• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // The original source code covered by the above license above has been
34 // modified significantly by Google Inc.
35 // Copyright 2011 the V8 project authors. All rights reserved.
36 
37 #include "v8.h"
38 
39 #if defined(V8_TARGET_ARCH_ARM)
40 
41 #include "arm/assembler-arm-inl.h"
42 #include "serialize.h"
43 
44 namespace v8 {
45 namespace internal {
46 
47 #ifdef DEBUG
48 bool CpuFeatures::initialized_ = false;
49 #endif
50 unsigned CpuFeatures::supported_ = 0;
51 unsigned CpuFeatures::found_by_runtime_probing_ = 0;
52 
53 
54 #ifdef __arm__
CpuFeaturesImpliedByCompiler()55 static uint64_t CpuFeaturesImpliedByCompiler() {
56   uint64_t answer = 0;
57 #ifdef CAN_USE_ARMV7_INSTRUCTIONS
58   answer |= 1u << ARMv7;
59 #endif  // def CAN_USE_ARMV7_INSTRUCTIONS
60   // If the compiler is allowed to use VFP then we can use VFP too in our code
61   // generation even when generating snapshots.  This won't work for cross
62   // compilation. VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
63 #if defined(__VFP_FP__) && !defined(__SOFTFP__)
64   answer |= 1u << VFP3 | 1u << ARMv7;
65 #endif  // defined(__VFP_FP__) && !defined(__SOFTFP__)
66 #ifdef CAN_USE_VFP_INSTRUCTIONS
67   answer |= 1u << VFP3 | 1u << ARMv7;
68 #endif  // def CAN_USE_VFP_INSTRUCTIONS
69   return answer;
70 }
71 #endif  // def __arm__
72 
73 
Probe()74 void CpuFeatures::Probe() {
75   ASSERT(!initialized_);
76 #ifdef DEBUG
77   initialized_ = true;
78 #endif
79 #ifndef __arm__
80   // For the simulator=arm build, use VFP when FLAG_enable_vfp3 is
81   // enabled. VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
82   if (FLAG_enable_vfp3) {
83     supported_ |= 1u << VFP3 | 1u << ARMv7;
84   }
85   // For the simulator=arm build, use ARMv7 when FLAG_enable_armv7 is enabled
86   if (FLAG_enable_armv7) {
87     supported_ |= 1u << ARMv7;
88   }
89 #else  // def __arm__
90   if (Serializer::enabled()) {
91     supported_ |= OS::CpuFeaturesImpliedByPlatform();
92     supported_ |= CpuFeaturesImpliedByCompiler();
93     return;  // No features if we might serialize.
94   }
95 
96   if (OS::ArmCpuHasFeature(VFP3)) {
97     // This implementation also sets the VFP flags if runtime
98     // detection of VFP returns true. VFPv3 implies ARMv7, see ARM DDI
99     // 0406B, page A1-6.
100     supported_ |= 1u << VFP3 | 1u << ARMv7;
101     found_by_runtime_probing_ |= 1u << VFP3 | 1u << ARMv7;
102   }
103 
104   if (OS::ArmCpuHasFeature(ARMv7)) {
105     supported_ |= 1u << ARMv7;
106     found_by_runtime_probing_ |= 1u << ARMv7;
107   }
108 #endif
109 }
110 
111 
112 // -----------------------------------------------------------------------------
113 // Implementation of RelocInfo
114 
115 const int RelocInfo::kApplyMask = 0;
116 
117 
IsCodedSpecially()118 bool RelocInfo::IsCodedSpecially() {
119   // The deserializer needs to know whether a pointer is specially coded.  Being
120   // specially coded on ARM means that it is a movw/movt instruction.  We don't
121   // generate those yet.
122   return false;
123 }
124 
125 
126 
PatchCode(byte * instructions,int instruction_count)127 void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
128   // Patch the code at the current address with the supplied instructions.
129   Instr* pc = reinterpret_cast<Instr*>(pc_);
130   Instr* instr = reinterpret_cast<Instr*>(instructions);
131   for (int i = 0; i < instruction_count; i++) {
132     *(pc + i) = *(instr + i);
133   }
134 
135   // Indicate that code has changed.
136   CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
137 }
138 
139 
140 // Patch the code at the current PC with a call to the target address.
141 // Additional guard instructions can be added if required.
PatchCodeWithCall(Address target,int guard_bytes)142 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
143   // Patch the code at the current address with a call to the target.
144   UNIMPLEMENTED();
145 }
146 
147 
148 // -----------------------------------------------------------------------------
149 // Implementation of Operand and MemOperand
150 // See assembler-arm-inl.h for inlined constructors
151 
Operand(Handle<Object> handle)152 Operand::Operand(Handle<Object> handle) {
153   rm_ = no_reg;
154   // Verify all Objects referred by code are NOT in new space.
155   Object* obj = *handle;
156   ASSERT(!HEAP->InNewSpace(obj));
157   if (obj->IsHeapObject()) {
158     imm32_ = reinterpret_cast<intptr_t>(handle.location());
159     rmode_ = RelocInfo::EMBEDDED_OBJECT;
160   } else {
161     // no relocation needed
162     imm32_ =  reinterpret_cast<intptr_t>(obj);
163     rmode_ = RelocInfo::NONE;
164   }
165 }
166 
167 
Operand(Register rm,ShiftOp shift_op,int shift_imm)168 Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
169   ASSERT(is_uint5(shift_imm));
170   ASSERT(shift_op != ROR || shift_imm != 0);  // use RRX if you mean it
171   rm_ = rm;
172   rs_ = no_reg;
173   shift_op_ = shift_op;
174   shift_imm_ = shift_imm & 31;
175   if (shift_op == RRX) {
176     // encoded as ROR with shift_imm == 0
177     ASSERT(shift_imm == 0);
178     shift_op_ = ROR;
179     shift_imm_ = 0;
180   }
181 }
182 
183 
Operand(Register rm,ShiftOp shift_op,Register rs)184 Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
185   ASSERT(shift_op != RRX);
186   rm_ = rm;
187   rs_ = no_reg;
188   shift_op_ = shift_op;
189   rs_ = rs;
190 }
191 
192 
MemOperand(Register rn,int32_t offset,AddrMode am)193 MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
194   rn_ = rn;
195   rm_ = no_reg;
196   offset_ = offset;
197   am_ = am;
198 }
199 
MemOperand(Register rn,Register rm,AddrMode am)200 MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
201   rn_ = rn;
202   rm_ = rm;
203   shift_op_ = LSL;
204   shift_imm_ = 0;
205   am_ = am;
206 }
207 
208 
MemOperand(Register rn,Register rm,ShiftOp shift_op,int shift_imm,AddrMode am)209 MemOperand::MemOperand(Register rn, Register rm,
210                        ShiftOp shift_op, int shift_imm, AddrMode am) {
211   ASSERT(is_uint5(shift_imm));
212   rn_ = rn;
213   rm_ = rm;
214   shift_op_ = shift_op;
215   shift_imm_ = shift_imm & 31;
216   am_ = am;
217 }
218 
219 
220 // -----------------------------------------------------------------------------
221 // Specific instructions, constants, and masks.
222 
223 // add(sp, sp, 4) instruction (aka Pop())
224 const Instr kPopInstruction =
225     al | PostIndex | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12;
226 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
227 // register r is not encoded.
228 const Instr kPushRegPattern =
229     al | B26 | 4 | NegPreIndex | sp.code() * B16;
230 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
231 // register r is not encoded.
232 const Instr kPopRegPattern =
233     al | B26 | L | 4 | PostIndex | sp.code() * B16;
234 // mov lr, pc
235 const Instr kMovLrPc = al | MOV | pc.code() | lr.code() * B12;
236 // ldr rd, [pc, #offset]
237 const Instr kLdrPCMask = kCondMask | 15 * B24 | 7 * B20 | 15 * B16;
238 const Instr kLdrPCPattern = al | 5 * B24 | L | pc.code() * B16;
239 // blxcc rm
240 const Instr kBlxRegMask =
241     15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4;
242 const Instr kBlxRegPattern =
243     B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX;
244 const Instr kMovMvnMask = 0x6d * B21 | 0xf * B16;
245 const Instr kMovMvnPattern = 0xd * B21;
246 const Instr kMovMvnFlip = B22;
247 const Instr kMovLeaveCCMask = 0xdff * B16;
248 const Instr kMovLeaveCCPattern = 0x1a0 * B16;
249 const Instr kMovwMask = 0xff * B20;
250 const Instr kMovwPattern = 0x30 * B20;
251 const Instr kMovwLeaveCCFlip = 0x5 * B21;
252 const Instr kCmpCmnMask = 0xdd * B20 | 0xf * B12;
253 const Instr kCmpCmnPattern = 0x15 * B20;
254 const Instr kCmpCmnFlip = B21;
255 const Instr kAddSubFlip = 0x6 * B21;
256 const Instr kAndBicFlip = 0xe * B21;
257 
258 // A mask for the Rd register for push, pop, ldr, str instructions.
259 const Instr kLdrRegFpOffsetPattern =
260     al | B26 | L | Offset | fp.code() * B16;
261 const Instr kStrRegFpOffsetPattern =
262     al | B26 | Offset | fp.code() * B16;
263 const Instr kLdrRegFpNegOffsetPattern =
264     al | B26 | L | NegOffset | fp.code() * B16;
265 const Instr kStrRegFpNegOffsetPattern =
266     al | B26 | NegOffset | fp.code() * B16;
267 const Instr kLdrStrInstrTypeMask = 0xffff0000;
268 const Instr kLdrStrInstrArgumentMask = 0x0000ffff;
269 const Instr kLdrStrOffsetMask = 0x00000fff;
270 
271 
272 // Spare buffer.
273 static const int kMinimalBufferSize = 4*KB;
274 
275 
Assembler(Isolate * arg_isolate,void * buffer,int buffer_size)276 Assembler::Assembler(Isolate* arg_isolate, void* buffer, int buffer_size)
277     : AssemblerBase(arg_isolate),
278       positions_recorder_(this),
279       allow_peephole_optimization_(false),
280       emit_debug_code_(FLAG_debug_code) {
281   allow_peephole_optimization_ = FLAG_peephole_optimization;
282   if (buffer == NULL) {
283     // Do our own buffer management.
284     if (buffer_size <= kMinimalBufferSize) {
285       buffer_size = kMinimalBufferSize;
286 
287       if (isolate()->assembler_spare_buffer() != NULL) {
288         buffer = isolate()->assembler_spare_buffer();
289         isolate()->set_assembler_spare_buffer(NULL);
290       }
291     }
292     if (buffer == NULL) {
293       buffer_ = NewArray<byte>(buffer_size);
294     } else {
295       buffer_ = static_cast<byte*>(buffer);
296     }
297     buffer_size_ = buffer_size;
298     own_buffer_ = true;
299 
300   } else {
301     // Use externally provided buffer instead.
302     ASSERT(buffer_size > 0);
303     buffer_ = static_cast<byte*>(buffer);
304     buffer_size_ = buffer_size;
305     own_buffer_ = false;
306   }
307 
308   // Setup buffer pointers.
309   ASSERT(buffer_ != NULL);
310   pc_ = buffer_;
311   reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
312   num_prinfo_ = 0;
313   next_buffer_check_ = 0;
314   const_pool_blocked_nesting_ = 0;
315   no_const_pool_before_ = 0;
316   last_const_pool_end_ = 0;
317   last_bound_pos_ = 0;
318 }
319 
320 
~Assembler()321 Assembler::~Assembler() {
322   ASSERT(const_pool_blocked_nesting_ == 0);
323   if (own_buffer_) {
324     if (isolate()->assembler_spare_buffer() == NULL &&
325         buffer_size_ == kMinimalBufferSize) {
326       isolate()->set_assembler_spare_buffer(buffer_);
327     } else {
328       DeleteArray(buffer_);
329     }
330   }
331 }
332 
333 
GetCode(CodeDesc * desc)334 void Assembler::GetCode(CodeDesc* desc) {
335   // Emit constant pool if necessary.
336   CheckConstPool(true, false);
337   ASSERT(num_prinfo_ == 0);
338 
339   // Setup code descriptor.
340   desc->buffer = buffer_;
341   desc->buffer_size = buffer_size_;
342   desc->instr_size = pc_offset();
343   desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
344 }
345 
346 
Align(int m)347 void Assembler::Align(int m) {
348   ASSERT(m >= 4 && IsPowerOf2(m));
349   while ((pc_offset() & (m - 1)) != 0) {
350     nop();
351   }
352 }
353 
354 
CodeTargetAlign()355 void Assembler::CodeTargetAlign() {
356   // Preferred alignment of jump targets on some ARM chips.
357   Align(8);
358 }
359 
360 
GetCondition(Instr instr)361 Condition Assembler::GetCondition(Instr instr) {
362   return Instruction::ConditionField(instr);
363 }
364 
365 
IsBranch(Instr instr)366 bool Assembler::IsBranch(Instr instr) {
367   return (instr & (B27 | B25)) == (B27 | B25);
368 }
369 
370 
GetBranchOffset(Instr instr)371 int Assembler::GetBranchOffset(Instr instr) {
372   ASSERT(IsBranch(instr));
373   // Take the jump offset in the lower 24 bits, sign extend it and multiply it
374   // with 4 to get the offset in bytes.
375   return ((instr & kImm24Mask) << 8) >> 6;
376 }
377 
378 
IsLdrRegisterImmediate(Instr instr)379 bool Assembler::IsLdrRegisterImmediate(Instr instr) {
380   return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20);
381 }
382 
383 
GetLdrRegisterImmediateOffset(Instr instr)384 int Assembler::GetLdrRegisterImmediateOffset(Instr instr) {
385   ASSERT(IsLdrRegisterImmediate(instr));
386   bool positive = (instr & B23) == B23;
387   int offset = instr & kOff12Mask;  // Zero extended offset.
