1 //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/Target/TargetAsmBackend.h"
11 #include "X86.h"
12 #include "X86FixupKinds.h"
13 #include "llvm/ADT/Twine.h"
14 #include "llvm/MC/MCAssembler.h"
15 #include "llvm/MC/MCELFObjectWriter.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/MC/MCFixupKindInfo.h"
18 #include "llvm/MC/MCMachObjectWriter.h"
19 #include "llvm/MC/MCObjectWriter.h"
20 #include "llvm/MC/MCSectionCOFF.h"
21 #include "llvm/MC/MCSectionELF.h"
22 #include "llvm/MC/MCSectionMachO.h"
23 #include "llvm/Object/MachOFormat.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/ELF.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Target/TargetRegistry.h"
29 #include "llvm/Target/TargetAsmBackend.h"
30 using namespace llvm;
31
32 // Option to allow disabling arithmetic relaxation to workaround PR9807, which
33 // is useful when running bitwise comparison experiments on Darwin. We should be
34 // able to remove this once PR9807 is resolved.
35 static cl::opt<bool>
36 MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
37 cl::desc("Disable relaxation of arithmetic instruction for X86"));
38
getFixupKindLog2Size(unsigned Kind)39 static unsigned getFixupKindLog2Size(unsigned Kind) {
40 switch (Kind) {
41 default: assert(0 && "invalid fixup kind!");
42 case FK_PCRel_1:
43 case FK_Data_1: return 0;
44 case FK_PCRel_2:
45 case FK_Data_2: return 1;
46 case FK_PCRel_4:
47 case X86::reloc_riprel_4byte:
48 case X86::reloc_riprel_4byte_movq_load:
49 case X86::reloc_signed_4byte:
50 case X86::reloc_global_offset_table:
51 case FK_Data_4: return 2;
52 case FK_PCRel_8:
53 case FK_Data_8: return 3;
54 }
55 }
56
57 namespace {
58
59 class X86ELFObjectWriter : public MCELFObjectTargetWriter {
60 public:
X86ELFObjectWriter(bool is64Bit,Triple::OSType OSType,uint16_t EMachine,bool HasRelocationAddend)61 X86ELFObjectWriter(bool is64Bit, Triple::OSType OSType, uint16_t EMachine,
62 bool HasRelocationAddend)
63 : MCELFObjectTargetWriter(is64Bit, OSType, EMachine, HasRelocationAddend) {}
64 };
65
66 class X86AsmBackend : public TargetAsmBackend {
67 public:
X86AsmBackend(const Target & T)68 X86AsmBackend(const Target &T)
69 : TargetAsmBackend() {}
70
getNumFixupKinds() const71 unsigned getNumFixupKinds() const {
72 return X86::NumTargetFixupKinds;
73 }
74
getFixupKindInfo(MCFixupKind Kind) const75 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
76 const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
77 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
78 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
79 { "reloc_signed_4byte", 0, 4 * 8, 0},
80 { "reloc_global_offset_table", 0, 4 * 8, 0}
81 };
82
83 if (Kind < FirstTargetFixupKind)
84 return TargetAsmBackend::getFixupKindInfo(Kind);
85
86 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
87 "Invalid kind!");
88 return Infos[Kind - FirstTargetFixupKind];
89 }
90
ApplyFixup(const MCFixup & Fixup,char * Data,unsigned DataSize,uint64_t Value) const91 void ApplyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
92 uint64_t Value) const {
93 unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
94
95 assert(Fixup.getOffset() + Size <= DataSize &&
96 "Invalid fixup offset!");
97 for (unsigned i = 0; i != Size; ++i)
98 Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
99 }
100
101 bool MayNeedRelaxation(const MCInst &Inst) const;
102
103 void RelaxInstruction(const MCInst &Inst, MCInst &Res) const;
104
105 bool WriteNopData(uint64_t Count, MCObjectWriter *OW) const;
106 };
107 } // end anonymous namespace
108
getRelaxedOpcodeBranch(unsigned Op)109 static unsigned getRelaxedOpcodeBranch(unsigned Op) {
