• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Mesa 3-D graphics library
3  * Version:  7.5
4  *
5  * Copyright (C) 1999-2008  Brian Paul   All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included
15  * in all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21  * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 
26 /**
27  * \file imports.h
28  * Standard C library function wrappers.
29  *
30  * This file provides wrappers for all the standard C library functions
31  * like malloc(), free(), printf(), getenv(), etc.
32  */
33 
34 
35 #ifndef IMPORTS_H
36 #define IMPORTS_H
37 
38 
39 #include "compiler.h"
40 #include "glheader.h"
41 
42 
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46 
47 
48 /**********************************************************************/
49 /** Memory macros */
50 /*@{*/
51 
52 /** Allocate \p BYTES bytes */
53 #define MALLOC(BYTES)      malloc(BYTES)
54 /** Allocate and zero \p BYTES bytes */
55 #define CALLOC(BYTES)      calloc(1, BYTES)
56 /** Allocate a structure of type \p T */
57 #define MALLOC_STRUCT(T)   (struct T *) malloc(sizeof(struct T))
58 /** Allocate and zero a structure of type \p T */
59 #define CALLOC_STRUCT(T)   (struct T *) calloc(1, sizeof(struct T))
60 /** Free memory */
61 #define FREE(PTR)          free(PTR)
62 
63 /*@}*/
64 
65 
66 /*
67  * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
68  * as offsets into buffer stores.  Since the vertex array pointer and
69  * buffer store pointer are both pointers and we need to add them, we use
70  * this macro.
71  * Both pointers/offsets are expressed in bytes.
72  */
73 #define ADD_POINTERS(A, B)  ( (GLubyte *) (A) + (uintptr_t) (B) )
74 
75 
76 /**
77  * Sometimes we treat GLfloats as GLints.  On x86 systems, moving a float
78  * as a int (thereby using integer registers instead of FP registers) is
79  * a performance win.  Typically, this can be done with ordinary casts.
80  * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
81  * these casts generate warnings.
82  * The following union typedef is used to solve that.
83  */
84 typedef union { GLfloat f; GLint i; } fi_type;
85 
86 
87 
88 /**********************************************************************
89  * Math macros
90  */
91 
92 #define MAX_GLUSHORT	0xffff
93 #define MAX_GLUINT	0xffffffff
94 
95 /* Degrees to radians conversion: */
96 #define DEG2RAD (M_PI/180.0)
97 
98 
99 /***
100  *** SQRTF: single-precision square root
101  ***/
102 #if 0 /* _mesa_sqrtf() not accurate enough - temporarily disabled */
103 #  define SQRTF(X)  _mesa_sqrtf(X)
104 #else
105 #  define SQRTF(X)  (float) sqrt((float) (X))
106 #endif
107 
108 
109 /***
110  *** INV_SQRTF: single-precision inverse square root
111  ***/
112 #if 0
113 #define INV_SQRTF(X) _mesa_inv_sqrt(X)
114 #else
115 #define INV_SQRTF(X) (1.0F / SQRTF(X))  /* this is faster on a P4 */
116 #endif
117 
118 
119 /**
120  * \name Work-arounds for platforms that lack C99 math functions
121  */
122 /*@{*/
123 #if (!defined(_XOPEN_SOURCE) || (_XOPEN_SOURCE < 600)) && !defined(_ISOC99_SOURCE) \
124    && (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L)) \
125    && (!defined(_MSC_VER) || (_MSC_VER < 1400))
126 /*#define acosf(f) ((float) acos(f))
127 #define asinf(f) ((float) asin(f))
128 #define atan2f(x,y) ((float) atan2(x,y))
129 #define atanf(f) ((float) atan(f))
130 #define cielf(f) ((float) ciel(f))
131 #define cosf(f) ((float) cos(f))
132 #define coshf(f) ((float) cosh(f))
133 #define expf(f) ((float) exp(f))
134 #define exp2f(f) ((float) exp2(f))
135 #define floorf(f) ((float) floor(f))
136 #define logf(f) ((float) log(f))