388   return positive ? offset : -offset;
389 }
390 
391 
SetLdrRegisterImmediateOffset(Instr instr,int offset)392 Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) {
393   ASSERT(IsLdrRegisterImmediate(instr));
394   bool positive = offset >= 0;
395   if (!positive) offset = -offset;
396   ASSERT(is_uint12(offset));
397   // Set bit indicating whether the offset should be added.
398   instr = (instr & ~B23) | (positive ? B23 : 0);
399   // Set the actual offset.
400   return (instr & ~kOff12Mask) | offset;
401 }
402 
403 
IsStrRegisterImmediate(Instr instr)404 bool Assembler::IsStrRegisterImmediate(Instr instr) {
405   return (instr & (B27 | B26 | B25 | B22 | B20)) == B26;
406 }
407 
408 
SetStrRegisterImmediateOffset(Instr instr,int offset)409 Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) {
410   ASSERT(IsStrRegisterImmediate(instr));
411   bool positive = offset >= 0;
412   if (!positive) offset = -offset;
413   ASSERT(is_uint12(offset));
414   // Set bit indicating whether the offset should be added.
415   instr = (instr & ~B23) | (positive ? B23 : 0);
416   // Set the actual offset.
417   return (instr & ~kOff12Mask) | offset;
418 }
419 
420 
IsAddRegisterImmediate(Instr instr)421 bool Assembler::IsAddRegisterImmediate(Instr instr) {
422   return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23);
423 }
424 
425 
SetAddRegisterImmediateOffset(Instr instr,int offset)426 Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) {
427   ASSERT(IsAddRegisterImmediate(instr));
428   ASSERT(offset >= 0);
429   ASSERT(is_uint12(offset));
430   // Set the offset.
431   return (instr & ~kOff12Mask) | offset;
432 }
433 
434 
GetRd(Instr instr)435 Register Assembler::GetRd(Instr instr) {
436   Register reg;
437   reg.code_ = Instruction::RdValue(instr);
438   return reg;
439 }
440 
441 
GetRn(Instr instr)442 Register Assembler::GetRn(Instr instr) {
443   Register reg;
444   reg.code_ = Instruction::RnValue(instr);
445   return reg;
446 }
447 
448 
GetRm(Instr instr)449 Register Assembler::GetRm(Instr instr) {
450   Register reg;
451   reg.code_ = Instruction::RmValue(instr);
452   return reg;
453 }
454 
455 
IsPush(Instr instr)456 bool Assembler::IsPush(Instr instr) {
457   return ((instr & ~kRdMask) == kPushRegPattern);
458 }
459 
460 
IsPop(Instr instr)461 bool Assembler::IsPop(Instr instr) {
462   return ((instr & ~kRdMask) == kPopRegPattern);
463 }
464 
465 
IsStrRegFpOffset(Instr instr)466 bool Assembler::IsStrRegFpOffset(Instr instr) {
467   return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern);
468 }
469 
470 
IsLdrRegFpOffset(Instr instr)471 bool Assembler::IsLdrRegFpOffset(Instr instr) {
472   return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern);
473 }
474 
475 
IsStrRegFpNegOffset(Instr instr)476 bool Assembler::IsStrRegFpNegOffset(Instr instr) {
477   return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern);
478 }
479 
480 
IsLdrRegFpNegOffset(Instr instr)481 bool Assembler::IsLdrRegFpNegOffset(Instr instr) {
482   return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern);
483 }
484 
485 
IsLdrPcImmediateOffset(Instr instr)486 bool Assembler::IsLdrPcImmediateOffset(Instr instr) {
487   // Check the instruction is indeed a
488   // ldr<cond> <Rd>, [pc +/- offset_12].
489   return (instr & (kLdrPCMask & ~kCondMask)) == 0x051f0000;
490 }
491 
492 
IsTstImmediate(Instr instr)493 bool Assembler::IsTstImmediate(Instr instr) {
494   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
495       (I | TST | S);
496 }
497 
498 
IsCmpRegister(Instr instr)499 bool Assembler::IsCmpRegister(Instr instr) {
500   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) ==
501       (CMP | S);
502 }
503 
504 
IsCmpImmediate(Instr instr)505 bool Assembler::IsCmpImmediate(Instr instr) {
506   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
507       (I | CMP | S);
508 }
509 
510 
GetCmpImmediateRegister(Instr instr)511 Register Assembler::GetCmpImmediateRegister(Instr instr) {
512   ASSERT(IsCmpImmediate(instr));
513   return GetRn(instr);
514 }
515 
516 
GetCmpImmediateRawImmediate(Instr instr)517 int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
518   ASSERT(IsCmpImmediate(instr));
519   return instr & kOff12Mask;
520 }
521 
522 // Labels refer to positions in the (to be) generated code.
523 // There are bound, linked, and unused labels.
524 //
525 // Bound labels refer to known positions in the already
526 // generated code. pos() is the position the label refers to.
527 //
528 // Linked labels refer to unknown positions in the code
529 // to be generated; pos() is the position of the last
530 // instruction using the label.
531 
532 
533 // The link chain is terminated by a negative code position (must be aligned)
534 const int kEndOfChain = -4;
535 
536 
target_at(int pos)537 int Assembler::target_at(int pos)  {
538   Instr instr = instr_at(pos);
539   if ((instr & ~kImm24Mask) == 0) {
540     // Emitted label constant, not part of a branch.
541     return instr - (Code::kHeaderSize - kHeapObjectTag);
542   }
543   ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx imm24
544   int imm26 = ((instr & kImm24Mask) << 8) >> 6;
545   if ((Instruction::ConditionField(instr) == kSpecialCondition) &&
546       ((instr & B24) != 0)) {
547     // blx uses bit 24 to encode bit 2 of imm26
548     imm26 += 2;
549   }
550   return pos + kPcLoadDelta + imm26;
551 }
552 
553 
target_at_put(int pos,int target_pos)554 void Assembler::target_at_put(int pos, int target_pos) {
555   Instr instr = instr_at(pos);
556   if ((instr & ~kImm24Mask) == 0) {
557     ASSERT(target_pos == kEndOfChain || target_pos >= 0);
558     // Emitted label constant, not part of a branch.
559     // Make label relative to Code* of generated Code object.
560     instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
561     return;
562   }
563   int imm26 = target_pos - (pos + kPcLoadDelta);
564   ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx imm24
565   if (Instruction::ConditionField(instr) == kSpecialCondition) {
566     // blx uses bit 24 to encode bit 2 of imm26
567     ASSERT((imm26 & 1) == 0);
568     instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1)*B24;
569   } else {
570     ASSERT((imm26 & 3) == 0);
571     instr &= ~kImm24Mask;
572   }
573   int imm24 = imm26 >> 2;
574   ASSERT(is_int24(imm24));
575   instr_at_put(pos, instr | (imm24 & kImm24Mask));
576 }
577 
578 
print(Label * L)579 void Assembler::print(Label* L) {
580   if (L->is_unused()) {
581     PrintF("unused label\n");
582   } else if (L->is_bound()) {
583     PrintF("bound label to %d\n", L->pos());
584   } else if (L->is_linked()) {
585     Label l = *L;
586     PrintF("unbound label");
587     while (l.is_linked()) {
588       PrintF("@ %d ", l.pos());
589       Instr instr = instr_at(l.pos());
590       if ((instr & ~kImm24Mask) == 0) {
591         PrintF("value\n");
592       } else {
593         ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx
594         Condition cond = Instruction::ConditionField(instr);
595         const char* b;
596         const char* c;
597         if (cond == kSpecialCondition) {
598           b = "blx";
599           c = "";
600         } else {
601           if ((instr & B24) != 0)
602             b = "bl";
603           else
604             b = "b";
605 
606           switch (cond) {
607             case eq: c = "eq"; break;
608             case ne: c = "ne"; break;
609             case hs: c = "hs"; break;
610             case lo: c = "lo"; break;
611             case mi: c = "mi"; break;
612             case pl: c = "pl"; break;
613             case vs: c = "vs"; break;
614             case vc: c = "vc"; break;
615             case hi: c = "hi"; break;
616             case ls: c = "ls"; break;
617             case ge: c = "ge"; break;
618             case lt: c = "lt"; break;
619             case gt: c = "gt"; break;
620             case le: c = "le"; break;
621             case al: c = ""; break;
622             default:
623               c = "";
624               UNREACHABLE();
625           }
626         }
627         PrintF("%s%s\n", b, c);
628       }
629       next(&l);
630     }
631   } else {
632     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
633   }
634 }
635 
636 
bind_to(Label * L,int pos)637 void Assembler::bind_to(Label* L, int pos) {
638   ASSERT(0 <= pos && pos <= pc_offset());  // must have a valid binding position
639   while (L->is_linked()) {
640     int fixup_pos = L->pos();
641     next(L);  // call next before overwriting link with target at fixup_pos
642     target_at_put(fixup_pos, pos);
643   }
644   L->bind_to(pos);
645 
646   // Keep track of the last bound label so we don't eliminate any instructions
647   // before a bound label.
648   if (pos > last_bound_pos_)
649     last_bound_pos_ = pos;
650 }
651 
652 
link_to(Label * L,Label * appendix)653 void Assembler::link_to(Label* L, Label* appendix) {
654   if (appendix->is_linked()) {
655     if (L->is_linked()) {
656       // Append appendix to L's list.
657       int fixup_pos;
658       int link = L->pos();
659       do {
660         fixup_pos = link;
661         link = target_at(fixup_pos);
662       } while (link > 0);
663       ASSERT(link == kEndOfChain);
664       target_at_put(fixup_pos, appendix->pos());
665     } else {
666       // L is empty, simply use appendix.
667       *L = *appendix;
668     }
669   }
670   appendix->Unuse();  // appendix should not be used anymore
671 }
672 
673 
bind(Label * L)674 void Assembler::bind(Label* L) {
675   ASSERT(!L->is_bound());  // label can only be bound once
676   bind_to(L, pc_offset());
677 }
678 
679 
next(Label * L)680 void Assembler::next(Label* L) {
681   ASSERT(L->is_linked());
682   int link = target_at(L->pos());
683   if (link > 0) {
684     L->link_to(link);
685   } else {
686     ASSERT(link == kEndOfChain);
687     L->Unuse();
688   }
689 }
690 
691 
EncodeMovwImmediate(uint32_t immediate)692 static Instr EncodeMovwImmediate(uint32_t immediate) {
693   ASSERT(immediate < 0x10000);
694   return ((immediate & 0xf000) << 4) | (immediate & 0xfff);
695 }
696 
697 
698 // Low-level code emission routines depending on the addressing mode.
699 // If this returns true then you have to use the rotate_imm and immed_8
700 // that it returns, because it may have already changed the instruction
701 // to match them!
fits_shifter(uint32_t imm32,uint32_t * rotate_imm,uint32_t * immed_8,Instr * instr)702 static bool fits_shifter(uint32_t imm32,
703                          uint32_t* rotate_imm,
704                          uint32_t* immed_8,
705                          Instr* instr) {
706   // imm32 must be unsigned.
707   for (int rot = 0; rot < 16; rot++) {
708     uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot));
709     if ((imm8 <= 0xff)) {
710       *rotate_imm = rot;
711       *immed_8 = imm8;
712       return true;
713     }
714   }
715   // If the opcode is one with a complementary version and the complementary
716   // immediate fits, change the opcode.
717   if (instr != NULL) {
718     if ((*instr & kMovMvnMask) == kMovMvnPattern) {
719       if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
720         *instr ^= kMovMvnFlip;
721         return true;
722       } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) {
723         if (CpuFeatures::IsSupported(ARMv7)) {
724           if (imm32 < 0x10000) {
725             *instr ^= kMovwLeaveCCFlip;
726             *instr |= EncodeMovwImmediate(imm32);
727             *rotate_imm = *immed_8 = 0;  // Not used for movw.
728             return true;
729           }
730         }
731       }
732     } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) {
733       if (fits_shifter(-imm32, rotate_imm, immed_8, NULL)) {
734         *instr ^= kCmpCmnFlip;
735         return true;
736       }
737     } else {
738       Instr alu_insn = (*instr & kALUMask);
739       if (alu_insn == ADD ||
740           alu_insn == SUB) {
741         if (fits_shifter(-imm32, rotate_imm, immed_8, NULL)) {
742           *instr ^= kAddSubFlip;
743           return true;
744         }
745       } else if (alu_insn == AND ||
746                  alu_insn == BIC) {
747         if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
748           *instr ^= kAndBicFlip;
749           return true;
750         }
751       }
752     }
753   }
754   return false;
755 }
756 
757 
758 // We have to use the temporary register for things that can be relocated even
759 // if they can be encoded in the ARM's 12 bits of immediate-offset instruction
760 // space.  There is no guarantee that the relocated location can be similarly
761 // encoded.
must_use_constant_pool() const762 bool Operand::must_use_constant_pool() const {
763   if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
764 #ifdef DEBUG
765     if (!Serializer::enabled()) {
766       Serializer::TooLateToEnableNow();
767     }
768 #endif  // def DEBUG
769     return Serializer::enabled();
770   } else if (rmode_ == RelocInfo::NONE) {
771     return false;
772   }
773   return true;
774 }
775 
776 
is_single_instruction(Instr instr) const777 bool Operand::is_single_instruction(Instr instr) const {
778   if (rm_.is_valid()) return true;
779   uint32_t dummy1, dummy2;
780   if (must_use_constant_pool() ||
781       !fits_shifter(imm32_, &dummy1, &dummy2, &instr)) {
782     // The immediate operand cannot be encoded as a shifter operand, or use of
783     // constant pool is required. For a mov instruction not setting the
784     // condition code additional instruction conventions can be used.
785     if ((instr & ~kCondMask) == 13*B21) {  // mov, S not set
786       if (must_use_constant_pool() ||
787           !CpuFeatures::IsSupported(ARMv7)) {
788         // mov instruction will be an ldr from constant pool (one instruction).
