• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include "resolv_cache.h"
30 #include <resolv.h>
31 #include <stdlib.h>
32 #include <string.h>
33 #include <time.h>
34 #include "pthread.h"
35 
36 #include <errno.h>
37 #include "arpa_nameser.h"
38 #include <sys/system_properties.h>
39 #include <net/if.h>
40 #include <netdb.h>
41 #include <linux/if.h>
42 
43 #include <arpa/inet.h>
44 #include "resolv_private.h"
45 
46 /* This code implements a small and *simple* DNS resolver cache.
47  *
48  * It is only used to cache DNS answers for a time defined by the smallest TTL
49  * among the answer records in order to reduce DNS traffic. It is not supposed
50  * to be a full DNS cache, since we plan to implement that in the future in a
51  * dedicated process running on the system.
52  *
53  * Note that its design is kept simple very intentionally, i.e.:
54  *
55  *  - it takes raw DNS query packet data as input, and returns raw DNS
56  *    answer packet data as output
57  *
58  *    (this means that two similar queries that encode the DNS name
59  *     differently will be treated distinctly).
60  *
61  *    the smallest TTL value among the answer records are used as the time
62  *    to keep an answer in the cache.
63  *
64  *    this is bad, but we absolutely want to avoid parsing the answer packets
65  *    (and should be solved by the later full DNS cache process).
66  *
67  *  - the implementation is just a (query-data) => (answer-data) hash table
68  *    with a trivial least-recently-used expiration policy.
69  *
70  * Doing this keeps the code simple and avoids to deal with a lot of things
71  * that a full DNS cache is expected to do.
72  *
73  * The API is also very simple:
74  *
75  *   - the client calls _resolv_cache_get() to obtain a handle to the cache.
76  *     this will initialize the cache on first usage. the result can be NULL
77  *     if the cache is disabled.
78  *
79  *   - the client calls _resolv_cache_lookup() before performing a query
80  *
81  *     if the function returns RESOLV_CACHE_FOUND, a copy of the answer data
82  *     has been copied into the client-provided answer buffer.
83  *
84  *     if the function returns RESOLV_CACHE_NOTFOUND, the client should perform
85  *     a request normally, *then* call _resolv_cache_add() to add the received
86  *     answer to the cache.
87  *
88  *     if the function returns RESOLV_CACHE_UNSUPPORTED, the client should
89  *     perform a request normally, and *not* call _resolv_cache_add()
90  *
91  *     note that RESOLV_CACHE_UNSUPPORTED is also returned if the answer buffer
92  *     is too short to accomodate the cached result.
93  *
94  *  - when network settings change, the cache must be flushed since the list
95  *    of DNS servers probably changed. this is done by calling
96  *    _resolv_cache_reset()
97  *
98  *    the parameter to this function must be an ever-increasing generation
99  *    number corresponding to the current network settings state.
100  *
101  *    This is done because several threads could detect the same network
102  *    settings change (but at different times) and will all end up calling the
103  *    same function. Comparing with the last used generation number ensures
104  *    that the cache is only flushed once per network change.
105  */
106 
107 /* the name of an environment variable that will be checked the first time
108  * this code is called if its value is "0", then the resolver cache is
109  * disabled.
110  */
111 #define  CONFIG_ENV  "BIONIC_DNSCACHE"
112 
113 /* entries older than CONFIG_SECONDS seconds are always discarded.
114  */
115 #define  CONFIG_SECONDS    (60*10)    /* 10 minutes */
116 
117 /* default number of entries kept in the cache. This value has been
118  * determined by browsing through various sites and counting the number
119  * of corresponding requests. Keep in mind that our framework is currently
120  * performing two requests per name lookup (one for IPv4, the other for IPv6)
121  *
122  *    www.google.com      4
123  *    www.ysearch.com     6
124  *    www.amazon.com      8
125  *    www.nytimes.com     22
126  *    www.espn.com        28
127  *    www.msn.com         28
128  *    www.lemonde.fr      35
129  *
130  * (determined in 2009-2-17 from Paris, France, results may vary depending
131  *  on location)
132  *
133  * most high-level websites use lots of media/ad servers with different names
134  * but these are generally reused when browsing through the site.
135  *
136  * As such, a value of 64 should be relatively comfortable at the moment.
137  *
138  * The system property ro.net.dns_cache_size can be used to override the default
139  * value with a custom value
140  */
141 #define  CONFIG_MAX_ENTRIES    64
142 
143 /* name of the system property that can be used to set the cache size */
144 #define  DNS_CACHE_SIZE_PROP_NAME   "ro.net.dns_cache_size"
145 
146 /****************************************************************************/
147 /****************************************************************************/
148 /*****                                                                  *****/
149 /*****                                                                  *****/
150 /*****                                                                  *****/
151 /****************************************************************************/
152 /****************************************************************************/
153 
154 /* set to 1 to debug cache operations */
155 #define  DEBUG       0
156 
157 /* set to 1 to debug query data */
158 #define  DEBUG_DATA  0
159 
160 #undef XLOG
161 #if DEBUG
162 #  include <logd.h>
163 #  define  XLOG(...)   \
164     __libc_android_log_print(ANDROID_LOG_DEBUG,"libc",__VA_ARGS__)
165 
166 #include <stdio.h>
167 #include <stdarg.h>
168 
169 /** BOUNDED BUFFER FORMATTING
170  **/
171 
172 /* technical note:
173  *
174  *   the following debugging routines are used to append data to a bounded
175  *   buffer they take two parameters that are:
176  *
177  *   - p : a pointer to the current cursor position in the buffer
178  *         this value is initially set to the buffer's address.
179  *
180  *   - end : the address of the buffer's limit, i.e. of the first byte
181  *           after the buffer. this address should never be touched.
182  *
183  *           IMPORTANT: it is assumed that end > buffer_address, i.e.
184  *                      that the buffer is at least one byte.
185  *
186  *   the _bprint_() functions return the new value of 'p' after the data
187  *   has been appended, and also ensure the following:
188  *
189  *   - the returned value will never be strictly greater than 'end'
190  *
191  *   - a return value equal to 'end' means that truncation occured
192  *     (in which case, end[-1] will be set to 0)
193  *
194  *   - after returning from a _bprint_() function, the content of the buffer
195  *     is always 0-terminated, even in the event of truncation.
