1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <signal.h>
31 #include <stdint.h>
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <errno.h>
35 #include <sys/atomics.h>
36 #include <bionic_tls.h>
37 #include <sys/mman.h>
38 #include <pthread.h>
39 #include <time.h>
40 #include "pthread_internal.h"
41 #include "thread_private.h"
42 #include <limits.h>
43 #include <memory.h>
44 #include <assert.h>
45 #include <malloc.h>
46 #include <bionic_futex.h>
47 #include <bionic_atomic_inline.h>
48 #include <sys/prctl.h>
49 #include <sys/stat.h>
50 #include <fcntl.h>
51 #include <stdio.h>
52 #include <bionic_pthread.h>
53
54 extern int __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg);
55 extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
56 extern void _exit_thread(int retCode);
57 extern int __set_errno(int);
58
__futex_wake_ex(volatile void * ftx,int pshared,int val)59 int __futex_wake_ex(volatile void *ftx, int pshared, int val)
60 {
61 return __futex_syscall3(ftx, pshared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE, val);
62 }
63
__futex_wait_ex(volatile void * ftx,int pshared,int val,const struct timespec * timeout)64 int __futex_wait_ex(volatile void *ftx, int pshared, int val, const struct timespec *timeout)
65 {
66 return __futex_syscall4(ftx, pshared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, val, timeout);
67 }
68
69 #define __likely(cond) __builtin_expect(!!(cond), 1)
70 #define __unlikely(cond) __builtin_expect(!!(cond), 0)
71
72 #ifdef __i386__
73 #define ATTRIBUTES __attribute__((noinline)) __attribute__((fastcall))
74 #else
75 #define ATTRIBUTES __attribute__((noinline))
76 #endif
77
78 void ATTRIBUTES _thread_created_hook(pid_t thread_id);
79
80 #define PTHREAD_ATTR_FLAG_DETACHED 0x00000001
81 #define PTHREAD_ATTR_FLAG_USER_STACK 0x00000002
82
83 #define DEFAULT_STACKSIZE (1024 * 1024)
84 #define STACKBASE 0x10000000
85
86 static uint8_t * gStackBase = (uint8_t *)STACKBASE;
87
88 static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER;
89
90
91 static const pthread_attr_t gDefaultPthreadAttr = {
92 .flags = 0,
93 .stack_base = NULL,
94 .stack_size = DEFAULT_STACKSIZE,
95 .guard_size = PAGE_SIZE,
96 .sched_policy = SCHED_NORMAL,
97 .sched_priority = 0
98 };
99
100 #define INIT_THREADS 1
101
102 static pthread_internal_t* gThreadList = NULL;
103 static pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER;
104 static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER;
105
106
107 /* we simply malloc/free the internal pthread_internal_t structures. we may
108 * want to use a different allocation scheme in the future, but this one should
109 * be largely enough
110 */
111 static pthread_internal_t*
_pthread_internal_alloc(void)112 _pthread_internal_alloc(void)
113 {
114 pthread_internal_t* thread;
115
116 thread = calloc( sizeof(*thread), 1 );
117 if (thread)
118 thread->intern = 1;
119
120 return thread;
121 }
122
123 static void
_pthread_internal_free(pthread_internal_t * thread)124 _pthread_internal_free( pthread_internal_t* thread )
125 {
126 if (thread && thread->intern) {
127 thread->intern = 0; /* just in case */
128 free (thread);
129 }
130 }
131
132
133 static void
_pthread_internal_remove_locked(pthread_internal_t * thread)134 _pthread_internal_remove_locked( pthread_internal_t* thread )
135 {
136 thread->next->pref = thread->pref;
137 thread->pref[0] = thread->next;
138 }
139
140 static void
_pthread_internal_remove(pthread_internal_t * thread)141 _pthread_internal_remove( pthread_internal_t* thread )
142 {
143 pthread_mutex_lock(&gThreadListLock);
144 _pthread_internal_remove_locked(thread);
145 pthread_mutex_unlock(&gThreadListLock);
146 }
147
148 static void
_pthread_internal_add(pthread_internal_t * thread)149 _pthread_internal_add( pthread_internal_t* thread )
150 {
151 pthread_mutex_lock(&gThreadListLock);
152 thread->pref = &gThreadList;
153 thread->next = thread->pref[0];
154 if (thread->next)
155 thread->next->pref = &thread->next;
156 thread->pref[0] = thread;
157 pthread_mutex_unlock(&gThreadListLock);
158 }
159
160 pthread_internal_t*
__get_thread(void)161 __get_thread(void)
162 {
163 void** tls = (void**)__get_tls();
164
165 return (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
166 }
167
168
169 void*
__get_stack_base(int * p_stack_size)170 __get_stack_base(int *p_stack_size)
171 {
172 pthread_internal_t* thread = __get_thread();
173
174 *p_stack_size = thread->attr.stack_size;
175 return thread->attr.stack_base;
176 }
177
178
__init_tls(void ** tls,void * thread)179 void __init_tls(void** tls, void* thread)
180 {
181 int nn;
182
183 ((pthread_internal_t*)thread)->tls = tls;
184
185 // slot 0 must point to the tls area, this is required by the implementation
186 // of the x86 Linux kernel thread-local-storage
187 tls[TLS_SLOT_SELF] = (void*)tls;
188 tls[TLS_SLOT_THREAD_ID] = thread;
189 for (nn = TLS_SLOT_ERRNO; nn < BIONIC_TLS_SLOTS; nn++)
190 tls[nn] = 0;
191
192 __set_tls( (void*)tls );
193 }
194
195
196 /*
197 * This trampoline is called from the assembly clone() function
198 */
__thread_entry(int (* func)(void *),void * arg,void ** tls)199 void __thread_entry(int (*func)(void*), void *arg, void **tls)
200 {
201 int retValue;
202 pthread_internal_t * thrInfo;
203
204 // Wait for our creating thread to release us. This lets it have time to
205 // notify gdb about this thread before it starts doing anything.
206 //
207 // This also provides the memory barrier needed to ensure that all memory
208 // accesses previously made by the creating thread are visible to us.
209 pthread_mutex_t * start_mutex = (pthread_mutex_t *)&tls[TLS_SLOT_SELF];
210 pthread_mutex_lock(start_mutex);
211 pthread_mutex_destroy(start_mutex);
212
213 thrInfo = (pthread_internal_t *) tls[TLS_SLOT_THREAD_ID];
214
215 __init_tls( tls, thrInfo );
216
217 pthread_exit( (void*)func(arg) );
218 }
219
_init_thread(pthread_internal_t * thread,pid_t kernel_id,pthread_attr_t * attr,void * stack_base)220 void _init_thread(pthread_internal_t * thread, pid_t kernel_id, pthread_attr_t * attr, void * stack_base)
221 {
222 if (attr == NULL) {
223 thread->attr = gDefaultPthreadAttr;
224 } else {
225 thread->attr = *attr;
226 }
227 thread->attr.stack_base = stack_base;
228 thread->kernel_id = kernel_id;
229
230 // set the scheduling policy/priority of the thread
231 if (thread->attr.sched_policy != SCHED_NORMAL) {
232 struct sched_param param;
233 param.sched_priority = thread->attr.sched_priority;
234 sched_setscheduler(kernel_id, thread->attr.sched_policy, ¶m);
235 }
236
237 pthread_cond_init(&thread->join_cond, NULL);
238 thread->join_count = 0;
239
240 thread->cleanup_stack = NULL;
241
242 _pthread_internal_add(thread);
243 }
244
245
246 /* XXX stacks not reclaimed if thread spawn fails */
247 /* XXX stacks address spaces should be reused if available again */
248
mkstack(size_t size,size_t guard_size)249 static void *mkstack(size_t size, size_t guard_size)
250 {
251 void * stack;
252
253 pthread_mutex_lock(&mmap_lock);
254
255 stack = mmap((void *)gStackBase, size,
256 PROT_READ | PROT_WRITE,
257 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
258 -1, 0);
259
260 if(stack == MAP_FAILED) {
261 stack = NULL;
262 goto done;
263 }
264
265 if(mprotect(stack, guard_size, PROT_NONE)){
266 munmap(stack, size);
267 stack = NULL;
268 goto done;
269 }
270
271 done:
272 pthread_mutex_unlock(&mmap_lock);
273 return stack;
274 }
275
276 /*
277 * Create a new thread. The thread's stack is laid out like so:
278 *
279 * +---------------------------+
280 * | pthread_internal_t |
281 * +---------------------------+
282 * | |
283 * | TLS area |
284 * | |
285 * +---------------------------+
286 * | |
287 * . .
288 * . stack area .
289 * . .
