1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "ast.h"
31 #include "deoptimizer.h"
32 #include "frames-inl.h"
33 #include "full-codegen.h"
34 #include "mark-compact.h"
35 #include "safepoint-table.h"
36 #include "scopeinfo.h"
37 #include "string-stream.h"
38
39 namespace v8 {
40 namespace internal {
41
42 // Iterator that supports traversing the stack handlers of a
43 // particular frame. Needs to know the top of the handler chain.
44 class StackHandlerIterator BASE_EMBEDDED {
45 public:
StackHandlerIterator(const StackFrame * frame,StackHandler * handler)46 StackHandlerIterator(const StackFrame* frame, StackHandler* handler)
47 : limit_(frame->fp()), handler_(handler) {
48 // Make sure the handler has already been unwound to this frame.
49 ASSERT(frame->sp() <= handler->address());
50 }
51
handler() const52 StackHandler* handler() const { return handler_; }
53
done()54 bool done() {
55 return handler_ == NULL || handler_->address() > limit_;
56 }
Advance()57 void Advance() {
58 ASSERT(!done());
59 handler_ = handler_->next();
60 }
61
62 private:
63 const Address limit_;
64 StackHandler* handler_;
65 };
66
67
68 // -------------------------------------------------------------------------
69
70
71 #define INITIALIZE_SINGLETON(type, field) field##_(this),
StackFrameIterator()72 StackFrameIterator::StackFrameIterator()
73 : isolate_(Isolate::Current()),
74 STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
75 frame_(NULL), handler_(NULL),
76 thread_(isolate_->thread_local_top()),
77 fp_(NULL), sp_(NULL), advance_(&StackFrameIterator::AdvanceWithHandler) {
78 Reset();
79 }
StackFrameIterator(Isolate * isolate)80 StackFrameIterator::StackFrameIterator(Isolate* isolate)
81 : isolate_(isolate),
82 STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
83 frame_(NULL), handler_(NULL),
84 thread_(isolate_->thread_local_top()),
85 fp_(NULL), sp_(NULL), advance_(&StackFrameIterator::AdvanceWithHandler) {
86 Reset();
87 }
StackFrameIterator(Isolate * isolate,ThreadLocalTop * t)88 StackFrameIterator::StackFrameIterator(Isolate* isolate, ThreadLocalTop* t)
89 : isolate_(isolate),
90 STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
91 frame_(NULL), handler_(NULL), thread_(t),
92 fp_(NULL), sp_(NULL), advance_(&StackFrameIterator::AdvanceWithHandler) {
93 Reset();
94 }
StackFrameIterator(Isolate * isolate,bool use_top,Address fp,Address sp)95 StackFrameIterator::StackFrameIterator(Isolate* isolate,
96 bool use_top, Address fp, Address sp)
97 : isolate_(isolate),
98 STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
99 frame_(NULL), handler_(NULL),
100 thread_(use_top ? isolate_->thread_local_top() : NULL),
101 fp_(use_top ? NULL : fp), sp_(sp),
102 advance_(use_top ? &StackFrameIterator::AdvanceWithHandler :
103 &StackFrameIterator::AdvanceWithoutHandler) {
104 if (use_top || fp != NULL) {
105 Reset();
106 }
107 }
108
109 #undef INITIALIZE_SINGLETON
110
111
AdvanceWithHandler()112 void StackFrameIterator::AdvanceWithHandler() {
113 ASSERT(!done());
114 // Compute the state of the calling frame before restoring
115 // callee-saved registers and unwinding handlers. This allows the
116 // frame code that computes the caller state to access the top
117 // handler and the value of any callee-saved register if needed.
118 StackFrame::State state;
119 StackFrame::Type type = frame_->GetCallerState(&state);
120
121 // Unwind handlers corresponding to the current frame.
122 StackHandlerIterator it(frame_, handler_);
123 while (!it.done()) it.Advance();
124 handler_ = it.handler();
125
126 // Advance to the calling frame.
127 frame_ = SingletonFor(type, &state);
128
129 // When we're done iterating over the stack frames, the handler
130 // chain must have been completely unwound.
131 ASSERT(!done() || handler_ == NULL);
132 }
133
134
AdvanceWithoutHandler()135 void StackFrameIterator::AdvanceWithoutHandler() {
136 // A simpler version of Advance which doesn't care about handler.
137 ASSERT(!done());
138 StackFrame::State state;
139 StackFrame::Type type = frame_->GetCallerState(&state);
140 frame_ = SingletonFor(type, &state);
141 }
142
143
Reset()144 void StackFrameIterator::Reset() {
145 StackFrame::State state;
146 StackFrame::Type type;
147 if (thread_ != NULL) {
148 type = ExitFrame::GetStateForFramePointer(
149 Isolate::c_entry_fp(thread_), &state);
150 handler_ = StackHandler::FromAddress(
151 Isolate::handler(thread_));
152 } else {
153 ASSERT(fp_ != NULL);
154 state.fp = fp_;
155 state.sp = sp_;
156 state.pc_address =
157 reinterpret_cast<Address*>(StandardFrame::ComputePCAddress(fp_));
158 type = StackFrame::ComputeType(isolate(), &state);
159 }
160 if (SingletonFor(type) == NULL) return;
161 frame_ = SingletonFor(type, &state);
162 }
163
164
SingletonFor(StackFrame::Type type,StackFrame::State * state)165 StackFrame* StackFrameIterator::SingletonFor(StackFrame::Type type,
166 StackFrame::State* state) {
167 if (type == StackFrame::NONE) return NULL;
168 StackFrame* result = SingletonFor(type);
169 ASSERT(result != NULL);
170 result->state_ = *state;
171 return result;
172 }
173
174
SingletonFor(StackFrame::Type type)175 StackFrame* StackFrameIterator::SingletonFor(StackFrame::Type type) {
176 #define FRAME_TYPE_CASE(type, field) \
177 case StackFrame::type: result = &field##_; break;
178
179 StackFrame* result = NULL;
180 switch (type) {
181 case StackFrame::NONE: return NULL;
182 STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
183 default: break;
184 }
185 return result;
186
187 #undef FRAME_TYPE_CASE
188 }
189
190
191 // -------------------------------------------------------------------------
192
193
StackTraceFrameIterator()194 StackTraceFrameIterator::StackTraceFrameIterator() {
195 if (!done() && !IsValidFrame()) Advance();
196 }
197
198
StackTraceFrameIterator(Isolate * isolate)199 StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate)
200 : JavaScriptFrameIterator(isolate) {
201 if (!done() && !IsValidFrame()) Advance();
202 }
203
204
Advance()205 void StackTraceFrameIterator::Advance() {
206 while (true) {
207 JavaScriptFrameIterator::Advance();
208 if (done()) return;
209 if (IsValidFrame()) return;
210 }
211 }
212
IsValidFrame()213 bool StackTraceFrameIterator::IsValidFrame() {
214 if (!frame()->function()->IsJSFunction()) return false;
215 Object* script = JSFunction::cast(frame()->function())->shared()->script();
216 // Don't show functions from native scripts to user.
