperandType type = operand.type;
167
168 if (type == TYPE_RELv) {
169 switch (insn.displacementSize) {
170 default:
171 break;
172 case 1:
173 type = TYPE_MOFFS8;
174 break;
175 case 2:
176 type = TYPE_MOFFS16;
177 break;
178 case 4:
179 type = TYPE_MOFFS32;
180 break;
181 case 8:
182 type = TYPE_MOFFS64;
183 break;
184 }
185 }
186
187 switch (type) {
188 case TYPE_MOFFS8:
189 case TYPE_REL8:
190 if(immediate & 0x80)
191 immediate |= ~(0xffull);
192 break;
193 case TYPE_MOFFS16:
194 if(immediate & 0x8000)
195 immediate |= ~(0xffffull);
196 break;
197 case TYPE_MOFFS32:
198 case TYPE_REL32:
199 case TYPE_REL64:
200 if(immediate & 0x80000000)
201 immediate |= ~(0xffffffffull);
202 break;
203 case TYPE_MOFFS64:
204 default:
205 // operand is 64 bits wide. Do nothing.
206 break;
207 }
208
209 mcInst.addOperand(MCOperand::CreateImm(immediate));
210 }
211
212 /// translateRMRegister - Translates a register stored in the R/M field of the
213 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
214 /// @param mcInst - The MCInst to append to.
215 /// @param insn - The internal instruction to extract the R/M field
216 /// from.
217 /// @return - 0 on success; -1 otherwise
translateRMRegister(MCInst & mcInst,InternalInstruction & insn)218 static bool translateRMRegister(MCInst &mcInst,
219 InternalInstruction &insn) {
220 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
221 debug("A R/M register operand may not have a SIB byte");
222 return true;
223 }
224
225 switch (insn.eaBase) {
226 default:
227 debug("Unexpected EA base register");
228 return true;
229 case EA_BASE_NONE:
230 debug("EA_BASE_NONE for ModR/M base");
231 return true;
232 #define ENTRY(x) case EA_BASE_##x:
233 ALL_EA_BASES
234 #undef ENTRY
235 debug("A R/M register operand may not have a base; "
236 "the operand must be a register.");
237 return true;
238 #define ENTRY(x) \
239 case EA_REG_##x: \
240 mcInst.addOperand(MCOperand::CreateReg(X86::x)); break;
241 ALL_REGS
242 #undef ENTRY
243 }
244
245 return false;
246 }
247
248 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
249 /// fields of an internal instruction (and possibly its SIB byte) to a memory
250 /// operand in LLVM's format, and appends it to an MCInst.
251 ///
252 /// @param mcInst - The MCInst to append to.
253 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
254 /// from.
255 /// @return - 0 on success; nonzero otherwise
translateRMMemory(MCInst & mcInst,InternalInstruction & insn)256 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn) {
257 // Addresses in an MCInst are represented as five operands:
258 // 1. basereg (register) The R/M base, or (if there is a SIB) the
259 // SIB base
260 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
261 // scale amount
262 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
263 // the index (which is multiplied by the
264 // scale amount)
265 // 4. displacement (immediate) 0, or the displacement if there is one
266 // 5. segmentreg (register) x86_registerNONE for now, but could be set
267 // if we have segment overrides
268
269 MCOperand baseReg;
270 MCOperand scaleAmount;
271 MCOperand indexReg;
272 MCOperand displacement;
273 MCOperand segmentReg;
274
275 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
276 if (insn.sibBase != SIB_BASE_NONE) {
277 switch (insn.sibBase) {
278 default:
279 debug("Unexpected sibBase");
280 return true;
281 #define ENTRY(x) \
282 case SIB_BASE_##x: \
283 baseReg = MCOperand::CreateReg(X86::x); break;
284 ALL_SIB_BASES
285 #undef ENTRY
286 }
287 } else {
288 baseReg = MCOperand::CreateReg(0);
289 }
290
291 if (insn.sibIndex != SIB_INDEX_NONE) {
292 switch (insn.sibIndex) {
293 default:
294 debug("Unexpected sibIndex");
295 return true;
296 #define ENTRY(x) \
297 case SIB_INDEX_##x: \
298 indexReg = MCOperand::CreateReg(X86::x); break;
299 EA_BASES_32BIT
300 EA_BASES_64BIT
301 #undef ENTRY
302 }