290 * | |
291 * +---------------------------+
292 * | guard page |
293 * +---------------------------+
294 *
295 * note that TLS[0] must be a pointer to itself, this is required
296 * by the thread-local storage implementation of the x86 Linux
297 * kernel, where the TLS pointer is read by reading fs:[0]
298 */
pthread_create(pthread_t * thread_out,pthread_attr_t const * attr,void * (* start_routine)(void *),void * arg)299 int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr,
300 void *(*start_routine)(void *), void * arg)
301 {
302 char* stack;
303 void** tls;
304 int tid;
305 pthread_mutex_t * start_mutex;
306 pthread_internal_t * thread;
307 int madestack = 0;
308 int old_errno = errno;
309
310 /* this will inform the rest of the C library that at least one thread
311 * was created. this will enforce certain functions to acquire/release
312 * locks (e.g. atexit()) to protect shared global structures.
313 *
314 * this works because pthread_create() is not called by the C library
315 * initialization routine that sets up the main thread's data structures.
316 */
317 __isthreaded = 1;
318
319 thread = _pthread_internal_alloc();
320 if (thread == NULL)
321 return ENOMEM;
322
323 if (attr == NULL) {
324 attr = &gDefaultPthreadAttr;
325 }
326
327 // make sure the stack is PAGE_SIZE aligned
328 size_t stackSize = (attr->stack_size +
329 (PAGE_SIZE-1)) & ~(PAGE_SIZE-1);
330
331 if (!attr->stack_base) {
332 stack = mkstack(stackSize, attr->guard_size);
333 if(stack == NULL) {
334 _pthread_internal_free(thread);
335 return ENOMEM;
336 }
337 madestack = 1;
338 } else {
339 stack = attr->stack_base;
340 }
341
342 // Make room for TLS
343 tls = (void**)(stack + stackSize - BIONIC_TLS_SLOTS*sizeof(void*));
344
345 // Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep
346 // it from doing anything until after we notify the debugger about it
347 //
348 // This also provides the memory barrier we need to ensure that all
349 // memory accesses previously performed by this thread are visible to
350 // the new thread.
351 start_mutex = (pthread_mutex_t *) &tls[TLS_SLOT_SELF];
352 pthread_mutex_init(start_mutex, NULL);
353 pthread_mutex_lock(start_mutex);
354
355 tls[TLS_SLOT_THREAD_ID] = thread;
356
357 tid = __pthread_clone((int(*)(void*))start_routine, tls,
358 CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND
359 | CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED,
360 arg);
361
362 if(tid < 0) {
363 int result;
364 if (madestack)
365 munmap(stack, stackSize);
366 _pthread_internal_free(thread);
367 result = errno;
368 errno = old_errno;
369 return result;
370 }
371
372 _init_thread(thread, tid, (pthread_attr_t*)attr, stack);
373
374 if (!madestack)
375 thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK;
376
377 // Notify any debuggers about the new thread
378 pthread_mutex_lock(&gDebuggerNotificationLock);
379 _thread_created_hook(tid);
380 pthread_mutex_unlock(&gDebuggerNotificationLock);
381
382 // Let the thread do it's thing
383 pthread_mutex_unlock(start_mutex);
384
385 *thread_out = (pthread_t)thread;
386 return 0;
387 }
388
389
pthread_attr_init(pthread_attr_t * attr)390 int pthread_attr_init(pthread_attr_t * attr)
391 {
392 *attr = gDefaultPthreadAttr;
393 return 0;
394 }
395
pthread_attr_destroy(pthread_attr_t * attr)396 int pthread_attr_destroy(pthread_attr_t * attr)
397 {
398 memset(attr, 0x42, sizeof(pthread_attr_t));
399 return 0;
400 }
401
pthread_attr_setdetachstate(pthread_attr_t * attr,int state)402 int pthread_attr_setdetachstate(pthread_attr_t * attr, int state)
403 {
404 if (state == PTHREAD_CREATE_DETACHED) {
405 attr->flags |= PTHREAD_ATTR_FLAG_DETACHED;
406 } else if (state == PTHREAD_CREATE_JOINABLE) {
407 attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED;
408 } else {
409 return EINVAL;
410 }
411 return 0;
412 }
413
pthread_attr_getdetachstate(pthread_attr_t const * attr,int * state)414 int pthread_attr_getdetachstate(pthread_attr_t const * attr, int * state)
415 {
416 *state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED)
417 ? PTHREAD_CREATE_DETACHED
418 : PTHREAD_CREATE_JOINABLE;
419 return 0;
420 }
421
pthread_attr_setschedpolicy(pthread_attr_t * attr,int policy)422 int pthread_attr_setschedpolicy(pthread_attr_t * attr, int policy)
423 {
424 attr->sched_policy = policy;
425 return 0;
426 }
427
pthread_attr_getschedpolicy(pthread_attr_t const * attr,int * policy)428 int pthread_attr_getschedpolicy(pthread_attr_t const * attr, int * policy)
429 {
430 *policy = attr->sched_policy;
431 return 0;
432 }
433
pthread_attr_setschedparam(pthread_attr_t * attr,struct sched_param const * param)434 int pthread_attr_setschedparam(pthread_attr_t * attr, struct sched_param const * param)
435 {
436 attr->sched_priority = param->sched_priority;
437 return 0;
438 }
439
pthread_attr_getschedparam(pthread_attr_t const * attr,struct sched_param * param)440 int pthread_attr_getschedparam(pthread_attr_t const * attr, struct sched_param * param)
441 {
442 param->sched_priority = attr->sched_priority;
443 return 0;
444 }
445
pthread_attr_setstacksize(pthread_attr_t * attr,size_t stack_size)446 int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stack_size)
447 {
448 if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
449 return EINVAL;
450 }
451 attr->stack_size = stack_size;
452 return 0;
453 }
454
pthread_attr_getstacksize(pthread_attr_t const * attr,size_t * stack_size)455 int pthread_attr_getstacksize(pthread_attr_t const * attr, size_t * stack_size)
456 {
457 *stack_size = attr->stack_size;
458 return 0;
459 }
460
pthread_attr_setstackaddr(pthread_attr_t * attr,void * stack_addr)461 int pthread_attr_setstackaddr(pthread_attr_t * attr, void * stack_addr)
462 {
463 #if 1
464 // It's not clear if this is setting the top or bottom of the stack, so don't handle it for now.
465 return ENOSYS;
466 #else
467 if ((uint32_t)stack_addr & (PAGE_SIZE - 1)) {
468 return EINVAL;
469 }
470 attr->stack_base = stack_addr;
471 return 0;
472 #endif
473 }
474
pthread_attr_getstackaddr(pthread_attr_t const * attr,void ** stack_addr)475 int pthread_attr_getstackaddr(pthread_attr_t const * attr, void ** stack_addr)
476 {
477 *stack_addr = (char*)attr->stack_base + attr->stack_size;
478 return 0;
479 }
480
pthread_attr_setstack(pthread_attr_t * attr,void * stack_base,size_t stack_size)481 int pthread_attr_setstack(pthread_attr_t * attr, void * stack_base, size_t stack_size)
482 {
483 if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
484 return EINVAL;
485 }
486 if ((uint32_t)stack_base & (PAGE_SIZE - 1)) {
487 return EINVAL;
488 }
489 attr->stack_base = stack_base;
490 attr->stack_size = stack_size;
491 return 0;
492 }
493
pthread_attr_getstack(pthread_attr_t const * attr,void ** stack_base,size_t * stack_size)494 int pthread_attr_getstack(pthread_attr_t const * attr, void ** stack_base, size_t * stack_size)
495 {
496 *stack_base = attr->stack_base;
497 *stack_size = attr->stack_size;
498 return 0;
499 }
500
pthread_attr_setguardsize(pthread_attr_t * attr,size_t guard_size)501 int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size)
502 {
503 if (guard_size & (PAGE_SIZE - 1) || guard_size < PAGE_SIZE) {
504 return EINVAL;
505 }
506
507 attr->guard_size = guard_size;
508 return 0;
509 }
510
pthread_attr_getguardsize(pthread_attr_t const * attr,size_t * guard_size)511 int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size)
512 {
513 *guard_size = attr->guard_size;
514 return 0;
515 }
516
pthread_getattr_np(pthread_t thid,pthread_attr_t * attr)517 int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr)
518 {
519 pthread_internal_t * thread = (pthread_internal_t *)thid;
520 *attr = thread->attr;
521 return 0;
522 }
523
pthread_attr_setscope(pthread_attr_t * attr,int scope)524 int pthread_attr_setscope(pthread_attr_t *attr, int scope)
525 {
526 if (scope == PTHREAD_SCOPE_SYSTEM)
527 return 0;
528 if (scope == PTHREAD_SCOPE_PROCESS)
529 return ENOTSUP;
530
531 return EINVAL;
532 }
533
pthread_attr_getscope(pthread_attr_t const * attr)534 int pthread_attr_getscope(pthread_attr_t const *attr)
535 {
536 return PTHREAD_SCOPE_SYSTEM;
537 }
538
539
540 /* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
541 * and thread cancelation
542 */
543
__pthread_cleanup_push(__pthread_cleanup_t * c,__pthread_cleanup_func_t routine,void * arg)544 void __pthread_cleanup_push( __pthread_cleanup_t* c,
545 __pthread_cleanup_func_t routine,
546 void* arg )
547 {
548 pthread_internal_t* thread = __get_thread();
549
550 c->__cleanup_routine = routine;
551 c->__cleanup_arg = arg;
552 c->__cleanup_prev = thread->cleanup_stack;
553 thread->cleanup_stack = c;
554 }
555
__pthread_cleanup_pop(__pthread_cleanup_t * c,int execute)556 void __pthread_cleanup_pop( __pthread_cleanup_t* c, int execute )
557 {
558 pthread_internal_t* thread = __get_thread();
559
560 thread->cleanup_stack = c->__cleanup_prev;
561 if (execute)
562 c->__cleanup_routine(c->__cleanup_arg);
563 }
564
565 /* used by pthread_exit() to clean all TLS keys of the current thread */
566 static void pthread_key_clean_all(void);
567
pthread_exit(void * retval)568 void pthread_exit(void * retval)
569 {
570 pthread_internal_t* thread = __get_thread();
571 void* stack_base = thread->attr.stack_base;
572 int stack_size = thread->attr.stack_size;
573 int user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
574
575 // call the cleanup handlers first
576 while (thread->cleanup_stack) {
577 __pthread_cleanup_t* c = thread->cleanup_stack;
578 thread->cleanup_stack = c->__cleanup_prev;
579 c->__cleanup_routine(c->__cleanup_arg);
580 }
581
582 // call the TLS destructors, it is important to do that before removing this
583 // thread from the global list. this will ensure that if someone else deletes
584 // a TLS key, the corresponding value will be set to NULL in this thread's TLS
585 // space (see pthread_key_delete)
586 pthread_key_clean_all();
587
588 // if the thread is detached, destroy the pthread_internal_t
589 // otherwise, keep it in memory and signal any joiners
590 if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
591 _pthread_internal_remove(thread);
592 _pthread_internal_free(thread);
593 } else {
594 /* the join_count field is used to store the number of threads waiting for
595 * the termination of this thread with pthread_join(),
596 *
597 * if it is positive we need to signal the waiters, and we do not touch
598 * the count (it will be decremented by the waiters, the last one will
599 * also remove/free the thread structure
600 *
601 * if it is zero, we set the count value to -1 to indicate that the
602 * thread is in 'zombie' state: it has stopped executing, and its stack
603 * is gone (as well as its TLS area). when another thread calls pthread_join()
604 * on it, it will immediately free the thread and return.