217 return (script->IsScript() &&
218 Script::TYPE_NATIVE != Script::cast(script)->type()->value());
219 }
220
221
222 // -------------------------------------------------------------------------
223
224
IsValidFP(Address fp)225 bool SafeStackFrameIterator::ExitFrameValidator::IsValidFP(Address fp) {
226 if (!validator_.IsValid(fp)) return false;
227 Address sp = ExitFrame::ComputeStackPointer(fp);
228 if (!validator_.IsValid(sp)) return false;
229 StackFrame::State state;
230 ExitFrame::FillState(fp, sp, &state);
231 if (!validator_.IsValid(reinterpret_cast<Address>(state.pc_address))) {
232 return false;
233 }
234 return *state.pc_address != NULL;
235 }
236
237
ActiveCountMaintainer(Isolate * isolate)238 SafeStackFrameIterator::ActiveCountMaintainer::ActiveCountMaintainer(
239 Isolate* isolate)
240 : isolate_(isolate) {
241 isolate_->set_safe_stack_iterator_counter(
242 isolate_->safe_stack_iterator_counter() + 1);
243 }
244
245
~ActiveCountMaintainer()246 SafeStackFrameIterator::ActiveCountMaintainer::~ActiveCountMaintainer() {
247 isolate_->set_safe_stack_iterator_counter(
248 isolate_->safe_stack_iterator_counter() - 1);
249 }
250
251
SafeStackFrameIterator(Isolate * isolate,Address fp,Address sp,Address low_bound,Address high_bound)252 SafeStackFrameIterator::SafeStackFrameIterator(
253 Isolate* isolate,
254 Address fp, Address sp, Address low_bound, Address high_bound) :
255 maintainer_(isolate),
256 stack_validator_(low_bound, high_bound),
257 is_valid_top_(IsValidTop(isolate, low_bound, high_bound)),
258 is_valid_fp_(IsWithinBounds(low_bound, high_bound, fp)),
259 is_working_iterator_(is_valid_top_ || is_valid_fp_),
260 iteration_done_(!is_working_iterator_),
261 iterator_(isolate, is_valid_top_, is_valid_fp_ ? fp : NULL, sp) {
262 }
263
is_active(Isolate * isolate)264 bool SafeStackFrameIterator::is_active(Isolate* isolate) {
265 return isolate->safe_stack_iterator_counter() > 0;
266 }
267
268
IsValidTop(Isolate * isolate,Address low_bound,Address high_bound)269 bool SafeStackFrameIterator::IsValidTop(Isolate* isolate,
270 Address low_bound, Address high_bound) {
271 ThreadLocalTop* top = isolate->thread_local_top();
272 Address fp = Isolate::c_entry_fp(top);
273 ExitFrameValidator validator(low_bound, high_bound);
274 if (!validator.IsValidFP(fp)) return false;
275 return Isolate::handler(top) != NULL;
276 }
277
278
Advance()279 void SafeStackFrameIterator::Advance() {
280 ASSERT(is_working_iterator_);
281 ASSERT(!done());
282 StackFrame* last_frame = iterator_.frame();
283 Address last_sp = last_frame->sp(), last_fp = last_frame->fp();
284 // Before advancing to the next stack frame, perform pointer validity tests
285 iteration_done_ = !IsValidFrame(last_frame) ||
286 !CanIterateHandles(last_frame, iterator_.handler()) ||
287 !IsValidCaller(last_frame);
288 if (iteration_done_) return;
289
290 iterator_.Advance();
291 if (iterator_.done()) return;
292 // Check that we have actually moved to the previous frame in the stack
293 StackFrame* prev_frame = iterator_.frame();
294 iteration_done_ = prev_frame->sp() < last_sp || prev_frame->fp() < last_fp;
295 }
296
297
CanIterateHandles(StackFrame * frame,StackHandler * handler)298 bool SafeStackFrameIterator::CanIterateHandles(StackFrame* frame,
299 StackHandler* handler) {
300 // If StackIterator iterates over StackHandles, verify that
301 // StackHandlerIterator can be instantiated (see StackHandlerIterator
302 // constructor.)
303 return !is_valid_top_ || (frame->sp() <= handler->address());
304 }
305
306
IsValidFrame(StackFrame * frame) const307 bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const {
308 return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp());
309 }
310
311
IsValidCaller(StackFrame * frame)312 bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) {
313 StackFrame::State state;
314 if (frame->is_entry() || frame->is_entry_construct()) {
315 // See EntryFrame::GetCallerState. It computes the caller FP address
316 // and calls ExitFrame::GetStateForFramePointer on it. We need to be
317 // sure that caller FP address is valid.
318 Address caller_fp = Memory::Address_at(
319 frame->fp() + EntryFrameConstants::kCallerFPOffset);
320 ExitFrameValidator validator(stack_validator_);
321 if (!validator.IsValidFP(caller_fp)) return false;
322 } else if (frame->is_arguments_adaptor()) {
323 // See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that
324 // the number of arguments is stored on stack as Smi. We need to check
325 // that it really an Smi.