303 } else {
304 indexReg = MCOperand::CreateReg(0);
305 }
306
307 scaleAmount = MCOperand::CreateImm(insn.sibScale);
308 } else {
309 switch (insn.eaBase) {
310 case EA_BASE_NONE:
311 if (insn.eaDisplacement == EA_DISP_NONE) {
312 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
313 return true;
314 }
315 if (insn.mode == MODE_64BIT)
316 baseReg = MCOperand::CreateReg(X86::RIP); // Section 2.2.1.6
317 else
318 baseReg = MCOperand::CreateReg(0);
319
320 indexReg = MCOperand::CreateReg(0);
321 break;
322 case EA_BASE_BX_SI:
323 baseReg = MCOperand::CreateReg(X86::BX);
324 indexReg = MCOperand::CreateReg(X86::SI);
325 break;
326 case EA_BASE_BX_DI:
327 baseReg = MCOperand::CreateReg(X86::BX);
328 indexReg = MCOperand::CreateReg(X86::DI);
329 break;
330 case EA_BASE_BP_SI:
331 baseReg = MCOperand::CreateReg(X86::BP);
332 indexReg = MCOperand::CreateReg(X86::SI);
333 break;
334 case EA_BASE_BP_DI:
335 baseReg = MCOperand::CreateReg(X86::BP);
336 indexReg = MCOperand::CreateReg(X86::DI);
337 break;
338 default:
339 indexReg = MCOperand::CreateReg(0);
340 switch (insn.eaBase) {
341 default:
342 debug("Unexpected eaBase");
343 return true;
344 // Here, we will use the fill-ins defined above. However,
345 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
346 // sib and sib64 were handled in the top-level if, so they're only
347 // placeholders to keep the compiler happy.
348 #define ENTRY(x) \
349 case EA_BASE_##x: \
350 baseReg = MCOperand::CreateReg(X86::x); break;
351 ALL_EA_BASES
352 #undef ENTRY
353 #define ENTRY(x) case EA_REG_##x:
354 ALL_REGS
355 #undef ENTRY
356 debug("A R/M memory operand may not be a register; "
357 "the base field must be a base.");
358 return true;
359 }
360 }
361
362 scaleAmount = MCOperand::CreateImm(1);
363 }
364
365 displacement = MCOperand::CreateImm(insn.displacement);
366
367 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
368 0, // SEG_OVERRIDE_NONE
369 X86::CS,
370 X86::SS,
371 X86::DS,
372 X86::ES,
373 X86::FS,
374 X86::GS
375 };
376
377 segmentReg = MCOperand::CreateReg(segmentRegnums[insn.segmentOverride]);
378
379 mcInst.addOperand(baseReg);
380 mcInst.addOperand(scaleAmount);
381 mcInst.addOperand(indexReg);
382 mcInst.addOperand(displacement);
383 mcInst.addOperand(segmentReg);
384 return false;
385 }
386
387 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
388 /// byte of an instruction to LLVM form, and appends it to an MCInst.
389 ///
390 /// @param mcInst - The MCInst to append to.
391 /// @param operand - The operand, as stored in the descriptor table.
392 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
393 /// from.
394 /// @return - 0 on success; nonzero otherwise
translateRM(MCInst & mcInst,const OperandSpecifier & operand,InternalInstruction & insn)395 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
396 InternalInstruction &insn) {
397 switch (operand.type) {
398 default:
399 debug("Unexpected type for a R/M operand");
400 return true;
401 case TYPE_R8:
402 case TYPE_R16:
403 case TYPE_R32:
404 case TYPE_R64:
405 case TYPE_Rv:
406 case TYPE_MM:
407 case TYPE_MM32:
408 case TYPE_MM64:
409 case TYPE_XMM:
410 case TYPE_XMM32:
411 case TYPE_XMM64:
412 case TYPE_XMM128:
413 case TYPE_XMM256:
414 case TYPE_DEBUGREG:
415 case TYPE_CONTROLREG:
416 return translateRMRegister(mcInst, insn);
417 case TYPE_M:
418 case TYPE_M8:
419 case TYPE_M16:
420 case TYPE_M32:
421 case TYPE_M64:
422 case TYPE_M128:
423 case TYPE_M256:
424 case TYPE_M512:
425 case TYPE_Mv:
426 case TYPE_M32FP:
427 case TYPE_M64FP:
428 case TYPE_M80FP:
429 case TYPE_M16INT:
430 case TYPE_M32INT:
431 case TYPE_M64INT:
432 case TYPE_M1616:
433 case TYPE_M1632:
434 case TYPE_M1664:
435 case TYPE_LEA:
436 return translateRMMemory(mcInst, insn);
437 }
438 }
439
440 /// translateFPRegister - Translates a stack position on the FPU stack to its
441 /// LLVM form, and appends it to an MCInst.