605 */
606 pthread_mutex_lock(&gThreadListLock);
607 thread->return_value = retval;
608 if (thread->join_count > 0) {
609 pthread_cond_broadcast(&thread->join_cond);
610 } else {
611 thread->join_count = -1; /* zombie thread */
612 }
613 pthread_mutex_unlock(&gThreadListLock);
614 }
615
616 // destroy the thread stack
617 if (user_stack)
618 _exit_thread((int)retval);
619 else
620 _exit_with_stack_teardown(stack_base, stack_size, (int)retval);
621 }
622
pthread_join(pthread_t thid,void ** ret_val)623 int pthread_join(pthread_t thid, void ** ret_val)
624 {
625 pthread_internal_t* thread = (pthread_internal_t*)thid;
626 int count;
627
628 // check that the thread still exists and is not detached
629 pthread_mutex_lock(&gThreadListLock);
630
631 for (thread = gThreadList; thread != NULL; thread = thread->next)
632 if (thread == (pthread_internal_t*)thid)
633 goto FoundIt;
634
635 pthread_mutex_unlock(&gThreadListLock);
636 return ESRCH;
637
638 FoundIt:
639 if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
640 pthread_mutex_unlock(&gThreadListLock);
641 return EINVAL;
642 }
643
644 /* wait for thread death when needed
645 *
646 * if the 'join_count' is negative, this is a 'zombie' thread that
647 * is already dead and without stack/TLS
648 *
649 * otherwise, we need to increment 'join-count' and wait to be signaled
650 */
651 count = thread->join_count;
652 if (count >= 0) {
653 thread->join_count += 1;
654 pthread_cond_wait( &thread->join_cond, &gThreadListLock );
655 count = --thread->join_count;
656 }
657 if (ret_val)
658 *ret_val = thread->return_value;
659
660 /* remove thread descriptor when we're the last joiner or when the
661 * thread was already a zombie.
662 */
663 if (count <= 0) {
664 _pthread_internal_remove_locked(thread);
665 _pthread_internal_free(thread);
666 }
667 pthread_mutex_unlock(&gThreadListLock);
668 return 0;
669 }
670
pthread_detach(pthread_t thid)671 int pthread_detach( pthread_t thid )
672 {
673 pthread_internal_t* thread;
674 int result = 0;
675 int flags;
676
677 pthread_mutex_lock(&gThreadListLock);
678 for (thread = gThreadList; thread != NULL; thread = thread->next)
679 if (thread == (pthread_internal_t*)thid)
680 goto FoundIt;
681
682 result = ESRCH;
683 goto Exit;
684
685 FoundIt:
686 do {
687 flags = thread->attr.flags;
688
689 if ( flags & PTHREAD_ATTR_FLAG_DETACHED ) {
690 /* thread is not joinable ! */
691 result = EINVAL;
692 goto Exit;
693 }
694 }
695 while ( __atomic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED,
696 (volatile int*)&thread->attr.flags ) != 0 );
697 Exit:
698 pthread_mutex_unlock(&gThreadListLock);
699 return result;
700 }
701
pthread_self(void)702 pthread_t pthread_self(void)
703 {
704 return (pthread_t)__get_thread();
705 }
706
pthread_equal(pthread_t one,pthread_t two)707 int pthread_equal(pthread_t one, pthread_t two)
708 {
709 return (one == two ? 1 : 0);
710 }
711
pthread_getschedparam(pthread_t thid,int * policy,struct sched_param * param)712 int pthread_getschedparam(pthread_t thid, int * policy,
713 struct sched_param * param)
714 {
715 int old_errno = errno;
716
717 pthread_internal_t * thread = (pthread_internal_t *)thid;
718 int err = sched_getparam(thread->kernel_id, param);
719 if (!err) {
720 *policy = sched_getscheduler(thread->kernel_id);
721 } else {
722 err = errno;
723 errno = old_errno;
724 }
725 return err;
726 }
727
pthread_setschedparam(pthread_t thid,int policy,struct sched_param const * param)728 int pthread_setschedparam(pthread_t thid, int policy,
729 struct sched_param const * param)
730 {
731 pthread_internal_t * thread = (pthread_internal_t *)thid;
732 int old_errno = errno;
733 int ret;
734
735 ret = sched_setscheduler(thread->kernel_id, policy, param);
736 if (ret < 0) {
737 ret = errno;
738 errno = old_errno;
739 }
740 return ret;
741 }
742
743
744 // mutex lock states
745 //
746 // 0: unlocked
747 // 1: locked, no waiters
748 // 2: locked, maybe waiters
749
750 /* a mutex is implemented as a 32-bit integer holding the following fields
751 *
752 * bits: name description
753 * 31-16 tid owner thread's kernel id (recursive and errorcheck only)
754 * 15-14 type mutex type
755 * 13 shared process-shared flag
756 * 12-2 counter counter of recursive mutexes
757 * 1-0 state lock state (0, 1 or 2)
758 */
759
760
761 #define MUTEX_OWNER(m) (((m)->value >> 16) & 0xffff)
762 #define MUTEX_COUNTER(m) (((m)->value >> 2) & 0xfff)
763
764 #define MUTEX_TYPE_MASK 0xc000
765 #define MUTEX_TYPE_NORMAL 0x0000
766 #define MUTEX_TYPE_RECURSIVE 0x4000
767 #define MUTEX_TYPE_ERRORCHECK 0x8000
768
769 #define MUTEX_COUNTER_SHIFT 2
770 #define MUTEX_COUNTER_MASK 0x1ffc
771 #define MUTEX_SHARED_MASK 0x2000
772
773 /* a mutex attribute holds the following fields
774 *
775 * bits: name description
776 * 0-3 type type of mutex
777 * 4 shared process-shared flag
778 */
779 #define MUTEXATTR_TYPE_MASK 0x000f
780 #define MUTEXATTR_SHARED_MASK 0x0010
781
782
pthread_mutexattr_init(pthread_mutexattr_t * attr)783 int pthread_mutexattr_init(pthread_mutexattr_t *attr)
784 {
785 if (attr) {
786 *attr = PTHREAD_MUTEX_DEFAULT;
787 return 0;
788 } else {
789 return EINVAL;
790 }
791 }
792
pthread_mutexattr_destroy(pthread_mutexattr_t * attr)793 int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
794 {
795 if (attr) {
796 *attr = -1;
797 return 0;
798 } else {
799 return EINVAL;
800 }
801 }
802
pthread_mutexattr_gettype(const pthread_mutexattr_t * attr,int * type)803 int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
804 {
805 if (attr) {
806 int atype = (*attr & MUTEXATTR_TYPE_MASK);
807
808 if (atype >= PTHREAD_MUTEX_NORMAL &&
809 atype <= PTHREAD_MUTEX_ERRORCHECK) {
810 *type = atype;
811 return 0;
812 }
813 }
814 return EINVAL;
815 }
816
pthread_mutexattr_settype(pthread_mutexattr_t * attr,int type)817 int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
818 {
819 if (attr && type >= PTHREAD_MUTEX_NORMAL &&
820 type <= PTHREAD_MUTEX_ERRORCHECK ) {
821 *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
822 return 0;
823 }
824 return EINVAL;
825 }
826
827 /* process-shared mutexes are not supported at the moment */
828
pthread_mutexattr_setpshared(pthread_mutexattr_t * attr,int pshared)829 int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
830 {
831 if (!attr)
832 return EINVAL;
833
834 switch (pshared) {
835 case PTHREAD_PROCESS_PRIVATE:
836 *attr &= ~MUTEXATTR_SHARED_MASK;
837 return 0;
838
839 case PTHREAD_PROCESS_SHARED:
840 /* our current implementation of pthread actually supports shared
841 * mutexes but won't cleanup if a process dies with the mutex held.