789         return true;
790       } else {
791         // mov instruction will be a mov or movw followed by movt (two
792         // instructions).
793         return false;
794       }
795     } else {
796       // If this is not a mov or mvn instruction there will always an additional
797       // instructions - either mov or ldr. The mov might actually be two
798       // instructions mov or movw followed by movt so including the actual
799       // instruction two or three instructions will be generated.
800       return false;
801     }
802   } else {
803     // No use of constant pool and the immediate operand can be encoded as a
804     // shifter operand.
805     return true;
806   }
807 }
808 
809 
addrmod1(Instr instr,Register rn,Register rd,const Operand & x)810 void Assembler::addrmod1(Instr instr,
811                          Register rn,
812                          Register rd,
813                          const Operand& x) {
814   CheckBuffer();
815   ASSERT((instr & ~(kCondMask | kOpCodeMask | S)) == 0);
816   if (!x.rm_.is_valid()) {
817     // Immediate.
818     uint32_t rotate_imm;
819     uint32_t immed_8;
820     if (x.must_use_constant_pool() ||
821         !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
822       // The immediate operand cannot be encoded as a shifter operand, so load
823       // it first to register ip and change the original instruction to use ip.
824       // However, if the original instruction is a 'mov rd, x' (not setting the
825       // condition code), then replace it with a 'ldr rd, [pc]'.
826       CHECK(!rn.is(ip));  // rn should never be ip, or will be trashed
827       Condition cond = Instruction::ConditionField(instr);
828       if ((instr & ~kCondMask) == 13*B21) {  // mov, S not set
829         if (x.must_use_constant_pool() ||
830             !CpuFeatures::IsSupported(ARMv7)) {
831           RecordRelocInfo(x.rmode_, x.imm32_);
832           ldr(rd, MemOperand(pc, 0), cond);
833         } else {
834           // Will probably use movw, will certainly not use constant pool.
835           mov(rd, Operand(x.imm32_ & 0xffff), LeaveCC, cond);
836           movt(rd, static_cast<uint32_t>(x.imm32_) >> 16, cond);
837         }
838       } else {
839         // If this is not a mov or mvn instruction we may still be able to avoid
840         // a constant pool entry by using mvn or movw.
841         if (!x.must_use_constant_pool() &&
842             (instr & kMovMvnMask) != kMovMvnPattern) {
843           mov(ip, x, LeaveCC, cond);
844         } else {
845           RecordRelocInfo(x.rmode_, x.imm32_);
846           ldr(ip, MemOperand(pc, 0), cond);
847         }
848         addrmod1(instr, rn, rd, Operand(ip));
849       }
850       return;
851     }
852     instr |= I | rotate_imm*B8 | immed_8;
853   } else if (!x.rs_.is_valid()) {
854     // Immediate shift.
855     instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
856   } else {
857     // Register shift.
858     ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
859     instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
860   }
861   emit(instr | rn.code()*B16 | rd.code()*B12);
862   if (rn.is(pc) || x.rm_.is(pc)) {
863     // Block constant pool emission for one instruction after reading pc.
864     BlockConstPoolBefore(pc_offset() + kInstrSize);
865   }
866 }
867 
868 
addrmod2(Instr instr,Register rd,const MemOperand & x)869 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
870   ASSERT((instr & ~(kCondMask | B | L)) == B26);
871   int am = x.am_;
872   if (!x.rm_.is_valid()) {
873     // Immediate offset.
874     int offset_12 = x.offset_;
875     if (offset_12 < 0) {
876       offset_12 = -offset_12;
877       am ^= U;
878     }
879     if (!is_uint12(offset_12)) {
880       // Immediate offset cannot be encoded, load it first to register ip
881       // rn (and rd in a load) should never be ip, or will be trashed.
882       ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
883       mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
884       addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
885       return;
886     }
887     ASSERT(offset_12 >= 0);  // no masking needed
888     instr |= offset_12;
889   } else {
890     // Register offset (shift_imm_ and shift_op_ are 0) or scaled
891     // register offset the constructors make sure than both shift_imm_
892     // and shift_op_ are initialized.
893     ASSERT(!x.rm_.is(pc));
894     instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
895   }
896   ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
897   emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
898 }
899 
900 
addrmod3(Instr instr,Register rd,const MemOperand & x)901 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
902   ASSERT((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7));
903   ASSERT(x.rn_.is_valid());
904   int am = x.am_;
905   if (!x.rm_.is_valid()) {
906     // Immediate offset.
907     int offset_8 = x.offset_;
908     if (offset_8 < 0) {
909       offset_8 = -offset_8;
910       am ^= U;
911     }
912     if (!is_uint8(offset_8)) {
913       // Immediate offset cannot be encoded, load it first to register ip
914       // rn (and rd in a load) should never be ip, or will be trashed.
915       ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
916       mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
917       addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
918       return;
919     }
920     ASSERT(offset_8 >= 0);  // no masking needed
921     instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
922   } else if (x.shift_imm_ != 0) {
923     // Scaled register offset not supported, load index first
924     // rn (and rd in a load) should never be ip, or will be trashed.
925     ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
926     mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
927         Instruction::ConditionField(instr));
928     addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
929     return;
930   } else {
931     // Register offset.
932     ASSERT((am & (P|W)) == P || !x.rm_.is(pc));  // no pc index with writeback
933     instr |= x.rm_.code();
934   }
935   ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
936   emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
937 }
938 
939 
addrmod4(Instr instr,Register rn,RegList rl)940 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
941   ASSERT((instr & ~(kCondMask | P | U | W | L)) == B27);
942   ASSERT(rl != 0);
943   ASSERT(!rn.is(pc));
944   emit(instr | rn.code()*B16 | rl);
945 }
946 
947 
addrmod5(Instr instr,CRegister crd,const MemOperand & x)948 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
949   // Unindexed addressing is not encoded by this function.
950   ASSERT_EQ((B27 | B26),
951             (instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L)));
952   ASSERT(x.rn_.is_valid() && !x.rm_.is_valid());
953   int am = x.am_;
954   int offset_8 = x.offset_;
955   ASSERT((offset_8 & 3) == 0);  // offset must be an aligned word offset
956   offset_8 >>= 2;
957   if (offset_8 < 0) {
958     offset_8 = -offset_8;
959     am ^= U;
960   }
961   ASSERT(is_uint8(offset_8));  // unsigned word offset must fit in a byte
962   ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
963 
964   // Post-indexed addressing requires W == 1; different than in addrmod2/3.
965   if ((am & P) == 0)
966     am |= W;
967 
968   ASSERT(offset_8 >= 0);  // no masking needed
969   emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
970 }
971 
972 
branch_offset(Label * L,bool jump_elimination_allowed)973 int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
974   int target_pos;
975   if (L->is_bound()) {
976     target_pos = L->pos();
977   } else {
978     if (L->is_linked()) {
979       target_pos = L->pos();  // L's link
980     } else {
981       target_pos = kEndOfChain;
982     }
983     L->link_to(pc_offset());
984   }
985 
986   // Block the emission of the constant pool, since the branch instruction must
987   // be emitted at the pc offset recorded by the label.
988   BlockConstPoolBefore(pc_offset() + kInstrSize);
989   return target_pos - (pc_offset() + kPcLoadDelta);
990 }
991 
992 
label_at_put(Label * L,int at_offset)993 void Assembler::label_at_put(Label* L, int at_offset) {
994   int target_pos;
995   if (L->is_bound()) {
996     target_pos = L->pos();
997   } else {
998     if (L->is_linked()) {
999       target_pos = L->pos();  // L's link
1000     } else {
1001       target_pos = kEndOfChain;
1002     }
1003     L->link_to(at_offset);
1004     instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
1005   }
1006 }
1007 
1008 
1009 // Branch instructions.
b(int branch_offset,Condition cond)1010 void Assembler::b(int branch_offset, Condition cond) {
1011   ASSERT((branch_offset & 3) == 0);
1012   int imm24 = branch_offset >> 2;
1013   ASSERT(is_int24(imm24));
1014   emit(cond | B27 | B25 | (imm24 & kImm24Mask));
1015 
1016   if (cond == al) {
1017     // Dead code is a good location to emit the constant pool.
1018     CheckConstPool(false, false);
1019   }
1020 }
1021 
1022 
bl(int branch_offset,Condition cond)1023 void Assembler::bl(int branch_offset, Condition cond) {
1024   positions_recorder()->WriteRecordedPositions();
1025   ASSERT((branch_offset & 3) == 0);
1026   int imm24 = branch_offset >> 2;
1027   ASSERT(is_int24(imm24));
1028   emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask));
1029 }
1030 
1031 
blx(int branch_offset)1032 void Assembler::blx(int branch_offset) {  // v5 and above
1033   positions_recorder()->WriteRecordedPositions();
1034   ASSERT((branch_offset & 1) == 0);
1035   int h = ((branch_offset & 2) >> 1)*B24;
1036   int imm24 = branch_offset >> 2;
1037   ASSERT(is_int24(imm24));
1038   emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask));
1039 }
1040 
1041 
blx(Register target,Condition cond)1042 void Assembler::blx(Register target, Condition cond) {  // v5 and above
1043   positions_recorder()->WriteRecordedPositions();
1044   ASSERT(!target.is(pc));
1045   emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BLX | target.code());
1046 }
1047 
1048 
bx(Register target,Condition cond)1049 void Assembler::bx(Register target, Condition cond) {  // v5 and above, plus v4t
1050   positions_recorder()->WriteRecordedPositions();
1051   ASSERT(!target.is(pc));  // use of pc is actually allowed, but discouraged
1052   emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BX | target.code());
1053 }
1054 
1055 
1056 // Data-processing instructions.
1057 
and_(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1058 void Assembler::and_(Register dst, Register src1, const Operand& src2,
1059                      SBit s, Condition cond) {
1060   addrmod1(cond | AND | s, src1, dst, src2);
1061 }
1062 
1063 
eor(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1064 void Assembler::eor(Register dst, Register src1, const Operand& src2,
1065                     SBit s, Condition cond) {
1066   addrmod1(cond | EOR | s, src1, dst, src2);
1067 }
1068 
1069 
sub(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1070 void Assembler::sub(Register dst, Register src1, const Operand& src2,
1071                     SBit s, Condition cond) {
1072   addrmod1(cond | SUB | s, src1, dst, src2);
1073 }
1074 
1075 
rsb(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1076 void Assembler::rsb(Register dst, Register src1, const Operand& src2,
1077                     SBit s, Condition cond) {
1078   addrmod1(cond | RSB | s, src1, dst, src2);
1079 }
1080 
1081 
add(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1082 void Assembler::add(Register dst, Register src1, const Operand& src2,
1083                     SBit s, Condition cond) {
1084   addrmod1(cond | ADD | s, src1, dst, src2);
1085 
1086   // Eliminate pattern: push(r), pop()
1087   //   str(src, MemOperand(sp, 4, NegPreIndex), al);
1088   //   add(sp, sp, Operand(kPointerSize));
1089   // Both instructions can be eliminated.
1090   if (can_peephole_optimize(2) &&
1091       // Pattern.
1092       instr_at(pc_ - 1 * kInstrSize) == kPopInstruction &&
1093       (instr_at(pc_ - 2 * kInstrSize) & ~kRdMask) == kPushRegPattern) {
1094     pc_ -= 2 * kInstrSize;
1095     if (FLAG_print_peephole_optimization) {
1096       PrintF("%x push(reg)/pop() eliminated\n", pc_offset());
1097     }
1098   }
1099 }
1100 
1101 
adc(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1102 void Assembler::adc(Register dst, Register src1, const Operand& src2,
1103                     SBit s, Condition cond) {
1104   addrmod1(cond | ADC | s, src1, dst, src2);
1105 }
1106 
1107 
sbc(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1108 void Assembler::sbc(Register dst, Register src1, const Operand& src2,
1109                     SBit s, Condition cond) {
1110   addrmod1(cond | SBC | s, src1, dst, src2);
1111 }
1112 
1113 
rsc(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1114 void Assembler::rsc(Register dst, Register src1, const Operand& src2,
1115                     SBit s, Condition cond) {
1116   addrmod1(cond | RSC | s, src1, dst, src2);
1117 }
1118 
1119 
tst(Register src1,const Operand & src2,Condition cond)1120 void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
1121   addrmod1(cond | TST | S, src1, r0, src2);
1122 }
1123 
1124 
teq(Register src1,const Operand & src2,Condition cond)1125 void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
1126   addrmod1(cond | TEQ | S, src1, r0, src2);
1127 }
1128 
1129 
cmp(Register src1,const Operand & src2,Condition cond)1130 void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
1131   addrmod1(cond | CMP | S, src1, r0, src2);
1132 }
1133 
1134 
cmp_raw_immediate(Register src,int raw_immediate,Condition cond)1135 void Assembler::cmp_raw_immediate(
1136     Register src, int raw_immediate, Condition cond) {
1137   ASSERT(is_uint12(raw_immediate));
1138   emit(cond | I | CMP | S | src.code() << 16 | raw_immediate);
1139 }
1140 
1141 
cmn(Register src1,const Operand & src2,Condition cond)1142 void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
1143   addrmod1(cond | CMN | S, src1, r0, src2);
1144 }
1145 
1146 
orr(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1147 void Assembler::orr(Register dst, Register src1, const Operand& src2,
1148                     SBit s, Condition cond) {
1149   addrmod1(cond | ORR | s, src1, dst, src2);
1150 }
1151 
1152 
mov(Register dst,const Operand & src,SBit s,Condition cond)1153 void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
1154   if (dst.is(pc)) {
1155     positions_recorder()->WriteRecordedPositions();
1156   }
1157   // Don't allow nop instructions in the form mov rn, rn to be generated using
1158   // the mov instruction. They must be generated using nop(int/NopMarkerTypes)
1159   // or MarkCode(int/NopMarkerTypes) pseudo instructions.