137 #define log2f(f) ((float) log2(f))
138 #define powf(x,y) ((float) pow(x,y))
139 #define sinf(f) ((float) sin(f))
140 #define sinhf(f) ((float) sinh(f))
141 #define sqrtf(f) ((float) sqrt(f))
142 #define tanf(f) ((float) tan(f))
143 #define tanhf(f) ((float) tanh(f))
144 #define acoshf(f) ((float) acosh(f))
145 #define asinhf(f) ((float) asinh(f))
146 #define atanhf(f) ((float) atanh(f))*/
147 #endif
148 
149 #if defined(_MSC_VER)
truncf(float x)150 static INLINE float truncf(float x) { return x < 0.0f ? ceilf(x) : floorf(x); }
exp2f(float x)151 static INLINE float exp2f(float x) { return powf(2.0f, x); }
log2f(float x)152 static INLINE float log2f(float x) { return logf(x) * 1.442695041f; }
asinhf(float x)153 static INLINE float asinhf(float x) { return logf(x + sqrtf(x * x + 1.0f)); }
acoshf(float x)154 static INLINE float acoshf(float x) { return logf(x + sqrtf(x * x - 1.0f)); }
atanhf(float x)155 static INLINE float atanhf(float x) { return (logf(1.0f + x) - logf(1.0f - x)) / 2.0f; }
isblank(int ch)156 static INLINE int isblank(int ch) { return ch == ' ' || ch == '\t'; }
157 #define strtoll(p, e, b) _strtoi64(p, e, b)
158 #endif
159 /*@}*/
160 
161 /***
162  *** LOG2: Log base 2 of float
163  ***/
164 #ifdef USE_IEEE
165 #if 0
166 /* This is pretty fast, but not accurate enough (only 2 fractional bits).
167  * Based on code from http://www.stereopsis.com/log2.html
168  */
169 static INLINE GLfloat LOG2(GLfloat x)
170 {
171    const GLfloat y = x * x * x * x;
172    const GLuint ix = *((GLuint *) &y);
173    const GLuint exp = (ix >> 23) & 0xFF;
174    const GLint log2 = ((GLint) exp) - 127;
175    return (GLfloat) log2 * (1.0 / 4.0);  /* 4, because of x^4 above */
176 }
177 #endif
178 /* Pretty fast, and accurate.
179  * Based on code from http://www.flipcode.com/totd/
180  */
LOG2(GLfloat val)181 static INLINE GLfloat LOG2(GLfloat val)
182 {
183    fi_type num;
184    GLint log_2;
185    num.f = val;
186    log_2 = ((num.i >> 23) & 255) - 128;
187    num.i &= ~(255 << 23);
188    num.i += 127 << 23;
189    num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
190    return num.f + log_2;
191 }
192 #else
193 /*
194  * NOTE: log_base_2(x) = log(x) / log(2)
195  * NOTE: 1.442695 = 1/log(2).
196  */
197 #define LOG2(x)  ((GLfloat) (log(x) * 1.442695F))
198 #endif
199 
200 
201 /***
202  *** IS_INF_OR_NAN: test if float is infinite or NaN
203  ***/
204 #ifdef USE_IEEE
IS_INF_OR_NAN(float x)205 static INLINE int IS_INF_OR_NAN( float x )
206 {
207    fi_type tmp;
208    tmp.f = x;
209    return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
210 }
211 #elif defined(isfinite)
212 #define IS_INF_OR_NAN(x)        (!isfinite(x))
213 #elif defined(finite)
214 #define IS_INF_OR_NAN(x)        (!finite(x))
215 #elif defined(__VMS)
216 #define IS_INF_OR_NAN(x)        (!finite(x))
217 #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
218 #define IS_INF_OR_NAN(x)        (!isfinite(x))
219 #else
220 #define IS_INF_OR_NAN(x)        (!finite(x))
221 #endif
222 
223 
224 /***
225  *** IS_NEGATIVE: test if float is negative
226  ***/
227 #if defined(USE_IEEE)
GET_FLOAT_BITS(float x)228 static INLINE int GET_FLOAT_BITS( float x )
229 {
230    fi_type fi;
231    fi.f = x;
232    return fi.i;
233 }
234 #define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) < 0)
235 #else
236 #define IS_NEGATIVE(x) (x < 0.0F)
237 #endif
238 
239 
240 /***
241  *** DIFFERENT_SIGNS: test if two floats have opposite signs
242  ***/
243 #if defined(USE_IEEE)
244 #define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31))
245 #else
246 /* Could just use (x*y<0) except for the flatshading requirements.