842 * Nevertheless, it's better than nothing. Shared mutexes are used
843 * by surfaceflinger and audioflinger.
844 */
845 *attr |= MUTEXATTR_SHARED_MASK;
846 return 0;
847 }
848 return EINVAL;
849 }
850
pthread_mutexattr_getpshared(pthread_mutexattr_t * attr,int * pshared)851 int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
852 {
853 if (!attr || !pshared)
854 return EINVAL;
855
856 *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED
857 : PTHREAD_PROCESS_PRIVATE;
858 return 0;
859 }
860
pthread_mutex_init(pthread_mutex_t * mutex,const pthread_mutexattr_t * attr)861 int pthread_mutex_init(pthread_mutex_t *mutex,
862 const pthread_mutexattr_t *attr)
863 {
864 int value = 0;
865
866 if (mutex == NULL)
867 return EINVAL;
868
869 if (__likely(attr == NULL)) {
870 mutex->value = MUTEX_TYPE_NORMAL;
871 return 0;
872 }
873
874 if ((*attr & MUTEXATTR_SHARED_MASK) != 0)
875 value |= MUTEX_SHARED_MASK;
876
877 switch (*attr & MUTEXATTR_TYPE_MASK) {
878 case PTHREAD_MUTEX_NORMAL:
879 value |= MUTEX_TYPE_NORMAL;
880 break;
881 case PTHREAD_MUTEX_RECURSIVE:
882 value |= MUTEX_TYPE_RECURSIVE;
883 break;
884 case PTHREAD_MUTEX_ERRORCHECK:
885 value |= MUTEX_TYPE_ERRORCHECK;
886 break;
887 default:
888 return EINVAL;
889 }
890
891 mutex->value = value;
892 return 0;
893 }
894
pthread_mutex_destroy(pthread_mutex_t * mutex)895 int pthread_mutex_destroy(pthread_mutex_t *mutex)
896 {
897 int ret;
898
899 /* use trylock to ensure that the mutex value is
900 * valid and is not already locked. */
901 ret = pthread_mutex_trylock(mutex);
902 if (ret != 0)
903 return ret;
904
905 mutex->value = 0xdead10cc;
906 return 0;
907 }
908
909
910 /*
911 * Lock a non-recursive mutex.
912 *
913 * As noted above, there are three states:
914 * 0 (unlocked, no contention)
915 * 1 (locked, no contention)
916 * 2 (locked, contention)
917 *
918 * Non-recursive mutexes don't use the thread-id or counter fields, and the
919 * "type" value is zero, so the only bits that will be set are the ones in
920 * the lock state field.
921 */
922 static __inline__ void
_normal_lock(pthread_mutex_t * mutex)923 _normal_lock(pthread_mutex_t* mutex)
924 {
925 /* We need to preserve the shared flag during operations */
926 int shared = mutex->value & MUTEX_SHARED_MASK;
927 /*
928 * The common case is an unlocked mutex, so we begin by trying to
929 * change the lock's state from 0 to 1. __atomic_cmpxchg() returns 0
930 * if it made the swap successfully. If the result is nonzero, this
931 * lock is already held by another thread.
932 */
933 if (__atomic_cmpxchg(shared|0, shared|1, &mutex->value ) != 0) {
934 /*
935 * We want to go to sleep until the mutex is available, which
936 * requires promoting it to state 2. We need to swap in the new
937 * state value and then wait until somebody wakes us up.
938 *
939 * __atomic_swap() returns the previous value. We swap 2 in and
940 * see if we got zero back; if so, we have acquired the lock. If
941 * not, another thread still holds the lock and we wait again.
942 *
943 * The second argument to the __futex_wait() call is compared
944 * against the current value. If it doesn't match, __futex_wait()
945 * returns immediately (otherwise, it sleeps for a time specified
946 * by the third argument; 0 means sleep forever). This ensures
947 * that the mutex is in state 2 when we go to sleep on it, which
948 * guarantees a wake-up call.
949 */
950 while (__atomic_swap(shared|2, &mutex->value ) != (shared|0))
951 __futex_wait_ex(&mutex->value, shared, shared|2, 0);
952 }
953 ANDROID_MEMBAR_FULL();
954 }
955
956 /*
957 * Release a non-recursive mutex. The caller is responsible for determining
958 * that we are in fact the owner of this lock.
959 */
960 static __inline__ void
_normal_unlock(pthread_mutex_t * mutex)961 _normal_unlock(pthread_mutex_t* mutex)
962 {
963 ANDROID_MEMBAR_FULL();
964
965 /* We need to preserve the shared flag during operations */
966 int shared = mutex->value & MUTEX_SHARED_MASK;
967
968 /*
969 * The mutex state will be 1 or (rarely) 2. We use an atomic decrement
970 * to release the lock. __atomic_dec() returns the previous value;
971 * if it wasn't 1 we have to do some additional work.
972 */
973 if (__atomic_dec(&mutex->value) != (shared|1)) {
974 /*
975 * Start by releasing the lock. The decrement changed it from
976 * "contended lock" to "uncontended lock", which means we still
977 * hold it, and anybody who tries to sneak in will push it back
978 * to state 2.
979 *
980 * Once we set it to zero the lock is up for grabs. We follow
981 * this with a __futex_wake() to ensure that one of the waiting
982 * threads has a chance to grab it.
983 *
984 * This doesn't cause a race with the swap/wait pair in
985 * _normal_lock(), because the __futex_wait() call there will
986 * return immediately if the mutex value isn't 2.
987 */
988 mutex->value = shared;
989
990 /*
991 * Wake up one waiting thread. We don't know which thread will be
992 * woken or when it'll start executing -- futexes make no guarantees
993 * here. There may not even be a thread waiting.
994 *
995 * The newly-woken thread will replace the 0 we just set above
996 * with 2, which means that when it eventually releases the mutex
997 * it will also call FUTEX_WAKE. This results in one extra wake
998 * call whenever a lock is contended, but lets us avoid forgetting
999 * anyone without requiring us to track the number of sleepers.
1000 *
1001 * It's possible for another thread to sneak in and grab the lock
1002 * between the zero assignment above and the wake call below. If
1003 * the new thread is "slow" and holds the lock for a while, we'll
1004 * wake up a sleeper, which will swap in a 2 and then go back to
1005 * sleep since the lock is still held. If the new thread is "fast",
1006 * running to completion before we call wake, the thread we
1007 * eventually wake will find an unlocked mutex and will execute.
1008 * Either way we have correct behavior and nobody is orphaned on
1009 * the wait queue.