196  *
197  *  these conventions allow you to call _bprint_ functions multiple times and
198  *  only check for truncation at the end of the sequence, as in:
199  *
200  *     char  buff[1000], *p = buff, *end = p + sizeof(buff);
201  *
202  *     p = _bprint_c(p, end, '"');
203  *     p = _bprint_s(p, end, my_string);
204  *     p = _bprint_c(p, end, '"');
205  *
206  *     if (p >= end) {
207  *        // buffer was too small
208  *     }
209  *
210  *     printf( "%s", buff );
211  */
212 
213 /* add a char to a bounded buffer */
214 static char*
_bprint_c(char * p,char * end,int c)215 _bprint_c( char*  p, char*  end, int  c )
216 {
217     if (p < end) {
218         if (p+1 == end)
219             *p++ = 0;
220         else {
221             *p++ = (char) c;
222             *p   = 0;
223         }
224     }
225     return p;
226 }
227 
228 /* add a sequence of bytes to a bounded buffer */
229 static char*
_bprint_b(char * p,char * end,const char * buf,int len)230 _bprint_b( char*  p, char*  end, const char*  buf, int  len )
231 {
232     int  avail = end - p;
233 
234     if (avail <= 0 || len <= 0)
235         return p;
236 
237     if (avail > len)
238         avail = len;
239 
240     memcpy( p, buf, avail );
241     p += avail;
242 
243     if (p < end)
244         p[0] = 0;
245     else
246         end[-1] = 0;
247 
248     return p;
249 }
250 
251 /* add a string to a bounded buffer */
252 static char*
_bprint_s(char * p,char * end,const char * str)253 _bprint_s( char*  p, char*  end, const char*  str )
254 {
255     return _bprint_b(p, end, str, strlen(str));
256 }
257 
258 /* add a formatted string to a bounded buffer */
259 static char*
_bprint(char * p,char * end,const char * format,...)260 _bprint( char*  p, char*  end, const char*  format, ... )
261 {
262     int      avail, n;
263     va_list  args;
264 
265     avail = end - p;
266 
267     if (avail <= 0)
268         return p;
269 
270     va_start(args, format);
271     n = vsnprintf( p, avail, format, args);
272     va_end(args);
273 
274     /* certain C libraries return -1 in case of truncation */
275     if (n < 0 || n > avail)
276         n = avail;
277 
278     p += n;
279     /* certain C libraries do not zero-terminate in case of truncation */
280     if (p == end)
281         p[-1] = 0;
282 
283     return p;
284 }
285 
286 /* add a hex value to a bounded buffer, up to 8 digits */
287 static char*
_bprint_hex(char * p,char * end,unsigned value,int numDigits)288 _bprint_hex( char*  p, char*  end, unsigned  value, int  numDigits )
289 {
290     char   text[sizeof(unsigned)*2];
291     int    nn = 0;
292 
293     while (numDigits-- > 0) {
294         text[nn++] = "0123456789abcdef"[(value >> (numDigits*4)) & 15];
295     }
296     return _bprint_b(p, end, text, nn);
297 }
298 
299 /* add the hexadecimal dump of some memory area to a bounded buffer */
300 static char*
_bprint_hexdump(char * p,char * end,const uint8_t * data,int datalen)301 _bprint_hexdump( char*  p, char*  end, const uint8_t*  data, int  datalen )
302 {
303     int   lineSize = 16;
304 
305     while (datalen > 0) {
306         int  avail = datalen;
307         int  nn;
308 
309         if (avail > lineSize)
310             avail = lineSize;
311 
312         for (nn = 0; nn < avail; nn++) {
313             if (nn > 0)
314                 p = _bprint_c(p, end, ' ');
315             p = _bprint_hex(p, end, data[nn], 2);
316         }
317         for ( ; nn < lineSize; nn++ ) {
318             p = _bprint_s(p, end, "   ");
319         }
320         p = _bprint_s(p, end, "  ");
321 
322         for (nn = 0; nn < avail; nn++) {
323             int  c = data[nn];
324 
325             if (c < 32 || c > 127)
326                 c = '.';
327 
328             p = _bprint_c(p, end, c);
329         }
330         p = _bprint_c(p, end, '\n');
331 
332         data    += avail;
333         datalen -= avail;
334     }
335     return p;
336 }
337 
338 /* dump the content of a query of packet to the log */
339 static void
XLOG_BYTES(const void * base,int len)340 XLOG_BYTES( const void*  base, int  len )
341 {
342     char  buff[1024];
343     char*  p = buff, *end = p + sizeof(buff);
344 
345     p = _bprint_hexdump(p, end, base, len);
346     XLOG("%s",buff);
347 }
348 
349 #else /* !DEBUG */
350 #  define  XLOG(...)        ((void)0)
351 #  define  XLOG_BYTES(a,b)  ((void)0)
352 #endif
353 
354 static time_t
_time_now(void)355 _time_now( void )
356 {
357     struct timeval  tv;
358 
359     gettimeofday( &tv, NULL );
360     return tv.tv_sec;
361 }
362 
363 /* reminder: the general format of a DNS packet is the following:
364  *
365  *    HEADER  (12 bytes)
366  *    QUESTION  (variable)
367  *    ANSWER (variable)
368  *    AUTHORITY (variable)
369  *    ADDITIONNAL (variable)
370  *
371  * the HEADER is made of:
372  *
373  *   ID     : 16 : 16-bit unique query identification field
374  *
375  *   QR     :  1 : set to 0 for queries, and 1 for responses
376  *   Opcode :  4 : set to 0 for queries
377  *   AA     :  1 : set to 0 for queries
378  *   TC     :  1 : truncation flag, will be set to 0 in queries
379  *   RD     :  1 : recursion desired
380  *
381  *   RA     :  1 : recursion available (0 in queries)
382  *   Z      :  3 : three reserved zero bits
383  *   RCODE  :  4 : response code (always 0=NOERROR in queries)
384  *
385  *   QDCount: 16 : question count
386  *   ANCount: 16 : Answer count (0 in queries)
387  *   NSCount: 16: Authority Record count (0 in queries)
388  *   ARCount: 16: Additionnal Record count (0 in queries)
389  *
390  * the QUESTION is made of QDCount Question Record (QRs)
391  * the ANSWER is made of ANCount RRs
392  * the AUTHORITY is made of NSCount RRs
393  * the ADDITIONNAL is made of ARCount RRs
394  *
395  * Each Question Record (QR) is made of:
396  *
397  *   QNAME   : variable : Query DNS NAME
398  *   TYPE    : 16       : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
399  *   CLASS   : 16       : class of query (IN=1)
400  *
401  * Each Resource Record (RR) is made of:
402  *
403  *   NAME    : variable : DNS NAME
404  *   TYPE    : 16       : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
405  *   CLASS   : 16       : class of query (IN=1)
406  *   TTL     : 32       : seconds to cache this RR (0=none)
407  *   RDLENGTH: 16       : size of RDDATA in bytes
408  *   RDDATA  : variable : RR data (depends on TYPE)
409  *
410  * Each QNAME contains a domain name encoded as a sequence of 'labels'
411  * terminated by a zero. Each label has the following format:
412  *
413  *    LEN  : 8     : lenght of label (MUST be < 64)
414  *    NAME : 8*LEN : label length (must exclude dots)
415  *
416  * A value of 0 in the encoding is interpreted as the 'root' domain and
417  * terminates the encoding. So 'www.android.com' will be encoded as:
418  *
419  *   <3>www<7>android<3>com<0>
420  *
421  * Where <n> represents the byte with value 'n'
422  *
423  * Each NAME reflects the QNAME of the question, but has a slightly more
424  * complex encoding in order to provide message compression. This is achieved
425  * by using a 2-byte pointer, with format:
426  *
427  *    TYPE   : 2  : 0b11 to indicate a pointer, 0b01 and 0b10 are reserved
428  *    OFFSET : 14 : offset to another part of the DNS packet
429  *
430  * The offset is relative to the start of the DNS packet and must point
431  * A pointer terminates the encoding.
432  *
433  * The NAME can be encoded in one of the following formats:
434  *
435  *   - a sequence of simple labels terminated by 0 (like QNAMEs)
436  *   - a single pointer
437  *   - a sequence of simple labels terminated by a pointer
438  *
439  * A pointer shall always point to either a pointer of a sequence of
440  * labels (which can themselves be terminated by either a 0 or a pointer)
441  *
442  * The expanded length of a given domain name should not exceed 255 bytes.
443  *
444  * NOTE: we don't parse the answer packets, so don't need to deal with NAME
445  *       records, only QNAMEs.
446  */
447 
448 #define  DNS_HEADER_SIZE  12
449 
450 #define  DNS_TYPE_A   "\00\01"   /* big-endian decimal 1 */
451 #define  DNS_TYPE_PTR "\00\014"  /* big-endian decimal 12 */
452 #define  DNS_TYPE_MX  "\00\017"  /* big-endian decimal 15 */
453 #define  DNS_TYPE_AAAA "\00\034" /* big-endian decimal 28 */
454 #define  DNS_TYPE_ALL "\00\0377" /* big-endian decimal 255 */
455 
456 #define  DNS_CLASS_IN "\00\01"   /* big-endian decimal 1 */
457 
458 typedef struct {
459     const uint8_t*  base;
460     const uint8_t*  end;
461     const uint8_t*  cursor;
462 } DnsPacket;
463 
464 static void
_dnsPacket_init(DnsPacket * packet,const uint8_t * buff,int bufflen)465 _dnsPacket_init( DnsPacket*  packet, const uint8_t*  buff, int  bufflen )
466 {
467     packet->base   = buff;
468     packet->end    = buff + bufflen;
469     packet->cursor = buff;
470 }
471 
472 static void
_dnsPacket_rewind(DnsPacket * packet)473 _dnsPacket_rewind( DnsPacket*  packet )
474 {
475     packet->cursor = packet->base;
476 }
477 
478 static void
_dnsPacket_skip(DnsPacket * packet,int count)479 _dnsPacket_skip( DnsPacket*  packet, int  count )
480 {
481     const uint8_t*  p = packet->cursor + count;
482 
483     if (p > packet->end)
484         p = packet->end;
485 
486     packet->cursor = p;
487 }
488 
489 static int
_dnsPacket_readInt16(DnsPacket * packet)490 _dnsPacket_readInt16( DnsPacket*  packet )
491 {
492     const uint8_t*  p = packet->cursor;
493 
494     if (p+2 > packet->end)
495         return -1;
496 
497     packet->cursor = p+2;
498     return (p[0]<< 8) | p[1];
499 }
500 
501 /** QUERY CHECKING
502  **/
503 
504 /* check bytes in a dns packet. returns 1 on success, 0 on failure.
505  * the cursor is only advanced in the case of success
506  */
507 static int
_dnsPacket_checkBytes(DnsPacket * packet,int numBytes,const void * bytes)508 _dnsPacket_checkBytes( DnsPacket*  packet, int  numBytes, const void*  bytes )
509 {
510     const uint8_t*  p = packet->cursor;
511 
512     if (p + numBytes > packet->end)
513         return 0;
514 
515     if (memcmp(p, bytes, numBytes) != 0)
516         return 0;
517 
518     packet->cursor = p + numBytes;
519     return 1;
520 }
521 
522 /* parse and skip a given QNAME stored in a query packet,
523  * from the current cursor position. returns 1 on success,
524  * or 0 for malformed data.
