• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11 // inserting a dummy basic block.  This pass may be "required" by passes that
12 // cannot deal with critical edges.  For this usage, the structure type is
13 // forward declared.  This pass obviously invalidates the CFG, but can update
14 // dominator trees.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #define DEBUG_TYPE "break-crit-edges"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
21 #include "llvm/Analysis/Dominators.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/ProfileInfo.h"
24 #include "llvm/Function.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Type.h"
27 #include "llvm/Support/CFG.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 using namespace llvm;
32 
33 STATISTIC(NumBroken, "Number of blocks inserted");
34 
35 namespace {
36   struct BreakCriticalEdges : public FunctionPass {
37     static char ID; // Pass identification, replacement for typeid
BreakCriticalEdges__anon4dd4a2ab0111::BreakCriticalEdges38     BreakCriticalEdges() : FunctionPass(ID) {
39       initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
40     }
41 
42     virtual bool runOnFunction(Function &F);
43 
getAnalysisUsage__anon4dd4a2ab0111::BreakCriticalEdges44     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
45       AU.addPreserved<DominatorTree>();
46       AU.addPreserved<LoopInfo>();
47       AU.addPreserved<ProfileInfo>();
48 
49       // No loop canonicalization guarantees are broken by this pass.
50       AU.addPreservedID(LoopSimplifyID);
51     }
52   };
53 }
54 
55 char BreakCriticalEdges::ID = 0;
56 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
57                 "Break critical edges in CFG", false, false)
58 
59 // Publicly exposed interface to pass...
60 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
createBreakCriticalEdgesPass()61 FunctionPass *llvm::createBreakCriticalEdgesPass() {
62   return new BreakCriticalEdges();
63 }
64 
65 // runOnFunction - Loop over all of the edges in the CFG, breaking critical
66 // edges as they are found.
67 //
runOnFunction(Function & F)68 bool BreakCriticalEdges::runOnFunction(Function &F) {
69   bool Changed = false;
70   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
71     TerminatorInst *TI = I->getTerminator();
72     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
73       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
74         if (SplitCriticalEdge(TI, i, this)) {
75           ++NumBroken;
76           Changed = true;
77         }
78   }
79 
80   return Changed;
81 }
82 
83 //===----------------------------------------------------------------------===//
84 //    Implementation of the external critical edge manipulation functions
85 //===----------------------------------------------------------------------===//
86 
87 // isCriticalEdge - Return true if the specified edge is a critical edge.
88 // Critical edges are edges from a block with multiple successors to a block
89 // with multiple predecessors.
90 //
isCriticalEdge(const TerminatorInst * TI,unsigned SuccNum,bool AllowIdenticalEdges)91 bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
92                           bool AllowIdenticalEdges) {
93   assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
94   if (TI->getNumSuccessors() == 1) return false;
95 
96   const BasicBlock *Dest = TI->getSuccessor(SuccNum);
97   const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
98 
99   // If there is more than one predecessor, this is a critical edge...
100   assert(I != E && "No preds, but we have an edge to the block?");
101   const BasicBlock *FirstPred = *I;
102   ++I;        // Skip one edge due to the incoming arc from TI.
103   if (!AllowIdenticalEdges)
104     return I != E;
105 
106   // If AllowIdenticalEdges is true, then we allow this edge to be considered
107   // non-critical iff all preds come from TI's block.
108   while (I != E) {
109     const BasicBlock *P = *I;
110     if (P != FirstPred)
111       return true;
112     // Note: leave this as is until no one ever compiles with either gcc 4.0.1
113     // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
114     E = pred_end(P);
115     ++I;
116   }
117   return false;
118 }
119 
120 /// CreatePHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
121 /// may require new PHIs in the new exit block. This function inserts the
122 /// new PHIs, as needed.  Preds is a list of preds inside the loop, SplitBB
123 /// is the new loop exit block, and DestBB is the old loop exit, now the
124 /// successor of SplitBB.
CreatePHIsForSplitLoopExit(SmallVectorImpl<BasicBlock * > & Preds,BasicBlock * SplitBB,BasicBlock * DestBB)125 static void CreatePHIsForSplitLoopExit(SmallVectorImpl<BasicBlock *> &Preds,
126                                        BasicBlock *SplitBB,
127                                        BasicBlock *DestBB) {
128   // SplitBB shouldn't have anything non-trivial in it yet.
129   assert(SplitBB->getFirstNonPHI() == SplitBB->getTerminator() &&
130          "SplitBB has non-PHI nodes!");
131 
132   // For each PHI in the destination block...
133   for (BasicBlock::iterator I = DestBB->begin();
134        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
135     unsigned Idx = PN->getBasicBlockIndex(SplitBB);
136     Value *V = PN->getIncomingValue(Idx);
137     // If the input is a PHI which already satisfies LCSSA, don't create
138     // a new one.
139     if (const PHINode *VP = dyn_cast<PHINode>(V))
140       if (VP->getParent() == SplitBB)
141         continue;
142     // Otherwise a new PHI is needed. Create one and populate it.