1010 */
1011 __futex_wake_ex(&mutex->value, shared, 1);
1012 }
1013 }
1014
1015 static pthread_mutex_t __recursive_lock = PTHREAD_MUTEX_INITIALIZER;
1016
1017 static void
_recursive_lock(void)1018 _recursive_lock(void)
1019 {
1020 _normal_lock(&__recursive_lock);
1021 }
1022
1023 static void
_recursive_unlock(void)1024 _recursive_unlock(void)
1025 {
1026 _normal_unlock(&__recursive_lock );
1027 }
1028
pthread_mutex_lock(pthread_mutex_t * mutex)1029 int pthread_mutex_lock(pthread_mutex_t *mutex)
1030 {
1031 int mtype, tid, new_lock_type, shared;
1032
1033 if (__unlikely(mutex == NULL))
1034 return EINVAL;
1035
1036 mtype = (mutex->value & MUTEX_TYPE_MASK);
1037 shared = (mutex->value & MUTEX_SHARED_MASK);
1038
1039 /* Handle normal case first */
1040 if ( __likely(mtype == MUTEX_TYPE_NORMAL) ) {
1041 _normal_lock(mutex);
1042 return 0;
1043 }
1044
1045 /* Do we already own this recursive or error-check mutex ? */
1046 tid = __get_thread()->kernel_id;
1047 if ( tid == MUTEX_OWNER(mutex) )
1048 {
1049 int oldv, counter;
1050
1051 if (mtype == MUTEX_TYPE_ERRORCHECK) {
1052 /* trying to re-lock a mutex we already acquired */
1053 return EDEADLK;
1054 }
1055 /*
1056 * We own the mutex, but other threads are able to change
1057 * the contents (e.g. promoting it to "contended"), so we
1058 * need to hold the global lock.
1059 */
1060 _recursive_lock();
1061 oldv = mutex->value;
1062 counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
1063 mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
1064 _recursive_unlock();
1065 return 0;
1066 }
1067
1068 /* We don't own the mutex, so try to get it.
1069 *
1070 * First, we try to change its state from 0 to 1, if this
1071 * doesn't work, try to change it to state 2.
1072 */
1073 new_lock_type = 1;
1074
1075 /* compute futex wait opcode and restore shared flag in mtype */
1076 mtype |= shared;
1077
1078 for (;;) {
1079 int oldv;
1080
1081 _recursive_lock();
1082 oldv = mutex->value;
1083 if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
1084 mutex->value = ((tid << 16) | mtype | new_lock_type);
1085 } else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
1086 oldv ^= 3;
1087 mutex->value = oldv;
1088 }
1089 _recursive_unlock();
1090
1091 if (oldv == mtype)
1092 break;
1093
1094 /*
1095 * The lock was held, possibly contended by others. From
1096 * now on, if we manage to acquire the lock, we have to
1097 * assume that others are still contending for it so that
1098 * we'll wake them when we unlock it.
1099 */
1100 new_lock_type = 2;
1101
1102 __futex_wait_ex(&mutex->value, shared, oldv, NULL);
1103 }
1104 return 0;
1105 }
1106
1107
pthread_mutex_unlock(pthread_mutex_t * mutex)1108 int pthread_mutex_unlock(pthread_mutex_t *mutex)
1109 {
1110 int mtype, tid, oldv, shared;
1111
1112 if (__unlikely(mutex == NULL))
1113 return EINVAL;
1114
1115 mtype = (mutex->value & MUTEX_TYPE_MASK);
1116 shared = (mutex->value & MUTEX_SHARED_MASK);
1117
1118 /* Handle common case first */
1119 if (__likely(mtype == MUTEX_TYPE_NORMAL)) {
1120 _normal_unlock(mutex);
1121 return 0;
1122 }
1123
1124 /* Do we already own this recursive or error-check mutex ? */
1125 tid = __get_thread()->kernel_id;
1126 if ( tid != MUTEX_OWNER(mutex) )
1127 return EPERM;
1128
1129 /* We do, decrement counter or release the mutex if it is 0 */
1130 _recursive_lock();
1131 oldv = mutex->value;
1132 if (oldv & MUTEX_COUNTER_MASK) {
1133 mutex->value = oldv - (1 << MUTEX_COUNTER_SHIFT);
1134 oldv = 0;
1135 } else {
1136 mutex->value = shared | mtype;
1137 }
1138 _recursive_unlock();
1139
1140 /* Wake one waiting thread, if any */
1141 if ((oldv & 3) == 2) {
1142 __futex_wake_ex(&mutex->value, shared, 1);
1143 }
1144 return 0;
1145 }
1146
1147
pthread_mutex_trylock(pthread_mutex_t * mutex)1148 int pthread_mutex_trylock(pthread_mutex_t *mutex)
1149 {
1150 int mtype, tid, oldv, shared;
1151
1152 if (__unlikely(mutex == NULL))
1153 return EINVAL;
1154
1155 mtype = (mutex->value & MUTEX_TYPE_MASK);
1156 shared = (mutex->value & MUTEX_SHARED_MASK);
1157
1158 /* Handle common case first */
1159 if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
1160 {
1161 if (__atomic_cmpxchg(shared|0, shared|1, &mutex->value) == 0) {
1162 ANDROID_MEMBAR_FULL();
1163 return 0;
1164 }
1165
1166 return EBUSY;
1167 }
1168
1169 /* Do we already own this recursive or error-check mutex ? */
1170 tid = __get_thread()->kernel_id;
1171 if ( tid == MUTEX_OWNER(mutex) )
1172 {
1173 int counter;
1174
1175 if (mtype == MUTEX_TYPE_ERRORCHECK) {
1176 /* already locked by ourselves */
1177 return EDEADLK;
1178 }
1179
1180 _recursive_lock();
1181 oldv = mutex->value;
1182 counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
1183 mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
1184 _recursive_unlock();
1185 return 0;
1186 }
1187
1188 /* Restore sharing bit in mtype */
1189 mtype |= shared;
1190
1191 /* Try to lock it, just once. */
1192 _recursive_lock();
1193 oldv = mutex->value;
1194 if (oldv == mtype) /* uncontended released lock => state 1 */
1195 mutex->value = ((tid << 16) | mtype | 1);
1196 _recursive_unlock();
1197
1198 if (oldv != mtype)
1199 return EBUSY;
1200
1201 return 0;
1202 }
1203
1204
1205 /* initialize 'ts' with the difference between 'abstime' and the current time
1206 * according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise.
1207 */
1208 static int
__timespec_to_absolute(struct timespec * ts,const struct timespec * abstime,clockid_t clock)1209 __timespec_to_absolute(struct timespec* ts, const struct timespec* abstime, clockid_t clock)
1210 {
1211 clock_gettime(clock, ts);
1212 ts->tv_sec = abstime->tv_sec - ts->tv_sec;
1213 ts->tv_nsec = abstime->tv_nsec - ts->tv_nsec;
1214 if (ts->tv_nsec < 0) {
1215 ts->tv_sec--;
1216 ts->tv_nsec += 1000000000;
1217 }
1218 if ((ts->tv_nsec < 0) || (ts->tv_sec < 0))
1219 return -1;
1220
1221 return 0;
1222 }
1223
1224 /* initialize 'abstime' to the current time according to 'clock' plus 'msecs'
1225 * milliseconds.
1226 */
1227 static void
__timespec_to_relative_msec(struct timespec * abstime,unsigned msecs,clockid_t clock)1228 __timespec_to_relative_msec(struct timespec* abstime, unsigned msecs, clockid_t clock)
1229 {
1230 clock_gettime(clock, abstime);
1231 abstime->tv_sec += msecs/1000;
1232 abstime->tv_nsec += (msecs%1000)*1000000;
1233 if (abstime->tv_nsec >= 1000000000) {
1234 abstime->tv_sec++;
1235 abstime->tv_nsec -= 1000000000;
1236 }
1237 }
1238
pthread_mutex_lock_timeout_np(pthread_mutex_t * mutex,unsigned msecs)1239 int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
1240 {
1241 clockid_t clock = CLOCK_MONOTONIC;
1242 struct timespec abstime;
1243 struct timespec ts;
1244 int mtype, tid, oldv, new_lock_type, shared;
1245
1246 /* compute absolute expiration time */
1247 __timespec_to_relative_msec(&abstime, msecs, clock);
1248
1249 if (__unlikely(mutex == NULL))
1250 return EINVAL;
1251
1252 mtype = (mutex->value & MUTEX_TYPE_MASK);
1253 shared = (mutex->value & MUTEX_SHARED_MASK);
1254
1255 /* Handle common case first */
1256 if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
1257 {
1258 /* fast path for uncontended lock */
1259 if (__atomic_cmpxchg(shared|0, shared|1, &mutex->value) == 0) {
1260 ANDROID_MEMBAR_FULL();
1261 return 0;
1262 }
1263
1264 /* loop while needed */
1265 while (__atomic_swap(shared|2, &mutex->value) != (shared|0)) {
1266 if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1267 return EBUSY;
1268
1269 __futex_wait_ex(&mutex->value, shared, shared|2, &ts);
1270 }
1271 ANDROID_MEMBAR_FULL();
1272 return 0;
1273 }
1274
1275 /* Do we already own this recursive or error-check mutex ? */
1276 tid = __get_thread()->kernel_id;
1277 if ( tid == MUTEX_OWNER(mutex) )
1278 {
1279 int oldv, counter;
1280
1281 if (mtype == MUTEX_TYPE_ERRORCHECK) {
1282 /* already locked by ourselves */
1283 return EDEADLK;
1284 }
1285
1286 _recursive_lock();
1287 oldv = mutex->value;
1288 counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
1289 mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
1290 _recursive_unlock();
1291 return 0;
1292 }
1293
1294 /* We don't own the mutex, so try to get it.