247  * Maybe there's a better way?
248  */
249 #define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F)
250 #endif
251 
252 
253 /***
254  *** CEILF: ceiling of float
255  *** FLOORF: floor of float
256  *** FABSF: absolute value of float
257  *** LOGF: the natural logarithm (base e) of the value
258  *** EXPF: raise e to the value
259  *** LDEXPF: multiply value by an integral power of two
260  *** FREXPF: extract mantissa and exponent from value
261  ***/
262 #if defined(__gnu_linux__)
263 /* C99 functions */
264 #define CEILF(x)   ceilf(x)
265 #define FLOORF(x)  floorf(x)
266 #define FABSF(x)   fabsf(x)
267 #define LOGF(x)    logf(x)
268 #define EXPF(x)    expf(x)
269 #define LDEXPF(x,y)  ldexpf(x,y)
270 #define FREXPF(x,y)  frexpf(x,y)
271 #else
272 #define CEILF(x)   ((GLfloat) ceil(x))
273 #define FLOORF(x)  ((GLfloat) floor(x))
274 #define FABSF(x)   ((GLfloat) fabs(x))
275 #define LOGF(x)    ((GLfloat) log(x))
276 #define EXPF(x)    ((GLfloat) exp(x))
277 #define LDEXPF(x,y)  ((GLfloat) ldexp(x,y))
278 #define FREXPF(x,y)  ((GLfloat) frexp(x,y))
279 #endif
280 
281 
282 /***
283  *** IROUND: return (as an integer) float rounded to nearest integer
284  ***/
285 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
iround(float f)286 static INLINE int iround(float f)
287 {
288    int r;
289    __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
290    return r;
291 }
292 #define IROUND(x)  iround(x)
293 #elif defined(USE_X86_ASM) && defined(_MSC_VER)
iround(float f)294 static INLINE int iround(float f)
295 {
296    int r;
297    _asm {
298 	 fld f
299 	 fistp r
300 	}
301    return r;
302 }
303 #define IROUND(x)  iround(x)
304 #elif defined(__WATCOMC__) && defined(__386__)
305 long iround(float f);
306 #pragma aux iround =                    \
307 	"push   eax"                        \
308 	"fistp  dword ptr [esp]"            \
309 	"pop    eax"                        \
310 	parm [8087]                         \
311 	value [eax]                         \
312 	modify exact [eax];
313 #define IROUND(x)  iround(x)
314 #else
315 #define IROUND(f)  ((int) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
316 #endif
317 
318 #define IROUND64(f)  ((GLint64) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
319 
320 /***
321  *** IROUND_POS: return (as an integer) positive float rounded to nearest int
322  ***/
323 #ifdef DEBUG
324 #define IROUND_POS(f) (assert((f) >= 0.0F), IROUND(f))
325 #else
326 #define IROUND_POS(f) (IROUND(f))
327 #endif
328 
329 
330 /***
331  *** IFLOOR: return (as an integer) floor of float
332  ***/
333 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
334 /*
335  * IEEE floor for computers that round to nearest or even.
336  * 'f' must be between -4194304 and 4194303.
337  * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
338  * but uses some IEEE specific tricks for better speed.