525  */
526 static int
_dnsPacket_checkQName(DnsPacket * packet)527 _dnsPacket_checkQName( DnsPacket*  packet )
528 {
529     const uint8_t*  p   = packet->cursor;
530     const uint8_t*  end = packet->end;
531 
532     for (;;) {
533         int  c;
534 
535         if (p >= end)
536             break;
537 
538         c = *p++;
539 
540         if (c == 0) {
541             packet->cursor = p;
542             return 1;
543         }
544 
545         /* we don't expect label compression in QNAMEs */
546         if (c >= 64)
547             break;
548 
549         p += c;
550         /* we rely on the bound check at the start
551          * of the loop here */
552     }
553     /* malformed data */
554     XLOG("malformed QNAME");
555     return 0;
556 }
557 
558 /* parse and skip a given QR stored in a packet.
559  * returns 1 on success, and 0 on failure
560  */
561 static int
_dnsPacket_checkQR(DnsPacket * packet)562 _dnsPacket_checkQR( DnsPacket*  packet )
563 {
564     int  len;
565 
566     if (!_dnsPacket_checkQName(packet))
567         return 0;
568 
569     /* TYPE must be one of the things we support */
570     if (!_dnsPacket_checkBytes(packet, 2, DNS_TYPE_A) &&
571         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_PTR) &&
572         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_MX) &&
573         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_AAAA) &&
574         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_ALL))
575     {
576         XLOG("unsupported TYPE");
577         return 0;
578     }
579     /* CLASS must be IN */
580     if (!_dnsPacket_checkBytes(packet, 2, DNS_CLASS_IN)) {
581         XLOG("unsupported CLASS");
582         return 0;
583     }
584 
585     return 1;
586 }
587 
588 /* check the header of a DNS Query packet, return 1 if it is one
589  * type of query we can cache, or 0 otherwise
590  */
591 static int
_dnsPacket_checkQuery(DnsPacket * packet)592 _dnsPacket_checkQuery( DnsPacket*  packet )
593 {
594     const uint8_t*  p = packet->base;
595     int             qdCount, anCount, dnCount, arCount;
596 
597     if (p + DNS_HEADER_SIZE > packet->end) {
598         XLOG("query packet too small");
599         return 0;
600     }
601 
602     /* QR must be set to 0, opcode must be 0 and AA must be 0 */
603     /* RA, Z, and RCODE must be 0 */
604     if ((p[2] & 0xFC) != 0 || p[3] != 0) {
605         XLOG("query packet flags unsupported");
606         return 0;
607     }
608 
609     /* Note that we ignore the TC and RD bits here for the
610      * following reasons:
611      *
612      * - there is no point for a query packet sent to a server
613      *   to have the TC bit set, but the implementation might
614      *   set the bit in the query buffer for its own needs
615      *   between a _resolv_cache_lookup and a
616      *   _resolv_cache_add. We should not freak out if this
617      *   is the case.
618      *
619      * - we consider that the result from a RD=0 or a RD=1
620      *   query might be different, hence that the RD bit
621      *   should be used to differentiate cached result.
622      *
623      *   this implies that RD is checked when hashing or
624      *   comparing query packets, but not TC
625      */
626 
627     /* ANCOUNT, DNCOUNT and ARCOUNT must be 0 */
628     qdCount = (p[4] << 8) | p[5];
629     anCount = (p[6] << 8) | p[7];
630     dnCount = (p[8] << 8) | p[9];
631     arCount = (p[10]<< 8) | p[11];
632 
633     if (anCount != 0 || dnCount != 0 || arCount != 0) {
634         XLOG("query packet contains non-query records");
635         return 0;
636     }
637 
638     if (qdCount == 0) {
639         XLOG("query packet doesn't contain query record");
640         return 0;
641     }
642 
643     /* Check QDCOUNT QRs */
644     packet->cursor = p + DNS_HEADER_SIZE;
645 
646     for (;qdCount > 0; qdCount--)
647         if (!_dnsPacket_checkQR(packet))
648             return 0;
649 
650     return 1;
651 }
652 
653 /** QUERY DEBUGGING
654  **/
655 #if DEBUG
656 static char*
_dnsPacket_bprintQName(DnsPacket * packet,char * bp,char * bend)657 _dnsPacket_bprintQName(DnsPacket*  packet, char*  bp, char*  bend)
658 {
659     const uint8_t*  p   = packet->cursor;
660     const uint8_t*  end = packet->end;
661     int             first = 1;
662 
663     for (;;) {
664         int  c;
665 
666         if (p >= end)
667             break;
668 
669         c = *p++;
670 
671         if (c == 0) {
672             packet->cursor = p;
673             return bp;
674         }
675 
676         /* we don't expect label compression in QNAMEs */
677         if (c >= 64)
678             break;
679 
680         if (first)
681             first = 0;
682         else
683             bp = _bprint_c(bp, bend, '.');
684 
685         bp = _bprint_b(bp, bend, (const char*)p, c);
686 
687         p += c;
688         /* we rely on the bound check at the start
689          * of the loop here */
690     }
691     /* malformed data */
692     bp = _bprint_s(bp, bend, "<MALFORMED>");
693     return bp;
694 }
695 
696 static char*
_dnsPacket_bprintQR(DnsPacket * packet,char * p,char * end)697 _dnsPacket_bprintQR(DnsPacket*  packet, char*  p, char*  end)
698 {
699 #define  QQ(x)   { DNS_TYPE_##x, #x }
700     static const struct {
701         const char*  typeBytes;
702         const char*  typeString;
703     } qTypes[] =
704     {
705         QQ(A), QQ(PTR), QQ(MX), QQ(AAAA), QQ(ALL),
706         { NULL, NULL }
707     };
708     int          nn;
709     const char*  typeString = NULL;
710 
711     /* dump QNAME */
712     p = _dnsPacket_bprintQName(packet, p, end);
713 
714     /* dump TYPE */
715     p = _bprint_s(p, end, " (");
716 
717     for (nn = 0; qTypes[nn].typeBytes != NULL; nn++) {
718         if (_dnsPacket_checkBytes(packet, 2, qTypes[nn].typeBytes)) {
719             typeString = qTypes[nn].typeString;
720             break;
721         }
722     }
723 
724     if (typeString != NULL)
725         p = _bprint_s(p, end, typeString);
726     else {
727         int  typeCode = _dnsPacket_readInt16(packet);
728         p = _bprint(p, end, "UNKNOWN-%d", typeCode);
729     }
730 
731     p = _bprint_c(p, end, ')');
732 
733     /* skip CLASS */
734     _dnsPacket_skip(packet, 2);
735     return p;
736 }
737 
738 /* this function assumes the packet has already been checked */
739 static char*
_dnsPacket_bprintQuery(DnsPacket * packet,char * p,char * end)740 _dnsPacket_bprintQuery( DnsPacket*  packet, char*  p, char*  end )
741 {
742     int   qdCount;
743 
744     if (packet->base[2] & 0x1) {
745         p = _bprint_s(p, end, "RECURSIVE ");
746     }
747 
748     _dnsPacket_skip(packet, 4);
749     qdCount = _dnsPacket_readInt16(packet);
750     _dnsPacket_skip(packet, 6);
751 
752     for ( ; qdCount > 0; qdCount-- ) {
753         p = _dnsPacket_bprintQR(packet, p, end);
754     }
755     return p;
756 }
757 #endif
758 
759 
760 /** QUERY HASHING SUPPORT
761  **
762  ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKET HAS ALREADY
763  ** BEEN SUCCESFULLY CHECKED.