1160   ASSERT(!(src.is_reg() && src.rm().is(dst) && s == LeaveCC && cond == al));
1161   addrmod1(cond | MOV | s, r0, dst, src);
1162 }
1163 
1164 
movw(Register reg,uint32_t immediate,Condition cond)1165 void Assembler::movw(Register reg, uint32_t immediate, Condition cond) {
1166   ASSERT(immediate < 0x10000);
1167   mov(reg, Operand(immediate), LeaveCC, cond);
1168 }
1169 
1170 
movt(Register reg,uint32_t immediate,Condition cond)1171 void Assembler::movt(Register reg, uint32_t immediate, Condition cond) {
1172   emit(cond | 0x34*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
1173 }
1174 
1175 
bic(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1176 void Assembler::bic(Register dst, Register src1, const Operand& src2,
1177                     SBit s, Condition cond) {
1178   addrmod1(cond | BIC | s, src1, dst, src2);
1179 }
1180 
1181 
mvn(Register dst,const Operand & src,SBit s,Condition cond)1182 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
1183   addrmod1(cond | MVN | s, r0, dst, src);
1184 }
1185 
1186 
1187 // Multiply instructions.
mla(Register dst,Register src1,Register src2,Register srcA,SBit s,Condition cond)1188 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
1189                     SBit s, Condition cond) {
1190   ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
1191   emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
1192        src2.code()*B8 | B7 | B4 | src1.code());
1193 }
1194 
1195 
mul(Register dst,Register src1,Register src2,SBit s,Condition cond)1196 void Assembler::mul(Register dst, Register src1, Register src2,
1197                     SBit s, Condition cond) {
1198   ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1199   // dst goes in bits 16-19 for this instruction!
1200   emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code());
1201 }
1202 
1203 
smlal(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1204 void Assembler::smlal(Register dstL,
1205                       Register dstH,
1206                       Register src1,
1207                       Register src2,
1208                       SBit s,
1209                       Condition cond) {
1210   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1211   ASSERT(!dstL.is(dstH));
1212   emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1213        src2.code()*B8 | B7 | B4 | src1.code());
1214 }
1215 
1216 
smull(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1217 void Assembler::smull(Register dstL,
1218                       Register dstH,
1219                       Register src1,
1220                       Register src2,
1221                       SBit s,
1222                       Condition cond) {
1223   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1224   ASSERT(!dstL.is(dstH));
1225   emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
1226        src2.code()*B8 | B7 | B4 | src1.code());
1227 }
1228 
1229 
umlal(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1230 void Assembler::umlal(Register dstL,
1231                       Register dstH,
1232                       Register src1,
1233                       Register src2,
1234                       SBit s,
1235                       Condition cond) {
1236   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1237   ASSERT(!dstL.is(dstH));
1238   emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1239        src2.code()*B8 | B7 | B4 | src1.code());
1240 }
1241 
1242 
umull(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1243 void Assembler::umull(Register dstL,
1244                       Register dstH,
1245                       Register src1,
1246                       Register src2,
1247                       SBit s,
1248                       Condition cond) {
1249   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1250   ASSERT(!dstL.is(dstH));
1251   emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
1252        src2.code()*B8 | B7 | B4 | src1.code());
1253 }
1254 
1255 
1256 // Miscellaneous arithmetic instructions.
clz(Register dst,Register src,Condition cond)1257 void Assembler::clz(Register dst, Register src, Condition cond) {
1258   // v5 and above.
1259   ASSERT(!dst.is(pc) && !src.is(pc));
1260   emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
1261        15*B8 | CLZ | src.code());
1262 }
1263 
1264 
1265 // Saturating instructions.
1266 
1267 // Unsigned saturate.
usat(Register dst,int satpos,const Operand & src,Condition cond)1268 void Assembler::usat(Register dst,
1269                      int satpos,
1270                      const Operand& src,
1271                      Condition cond) {
1272   // v6 and above.
1273   ASSERT(CpuFeatures::IsSupported(ARMv7));
1274   ASSERT(!dst.is(pc) && !src.rm_.is(pc));
1275   ASSERT((satpos >= 0) && (satpos <= 31));
1276   ASSERT((src.shift_op_ == ASR) || (src.shift_op_ == LSL));
1277   ASSERT(src.rs_.is(no_reg));
1278 
1279   int sh = 0;
1280   if (src.shift_op_ == ASR) {
1281       sh = 1;
1282   }
1283 
1284   emit(cond | 0x6*B24 | 0xe*B20 | satpos*B16 | dst.code()*B12 |
1285        src.shift_imm_*B7 | sh*B6 | 0x1*B4 | src.rm_.code());
1286 }
1287 
1288 
1289 // Bitfield manipulation instructions.
1290 
1291 // Unsigned bit field extract.
1292 // Extracts #width adjacent bits from position #lsb in a register, and
1293 // writes them to the low bits of a destination register.
1294 //   ubfx dst, src, #lsb, #width
ubfx(Register dst,Register src,int lsb,int width,Condition cond)1295 void Assembler::ubfx(Register dst,
1296                      Register src,
1297                      int lsb,
1298                      int width,
1299                      Condition cond) {
1300   // v7 and above.
1301   ASSERT(CpuFeatures::IsSupported(ARMv7));
1302   ASSERT(!dst.is(pc) && !src.is(pc));
1303   ASSERT((lsb >= 0) && (lsb <= 31));
1304   ASSERT((width >= 1) && (width <= (32 - lsb)));
1305   emit(cond | 0xf*B23 | B22 | B21 | (width - 1)*B16 | dst.code()*B12 |
1306        lsb*B7 | B6 | B4 | src.code());
1307 }
1308 
1309 
1310 // Signed bit field extract.
1311 // Extracts #width adjacent bits from position #lsb in a register, and
1312 // writes them to the low bits of a destination register. The extracted
1313 // value is sign extended to fill the destination register.
1314 //   sbfx dst, src, #lsb, #width
sbfx(Register dst,Register src,int lsb,int width,Condition cond)1315 void Assembler::sbfx(Register dst,
1316                      Register src,
1317                      int lsb,
1318                      int width,
1319                      Condition cond) {
1320   // v7 and above.
1321   ASSERT(CpuFeatures::IsSupported(ARMv7));
1322   ASSERT(!dst.is(pc) && !src.is(pc));
1323   ASSERT((lsb >= 0) && (lsb <= 31));
1324   ASSERT((width >= 1) && (width <= (32 - lsb)));
1325   emit(cond | 0xf*B23 | B21 | (width - 1)*B16 | dst.code()*B12 |
1326        lsb*B7 | B6 | B4 | src.code());
1327 }
1328 
1329 
1330 // Bit field clear.
1331 // Sets #width adjacent bits at position #lsb in the destination register
1332 // to zero, preserving the value of the other bits.
1333 //   bfc dst, #lsb, #width
bfc(Register dst,int lsb,int width,Condition cond)1334 void Assembler::bfc(Register dst, int lsb, int width, Condition cond) {
1335   // v7 and above.
1336   ASSERT(CpuFeatures::IsSupported(ARMv7));
1337   ASSERT(!dst.is(pc));
1338   ASSERT((lsb >= 0) && (lsb <= 31));
1339   ASSERT((width >= 1) && (width <= (32 - lsb)));
1340   int msb = lsb + width - 1;
1341   emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | 0xf);
1342 }
1343 
1344 
1345 // Bit field insert.
1346 // Inserts #width adjacent bits from the low bits of the source register
1347 // into position #lsb of the destination register.
1348 //   bfi dst, src, #lsb, #width
bfi(Register dst,Register src,int lsb,int width,Condition cond)1349 void Assembler::bfi(Register dst,
1350                     Register src,
1351                     int lsb,
1352                     int width,
1353                     Condition cond) {
1354   // v7 and above.
1355   ASSERT(CpuFeatures::IsSupported(ARMv7));
1356   ASSERT(!dst.is(pc) && !src.is(pc));
1357   ASSERT((lsb >= 0) && (lsb <= 31));
1358   ASSERT((width >= 1) && (width <= (32 - lsb)));
1359   int msb = lsb + width - 1;
1360   emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 |
1361        src.code());
1362 }
1363 
1364 
1365 // Status register access instructions.
mrs(Register dst,SRegister s,Condition cond)1366 void Assembler::mrs(Register dst, SRegister s, Condition cond) {
1367   ASSERT(!dst.is(pc));
1368   emit(cond | B24 | s | 15*B16 | dst.code()*B12);
1369 }
1370 
1371 
msr(SRegisterFieldMask fields,const Operand & src,Condition cond)1372 void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
1373                     Condition cond) {
1374   ASSERT(fields >= B16 && fields < B20);  // at least one field set
1375   Instr instr;
1376   if (!src.rm_.is_valid()) {
1377     // Immediate.
1378     uint32_t rotate_imm;
1379     uint32_t immed_8;
1380     if (src.must_use_constant_pool() ||
1381         !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
1382       // Immediate operand cannot be encoded, load it first to register ip.
1383       RecordRelocInfo(src.rmode_, src.imm32_);
1384       ldr(ip, MemOperand(pc, 0), cond);
1385       msr(fields, Operand(ip), cond);
1386       return;
1387     }
1388     instr = I | rotate_imm*B8 | immed_8;
1389   } else {
1390     ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0);  // only rm allowed
1391     instr = src.rm_.code();
1392   }
1393   emit(cond | instr | B24 | B21 | fields | 15*B12);
1394 }
1395 
1396 
1397 // Load/Store instructions.
ldr(Register dst,const MemOperand & src,Condition cond)1398 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
1399   if (dst.is(pc)) {
1400     positions_recorder()->WriteRecordedPositions();
1401   }
1402   addrmod2(cond | B26 | L, dst, src);
1403 
1404   // Eliminate pattern: push(ry), pop(rx)
1405   //   str(ry, MemOperand(sp, 4, NegPreIndex), al)
1406   //   ldr(rx, MemOperand(sp, 4, PostIndex), al)
1407   // Both instructions can be eliminated if ry = rx.
1408   // If ry != rx, a register copy from ry to rx is inserted
1409   // after eliminating the push and the pop instructions.
1410   if (can_peephole_optimize(2)) {
1411     Instr push_instr = instr_at(pc_ - 2 * kInstrSize);
1412     Instr pop_instr = instr_at(pc_ - 1 * kInstrSize);
1413 
1414     if (IsPush(push_instr) && IsPop(pop_instr)) {
1415       if (Instruction::RdValue(pop_instr) != Instruction::RdValue(push_instr)) {
1416         // For consecutive push and pop on different registers,
1417         // we delete both the push & pop and insert a register move.
1418         // push ry, pop rx --> mov rx, ry
1419         Register reg_pushed, reg_popped;
1420         reg_pushed = GetRd(push_instr);
1421         reg_popped = GetRd(pop_instr);
1422         pc_ -= 2 * kInstrSize;
1423         // Insert a mov instruction, which is better than a pair of push & pop
1424         mov(reg_popped, reg_pushed);
1425         if (FLAG_print_peephole_optimization) {
1426           PrintF("%x push/pop (diff reg) replaced by a reg move\n",
1427                  pc_offset());
1428         }
1429       } else {
1430         // For consecutive push and pop on the same register,
1431         // both the push and the pop can be deleted.
1432         pc_ -= 2 * kInstrSize;
1433         if (FLAG_print_peephole_optimization) {
1434           PrintF("%x push/pop (same reg) eliminated\n", pc_offset());
1435         }
1436       }
1437     }
1438   }
1439 
1440   if (can_peephole_optimize(2)) {
1441     Instr str_instr = instr_at(pc_ - 2 * kInstrSize);
1442     Instr ldr_instr = instr_at(pc_ - 1 * kInstrSize);
1443 
1444     if ((IsStrRegFpOffset(str_instr) &&
1445          IsLdrRegFpOffset(ldr_instr)) ||
1446        (IsStrRegFpNegOffset(str_instr) &&
1447          IsLdrRegFpNegOffset(ldr_instr))) {
1448       if ((ldr_instr & kLdrStrInstrArgumentMask) ==
1449             (str_instr & kLdrStrInstrArgumentMask)) {
1450         // Pattern: Ldr/str same fp+offset, same register.
1451         //
1452         // The following:
1453         // str rx, [fp, #-12]
1454         // ldr rx, [fp, #-12]
1455         //
1456         // Becomes:
1457         // str rx, [fp, #-12]
1458 
1459         pc_ -= 1 * kInstrSize;
1460         if (FLAG_print_peephole_optimization) {
1461           PrintF("%x str/ldr (fp + same offset), same reg\n", pc_offset());
1462         }
1463       } else if ((ldr_instr & kLdrStrOffsetMask) ==
1464                  (str_instr & kLdrStrOffsetMask)) {
1465         // Pattern: Ldr/str same fp+offset, different register.
1466         //
1467         // The following:
1468         // str rx, [fp, #-12]
1469         // ldr ry, [fp, #-12]
1470         //
1471         // Becomes:
1472         // str rx, [fp, #-12]
1473         // mov ry, rx
1474 
1475         Register reg_stored, reg_loaded;
1476         reg_stored = GetRd(str_instr);
1477         reg_loaded = GetRd(ldr_instr);
1478         pc_ -= 1 * kInstrSize;
1479         // Insert a mov instruction, which is better than ldr.