1295 *
1296 * First, we try to change its state from 0 to 1, if this
1297 * doesn't work, try to change it to state 2.
1298 */
1299 new_lock_type = 1;
1300
1301 /* Compute wait op and restore sharing bit in mtype */
1302 mtype |= shared;
1303
1304 for (;;) {
1305 int oldv;
1306 struct timespec ts;
1307
1308 _recursive_lock();
1309 oldv = mutex->value;
1310 if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
1311 mutex->value = ((tid << 16) | mtype | new_lock_type);
1312 } else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
1313 oldv ^= 3;
1314 mutex->value = oldv;
1315 }
1316 _recursive_unlock();
1317
1318 if (oldv == mtype)
1319 break;
1320
1321 /*
1322 * The lock was held, possibly contended by others. From
1323 * now on, if we manage to acquire the lock, we have to
1324 * assume that others are still contending for it so that
1325 * we'll wake them when we unlock it.
1326 */
1327 new_lock_type = 2;
1328
1329 if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1330 return EBUSY;
1331
1332 __futex_wait_ex(&mutex->value, shared, oldv, &ts);
1333 }
1334 return 0;
1335 }
1336
pthread_condattr_init(pthread_condattr_t * attr)1337 int pthread_condattr_init(pthread_condattr_t *attr)
1338 {
1339 if (attr == NULL)
1340 return EINVAL;
1341
1342 *attr = PTHREAD_PROCESS_PRIVATE;
1343 return 0;
1344 }
1345
pthread_condattr_getpshared(pthread_condattr_t * attr,int * pshared)1346 int pthread_condattr_getpshared(pthread_condattr_t *attr, int *pshared)
1347 {
1348 if (attr == NULL || pshared == NULL)
1349 return EINVAL;
1350
1351 *pshared = *attr;
1352 return 0;
1353 }
1354
pthread_condattr_setpshared(pthread_condattr_t * attr,int pshared)1355 int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared)
1356 {
1357 if (attr == NULL)
1358 return EINVAL;
1359
1360 if (pshared != PTHREAD_PROCESS_SHARED &&
1361 pshared != PTHREAD_PROCESS_PRIVATE)
1362 return EINVAL;
1363
1364 *attr = pshared;
1365 return 0;
1366 }
1367
pthread_condattr_destroy(pthread_condattr_t * attr)1368 int pthread_condattr_destroy(pthread_condattr_t *attr)
1369 {
1370 if (attr == NULL)
1371 return EINVAL;
1372
1373 *attr = 0xdeada11d;
1374 return 0;
1375 }
1376
1377 /* We use one bit in condition variable values as the 'shared' flag
1378 * The rest is a counter.
1379 */
1380 #define COND_SHARED_MASK 0x0001
1381 #define COND_COUNTER_INCREMENT 0x0002
1382 #define COND_COUNTER_MASK (~COND_SHARED_MASK)
1383
1384 #define COND_IS_SHARED(c) (((c)->value & COND_SHARED_MASK) != 0)
1385
1386 /* XXX *technically* there is a race condition that could allow
1387 * XXX a signal to be missed. If thread A is preempted in _wait()
1388 * XXX after unlocking the mutex and before waiting, and if other
1389 * XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
1390 * XXX before thread A is scheduled again and calls futex_wait(),
1391 * XXX then the signal will be lost.
1392 */
1393
pthread_cond_init(pthread_cond_t * cond,const pthread_condattr_t * attr)1394 int pthread_cond_init(pthread_cond_t *cond,
1395 const pthread_condattr_t *attr)
1396 {
1397 if (cond == NULL)
1398 return EINVAL;
1399
1400 cond->value = 0;
1401
1402 if (attr != NULL && *attr == PTHREAD_PROCESS_SHARED)
1403 cond->value |= COND_SHARED_MASK;
1404
1405 return 0;
1406 }
1407
pthread_cond_destroy(pthread_cond_t * cond)1408 int pthread_cond_destroy(pthread_cond_t *cond)
1409 {
1410 if (cond == NULL)
1411 return EINVAL;
1412
1413 cond->value = 0xdeadc04d;
1414 return 0;
1415 }
1416
1417 /* This function is used by pthread_cond_broadcast and
1418 * pthread_cond_signal to atomically decrement the counter
1419 * then wake-up 'counter' threads.
1420 */
1421 static int
__pthread_cond_pulse(pthread_cond_t * cond,int counter)1422 __pthread_cond_pulse(pthread_cond_t *cond, int counter)
1423 {
1424 long flags;
1425
1426 if (__unlikely(cond == NULL))
1427 return EINVAL;
1428
1429 flags = (cond->value & ~COND_COUNTER_MASK);
1430 for (;;) {
1431 long oldval = cond->value;
1432 long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK)
1433 | flags;
1434 if (__atomic_cmpxchg(oldval, newval, &cond->value) == 0)
1435 break;
1436 }
1437
1438 /*
1439 * Ensure that all memory accesses previously made by this thread are
1440 * visible to the woken thread(s). On the other side, the "wait"
1441 * code will issue any necessary barriers when locking the mutex.
1442 *
1443 * This may not strictly be necessary -- if the caller follows
1444 * recommended practice and holds the mutex before signaling the cond
1445 * var, the mutex ops will provide correct semantics. If they don't
1446 * hold the mutex, they're subject to race conditions anyway.
1447 */
1448 ANDROID_MEMBAR_FULL();
1449
1450 __futex_wake_ex(&cond->value, COND_IS_SHARED(cond), counter);
1451 return 0;
1452 }
1453
pthread_cond_broadcast(pthread_cond_t * cond)1454 int pthread_cond_broadcast(pthread_cond_t *cond)
1455 {
1456 return __pthread_cond_pulse(cond, INT_MAX);
1457 }
1458
pthread_cond_signal(pthread_cond_t * cond)1459 int pthread_cond_signal(pthread_cond_t *cond)
1460 {
1461 return __pthread_cond_pulse(cond, 1);
1462 }
1463
pthread_cond_wait(pthread_cond_t * cond,pthread_mutex_t * mutex)1464 int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
1465 {
1466 return pthread_cond_timedwait(cond, mutex, NULL);
1467 }
1468
__pthread_cond_timedwait_relative(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * reltime)1469 int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
1470 pthread_mutex_t * mutex,
1471 const struct timespec *reltime)
1472 {
1473 int status;
1474 int oldvalue = cond->value;
1475
1476 pthread_mutex_unlock(mutex);
1477 status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond), oldvalue, reltime);
1478 pthread_mutex_lock(mutex);
1479
1480 if (status == (-ETIMEDOUT)) return ETIMEDOUT;
1481 return 0;
1482 }
1483
__pthread_cond_timedwait(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime,clockid_t clock)1484 int __pthread_cond_timedwait(pthread_cond_t *cond,
1485 pthread_mutex_t * mutex,
1486 const struct timespec *abstime,
1487 clockid_t clock)
1488 {
1489 struct timespec ts;
1490 struct timespec * tsp;
1491
1492 if (abstime != NULL) {
1493 if (__timespec_to_absolute(&ts, abstime, clock) < 0)
1494 return ETIMEDOUT;
1495 tsp = &ts;
1496 } else {
1497 tsp = NULL;
1498 }
1499
1500 return __pthread_cond_timedwait_relative(cond, mutex, tsp);
1501 }
1502
pthread_cond_timedwait(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime)1503 int pthread_cond_timedwait(pthread_cond_t *cond,
1504 pthread_mutex_t * mutex,
1505 const struct timespec *abstime)
1506 {
1507 return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
1508 }
1509
1510
1511 /* this one exists only for backward binary compatibility */
pthread_cond_timedwait_monotonic(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime)1512 int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
1513 pthread_mutex_t * mutex,
1514 const struct timespec *abstime)
1515 {
1516 return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1517 }
1518
pthread_cond_timedwait_monotonic_np(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * abstime)1519 int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond,
1520 pthread_mutex_t * mutex,
1521 const struct timespec *abstime)
1522 {
1523 return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1524 }
1525
pthread_cond_timedwait_relative_np(pthread_cond_t * cond,pthread_mutex_t * mutex,const struct timespec * reltime)1526 int pthread_cond_timedwait_relative_np(pthread_cond_t *cond,
1527 pthread_mutex_t * mutex,
1528 const struct timespec *reltime)
1529 {
1530 return __pthread_cond_timedwait_relative(cond, mutex, reltime);
1531 }
1532
pthread_cond_timeout_np(pthread_cond_t * cond,pthread_mutex_t * mutex,unsigned msecs)1533 int pthread_cond_timeout_np(pthread_cond_t *cond,
1534 pthread_mutex_t * mutex,
1535 unsigned msecs)
1536 {
1537 struct timespec ts;
1538
1539 ts.tv_sec = msecs / 1000;
1540 ts.tv_nsec = (msecs % 1000) * 1000000;
1541
1542 return __pthread_cond_timedwait_relative(cond, mutex, &ts);
1543 }
1544
1545
1546
1547 /* A technical note regarding our thread-local-storage (TLS) implementation:
1548 *
1549 * There can be up to TLSMAP_SIZE independent TLS keys in a given process,
1550 * though the first TLSMAP_START keys are reserved for Bionic to hold
1551 * special thread-specific variables like errno or a pointer to
1552 * the current thread's descriptor.