764  **/
765 
766 /* use 32-bit FNV hash function */
767 #define  FNV_MULT   16777619U
768 #define  FNV_BASIS  2166136261U
769 
770 static unsigned
_dnsPacket_hashBytes(DnsPacket * packet,int numBytes,unsigned hash)771 _dnsPacket_hashBytes( DnsPacket*  packet, int  numBytes, unsigned  hash )
772 {
773     const uint8_t*  p   = packet->cursor;
774     const uint8_t*  end = packet->end;
775 
776     while (numBytes > 0 && p < end) {
777         hash = hash*FNV_MULT ^ *p++;
778     }
779     packet->cursor = p;
780     return hash;
781 }
782 
783 
784 static unsigned
_dnsPacket_hashQName(DnsPacket * packet,unsigned hash)785 _dnsPacket_hashQName( DnsPacket*  packet, unsigned  hash )
786 {
787     const uint8_t*  p   = packet->cursor;
788     const uint8_t*  end = packet->end;
789 
790     for (;;) {
791         int  c;
792 
793         if (p >= end) {  /* should not happen */
794             XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__);
795             break;
796         }
797 
798         c = *p++;
799 
800         if (c == 0)
801             break;
802 
803         if (c >= 64) {
804             XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__);
805             break;
806         }
807         if (p + c >= end) {
808             XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n",
809                     __FUNCTION__);
810             break;
811         }
812         while (c > 0) {
813             hash = hash*FNV_MULT ^ *p++;
814             c   -= 1;
815         }
816     }
817     packet->cursor = p;
818     return hash;
819 }
820 
821 static unsigned
_dnsPacket_hashQR(DnsPacket * packet,unsigned hash)822 _dnsPacket_hashQR( DnsPacket*  packet, unsigned  hash )
823 {
824     int   len;
825 
826     hash = _dnsPacket_hashQName(packet, hash);
827     hash = _dnsPacket_hashBytes(packet, 4, hash); /* TYPE and CLASS */
828     return hash;
829 }
830 
831 static unsigned
_dnsPacket_hashQuery(DnsPacket * packet)832 _dnsPacket_hashQuery( DnsPacket*  packet )
833 {
834     unsigned  hash = FNV_BASIS;
835     int       count;
836     _dnsPacket_rewind(packet);
837 
838     /* we ignore the TC bit for reasons explained in
839      * _dnsPacket_checkQuery().
840      *
841      * however we hash the RD bit to differentiate
842      * between answers for recursive and non-recursive
843      * queries.
844      */
845     hash = hash*FNV_MULT ^ (packet->base[2] & 1);
846 
847     /* assume: other flags are 0 */
848     _dnsPacket_skip(packet, 4);
849 
850     /* read QDCOUNT */
851     count = _dnsPacket_readInt16(packet);
852 
853     /* assume: ANcount, NScount, ARcount are 0 */
854     _dnsPacket_skip(packet, 6);
855 
856     /* hash QDCOUNT QRs */
857     for ( ; count > 0; count-- )
858         hash = _dnsPacket_hashQR(packet, hash);
859 
860     return hash;
861 }
862 
863 
864 /** QUERY COMPARISON
865  **
866  ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKETS HAVE ALREADY
867  ** BEEN SUCCESFULLY CHECKED.
868  **/
869 
870 static int
_dnsPacket_isEqualDomainName(DnsPacket * pack1,DnsPacket * pack2)871 _dnsPacket_isEqualDomainName( DnsPacket*  pack1, DnsPacket*  pack2 )
872 {
873     const uint8_t*  p1   = pack1->cursor;
874     const uint8_t*  end1 = pack1->end;
875     const uint8_t*  p2   = pack2->cursor;
876     const uint8_t*  end2 = pack2->end;
877 
878     for (;;) {
879         int  c1, c2;
880 
881         if (p1 >= end1 || p2 >= end2) {
882             XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__);
883             break;
884         }
885         c1 = *p1++;
886         c2 = *p2++;
887         if (c1 != c2)
888             break;
889 
890         if (c1 == 0) {
891             pack1->cursor = p1;
892             pack2->cursor = p2;
893             return 1;
894         }
895         if (c1 >= 64) {
896             XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__);
897             break;
898         }
899         if ((p1+c1 > end1) || (p2+c1 > end2)) {
900             XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n",
901                     __FUNCTION__);
902             break;
903         }
904         if (memcmp(p1, p2, c1) != 0)
905             break;
906         p1 += c1;
907         p2 += c1;
908         /* we rely on the bound checks at the start of the loop */
909     }
910     /* not the same, or one is malformed */
911     XLOG("different DN");
912     return 0;
913 }
914 
915 static int
_dnsPacket_isEqualBytes(DnsPacket * pack1,DnsPacket * pack2,int numBytes)916 _dnsPacket_isEqualBytes( DnsPacket*  pack1, DnsPacket*  pack2, int  numBytes )
917 {
918     const uint8_t*  p1 = pack1->cursor;
919     const uint8_t*  p2 = pack2->cursor;
920 
921     if ( p1 + numBytes > pack1->end || p2 + numBytes > pack2->end )
922         return 0;
923 
924     if ( memcmp(p1, p2, numBytes) != 0 )
925         return 0;
926 
927     pack1->cursor += numBytes;
928     pack2->cursor += numBytes;
929     return 1;
930 }
931 
932 static int
_dnsPacket_isEqualQR(DnsPacket * pack1,DnsPacket * pack2)933 _dnsPacket_isEqualQR( DnsPacket*  pack1, DnsPacket*  pack2 )
934 {
935     /* compare domain name encoding + TYPE + CLASS */
936     if ( !_dnsPacket_isEqualDomainName(pack1, pack2) ||
937          !_dnsPacket_isEqualBytes(pack1, pack2, 2+2) )
938         return 0;
939 
940     return 1;
941 }
942 
943 static int
_dnsPacket_isEqualQuery(DnsPacket * pack1,DnsPacket * pack2)944 _dnsPacket_isEqualQuery( DnsPacket*  pack1, DnsPacket*  pack2 )
945 {
946     int  count1, count2;
947 
948     /* compare the headers, ignore most fields */
949     _dnsPacket_rewind(pack1);
950     _dnsPacket_rewind(pack2);
951 
952     /* compare RD, ignore TC, see comment in _dnsPacket_checkQuery */
953     if ((pack1->base[2] & 1) != (pack2->base[2] & 1)) {
954         XLOG("different RD");
955         return 0;
956     }
957 
958     /* assume: other flags are all 0 */
959     _dnsPacket_skip(pack1, 4);
960     _dnsPacket_skip(pack2, 4);
961 
962     /* compare QDCOUNT */
963     count1 = _dnsPacket_readInt16(pack1);
964     count2 = _dnsPacket_readInt16(pack2);
965     if (count1 != count2 || count1 < 0) {
966         XLOG("different QDCOUNT");
967         return 0;
968     }
969 
970     /* assume: ANcount, NScount and ARcount are all 0 */
971     _dnsPacket_skip(pack1, 6);
972     _dnsPacket_skip(pack2, 6);
973 
974     /* compare the QDCOUNT QRs */
975     for ( ; count1 > 0; count1-- ) {
976         if (!_dnsPacket_isEqualQR(pack1, pack2)) {
977             XLOG("different QR");
978             return 0;
979         }
980     }
981     return 1;
982 }
983 
984 /****************************************************************************/
985 /****************************************************************************/
986 /*****                                                                  *****/
987 /*****                                                                  *****/
988 /*****                                                                  *****/
989 /****************************************************************************/
990 /****************************************************************************/
991 
992 /* cache entry. for simplicity, 'hash' and 'hlink' are inlined in this
993  * structure though they are conceptually part of the hash table.
994  *
995  * similarly, mru_next and mru_prev are part of the global MRU list
996  */
997 typedef struct Entry {
998     unsigned int     hash;   /* hash value */
999     struct Entry*    hlink;  /* next in collision chain */
1000     struct Entry*    mru_prev;
1001     struct Entry*    mru_next;
1002 
1003     const uint8_t*   query;
1004     int              querylen;
1005     const uint8_t*   answer;
1006     int              answerlen;
1007     time_t           expires;   /* time_t when the entry isn't valid any more */
1008     int              id;        /* for debugging purpose */
1009 } Entry;
1010 
1011 /**
1012  * Parse the answer records and find the smallest
1013  * TTL among the answer records.
1014  *
1015  * The returned TTL is the number of seconds to
1016  * keep the answer in the cache.
1017  *
1018  * In case of parse error zero (0) is returned which
1019  * indicates that the answer shall not be cached.