339  * Contributed by Josh Vanderhoof
340  */
ifloor(float f)341 static INLINE int ifloor(float f)
342 {
343    int ai, bi;
344    double af, bf;
345    af = (3 << 22) + 0.5 + (double)f;
346    bf = (3 << 22) + 0.5 - (double)f;
347    /* GCC generates an extra fstp/fld without this. */
348    __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
349    __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
350    return (ai - bi) >> 1;
351 }
352 #define IFLOOR(x)  ifloor(x)
353 #elif defined(USE_IEEE)
ifloor(float f)354 static INLINE int ifloor(float f)
355 {
356    int ai, bi;
357    double af, bf;
358    fi_type u;
359 
360    af = (3 << 22) + 0.5 + (double)f;
361    bf = (3 << 22) + 0.5 - (double)f;
362    u.f = (float) af;  ai = u.i;
363    u.f = (float) bf;  bi = u.i;
364    return (ai - bi) >> 1;
365 }
366 #define IFLOOR(x)  ifloor(x)
367 #else
ifloor(float f)368 static INLINE int ifloor(float f)
369 {
370    int i = IROUND(f);
371    return (i > f) ? i - 1 : i;
372 }
373 #define IFLOOR(x)  ifloor(x)
374 #endif
375 
376 
377 /***
378  *** ICEIL: return (as an integer) ceiling of float
379  ***/
380 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
381 /*
382  * IEEE ceil for computers that round to nearest or even.
383  * 'f' must be between -4194304 and 4194303.
384  * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
385  * but uses some IEEE specific tricks for better speed.
386  * Contributed by Josh Vanderhoof
387  */
iceil(float f)388 static INLINE int iceil(float f)
389 {
390    int ai, bi;
391    double af, bf;
392    af = (3 << 22) + 0.5 + (double)f;
393    bf = (3 << 22) + 0.5 - (double)f;
394    /* GCC generates an extra fstp/fld without this. */
395    __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
396    __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
397    return (ai - bi + 1) >> 1;
398 }
399 #define ICEIL(x)  iceil(x)
400 #elif defined(USE_IEEE)
iceil(float f)401 static INLINE int iceil(float f)
402 {
403    int ai, bi;
404    double af, bf;
405    fi_type u;
406    af = (3 << 22) + 0.5 + (double)f;
407    bf = (3 << 22) + 0.5 - (double)f;
408    u.f = (float) af; ai = u.i;
409    u.f = (float) bf; bi = u.i;
410    return (ai - bi + 1) >> 1;
411 }
412 #define ICEIL(x)  iceil(x)
413 #else
iceil(float f)414 static INLINE int iceil(float f)
415 {
416    int i = IROUND(f);
417    return (i < f) ? i + 1 : i;
418 }
419 #define ICEIL(x)  iceil(x)
420 #endif
421 
422 
423 /**
424  * Is x a power of two?
425  */
426 static INLINE int
_mesa_is_pow_two(int x)427 _mesa_is_pow_two(int x)
428 {
429    return !(x & (x - 1));
430 }
431 
432 /**
433  * Round given integer to next higer power of two
434  * If X is zero result is undefined.
435  *
436  * Source for the fallback implementation is
437  * Sean Eron Anderson's webpage "Bit Twiddling Hacks"
438  * http://graphics.stanford.edu/~seander/bithacks.html
439  *
440  * When using builtin function have to do some work
441  * for case when passed values 1 to prevent hiting
442  * undefined result from __builtin_clz. Undefined
443  * results would be different depending on optimization
444  * level used for build.