110 switch (Op) {
111 default:
112 return Op;
113
114 case X86::JAE_1: return X86::JAE_4;
115 case X86::JA_1: return X86::JA_4;
116 case X86::JBE_1: return X86::JBE_4;
117 case X86::JB_1: return X86::JB_4;
118 case X86::JE_1: return X86::JE_4;
119 case X86::JGE_1: return X86::JGE_4;
120 case X86::JG_1: return X86::JG_4;
121 case X86::JLE_1: return X86::JLE_4;
122 case X86::JL_1: return X86::JL_4;
123 case X86::JMP_1: return X86::JMP_4;
124 case X86::JNE_1: return X86::JNE_4;
125 case X86::JNO_1: return X86::JNO_4;
126 case X86::JNP_1: return X86::JNP_4;
127 case X86::JNS_1: return X86::JNS_4;
128 case X86::JO_1: return X86::JO_4;
129 case X86::JP_1: return X86::JP_4;
130 case X86::JS_1: return X86::JS_4;
131 }
132 }
133
getRelaxedOpcodeArith(unsigned Op)134 static unsigned getRelaxedOpcodeArith(unsigned Op) {
135 switch (Op) {
136 default:
137 return Op;
138
139 // IMUL
140 case X86::IMUL16rri8: return X86::IMUL16rri;
141 case X86::IMUL16rmi8: return X86::IMUL16rmi;
142 case X86::IMUL32rri8: return X86::IMUL32rri;
143 case X86::IMUL32rmi8: return X86::IMUL32rmi;
144 case X86::IMUL64rri8: return X86::IMUL64rri32;
145 case X86::IMUL64rmi8: return X86::IMUL64rmi32;
146
147 // AND
148 case X86::AND16ri8: return X86::AND16ri;
149 case X86::AND16mi8: return X86::AND16mi;
150 case X86::AND32ri8: return X86::AND32ri;
151 case X86::AND32mi8: return X86::AND32mi;
152 case X86::AND64ri8: return X86::AND64ri32;
153 case X86::AND64mi8: return X86::AND64mi32;
154
155 // OR
156 case X86::OR16ri8: return X86::OR16ri;
157 case X86::OR16mi8: return X86::OR16mi;
158 case X86::OR32ri8: return X86::OR32ri;
159 case X86::OR32mi8: return X86::OR32mi;
160 case X86::OR64ri8: return X86::OR64ri32;
161 case X86::OR64mi8: return X86::OR64mi32;
162
163 // XOR
164 case X86::XOR16ri8: return X86::XOR16ri;
165 case X86::XOR16mi8: return X86::XOR16mi;
166 case X86::XOR32ri8: return X86::XOR32ri;
167 case X86::XOR32mi8: return X86::XOR32mi;
168 case X86::XOR64ri8: return X86::XOR64ri32;
169 case X86::XOR64mi8: return X86::XOR64mi32;
170
171 // ADD
172 case X86::ADD16ri8: return X86::ADD16ri;
173 case X86::ADD16mi8: return X86::ADD16mi;
174 case X86::ADD32ri8: return X86::ADD32ri;
175 case X86::ADD32mi8: return X86::ADD32mi;
176 case X86::ADD64ri8: return X86::ADD64ri32;
177 case X86::ADD64mi8: return X86::ADD64mi32;
178
179 // SUB
180 case X86::SUB16ri8: return X86::SUB16ri;
181 case X86::SUB16mi8: return X86::SUB16mi;
182 case X86::SUB32ri8: return X86::SUB32ri;
183 case X86::SUB32mi8: return X86::SUB32mi;
184 case X86::SUB64ri8: return X86::SUB64ri32;
185 case X86::SUB64mi8: return X86::SUB64mi32;
186
187 // CMP
188 case X86::CMP16ri8: return X86::CMP16ri;
189 case X86::CMP16mi8: return X86::CMP16mi;
190 case X86::CMP32ri8: return X86::CMP32ri;
191 case X86::CMP32mi8: return X86::CMP32mi;
192 case X86::CMP64ri8: return X86::CMP64ri32;
193 case X86::CMP64mi8: return X86::CMP64mi32;
194
195 // PUSH
196 case X86::PUSHi8: return X86::PUSHi32;
197 case X86::PUSHi16: return X86::PUSHi32;
198 case X86::PUSH64i8: return X86::PUSH64i32;
199 case X86::PUSH64i16: return X86::PUSH64i32;
200 }
201 }
202
getRelaxedOpcode(unsigned Op)203 static unsigned getRelaxedOpcode(unsigned Op) {
204 unsigned R = getRelaxedOpcodeArith(Op);
205 if (R != Op)
206 return R;
207 return getRelaxedOpcodeBranch(Op);
208 }
209
MayNeedRelaxation(const MCInst & Inst) const210 bool X86AsmBackend::MayNeedRelaxation(const MCInst &Inst) const {
211 // Branches can always be relaxed.
212 if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
213 return true;
214
215 if (MCDisableArithRelaxation)
216 return false;
217
218 // Check if this instruction is ever relaxable.