1480         mov(reg_loaded, reg_stored);
1481         if (FLAG_print_peephole_optimization) {
1482           PrintF("%x str/ldr (fp + same offset), diff reg \n", pc_offset());
1483         }
1484       }
1485     }
1486   }
1487 
1488   if (can_peephole_optimize(3)) {
1489     Instr mem_write_instr = instr_at(pc_ - 3 * kInstrSize);
1490     Instr ldr_instr = instr_at(pc_ - 2 * kInstrSize);
1491     Instr mem_read_instr = instr_at(pc_ - 1 * kInstrSize);
1492     if (IsPush(mem_write_instr) &&
1493         IsPop(mem_read_instr)) {
1494       if ((IsLdrRegFpOffset(ldr_instr) ||
1495         IsLdrRegFpNegOffset(ldr_instr))) {
1496         if (Instruction::RdValue(mem_write_instr) ==
1497                                   Instruction::RdValue(mem_read_instr)) {
1498           // Pattern: push & pop from/to same register,
1499           // with a fp+offset ldr in between
1500           //
1501           // The following:
1502           // str rx, [sp, #-4]!
1503           // ldr rz, [fp, #-24]
1504           // ldr rx, [sp], #+4
1505           //
1506           // Becomes:
1507           // if(rx == rz)
1508           //   delete all
1509           // else
1510           //   ldr rz, [fp, #-24]
1511 
1512           if (Instruction::RdValue(mem_write_instr) ==
1513               Instruction::RdValue(ldr_instr)) {
1514             pc_ -= 3 * kInstrSize;
1515           } else {
1516             pc_ -= 3 * kInstrSize;
1517             // Reinsert back the ldr rz.
1518             emit(ldr_instr);
1519           }
1520           if (FLAG_print_peephole_optimization) {
1521             PrintF("%x push/pop -dead ldr fp+offset in middle\n", pc_offset());
1522           }
1523         } else {
1524           // Pattern: push & pop from/to different registers
1525           // with a fp+offset ldr in between
1526           //
1527           // The following:
1528           // str rx, [sp, #-4]!
1529           // ldr rz, [fp, #-24]
1530           // ldr ry, [sp], #+4
1531           //
1532           // Becomes:
1533           // if(ry == rz)
1534           //   mov ry, rx;
1535           // else if(rx != rz)
1536           //   ldr rz, [fp, #-24]
1537           //   mov ry, rx
1538           // else if((ry != rz) || (rx == rz)) becomes:
1539           //   mov ry, rx
1540           //   ldr rz, [fp, #-24]
1541 
1542           Register reg_pushed, reg_popped;
1543           if (Instruction::RdValue(mem_read_instr) ==
1544               Instruction::RdValue(ldr_instr)) {
1545             reg_pushed = GetRd(mem_write_instr);
1546             reg_popped = GetRd(mem_read_instr);
1547             pc_ -= 3 * kInstrSize;
1548             mov(reg_popped, reg_pushed);
1549           } else if (Instruction::RdValue(mem_write_instr) !=
1550                      Instruction::RdValue(ldr_instr)) {
1551             reg_pushed = GetRd(mem_write_instr);
1552             reg_popped = GetRd(mem_read_instr);
1553             pc_ -= 3 * kInstrSize;
1554             emit(ldr_instr);
1555             mov(reg_popped, reg_pushed);
1556           } else if ((Instruction::RdValue(mem_read_instr) !=
1557                       Instruction::RdValue(ldr_instr)) ||
1558                      (Instruction::RdValue(mem_write_instr) ==
1559                       Instruction::RdValue(ldr_instr))) {
1560             reg_pushed = GetRd(mem_write_instr);
1561             reg_popped = GetRd(mem_read_instr);
1562             pc_ -= 3 * kInstrSize;
1563             mov(reg_popped, reg_pushed);
1564             emit(ldr_instr);
1565           }
1566           if (FLAG_print_peephole_optimization) {
1567             PrintF("%x push/pop (ldr fp+off in middle)\n", pc_offset());
1568           }
1569         }
1570       }
1571     }
1572   }
1573 }
1574 
1575 
str(Register src,const MemOperand & dst,Condition cond)1576 void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
1577   addrmod2(cond | B26, src, dst);
1578 
1579   // Eliminate pattern: pop(), push(r)
1580   //     add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al
1581   // ->  str r, [sp, 0], al
1582   if (can_peephole_optimize(2) &&
1583      // Pattern.
1584      instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) &&
1585      instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) {
1586     pc_ -= 2 * kInstrSize;
1587     emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12);
1588     if (FLAG_print_peephole_optimization) {
1589       PrintF("%x pop()/push(reg) eliminated\n", pc_offset());
1590     }
1591   }
1592 }
1593 
1594 
ldrb(Register dst,const MemOperand & src,Condition cond)1595 void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
1596   addrmod2(cond | B26 | B | L, dst, src);
1597 }
1598 
1599 
strb(Register src,const MemOperand & dst,Condition cond)1600 void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
1601   addrmod2(cond | B26 | B, src, dst);
1602 }
1603 
1604 
ldrh(Register dst,const MemOperand & src,Condition cond)1605 void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
1606   addrmod3(cond | L | B7 | H | B4, dst, src);
1607 }
1608 
1609 
strh(Register src,const MemOperand & dst,Condition cond)1610 void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
1611   addrmod3(cond | B7 | H | B4, src, dst);
1612 }
1613 
1614 
ldrsb(Register dst,const MemOperand & src,Condition cond)1615 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
1616   addrmod3(cond | L | B7 | S6 | B4, dst, src);
1617 }
1618 
1619 
ldrsh(Register dst,const MemOperand & src,Condition cond)1620 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
1621   addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
1622 }
1623 
1624 
ldrd(Register dst1,Register dst2,const MemOperand & src,Condition cond)1625 void Assembler::ldrd(Register dst1, Register dst2,
1626                      const MemOperand& src, Condition cond) {
1627   ASSERT(CpuFeatures::IsEnabled(ARMv7));
1628   ASSERT(src.rm().is(no_reg));
1629   ASSERT(!dst1.is(lr));  // r14.
1630   ASSERT_EQ(0, dst1.code() % 2);
1631   ASSERT_EQ(dst1.code() + 1, dst2.code());
1632   addrmod3(cond | B7 | B6 | B4, dst1, src);
1633 }
1634 
1635 
strd(Register src1,Register src2,const MemOperand & dst,Condition cond)1636 void Assembler::strd(Register src1, Register src2,
1637                      const MemOperand& dst, Condition cond) {
1638   ASSERT(dst.rm().is(no_reg));
1639   ASSERT(!src1.is(lr));  // r14.
1640   ASSERT_EQ(0, src1.code() % 2);
1641   ASSERT_EQ(src1.code() + 1, src2.code());
1642   ASSERT(CpuFeatures::IsEnabled(ARMv7));
1643   addrmod3(cond | B7 | B6 | B5 | B4, src1, dst);
1644 }
1645 
1646 // Load/Store multiple instructions.
ldm(BlockAddrMode am,Register base,RegList dst,Condition cond)1647 void Assembler::ldm(BlockAddrMode am,
1648                     Register base,
1649                     RegList dst,
1650                     Condition cond) {
1651   // ABI stack constraint: ldmxx base, {..sp..}  base != sp  is not restartable.
1652   ASSERT(base.is(sp) || (dst & sp.bit()) == 0);
1653 
1654   addrmod4(cond | B27 | am | L, base, dst);
1655 
1656   // Emit the constant pool after a function return implemented by ldm ..{..pc}.
1657   if (cond == al && (dst & pc.bit()) != 0) {
1658     // There is a slight chance that the ldm instruction was actually a call,
1659     // in which case it would be wrong to return into the constant pool; we
1660     // recognize this case by checking if the emission of the pool was blocked
1661     // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
1662     // the case, we emit a jump over the pool.
1663     CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
1664   }
1665 }
1666 
1667 
stm(BlockAddrMode am,Register base,RegList src,Condition cond)1668 void Assembler::stm(BlockAddrMode am,
1669                     Register base,
1670                     RegList src,
1671                     Condition cond) {
1672   addrmod4(cond | B27 | am, base, src);
1673 }
1674 
1675 
1676 // Exception-generating instructions and debugging support.
1677 // Stops with a non-negative code less than kNumOfWatchedStops support
1678 // enabling/disabling and a counter feature. See simulator-arm.h .
stop(const char * msg,Condition cond,int32_t code)1679 void Assembler::stop(const char* msg, Condition cond, int32_t code) {
1680 #ifndef __arm__
1681   ASSERT(code >= kDefaultStopCode);
1682   // The Simulator will handle the stop instruction and get the message address.
1683   // It expects to find the address just after the svc instruction.
1684   BlockConstPoolFor(2);
1685   if (code >= 0) {
1686     svc(kStopCode + code, cond);
1687   } else {
1688     svc(kStopCode + kMaxStopCode, cond);
1689   }
1690   emit(reinterpret_cast<Instr>(msg));
1691 #else  // def __arm__
1692 #ifdef CAN_USE_ARMV5_INSTRUCTIONS
1693   if (cond != al) {
1694     Label skip;
1695     b(&skip, NegateCondition(cond));
1696     bkpt(0);
1697     bind(&skip);
1698   } else {
1699     bkpt(0);
1700   }
1701 #else  // ndef CAN_USE_ARMV5_INSTRUCTIONS
1702   svc(0x9f0001, cond);
1703 #endif  // ndef CAN_USE_ARMV5_INSTRUCTIONS
1704 #endif  // def __arm__
1705 }
1706 
1707 
bkpt(uint32_t imm16)1708 void Assembler::bkpt(uint32_t imm16) {  // v5 and above
1709   ASSERT(is_uint16(imm16));
1710   emit(al | B24 | B21 | (imm16 >> 4)*B8 | BKPT | (imm16 & 0xf));
1711 }
1712 
1713 
svc(uint32_t imm24,Condition cond)1714 void Assembler::svc(uint32_t imm24, Condition cond) {
1715   ASSERT(is_uint24(imm24));
1716   emit(cond | 15*B24 | imm24);
1717 }
1718 
1719 
1720 // Coprocessor instructions.
cdp(Coprocessor coproc,int opcode_1,CRegister crd,CRegister crn,CRegister crm,int opcode_2,Condition cond)1721 void Assembler::cdp(Coprocessor coproc,
1722                     int opcode_1,
1723                     CRegister crd,
1724                     CRegister crn,
1725                     CRegister crm,
1726                     int opcode_2,
1727                     Condition cond) {
1728   ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2));
1729   emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
1730        crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
1731 }
1732 
1733 
cdp2(Coprocessor coproc,int opcode_1,CRegister crd,CRegister crn,CRegister crm,int opcode_2)1734 void Assembler::cdp2(Coprocessor coproc,
1735                      int opcode_1,
1736                      CRegister crd,
1737                      CRegister crn,
1738                      CRegister crm,
1739                      int opcode_2) {  // v5 and above
1740   cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition);
1741 }
1742 
1743 
mcr(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2,Condition cond)1744 void Assembler::mcr(Coprocessor coproc,
1745                     int opcode_1,
1746                     Register rd,
1747                     CRegister crn,
1748                     CRegister crm,
1749                     int opcode_2,
1750                     Condition cond) {
1751   ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
1752   emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
1753        rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
1754 }
1755 
1756 
mcr2(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2)1757 void Assembler::mcr2(Coprocessor coproc,
1758                      int opcode_1,
1759                      Register rd,
1760                      CRegister crn,
1761                      CRegister crm,
1762                      int opcode_2) {  // v5 and above
1763   mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
1764 }
1765 
1766 
mrc(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2,Condition cond)1767 void Assembler::mrc(Coprocessor coproc,
1768                     int opcode_1,
1769                     Register rd,
1770                     CRegister crn,
1771                     CRegister crm,
1772                     int opcode_2,
1773                     Condition cond) {
1774   ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
1775   emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
1776        rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
1777 }
1778 
1779 
mrc2(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2)1780 void Assembler::mrc2(Coprocessor coproc,
1781                      int opcode_1,
1782                      Register rd,
1783                      CRegister crn,
1784                      CRegister crm,
1785                      int opcode_2) {  // v5 and above
1786   mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
1787 }
1788 
1789 
ldc(Coprocessor coproc,CRegister crd,const MemOperand & src,LFlag l,Condition cond)1790 void Assembler::ldc(Coprocessor coproc,
1791                     CRegister crd,
1792                     const MemOperand& src,
1793                     LFlag l,
1794                     Condition cond) {
1795   addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
1796 }
1797 
1798 
ldc(Coprocessor coproc,CRegister crd,Register rn,int option,LFlag l,Condition cond)1799 void Assembler::ldc(Coprocessor coproc,
1800                     CRegister crd,
1801                     Register rn,
1802                     int option,
1803                     LFlag l,
1804                     Condition cond) {
1805   // Unindexed addressing.
1806   ASSERT(is_uint8(option));
1807   emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
1808        coproc*B8 | (option & 255));
1809 }
1810 
1811 
ldc2(Coprocessor coproc,CRegister crd,const MemOperand & src,LFlag l)1812 void Assembler::ldc2(Coprocessor coproc,
1813                      CRegister crd,
1814                      const MemOperand& src,
1815                      LFlag l) {  // v5 and above
1816   ldc(coproc, crd, src, l, kSpecialCondition);
1817 }
1818 
1819 
ldc2(Coprocessor coproc,CRegister crd,Register rn,int option,LFlag l)1820 void Assembler::ldc2(Coprocessor coproc,
1821                      CRegister crd,
1822                      Register rn,
1823                      int option,
1824                      LFlag l) {  // v5 and above
1825   ldc(coproc, crd, rn, option, l, kSpecialCondition);
1826 }
1827 
1828 
1829 // Support for VFP.
1830 
vldr(const DwVfpRegister dst,const Register base,int offset,const Condition cond)1831 void Assembler::vldr(const DwVfpRegister dst,
1832                      const Register base,
1833                      int offset,
1834                      const Condition cond) {
1835   // Ddst = MEM(Rbase + offset).
1836   // Instruction details available in ARM DDI 0406A, A8-628.