445  */
446 static INLINE int32_t
_mesa_next_pow_two_32(uint32_t x)447 _mesa_next_pow_two_32(uint32_t x)
448 {
449 #if defined(__GNUC__) && \
450 	((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || __GNUC__ >= 4)
451 	uint32_t y = (x != 1);
452 	return (1 + y) << ((__builtin_clz(x - y) ^ 31) );
453 #else
454 	x--;
455 	x |= x >> 1;
456 	x |= x >> 2;
457 	x |= x >> 4;
458 	x |= x >> 8;
459 	x |= x >> 16;
460 	x++;
461 	return x;
462 #endif
463 }
464 
465 static INLINE int64_t
_mesa_next_pow_two_64(uint64_t x)466 _mesa_next_pow_two_64(uint64_t x)
467 {
468 #if defined(__GNUC__) && \
469 	((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || __GNUC__ >= 4)
470 	uint64_t y = (x != 1);
471 	if (sizeof(x) == sizeof(long))
472 		return (1 + y) << ((__builtin_clzl(x - y) ^ 63));
473 	else
474 		return (1 + y) << ((__builtin_clzll(x - y) ^ 63));
475 #else
476 	x--;
477 	x |= x >> 1;
478 	x |= x >> 2;
479 	x |= x >> 4;
480 	x |= x >> 8;
481 	x |= x >> 16;
482 	x |= x >> 32;
483 	x++;
484 	return x;
485 #endif
486 }
487 
488 
489 /**
490  * Return 1 if this is a little endian machine, 0 if big endian.
491  */
492 static INLINE GLboolean
_mesa_little_endian(void)493 _mesa_little_endian(void)
494 {
495    const GLuint ui = 1; /* intentionally not static */
496    return *((const GLubyte *) &ui);
497 }
498 
499 
500 
501 /**********************************************************************
502  * Functions
503  */
504 
505 extern void *
506 _mesa_align_malloc( size_t bytes, unsigned long alignment );
507 
508 extern void *
509 _mesa_align_calloc( size_t bytes, unsigned long alignment );
510 
511 extern void
512 _mesa_align_free( void *ptr );
513 
514 extern void *
515 _mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
516                     unsigned long alignment);
517 
518 extern void *
519 _mesa_exec_malloc( GLuint size );
520 
521 extern void
522 _mesa_exec_free( void *addr );
523 
524 extern void *
525 _mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize );
526 
527 extern void
528 _mesa_memset16( unsigned short *dst, unsigned short val, size_t n );
529 
530 extern double
531 _mesa_sqrtd(double x);
532 
533 extern float
534 _mesa_sqrtf(float x);
535 
536 extern float
537 _mesa_inv_sqrtf(float x);
538 
539 extern void
540 _mesa_init_sqrt_table(void);
541 
542 extern int
543 _mesa_ffs(int32_t i);
544 
545 extern int
546 _mesa_ffsll(int64_t i);
547 
548 extern unsigned int
549 _mesa_bitcount(unsigned int n);
550 
551 extern GLhalfARB
552 _mesa_float_to_half(float f);
553 
554 extern float
555 _mesa_half_to_float(GLhalfARB h);
556 
557 
558 extern void *
559 _mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size,
560                int (*compar)(const void *, const void *) );
561 
562 extern char *
563 _mesa_getenv( const char *var );
564 
565 extern char *
566 _mesa_strdup( const char *s );
567 
568 extern float
569 _mesa_strtof( const char *s, char **end );
570 
571 extern unsigned int
572 _mesa_str_checksum(const char *str);
573 
574 extern int
575 _mesa_snprintf( char *str, size_t size, const char *fmt, ... ) PRINTFLIKE(3, 4);
576 
577 struct gl_context;
578 
579 extern void
580 _mesa_warning( struct gl_context *gc, const char *fmtString, ... ) PRINTFLIKE(2, 3);
581 
582 extern void
583 _mesa_problem( const struct gl_context *ctx, const char *fmtString, ... ) PRINTFLIKE(2, 3);
584 
585 extern void
586 _mesa_error( struct gl_context *ctx, GLenum error, const char *fmtString, ... ) PRINTFLIKE(3, 4);
587 
588 extern void
589 _mesa_debug( const struct gl_context *ctx, const char *fmtString, ... ) PRINTFLIKE(2, 3);
590 
591 
592 #if defined(_MSC_VER) && !defined(snprintf)
593 #define snprintf _snprintf
594 #endif
595 
596 
597 #ifdef __cplusplus
598 }
599 #endif
600 
601 
602 #endif /* IMPORTS_H */
603