1020  */
1021 static u_long
answer_getTTL(const void * answer,int answerlen)1022 answer_getTTL(const void* answer, int answerlen)
1023 {
1024     ns_msg handle;
1025     int ancount, n;
1026     u_long result, ttl;
1027     ns_rr rr;
1028 
1029     result = 0;
1030     if (ns_initparse(answer, answerlen, &handle) >= 0) {
1031         // get number of answer records
1032         ancount = ns_msg_count(handle, ns_s_an);
1033         for (n = 0; n < ancount; n++) {
1034             if (ns_parserr(&handle, ns_s_an, n, &rr) == 0) {
1035                 ttl = ns_rr_ttl(rr);
1036                 if (n == 0 || ttl < result) {
1037                     result = ttl;
1038                 }
1039             } else {
1040                 XLOG("ns_parserr failed ancount no = %d. errno = %s\n", n, strerror(errno));
1041             }
1042         }
1043     } else {
1044         XLOG("ns_parserr failed. %s\n", strerror(errno));
1045     }
1046 
1047     XLOG("TTL = %d\n", result);
1048 
1049     return result;
1050 }
1051 
1052 static void
entry_free(Entry * e)1053 entry_free( Entry*  e )
1054 {
1055     /* everything is allocated in a single memory block */
1056     if (e) {
1057         free(e);
1058     }
1059 }
1060 
1061 static __inline__ void
entry_mru_remove(Entry * e)1062 entry_mru_remove( Entry*  e )
1063 {
1064     e->mru_prev->mru_next = e->mru_next;
1065     e->mru_next->mru_prev = e->mru_prev;
1066 }
1067 
1068 static __inline__ void
entry_mru_add(Entry * e,Entry * list)1069 entry_mru_add( Entry*  e, Entry*  list )
1070 {
1071     Entry*  first = list->mru_next;
1072 
1073     e->mru_next = first;
1074     e->mru_prev = list;
1075 
1076     list->mru_next  = e;
1077     first->mru_prev = e;
1078 }
1079 
1080 /* compute the hash of a given entry, this is a hash of most
1081  * data in the query (key) */
1082 static unsigned
entry_hash(const Entry * e)1083 entry_hash( const Entry*  e )
1084 {
1085     DnsPacket  pack[1];
1086 
1087     _dnsPacket_init(pack, e->query, e->querylen);
1088     return _dnsPacket_hashQuery(pack);
1089 }
1090 
1091 /* initialize an Entry as a search key, this also checks the input query packet
1092  * returns 1 on success, or 0 in case of unsupported/malformed data */
1093 static int
entry_init_key(Entry * e,const void * query,int querylen)1094 entry_init_key( Entry*  e, const void*  query, int  querylen )
1095 {
1096     DnsPacket  pack[1];
1097 
1098     memset(e, 0, sizeof(*e));
1099 
1100     e->query    = query;
1101     e->querylen = querylen;
1102     e->hash     = entry_hash(e);
1103 
1104     _dnsPacket_init(pack, query, querylen);
1105 
1106     return _dnsPacket_checkQuery(pack);
1107 }
1108 
1109 /* allocate a new entry as a cache node */
1110 static Entry*
entry_alloc(const Entry * init,const void * answer,int answerlen)1111 entry_alloc( const Entry*  init, const void*  answer, int  answerlen )
1112 {
1113     Entry*  e;
1114     int     size;
1115 
1116     size = sizeof(*e) + init->querylen + answerlen;
1117     e    = calloc(size, 1);
1118     if (e == NULL)
1119         return e;
1120 
1121     e->hash     = init->hash;
1122     e->query    = (const uint8_t*)(e+1);
1123     e->querylen = init->querylen;
1124 
1125     memcpy( (char*)e->query, init->query, e->querylen );
1126 
1127     e->answer    = e->query + e->querylen;
1128     e->answerlen = answerlen;
1129 
1130     memcpy( (char*)e->answer, answer, e->answerlen );
1131 
1132     return e;
1133 }
1134 
1135 static int
entry_equals(const Entry * e1,const Entry * e2)1136 entry_equals( const Entry*  e1, const Entry*  e2 )
1137 {
1138     DnsPacket  pack1[1], pack2[1];
1139 
1140     if (e1->querylen != e2->querylen) {
1141         return 0;
1142     }
1143     _dnsPacket_init(pack1, e1->query, e1->querylen);
1144     _dnsPacket_init(pack2, e2->query, e2->querylen);
1145 
1146     return _dnsPacket_isEqualQuery(pack1, pack2);
1147 }
1148 
1149 /****************************************************************************/
1150 /****************************************************************************/
1151 /*****                                                                  *****/
1152 /*****                                                                  *****/
1153 /*****                                                                  *****/
1154 /****************************************************************************/
1155 /****************************************************************************/
1156 
1157 /* We use a simple hash table with external collision lists
1158  * for simplicity, the hash-table fields 'hash' and 'hlink' are
1159  * inlined in the Entry structure.
1160  */
1161 
1162 typedef struct resolv_cache {
1163     int              max_entries;
1164     int              num_entries;
1165     Entry            mru_list;
1166     pthread_mutex_t  lock;
1167     unsigned         generation;
1168     int              last_id;
1169     Entry*           entries;
1170 } Cache;
1171 
1172 typedef struct resolv_cache_info {
1173     char                        ifname[IF_NAMESIZE + 1];
1174     struct in_addr              ifaddr;
1175     Cache*                      cache;
1176     struct resolv_cache_info*   next;
1177     char*                       nameservers[MAXNS +1];
1178     struct addrinfo*            nsaddrinfo[MAXNS + 1];
1179 } CacheInfo;
1180 
1181 #define  HTABLE_VALID(x)  ((x) != NULL && (x) != HTABLE_DELETED)
1182 
1183 static void
_cache_flush_locked(Cache * cache)1184 _cache_flush_locked( Cache*  cache )
1185 {
1186     int     nn;
1187     time_t  now = _time_now();
1188 
1189     for (nn = 0; nn < cache->max_entries; nn++)
1190     {
1191         Entry**  pnode = (Entry**) &cache->entries[nn];
1192 
1193         while (*pnode != NULL) {
1194             Entry*  node = *pnode;
1195             *pnode = node->hlink;
1196             entry_free(node);
1197         }
1198     }
1199 
1200     cache->mru_list.mru_next = cache->mru_list.mru_prev = &cache->mru_list;
1201     cache->num_entries       = 0;
1202     cache->last_id           = 0;
1203 
1204     XLOG("*************************\n"
1205          "*** DNS CACHE FLUSHED ***\n"
1206          "*************************");
1207 }
1208 
1209 /* Return max number of entries allowed in the cache,
1210  * i.e. cache size. The cache size is either defined
1211  * by system property ro.net.dns_cache_size or by
1212  * CONFIG_MAX_ENTRIES if system property not set
1213  * or set to invalid value. */
1214 static int
_res_cache_get_max_entries(void)1215 _res_cache_get_max_entries( void )
1216 {
1217     int result = -1;
1218     char cache_size[PROP_VALUE_MAX];
1219 
1220     if (__system_property_get(DNS_CACHE_SIZE_PROP_NAME, cache_size) > 0) {
1221         result = atoi(cache_size);
1222     }
1223 
1224     // ro.net.dns_cache_size not set or set to negative value
1225     if (result <= 0) {
1226         result = CONFIG_MAX_ENTRIES;
1227     }
1228 
1229     XLOG("cache size: %d", result);
1230     return result;
1231 }
1232 
1233 static struct resolv_cache*
_resolv_cache_create(void)1234 _resolv_cache_create( void )
1235 {
1236     struct resolv_cache*  cache;
1237 
1238     cache = calloc(sizeof(*cache), 1);
1239     if (cache) {
1240         cache->max_entries = _res_cache_get_max_entries();
1241         cache->entries = calloc(sizeof(*cache->entries), cache->max_entries);
1242         if (cache->entries) {
1243             cache->generation = ~0U;
1244             pthread_mutex_init( &cache->lock, NULL );
1245             cache->mru_list.mru_prev = cache->mru_list.mru_next = &cache->mru_list;
1246             XLOG("%s: cache created\n", __FUNCTION__);
1247         } else {
1248             free(cache);
1249             cache = NULL;
1250         }
1251     }
1252     return cache;
1253 }
1254 
1255 
1256 #if DEBUG
1257 static void
_dump_query(const uint8_t * query,int querylen)1258 _dump_query( const uint8_t*  query, int  querylen )
1259 {
1260     char       temp[256], *p=temp, *end=p+sizeof(temp);
1261     DnsPacket  pack[1];
1262 
1263     _dnsPacket_init(pack, query, querylen);
1264     p = _dnsPacket_bprintQuery(pack, p, end);
1265     XLOG("QUERY: %s", temp);
1266 }
1267 
1268 static void
_cache_dump_mru(Cache * cache)1269 _cache_dump_mru( Cache*  cache )
1270 {
1271     char    temp[512], *p=temp, *end=p+sizeof(temp);
1272     Entry*  e;
1273 
1274     p = _bprint(temp, end, "MRU LIST (%2d): ", cache->num_entries);
1275     for (e = cache->mru_list.mru_next; e != &cache->mru_list; e = e->mru_next)
1276         p = _bprint(p, end, " %d", e->id);
1277 
1278     XLOG("%s", temp);
1279 }
1280 
1281 static void
_dump_answer(const void * answer,int answerlen)1282 _dump_answer(const void* answer, int answerlen)
1283 {
1284     res_state statep;
1285     FILE* fp;
1286     char* buf;
1287     int fileLen;
1288 
1289     fp = fopen("/data/reslog.txt", "w+");
1290     if (fp != NULL) {
1291         statep = __res_get_state();
1292 
1293         res_pquery(statep, answer, answerlen, fp);
1294 
1295         //Get file length
1296         fseek(fp, 0, SEEK_END);
1297         fileLen=ftell(fp);
1298         fseek(fp, 0, SEEK_SET);
1299         buf = (char *)malloc(fileLen+1);
1300         if (buf != NULL) {
1301             //Read file contents into buffer
1302             fread(buf, fileLen, 1, fp);
1303             XLOG("%s\n", buf);
1304             free(buf);
1305         }
1306         fclose(fp);
1307         remove("/data/reslog.txt");
1308     }
1309     else {
1310         XLOG("_dump_answer: can't open file\n");
1311     }
1312 }
1313 #endif
1314 
1315 #if DEBUG
1316 #  define  XLOG_QUERY(q,len)   _dump_query((q), (len))
1317 #  define  XLOG_ANSWER(a, len) _dump_answer((a), (len))
1318 #else
1319 #  define  XLOG_QUERY(q,len)   ((void)0)
1320 #  define  XLOG_ANSWER(a,len)  ((void)0)
1321 #endif
1322 
1323 /* This function tries to find a key within the hash table
1324  * In case of success, it will return a *pointer* to the hashed key.