326 Object* number_of_args = reinterpret_cast<ArgumentsAdaptorFrame*>(frame)->
327 GetExpression(0);
328 if (!number_of_args->IsSmi()) {
329 return false;
330 }
331 }
332 frame->ComputeCallerState(&state);
333 return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) &&
334 iterator_.SingletonFor(frame->GetCallerState(&state)) != NULL;
335 }
336
337
Reset()338 void SafeStackFrameIterator::Reset() {
339 if (is_working_iterator_) {
340 iterator_.Reset();
341 iteration_done_ = false;
342 }
343 }
344
345
346 // -------------------------------------------------------------------------
347
348
349 #ifdef ENABLE_LOGGING_AND_PROFILING
SafeStackTraceFrameIterator(Isolate * isolate,Address fp,Address sp,Address low_bound,Address high_bound)350 SafeStackTraceFrameIterator::SafeStackTraceFrameIterator(
351 Isolate* isolate,
352 Address fp, Address sp, Address low_bound, Address high_bound) :
353 SafeJavaScriptFrameIterator(isolate, fp, sp, low_bound, high_bound) {
354 if (!done() && !frame()->is_java_script()) Advance();
355 }
356
357
Advance()358 void SafeStackTraceFrameIterator::Advance() {
359 while (true) {
360 SafeJavaScriptFrameIterator::Advance();
361 if (done()) return;
362 if (frame()->is_java_script()) return;
363 }
364 }
365 #endif
366
367
GetSafepointData(Isolate * isolate,Address pc,SafepointEntry * safepoint_entry,unsigned * stack_slots)368 Code* StackFrame::GetSafepointData(Isolate* isolate,
369 Address pc,
370 SafepointEntry* safepoint_entry,
371 unsigned* stack_slots) {
372 PcToCodeCache::PcToCodeCacheEntry* entry =
373 isolate->pc_to_code_cache()->GetCacheEntry(pc);
374 SafepointEntry cached_safepoint_entry = entry->safepoint_entry;
375 if (!entry->safepoint_entry.is_valid()) {
376 entry->safepoint_entry = entry->code->GetSafepointEntry(pc);
377 ASSERT(entry->safepoint_entry.is_valid());
378 } else {
379 ASSERT(entry->safepoint_entry.Equals(entry->code->GetSafepointEntry(pc)));
380 }
381
382 // Fill in the results and return the code.
383 Code* code = entry->code;
384 *safepoint_entry = entry->safepoint_entry;
385 *stack_slots = code->stack_slots();
386 return code;
387 }
388
389
HasHandler() const390 bool StackFrame::HasHandler() const {
391 StackHandlerIterator it(this, top_handler());
392 return !it.done();
393 }
394
395
IteratePc(ObjectVisitor * v,Address * pc_address,Code * holder)396 void StackFrame::IteratePc(ObjectVisitor* v,
397 Address* pc_address,
398 Code* holder) {
399 Address pc = *pc_address;
400 ASSERT(holder->contains(pc));
401 unsigned pc_offset = static_cast<unsigned>(pc - holder->instruction_start());
402 Object* code = holder;
403 v->VisitPointer(&code);
404 if (code != holder) {
405 holder = reinterpret_cast<Code*>(code);
406 pc = holder->instruction_start() + pc_offset;
407 *pc_address = pc;
408 }
409 }
410
411
ComputeType(Isolate * isolate,State * state)412 StackFrame::Type StackFrame::ComputeType(Isolate* isolate, State* state) {
413 ASSERT(state->fp != NULL);
414 if (StandardFrame::IsArgumentsAdaptorFrame(state->fp)) {
415 return ARGUMENTS_ADAPTOR;
416 }
417 // The marker and function offsets overlap. If the marker isn't a
418 // smi then the frame is a JavaScript frame -- and the marker is
419 // really the function.
420 const int offset = StandardFrameConstants::kMarkerOffset;
421 Object* marker = Memory::Object_at(state->fp + offset);
422 if (!marker->IsSmi()) {
423 // If we're using a "safe" stack iterator, we treat optimized
424 // frames as normal JavaScript frames to avoid having to look
425 // into the heap to determine the state. This is safe as long
426 // as nobody tries to GC...
427 if (SafeStackFrameIterator::is_active(isolate)) return JAVA_SCRIPT;
428 Code::Kind kind = GetContainingCode(isolate, *(state->pc_address))->kind();
429 ASSERT(kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION);
430 return (kind == Code::OPTIMIZED_FUNCTION) ? OPTIMIZED : JAVA_SCRIPT;
431 }
432 return static_cast<StackFrame::Type>(Smi::cast(marker)->value());
433 }
434
435
436
GetCallerState(State * state) const437 StackFrame::Type StackFrame::GetCallerState(State* state) const {
438 ComputeCallerState(state);
439 return ComputeType(isolate(), state);
440 }
441
442
unchecked_code() const443 Code* EntryFrame::unchecked_code() const {
444 return HEAP->raw_unchecked_js_entry_code();
445 }
446
447
ComputeCallerState(State * state) const448 void EntryFrame::ComputeCallerState(State* state) const {
449 GetCallerState(state);
450 }
451
452
SetCallerFp(Address caller_fp)453 void EntryFrame::SetCallerFp(Address caller_fp) {
454 const int offset = EntryFrameConstants::kCallerFPOffset;
455 Memory::Address_at(this->fp() + offset) = caller_fp;
456 }
457
458
GetCallerState(State * state) const459 StackFrame::Type EntryFrame::GetCallerState(State* state) const {
460 const int offset = EntryFrameConstants::kCallerFPOffset;
461 Address fp = Memory::Address_at(this->fp() + offset);
462 return ExitFrame::GetStateForFramePointer(fp, state);
463 }
464
465
unchecked_code() const466 Code* EntryConstructFrame::unchecked_code() const {
467 return HEAP->raw_unchecked_js_construct_entry_code();
468 }
469
470
code_slot() const471 Object*& ExitFrame::code_slot() const {
472 const int offset = ExitFrameConstants::kCodeOffset;
473 return Memory::Object_at(fp() + offset);
474 }
475
476
unchecked_code() const477 Code* ExitFrame::unchecked_code() const {
478 return reinterpret_cast<Code*>(code_slot());
479 }
480
481
ComputeCallerState(State * state) const482 void ExitFrame::ComputeCallerState(State* state) const {
483 // Setup the caller state.