219 if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
220 return false;
221
222
223 // Check if it has an expression and is not RIP relative.
224 bool hasExp = false;
225 bool hasRIP = false;
226 for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
227 const MCOperand &Op = Inst.getOperand(i);
228 if (Op.isExpr())
229 hasExp = true;
230
231 if (Op.isReg() && Op.getReg() == X86::RIP)
232 hasRIP = true;
233 }
234
235 // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
236 // how we do relaxations?
237 return hasExp && !hasRIP;
238 }
239
240 // FIXME: Can tblgen help at all here to verify there aren't other instructions
241 // we can relax?
RelaxInstruction(const MCInst & Inst,MCInst & Res) const242 void X86AsmBackend::RelaxInstruction(const MCInst &Inst, MCInst &Res) const {
243 // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
244 unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
245
246 if (RelaxedOp == Inst.getOpcode()) {
247 SmallString<256> Tmp;
248 raw_svector_ostream OS(Tmp);
249 Inst.dump_pretty(OS);
250 OS << "\n";
251 report_fatal_error("unexpected instruction to relax: " + OS.str());
252 }
253
254 Res = Inst;
255 Res.setOpcode(RelaxedOp);
256 }
257
258 /// WriteNopData - Write optimal nops to the output file for the \arg Count
259 /// bytes. This returns the number of bytes written. It may return 0 if
260 /// the \arg Count is more than the maximum optimal nops.
WriteNopData(uint64_t Count,MCObjectWriter * OW) const261 bool X86AsmBackend::WriteNopData(uint64_t Count, MCObjectWriter *OW) const {
262 static const uint8_t Nops[10][10] = {
263 // nop
264 {0x90},
265 // xchg %ax,%ax
266 {0x66, 0x90},
267 // nopl (%[re]ax)
268 {0x0f, 0x1f, 0x00},
269 // nopl 0(%[re]ax)
270 {0x0f, 0x1f, 0x40, 0x00},
271 // nopl 0(%[re]ax,%[re]ax,1)
272 {0x0f, 0x1f, 0x44, 0x00, 0x00},
273 // nopw 0(%[re]ax,%[re]ax,1)
274 {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
275 // nopl 0L(%[re]ax)
276 {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
277 // nopl 0L(%[re]ax,%[re]ax,1)
278 {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
279 // nopw 0L(%[re]ax,%[re]ax,1)
280 {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
281 // nopw %cs:0L(%[re]ax,%[re]ax,1)
282 {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
283 };
284
285 // Write an optimal sequence for the first 15 bytes.
286 const uint64_t OptimalCount = (Count < 16) ? Count : 15;
287 const uint64_t Prefixes = OptimalCount <= 10 ? 0 : OptimalCount - 10;
288 for (uint64_t i = 0, e = Prefixes; i != e; i++)
289 OW->Write8(0x66);
290 const uint64_t Rest = OptimalCount - Prefixes;
291 for (uint64_t i = 0, e = Rest; i != e; i++)
292 OW->Write8(Nops[Rest - 1][i]);
293
294 // Finish with single byte nops.
295 for (uint64_t i = OptimalCount, e = Count; i != e; ++i)
296 OW->Write8(0x90);
297
298 return true;
299 }
300
301 /* *** */
302
303 namespace {
304 class ELFX86AsmBackend : public X86AsmBackend {
305 public:
306 Triple::OSType OSType;
ELFX86AsmBackend(const Target & T,Triple::OSType _OSType)307 ELFX86AsmBackend(const Target &T, Triple::OSType _OSType)
308 : X86AsmBackend(T), OSType(_OSType) {
309 HasReliableSymbolDifference = true;
310 }
311
doesSectionRequireSymbols(const MCSection & Section) const312 virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
313 const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
314 return ES.getFlags() & ELF::SHF_MERGE;
315 }
316 };
317
318 class ELFX86_32AsmBackend : public ELFX86AsmBackend {
319 public:
ELFX86_32AsmBackend(const Target & T,Triple::OSType OSType)320 ELFX86_32AsmBackend(const Target &T, Triple::OSType OSType)
321 : ELFX86AsmBackend(T, OSType) {}
322
createObjectWriter(raw_ostream & OS) const323 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
324 return createELFObjectWriter(createELFObjectTargetWriter(),
325 OS, /*IsLittleEndian*/ true);
326 }
327
createELFObjectTargetWriter() const328 MCELFObjectTargetWriter *createELFObjectTargetWriter() const {
329 return new X86ELFObjectWriter(false, OSType, ELF::EM_386, false);
330 }
331 };
332
333 class ELFX86_64AsmBackend : public ELFX86AsmBackend {
334 public:
ELFX86_64AsmBackend(const Target & T,Triple::OSType OSType)335 ELFX86_64AsmBackend(const Target &T, Triple::OSType OSType)
336 : ELFX86AsmBackend(T, OSType) {}
337
createObjectWriter(raw_ostream & OS) const338 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