1325  * In case of failure, it will return a *pointer* to NULL
1326  *
1327  * So, the caller must check '*result' to check for success/failure.
1328  *
1329  * The main idea is that the result can later be used directly in
1330  * calls to _resolv_cache_add or _resolv_cache_remove as the 'lookup'
1331  * parameter. This makes the code simpler and avoids re-searching
1332  * for the key position in the htable.
1333  *
1334  * The result of a lookup_p is only valid until you alter the hash
1335  * table.
1336  */
1337 static Entry**
_cache_lookup_p(Cache * cache,Entry * key)1338 _cache_lookup_p( Cache*   cache,
1339                  Entry*   key )
1340 {
1341     int      index = key->hash % cache->max_entries;
1342     Entry**  pnode = (Entry**) &cache->entries[ index ];
1343 
1344     while (*pnode != NULL) {
1345         Entry*  node = *pnode;
1346 
1347         if (node == NULL)
1348             break;
1349 
1350         if (node->hash == key->hash && entry_equals(node, key))
1351             break;
1352 
1353         pnode = &node->hlink;
1354     }
1355     return pnode;
1356 }
1357 
1358 /* Add a new entry to the hash table. 'lookup' must be the
1359  * result of an immediate previous failed _lookup_p() call
1360  * (i.e. with *lookup == NULL), and 'e' is the pointer to the
1361  * newly created entry
1362  */
1363 static void
_cache_add_p(Cache * cache,Entry ** lookup,Entry * e)1364 _cache_add_p( Cache*   cache,
1365               Entry**  lookup,
1366               Entry*   e )
1367 {
1368     *lookup = e;
1369     e->id = ++cache->last_id;
1370     entry_mru_add(e, &cache->mru_list);
1371     cache->num_entries += 1;
1372 
1373     XLOG("%s: entry %d added (count=%d)", __FUNCTION__,
1374          e->id, cache->num_entries);
1375 }
1376 
1377 /* Remove an existing entry from the hash table,
1378  * 'lookup' must be the result of an immediate previous
1379  * and succesful _lookup_p() call.
1380  */
1381 static void
_cache_remove_p(Cache * cache,Entry ** lookup)1382 _cache_remove_p( Cache*   cache,
1383                  Entry**  lookup )
1384 {
1385     Entry*  e  = *lookup;
1386 
1387     XLOG("%s: entry %d removed (count=%d)", __FUNCTION__,
1388          e->id, cache->num_entries-1);
1389 
1390     entry_mru_remove(e);
1391     *lookup = e->hlink;
1392     entry_free(e);
1393     cache->num_entries -= 1;
1394 }
1395 
1396 /* Remove the oldest entry from the hash table.
1397  */
1398 static void
_cache_remove_oldest(Cache * cache)1399 _cache_remove_oldest( Cache*  cache )
1400 {
1401     Entry*   oldest = cache->mru_list.mru_prev;
1402     Entry**  lookup = _cache_lookup_p(cache, oldest);
1403 
1404     if (*lookup == NULL) { /* should not happen */
1405         XLOG("%s: OLDEST NOT IN HTABLE ?", __FUNCTION__);
1406         return;
1407     }
1408     if (DEBUG) {
1409         XLOG("Cache full - removing oldest");
1410         XLOG_QUERY(oldest->query, oldest->querylen);
1411     }
1412     _cache_remove_p(cache, lookup);
1413 }
1414 
1415 
1416 ResolvCacheStatus
_resolv_cache_lookup(struct resolv_cache * cache,const void * query,int querylen,void * answer,int answersize,int * answerlen)1417 _resolv_cache_lookup( struct resolv_cache*  cache,
1418                       const void*           query,
1419                       int                   querylen,
1420                       void*                 answer,
1421                       int                   answersize,
1422                       int                  *answerlen )
1423 {
1424     DnsPacket  pack[1];
1425     Entry      key[1];
1426     int        index;
1427     Entry**    lookup;
1428     Entry*     e;
1429     time_t     now;
1430 
1431     ResolvCacheStatus  result = RESOLV_CACHE_NOTFOUND;
1432 
1433     XLOG("%s: lookup", __FUNCTION__);
1434     XLOG_QUERY(query, querylen);
1435 
1436     /* we don't cache malformed queries */
1437     if (!entry_init_key(key, query, querylen)) {
1438         XLOG("%s: unsupported query", __FUNCTION__);
1439         return RESOLV_CACHE_UNSUPPORTED;
1440     }
1441     /* lookup cache */
1442     pthread_mutex_lock( &cache->lock );
1443 
1444     /* see the description of _lookup_p to understand this.
1445      * the function always return a non-NULL pointer.
1446      */
1447     lookup = _cache_lookup_p(cache, key);
1448     e      = *lookup;
1449 
1450     if (e == NULL) {
1451         XLOG( "NOT IN CACHE");
1452         goto Exit;
1453     }
1454 
1455     now = _time_now();
1456 
1457     /* remove stale entries here */
1458     if (now >= e->expires) {
1459         XLOG( " NOT IN CACHE (STALE ENTRY %p DISCARDED)", *lookup );
1460         XLOG_QUERY(e->query, e->querylen);
1461         _cache_remove_p(cache, lookup);
1462         goto Exit;
1463     }
1464 
1465     *answerlen = e->answerlen;
1466     if (e->answerlen > answersize) {
1467         /* NOTE: we return UNSUPPORTED if the answer buffer is too short */
1468         result = RESOLV_CACHE_UNSUPPORTED;
1469         XLOG(" ANSWER TOO LONG");
1470         goto Exit;
1471     }
1472 
1473     memcpy( answer, e->answer, e->answerlen );
1474 
1475     /* bump up this entry to the top of the MRU list */
1476     if (e != cache->mru_list.mru_next) {
1477         entry_mru_remove( e );
1478         entry_mru_add( e, &cache->mru_list );
1479     }
1480 
1481     XLOG( "FOUND IN CACHE entry=%p", e );
1482     result = RESOLV_CACHE_FOUND;
1483 
1484 Exit:
1485     pthread_mutex_unlock( &cache->lock );
1486     return result;
1487 }
1488 
1489 
1490 void
_resolv_cache_add(struct resolv_cache * cache,const void * query,int querylen,const void * answer,int answerlen)1491 _resolv_cache_add( struct resolv_cache*  cache,
1492                    const void*           query,
1493                    int                   querylen,
1494                    const void*           answer,
1495                    int                   answerlen )
1496 {
1497     Entry    key[1];
1498     Entry*   e;
1499     Entry**  lookup;
1500     u_long   ttl;
1501 
1502     /* don't assume that the query has already been cached
1503      */
1504     if (!entry_init_key( key, query, querylen )) {
1505         XLOG( "%s: passed invalid query ?", __FUNCTION__);
1506         return;
1507     }
1508 
1509     pthread_mutex_lock( &cache->lock );
1510 
1511     XLOG( "%s: query:", __FUNCTION__ );
1512     XLOG_QUERY(query,querylen);
1513     XLOG_ANSWER(answer, answerlen);
1514 #if DEBUG_DATA
1515     XLOG( "answer:");
1516     XLOG_BYTES(answer,answerlen);
1517 #endif
1518 
1519     lookup = _cache_lookup_p(cache, key);
1520     e      = *lookup;
1521 
1522     if (e != NULL) { /* should not happen */
1523         XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD",
1524              __FUNCTION__, e);
1525         goto Exit;
1526     }
1527 
1528     if (cache->num_entries >= cache->max_entries) {
1529         _cache_remove_oldest(cache);
1530         /* need to lookup again */
1531         lookup = _cache_lookup_p(cache, key);
1532         e      = *lookup;
1533         if (e != NULL) {
1534             XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD",
1535                 __FUNCTION__, e);
1536             goto Exit;
1537         }
1538     }
1539 
1540     ttl = answer_getTTL(answer, answerlen);
1541     if (ttl > 0) {
1542         e = entry_alloc(key, answer, answerlen);
1543         if (e != NULL) {
1544             e->expires = ttl + _time_now();
1545             _cache_add_p(cache, lookup, e);
1546         }
1547     }
1548 #if DEBUG
1549     _cache_dump_mru(cache);
1550 #endif
1551 Exit:
1552     pthread_mutex_unlock( &cache->lock );
1553 }
1554 
1555 /****************************************************************************/
1556 /****************************************************************************/
1557 /*****                                                                  *****/
1558 /*****                                                                  *****/
1559 /*****                                                                  *****/
1560 /****************************************************************************/
1561 /****************************************************************************/
1562 
1563 static pthread_once_t        _res_cache_once;
1564 
1565 // Head of the list of caches.  Protected by _res_cache_list_lock.