484 state->sp = caller_sp();
485 state->fp = Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset);
486 state->pc_address
487 = reinterpret_cast<Address*>(fp() + ExitFrameConstants::kCallerPCOffset);
488 }
489
490
SetCallerFp(Address caller_fp)491 void ExitFrame::SetCallerFp(Address caller_fp) {
492 Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset) = caller_fp;
493 }
494
495
Iterate(ObjectVisitor * v) const496 void ExitFrame::Iterate(ObjectVisitor* v) const {
497 // The arguments are traversed as part of the expression stack of
498 // the calling frame.
499 IteratePc(v, pc_address(), LookupCode());
500 v->VisitPointer(&code_slot());
501 }
502
503
GetCallerStackPointer() const504 Address ExitFrame::GetCallerStackPointer() const {
505 return fp() + ExitFrameConstants::kCallerSPDisplacement;
506 }
507
508
GetStateForFramePointer(Address fp,State * state)509 StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) {
510 if (fp == 0) return NONE;
511 Address sp = ComputeStackPointer(fp);
512 FillState(fp, sp, state);
513 ASSERT(*state->pc_address != NULL);
514 return EXIT;
515 }
516
517
FillState(Address fp,Address sp,State * state)518 void ExitFrame::FillState(Address fp, Address sp, State* state) {
519 state->sp = sp;
520 state->fp = fp;
521 state->pc_address = reinterpret_cast<Address*>(sp - 1 * kPointerSize);
522 }
523
524
GetExpressionAddress(int n) const525 Address StandardFrame::GetExpressionAddress(int n) const {
526 const int offset = StandardFrameConstants::kExpressionsOffset;
527 return fp() + offset - n * kPointerSize;
528 }
529
530
ComputeExpressionsCount() const531 int StandardFrame::ComputeExpressionsCount() const {
532 const int offset =
533 StandardFrameConstants::kExpressionsOffset + kPointerSize;
534 Address base = fp() + offset;
535 Address limit = sp();
536 ASSERT(base >= limit); // stack grows downwards
537 // Include register-allocated locals in number of expressions.
538 return static_cast<int>((base - limit) / kPointerSize);
539 }
540
541
ComputeCallerState(State * state) const542 void StandardFrame::ComputeCallerState(State* state) const {
543 state->sp = caller_sp();
544 state->fp = caller_fp();
545 state->pc_address = reinterpret_cast<Address*>(ComputePCAddress(fp()));
546 }
547
548
SetCallerFp(Address caller_fp)549 void StandardFrame::SetCallerFp(Address caller_fp) {
550 Memory::Address_at(fp() + StandardFrameConstants::kCallerFPOffset) =
551 caller_fp;
552 }
553
554
IsExpressionInsideHandler(int n) const555 bool StandardFrame::IsExpressionInsideHandler(int n) const {
556 Address address = GetExpressionAddress(n);
557 for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
558 if (it.handler()->includes(address)) return true;
559 }
560 return false;
561 }
562
563
Iterate(ObjectVisitor * v) const564 void OptimizedFrame::Iterate(ObjectVisitor* v) const {
565 #ifdef DEBUG
566 // Make sure that optimized frames do not contain any stack handlers.
567 StackHandlerIterator it(this, top_handler());
568 ASSERT(it.done());
569 #endif
570
571 // Make sure that we're not doing "safe" stack frame iteration. We cannot
572 // possibly find pointers in optimized frames in that state.
573 ASSERT(!SafeStackFrameIterator::is_active(isolate()));
574
575 // Compute the safepoint information.
576 unsigned stack_slots = 0;
577 SafepointEntry safepoint_entry;
578 Code* code = StackFrame::GetSafepointData(
579 isolate(), pc(), &safepoint_entry, &stack_slots);
580 unsigned slot_space = stack_slots * kPointerSize;
581
582 // Visit the outgoing parameters.
583 Object** parameters_base = &Memory::Object_at(sp());
584 Object** parameters_limit = &Memory::Object_at(
585 fp() + JavaScriptFrameConstants::kFunctionOffset - slot_space);
586
587 // Visit the parameters that may be on top of the saved registers.
588 if (safepoint_entry.argument_count() > 0) {
589 v->VisitPointers(parameters_base,
590 parameters_base + safepoint_entry.argument_count());
591 parameters_base += safepoint_entry.argument_count();
592 }
593
594 // Skip saved double registers.
595 if (safepoint_entry.has_doubles()) {
596 parameters_base += DoubleRegister::kNumAllocatableRegisters *
597 kDoubleSize / kPointerSize;
598 }
599
600 // Visit the registers that contain pointers if any.
601 if (safepoint_entry.HasRegisters()) {
602 for (int i = kNumSafepointRegisters - 1; i >=0; i--) {
603 if (safepoint_entry.HasRegisterAt(i)) {
604 int reg_stack_index = MacroAssembler::SafepointRegisterStackIndex(i);
605 v->VisitPointer(parameters_base + reg_stack_index);
606 }
607 }
608 // Skip the words containing the register values.
609 parameters_base += kNumSafepointRegisters;
610 }
611
612 // We're done dealing with the register bits.
613 uint8_t* safepoint_bits = safepoint_entry.bits();
614 safepoint_bits += kNumSafepointRegisters >> kBitsPerByteLog2;
615
616 // Visit the rest of the parameters.
617 v->VisitPointers(parameters_base, parameters_limit);
618
619 // Visit pointer spill slots and locals.
620 for (unsigned index = 0; index < stack_slots; index++) {
621 int byte_index = index >> kBitsPerByteLog2;
622 int bit_index = index & (kBitsPerByte - 1);
623 if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) {
624 v->VisitPointer(parameters_limit + index);
625 }
626 }
627
628 // Visit the context and the function.
