1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11 // inserting a dummy basic block. This pass may be "required" by passes that
12 // cannot deal with critical edges. For this usage, the structure type is
13 // forward declared. This pass obviously invalidates the CFG, but can update
14 // dominator trees.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #define DEBUG_TYPE "break-crit-edges"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
21 #include "llvm/Analysis/Dominators.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/ProfileInfo.h"
24 #include "llvm/Function.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Type.h"
27 #include "llvm/Support/CFG.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 using namespace llvm;
32
33 STATISTIC(NumBroken, "Number of blocks inserted");
34
35 namespace {
36 struct BreakCriticalEdges : public FunctionPass {
37 static char ID; // Pass identification, replacement for typeid
BreakCriticalEdges__anon4dd4a2ab0111::BreakCriticalEdges38 BreakCriticalEdges() : FunctionPass(ID) {
39 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
40 }
41
42 virtual bool runOnFunction(Function &F);
43
getAnalysisUsage__anon4dd4a2ab0111::BreakCriticalEdges44 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
45 AU.addPreserved<DominatorTree>();
46 AU.addPreserved<LoopInfo>();
47 AU.addPreserved<ProfileInfo>();
48
49 // No loop canonicalization guarantees are broken by this pass.
50 AU.addPreservedID(LoopSimplifyID);
51 }
52 };
53 }
54
55 char BreakCriticalEdges::ID = 0;
56 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
57 "Break critical edges in CFG", false, false)
58
59 // Publicly exposed interface to pass...
60 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
createBreakCriticalEdgesPass()61 FunctionPass *llvm::createBreakCriticalEdgesPass() {
62 return new BreakCriticalEdges();
63 }
64
65 // runOnFunction - Loop over all of the edges in the CFG, breaking critical
66 // edges as they are found.
67 //
runOnFunction(Function & F)68 bool BreakCriticalEdges::runOnFunction(Function &F) {
69 bool Changed = false;
70 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
71 TerminatorInst *TI = I->getTerminator();
72 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
73 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
74 if (SplitCriticalEdge(TI, i, this)) {
75 ++NumBroken;
76 Changed = true;
77 }
78 }
79
80 return Changed;
81 }
82
83 //===----------------------------------------------------------------------===//
84 // Implementation of the external critical edge manipulation functions
85 //===----------------------------------------------------------------------===//
86
87 // isCriticalEdge - Return true if the specified edge is a critical edge.
88 // Critical edges are edges from a block with multiple successors to a block
89 // with multiple predecessors.
90 //
isCriticalEdge(const TerminatorInst * TI,unsigned SuccNum,bool AllowIdenticalEdges)91 bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
92 bool AllowIdenticalEdges) {
93 assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
94 if (TI->getNumSuccessors() == 1) return false;
95
96 const BasicBlock *Dest = TI->getSuccessor(SuccNum);
97 const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
98
99 // If there is more than one predecessor, this is a critical edge...
100 assert(I != E && "No preds, but we have an edge to the block?");
101 const BasicBlock *FirstPred = *I;
102 ++I; // Skip one edge due to the incoming arc from TI.
103 if (!AllowIdenticalEdges)
104 return I != E;
105
106 // If AllowIdenticalEdges is true, then we allow this edge to be considered
107 // non-critical iff all preds come from TI's block.
108 while (I != E) {
109 const BasicBlock *P = *I;
110 if (P != FirstPred)
111 return true;
112 // Note: leave this as is until no one ever compiles with either gcc 4.0.1
113 // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
114 E = pred_end(P);
115 ++I;
116 }
117 return false;
118 }
119
120 /// CreatePHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
121 /// may require new PHIs in the new exit block. This function inserts the
122 /// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
123 /// is the new loop exit block, and DestBB is the old loop exit, now the
124 /// successor of SplitBB.
CreatePHIsForSplitLoopExit(SmallVectorImpl<BasicBlock * > & Preds,BasicBlock * SplitBB,BasicBlock * DestBB)125 static void CreatePHIsForSplitLoopExit(SmallVectorImpl<BasicBlock *> &Preds,
126 BasicBlock *SplitBB,
127 BasicBlock *DestBB) {
128 // SplitBB shouldn't have anything non-trivial in it yet.
129 assert(SplitBB->getFirstNonPHI() == SplitBB->getTerminator() &&
130 "SplitBB has non-PHI nodes!");
131
132 // For each PHI in the destination block...
133 for (BasicBlock::iterator I = DestBB->begin();
134 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
135 unsigned Idx = PN->getBasicBlockIndex(SplitBB);
136 Value *V = PN->getIncomingValue(Idx);
137 // If the input is a PHI which already satisfies LCSSA, don't create
138 // a new one.
139 if (const PHINode *VP = dyn_cast<PHINode>(V))
140 if (VP->getParent() == SplitBB)
141 continue;
142 // Otherwise a new PHI is needed. Create one and populate it.