1566 static struct resolv_cache_info _res_cache_list;
1567 
1568 // name of the current default inteface
1569 static char            _res_default_ifname[IF_NAMESIZE + 1];
1570 
1571 // lock protecting everything in the _resolve_cache_info structs (next ptr, etc)
1572 static pthread_mutex_t _res_cache_list_lock;
1573 
1574 
1575 /* lookup the default interface name */
1576 static char *_get_default_iface_locked();
1577 /* insert resolv_cache_info into the list of resolv_cache_infos */
1578 static void _insert_cache_info_locked(struct resolv_cache_info* cache_info);
1579 /* creates a resolv_cache_info */
1580 static struct resolv_cache_info* _create_cache_info( void );
1581 /* gets cache associated with an interface name, or NULL if none exists */
1582 static struct resolv_cache* _find_named_cache_locked(const char* ifname);
1583 /* gets a resolv_cache_info associated with an interface name, or NULL if not found */
1584 static struct resolv_cache_info* _find_cache_info_locked(const char* ifname);
1585 /* free dns name server list of a resolv_cache_info structure */
1586 static void _free_nameservers(struct resolv_cache_info* cache_info);
1587 /* look up the named cache, and creates one if needed */
1588 static struct resolv_cache* _get_res_cache_for_iface_locked(const char* ifname);
1589 /* empty the named cache */
1590 static void _flush_cache_for_iface_locked(const char* ifname);
1591 /* empty the nameservers set for the named cache */
1592 static void _free_nameservers_locked(struct resolv_cache_info* cache_info);
1593 /* lookup the namserver for the name interface */
1594 static int _get_nameserver_locked(const char* ifname, int n, char* addr, int addrLen);
1595 /* lookup the addr of the nameserver for the named interface */
1596 static struct addrinfo* _get_nameserver_addr_locked(const char* ifname, int n);
1597 /* lookup the inteface's address */
1598 static struct in_addr* _get_addr_locked(const char * ifname);
1599 
1600 
1601 
1602 static void
_res_cache_init(void)1603 _res_cache_init(void)
1604 {
1605     const char*  env = getenv(CONFIG_ENV);
1606 
1607     if (env && atoi(env) == 0) {
1608         /* the cache is disabled */
1609         return;
1610     }
1611 
1612     memset(&_res_default_ifname, 0, sizeof(_res_default_ifname));
1613     memset(&_res_cache_list, 0, sizeof(_res_cache_list));
1614     pthread_mutex_init(&_res_cache_list_lock, NULL);
1615 }
1616 
1617 struct resolv_cache*
__get_res_cache(void)1618 __get_res_cache(void)
1619 {
1620     struct resolv_cache *cache;
1621 
1622     pthread_once(&_res_cache_once, _res_cache_init);
1623 
1624     pthread_mutex_lock(&_res_cache_list_lock);
1625 
1626     char* ifname = _get_default_iface_locked();
1627 
1628     // if default interface not set then use the first cache
1629     // associated with an interface as the default one.
1630     if (ifname[0] == '\0') {
1631         struct resolv_cache_info* cache_info = _res_cache_list.next;
1632         while (cache_info) {
1633             if (cache_info->ifname[0] != '\0') {
1634                 ifname = cache_info->ifname;
1635                 break;
1636             }
1637 
1638             cache_info = cache_info->next;
1639         }
1640     }
1641     cache = _get_res_cache_for_iface_locked(ifname);
1642 
1643     pthread_mutex_unlock(&_res_cache_list_lock);
1644     XLOG("_get_res_cache. default_ifname = %s\n", ifname);
1645     return cache;
1646 }
1647 
1648 static struct resolv_cache*
_get_res_cache_for_iface_locked(const char * ifname)1649 _get_res_cache_for_iface_locked(const char* ifname)
1650 {
1651     if (ifname == NULL)
1652         return NULL;
1653 
1654     struct resolv_cache* cache = _find_named_cache_locked(ifname);
1655     if (!cache) {
1656         struct resolv_cache_info* cache_info = _create_cache_info();
1657         if (cache_info) {
1658             cache = _resolv_cache_create();
1659             if (cache) {
1660                 int len = sizeof(cache_info->ifname);
1661                 cache_info->cache = cache;
1662                 strncpy(cache_info->ifname, ifname, len - 1);
1663                 cache_info->ifname[len - 1] = '\0';
1664 
1665                 _insert_cache_info_locked(cache_info);
1666             } else {
1667                 free(cache_info);
1668             }
1669         }
1670     }
1671     return cache;
1672 }
1673 
1674 void
_resolv_cache_reset(unsigned generation)1675 _resolv_cache_reset(unsigned  generation)
1676 {
1677     XLOG("%s: generation=%d", __FUNCTION__, generation);
1678 
1679     pthread_once(&_res_cache_once, _res_cache_init);
1680     pthread_mutex_lock(&_res_cache_list_lock);
1681 
1682     char* ifname = _get_default_iface_locked();
1683     // if default interface not set then use the first cache
1684     // associated with an interface as the default one.
1685     // Note: Copied the code from __get_res_cache since this
1686     // method will be deleted/obsolete when cache per interface
1687     // implemented all over
1688     if (ifname[0] == '\0') {
1689         struct resolv_cache_info* cache_info = _res_cache_list.next;
1690         while (cache_info) {
1691             if (cache_info->ifname[0] != '\0') {
1692                 ifname = cache_info->ifname;
1693                 break;
1694             }
1695 
1696             cache_info = cache_info->next;
1697         }
1698     }
1699     struct resolv_cache* cache = _get_res_cache_for_iface_locked(ifname);
1700 
1701     if (cache != NULL) {
1702         pthread_mutex_lock( &cache->lock );
1703         if (cache->generation != generation) {
1704             _cache_flush_locked(cache);
1705             cache->generation = generation;
1706         }
1707         pthread_mutex_unlock( &cache->lock );
1708     }
1709 
1710     pthread_mutex_unlock(&_res_cache_list_lock);
1711 }
1712 
1713 void
_resolv_flush_cache_for_default_iface(void)1714 _resolv_flush_cache_for_default_iface(void)
1715 {
1716     char* ifname;
1717 
1718     pthread_once(&_res_cache_once, _res_cache_init);
1719     pthread_mutex_lock(&_res_cache_list_lock);
1720 
1721     ifname = _get_default_iface_locked();
1722     _flush_cache_for_iface_locked(ifname);
1723 
1724     pthread_mutex_unlock(&_res_cache_list_lock);
1725 }
1726 
1727 void
_resolv_flush_cache_for_iface(const char * ifname)1728 _resolv_flush_cache_for_iface(const char* ifname)
1729 {
1730     pthread_once(&_res_cache_once, _res_cache_init);
1731     pthread_mutex_lock(&_res_cache_list_lock);
1732 
1733     _flush_cache_for_iface_locked(ifname);
1734 
1735     pthread_mutex_unlock(&_res_cache_list_lock);
1736 }
1737 
1738 static void
_flush_cache_for_iface_locked(const char * ifname)1739 _flush_cache_for_iface_locked(const char* ifname)
1740 {
1741     struct resolv_cache* cache = _find_named_cache_locked(ifname);
1742     if (cache) {
1743         pthread_mutex_lock(&cache->lock);
1744         _cache_flush_locked(cache);
1745         pthread_mutex_unlock(&cache->lock);
1746     }
1747 }
1748 
1749 static struct resolv_cache_info*
_create_cache_info(void)1750 _create_cache_info(void)
1751 {
1752     struct resolv_cache_info*  cache_info;
1753 
1754     cache_info = calloc(sizeof(*cache_info), 1);
1755     return cache_info;
1756 }
1757 
1758 static void
_insert_cache_info_locked(struct resolv_cache_info * cache_info)1759 _insert_cache_info_locked(struct resolv_cache_info* cache_info)
1760 {
1761     struct resolv_cache_info* last;
1762 
1763     for (last = &_res_cache_list; last->next; last = last->next);
1764 
1765     last->next = cache_info;
1766 
1767 }
1768 
1769 static struct resolv_cache*