1553 *
1554 * while stored in the TLS area, these entries cannot be accessed through
1555 * pthread_getspecific() / pthread_setspecific() and pthread_key_delete()
1556 *
1557 * also, some entries in the key table are pre-allocated (see tlsmap_lock)
1558 * to greatly simplify and speedup some OpenGL-related operations. though the
1559 * initialy value will be NULL on all threads.
1560 *
1561 * you can use pthread_getspecific()/setspecific() on these, and in theory
1562 * you could also call pthread_key_delete() as well, though this would
1563 * probably break some apps.
1564 *
1565 * The 'tlsmap_t' type defined below implements a shared global map of
1566 * currently created/allocated TLS keys and the destructors associated
1567 * with them. You should use tlsmap_lock/unlock to access it to avoid
1568 * any race condition.
1569 *
1570 * the global TLS map simply contains a bitmap of allocated keys, and
1571 * an array of destructors.
1572 *
1573 * each thread has a TLS area that is a simple array of TLSMAP_SIZE void*
1574 * pointers. the TLS area of the main thread is stack-allocated in
1575 * __libc_init_common, while the TLS area of other threads is placed at
1576 * the top of their stack in pthread_create.
1577 *
1578 * when pthread_key_create() is called, it finds the first free key in the
1579 * bitmap, then set it to 1, saving the destructor altogether
1580 *
1581 * when pthread_key_delete() is called. it will erase the key's bitmap bit
1582 * and its destructor, and will also clear the key data in the TLS area of
1583 * all created threads. As mandated by Posix, it is the responsability of
1584 * the caller of pthread_key_delete() to properly reclaim the objects that
1585 * were pointed to by these data fields (either before or after the call).
1586 *
1587 */
1588
1589 /* TLS Map implementation
1590 */
1591
1592 #define TLSMAP_START (TLS_SLOT_MAX_WELL_KNOWN+1)
1593 #define TLSMAP_SIZE BIONIC_TLS_SLOTS
1594 #define TLSMAP_BITS 32
1595 #define TLSMAP_WORDS ((TLSMAP_SIZE+TLSMAP_BITS-1)/TLSMAP_BITS)
1596 #define TLSMAP_WORD(m,k) (m)->map[(k)/TLSMAP_BITS]
1597 #define TLSMAP_MASK(k) (1U << ((k)&(TLSMAP_BITS-1)))
1598
1599 /* this macro is used to quickly check that a key belongs to a reasonable range */
1600 #define TLSMAP_VALIDATE_KEY(key) \
1601 ((key) >= TLSMAP_START && (key) < TLSMAP_SIZE)
1602
1603 /* the type of tls key destructor functions */
1604 typedef void (*tls_dtor_t)(void*);
1605
1606 typedef struct {
1607 int init; /* see comment in tlsmap_lock() */
1608 uint32_t map[TLSMAP_WORDS]; /* bitmap of allocated keys */
1609 tls_dtor_t dtors[TLSMAP_SIZE]; /* key destructors */
1610 } tlsmap_t;
1611
1612 static pthread_mutex_t _tlsmap_lock = PTHREAD_MUTEX_INITIALIZER;
1613 static tlsmap_t _tlsmap;
1614
1615 /* lock the global TLS map lock and return a handle to it */
tlsmap_lock(void)1616 static __inline__ tlsmap_t* tlsmap_lock(void)
1617 {
1618 tlsmap_t* m = &_tlsmap;
1619
1620 pthread_mutex_lock(&_tlsmap_lock);
1621 /* we need to initialize the first entry of the 'map' array
1622 * with the value TLS_DEFAULT_ALLOC_MAP. doing it statically
1623 * when declaring _tlsmap is a bit awkward and is going to
1624 * produce warnings, so do it the first time we use the map
1625 * instead
1626 */
1627 if (__unlikely(!m->init)) {
1628 TLSMAP_WORD(m,0) = TLS_DEFAULT_ALLOC_MAP;
1629 m->init = 1;
1630 }
1631 return m;
1632 }
1633
1634 /* unlock the global TLS map */
tlsmap_unlock(tlsmap_t * m)1635 static __inline__ void tlsmap_unlock(tlsmap_t* m)
1636 {
1637 pthread_mutex_unlock(&_tlsmap_lock);
1638 (void)m; /* a good compiler is a happy compiler */
1639 }
1640
1641 /* test to see wether a key is allocated */
tlsmap_test(tlsmap_t * m,int key)1642 static __inline__ int tlsmap_test(tlsmap_t* m, int key)
1643 {
1644 return (TLSMAP_WORD(m,key) & TLSMAP_MASK(key)) != 0;
1645 }
1646
1647 /* set the destructor and bit flag on a newly allocated key */
tlsmap_set(tlsmap_t * m,int key,tls_dtor_t dtor)1648 static __inline__ void tlsmap_set(tlsmap_t* m, int key, tls_dtor_t dtor)
1649 {
1650 TLSMAP_WORD(m,key) |= TLSMAP_MASK(key);
1651 m->dtors[key] = dtor;
1652 }
1653
1654 /* clear the destructor and bit flag on an existing key */
tlsmap_clear(tlsmap_t * m,int key)1655 static __inline__ void tlsmap_clear(tlsmap_t* m, int key)
1656 {
1657 TLSMAP_WORD(m,key) &= ~TLSMAP_MASK(key);
1658 m->dtors[key] = NULL;
1659 }
1660
1661 /* allocate a new TLS key, return -1 if no room left */
tlsmap_alloc(tlsmap_t * m,tls_dtor_t dtor)1662 static int tlsmap_alloc(tlsmap_t* m, tls_dtor_t dtor)
1663 {
1664 int key;
1665
1666 for ( key = TLSMAP_START; key < TLSMAP_SIZE; key++ ) {
1667 if ( !tlsmap_test(m, key) ) {
1668 tlsmap_set(m, key, dtor);
1669 return key;
1670 }
1671 }
1672 return -1;
1673 }
1674
1675
pthread_key_create(pthread_key_t * key,void (* destructor_function)(void *))1676 int pthread_key_create(pthread_key_t *key, void (*destructor_function)(void *))
1677 {
1678 uint32_t err = ENOMEM;
1679 tlsmap_t* map = tlsmap_lock();
1680 int k = tlsmap_alloc(map, destructor_function);
1681
1682 if (k >= 0) {
1683 *key = k;
1684 err = 0;
1685 }
1686 tlsmap_unlock(map);
1687 return err;
1688 }
1689
1690
1691 /* This deletes a pthread_key_t. note that the standard mandates that this does
1692 * not call the destructor of non-NULL key values. Instead, it is the
1693 * responsability of the caller to properly dispose of the corresponding data
1694 * and resources, using any mean it finds suitable.
1695 *
1696 * On the other hand, this function will clear the corresponding key data
1697 * values in all known threads. this prevents later (invalid) calls to
1698 * pthread_getspecific() to receive invalid/stale values.
1699 */
pthread_key_delete(pthread_key_t key)1700 int pthread_key_delete(pthread_key_t key)
1701 {
1702 uint32_t err;
1703 pthread_internal_t* thr;
1704 tlsmap_t* map;
1705
1706 if (!TLSMAP_VALIDATE_KEY(key)) {
1707 return EINVAL;
1708 }
1709
1710 map = tlsmap_lock();
1711
1712 if (!tlsmap_test(map, key)) {
1713 err = EINVAL;
1714 goto err1;
1715 }
1716
1717 /* clear value in all threads */
1718 pthread_mutex_lock(&gThreadListLock);
1719 for ( thr = gThreadList; thr != NULL; thr = thr->next ) {
1720 /* avoid zombie threads with a negative 'join_count'. these are really
1721 * already dead and don't have a TLS area anymore.
1722 *
1723 * similarly, it is possible to have thr->tls == NULL for threads that
1724 * were just recently created through pthread_create() but whose
1725 * startup trampoline (__thread_entry) hasn't been run yet by the
1726 * scheduler. so check for this too.