339 return createELFObjectWriter(createELFObjectTargetWriter(),
340 OS, /*IsLittleEndian*/ true);
341 }
342
createELFObjectTargetWriter() const343 MCELFObjectTargetWriter *createELFObjectTargetWriter() const {
344 return new X86ELFObjectWriter(true, OSType, ELF::EM_X86_64, true);
345 }
346 };
347
348 class WindowsX86AsmBackend : public X86AsmBackend {
349 bool Is64Bit;
350
351 public:
WindowsX86AsmBackend(const Target & T,bool is64Bit)352 WindowsX86AsmBackend(const Target &T, bool is64Bit)
353 : X86AsmBackend(T)
354 , Is64Bit(is64Bit) {
355 }
356
createObjectWriter(raw_ostream & OS) const357 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
358 return createWinCOFFObjectWriter(OS, Is64Bit);
359 }
360 };
361
362 class DarwinX86AsmBackend : public X86AsmBackend {
363 public:
DarwinX86AsmBackend(const Target & T)364 DarwinX86AsmBackend(const Target &T)
365 : X86AsmBackend(T) { }
366 };
367
368 class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
369 public:
DarwinX86_32AsmBackend(const Target & T)370 DarwinX86_32AsmBackend(const Target &T)
371 : DarwinX86AsmBackend(T) {}
372
createObjectWriter(raw_ostream & OS) const373 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
374 return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
375 object::mach::CTM_i386,
376 object::mach::CSX86_ALL);
377 }
378 };
379
380 class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
381 public:
DarwinX86_64AsmBackend(const Target & T)382 DarwinX86_64AsmBackend(const Target &T)
383 : DarwinX86AsmBackend(T) {
384 HasReliableSymbolDifference = true;
385 }
386
createObjectWriter(raw_ostream & OS) const387 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
388 return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
389 object::mach::CTM_x86_64,
390 object::mach::CSX86_ALL);
391 }
392
doesSectionRequireSymbols(const MCSection & Section) const393 virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
394 // Temporary labels in the string literals sections require symbols. The
395 // issue is that the x86_64 relocation format does not allow symbol +
396 // offset, and so the linker does not have enough information to resolve the
397 // access to the appropriate atom unless an external relocation is used. For
398 // non-cstring sections, we expect the compiler to use a non-temporary label
399 // for anything that could have an addend pointing outside the symbol.
400 //
401 // See <rdar://problem/4765733>.
402 const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
403 return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS;
404 }
405
isSectionAtomizable(const MCSection & Section) const406 virtual bool isSectionAtomizable(const MCSection &Section) const {
407 const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
408 // Fixed sized data sections are uniqued, they cannot be diced into atoms.
409 switch (SMO.getType()) {
410 default:
411 return true;
412
413 case MCSectionMachO::S_4BYTE_LITERALS:
414 case MCSectionMachO::S_8BYTE_LITERALS:
415 case MCSectionMachO::S_16BYTE_LITERALS:
416 case MCSectionMachO::S_LITERAL_POINTERS:
417 case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS:
418 case MCSectionMachO::S_LAZY_SYMBOL_POINTERS:
419 case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS:
420 case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS:
421 case MCSectionMachO::S_INTERPOSING:
422 return false;
423 }
424 }
425 };
426
427 } // end anonymous namespace
428
createX86_32AsmBackend(const Target & T,const std::string & TT)429 TargetAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
430 const std::string &TT) {
431 Triple TheTriple(TT);
432
433 if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
434 return new DarwinX86_32AsmBackend(T);
435
436 if (TheTriple.isOSWindows())
437 return new WindowsX86AsmBackend(T, false);
438
439 return new ELFX86_32AsmBackend(T, TheTriple.getOS());
440 }
441
createX86_64AsmBackend(const Target & T,const std::string & TT)442 TargetAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
443 const std::string &TT) {
444 Triple TheTriple(TT);
445
446 if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
447 return new DarwinX86_64AsmBackend(T);
448
449 if (TheTriple.isOSWindows())
450 return new WindowsX86AsmBackend(T, true);
451
452 return new ELFX86_64AsmBackend(T, TheTriple.getOS());
453 }
454