143     PHINode *NewPN = PHINode::Create(PN->getType(), Preds.size(), "split",
144                                      SplitBB->getTerminator());
145     for (unsigned i = 0, e = Preds.size(); i != e; ++i)
146       NewPN->addIncoming(V, Preds[i]);
147     // Update the original PHI.
148     PN->setIncomingValue(Idx, NewPN);
149   }
150 }
151 
152 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
153 /// split the critical edge.  This will update DominatorTree information if it
154 /// is available, thus calling this pass will not invalidate either of them.
155 /// This returns the new block if the edge was split, null otherwise.
156 ///
157 /// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
158 /// specified successor will be merged into the same critical edge block.
159 /// This is most commonly interesting with switch instructions, which may
160 /// have many edges to any one destination.  This ensures that all edges to that
161 /// dest go to one block instead of each going to a different block, but isn't
162 /// the standard definition of a "critical edge".
163 ///
164 /// It is invalid to call this function on a critical edge that starts at an
165 /// IndirectBrInst.  Splitting these edges will almost always create an invalid
166 /// program because the address of the new block won't be the one that is jumped
167 /// to.
168 ///
SplitCriticalEdge(TerminatorInst * TI,unsigned SuccNum,Pass * P,bool MergeIdenticalEdges)169 BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
170                                     Pass *P, bool MergeIdenticalEdges) {
171   if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0;
172 
173   assert(!isa<IndirectBrInst>(TI) &&
174          "Cannot split critical edge from IndirectBrInst");
175 
176   BasicBlock *TIBB = TI->getParent();
177   BasicBlock *DestBB = TI->getSuccessor(SuccNum);
178 
179   // Create a new basic block, linking it into the CFG.
180   BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
181                       TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
182   // Create our unconditional branch.
183   BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
184   NewBI->setDebugLoc(TI->getDebugLoc());
185 
186   // Branch to the new block, breaking the edge.
187   TI->setSuccessor(SuccNum, NewBB);
188 
189   // Insert the block into the function... right after the block TI lives in.
190   Function &F = *TIBB->getParent();
191   Function::iterator FBBI = TIBB;
192   F.getBasicBlockList().insert(++FBBI, NewBB);
193 
194   // If there are any PHI nodes in DestBB, we need to update them so that they
195   // merge incoming values from NewBB instead of from TIBB.
196   {
197     unsigned BBIdx = 0;
198     for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
199       // We no longer enter through TIBB, now we come in through NewBB.
200       // Revector exactly one entry in the PHI node that used to come from
201       // TIBB to come from NewBB.
202       PHINode *PN = cast<PHINode>(I);
203 
204       // Reuse the previous value of BBIdx if it lines up.  In cases where we
205       // have multiple phi nodes with *lots* of predecessors, this is a speed
206       // win because we don't have to scan the PHI looking for TIBB.  This
207       // happens because the BB list of PHI nodes are usually in the same
208       // order.
209       if (PN->getIncomingBlock(BBIdx) != TIBB)
210 	BBIdx = PN->getBasicBlockIndex(TIBB);
211       PN->setIncomingBlock(BBIdx, NewBB);
212     }
213   }
214 
215   // If there are any other edges from TIBB to DestBB, update those to go
216   // through the split block, making those edges non-critical as well (and
217   // reducing the number of phi entries in the DestBB if relevant).
218   if (MergeIdenticalEdges) {
219     for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
220       if (TI->getSuccessor(i) != DestBB) continue;
221 
222       // Remove an entry for TIBB from DestBB phi nodes.
223       DestBB->removePredecessor(TIBB);
224 
225       // We found another edge to DestBB, go to NewBB instead.
226       TI->setSuccessor(i, NewBB);
227     }
228   }
229 
230 
231 
232   // If we don't have a pass object, we can't update anything...
233   if (P == 0) return NewBB;
234 
235   DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
236   LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
237   ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
238 
239   // If we have nothing to update, just return.
240   if (DT == 0 && LI == 0 && PI == 0)
241     return NewBB;
242 
243   // Now update analysis information.  Since the only predecessor of NewBB is
244   // the TIBB, TIBB clearly dominates NewBB.  TIBB usually doesn't dominate
245   // anything, as there are other successors of DestBB.  However, if all other
246   // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
247   // loop header) then NewBB dominates DestBB.
248   SmallVector<BasicBlock*, 8> OtherPreds;
249 
250   // If there is a PHI in the block, loop over predecessors with it, which is
251   // faster than iterating pred_begin/end.
252   if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
253     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
254       if (PN->getIncomingBlock(i) != NewBB)
255         OtherPreds.push_back(PN->getIncomingBlock(i));
256   } else {
257     for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
258          I != E; ++I) {
259       BasicBlock *P = *I;
260       if (P != NewBB)
261         OtherPreds.push_back(P);
262     }
263   }
264 
265   bool NewBBDominatesDestBB = true;
266 
267   // Should we update DominatorTree information?
268   if (DT) {
269     DomTreeNode *TINode = DT->getNode(TIBB);
270 
271     // The new block is not the immediate dominator for any other nodes, but
272     // TINode is the immediate dominator for the new node.