629 Object** fixed_base = &Memory::Object_at(
630 fp() + JavaScriptFrameConstants::kFunctionOffset);
631 Object** fixed_limit = &Memory::Object_at(fp());
632 v->VisitPointers(fixed_base, fixed_limit);
633
634 // Visit the return address in the callee and incoming arguments.
635 IteratePc(v, pc_address(), code);
636 }
637
638
IsConstructor() const639 bool JavaScriptFrame::IsConstructor() const {
640 Address fp = caller_fp();
641 if (has_adapted_arguments()) {
642 // Skip the arguments adaptor frame and look at the real caller.
643 fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
644 }
645 return IsConstructFrame(fp);
646 }
647
648
unchecked_code() const649 Code* JavaScriptFrame::unchecked_code() const {
650 JSFunction* function = JSFunction::cast(this->function());
651 return function->unchecked_code();
652 }
653
654
GetNumberOfIncomingArguments() const655 int JavaScriptFrame::GetNumberOfIncomingArguments() const {
656 ASSERT(!SafeStackFrameIterator::is_active(isolate()) &&
657 isolate()->heap()->gc_state() == Heap::NOT_IN_GC);
658
659 JSFunction* function = JSFunction::cast(this->function());
660 return function->shared()->formal_parameter_count();
661 }
662
663
GetCallerStackPointer() const664 Address JavaScriptFrame::GetCallerStackPointer() const {
665 return fp() + StandardFrameConstants::kCallerSPOffset;
666 }
667
668
GetFunctions(List<JSFunction * > * functions)669 void JavaScriptFrame::GetFunctions(List<JSFunction*>* functions) {
670 ASSERT(functions->length() == 0);
671 functions->Add(JSFunction::cast(function()));
672 }
673
674
Summarize(List<FrameSummary> * functions)675 void JavaScriptFrame::Summarize(List<FrameSummary>* functions) {
676 ASSERT(functions->length() == 0);
677 Code* code_pointer = LookupCode();
678 int offset = static_cast<int>(pc() - code_pointer->address());
679 FrameSummary summary(receiver(),
680 JSFunction::cast(function()),
681 code_pointer,
682 offset,
683 IsConstructor());
684 functions->Add(summary);
685 }
686
687
Print()688 void FrameSummary::Print() {
689 PrintF("receiver: ");
690 receiver_->ShortPrint();
691 PrintF("\nfunction: ");
692 function_->shared()->DebugName()->ShortPrint();
693 PrintF("\ncode: ");
694 code_->ShortPrint();
695 if (code_->kind() == Code::FUNCTION) PrintF(" NON-OPT");
696 if (code_->kind() == Code::OPTIMIZED_FUNCTION) PrintF(" OPT");
697 PrintF("\npc: %d\n", offset_);
698 }
699
700
Summarize(List<FrameSummary> * frames)701 void OptimizedFrame::Summarize(List<FrameSummary>* frames) {
702 ASSERT(frames->length() == 0);
703 ASSERT(is_optimized());
704
705 int deopt_index = Safepoint::kNoDeoptimizationIndex;
706 DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index);
707
708 // BUG(3243555): Since we don't have a lazy-deopt registered at
709 // throw-statements, we can't use the translation at the call-site of
710 // throw. An entry with no deoptimization index indicates a call-site
711 // without a lazy-deopt. As a consequence we are not allowed to inline
712 // functions containing throw.
713 if (deopt_index == Safepoint::kNoDeoptimizationIndex) {
714 JavaScriptFrame::Summarize(frames);
715 return;
716 }
717
718 TranslationIterator it(data->TranslationByteArray(),
719 data->TranslationIndex(deopt_index)->value());
720 Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
721 ASSERT(opcode == Translation::BEGIN);
722 int frame_count = it.Next();
723
724 // We create the summary in reverse order because the frames
725 // in the deoptimization translation are ordered bottom-to-top.
726 int i = frame_count;
727 while (i > 0) {
728 opcode = static_cast<Translation::Opcode>(it.Next());
729 if (opcode == Translation::FRAME) {
730 // We don't inline constructor calls, so only the first, outermost
731 // frame can be a constructor frame in case of inlining.
732 bool is_constructor = (i == frame_count) && IsConstructor();
733
734 i--;
735 int ast_id = it.Next();
736 int function_id = it.Next();
737 it.Next(); // Skip height.
738 JSFunction* function =
739 JSFunction::cast(data->LiteralArray()->get(function_id));
740
741 // The translation commands are ordered and the receiver is always
742 // at the first position. Since we are always at a call when we need
743 // to construct a stack trace, the receiver is always in a stack slot.
744 opcode = static_cast<Translation::Opcode>(it.Next());
745 ASSERT(opcode == Translation::STACK_SLOT);
746 int input_slot_index = it.Next();
747
748 // Get the correct receiver in the optimized frame.
749 Object* receiver = NULL;
750 // Positive index means the value is spilled to the locals area. Negative
751 // means it is stored in the incoming parameter area.
752 if (input_slot_index >= 0) {
753 receiver = GetExpression(input_slot_index);
754 } else {
755 // Index -1 overlaps with last parameter, -n with the first parameter,
756 // (-n - 1) with the receiver with n being the number of parameters
757 // of the outermost, optimized frame.
758 int parameter_count = ComputeParametersCount();
759 int parameter_index = input_slot_index + parameter_count;
760 receiver = (parameter_index == -1)
761 ? this->receiver()
762 : this->GetParameter(parameter_index);
763 }
764
765 Code* code = function->shared()->code();
766 DeoptimizationOutputData* output_data =
767 DeoptimizationOutputData::cast(code->deoptimization_data());
768 unsigned entry = Deoptimizer::GetOutputInfo(output_data,
769 ast_id,
770 function->shared());
771 unsigned pc_offset =
772 FullCodeGenerator::PcField::decode(entry) + Code::kHeaderSize;
773 ASSERT(pc_offset > 0);
774
775 FrameSummary summary(receiver, function, code, pc_offset, is_constructor);
776 frames->Add(summary);
777 } else {
778 // Skip over operands to advance to the next opcode.