143 PHINode *NewPN = PHINode::Create(PN->getType(), Preds.size(), "split",
144 SplitBB->getTerminator());
145 for (unsigned i = 0, e = Preds.size(); i != e; ++i)
146 NewPN->addIncoming(V, Preds[i]);
147 // Update the original PHI.
148 PN->setIncomingValue(Idx, NewPN);
149 }
150 }
151
152 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
153 /// split the critical edge. This will update DominatorTree information if it
154 /// is available, thus calling this pass will not invalidate either of them.
155 /// This returns the new block if the edge was split, null otherwise.
156 ///
157 /// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
158 /// specified successor will be merged into the same critical edge block.
159 /// This is most commonly interesting with switch instructions, which may
160 /// have many edges to any one destination. This ensures that all edges to that
161 /// dest go to one block instead of each going to a different block, but isn't
162 /// the standard definition of a "critical edge".
163 ///
164 /// It is invalid to call this function on a critical edge that starts at an
165 /// IndirectBrInst. Splitting these edges will almost always create an invalid
166 /// program because the address of the new block won't be the one that is jumped
167 /// to.
168 ///
SplitCriticalEdge(TerminatorInst * TI,unsigned SuccNum,Pass * P,bool MergeIdenticalEdges)169 BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
170 Pass *P, bool MergeIdenticalEdges) {
171 if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0;
172
173 assert(!isa<IndirectBrInst>(TI) &&
174 "Cannot split critical edge from IndirectBrInst");
175
176 BasicBlock *TIBB = TI->getParent();
177 BasicBlock *DestBB = TI->getSuccessor(SuccNum);
178
179 // Create a new basic block, linking it into the CFG.
180 BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
181 TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
182 // Create our unconditional branch.
183 BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
184 NewBI->setDebugLoc(TI->getDebugLoc());
185
186 // Branch to the new block, breaking the edge.
187 TI->setSuccessor(SuccNum, NewBB);
188
189 // Insert the block into the function... right after the block TI lives in.
190 Function &F = *TIBB->getParent();
191 Function::iterator FBBI = TIBB;
192 F.getBasicBlockList().insert(++FBBI, NewBB);
193
194 // If there are any PHI nodes in DestBB, we need to update them so that they
195 // merge incoming values from NewBB instead of from TIBB.
196 {
197 unsigned BBIdx = 0;
198 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
199 // We no longer enter through TIBB, now we come in through NewBB.
200 // Revector exactly one entry in the PHI node that used to come from
201 // TIBB to come from NewBB.
202 PHINode *PN = cast<PHINode>(I);
203
204 // Reuse the previous value of BBIdx if it lines up. In cases where we
205 // have multiple phi nodes with *lots* of predecessors, this is a speed
206 // win because we don't have to scan the PHI looking for TIBB. This
207 // happens because the BB list of PHI nodes are usually in the same
208 // order.
209 if (PN->getIncomingBlock(BBIdx) != TIBB)
210 BBIdx = PN->getBasicBlockIndex(TIBB);
211 PN->setIncomingBlock(BBIdx, NewBB);
212 }
213 }
214
215 // If there are any other edges from TIBB to DestBB, update those to go
216 // through the split block, making those edges non-critical as well (and
217 // reducing the number of phi entries in the DestBB if relevant).
218 if (MergeIdenticalEdges) {
219 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
220 if (TI->getSuccessor(i) != DestBB) continue;
221
222 // Remove an entry for TIBB from DestBB phi nodes.
223 DestBB->removePredecessor(TIBB);
224
225 // We found another edge to DestBB, go to NewBB instead.
226 TI->setSuccessor(i, NewBB);
227 }
228 }
229
230
231
232 // If we don't have a pass object, we can't update anything...
233 if (P == 0) return NewBB;
234
235 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
236 LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
237 ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
238
239 // If we have nothing to update, just return.
240 if (DT == 0 && LI == 0 && PI == 0)
241 return NewBB;
242
243 // Now update analysis information. Since the only predecessor of NewBB is
244 // the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
245 // anything, as there are other successors of DestBB. However, if all other
246 // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
247 // loop header) then NewBB dominates DestBB.
248 SmallVector<BasicBlock*, 8> OtherPreds;
249
250 // If there is a PHI in the block, loop over predecessors with it, which is
251 // faster than iterating pred_begin/end.
252 if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
253 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
254 if (PN->getIncomingBlock(i) != NewBB)
255 OtherPreds.push_back(PN->getIncomingBlock(i));
256 } else {
257 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
258 I != E; ++I) {
259 BasicBlock *P = *I;
260 if (P != NewBB)
261 OtherPreds.push_back(P);
262 }
263 }
264
265 bool NewBBDominatesDestBB = true;
266
267 // Should we update DominatorTree information?
268 if (DT) {
269 DomTreeNode *TINode = DT->getNode(TIBB);
270
271 // The new block is not the immediate dominator for any other nodes, but
272 // TINode is the immediate dominator for the new node.