273     //
274     if (TINode) {       // Don't break unreachable code!
275       DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
276       DomTreeNode *DestBBNode = 0;
277 
278       // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
279       if (!OtherPreds.empty()) {
280         DestBBNode = DT->getNode(DestBB);
281         while (!OtherPreds.empty() && NewBBDominatesDestBB) {
282           if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
283             NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
284           OtherPreds.pop_back();
285         }
286         OtherPreds.clear();
287       }
288 
289       // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
290       // doesn't dominate anything.
291       if (NewBBDominatesDestBB) {
292         if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
293         DT->changeImmediateDominator(DestBBNode, NewBBNode);
294       }
295     }
296   }
297 
298   // Update LoopInfo if it is around.
299   if (LI) {
300     if (Loop *TIL = LI->getLoopFor(TIBB)) {
301       // If one or the other blocks were not in a loop, the new block is not
302       // either, and thus LI doesn't need to be updated.
303       if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
304         if (TIL == DestLoop) {
305           // Both in the same loop, the NewBB joins loop.
306           DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
307         } else if (TIL->contains(DestLoop)) {
308           // Edge from an outer loop to an inner loop.  Add to the outer loop.
309           TIL->addBasicBlockToLoop(NewBB, LI->getBase());
310         } else if (DestLoop->contains(TIL)) {
311           // Edge from an inner loop to an outer loop.  Add to the outer loop.
312           DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
313         } else {
314           // Edge from two loops with no containment relation.  Because these
315           // are natural loops, we know that the destination block must be the
316           // header of its loop (adding a branch into a loop elsewhere would
317           // create an irreducible loop).
318           assert(DestLoop->getHeader() == DestBB &&
319                  "Should not create irreducible loops!");
320           if (Loop *P = DestLoop->getParentLoop())
321             P->addBasicBlockToLoop(NewBB, LI->getBase());
322         }
323       }
324       // If TIBB is in a loop and DestBB is outside of that loop, split the
325       // other exit blocks of the loop that also have predecessors outside
326       // the loop, to maintain a LoopSimplify guarantee.
327       if (!TIL->contains(DestBB) &&
328           P->mustPreserveAnalysisID(LoopSimplifyID)) {
329         assert(!TIL->contains(NewBB) &&
330                "Split point for loop exit is contained in loop!");
331 
332         // Update LCSSA form in the newly created exit block.
333         if (P->mustPreserveAnalysisID(LCSSAID)) {
334           SmallVector<BasicBlock *, 1> OrigPred;
335           OrigPred.push_back(TIBB);
336           CreatePHIsForSplitLoopExit(OrigPred, NewBB, DestBB);
337         }
338 
339         // For each unique exit block...
340         // FIXME: This code is functionally equivalent to the corresponding
341         // loop in LoopSimplify.
342         SmallVector<BasicBlock *, 4> ExitBlocks;
343         TIL->getExitBlocks(ExitBlocks);
344         for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
345           // Collect all the preds that are inside the loop, and note
346           // whether there are any preds outside the loop.
347           SmallVector<BasicBlock *, 4> Preds;
348           bool HasPredOutsideOfLoop = false;
349           BasicBlock *Exit = ExitBlocks[i];
350           for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit);
351                I != E; ++I) {
352             BasicBlock *P = *I;
353             if (TIL->contains(P)) {
354               if (isa<IndirectBrInst>(P->getTerminator())) {
355                 Preds.clear();
356                 break;
357               }
358               Preds.push_back(P);
359             } else {
360               HasPredOutsideOfLoop = true;
361             }
362           }
363           // If there are any preds not in the loop, we'll need to split
364           // the edges. The Preds.empty() check is needed because a block
365           // may appear multiple times in the list. We can't use
366           // getUniqueExitBlocks above because that depends on LoopSimplify
367           // form, which we're in the process of restoring!
368           if (!Preds.empty() && HasPredOutsideOfLoop) {
369             BasicBlock *NewExitBB =
370               SplitBlockPredecessors(Exit, Preds.data(), Preds.size(),
371                                      "split", P);
372             if (P->mustPreserveAnalysisID(LCSSAID))
373               CreatePHIsForSplitLoopExit(Preds, NewExitBB, Exit);
374           }
375         }
376       }
377       // LCSSA form was updated above for the case where LoopSimplify is
378       // available, which means that all predecessors of loop exit blocks
379       // are within the loop. Without LoopSimplify form, it would be
380       // necessary to insert a new phi.
381       assert((!P->mustPreserveAnalysisID(LCSSAID) ||
382               P->mustPreserveAnalysisID(LoopSimplifyID)) &&
383              "SplitCriticalEdge doesn't know how to update LCCSA form "
384              "without LoopSimplify!");
385     }
386   }
387 
388   // Update ProfileInfo if it is around.
389   if (PI)
390     PI->splitEdge(TIBB, DestBB, NewBB, MergeIdenticalEdges);
391 
392   return NewBB;
393 }
394