1837   // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
1838   // Vdst(15-12) | 1011(11-8) | offset
1839   ASSERT(CpuFeatures::IsEnabled(VFP3));
1840   int u = 1;
1841   if (offset < 0) {
1842     offset = -offset;
1843     u = 0;
1844   }
1845 
1846   ASSERT(offset >= 0);
1847   if ((offset % 4) == 0 && (offset / 4) < 256) {
1848     emit(cond | u*B23 | 0xD1*B20 | base.code()*B16 | dst.code()*B12 |
1849          0xB*B8 | ((offset / 4) & 255));
1850   } else {
1851     // Larger offsets must be handled by computing the correct address
1852     // in the ip register.
1853     ASSERT(!base.is(ip));
1854     if (u == 1) {
1855       add(ip, base, Operand(offset));
1856     } else {
1857       sub(ip, base, Operand(offset));
1858     }
1859     emit(cond | 0xD1*B20 | ip.code()*B16 | dst.code()*B12 | 0xB*B8);
1860   }
1861 }
1862 
1863 
vldr(const DwVfpRegister dst,const MemOperand & operand,const Condition cond)1864 void Assembler::vldr(const DwVfpRegister dst,
1865                      const MemOperand& operand,
1866                      const Condition cond) {
1867   ASSERT(!operand.rm().is_valid());
1868   ASSERT(operand.am_ == Offset);
1869   vldr(dst, operand.rn(), operand.offset(), cond);
1870 }
1871 
1872 
vldr(const SwVfpRegister dst,const Register base,int offset,const Condition cond)1873 void Assembler::vldr(const SwVfpRegister dst,
1874                      const Register base,
1875                      int offset,
1876                      const Condition cond) {
1877   // Sdst = MEM(Rbase + offset).
1878   // Instruction details available in ARM DDI 0406A, A8-628.
1879   // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
1880   // Vdst(15-12) | 1010(11-8) | offset
1881   ASSERT(CpuFeatures::IsEnabled(VFP3));
1882   int u = 1;
1883   if (offset < 0) {
1884     offset = -offset;
1885     u = 0;
1886   }
1887   int sd, d;
1888   dst.split_code(&sd, &d);
1889   ASSERT(offset >= 0);
1890 
1891   if ((offset % 4) == 0 && (offset / 4) < 256) {
1892   emit(cond | u*B23 | d*B22 | 0xD1*B20 | base.code()*B16 | sd*B12 |
1893        0xA*B8 | ((offset / 4) & 255));
1894   } else {
1895     // Larger offsets must be handled by computing the correct address
1896     // in the ip register.
1897     ASSERT(!base.is(ip));
1898     if (u == 1) {
1899       add(ip, base, Operand(offset));
1900     } else {
1901       sub(ip, base, Operand(offset));
1902     }
1903     emit(cond | d*B22 | 0xD1*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
1904   }
1905 }
1906 
1907 
vldr(const SwVfpRegister dst,const MemOperand & operand,const Condition cond)1908 void Assembler::vldr(const SwVfpRegister dst,
1909                      const MemOperand& operand,
1910                      const Condition cond) {
1911   ASSERT(!operand.rm().is_valid());
1912   ASSERT(operand.am_ == Offset);
1913   vldr(dst, operand.rn(), operand.offset(), cond);
1914 }
1915 
1916 
vstr(const DwVfpRegister src,const Register base,int offset,const Condition cond)1917 void Assembler::vstr(const DwVfpRegister src,
1918                      const Register base,
1919                      int offset,
1920                      const Condition cond) {
1921   // MEM(Rbase + offset) = Dsrc.
1922   // Instruction details available in ARM DDI 0406A, A8-786.
1923   // cond(31-28) | 1101(27-24)| U000(23-20) | | Rbase(19-16) |
1924   // Vsrc(15-12) | 1011(11-8) | (offset/4)
1925   ASSERT(CpuFeatures::IsEnabled(VFP3));
1926   int u = 1;
1927   if (offset < 0) {
1928     offset = -offset;
1929     u = 0;
1930   }
1931   ASSERT(offset >= 0);
1932   if ((offset % 4) == 0 && (offset / 4) < 256) {
1933     emit(cond | u*B23 | 0xD0*B20 | base.code()*B16 | src.code()*B12 |
1934          0xB*B8 | ((offset / 4) & 255));
1935   } else {
1936     // Larger offsets must be handled by computing the correct address
1937     // in the ip register.
1938     ASSERT(!base.is(ip));
1939     if (u == 1) {
1940       add(ip, base, Operand(offset));
1941     } else {
1942       sub(ip, base, Operand(offset));
1943     }
1944     emit(cond | 0xD0*B20 | ip.code()*B16 | src.code()*B12 | 0xB*B8);
1945   }
1946 }
1947 
1948 
vstr(const DwVfpRegister src,const MemOperand & operand,const Condition cond)1949 void Assembler::vstr(const DwVfpRegister src,
1950                      const MemOperand& operand,
1951                      const Condition cond) {
1952   ASSERT(!operand.rm().is_valid());
1953   ASSERT(operand.am_ == Offset);
1954   vstr(src, operand.rn(), operand.offset(), cond);
1955 }
1956 
1957 
vstr(const SwVfpRegister src,const Register base,int offset,const Condition cond)1958 void Assembler::vstr(const SwVfpRegister src,
1959                      const Register base,
1960                      int offset,
1961                      const Condition cond) {
1962   // MEM(Rbase + offset) = SSrc.
1963   // Instruction details available in ARM DDI 0406A, A8-786.
1964   // cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) |
1965   // Vdst(15-12) | 1010(11-8) | (offset/4)
1966   ASSERT(CpuFeatures::IsEnabled(VFP3));
1967   int u = 1;
1968   if (offset < 0) {
1969     offset = -offset;
1970     u = 0;
1971   }
1972   int sd, d;
1973   src.split_code(&sd, &d);
1974   ASSERT(offset >= 0);
1975   if ((offset % 4) == 0 && (offset / 4) < 256) {
1976     emit(cond | u*B23 | d*B22 | 0xD0*B20 | base.code()*B16 | sd*B12 |
1977          0xA*B8 | ((offset / 4) & 255));
1978   } else {
1979     // Larger offsets must be handled by computing the correct address
1980     // in the ip register.
1981     ASSERT(!base.is(ip));
1982     if (u == 1) {
1983       add(ip, base, Operand(offset));
1984     } else {
1985       sub(ip, base, Operand(offset));
1986     }
1987     emit(cond | d*B22 | 0xD0*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
1988   }
1989 }
1990 
1991 
vstr(const SwVfpRegister src,const MemOperand & operand,const Condition cond)1992 void Assembler::vstr(const SwVfpRegister src,
1993                      const MemOperand& operand,
1994                      const Condition cond) {
1995   ASSERT(!operand.rm().is_valid());
1996   ASSERT(operand.am_ == Offset);
1997   vldr(src, operand.rn(), operand.offset(), cond);
1998 }
1999 
2000 
vldm(BlockAddrMode am,Register base,DwVfpRegister first,DwVfpRegister last,Condition cond)2001 void  Assembler::vldm(BlockAddrMode am,
2002                       Register base,
2003                       DwVfpRegister first,
2004                       DwVfpRegister last,
2005                       Condition cond) {
2006   // Instruction details available in ARM DDI 0406A, A8-626.
2007   // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
2008   // first(15-12) | 1010(11-8) | (count * 2)
2009   ASSERT(CpuFeatures::IsEnabled(VFP3));
2010   ASSERT_LE(first.code(), last.code());
2011   ASSERT(am == ia || am == ia_w || am == db_w);
2012   ASSERT(!base.is(pc));
2013 
2014   int sd, d;
2015   first.split_code(&sd, &d);
2016   int count = last.code() - first.code() + 1;
2017   emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
2018        0xB*B8 | count*2);
2019 }
2020 
2021 
vstm(BlockAddrMode am,Register base,DwVfpRegister first,DwVfpRegister last,Condition cond)2022 void  Assembler::vstm(BlockAddrMode am,
2023                       Register base,
2024                       DwVfpRegister first,
2025                       DwVfpRegister last,
2026                       Condition cond) {
2027   // Instruction details available in ARM DDI 0406A, A8-784.
2028   // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
2029   // first(15-12) | 1011(11-8) | (count * 2)
2030   ASSERT(CpuFeatures::IsEnabled(VFP3));
2031   ASSERT_LE(first.code(), last.code());
2032   ASSERT(am == ia || am == ia_w || am == db_w);
2033   ASSERT(!base.is(pc));
2034 
2035   int sd, d;
2036   first.split_code(&sd, &d);
2037   int count = last.code() - first.code() + 1;
2038   emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
2039        0xB*B8 | count*2);
2040 }
2041 
vldm(BlockAddrMode am,Register base,SwVfpRegister first,SwVfpRegister last,Condition cond)2042 void  Assembler::vldm(BlockAddrMode am,
2043                       Register base,
2044                       SwVfpRegister first,
2045                       SwVfpRegister last,
2046                       Condition cond) {
2047   // Instruction details available in ARM DDI 0406A, A8-626.
2048   // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
2049   // first(15-12) | 1010(11-8) | (count/2)
2050   ASSERT(CpuFeatures::IsEnabled(VFP3));
2051   ASSERT_LE(first.code(), last.code());
2052   ASSERT(am == ia || am == ia_w || am == db_w);
2053   ASSERT(!base.is(pc));
2054 
2055   int sd, d;
2056   first.split_code(&sd, &d);
2057   int count = last.code() - first.code() + 1;
2058   emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
2059        0xA*B8 | count);
2060 }
2061 
2062 
vstm(BlockAddrMode am,Register base,SwVfpRegister first,SwVfpRegister last,Condition cond)2063 void  Assembler::vstm(BlockAddrMode am,
2064                       Register base,
2065                       SwVfpRegister first,
2066                       SwVfpRegister last,
2067                       Condition cond) {
2068   // Instruction details available in ARM DDI 0406A, A8-784.
2069   // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
2070   // first(15-12) | 1011(11-8) | (count/2)
2071   ASSERT(CpuFeatures::IsEnabled(VFP3));
2072   ASSERT_LE(first.code(), last.code());
2073   ASSERT(am == ia || am == ia_w || am == db_w);
2074   ASSERT(!base.is(pc));
2075 
2076   int sd, d;
2077   first.split_code(&sd, &d);
2078   int count = last.code() - first.code() + 1;
2079   emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
2080        0xA*B8 | count);
2081 }
2082 
DoubleAsTwoUInt32(double d,uint32_t * lo,uint32_t * hi)2083 static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
2084   uint64_t i;
2085   memcpy(&i, &d, 8);
2086 
2087   *lo = i & 0xffffffff;
2088   *hi = i >> 32;
2089 }
2090 
2091 // Only works for little endian floating point formats.
2092 // We don't support VFP on the mixed endian floating point platform.
FitsVMOVDoubleImmediate(double d,uint32_t * encoding)2093 static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) {
2094   ASSERT(CpuFeatures::IsEnabled(VFP3));
2095 
2096   // VMOV can accept an immediate of the form:
2097   //
2098   //  +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7
2099   //
2100   // The immediate is encoded using an 8-bit quantity, comprised of two
2101   // 4-bit fields. For an 8-bit immediate of the form:
2102   //
2103   //  [abcdefgh]
2104   //
2105   // where a is the MSB and h is the LSB, an immediate 64-bit double can be
2106   // created of the form:
2107   //
2108   //  [aBbbbbbb,bbcdefgh,00000000,00000000,
2109   //      00000000,00000000,00000000,00000000]
2110   //
2111   // where B = ~b.
2112   //
2113 
2114   uint32_t lo, hi;
2115   DoubleAsTwoUInt32(d, &lo, &hi);
2116 
2117   // The most obvious constraint is the long block of zeroes.
2118   if ((lo != 0) || ((hi & 0xffff) != 0)) {
2119     return false;
2120   }
2121 
2122   // Bits 62:55 must be all clear or all set.
2123   if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) {
2124     return false;
2125   }
2126 
2127   // Bit 63 must be NOT bit 62.
2128   if (((hi ^ (hi << 1)) & (0x40000000)) == 0) {
2129     return false;
2130   }
2131 
2132   // Create the encoded immediate in the form:
2133   //  [00000000,0000abcd,00000000,0000efgh]
2134   *encoding  = (hi >> 16) & 0xf;      // Low nybble.
2135   *encoding |= (hi >> 4) & 0x70000;   // Low three bits of the high nybble.
2136   *encoding |= (hi >> 12) & 0x80000;  // Top bit of the high nybble.
2137 
2138   return true;
2139 }
2140 
2141 
vmov(const DwVfpRegister dst,double imm,const Condition cond)2142 void Assembler::vmov(const DwVfpRegister dst,
2143                      double imm,
2144                      const Condition cond) {
2145   // Dd = immediate
2146   // Instruction details available in ARM DDI 0406B, A8-640.
2147   ASSERT(CpuFeatures::IsEnabled(VFP3));
2148 
2149   uint32_t enc;
2150   if (FitsVMOVDoubleImmediate(imm, &enc)) {
2151     // The double can be encoded in the instruction.
2152     emit(cond | 0xE*B24 | 0xB*B20 | dst.code()*B12 | 0xB*B8 | enc);
2153   } else {
2154     // Synthesise the double from ARM immediates. This could be implemented
2155     // using vldr from a constant pool.
2156     uint32_t lo, hi;
2157     DoubleAsTwoUInt32(imm, &lo, &hi);
2158 
2159     if (lo == hi) {
2160       // If the lo and hi parts of the double are equal, the literal is easier
2161       // to create. This is the case with 0.0.
2162       mov(ip, Operand(lo));
2163       vmov(dst, ip, ip);
2164     } else {
2165       // Move the low part of the double into the lower of the corresponsing S
2166       // registers of D register dst.
2167       mov(ip, Operand(lo));
2168       vmov(dst.low(), ip, cond);
2169 
2170       // Move the high part of the double into the higher of the corresponsing S
2171       // registers of D register dst.