442 ///
443 /// @param mcInst - The MCInst to append to.
444 /// @param stackPos - The stack position to translate.
445 /// @return - 0 on success; nonzero otherwise.
translateFPRegister(MCInst & mcInst,uint8_t stackPos)446 static bool translateFPRegister(MCInst &mcInst,
447 uint8_t stackPos) {
448 if (stackPos >= 8) {
449 debug("Invalid FP stack position");
450 return true;
451 }
452
453 mcInst.addOperand(MCOperand::CreateReg(X86::ST0 + stackPos));
454
455 return false;
456 }
457
458 /// translateOperand - Translates an operand stored in an internal instruction
459 /// to LLVM's format and appends it to an MCInst.
460 ///
461 /// @param mcInst - The MCInst to append to.
462 /// @param operand - The operand, as stored in the descriptor table.
463 /// @param insn - The internal instruction.
464 /// @return - false on success; true otherwise.
translateOperand(MCInst & mcInst,const OperandSpecifier & operand,InternalInstruction & insn)465 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
466 InternalInstruction &insn) {
467 switch (operand.encoding) {
468 default:
469 debug("Unhandled operand encoding during translation");
470 return true;
471 case ENCODING_REG:
472 translateRegister(mcInst, insn.reg);
473 return false;
474 case ENCODING_RM:
475 return translateRM(mcInst, operand, insn);
476 case ENCODING_CB:
477 case ENCODING_CW:
478 case ENCODING_CD:
479 case ENCODING_CP:
480 case ENCODING_CO:
481 case ENCODING_CT:
482 debug("Translation of code offsets isn't supported.");
483 return true;
484 case ENCODING_IB:
485 case ENCODING_IW:
486 case ENCODING_ID:
487 case ENCODING_IO:
488 case ENCODING_Iv:
489 case ENCODING_Ia:
490 translateImmediate(mcInst,
491 insn.immediates[insn.numImmediatesTranslated++],
492 operand,
493 insn);
494 return false;
495 case ENCODING_RB:
496 case ENCODING_RW:
497 case ENCODING_RD:
498 case ENCODING_RO:
499 translateRegister(mcInst, insn.opcodeRegister);
500 return false;
501 case ENCODING_I:
502 return translateFPRegister(mcInst, insn.opcodeModifier);
503 case ENCODING_Rv:
504 translateRegister(mcInst, insn.opcodeRegister);
505 return false;
506 case ENCODING_VVVV:
507 translateRegister(mcInst, insn.vvvv);
508 return false;
509 case ENCODING_DUP:
510 return translateOperand(mcInst,
511 insn.spec->operands[operand.type - TYPE_DUP0],
512 insn);
513 }
514 }
515
516 /// translateInstruction - Translates an internal instruction and all its
517 /// operands to an MCInst.
518 ///
519 /// @param mcInst - The MCInst to populate with the instruction's data.
520 /// @param insn - The internal instruction.
521 /// @return - false on success; true otherwise.
translateInstruction(MCInst & mcInst,InternalInstruction & insn)522 static bool translateInstruction(MCInst &mcInst,
523 InternalInstruction &insn) {
524 if (!insn.spec) {
525 debug("Instruction has no specification");
526 return true;
527 }
528
529 mcInst.setOpcode(insn.instructionID);
530
531 int index;
532
533 insn.numImmediatesTranslated = 0;
534
535 for (index = 0; index < X86_MAX_OPERANDS; ++index) {
536 if (insn.spec->operands[index].encoding != ENCODING_NONE) {
537 if (translateOperand(mcInst, insn.spec->operands[index], insn)) {
538 return true;
539 }
540 }
541 }
542
543 return false;
544 }
545
createX86_32Disassembler(const Target & T)546 static MCDisassembler *createX86_32Disassembler(const Target &T) {
547 return new X86Disassembler::X86_32Disassembler;
548 }
549
createX86_64Disassembler(const Target & T)550 static MCDisassembler *createX86_64Disassembler(const Target &T) {
551 return new X86Disassembler::X86_64Disassembler;
552 }
553
LLVMInitializeX86Disassembler()554 extern "C" void LLVMInitializeX86Disassembler() {
555 // Register the disassembler.
556 TargetRegistry::RegisterMCDisassembler(TheX86_32Target,
557 createX86_32Disassembler);
558 TargetRegistry::RegisterMCDisassembler(TheX86_64Target,
559 createX86_64Disassembler);
560 }
561