_find_named_cache_locked(const char * ifname)1770 _find_named_cache_locked(const char* ifname) {
1771 
1772     struct resolv_cache_info* info = _find_cache_info_locked(ifname);
1773 
1774     if (info != NULL) return info->cache;
1775 
1776     return NULL;
1777 }
1778 
1779 static struct resolv_cache_info*
_find_cache_info_locked(const char * ifname)1780 _find_cache_info_locked(const char* ifname)
1781 {
1782     if (ifname == NULL)
1783         return NULL;
1784 
1785     struct resolv_cache_info* cache_info = _res_cache_list.next;
1786 
1787     while (cache_info) {
1788         if (strcmp(cache_info->ifname, ifname) == 0) {
1789             break;
1790         }
1791 
1792         cache_info = cache_info->next;
1793     }
1794     return cache_info;
1795 }
1796 
1797 static char*
_get_default_iface_locked(void)1798 _get_default_iface_locked(void)
1799 {
1800     char* iface = _res_default_ifname;
1801 
1802     return iface;
1803 }
1804 
1805 void
_resolv_set_default_iface(const char * ifname)1806 _resolv_set_default_iface(const char* ifname)
1807 {
1808     XLOG("_resolv_set_default_if ifname %s\n",ifname);
1809 
1810     pthread_once(&_res_cache_once, _res_cache_init);
1811     pthread_mutex_lock(&_res_cache_list_lock);
1812 
1813     int size = sizeof(_res_default_ifname);
1814     memset(_res_default_ifname, 0, size);
1815     strncpy(_res_default_ifname, ifname, size - 1);
1816     _res_default_ifname[size - 1] = '\0';
1817 
1818     pthread_mutex_unlock(&_res_cache_list_lock);
1819 }
1820 
1821 void
_resolv_set_nameservers_for_iface(const char * ifname,char ** servers,int numservers)1822 _resolv_set_nameservers_for_iface(const char* ifname, char** servers, int numservers)
1823 {
1824     int i, rt, index;
1825     struct addrinfo hints;
1826     char sbuf[NI_MAXSERV];
1827 
1828     pthread_once(&_res_cache_once, _res_cache_init);
1829 
1830     pthread_mutex_lock(&_res_cache_list_lock);
1831     // creates the cache if not created
1832     _get_res_cache_for_iface_locked(ifname);
1833 
1834     struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname);
1835 
1836     if (cache_info != NULL) {
1837         // free current before adding new
1838         _free_nameservers_locked(cache_info);
1839 
1840         memset(&hints, 0, sizeof(hints));
1841         hints.ai_family = PF_UNSPEC;
1842         hints.ai_socktype = SOCK_DGRAM; /*dummy*/
1843         hints.ai_flags = AI_NUMERICHOST;
1844         sprintf(sbuf, "%u", NAMESERVER_PORT);
1845 
1846         index = 0;
1847         for (i = 0; i < numservers && i < MAXNS; i++) {
1848             rt = getaddrinfo(servers[i], sbuf, &hints, &cache_info->nsaddrinfo[index]);
1849             if (rt == 0) {
1850                 cache_info->nameservers[index] = strdup(servers[i]);
1851                 index++;
1852             } else {
1853                 cache_info->nsaddrinfo[index] = NULL;
1854             }
1855         }
1856     }
1857     pthread_mutex_unlock(&_res_cache_list_lock);
1858 }
1859 
1860 static void
_free_nameservers_locked(struct resolv_cache_info * cache_info)1861 _free_nameservers_locked(struct resolv_cache_info* cache_info)
1862 {
1863     int i;
1864     for (i = 0; i <= MAXNS; i++) {
1865         free(cache_info->nameservers[i]);
1866         cache_info->nameservers[i] = NULL;
1867         if (cache_info->nsaddrinfo[i] != NULL) {
1868             freeaddrinfo(cache_info->nsaddrinfo[i]);
1869             cache_info->nsaddrinfo[i] = NULL;
1870         }
1871     }
1872 }
1873 
1874 int
_resolv_cache_get_nameserver(int n,char * addr,int addrLen)1875 _resolv_cache_get_nameserver(int n, char* addr, int addrLen)
1876 {
1877     char *ifname;
1878     int result = 0;
1879 
1880     pthread_once(&_res_cache_once, _res_cache_init);
1881     pthread_mutex_lock(&_res_cache_list_lock);
1882 
1883     ifname = _get_default_iface_locked();
1884     result = _get_nameserver_locked(ifname, n, addr, addrLen);
1885 
1886     pthread_mutex_unlock(&_res_cache_list_lock);
1887     return result;
1888 }
1889 
1890 static int
_get_nameserver_locked(const char * ifname,int n,char * addr,int addrLen)1891 _get_nameserver_locked(const char* ifname, int n, char* addr, int addrLen)
1892 {
1893     int len = 0;
1894     char* ns;
1895     struct resolv_cache_info* cache_info;
1896 
1897     if (n < 1 || n > MAXNS || !addr)
1898         return 0;
1899 
1900     cache_info = _find_cache_info_locked(ifname);
1901     if (cache_info) {
1902         ns = cache_info->nameservers[n - 1];
1903         if (ns) {
1904             len = strlen(ns);
1905             if (len < addrLen) {
1906                 strncpy(addr, ns, len);
1907                 addr[len] = '\0';
1908             } else {
1909                 len = 0;
1910             }
1911         }
1912     }
1913 
1914     return len;
1915 }
1916 
1917 struct addrinfo*
_cache_get_nameserver_addr(int n)1918 _cache_get_nameserver_addr(int n)
1919 {
1920     struct addrinfo *result;
1921     char* ifname;
1922 
1923     pthread_once(&_res_cache_once, _res_cache_init);
1924     pthread_mutex_lock(&_res_cache_list_lock);
1925 
1926     ifname = _get_default_iface_locked();
1927 
1928     result = _get_nameserver_addr_locked(ifname, n);
1929     pthread_mutex_unlock(&_res_cache_list_lock);
1930     return result;
1931 }
1932 
1933 static struct addrinfo*
_get_nameserver_addr_locked(const char * ifname,int n)1934 _get_nameserver_addr_locked(const char* ifname, int n)
1935 {
1936     struct addrinfo* ai = NULL;
1937     struct resolv_cache_info* cache_info;
1938 
1939     if (n < 1 || n > MAXNS)
1940         return NULL;
1941 
1942     cache_info = _find_cache_info_locked(ifname);
1943     if (cache_info) {
1944         ai = cache_info->nsaddrinfo[n - 1];
1945     }
1946     return ai;
1947 }
1948 
1949 void
_resolv_set_addr_of_iface(const char * ifname,struct in_addr * addr)1950 _resolv_set_addr_of_iface(const char* ifname, struct in_addr* addr)
1951 {
1952     pthread_once(&_res_cache_once, _res_cache_init);
1953     pthread_mutex_lock(&_res_cache_list_lock);
1954     struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname);
1955     if (cache_info) {
1956         memcpy(&cache_info->ifaddr, addr, sizeof(*addr));
1957 
1958         if (DEBUG) {
1959             char* addr_s = inet_ntoa(cache_info->ifaddr);
1960             XLOG("address of interface %s is %s\n", ifname, addr_s);
1961         }
1962     }
1963     pthread_mutex_unlock(&_res_cache_list_lock);
1964 }
1965 
1966 struct in_addr*
_resolv_get_addr_of_default_iface(void)1967 _resolv_get_addr_of_default_iface(void)
1968 {
1969     struct in_addr* ai = NULL;
1970     char* ifname;
1971 
1972     pthread_once(&_res_cache_once, _res_cache_init);
1973     pthread_mutex_lock(&_res_cache_list_lock);
1974     ifname = _get_default_iface_locked();
1975     ai = _get_addr_locked(ifname);
1976     pthread_mutex_unlock(&_res_cache_list_lock);
1977 
1978     return ai;
1979 }
1980 
1981 struct in_addr*
_resolv_get_addr_of_iface(const char * ifname)1982 _resolv_get_addr_of_iface(const char* ifname)
1983 {
1984     struct in_addr* ai = NULL;
1985 
1986     pthread_once(&_res_cache_once, _res_cache_init);
1987     pthread_mutex_lock(&_res_cache_list_lock);
1988     ai =_get_addr_locked(ifname);
1989     pthread_mutex_unlock(&_res_cache_list_lock);
1990     return ai;
1991 }
1992 
1993 static struct in_addr*
_get_addr_locked(const char * ifname)1994 _get_addr_locked(const char * ifname)
1995 {
1996     struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname);
1997     if (cache_info) {
1998         return &cache_info->ifaddr;
1999     }
2000     return NULL;
2001 }
2002