2172       mov(ip, Operand(hi));
2173       vmov(dst.high(), ip, cond);
2174     }
2175   }
2176 }
2177 
2178 
vmov(const SwVfpRegister dst,const SwVfpRegister src,const Condition cond)2179 void Assembler::vmov(const SwVfpRegister dst,
2180                      const SwVfpRegister src,
2181                      const Condition cond) {
2182   // Sd = Sm
2183   // Instruction details available in ARM DDI 0406B, A8-642.
2184   ASSERT(CpuFeatures::IsEnabled(VFP3));
2185   int sd, d, sm, m;
2186   dst.split_code(&sd, &d);
2187   src.split_code(&sm, &m);
2188   emit(cond | 0xE*B24 | d*B22 | 0xB*B20 | sd*B12 | 0xA*B8 | B6 | m*B5 | sm);
2189 }
2190 
2191 
vmov(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)2192 void Assembler::vmov(const DwVfpRegister dst,
2193                      const DwVfpRegister src,
2194                      const Condition cond) {
2195   // Dd = Dm
2196   // Instruction details available in ARM DDI 0406B, A8-642.
2197   ASSERT(CpuFeatures::IsEnabled(VFP3));
2198   emit(cond | 0xE*B24 | 0xB*B20 |
2199        dst.code()*B12 | 0x5*B9 | B8 | B6 | src.code());
2200 }
2201 
2202 
vmov(const DwVfpRegister dst,const Register src1,const Register src2,const Condition cond)2203 void Assembler::vmov(const DwVfpRegister dst,
2204                      const Register src1,
2205                      const Register src2,
2206                      const Condition cond) {
2207   // Dm = <Rt,Rt2>.
2208   // Instruction details available in ARM DDI 0406A, A8-646.
2209   // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
2210   // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
2211   ASSERT(CpuFeatures::IsEnabled(VFP3));
2212   ASSERT(!src1.is(pc) && !src2.is(pc));
2213   emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
2214        src1.code()*B12 | 0xB*B8 | B4 | dst.code());
2215 }
2216 
2217 
vmov(const Register dst1,const Register dst2,const DwVfpRegister src,const Condition cond)2218 void Assembler::vmov(const Register dst1,
2219                      const Register dst2,
2220                      const DwVfpRegister src,
2221                      const Condition cond) {
2222   // <Rt,Rt2> = Dm.
2223   // Instruction details available in ARM DDI 0406A, A8-646.
2224   // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
2225   // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
2226   ASSERT(CpuFeatures::IsEnabled(VFP3));
2227   ASSERT(!dst1.is(pc) && !dst2.is(pc));
2228   emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
2229        dst1.code()*B12 | 0xB*B8 | B4 | src.code());
2230 }
2231 
2232 
vmov(const SwVfpRegister dst,const Register src,const Condition cond)2233 void Assembler::vmov(const SwVfpRegister dst,
2234                      const Register src,
2235                      const Condition cond) {
2236   // Sn = Rt.
2237   // Instruction details available in ARM DDI 0406A, A8-642.
2238   // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
2239   // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
2240   ASSERT(CpuFeatures::IsEnabled(VFP3));
2241   ASSERT(!src.is(pc));
2242   int sn, n;
2243   dst.split_code(&sn, &n);
2244   emit(cond | 0xE*B24 | sn*B16 | src.code()*B12 | 0xA*B8 | n*B7 | B4);
2245 }
2246 
2247 
vmov(const Register dst,const SwVfpRegister src,const Condition cond)2248 void Assembler::vmov(const Register dst,
2249                      const SwVfpRegister src,
2250                      const Condition cond) {
2251   // Rt = Sn.
2252   // Instruction details available in ARM DDI 0406A, A8-642.
2253   // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
2254   // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
2255   ASSERT(CpuFeatures::IsEnabled(VFP3));
2256   ASSERT(!dst.is(pc));
2257   int sn, n;
2258   src.split_code(&sn, &n);
2259   emit(cond | 0xE*B24 | B20 | sn*B16 | dst.code()*B12 | 0xA*B8 | n*B7 | B4);
2260 }
2261 
2262 
2263 // Type of data to read from or write to VFP register.
2264 // Used as specifier in generic vcvt instruction.
2265 enum VFPType { S32, U32, F32, F64 };
2266 
2267 
IsSignedVFPType(VFPType type)2268 static bool IsSignedVFPType(VFPType type) {
2269   switch (type) {
2270     case S32:
2271       return true;
2272     case U32:
2273       return false;
2274     default:
2275       UNREACHABLE();
2276       return false;
2277   }
2278 }
2279 
2280 
IsIntegerVFPType(VFPType type)2281 static bool IsIntegerVFPType(VFPType type) {
2282   switch (type) {
2283     case S32:
2284     case U32:
2285       return true;
2286     case F32:
2287     case F64:
2288       return false;
2289     default:
2290       UNREACHABLE();
2291       return false;
2292   }
2293 }
2294 
2295 
IsDoubleVFPType(VFPType type)2296 static bool IsDoubleVFPType(VFPType type) {
2297   switch (type) {
2298     case F32:
2299       return false;
2300     case F64:
2301       return true;
2302     default:
2303       UNREACHABLE();
2304       return false;
2305   }
2306 }
2307 
2308 
2309 // Split five bit reg_code based on size of reg_type.
2310 //  32-bit register codes are Vm:M
2311 //  64-bit register codes are M:Vm
2312 // where Vm is four bits, and M is a single bit.
SplitRegCode(VFPType reg_type,int reg_code,int * vm,int * m)2313 static void SplitRegCode(VFPType reg_type,
2314                          int reg_code,
2315                          int* vm,
2316                          int* m) {
2317   ASSERT((reg_code >= 0) && (reg_code <= 31));
2318   if (IsIntegerVFPType(reg_type) || !IsDoubleVFPType(reg_type)) {
2319     // 32 bit type.
2320     *m  = reg_code & 0x1;
2321     *vm = reg_code >> 1;
2322   } else {
2323     // 64 bit type.
2324     *m  = (reg_code & 0x10) >> 4;
2325     *vm = reg_code & 0x0F;
2326   }
2327 }
2328 
2329 
2330 // Encode vcvt.src_type.dst_type instruction.
EncodeVCVT(const VFPType dst_type,const int dst_code,const VFPType src_type,const int src_code,VFPConversionMode mode,const Condition cond)2331 static Instr EncodeVCVT(const VFPType dst_type,
2332                         const int dst_code,
2333                         const VFPType src_type,
2334                         const int src_code,
2335                         VFPConversionMode mode,
2336                         const Condition cond) {
2337   ASSERT(src_type != dst_type);
2338   int D, Vd, M, Vm;
2339   SplitRegCode(src_type, src_code, &Vm, &M);
2340   SplitRegCode(dst_type, dst_code, &Vd, &D);
2341 
2342   if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) {
2343     // Conversion between IEEE floating point and 32-bit integer.
2344     // Instruction details available in ARM DDI 0406B, A8.6.295.
2345     // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) |
2346     // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2347     ASSERT(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type));
2348 
2349     int sz, opc2, op;
2350 
2351     if (IsIntegerVFPType(dst_type)) {
2352       opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4;
2353       sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
2354       op = mode;
2355     } else {
2356       ASSERT(IsIntegerVFPType(src_type));
2357       opc2 = 0x0;
2358       sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0;
2359       op = IsSignedVFPType(src_type) ? 0x1 : 0x0;
2360     }
2361 
2362     return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | B19 | opc2*B16 |
2363             Vd*B12 | 0x5*B9 | sz*B8 | op*B7 | B6 | M*B5 | Vm);
2364   } else {
2365     // Conversion between IEEE double and single precision.
2366     // Instruction details available in ARM DDI 0406B, A8.6.298.
2367     // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) |
2368     // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2369     int sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
2370     return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | 0x7*B16 |
2371             Vd*B12 | 0x5*B9 | sz*B8 | B7 | B6 | M*B5 | Vm);
2372   }
2373 }
2374 
2375 
vcvt_f64_s32(const DwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)2376 void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
2377                              const SwVfpRegister src,
2378                              VFPConversionMode mode,
2379                              const Condition cond) {
2380   ASSERT(CpuFeatures::IsEnabled(VFP3));
2381   emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond));
2382 }
2383 
2384 
vcvt_f32_s32(const SwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)2385 void Assembler::vcvt_f32_s32(const SwVfpRegister dst,
2386                              const SwVfpRegister src,
2387                              VFPConversionMode mode,
2388                              const Condition cond) {
2389   ASSERT(CpuFeatures::IsEnabled(VFP3));
2390   emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond));
2391 }
2392 
2393 
vcvt_f64_u32(const DwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)2394 void Assembler::vcvt_f64_u32(const DwVfpRegister dst,
2395                              const SwVfpRegister src,
2396                              VFPConversionMode mode,
2397                              const Condition cond) {
2398   ASSERT(CpuFeatures::IsEnabled(VFP3));
2399   emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond));
2400 }
2401 
2402 
vcvt_s32_f64(const SwVfpRegister dst,const DwVfpRegister src,VFPConversionMode mode,const Condition cond)2403 void Assembler::vcvt_s32_f64(const SwVfpRegister dst,
2404                              const DwVfpRegister src,
2405                              VFPConversionMode mode,
2406                              const Condition cond) {
2407   ASSERT(CpuFeatures::IsEnabled(VFP3));
2408   emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond));
2409 }
2410 
2411 
vcvt_u32_f64(const SwVfpRegister dst,const DwVfpRegister src,VFPConversionMode mode,const Condition cond)2412 void Assembler::vcvt_u32_f64(const SwVfpRegister dst,
2413                              const DwVfpRegister src,
2414                              VFPConversionMode mode,
2415                              const Condition cond) {
2416   ASSERT(CpuFeatures::IsEnabled(VFP3));
2417   emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond));
2418 }
2419 
2420 
vcvt_f64_f32(const DwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)2421 void Assembler::vcvt_f64_f32(const DwVfpRegister dst,
2422                              const SwVfpRegister src,
2423                              VFPConversionMode mode,
2424                              const Condition cond) {
2425   ASSERT(CpuFeatures::IsEnabled(VFP3));
2426   emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond));
2427 }
2428 
2429 
vcvt_f32_f64(const SwVfpRegister dst,const DwVfpRegister src,VFPConversionMode mode,const Condition cond)2430 void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
2431                              const DwVfpRegister src,
2432                              VFPConversionMode mode,
2433                              const Condition cond) {
2434   ASSERT(CpuFeatures::IsEnabled(VFP3));
2435   emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond));
2436 }
2437 
2438 
vneg(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)2439 void Assembler::vneg(const DwVfpRegister dst,
2440                      const DwVfpRegister src,
2441                      const Condition cond) {
2442   emit(cond | 0xE*B24 | 0xB*B20 | B16 | dst.code()*B12 |
2443        0x5*B9 | B8 | B6 | src.code());
2444 }
2445 
2446 
vabs(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)2447 void Assembler::vabs(const DwVfpRegister dst,
2448                      const DwVfpRegister src,
2449                      const Condition cond) {
2450   emit(cond | 0xE*B24 | 0xB*B20 | dst.code()*B12 |
2451        0x5*B9 | B8 | 0x3*B6 | src.code());
2452 }
2453 
2454 
vadd(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)2455 void Assembler::vadd(const DwVfpRegister dst,
2456                      const DwVfpRegister src1,
2457                      const DwVfpRegister src2,
2458                      const Condition cond) {
2459   // Dd = vadd(Dn, Dm) double precision floating point addition.
2460   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2461   // Instruction details available in ARM DDI 0406A, A8-536.
2462   // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
2463   // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
2464   ASSERT(CpuFeatures::IsEnabled(VFP3));
2465   emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
2466        dst.code()*B12 | 0x5*B9 | B8 | src2.code());
2467 }
2468 
2469 
vsub(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)2470 void Assembler::vsub(const DwVfpRegister dst,
2471                      const DwVfpRegister src1,
2472                      const DwVfpRegister src2,
2473                      const Condition cond) {
2474   // Dd = vsub(Dn, Dm) double precision floating point subtraction.
2475   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2476   // Instruction details available in ARM DDI 0406A, A8-784.
2477   // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
2478   // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 1(6) | M=?(5) | 0(4) | Vm(3-0)
2479   ASSERT(CpuFeatures::IsEnabled(VFP3));
2480   emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
2481        dst.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
2482 }
2483 
2484 
vmul(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)2485 void Assembler::vmul(const DwVfpRegister dst,
2486                      const DwVfpRegister src1,
2487                      const DwVfpRegister src2,
2488                      const Condition cond) {
2489   // Dd = vmul(Dn, Dm) double precision floating point multiplication.
2490   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2491   // Instruction details available in ARM DDI 0406A, A8-784.
2492   // cond(31-28) | 11100(27-23)| D=?(22) | 10(21-20) | Vn(19-16) |
2493   // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
2494   ASSERT(CpuFeatures::IsEnabled(VFP3));
2495   emit(cond | 0xE*B24 | 0x2*B20 | src1.code()*B16 |
2496        dst.code()*B12 | 0x5*B9 | B8 | src2.code());
2497 }
2498 
2499 
vdiv(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)2500 void Assembler::vdiv(const DwVfpRegister dst,
2501                      const DwVfpRegister src1,
2502                      const DwVfpRegister src2,
2503                      const Condition cond) {
2504   // Dd = vdiv(Dn, Dm) double precision floating point division.
2505   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2506   // Instruction details available in ARM DDI 0406A, A8-584.