1727 */
1728 if (thr->join_count < 0 || !thr->tls)
1729 continue;
1730
1731 thr->tls[key] = NULL;
1732 }
1733 tlsmap_clear(map, key);
1734
1735 pthread_mutex_unlock(&gThreadListLock);
1736 err = 0;
1737
1738 err1:
1739 tlsmap_unlock(map);
1740 return err;
1741 }
1742
1743
pthread_setspecific(pthread_key_t key,const void * ptr)1744 int pthread_setspecific(pthread_key_t key, const void *ptr)
1745 {
1746 int err = EINVAL;
1747 tlsmap_t* map;
1748
1749 if (TLSMAP_VALIDATE_KEY(key)) {
1750 /* check that we're trying to set data for an allocated key */
1751 map = tlsmap_lock();
1752 if (tlsmap_test(map, key)) {
1753 ((uint32_t *)__get_tls())[key] = (uint32_t)ptr;
1754 err = 0;
1755 }
1756 tlsmap_unlock(map);
1757 }
1758 return err;
1759 }
1760
pthread_getspecific(pthread_key_t key)1761 void * pthread_getspecific(pthread_key_t key)
1762 {
1763 if (!TLSMAP_VALIDATE_KEY(key)) {
1764 return NULL;
1765 }
1766
1767 /* for performance reason, we do not lock/unlock the global TLS map
1768 * to check that the key is properly allocated. if the key was not
1769 * allocated, the value read from the TLS should always be NULL
1770 * due to pthread_key_delete() clearing the values for all threads.
1771 */
1772 return (void *)(((unsigned *)__get_tls())[key]);
1773 }
1774
1775 /* Posix mandates that this be defined in <limits.h> but we don't have
1776 * it just yet.
1777 */
1778 #ifndef PTHREAD_DESTRUCTOR_ITERATIONS
1779 # define PTHREAD_DESTRUCTOR_ITERATIONS 4
1780 #endif
1781
1782 /* this function is called from pthread_exit() to remove all TLS key data
1783 * from this thread's TLS area. this must call the destructor of all keys
1784 * that have a non-NULL data value (and a non-NULL destructor).
1785 *
1786 * because destructors can do funky things like deleting/creating other
1787 * keys, we need to implement this in a loop
1788 */
pthread_key_clean_all(void)1789 static void pthread_key_clean_all(void)
1790 {
1791 tlsmap_t* map;
1792 void** tls = (void**)__get_tls();
1793 int rounds = PTHREAD_DESTRUCTOR_ITERATIONS;
1794
1795 map = tlsmap_lock();
1796
1797 for (rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; rounds--)
1798 {
1799 int kk, count = 0;
1800
1801 for (kk = TLSMAP_START; kk < TLSMAP_SIZE; kk++) {
1802 if ( tlsmap_test(map, kk) )
1803 {
1804 void* data = tls[kk];
1805 tls_dtor_t dtor = map->dtors[kk];
1806
1807 if (data != NULL && dtor != NULL)
1808 {
1809 /* we need to clear the key data now, this will prevent the
1810 * destructor (or a later one) from seeing the old value if
1811 * it calls pthread_getspecific() for some odd reason
1812 *
1813 * we do not do this if 'dtor == NULL' just in case another
1814 * destructor function might be responsible for manually
1815 * releasing the corresponding data.
1816 */
1817 tls[kk] = NULL;
1818
1819 /* because the destructor is free to call pthread_key_create
1820 * and/or pthread_key_delete, we need to temporarily unlock
1821 * the TLS map
1822 */
1823 tlsmap_unlock(map);
1824 (*dtor)(data);
1825 map = tlsmap_lock();
1826
1827 count += 1;
1828 }
1829 }
1830 }
1831
1832 /* if we didn't call any destructor, there is no need to check the
1833 * TLS data again
1834 */
1835 if (count == 0)
1836 break;
1837 }
1838 tlsmap_unlock(map);
1839 }
1840
1841 // man says this should be in <linux/unistd.h>, but it isn't
1842 extern int tkill(int tid, int sig);
1843
pthread_kill(pthread_t tid,int sig)1844 int pthread_kill(pthread_t tid, int sig)
1845 {
1846 int ret;
1847 int old_errno = errno;
1848 pthread_internal_t * thread = (pthread_internal_t *)tid;
1849
1850 ret = tkill(thread->kernel_id, sig);
1851 if (ret < 0) {
1852 ret = errno;
1853 errno = old_errno;
1854 }
1855
1856 return ret;
1857 }
1858
1859 extern int __rt_sigprocmask(int, const sigset_t *, sigset_t *, size_t);
1860
pthread_sigmask(int how,const sigset_t * set,sigset_t * oset)1861 int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
1862 {
1863 /* pthread_sigmask must return the error code, but the syscall
1864 * will set errno instead and return 0/-1
1865 */
1866 int ret, old_errno = errno;
1867
1868 /* Use NSIG which corresponds to the number of signals in
1869 * our 32-bit sigset_t implementation. As such, this function, or
1870 * anything that deals with sigset_t cannot manage real-time signals
1871 * (signo >= 32). We might want to introduce sigset_rt_t as an
1872 * extension to do so in the future.
1873 */
1874 ret = __rt_sigprocmask(how, set, oset, NSIG / 8);
1875 if (ret < 0)
1876 ret = errno;
1877
1878 errno = old_errno;
1879 return ret;
1880 }
1881
1882
pthread_getcpuclockid(pthread_t tid,clockid_t * clockid)1883 int pthread_getcpuclockid(pthread_t tid, clockid_t *clockid)
1884 {
1885 const int CLOCK_IDTYPE_BITS = 3;
1886 pthread_internal_t* thread = (pthread_internal_t*)tid;
1887
1888 if (!thread)
1889 return ESRCH;
1890
1891 *clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS);
1892 return 0;
1893 }
1894
1895
1896 /* NOTE: this implementation doesn't support a init function that throws a C++ exception
1897 * or calls fork()
1898 */
pthread_once(pthread_once_t * once_control,void (* init_routine)(void))1899 int pthread_once( pthread_once_t* once_control, void (*init_routine)(void) )
1900 {
1901 static pthread_mutex_t once_lock = PTHREAD_RECURSIVE_MUTEX_INITIALIZER;
1902 volatile pthread_once_t* ocptr = once_control;
1903
1904 pthread_once_t tmp = *ocptr;
1905 ANDROID_MEMBAR_FULL();
1906 if (tmp == PTHREAD_ONCE_INIT) {
1907 pthread_mutex_lock( &once_lock );
1908 if (*ocptr == PTHREAD_ONCE_INIT) {
1909 (*init_routine)();
1910 ANDROID_MEMBAR_FULL();
1911 *ocptr = ~PTHREAD_ONCE_INIT;
1912 }
1913 pthread_mutex_unlock( &once_lock );
1914 }
1915 return 0;
1916 }
1917
1918 /* This value is not exported by kernel headers, so hardcode it here */
1919 #define MAX_TASK_COMM_LEN 16
1920 #define TASK_COMM_FMT "/proc/self/task/%u/comm"
1921
pthread_setname_np(pthread_t thid,const char * thname)1922 int pthread_setname_np(pthread_t thid, const char *thname)
1923 {
1924 size_t thname_len;
1925 int saved_errno, ret;
1926
1927 if (thid == 0 || thname == NULL)
1928 return EINVAL;
1929
1930 thname_len = strlen(thname);
1931 if (thname_len >= MAX_TASK_COMM_LEN)
1932 return ERANGE;
1933
1934 saved_errno = errno;
1935 if (thid == pthread_self())
1936 {
1937 ret = prctl(PR_SET_NAME, (unsigned long)thname, 0, 0, 0) ? errno : 0;
1938 }
1939 else
1940 {
1941 /* Have to change another thread's name */
1942 pthread_internal_t *thread = (pthread_internal_t *)thid;
1943 char comm_name[sizeof(TASK_COMM_FMT) + 8];
1944 ssize_t n;
1945 int fd;
1946
1947 snprintf(comm_name, sizeof(comm_name), TASK_COMM_FMT, (unsigned int)thread->kernel_id);
1948 fd = open(comm_name, O_RDWR);
1949 if (fd == -1)
1950 {
1951 ret = errno;
1952 goto exit;
1953 }
1954 n = TEMP_FAILURE_RETRY(write(fd, thname, thname_len));
1955 close(fd);
1956
1957 if (n < 0)
1958 ret = errno;
1959 else if ((size_t)n != thname_len)
1960 ret = EIO;
1961 else
1962 ret = 0;
1963 }
1964 exit:
1965 errno = saved_errno;
1966 return ret;
1967 }
1968
1969 /* Return the kernel thread ID for a pthread.
1970 * This is only defined for implementations where pthread <-> kernel is 1:1, which this is.
1971 * Not the same as pthread_getthreadid_np, which is commonly defined to be opaque.
1972 * Internal, not an NDK API.
1973 */
1974
__pthread_gettid(pthread_t thid)1975 pid_t __pthread_gettid(pthread_t thid)
1976 {
1977 pthread_internal_t* thread = (pthread_internal_t*)thid;
1978 return thread->kernel_id;
1979 }
1980