779 it.Skip(Translation::NumberOfOperandsFor(opcode));
780 }
781 }
782 }
783
784
GetDeoptimizationData(int * deopt_index)785 DeoptimizationInputData* OptimizedFrame::GetDeoptimizationData(
786 int* deopt_index) {
787 ASSERT(is_optimized());
788
789 JSFunction* opt_function = JSFunction::cast(function());
790 Code* code = opt_function->code();
791
792 // The code object may have been replaced by lazy deoptimization. Fall
793 // back to a slow search in this case to find the original optimized
794 // code object.
795 if (!code->contains(pc())) {
796 code = isolate()->pc_to_code_cache()->GcSafeFindCodeForPc(pc());
797 }
798 ASSERT(code != NULL);
799 ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION);
800
801 SafepointEntry safepoint_entry = code->GetSafepointEntry(pc());
802 *deopt_index = safepoint_entry.deoptimization_index();
803 ASSERT(*deopt_index != Safepoint::kNoDeoptimizationIndex);
804
805 return DeoptimizationInputData::cast(code->deoptimization_data());
806 }
807
808
GetFunctions(List<JSFunction * > * functions)809 void OptimizedFrame::GetFunctions(List<JSFunction*>* functions) {
810 ASSERT(functions->length() == 0);
811 ASSERT(is_optimized());
812
813 int deopt_index = Safepoint::kNoDeoptimizationIndex;
814 DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index);
815
816 TranslationIterator it(data->TranslationByteArray(),
817 data->TranslationIndex(deopt_index)->value());
818 Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
819 ASSERT(opcode == Translation::BEGIN);
820 int frame_count = it.Next();
821
822 // We insert the frames in reverse order because the frames
823 // in the deoptimization translation are ordered bottom-to-top.
824 while (frame_count > 0) {
825 opcode = static_cast<Translation::Opcode>(it.Next());
826 if (opcode == Translation::FRAME) {
827 frame_count--;
828 it.Next(); // Skip ast id.
829 int function_id = it.Next();
830 it.Next(); // Skip height.
831 JSFunction* function =
832 JSFunction::cast(data->LiteralArray()->get(function_id));
833 functions->Add(function);
834 } else {
835 // Skip over operands to advance to the next opcode.
836 it.Skip(Translation::NumberOfOperandsFor(opcode));
837 }
838 }
839 }
840
841
GetCallerStackPointer() const842 Address ArgumentsAdaptorFrame::GetCallerStackPointer() const {
843 return fp() + StandardFrameConstants::kCallerSPOffset;
844 }
845
846
GetCallerStackPointer() const847 Address InternalFrame::GetCallerStackPointer() const {
848 // Internal frames have no arguments. The stack pointer of the
849 // caller is at a fixed offset from the frame pointer.
850 return fp() + StandardFrameConstants::kCallerSPOffset;
851 }
852
853
unchecked_code() const854 Code* ArgumentsAdaptorFrame::unchecked_code() const {
855 return isolate()->builtins()->builtin(
856 Builtins::kArgumentsAdaptorTrampoline);
857 }
858
859
unchecked_code() const860 Code* InternalFrame::unchecked_code() const {
861 const int offset = InternalFrameConstants::kCodeOffset;
862 Object* code = Memory::Object_at(fp() + offset);
863 ASSERT(code != NULL);
864 return reinterpret_cast<Code*>(code);
865 }
866
867
PrintIndex(StringStream * accumulator,PrintMode mode,int index)868 void StackFrame::PrintIndex(StringStream* accumulator,
869 PrintMode mode,
870 int index) {
871 accumulator->Add((mode == OVERVIEW) ? "%5d: " : "[%d]: ", index);
872 }
873
874
Print(StringStream * accumulator,PrintMode mode,int index) const875 void JavaScriptFrame::Print(StringStream* accumulator,
876 PrintMode mode,
877 int index) const {
878 HandleScope scope;
879 Object* receiver = this->receiver();
880 Object* function = this->function();
881
882 accumulator->PrintSecurityTokenIfChanged(function);
883 PrintIndex(accumulator, mode, index);
884 Code* code = NULL;
885 if (IsConstructor()) accumulator->Add("new ");
886 accumulator->PrintFunction(function, receiver, &code);
887
888 Handle<SerializedScopeInfo> scope_info(SerializedScopeInfo::Empty());
889
890 if (function->IsJSFunction()) {
891 Handle<SharedFunctionInfo> shared(JSFunction::cast(function)->shared());
892 scope_info = Handle<SerializedScopeInfo>(shared->scope_info());
893 Object* script_obj = shared->script();
894 if (script_obj->IsScript()) {
895 Handle<Script> script(Script::cast(script_obj));
896 accumulator->Add(" [");
897 accumulator->PrintName(script->name());
898
899 Address pc = this->pc();
900 if (code != NULL && code->kind() == Code::FUNCTION &&
901 pc >= code->instruction_start() && pc < code->instruction_end()) {
902 int source_pos = code->SourcePosition(pc);
903 int line = GetScriptLineNumberSafe(script, source_pos) + 1;
904 accumulator->Add(":%d", line);
905 } else {
906 int function_start_pos = shared->start_position();
907 int line = GetScriptLineNumberSafe(script, function_start_pos) + 1;
908 accumulator->Add(":~%d", line);
909 }
910
911 accumulator->Add("] ");
912 }
913 }
914
915 accumulator->Add("(this=%o", receiver);
916
917 // Get scope information for nicer output, if possible. If code is
918 // NULL, or doesn't contain scope info, info will return 0 for the
919 // number of parameters, stack slots, or context slots.
920 ScopeInfo<PreallocatedStorage> info(*scope_info);
921
922 // Print the parameters.
923 int parameters_count = ComputeParametersCount();
924 for (int i = 0; i < parameters_count; i++) {
925 accumulator->Add(",");
926 // If we have a name for the parameter we print it. Nameless
927 // parameters are either because we have more actual parameters
928 // than formal parameters or because we have no scope information.