2507   // cond(31-28) | 11101(27-23)| D=?(22) | 00(21-20) | Vn(19-16) |
2508   // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=? | 0(6) | M=?(5) | 0(4) | Vm(3-0)
2509   ASSERT(CpuFeatures::IsEnabled(VFP3));
2510   emit(cond | 0xE*B24 | B23 | src1.code()*B16 |
2511        dst.code()*B12 | 0x5*B9 | B8 | src2.code());
2512 }
2513 
2514 
vcmp(const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)2515 void Assembler::vcmp(const DwVfpRegister src1,
2516                      const DwVfpRegister src2,
2517                      const Condition cond) {
2518   // vcmp(Dd, Dm) double precision floating point comparison.
2519   // Instruction details available in ARM DDI 0406A, A8-570.
2520   // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0100 (19-16) |
2521   // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=0 | 1(6) | M(5)=? | 0(4) | Vm(3-0)
2522   ASSERT(CpuFeatures::IsEnabled(VFP3));
2523   emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 |
2524        src1.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
2525 }
2526 
2527 
vcmp(const DwVfpRegister src1,const double src2,const Condition cond)2528 void Assembler::vcmp(const DwVfpRegister src1,
2529                      const double src2,
2530                      const Condition cond) {
2531   // vcmp(Dd, Dm) double precision floating point comparison.
2532   // Instruction details available in ARM DDI 0406A, A8-570.
2533   // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0101 (19-16) |
2534   // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=0 | 1(6) | M(5)=? | 0(4) | 0000(3-0)
2535   ASSERT(CpuFeatures::IsEnabled(VFP3));
2536   ASSERT(src2 == 0.0);
2537   emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 | B16 |
2538        src1.code()*B12 | 0x5*B9 | B8 | B6);
2539 }
2540 
2541 
vmsr(Register dst,Condition cond)2542 void Assembler::vmsr(Register dst, Condition cond) {
2543   // Instruction details available in ARM DDI 0406A, A8-652.
2544   // cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) |
2545   // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
2546   ASSERT(CpuFeatures::IsEnabled(VFP3));
2547   emit(cond | 0xE*B24 | 0xE*B20 |  B16 |
2548        dst.code()*B12 | 0xA*B8 | B4);
2549 }
2550 
2551 
vmrs(Register dst,Condition cond)2552 void Assembler::vmrs(Register dst, Condition cond) {
2553   // Instruction details available in ARM DDI 0406A, A8-652.
2554   // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
2555   // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
2556   ASSERT(CpuFeatures::IsEnabled(VFP3));
2557   emit(cond | 0xE*B24 | 0xF*B20 |  B16 |
2558        dst.code()*B12 | 0xA*B8 | B4);
2559 }
2560 
2561 
vsqrt(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)2562 void Assembler::vsqrt(const DwVfpRegister dst,
2563                       const DwVfpRegister src,
2564                       const Condition cond) {
2565   // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0001 (19-16) |
2566   // Vd(15-12) | 101(11-9) | sz(8)=1 | 11 (7-6) | M(5)=? | 0(4) | Vm(3-0)
2567   ASSERT(CpuFeatures::IsEnabled(VFP3));
2568   emit(cond | 0xE*B24 | B23 | 0x3*B20 | B16 |
2569        dst.code()*B12 | 0x5*B9 | B8 | 3*B6 | src.code());
2570 }
2571 
2572 
2573 // Pseudo instructions.
nop(int type)2574 void Assembler::nop(int type) {
2575   // This is mov rx, rx.
2576   ASSERT(0 <= type && type <= 14);  // mov pc, pc is not a nop.
2577   emit(al | 13*B21 | type*B12 | type);
2578 }
2579 
2580 
IsNop(Instr instr,int type)2581 bool Assembler::IsNop(Instr instr, int type) {
2582   // Check for mov rx, rx where x = type.
2583   ASSERT(0 <= type && type <= 14);  // mov pc, pc is not a nop.
2584   return instr == (al | 13*B21 | type*B12 | type);
2585 }
2586 
2587 
ImmediateFitsAddrMode1Instruction(int32_t imm32)2588 bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
2589   uint32_t dummy1;
2590   uint32_t dummy2;
2591   return fits_shifter(imm32, &dummy1, &dummy2, NULL);
2592 }
2593 
2594 
BlockConstPoolFor(int instructions)2595 void Assembler::BlockConstPoolFor(int instructions) {
2596   BlockConstPoolBefore(pc_offset() + instructions * kInstrSize);
2597 }
2598 
2599 
2600 // Debugging.
RecordJSReturn()2601 void Assembler::RecordJSReturn() {
2602   positions_recorder()->WriteRecordedPositions();
2603   CheckBuffer();
2604   RecordRelocInfo(RelocInfo::JS_RETURN);
2605 }
2606 
2607 
RecordDebugBreakSlot()2608 void Assembler::RecordDebugBreakSlot() {
2609   positions_recorder()->WriteRecordedPositions();
2610   CheckBuffer();
2611   RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
2612 }
2613 
2614 
RecordComment(const char * msg)2615 void Assembler::RecordComment(const char* msg) {
2616   if (FLAG_code_comments) {
2617     CheckBuffer();
2618     RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
2619   }
2620 }
2621 
2622 
GrowBuffer()2623 void Assembler::GrowBuffer() {
2624   if (!own_buffer_) FATAL("external code buffer is too small");
2625 
2626   // Compute new buffer size.
2627   CodeDesc desc;  // the new buffer
2628   if (buffer_size_ < 4*KB) {
2629     desc.buffer_size = 4*KB;
2630   } else if (buffer_size_ < 1*MB) {
2631     desc.buffer_size = 2*buffer_size_;
2632   } else {
2633     desc.buffer_size = buffer_size_ + 1*MB;
2634   }
2635   CHECK_GT(desc.buffer_size, 0);  // no overflow
2636 
2637   // Setup new buffer.
2638   desc.buffer = NewArray<byte>(desc.buffer_size);
2639 
2640   desc.instr_size = pc_offset();
2641   desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
2642 
2643   // Copy the data.
2644   int pc_delta = desc.buffer - buffer_;
2645   int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
2646   memmove(desc.buffer, buffer_, desc.instr_size);
2647   memmove(reloc_info_writer.pos() + rc_delta,
2648           reloc_info_writer.pos(), desc.reloc_size);
2649 
2650   // Switch buffers.
2651   DeleteArray(buffer_);
2652   buffer_ = desc.buffer;
2653   buffer_size_ = desc.buffer_size;
2654   pc_ += pc_delta;
2655   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2656                                reloc_info_writer.last_pc() + pc_delta);
2657 
2658   // None of our relocation types are pc relative pointing outside the code
2659   // buffer nor pc absolute pointing inside the code buffer, so there is no need
2660   // to relocate any emitted relocation entries.
2661 
2662   // Relocate pending relocation entries.
2663   for (int i = 0; i < num_prinfo_; i++) {
2664     RelocInfo& rinfo = prinfo_[i];
2665     ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
2666            rinfo.rmode() != RelocInfo::POSITION);
2667     if (rinfo.rmode() != RelocInfo::JS_RETURN) {
2668       rinfo.set_pc(rinfo.pc() + pc_delta);
2669     }
2670   }
2671 }
2672 
2673 
db(uint8_t data)2674 void Assembler::db(uint8_t data) {
2675   // No relocation info should be pending while using db. db is used
2676   // to write pure data with no pointers and the constant pool should
2677   // be emitted before using db.
2678   ASSERT(num_prinfo_ == 0);
2679   CheckBuffer();
2680   *reinterpret_cast<uint8_t*>(pc_) = data;
2681   pc_ += sizeof(uint8_t);
2682 }
2683 
2684 
dd(uint32_t data)2685 void Assembler::dd(uint32_t data) {
2686   // No relocation info should be pending while using dd. dd is used
2687   // to write pure data with no pointers and the constant pool should
2688   // be emitted before using dd.
2689   ASSERT(num_prinfo_ == 0);
2690   CheckBuffer();
2691   *reinterpret_cast<uint32_t*>(pc_) = data;
2692   pc_ += sizeof(uint32_t);
2693 }
2694 
2695 
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)2696 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2697   RelocInfo rinfo(pc_, rmode, data);  // we do not try to reuse pool constants
2698   if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) {
2699     // Adjust code for new modes.
2700     ASSERT(RelocInfo::IsDebugBreakSlot(rmode)
2701            || RelocInfo::IsJSReturn(rmode)
2702            || RelocInfo::IsComment(rmode)
2703            || RelocInfo::IsPosition(rmode));
2704     // These modes do not need an entry in the constant pool.
2705   } else {
2706     ASSERT(num_prinfo_ < kMaxNumPRInfo);
2707     prinfo_[num_prinfo_++] = rinfo;
2708     // Make sure the constant pool is not emitted in place of the next
2709     // instruction for which we just recorded relocation info.
2710     BlockConstPoolBefore(pc_offset() + kInstrSize);
2711   }
2712   if (rinfo.rmode() != RelocInfo::NONE) {
2713     // Don't record external references unless the heap will be serialized.
2714     if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
2715 #ifdef DEBUG
2716       if (!Serializer::enabled()) {
2717         Serializer::TooLateToEnableNow();
2718       }
2719 #endif
2720       if (!Serializer::enabled() && !emit_debug_code()) {
2721         return;
2722       }
2723     }
2724     ASSERT(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
2725     reloc_info_writer.Write(&rinfo);
2726   }
2727 }
2728 
2729 
CheckConstPool(bool force_emit,bool require_jump)2730 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
2731   // Calculate the offset of the next check. It will be overwritten
2732   // when a const pool is generated or when const pools are being
2733   // blocked for a specific range.
2734   next_buffer_check_ = pc_offset() + kCheckConstInterval;
2735 
2736   // There is nothing to do if there are no pending relocation info entries.
2737   if (num_prinfo_ == 0) return;
2738 
2739   // We emit a constant pool at regular intervals of about kDistBetweenPools
2740   // or when requested by parameter force_emit (e.g. after each function).
2741   // We prefer not to emit a jump unless the max distance is reached or if we
2742   // are running low on slots, which can happen if a lot of constants are being
2743   // emitted (e.g. --debug-code and many static references).
2744   int dist = pc_offset() - last_const_pool_end_;
2745   if (!force_emit && dist < kMaxDistBetweenPools &&
2746       (require_jump || dist < kDistBetweenPools) &&
2747       // TODO(1236125): Cleanup the "magic" number below. We know that
2748       // the code generation will test every kCheckConstIntervalInst.
2749       // Thus we are safe as long as we generate less than 7 constant
2750       // entries per instruction.
2751       (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) {
2752     return;
2753   }
2754 
2755   // If we did not return by now, we need to emit the constant pool soon.
2756 
2757   // However, some small sequences of instructions must not be broken up by the
2758   // insertion of a constant pool; such sequences are protected by setting
2759   // either const_pool_blocked_nesting_ or no_const_pool_before_, which are
2760   // both checked here. Also, recursive calls to CheckConstPool are blocked by
2761   // no_const_pool_before_.
2762   if (const_pool_blocked_nesting_ > 0 || pc_offset() < no_const_pool_before_) {
2763     // Emission is currently blocked; make sure we try again as soon as
2764     // possible.
2765     if (const_pool_blocked_nesting_ > 0) {
2766       next_buffer_check_ = pc_offset() + kInstrSize;
2767     } else {
2768       next_buffer_check_ = no_const_pool_before_;
2769     }
2770 
2771     // Something is wrong if emission is forced and blocked at the same time.
2772     ASSERT(!force_emit);
2773     return;
2774   }
2775 
2776   int jump_instr = require_jump ? kInstrSize : 0;
2777 
2778   // Check that the code buffer is large enough before emitting the constant
2779   // pool and relocation information (include the jump over the pool and the
2780   // constant pool marker).
2781   int max_needed_space =
2782       jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize);
2783   while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer();
2784 
2785   // Block recursive calls to CheckConstPool.
2786   BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize +
2787                        num_prinfo_*kInstrSize);
2788   // Don't bother to check for the emit calls below.
2789   next_buffer_check_ = no_const_pool_before_;
2790 
2791   // Emit jump over constant pool if necessary.
2792   Label after_pool;
2793   if (require_jump) b(&after_pool);
2794 
2795   RecordComment("[ Constant Pool");
2796 
2797   // Put down constant pool marker "Undefined instruction" as specified by
2798   // A5.6 (ARMv7) Instruction set encoding.
2799   emit(kConstantPoolMarker | num_prinfo_);
2800 
2801   // Emit constant pool entries.
2802   for (int i = 0; i < num_prinfo_; i++) {
2803     RelocInfo& rinfo = prinfo_[i];
2804     ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
2805            rinfo.rmode() != RelocInfo::POSITION &&
2806            rinfo.rmode() != RelocInfo::STATEMENT_POSITION);
2807     Instr instr = instr_at(rinfo.pc());
2808 
2809     // Instruction to patch must be a ldr/str [pc, #offset].
2810     // P and U set, B and W clear, Rn == pc, offset12 still 0.
2811     ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | kOff12Mask)) ==
2812            (2*B25 | P | U | pc.code()*B16));
2813     int delta = pc_ - rinfo.pc() - 8;
2814     ASSERT(delta >= -4);  // instr could be ldr pc, [pc, #-4] followed by targ32
2815     if (delta < 0) {
2816       instr &= ~U;
2817       delta = -delta;
2818     }
2819     ASSERT(is_uint12(delta));
2820     instr_at_put(rinfo.pc(), instr + delta);
2821     emit(rinfo.data());
2822   }
2823   num_prinfo_ = 0;
2824   last_const_pool_end_ = pc_offset();
2825 
2826   RecordComment("]");
2827 
2828   if (after_pool.is_linked()) {
2829     bind(&after_pool);
2830   }
2831 
2832   // Since a constant pool was just emitted, move the check offset forward by
2833   // the standard interval.
2834   next_buffer_check_ = pc_offset() + kCheckConstInterval;
2835 }
2836 
2837 
2838 } }  // namespace v8::internal
2839 
2840 #endif  // V8_TARGET_ARCH_ARM
2841