273 //
274 if (TINode) { // Don't break unreachable code!
275 DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
276 DomTreeNode *DestBBNode = 0;
277
278 // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
279 if (!OtherPreds.empty()) {
280 DestBBNode = DT->getNode(DestBB);
281 while (!OtherPreds.empty() && NewBBDominatesDestBB) {
282 if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
283 NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
284 OtherPreds.pop_back();
285 }
286 OtherPreds.clear();
287 }
288
289 // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
290 // doesn't dominate anything.
291 if (NewBBDominatesDestBB) {
292 if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
293 DT->changeImmediateDominator(DestBBNode, NewBBNode);
294 }
295 }
296 }
297
298 // Update LoopInfo if it is around.
299 if (LI) {
300 if (Loop *TIL = LI->getLoopFor(TIBB)) {
301 // If one or the other blocks were not in a loop, the new block is not
302 // either, and thus LI doesn't need to be updated.
303 if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
304 if (TIL == DestLoop) {
305 // Both in the same loop, the NewBB joins loop.
306 DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
307 } else if (TIL->contains(DestLoop)) {
308 // Edge from an outer loop to an inner loop. Add to the outer loop.
309 TIL->addBasicBlockToLoop(NewBB, LI->getBase());
310 } else if (DestLoop->contains(TIL)) {
311 // Edge from an inner loop to an outer loop. Add to the outer loop.
312 DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
313 } else {
314 // Edge from two loops with no containment relation. Because these
315 // are natural loops, we know that the destination block must be the
316 // header of its loop (adding a branch into a loop elsewhere would
317 // create an irreducible loop).
318 assert(DestLoop->getHeader() == DestBB &&
319 "Should not create irreducible loops!");
320 if (Loop *P = DestLoop->getParentLoop())
321 P->addBasicBlockToLoop(NewBB, LI->getBase());
322 }
323 }
324 // If TIBB is in a loop and DestBB is outside of that loop, split the
325 // other exit blocks of the loop that also have predecessors outside
326 // the loop, to maintain a LoopSimplify guarantee.
327 if (!TIL->contains(DestBB) &&
328 P->mustPreserveAnalysisID(LoopSimplifyID)) {
329 assert(!TIL->contains(NewBB) &&
330 "Split point for loop exit is contained in loop!");
331
332 // Update LCSSA form in the newly created exit block.
333 if (P->mustPreserveAnalysisID(LCSSAID)) {
334 SmallVector<BasicBlock *, 1> OrigPred;
335 OrigPred.push_back(TIBB);
336 CreatePHIsForSplitLoopExit(OrigPred, NewBB, DestBB);
337 }
338
339 // For each unique exit block...
340 // FIXME: This code is functionally equivalent to the corresponding
341 // loop in LoopSimplify.
342 SmallVector<BasicBlock *, 4> ExitBlocks;
343 TIL->getExitBlocks(ExitBlocks);
344 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
345 // Collect all the preds that are inside the loop, and note
346 // whether there are any preds outside the loop.
347 SmallVector<BasicBlock *, 4> Preds;
348 bool HasPredOutsideOfLoop = false;
349 BasicBlock *Exit = ExitBlocks[i];
350 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit);
351 I != E; ++I) {
352 BasicBlock *P = *I;
353 if (TIL->contains(P)) {
354 if (isa<IndirectBrInst>(P->getTerminator())) {
355 Preds.clear();
356 break;
357 }
358 Preds.push_back(P);
359 } else {
360 HasPredOutsideOfLoop = true;
361 }
362 }
363 // If there are any preds not in the loop, we'll need to split
364 // the edges. The Preds.empty() check is needed because a block
365 // may appear multiple times in the list. We can't use
366 // getUniqueExitBlocks above because that depends on LoopSimplify
367 // form, which we're in the process of restoring!
368 if (!Preds.empty() && HasPredOutsideOfLoop) {
369 BasicBlock *NewExitBB =
370 SplitBlockPredecessors(Exit, Preds.data(), Preds.size(),
371 "split", P);
372 if (P->mustPreserveAnalysisID(LCSSAID))
373 CreatePHIsForSplitLoopExit(Preds, NewExitBB, Exit);
374 }
375 }
376 }
377 // LCSSA form was updated above for the case where LoopSimplify is
378 // available, which means that all predecessors of loop exit blocks
379 // are within the loop. Without LoopSimplify form, it would be
380 // necessary to insert a new phi.
381 assert((!P->mustPreserveAnalysisID(LCSSAID) ||
382 P->mustPreserveAnalysisID(LoopSimplifyID)) &&
383 "SplitCriticalEdge doesn't know how to update LCCSA form "
384 "without LoopSimplify!");
385 }
386 }
387
388 // Update ProfileInfo if it is around.
389 if (PI)
390 PI->splitEdge(TIBB, DestBB, NewBB, MergeIdenticalEdges);
391
392 return NewBB;
393 }
394