929 if (i < info.number_of_parameters()) {
930 accumulator->PrintName(*info.parameter_name(i));
931 accumulator->Add("=");
932 }
933 accumulator->Add("%o", GetParameter(i));
934 }
935
936 accumulator->Add(")");
937 if (mode == OVERVIEW) {
938 accumulator->Add("\n");
939 return;
940 }
941 accumulator->Add(" {\n");
942
943 // Compute the number of locals and expression stack elements.
944 int stack_locals_count = info.number_of_stack_slots();
945 int heap_locals_count = info.number_of_context_slots();
946 int expressions_count = ComputeExpressionsCount();
947
948 // Print stack-allocated local variables.
949 if (stack_locals_count > 0) {
950 accumulator->Add(" // stack-allocated locals\n");
951 }
952 for (int i = 0; i < stack_locals_count; i++) {
953 accumulator->Add(" var ");
954 accumulator->PrintName(*info.stack_slot_name(i));
955 accumulator->Add(" = ");
956 if (i < expressions_count) {
957 accumulator->Add("%o", GetExpression(i));
958 } else {
959 accumulator->Add("// no expression found - inconsistent frame?");
960 }
961 accumulator->Add("\n");
962 }
963
964 // Try to get hold of the context of this frame.
965 Context* context = NULL;
966 if (this->context() != NULL && this->context()->IsContext()) {
967 context = Context::cast(this->context());
968 }
969
970 // Print heap-allocated local variables.
971 if (heap_locals_count > Context::MIN_CONTEXT_SLOTS) {
972 accumulator->Add(" // heap-allocated locals\n");
973 }
974 for (int i = Context::MIN_CONTEXT_SLOTS; i < heap_locals_count; i++) {
975 accumulator->Add(" var ");
976 accumulator->PrintName(*info.context_slot_name(i));
977 accumulator->Add(" = ");
978 if (context != NULL) {
979 if (i < context->length()) {
980 accumulator->Add("%o", context->get(i));
981 } else {
982 accumulator->Add(
983 "// warning: missing context slot - inconsistent frame?");
984 }
985 } else {
986 accumulator->Add("// warning: no context found - inconsistent frame?");
987 }
988 accumulator->Add("\n");
989 }
990
991 // Print the expression stack.
992 int expressions_start = stack_locals_count;
993 if (expressions_start < expressions_count) {
994 accumulator->Add(" // expression stack (top to bottom)\n");
995 }
996 for (int i = expressions_count - 1; i >= expressions_start; i--) {
997 if (IsExpressionInsideHandler(i)) continue;
998 accumulator->Add(" [%02d] : %o\n", i, GetExpression(i));
999 }
1000
1001 // Print details about the function.
1002 if (FLAG_max_stack_trace_source_length != 0 && code != NULL) {
1003 SharedFunctionInfo* shared = JSFunction::cast(function)->shared();
1004 accumulator->Add("--------- s o u r c e c o d e ---------\n");
1005 shared->SourceCodePrint(accumulator, FLAG_max_stack_trace_source_length);
1006 accumulator->Add("\n-----------------------------------------\n");
1007 }
1008
1009 accumulator->Add("}\n\n");
1010 }
1011
1012
Print(StringStream * accumulator,PrintMode mode,int index) const1013 void ArgumentsAdaptorFrame::Print(StringStream* accumulator,
1014 PrintMode mode,
1015 int index) const {
1016 int actual = ComputeParametersCount();
1017 int expected = -1;
1018 Object* function = this->function();
1019 if (function->IsJSFunction()) {
1020 expected = JSFunction::cast(function)->shared()->formal_parameter_count();
1021 }
1022
1023 PrintIndex(accumulator, mode, index);
1024 accumulator->Add("arguments adaptor frame: %d->%d", actual, expected);
1025 if (mode == OVERVIEW) {
1026 accumulator->Add("\n");
1027 return;
1028 }
1029 accumulator->Add(" {\n");
1030
1031 // Print actual arguments.
1032 if (actual > 0) accumulator->Add(" // actual arguments\n");
1033 for (int i = 0; i < actual; i++) {
1034 accumulator->Add(" [%02d] : %o", i, GetParameter(i));
1035 if (expected != -1 && i >= expected) {
1036 accumulator->Add(" // not passed to callee");
1037 }
1038 accumulator->Add("\n");
1039 }
1040
1041 accumulator->Add("}\n\n");
1042 }
1043
1044
Iterate(ObjectVisitor * v) const1045 void EntryFrame::Iterate(ObjectVisitor* v) const {
1046 StackHandlerIterator it(this, top_handler());
1047 ASSERT(!it.done());
1048 StackHandler* handler = it.handler();
1049 ASSERT(handler->is_entry());
1050 handler->Iterate(v, LookupCode());
1051 #ifdef DEBUG
1052 // Make sure that the entry frame does not contain more than one
1053 // stack handler.
1054 it.Advance();
1055 ASSERT(it.done());
1056 #endif
1057 IteratePc(v, pc_address(), LookupCode());
1058 }
1059
1060
IterateExpressions(ObjectVisitor * v) const1061 void StandardFrame::IterateExpressions(ObjectVisitor* v) const {
1062 const int offset = StandardFrameConstants::kContextOffset;
1063 Object** base = &Memory::Object_at(sp());
1064 Object** limit = &Memory::Object_at(fp() + offset) + 1;
1065 for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
1066 StackHandler* handler = it.handler();
1067 // Traverse pointers down to - but not including - the next
1068 // handler in the handler chain. Update the base to skip the
1069 // handler and allow the handler to traverse its own pointers.
1070 const Address address = handler->address();
1071 v->VisitPointers(base, reinterpret_cast<Object**>(address));
1072 base = reinterpret_cast<Object**>(address + StackHandlerConstants::kSize);
1073 // Traverse the pointers in the handler itself.
1074 handler->Iterate(v, LookupCode());
1075 }
1076 v->VisitPointers(base, limit);
1077 }
1078
1079
Iterate(ObjectVisitor * v) const1080 void JavaScriptFrame::Iterate(ObjectVisitor* v) const {
1081 IterateExpressions(v);
1082 IteratePc(v, pc_address(), LookupCode());
1083 }
1084
1085
Iterate(ObjectVisitor * v) const1086 void InternalFrame::Iterate(ObjectVisitor* v) const {
1087 // Internal frames only have object pointers on the expression stack
1088 // as they never have any arguments.
1089 IterateExpressions(v);
1090 IteratePc(v, pc_address(), LookupCode());
1091 }
1092
1093
1094 // -------------------------------------------------------------------------
1095
1096
FindJavaScriptFrame(int n)1097 JavaScriptFrame* StackFrameLocator::FindJavaScriptFrame(int n) {
1098 ASSERT(n >= 0);
1099 for (int i = 0; i <= n; i++) {
1100 while (!iterator_.frame()->is_java_script()) iterator_.Advance();
1101 if (i == n) return JavaScriptFrame::cast(iterator_.frame());
1102 iterator_.Advance();
1103 }
1104 UNREACHABLE();
1105 return NULL;
1106 }
1107
1108
1109 // -------------------------------------------------------------------------
1110
1111
GcSafeCastToCode(HeapObject * object,Address pc)1112 Code* PcToCodeCache::GcSafeCastToCode(HeapObject* object, Address pc) {
1113 Code* code = reinterpret_cast<Code*>(object);
1114 ASSERT(code != NULL && code->contains(pc));
1115 return code;
1116 }
1117
1118
GcSafeFindCodeForPc(Address pc)1119 Code* PcToCodeCache::GcSafeFindCodeForPc(Address pc) {
1120 Heap* heap = isolate_->heap();
1121 // Check if the pc points into a large object chunk.
1122 LargeObjectChunk* chunk = heap->lo_space()->FindChunkContainingPc(pc);
1123 if (chunk != NULL) return GcSafeCastToCode(chunk->GetObject(), pc);
1124
1125 // Iterate through the 8K page until we reach the end or find an
1126 // object starting after the pc.
1127 Page* page = Page::FromAddress(pc);
1128 HeapObjectIterator iterator(page, heap->GcSafeSizeOfOldObjectFunction());
1129 HeapObject* previous = NULL;
1130 while (true) {
1131 HeapObject* next = iterator.next();
1132 if (next == NULL || next->address() >= pc) {
1133 return GcSafeCastToCode(previous, pc);
1134 }
1135 previous = next;
1136 }
1137 }
1138
1139
GetCacheEntry(Address pc)1140 PcToCodeCache::PcToCodeCacheEntry* PcToCodeCache::GetCacheEntry(Address pc) {
1141 isolate_->counters()->pc_to_code()->Increment();
1142 ASSERT(IsPowerOf2(kPcToCodeCacheSize));
1143 uint32_t hash = ComputeIntegerHash(
1144 static_cast<uint32_t>(reinterpret_cast<uintptr_t>(pc)));
1145 uint32_t index = hash & (kPcToCodeCacheSize - 1);
1146 PcToCodeCacheEntry* entry = cache(index);
1147 if (entry->pc == pc) {
1148 isolate_->counters()->pc_to_code_cached()->Increment();
1149 ASSERT(entry->code == GcSafeFindCodeForPc(pc));
1150 } else {
1151 // Because this code may be interrupted by a profiling signal that
1152 // also queries the cache, we cannot update pc before the code has
1153 // been set. Otherwise, we risk trying to use a cache entry before
1154 // the code has been computed.
1155 entry->code = GcSafeFindCodeForPc(pc);
1156 entry->safepoint_entry.Reset();
1157 entry->pc = pc;
1158 }
1159 return entry;
1160 }
1161
1162
1163 // -------------------------------------------------------------------------
1164
NumRegs(RegList reglist)1165 int NumRegs(RegList reglist) {
1166 int n = 0;
1167 while (reglist != 0) {
1168 n++;
1169 reglist &= reglist - 1; // clear one bit
1170 }
1171 return n;
1172 }
1173
1174
1175 struct JSCallerSavedCodeData {
JSCallerSavedCodeDatav8::internal::JSCallerSavedCodeData1176 JSCallerSavedCodeData() {
1177 int i = 0;
1178 for (int r = 0; r < kNumRegs; r++)
1179 if ((kJSCallerSaved & (1 << r)) != 0)
1180 reg_code[i++] = r;
1181
1182 ASSERT(i == kNumJSCallerSaved);
1183 }
1184 int reg_code[kNumJSCallerSaved];
1185 };
1186
1187
1188 static const JSCallerSavedCodeData kCallerSavedCodeData;
1189
1190
JSCallerSavedCode(int n)1191 int JSCallerSavedCode(int n) {
1192 ASSERT(0 <= n && n < kNumJSCallerSaved);
1193 return kCallerSavedCodeData.reg_code[n];
1194 }
1195
1196
1197 #define DEFINE_WRAPPER(type, field) \
1198 class field##_Wrapper : public ZoneObject { \
1199 public: /* NOLINT */ \
1200 field##_Wrapper(const field& original) : frame_(original) { \
1201 } \
1202 field frame_; \
1203 };
STACK_FRAME_TYPE_LIST(DEFINE_WRAPPER)1204 STACK_FRAME_TYPE_LIST(DEFINE_WRAPPER)
1205 #undef DEFINE_WRAPPER
1206
1207 static StackFrame* AllocateFrameCopy(StackFrame* frame) {
1208 #define FRAME_TYPE_CASE(type, field) \
1209 case StackFrame::type: { \
1210 field##_Wrapper* wrapper = \
1211 new field##_Wrapper(*(reinterpret_cast<field*>(frame))); \
1212 return &wrapper->frame_; \
1213 }
1214
1215 switch (frame->type()) {
1216 STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
1217 default: UNREACHABLE();
1218 }
1219 #undef FRAME_TYPE_CASE
1220 return NULL;
1221 }
1222
CreateStackMap()1223 Vector<StackFrame*> CreateStackMap() {
1224 ZoneList<StackFrame*> list(10);
1225 for (StackFrameIterator it; !it.done(); it.Advance()) {
1226 StackFrame* frame = AllocateFrameCopy(it.frame());
1227 list.Add(frame);
1228 }
1229 return list.ToVector();
1230 }
1231
1232
1233 } } // namespace v8::internal
1234